
Chapter 5

Uniform global feedback — Theoretical part

In this chapter, control of chemical turbulence in oscillatory reaction-diffusion systems

is investigated theoretically. This study is motivated in particular by the experimen-

tal results presented in Section 4.2: Although the magnitude of the feedback signal

could be reduced considerably, it was found in the experiment that the ideal limit of a

vanishingly small feedback signal in the state of control could not be reached. In the

following, the behavior of the experimental system will be analyzed in terms of specific

as well as more general models for oscillatory systems. Both analytical arguments and

numerical simulations are employed to explain the experimental results and to estab-

lish an overall understanding of the behavior of extended oscillatory systems under

global delayed feedback. The chapter consists of two parts. In Section 5.1, the spatial

degrees of freedom are neglected and the homogeneous dynamics of an oscillatory sys-

tem is studied in the presence of global delayed feedback. In Section 5.2, a spatially

extended system is considered and the stability of uniform oscillations is analyzed for

the complex Ginzburg-Landau equation with global feedback.

5.1 Homogeneous dynamics

In Section 4.2, experimental results were presented showing that efficient control of

chemical turbulence can be achieved by implementing global delayed feedback and op-

timizing the delay time in the control scheme (time-delay autosynchronization, TDAS).
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For a complete understanding of this process it is necessary to consider the dynamics

of a spatially extended system in the presence of feedback. However, once turbulence is

suppressed and uniform oscillations are established, diffusive coupling can be neglected

and the dynamics is reduced to the behavior of a single oscillator.

In this section, the dynamics of a uniformly oscillating system is discussed. Stability of

uniform oscillations with respect to spatial perturbations is not considered here and will

be analyzed later (Section 5.2). The phase dynamics equation of a single oscillator in

the presence of weak feedback is analyzed and numerical simulations using the realistic

reaction model of catalytic CO oxidation on Pt(110) are presented to complement the

analytical results.

5.1.1 Phase dynamics equation

In many cases, the dynamics of an oscillatory system can be described in terms of a

single phase variable only. For introductory remarks on phase dynamics approxima-

tions see Section 2.4.2. In the case of weak feedback, a separation of time scales may

occur between the amplitude and phase variables allowing adiabatic elimination of the

amplitude variable. Thus, a phase dynamics equation can be obtained that involves

the oscillation phase φ as the only dynamical variable. The phase equation of a single

oscillator under the effect of weak TDAS takes the form

φ̇ = ω + µf(φ(t)− φ(t− τ)) , (5.1)

see also Ref. [217]. Here, ω is the oscillation frequency in absence of feedback, τ is the

delay time, and µ is the coefficient characterizing the feedback intensity (note that the

phase equation is only valid for µ� 1). The exact form of the function f(φ(t)−φ(t−τ))
depends on the specific system under consideration. Generally, f is 2π-periodic and

satisfies the conditions f(0) = f(2π) = 0. As an example, the derivation of Eq. (5.1)

is shown in Appendix C for the Stuart-Landau equation (2.21) with additional TDAS

feedback term. In this case, the function f is given by

f(∆φ) = a sin(∆φ) + b cos(∆φ)− b , (5.2)
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with ∆φ = φ(t)−φ(t−τ), a = cosχ+β sinχ, and b = sinχ−β cosχ. The parameters β

and χ are the coefficients of the Stuart-Landau equation with TDAS (see Appendix C).

Solutions In the state of control, the experimental system performs periodic uniform

oscillations. In the simplified phase model introduced above, these oscillatory states

correspond to harmonic solutions of the phase equation (5.1) that are of the form

φ(t) = Ωt. Their oscillation frequency φ̇ = Ω should satisfy

Ω = ω + µf(Ωτ) . (5.3)

The solutions can be constructed by rewriting Eq. (5.3) in the following way,

µ =
Ω− ω

f(Ωτ)
. (5.4)

For each oscillation frequency Ω, Eq. (5.4) determines the respective value of the feed-

back intensity µ at a given delay time τ . Figure 5.1 shows the solutions of Eq. (5.3) as
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Figure 5.1: Oscillation frequency as
function of the feedback intensity for
three different delay times (a) τ = 1,
(b) τ = 0.985, and (c) τ = 1.015. The
parameters are ω = 2π, β = 3, and
χ = π/6. The transcritical bifurcation
takes place at µc ≈ 0.42. Dotted lines
show unstable branches [95].
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a function of the feedback intensity for three different delay times. As an example, the

function f is chosen as in Eq. (5.2) with β = 3 and χ = π/6.

When the delay time is equal to the natural oscillation period, τ = T0 = 2π/ω, Eq. (5.3)

has always a solution Ω = ω with vanishing feedback signal. However, other solutions

are additionally present at sufficiently high feedback intensities, as seen in Fig. 5.1 (a).

They emerge via a saddle-node bifurcation. For these solutions, Ω 6= ω and the feedback

signal is not vanishing. The solution with Ω = ω intersects with the other solutions in

a transcritical bifurcation at µ = µc. Generally, the bifurcation point is given by

µc = lim
Ω→ω

Ω− ω

f(2πΩ
ω
)

=
ω

2πf ′(0)
. (5.5)

When τ 6= T , the situation is different. No transcritical bifurcation occurs. Only

a saddle-node bifurcation is found, leading to the appearance of two new solution

branches at sufficiently high feedback intensities, as shown in Figs. 5.1 (b) and (c).

Stability The linear stability of the different solutions of Eq. (5.1) can be analyzed

by simple considerations. Suppose a small perturbation δφ is applied to the phase.

Substituting φ = Ωt+ δφ into Eq. (5.1), the following equation for δφ is obtained after

linearization,

˙δφ = µf ′(Ωτ)(δφ(t)− δφ(t− τ)) . (5.6)

With an ansatz δφ(t) = eλt/τ , Eq. (5.6) yields

λ = q (1− e−λ) , (5.7)

where q = τµf ′(Ωτ). The solution with frequency Ω is stable, if Re λ < 0. Here, the

stability of the solution with vanishing feedback, Ω = ω, that occurs when τ = T0, is

of particular interest. In this case, the coefficient q can be written as

q =
µ

µc

(5.8)

by taking into account (5.5) and f ′(Ωτ) = f ′(2π) = f ′(0). Analyzing the roots of the

characteristic equation (5.7), it can be shown that the solution with Ω = ω becomes
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Figure 5.2: Oscillation period as function of delay time in the phase dynamics equation (5.1).
(a) µ = 0.2 and (b) µ = 0.6. The other parameters are as in Fig. 5.1. Hysteresis effects are
found in the gray shaded region in (b). Open circles indicate unstable solutions yielded by
Eq. (5.3). Time step for integration ∆t = 0.0001 [95].

unstable at the transcritical bifurcation point µ = µc. A similar analysis can be per-

formed for the other solution branches and also for τ 6= T . As a result, it is found that

the branches indicated by solid (dotted) lines in Fig. 5.1 are stable (unstable).

In summary, the phase dynamics equation of a single oscillator in the presence of

TDAS predicts that for τ = T0 a solution with vanishing feedback, Ω = ω, is present

and becomes unstable at sufficiently high feedback intensities. It will be replaced by

one of the two possible solutions with Ω 6= ω and a nonvanishing feedback signal.

Numerical simulations To confirm the analytical results, a series of numerical simu-

lations of Eq. (5.1) is performed tracing the oscillation period T = 2π/Ω as a function

of the delay time τ . Figure 5.2 (a) displays the dependence of T on the delay time τ

for a feedback intensity below the critical value (for µ < µc). Obviously, at τ = T0, the

solution with Ω = ω is indeed stable. However, if the feedback intensity is increased

above the critical value µc, the solution for which τ = T is unstable and a state with

vanishing feedback signal cannot be established. Instead, a discontinuity occurs if T is

recorded as a function of τ and hysteresis can be observed, see Fig. 5.2 (b).

Comparing Fig. 5.2 and Fig. 4.7, it can be seen that the change of the oscillation period

under varying delay time is qualitatively similar in the experiment and in the numerical
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simulations based on the phase dynamics equation with µ > µc. However, it is pointed

out that the phase equation is strictly valid only for weak feedbacks. Therefore, an

analysis of the behavior at stronger feedbacks requires additional simulations based on

a realistic reaction model.

5.1.2 Realistic reaction model

The temporal behavior of catalytic CO oxidation on Pt(110) single crystal surfaces

is well described by a realistic model of three coupled ordinary differential equations

for the dynamics of the CO coverage, the O coverage, and the fraction of the surface

found in the nonreconstructed 1 × 1 phase, respectively. The model Eqs. (2.7)–(2.9)

were introduced and discussed in Section 2.2.4.

Here, the model is extended by an additional equation taking into account the presence

of delayed feedback. Similar to the experiment, the feedback induces temporal changes

in the CO partial pressure depending on the evolution of the adsorbate coverages on

the catalytic surface. For simplicity, the coupling is introduced via a dependence of the

CO partial pressure on the CO coverage,

pCO(t) = p0
CO + µ(u(t− τ)− u(t)) , (5.9)

where p0
CO is the base CO partial pressure, µ is the feedback intensity, and τ is the delay

time. Note that Eq. (5.9) is only a qualitative approximation of the experimental setup

described by Eq. (4.2). In the experiment, the feedback signal was generated based on

the integral intensity I of the PEEM image. The image intensity I shows a nonlinear

dependence on both the CO and the O coverage and the exact functional form of this

relation is not known [94]. However, the simplified modeling according to Eq. (5.9) has

been successfully applied in many situations, see e.g. Refs. [57,79,216].

Numerical simulations of the model (2.7)–(2.9), (5.9) are performed using a set of

parameters for which the medium is in the oscillatory state and, if mobility of adsorbed

CO molecules had been taken into account, diffusion-induced turbulence would have

spontaneously developed. For the values of the model parameters see the caption of

Fig. 5.3. The period of oscillations in absence of feedback is T0 = 2.44 s.
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Figure 5.3: Oscillation period (a,b) and feedback magnitude (c,d) as functions of the delay
time τ obtained from numerical simulations of the realistic model of CO oxidation on Pt(110)
for two different feedback intensities (a,c) µ/p0

CO = 0.01 and (b,d) µ/p0
CO = 0.03. The model

parameters are k1 = 3.14 × 105 s−1mbar−1, k2 = 10.21 s−1, k3 = 283.8 s−1, k4 = 5.86 ×
105 s−1mbar−1, k5 = 1.61 s−1, sCO = 1.0, sO,1×1 = 0.6, sO,1×2 = 0.4, u0 = 0.35, δu =
0.05, p0

CO = 4.82 × 10−5mbar, and pO2 = 13.1 × 10−5mbar. Time step for integration ∆t =
0.001 s [95].

Figure 5.3 shows the results of numerical simulations of the realistic model.

Here, the dependences of the oscillation period T and of the feedback magnitude

M = 〈|u(t− τ)− u(t)|〉 on the delay time τ are displayed. For relatively weak feed-

back, a state with vanishing feedback signal M is realized at τ = T0, see Fig. 5.3 (a)

and (c). When the feedback is increased, this state, however, becomes unstable and can-

not be reached in simulations. Instead, hysteresis is observed as shown in Fig. 5.3 (b)

and (d). Starting with short delay times and increasing τ , the oscillation period T

gradually grows. When the delay time becomes slightly larger than T0, the oscillation

period abruptly jumps down to a value below T0 and then slowly increases again. When

moving in the opposite direction and gradually decreasing the delay time, a jump to
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Figure 5.4: Effects of control loop latency: (a) oscillation period and (b) feedback magnitude
as function of delay time for different values of intrinsic delay. The model parameters and
time step as in Fig. 5.3 (a) and (c) [95].

the upper branch occurs slightly below τ = T0. Though the feedback magnitude is

decreased when the value of τ lies in the vicinity of T0, it does not drop down to zero

here and a hysteresis effect for this quantity is also observed, see Fig. 5.3 (d).

Control loop latency In Section 4.2.1, it was pointed out that the feedback signal

takes effect with an additional time delay τi in the experiments. This intrinsic de-

lay is determined by the finite pumping rate of the reactor and cannot be eliminated

completely for technical reasons. It is known from both experimental [218] and theoret-

ical [219] studies that a control loop latency in the application of TDAS-type feedbacks

might affect the size of the domain of control of the system. Here, however, the domain

of control and its extension is not analyzed. The present investigation is rather focused

on a qualitative explanation of the behavior in the state of control for different delay

times. In order to study the impact of control loop latency on the results presented

above, the computations shown in Fig. 5.3 (a) and (c) are repeated including an ad-

ditional intrinsic delay τi. To this end, the model equations were modified taking into

account the effect of a finite pumping rate on the time evolution of the CO partial

pressure,

ṗCO =
1

τi
[ p0

CO + µ(u(t− τ)− u(t))− pCO] . (5.10)

Figure 5.4 shows (a) the oscillation period T and (b) the feedback magnitude M as a

function of delay time τ for two different values of the intrinsic delay τi in comparison
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to the results for zero intrinsic delay which are, of course, identical to Fig. 5.3 (a)

and (c). With increasing intrinsic delay, the curve describing the dependence of the

oscillation period on the delay time experiences a shift to higher values but maintains

its original shape. The change in the feedback magnitude, on the other hand, consists

roughly in an increase by some factor larger one. However, both the oscillation period

and the feedback magnitude maintain qualitatively similar shapes in their dependence

on τ for both vanishing and non-zero τi. In particular, it is pointed out that the effect

of control loop latency does not simply amount to adding up the intrinsic delay τi and

the delay τ from the control scheme. Instead, the intersection point of the curve giving

the dependence of T on τ with the line for which T = τ is not shifted when control loop

latency is introduced and, as a consequence, the minimum of the feedback magnitude

remains at the same position as well. Moreover, the effect of intrinsic delay gets less

pronounced when approaching the point T = τ , which is of particular interest for the

present investigation.
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5.2 Extended system

Chemical turbulence is a spatiotemporal phenomenon. In many systems where the

local dynamics is nonchaotic, spatial coupling between a large number of individual

elements is the key prerequisite for the emergence of turbulence (e.g. diffusion-induced

turbulence). For an overall understanding of turbulence control by global feedback it

is therefore essential to consider a spatially extended system.

In the previous section, the temporal behavior of a uniform system under global de-

layed feedback was studied. This analysis is now extended by taking spatial degrees of

freedom into account. In particular, the stability of uniform oscillations with respect

to spatial perturbations will be investigated in the presence of a TDAS-type feedback.

As a general model for spatially extended oscillatory systems, the complex Ginzburg-

Landau equation (CGLE) is chosen. The CGLE was introduced in Section 2.4.1 and its

basic properties were briefly discussed. Here, the CGLE is extended by an additional

global TDAS feedback term,

η̇ = (1− iω)η − (1 + iβ)|η|2η + (1 + iε)∇2η + F (t) , (5.11)

where F (t) is given by

F (t) = µ eiχ(η̄(t− τ)− η̄(t)) with η̄(t) =
1

L

∫ L

0

η(x, t)dx . (5.12)

The parameters µ, τ , and χ denote the feedback intensity factor, the delay time, and

a phase shift in the application of the control force, respectively.

In the following, linear stability of uniform oscillations in the presence of TDAS is ana-

lyzed and a synchronization diagram in the plane spanned by the feedback parameters

is derived. Numerical simulations of the CGLE with TDAS are performed to verify

the analytical results and to give examples of additional space-time phenomena at the

border of synchronization. They are presented in Section 5.2.2.
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5.2.1 Linear stability analysis

In the absence of feedback (F = 0), uniform oscillations are unstable if the Benjamin-

Feir condition is fulfilled, (1 + εβ) < 0, and an irregular turbulent state develops. By

application of global delayed feedback, turbulence can be suppressed and uniform os-

cillations are stabilized. In this section, the stability of uniform oscillations is examined

as a function of the feedback parameters. Small spatially inhomogeneous perturbations

are applied to the uniform state and the growth rates of these nonuniform modes are

analyzed.

Consider a superposition of the homogeneous mode H with a small spatially inhomo-

geneous perturbation of arbitrary non-zero wave number κ,

η(x, t) = H(t) + A+(t)eiκx + A−(t)e−iκx . (5.13)

Substituting expression (5.13) into Eq. (5.11) and assuming that the amplitudes A± of

the perturbation are small, homogeneous contributions can be separated from spatially

inhomogeneous terms. In this way, an equation for the homogeneous mode is found

which is decoupled from the nonuniform contributions,

Ḣ = (1− iω)H − (1 + iβ)|H|2H + µeiχ(H(t− τ)−H(t)) . (5.14)

The behavior of the wave amplitudes A± is governed by a pair of coupled equations

Ȧ+ = (1− iω)A+ − (1 + iε)κ2A+ − 2(1 + iβ)|H|2A+ − (1 + iβ)H2A∗−, (5.15)

Ȧ∗− = (1 + iω)A∗− − (1− iε)κ2A∗− − 2(1− iβ)|H|2A∗− − (1− iβ)H∗2A+. (5.16)

Stability of the uniform system In Section 5.1.1, the stability of a uniform oscilla-

tory system under delayed feedback was discussed in the general context of a phase

dynamics equation. Although the results agree with the prediction of the phase model,

the uniform dynamics of the system considered in this section will be presented here

for completeness. The evolution of the uniform mode is described by Eq. (5.14) which

represents a Stuart-Landau equation with an additional global feedback term. Substi-

tuting H = ρ0 e
−iΩt into Eq. (5.14) the amplitude of uniform oscillations in the presence
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Figure 5.5: Oscillation period as a function of delay time in numerical integrations
of Eq.(5.14). (a) µ = 0.5 and (b) µ = 1.0. Parameters: β = −1.4, ω = 2π − β ≈ 7.68,
and χ = π/2. Time step for integration ∆t = 0.0001 [220].

of TDAS is obtained,

ρ0 =
√

1 + µ(cos(χ+ Ωτ)− cosχ) , (5.17)

and an equation for the frequency Ω of uniform oscillations can be derived,

Ω = ω + β + µβ(cos(χ+ Ωτ)− cosχ)− µ(sin(χ+ Ωτ)− sinχ) . (5.18)

Note that in absence of feedback (µ = 0) the system shows uniform oscillations with

the frequency Ω0 = ω + β.

Figure 5.5 shows the results of numerical integrations of Eq. (5.14). The oscillation

period T = 2π/Ω is displayed as a function of the delay time τ in the case of weak (a)

and strong (b) feedback. The state with T = τ is stable for weak feedback and becomes

unstable with increasing feedback intensity.

The stability of the intersection point for which T = τ can be understood in terms of

the bifurcation diagram presented in Fig. 5.6. This diagram is constructed by solving

Eq. (5.18) for a delay time τ equal to the period T0 = 2π/(ω+ β) of oscillations in the

nonperturbed uniform system. Besides a solution with a vanishing feedback term, for

which Ω = Ω0, other solutions with a non-zero feedback and Ω 6= Ω0 are obtained from

Eq. (5.18). The solution with Ω = Ω0 and a vanishing feedback is stable for small µ

and becomes unstable beyond some critical feedback intensity µ0. Both the results from
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Figure 5.6: Bifurcation diagram for τ =
T0 = 1. The parameters are as in Fig. 5.5.
Dotted lines denote unstable branches. The
uniform solution with Ω = Ω0 = 2π and a
vanishing feedback signal undergoes a tran-
scritical bifurcation at µ = µ0 and becomes
unstable [220]. 1.5 π
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the numerical simulations shown in Fig. 5.5 and the bifurcation diagram in Fig. 5.6

are in close agreement with the behavior predicted by the phase model in the previous

section.

Stability of uniform oscillations in the spatially extended system We now turn

to the stability analysis of uniform oscillations with respect to spatially inhomoge-

neous perturbations. In general, Eqs. (5.15) and (5.16) for the spatially nonuniform

contributions can be written in the form

Ȧ+ = aA+ + be−i2ΩtA∗− , (5.19)

Ȧ∗− = a∗A∗− + b∗ei2ΩtA+ . (5.20)

By a simple change of variables, A+ = Ã+e
−iΩt and A∗− = Ã∗−e

iΩt, Eqs. (5.19) and (5.20)

transform into

˙̃A+ = ãÃ+ + bÃ∗− , (5.21)

˙̃A∗− = ã∗Ã∗− + b∗Ã+ , (5.22)

with ã = a+iΩ. To solve this system of equations, we substitute the ansatz Ã+ = Ã0
+e

λt

and Ã∗− = Ã∗0− e
λt into the Eqs. (5.21) and (5.22) and obtain the following solutions for

the eigenvalue λ,

λ1,2 =
ã+ ã∗

2
±
√

bb∗ − ãã∗ +
(ã+ ã∗)2

4

= 1− κ2 − 2ρ2
0 ±

√
(1 + β2)ρ4

0 − (Ω− ω − εκ2 − 2βρ2
0)

2 , (5.23)
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where ρ0 is given by Eq. (5.17) and Ω is a solution of Eq. (5.18). Uniform oscillations

are stable with respect to the growth of spatially nonuniform modes if Re λ1,2 < 0 for

all wave numbers κ. The instability boundary is therefore determined by the conditions

Reλ(µc, κc) = 0 , (5.24)

∂

∂κ
Reλ(µc, κc) = 0 , (5.25)

where µc denotes the critical feedback intensity and κc the wave number of the most

unstable mode. Equation (5.25) accounts for the fact that the wave number of the

first unstable mode corresponds to a maximum in λ plotted as a function of κ. The

Eqs. (5.24) and (5.25) can be solved numerically, taking into account Eq. (5.18) for the

dependence of the frequency Ω of the uniform mode on the feedback intensity µ and

the delay time τ .

Invasiveness of the control scheme For the choice of τ = 2π/Ω0 the analysis of the

uniform case has shown that there is a solution of frequency Ω = Ω0 = ω+β for which

the feedback signal is vanishing so that control would be completely noninvasive. More-

over, it was found that this solution becomes unstable if the feedback intensity µ is

increased above the threshold µ0. On the other hand, considering a spatially extended

system in the Benjamin-Feir unstable regime, it is obvious that a certain critical feed-

back intensity µc is necessary in order to suppress turbulence and to maintain uniform

oscillations in the system. For τ = T0 and Ω = Ω0 the general expression (5.23) for λ

turns into

λ1,2 = −κ2 − 1±
√
−ε2κ4 − 2βεκ2 + 1 , (5.26)

which is independent of µ. Figure 5.7 shows a plot of the real part of λ as a function

of wave number in the Benjamin-Feir stable and unstable regime and at the border of

stability. In the Benjamin-Feir unstable case, all inhomogeneous modes with a wave

number less than

κ =

√
−2(1 + εβ)

1 + ε2
(5.27)
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Figure 5.7: Stability of the solution with Ω =
ω + β for a delay of τ = 2π/(ω + β). The real
part of λ according to Eq. (5.26) is plotted as
a function of wave number κ for three different
cases: in the Benjamin-Feir unstable (1+εβ < 0)
and stable (1+εβ > 0) regime and at the border
of stability (1 + εβ = 0). -0.6
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are growing, no matter how µ is chosen. Thus, for 1+εβ < 0 the solution with Ω = ω+β

is always unstable so that a noninvasive stabilization of uniform oscillations with TDAS

is not possible in this type of system.

For the solutions with Ω 6= Ω0 presented in Fig. 5.6, the feedback signal is non-zero. In

this case, µc can be determined from the general expression (5.23) for λ by numerically

solving Eqs. (5.24) and (5.25). Figure 5.8 shows the critical feedback intensity µc as a

function of the dispersion parameter ε for τ = T0 and the other parameters chosen as

in Fig. 5.6. In the Benjamin-Feir unstable regime, µc lies above the bifurcation point

µ0, at which the solution with Ω = Ω0 becomes unstable. As the Benjamin-Feir line

is approached with decreasing ε, the critical feedback intensity necessary to stabilize

uniform oscillations decreases and finally converges towards µ0.

Figure 5.8: Critical feedback intensity µc for
τ = T0 = 1 as a function of the dispersion co-
efficient ε with β = −1.4. The line µ = µ0 de-
notes the feedback intensity for which the trans-
critical bifurcation occurs in the uniform system
(cf. Fig. 5.6). The other parameters are as in
Fig. 5.5 [220]. 0.7
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Figure 5.9: (a) Synchro-
nization diagram. Uniform
oscillations are stable inside
the shaded region. (b,c) The
dependences of the critical
wave number κc and the
critical frequency Ωc on the
delay time τ . The parame-
ters are ε = 2, β = −1.4,
ω = 2π − β ≈ 7.68, and
χ = π/2 [220].

Synchronization diagram From the conditions (5.24) and (5.25), the critical feed-

back intensity µc can be determined as a function of the delay time τ . The resulting

synchronization diagram in the plane spanned by the feedback parameters τ and µ

is displayed in Fig. 5.9 (a). The curve of the critical feedback intensity µc divides the

plane into a shaded region, where uniform oscillations are linearly stable with respect to

small perturbations of arbitrary wave number, and a region where uniform oscillations

are unstable. The boundary between the two regions is characterized by the repeated

appearance of cusps. They are observed whenever τ becomes equal to an integer multi-

ple of the period of the unperturbed uniform system, τ = k 2π/(ω + β), k = 1, 2, 3, ... .

This feature seems to be common for various oscillatory systems with delayed feedback

and has also been found in the case of the Kuramoto model of phase oscillators with a

delayed global coupling [221]. Figure 5.10 shows an extension of the top part of Fig. 5.9

towards large delay times. With increasing τ , the cusps get less pronounced and the

boundary converges to a flat line at µ ≈ 0.16.
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Figure 5.10: Extended synchro-
nization diagram. The same param-
eters as in Fig. 5.9 [220].

According to the analytically derived synchronization diagram, stability of uniform

oscillations can also be maintained by applying global feedbacks with very large delay

times. Moreover, the critical feedback strength, needed to maintain synchronization,

does not depend on the delay in the limit τ →∞. To understand this result, we note

that the feedback signal F (t) for τ →∞ is given by

F (t) = µeiχ
[
ρ0e

−i(Ωt+φ0) − η̄(t)
]

(5.28)

where φ0 is a constant phase shift. The first term on the right hand side corresponds to

the state η̄(t− τ) at τ → ∞ which essentially is the initial state of the system. Since

the stability boundary is derived for destabilization of initially uniform oscillations,

this initial state represents uniform oscillations with frequency Ω and amplitude ρ0.

Substituting the expression (5.28) for F (t) into Eq. (5.11), we see that a situation with

external periodic forcing is effectively realized. The critical value µc corresponds in this

case to the minimum forcing intensity needed to maintain uniform oscillations in the

system.

In Fig. 5.9 (b) and (c), the critical wave number and frequency are shown, respectively,

as functions of the delay time along the lower part ABC of the stability boundary.

The two curves are of similar shape: they display a decrease for increasing delay time

interrupted by discontinuous jumps. These discontinuities occur at the locations where

the cusps are found in the stability boundary in Fig. 5.9 (a).

In Fig. 5.11, the real part of λ as a function of κ is shown at three different points on

the stability curve in the (µ, τ) plane. The three cases correspond to what has been
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Figure 5.11: Growth rate Re λ of spatially nonuniform modes as a function of wave number
κ at three different points on the stability curve displayed in Fig. 5.9 (a). The parameters are
(a) τ = 0.29, µ = 1.29, (b) τ = 0.36, µ = 0.4, and (c) τ = 0.7, µ = 0.16; other parameters as
in Fig. 5.9 [220].

found earlier for a different global delayed feedback scheme in the CGLE [81]. On the

branch AB (and similarly also on the branches BC and to the right of C), the first

unstable modes occur with a wave number κ0 6= 0 where Im(λ) = 0, see Fig. 5.11 (b)

and (c). Thus, if we cross this branch of the stability boundary by reducing the feedback

intensity below the critical value µc, uniform oscillations will become unstable and

standing waves with wave number κ0 will emerge (cf. the following section). A different

situation is encountered on the branch reaching from A upwards, see Fig. 5.11 (a).

Here, the instability will occur by periodic spatiotemporal modulations of uniform

oscillations, since Im(λ) 6= 0 and the most unstable modes will have wave numbers

close to κ0 = 0.

5.2.2 Numerical simulations

Numerical simulations of Eqs. (5.11) and (5.12) are performed to confirm the an-

alytical results. Moreover, the behavior of the system is explored under conditions

that are not accessible by analytic arguments. All simulations were carried out for a

one-dimensional system. The set of parameters is as in the previous section: ε = 2,

β = −1.4, ω = 2π − β ≈ 7.68, and χ = π/2. The choice of the initial conditions and

the feedback parameters µ and τ is different for the various simulations and will be

specified below.
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Figure 5.12: Regular patterns
at the border of synchronization,
uniform initial conditions. Bold
dots mark parameters where
regular space-time patters are
observed. The analytical re-
sult of the stability curve (AB
branch, solid line) is shown
for comparison (cf. Fig. 5.9).
Numerical parameters: system
length L = 128 (1D, periodic
boundaries), 400 grid points,
time step ∆t = 0.001 [220].

0

0.2

0.4

0.6

0.2 0.4 0.6 0.8 1

µ

τ

Uniform initial conditions In the first series of simulations, the parameters µ and τ

are systematically scanned in steps of ∆µ = ∆τ = 0.1 between 0 and 2.5, respectively,

to verify the shape of the stability domain in the (µ, τ) plane. When starting from

uniform initial conditions, the stability diagram displayed in Fig. 5.9 (a) is nicely re-

produced after transients. Asymptotic states are uniform inside the domain of stability

and nonuniform outside this region. These nonuniform states are, however, of different

type. Far from the region of stability, we asymptotically reach a fully developed state

of defect-mediated turbulence. As the stability boundary is approached, phase turbu-

lence and standing wave patterns are observed close to the branches AB, BC, and to

the right of C.

Figure 5.12 shows the results of a more detailed scan of µ and τ in the vicinity of

the branch AB of the synchronization diagram in Fig. 5.9 (a). Starting again from

uniform initial conditions, the feedback parameters µ and τ are changed in steps of

∆µ = ∆τ = 0.025 between τ = 0.25 ... 0.975 and µ = 0 ... 0.7. Simulations that,

after transients, resulted in a regular nonuniform spatiotemporal state are marked by

bold dots at the corresponding (µ, τ) coordinates (simulations leading to uniformly

oscillating or turbulent asymptotic states are not shown). Obviously, the parameter

region, where regular spatiotemporal patterns occur, constitutes a slightly asymmetric

prolongation of the tongue-shaped stability domain for uniform oscillations towards

smaller feedback intensities. From the result of the first coarse parameter scan it can

be conjectured that the regions where spatiotemporal patterns occur look qualitatively

similar at the other tongue-shaped branches of the stability curve.
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Figure 5.13: Simulations
starting from turbulent initial
conditions. Amplitude turbu-
lence (open circles), regular
nonuniform patterns (bold cir-
cles), and uniform oscillations
(no symbols) are distinguished.
The analytically derived sta-
bility boundary for uniform
initial conditions (solid line)
is shown for comparison. For
model and numerical param-
eters see Figs. 5.9 and 5.12,
respectively [220].

Turbulent initial conditions When starting from turbulent initial conditions, the

stability boundary for uniform oscillations is moved towards larger feedback intensities

in the vicinity of the cusps. The results of numerical simulations are summarized in

Fig. 5.13. Here, open circles indicate a turbulent asymptotic state and bold circles again

denote the appearance of a regular nonuniform wave pattern. Inside the area where no

symbols are shown, simulations converge towards uniform oscillations. For comparison,

the analytically derived synchronization diagram from Fig. 5.9 (a) is also displayed.

Spatiotemporal patterns In the parameter range between turbulence and uniform

oscillations, different patterns can be observed. In Fig. 5.14, a series of space-time plots

of asymptotic dynamical states reached for different feedback intensities is shown. At

a fixed delay time of τ = 0.5, the feedback intensity µ is increased in Fig. 5.14 from (a)

to (e). In absence of feedback (Fig. 5.14 (a), µ = 0) and for small feedback intensities

(Fig. 5.14 (b), µ = 0.05), an irregular state of defect-mediated turbulence is observed.

However, the number of defects is smaller in the presence of a weak feedback and

the time evolution shows intervals where almost no defects are seen. If the feedback

intensity is increased (Fig. 5.14 (c), µ = 0.07), defects are no longer observed and the

system displays a disordered state of phase turbulence. For even stronger feedback,

breathing (Fig. 5.14 (d), µ = 0.1) and stationary standing wave patterns (Fig. 5.14 (e),

µ = 0.15) can be observed. For still larger feedbacks, µ > 0.2 (not shown), uniform

oscillations take place.
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Figure 5.14: Spatiotemporal patterns in the parameter region between turbulence and com-
plete synchronization. The amplitude |η| is displayed in a linear gray scale coding between 0
(black) and 1.2 (white). The delay time is kept constant, τ = 0.5 s, and the feedback intensity
increases from top to bottom, (a) µ = 0, (b) µ = 0.05, (c) µ = 0.07, (d) µ = 0.1, and (e)
µ = 0.15. An interval of 500 time units is displayed. For model and numerical parameters see
Figs. 5.9 and 5.12, respectively [220].

Large delay times To study the behavior of the system for large time delays, a

series of simulations with the delay τ varying from 0.5 to 29.5 in steps of ∆τ = 1 has

been performed. The feedback intensity µ was varied for each choice of τ from 0.1 to

0.3 in steps of ∆µ = 0.1. As initial condition, the state of amplitude turbulence was

chosen that is established in the system for µ = 0. The simulations have shown that

synchronization is possible for all chosen delays when the feedback intensity exceeds
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a critical level. In another series of numerical experiments, the feedback intensity was

fixed at µ = 1 and the delay time τ was increased from 0 to 50 in steps of 0.1. Here, the

transient time was determined for each of the simulations by measuring the convergence

of the statistical variance of the amplitude ρ. It was found that for small delays the

transient time increases proportionally to the delay τ . For delays larger than τ = 5,

the transient time undergoes saturation showing modulations around a constant level

that depends only on the intensity of the applied feedback.

For long delays τ , the component η̄(t− τ) in the feedback signal F (t) at time t corre-

sponds to the initial state of amplitude turbulence. Thus, the global delayed feedback

scheme in the considered limit effectively represents global forcing of the system with

an external chaotic signal. To verify this conjecture, special numerical simulations have

been performed. In these simulations, the feedback signal was generated by replacing

η̄(t − τ) with the average complex oscillation amplitude of the same system without

feedback. It was found that, by applying such chaotic external forcing, synchronization

of uniform oscillations can also be achieved.


