
Chapter 2

Background

In this chapter, the experimental systems and the theoretical framework of the present

work are described. To begin with, some basic concepts of reaction-diffusion systems

are recalled. In the second part, the catalytic oxidation of CO on Pt(110) is introduced

as a paradigmatic model system for nonlinear catalytic surface reactions and reaction-

diffusion systems in general. Furthermore, an example of a reaction-migration system,

the electrochemical oxidation of hydrogen on Pt, is discussed. Finally, general mod-

els are presented that allow the study of generic aspects common to many extended

dynamical systems.

2.1 Reaction-diffusion systems

In many cases, the spontaneous emergence of spatiotemporal patterns in extended

systems far from thermodynamic equilibrium can be understood as an interplay be-

tween local dynamics of individual system elements and coupling of these elements. In

the large class of reaction-diffusion systems, coupling occurs due to diffusive transport

induced by differences in the states of neighboring elements. Although the present sec-

tion is focused on systems with diffusive coupling, it is pointed out that other coupling

mechanisms may occur like global coupling or migrational coupling, as will be discussed

later.
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2.1.1 Homogeneous dynamics

Suppose that the state of a single active element can be expressed in terms of a set

of time-dependent variables u = (u1, u2, ... , un). The temporal behavior of the element

can be generally described by a set of n coupled ordinary differential equations,

u̇ = f(u ,p) , (2.1)

with functions f(u,p) that depend on a number of parameters p = (p1, p2, ... , pm).

Our interest here is focused on chemical systems, where the variables u mostly denote

concentrations of reacting species and the functions f represent the kinetics of the

reaction, depending on parameters such as rate constants and external conditions. The

case of Eq. (2.1) is often referred to as the homogeneous dynamics since it describes the

situation of a well stirred reactor. Mixing ensures a uniform distribution of reactants

so that diffusive transport is absent.

Although in many cases the set of Eqs. (2.1) is of low dimension, the temporal dy-

namics can be complex, in particular, if the functions f involve nonlinear terms. In the

following paragraphs, basic ideas of the theory of low-dimensional dynamical systems

are briefly introduced. For a more thorough treatment the reader is referred to standard

introductory textbooks [20,21].

Phase space Each state of a dynamical system (2.1) corresponds to a point in phase

space which is spanned by the variables u1, u2, ... , un. Trajectories in phase space, so-

called orbits, represent the temporal evolution of the system starting from an initial

condition u0. The dynamics is deterministic since each future and past state of the

system is uniquely determined by the functions f for any given initial condition. The

temporal behavior of the system is governed by the topology of its phase space. The

phase space may, for instance, show regions where trajectories get trapped. Any trajec-

tory that starts within such an invariant set remains there forever. Some invariant sets

may be attracting so that trajectories from their neighborhood approach the invariant

set for t → ∞. They are referred to as attractors sitting within their basin of attrac-

tion. Invariant sets can correspond to stationary states (see the following paragraph)

or limit cycles upon which trajectories are periodic. In more complex cases, they may

be quasi-periodic or chaotic.
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Fixed points and stability Stationary invariant sets us are called fixed points. They

are defined by the condition u̇ = 0. When discussing fixed points, the question of sta-

bility becomes a key issue for understanding the dynamics and for classifying different

kinds of fixed points. Most commonly, stability is studied with respect to a small per-

turbation δu(t) ≡ u(t) − us in a linear stability analysis. Equation (2.1) is linearized

around the fixed point us by a Taylor expansion up to the linear term, thus yielding

˙δu = J(us) δu with Jij =
∂fi

∂uj

. (2.2)

The real parts of the eigenvalues λ1, λ2, ... , λn of the Jacobian J at the fixed point us

are the exponential growth rates of the perturbation δu along the eigenvectors of J

and, therefore, determine the stability of us. The fixed point is stable if Reλi < 0 for

all i = 1, 2, ... , n. If the real part of at least one eigenvalue is positive, us is unstable.

For a two-dimensional phase space the pair of eigenvalues is given by the solution of a

saddle points

unstable nodes

stable nodes

unstable foci

stable focistable foci

detJ

(trJ)2 = 4 detJ

trJ

Figure 2.1: Fixed points in two-dimensional vector fields. Type and stability of a fixed point
is determined by the eigenvalues of the Jacobian J. The line detJ = 0 separates saddles from
nodes and the curve (trJ)2 = 4 detJ nodes from foci.
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quadratic equation,

λ1,2 =
1

2

(
trJ±

√
(trJ)2 − 4 detJ

)
, (2.3)

where trJ and detJ denote the trace and the determinant of the Jacobian J, respec-

tively. Thus, the eigenvalues are either real or complex conjugate. If the eigenvalues are

real and positive (negative) they indicate an unstable (stable) node, while the combi-

nation of both a positive and a negative eigenvalue corresponds to a saddle point. For

complex conjugate eigenvalues a stable or unstable focus is found depending on the

sign of the real parts of λ1,2. The different types of fixed points for a two-dimensional

vector field are summarized in Fig. 2.1.

In addition to fixed points, where the temporal derivative of all dynamical variables

becomes zero, other elements in phase space can be considered to understand the dy-

namics of a system (2.1). In particular, it is helpful to analyze the nullclines of a system.

They are defined by u̇i = 0, i.e., depending on the dimension of the system, they repre-

sent curves, planes, or hyper-surfaces in phase space, on which the temporal derivative

of one of the dynamical variables is zero. Fixed points correspond to locations, where

all nullclines intersect. As will be seen later, nullclines are particularly useful to analyze

the behavior of two-dimensional systems.

Bifurcations The topological structure of trajectories in phase space depends on the

choice of the parameters p in the functions f on the right hand side of Eq. (2.1). If

the parameters are varied, qualitative changes in the topology may occur at distinct

critical values pc. These changes are called bifurcations and the corresponding points

pc in parameter space are bifurcation points. For example, fixed points can emerge or

disappear in a bifurcation or their stability may change. Consider, for instance, the

simple one-dimensional system

u̇ = pu− u3 . (2.4)

There is one fixed point at u1 = 0 for p < 0. If the parameter p is increased, a

bifurcation occurs for pc = 0 and two new fixed points emerge at u2,3 = ±√p. Linear

stability analysis shows that these new fixed points are stable, while the fixed point u1

is stable only for negative p and loses its stability beyond the bifurcation point. This



2.1 Reaction-diffusion systems 11

a) b) c)
p p

p

u u u1

u2

Figure 2.2: (a) Supercritical pitchfork bifurcation, (b) subcritical pitchfork bifurcation, and
(c) supercritical Hopf bifurcation. The variables are denoted by u1 and u2, the control pa-
rameter by p. Solid (dashed) lines correspond to stable (unstable) states.

scenario is denoted as a pitchfork bifurcation and can be illustrated in a bifurcation

diagram as shown in Fig. 2.2 (a). In the context of this work, the simplest example

of a bifurcation that leads to oscillatory behavior is of particular interest. In a Hopf

bifurcation, a stable focus becomes unstable upon change of an appropriate control

parameter and gives rise to a stable limit cycle as shown in Fig. 2.2 (c). Close to the

bifurcation point, the oscillations are harmonic and their amplitude shows a square

root dependence on the distance from the bifurcation point.

Some bifurcations may appear in a super- or a subcritical form. In a supercritical

bifurcation, existing solutions become unstable and newly emerging solutions are stable

while for a subcritical bifurcation the opposite is true. This distinction is also relevant for

the above explained pitchfork and the Hopf bifurcations. They were both introduced in

their supercritical form. As an example for a subcritical bifurcation, see the subcritical

pitchfork bifurcation in Fig. 2.2 (b).

2.1.2 Extended Systems

Let us consider a spatially extended system composed of a large number of coupled

identical active elements that show deterministic dynamics according to Eq. (2.1). In

addition to time-dependence, the variables u1, u2, ... , un now also depend on spatial co-

ordinates. In the limit of a continuous medium and for diffusive coupling, the dynamics

of such a system will in general be described by Eq. (2.1) with an additional diffusive
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coupling term. We thus consider n coupled nonlinear partial differential equations of

reaction-diffusion type for the variables ui,

∂tu = f(u ,p) + D∇2 u . (2.5)

In agreement with Eq. (2.1), the set of functions f(u,p) accounts for the local dynam-

ics depending on parameters p. The diffusion matrix D often takes diagonal form if

diffusion of the different species can be considered independently of each other. In the

context of chemical reaction-diffusion systems, Eq. (2.5) can be regarded as a model for

an unstirred reactor, where concentrations may vary between different locations induc-

ing diffusive fluxes. However, it is stressed that besides chemical reactions, Eq. (2.5)

may describe systems of quite different origin from a large range of disciplines like

physics, environmental sciences, and cellular biology [25].

Spatially extended systems are commonly classified according to the local dynamics

of their individual elements. In this way, many systems of form (2.5) can be assigned

to one of a few overall categories of temporal behavior. In many cases, their dynamics

is either monostable, bistable, excitable, or oscillatory [25]. In the trivial case of a

monostable system the dynamics is determined by a single stable fixed point. Under

perturbations, the system will experience damping and always returns to the same

stable steady state.

Bistable systems The behavior of a bistable system is characterized by the presence

of two stable steady states. For small perturbations the system remains in one of the

stable states, while under sufficiently strong perturbations transitions between the two

states may occur. For a two-dimensional bistable system the nullclines generally show

three intersection points as depicted in Fig. 2.3 (a). Two of them are stable fixed points

corresponding to the two stable steady states. In between lies a saddle point separating

the two stable states. The shapes of the basins of attraction of the two fixed points

depend on the characteristic time scales of the two variables. In a spatially extended

bistable system, a local transition between the two stable steady states can induce a

similar switching of the neighboring elements so that the transition starts to spread in

a trigger wave through the medium. Trigger waves are the basic patterns in bistable

systems. Their propagation velocity is uniquely determined by the properties of the

medium.
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Excitable systems As in the monostable case, excitable systems exhibit only one sta-

ble fixed point corresponding to a single intersection of the nullclines in phase space,

see Fig. 2.3 (b). However, assuming that the dynamics of the variable u1 is fast com-

pared to u2, the situation is more complicated here. While small perturbations applied

to the stationary state decay rapidly back to the stable fixed point, larger perturba-

tions exceeding a certain threshold induce a more complex response of the system.

The excitation barrier for this behavior is determined by the repelling middle branch

of the nullcline u̇1 = 0. Once a sufficiently large perturbation has driven the system

across this barrier, it is attracted by the stable right branch of the u̇1 = 0 nullcline and

performs an extended excursion through phase space back to the stable fixed point.

This is indicated in Fig. 2.3 (b). The characteristic time needed to recover from an

excitation is called the refractory period of the system.

In an extended system with sufficiently strong diffusive coupling, an excitation can

spread through the medium, forming a propagating excitation pulse. Since each ele-

ment returns to its initial state after the excitation has passed, traveling pulses can

repeatedly pass through the same location. This enables the formation of more com-

plex spatiotemporal patterns compared to bistable systems. Upon collision, excitation

pulses mutually annihilate; if they break, their ends start to curl and form rotating

spiral waves with a characteristic wavelength and rotation frequency that depend on

the system properties only. Upon a change of parameters, spiral waves may undergo

different instabilities leading to more complex dynamics like drift motion, complicated

a) b) c)

u1 u1 u1

u2 u2 u2

u̇1=0 u̇1=0 u̇1=0u̇2=0
u̇2=0 u̇2=0

Figure 2.3: Schematic phase space diagrams showing nullclines and fixed points of (a) a
bistable, (b) an excitable, and (c) an oscillatory system. Trajectories in phase space (dotted
lines) are displayed assuming a clear separation of time scales (u1 has fast dynamics compared
to u2).
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meandering of spiral centers [83,84], or a transition to chemical turbulence via breakup

of spiral waves [85].

Oscillatory systems The phase space of a self-sustained oscillator typically shows the

combination of an unstable fixed point and a stable limit cycle. In the two-dimensional

case of Fig. 2.3 (c), the unstable steady state corresponds to the intersection point of

the nullclines on the unstable middle branch of the nullcline u̇1 = 0. The limit cycle

oscillations are indicated by dotted arrows for the case of a fast variable u1 and a slow

variable u2. In the simplest case, the limit cycle is the only attractor in phase space

so that the system cannot settle down to a stationary configuration. For any initial

condition, it eventually ends up on the limit cycle and remains there.

A spatially extended oscillatory system can be regarded as the continuous limit of a

large coupled population of such oscillating elements. Most of the present work will be

concerned with oscillatory systems that show a rich variety of spatiotemporal pattern

formation phenomena. Simple plane waves are found if a constant phase gradient is

maintained along some direction through the system. As in excitable systems, also

spiral and target waves can be observed. Target patterns are formed by concentric waves

that are periodically emitted from a small central region called pacemaker. Although

stable target patterns can already form in uniform reaction-diffusion systems resulting

from the combination of nonlinear kinetics and diffusion [86], the majority of target

patterns in chemical systems is associated with the presence of local heterogeneities,

see e.g. Ref. [87] and references therein. If oscillations desynchronize in the course of

time a turbulent regime is established in the system. This situation typically occurs

when diffusive coupling destabilizes uniform oscillations by amplifying existing phase

gradients.

The local oscillations can be characterized in terms of oscillation phase and amplitude

variables. If the phase varies smoothly across the system, the distribution of phases

will evolve on a time scale which is large compared to the characteristic amplitude

relaxation time of the individual oscillators. Under this condition, the amplitude adjusts

adiabatically to the local phase gradient and the dynamics can be described in terms

of the phase variable only. The corresponding phase dynamics equation universally

describes the evolution of smooth phase distributions in any oscillatory system, see

also Section 2.4.2.
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2.2 The catalytic CO oxidation on Pt(110)

In the previous section, basic concepts of nonlinear dynamics and pattern formation

in reaction-diffusion systems were summarized. We now turn to a specific reaction-

diffusion system, the catalytic oxidation of CO on Pt(110), that will serve as a model

system for both experimental and theoretical studies throughout this work. The cat-

alytic CO oxidation on platinum is one of the most thoroughly studied heterogeneous

catalytic surface reactions [47]. It shows, among other nonlinear surface reactions, a

particularly rich dynamics including a large variety of spatiotemporal phenomena [45].

2.2.1 Pattern formation in the CO oxidation system

Before describing the kinetics and the microscopic mechanism of catalytic CO oxi-

dation on Pt(110), typical phenomena of nonlinear kinetics and spatiotemporal self-

organization in this reaction will be reviewed.

The first observations of oscillatory kinetics in heterogeneous catalysis go back to Wicke

and coworkers, who reported oscillating reaction rates for the catalytic oxidation of

CO in the beginning of the 1970s [88, 89]. Besides CO oxidation, many other cases

of oscillatory heterogeneous catalytic reactions were observed in the last thirty years,

among them the oxidation of hydrocarbons, the reduction of NO, and the oxidation of

hydrogen, to mention only a few of them. For a review the reader is referred to [45].

Early studies of oscillating surface reactions were typically performed under rather high

pressures and on poorly defined surfaces. To obtain a more detailed insight into the

mechanism responsible for rate oscillations in heterogeneous reactions, investigations

were focused on processes at well-defined single crystal surfaces under low pressure

conditions. In 1982, Ertl and coworkers reported oscillatory kinetics for the oxidation

of CO on Pt(100) [90] and in 1986 for CO oxidation on Pt(110) [91], where rich temporal

dynamics could be observed including period doubling and deterministic chaos [92].

With the development of novel imaging techniques in the 1990s, investigations were no

longer restricted to temporal behavior and the observation of spatiotemporal phenom-

ena during catalytic reactions at single crystal surfaces became possible. The first spa-
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a) b) c) d)

Figure 2.4: Images of typical patterns during CO oxidation on Pt(110) obtained by pho-
toemission electron microscopy (PEEM). Dark areas correspond to mainly oxygen covered
regions and bright areas are mostly CO covered. (a) Rotating spiral waves [93], (b) target
patterns [46], (c) standing waves [94], and (d) chemical turbulence [95]. Two subsequent
snapshots of each pattern are shown (top and bottom row).

tially resolved real time images of concentration patterns on a catalyst surface were ob-

tained by photoemission electron microscopy (PEEM, for details see Section 2.2.5) [96].

Later, also optical methods were established [94]. Ellipsomicroscopy for surface imag-

ing (EMSI) and reflection anisotropy microscopy (RAM) allow the observation of self-

organization on the catalyst surface even at high pressures [97, 98].

Typical spatiotemporal patterns observed during catalytic CO oxidation on Pt(110)

under low pressure conditions ( p < 10−3 mbar) are solitary waves and pulses, rotating

spiral waves, target patterns, standing waves, and chemical turbulence [46,93,99]. Ex-

amples are displayed in Fig. 2.4 (note that curved patterns are elliptically elongated

due to anisotropy of CO diffusion on the Pt(110) surface, as will be explained below).

In later studies, pattern formation on microdesigned composite catalysts was investi-

gated exploring self-organization in confined domains and interactions of patterns with

active boundaries [58,59,100]. More recently, efforts were made to guide the processes

of self-assembly on the catalyst at will. A new approach was developed to locally in-

fluence and control the spatiotemporal dynamics during CO oxidation using a focused

laser beam [60,101–103].
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Figure 2.5: Hard-sphere model showing the (1×1) structure of the Pt(110) surface. Top
view (left) and cross section (right) of the first layers. Reproduced from Ref. [105].

2.2.2 CO and oxygen on Pt(110)

In the following, the structure of the catalyst surface and its interactions with the two

reactants are briefly summarized. The adsorption and desorption kinetics for both CO

and oxygen on platinum have been studied in great detail. In this section, only the main

aspects of these processes are recalled. For a thorough discussion see Ref. [47] and for

a survey of the literature relevant in the context of oscillatory kinetics Ref. [104].

Pt(110) Platinum shows a face centered cubic (fcc) crystal structure with a lattice

parameter of a = 3.92 Å and a next neighbor distance between the platinum atoms

of d = 2.77 Å. Here, we focus on the properties of the Pt(110) plane. In the non-

reconstructed form, also denoted as the (1×1) structure, the Pt atoms on the (110)

facet are arranged according to their bulk positions, see Fig. 2.5. However, the clean

Pt(110) surface is known to undergo a reconstruction that leads to a corrugated surface

structure composed of alternating rows and troughs of Pt atoms in the [11̄0] direction

as shown in Fig. 2.6 [106–110]. The reconstructed surface is characterized by a (1×2)

LEED pattern and is commonly called the “missing row” structure. Compared to the

particularly open structure of the (1×1) surface, the missing row structure contains a

large fraction of energetically preferred (111) microfacets.

CO on Pt(110) Adsorption of CO on platinum takes place in molecular form. The

initial sticking probability of CO on the (1×2) phase of the Pt(110) surface, s0
CO, is

close to unity [106,111,112]. Adsorption occurs via a precursor state, in which the CO
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Figure 2.6: Hard-sphere model showing the (1×2) structure of the Pt(110) surface. Top
view (left) and cross section (right) of the first layers. Reproduced from Ref. [105].

molecule is weakly bound to the metal surface and reaches its final adsorption site

only after a hopping process between different sites. Therefore, the sticking coefficient

remains almost constant for low coverages with CO. However, for higher coverages

exceeding u ≈ 0.35, it starts to decrease [106, 113]. Following Gasser and Smith [114],

the precursor effect can be described according to sCO = s0
CO (1− uq), with a mobility

parameter q between 3 and 4. The saturation coverage with CO is equal to unity [106,

111,115,116].

The adsorption of CO on Pt(110) induces a structural change of the crystal sur-

face [117]. The (1×2) missing row reconstruction of the clean platinum surface is lifted

to the (1×1) bulk truncated phase. The transformation process starts with a CO cov-

erage of 0.2 ML and is completed for a coverage of 0.5 ML [118]. At room temperature,

it was shown that the transition is initiated by the appearance of uniformly distributed

small patches of the (1×1) phase, formed by migration of Pt atoms over only a few

lattice sites. At elevated temperatures, longer strings of Pt atoms are shifted in the

[001] direction by quasi-correlated motion of adjacent atoms, so that larger domains of

the (1×1) phase are formed [119].

CO is diffusively mobile on the Pt(110) surface. In general, CO diffuses more rapidly on

the missing row surface than on the bulk terminated phase. However, due to anisotropy

of the surface structure, the value of the diffusion constant depends on the crystallo-

graphic orientation. On both the (1×1) and the (1×2) phase, the diffusion constant is

larger in the [11̄0] direction compared to the [001] orientation [120].
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Depending on the coverage, the thermal desorption spectra of CO show different shapes.

For coverages below 0.4 ML a single peak is measured between 510 and 530 K. Up to

a coverage of 0.5 ML, this peak shifts slightly towards lower temperatures and then

remains at a constant position. Besides, a second peak appears for higher coverages

at temperatures between 400 and 425 K, shifting to lower temperatures for increasing

coverage. For a discussion, see Refs. [111,113,117].

Oxygen on Pt(110) At temperatures above 240 K, adsorption of oxygen takes place

dissociatively following a second order kinetics with respect to the free adsorption

sites [121]. At room temperature, the initial sticking probability for oxygen on the (1×2)

surface of the Pt(110) facet is about 0.4 [122–124]. With growing oxygen coverage, the

sticking coefficient decreases to 0.03 for a coverage greater than 0.35 ML [125]. On the

(1×1) surface, the sticking coefficient is about 1.5 times higher for similar coverages [104,

124]. Also for oxygen adsorption, a precursor mediated mechanism has been proposed

and the coverage dependence of the sticking coefficient can be fitted using a Kisliuk-

type model [125]. Values for the saturation coverage have been determined between 0.3

and 0.35 ML [123,124] for the (1×2) structure and at 0.8 for the (1×1) phase [124]. In

a more recent work, however, a much higher coverage of 0.75 ML was measured also

for the (1×2) surface [125].

Unlike the adsorption of CO, oxygen adsorption does not induce a lifting of the (1×2)

reconstruction of the platinum surface [124,126]. Also, the diffusive mobility of oxygen

along the metal surface is different from diffusion of CO [120]. The activation ener-

gies for oxygen diffusion are much higher and the dependence on the crystallographic

orientation is drastically increased. Diffusion of oxygen is practically limited to the

[11̄0] direction and no transport occurs perpendicular to the ridges of the missing row

structure. Besides, a pronounced coverage dependence for the diffusion constant of

oxygen was reported [120]. The experiments of the present work were performed in a

temperature range between 450 and 550 K, where diffusion of oxygen can be neglected.

Oxygen desorbs only in molecular form. For low coverage, the thermal desorption

spectrum shows a single peak around 830 K. With increasing coverage, the maximum is

shifted towards lower temperatures as expected for second order desorption. However,

for high coverages, desorption is described by a first order process and takes place

at 740 K [121,125].
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2.2.3 Mechanism of the reaction

After having discussed the interactions of both CO and oxygen with the Pt(110) surface

separately, we now turn to the reaction of the two components on the platinum sur-

face. The catalytic oxidation of CO on platinum proceeds via a Langmuir-Hinshelwood

mechanism [47]. Before the reaction can take place, both CO and oxygen have to ad-

sorb from the gas phase on the catalytic surface. At temperatures considered in this

work, desorption of CO has to be taken into account, whereas oxygen desorption can

be neglected. An adsorbed CO molecule can react with an adsorbed oxygen atom from

a neighboring lattice site to form carbon dioxide which is immediately released into

the gas phase, leaving two vacant sites for adsorption of new educts. The reaction can

be summarized in the following scheme,

2 CO + 2⊗ −⇀↽− 2 COad

O2 + 2⊗ −→ 2 Oad (2.6)

2 COad + 2 Oad −→ 2 CO2↑ + 4⊗ ,

where ⊗ stands for a free adsorption site and the index ‘ad’ denotes adsorbed molecules

or atoms. In the following, some features of this mechanism are described that are of

particular importance for the rich dynamical behavior of the reaction.

If both reactants are present in the gas phase they compete for empty adsorption sites

on the catalyst surface. For several reasons, CO is in a more favorable position. While

the dissociative adsorption of oxygen requires two adjacent free adsorption sites, a sin-

gle empty site is sufficient for adsorption of a CO molecule. Besides, a weakly bound

precursor state during CO adsorption allows hopping of the CO molecule between dif-

ferent locations so that binding to an adequate adsorption site becomes more likely. For

the temperatures considered here, no similar mobility for oxygen is observed. Finally,

the oxygen adsorbate layer exhibits an open structure with empty sites in between,

always allowing the adsorption of additional CO. On the other hand, CO forms a com-

pact adsorbate, completely covering and thus poisoning the catalyst surface against

additional adsorption of oxygen so that no reaction can take place. This behavior is
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Figure 2.7: Schematic illustration of the
adsorbate induced structural transition of
the Pt(110) surface.
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generally referred to as asymmetric inhibition and induces bistable dynamics in a wide

range of parameters, where a mainly oxygen covered reactive state coexists with a CO

covered non-reactive state.

Moreover, the system comprises an internal negative feedback loop, which is an essential

prerequisite for excitable and oscillatory dynamics. This loop is established by the

structural transition of the Pt(110) surface between the (1× 2) missing row phase

and the (1×1) bulk terminated structure. As described above, the sticking coefficient

of oxygen is higher on the (1×1) structure as compared to the (1×2) surface. For

an appropriate choice of parameters, adsorption of CO will dominate on the (1×2)

surface, eventually inducing a lifting of the reconstruction to the (1×1) structure. On

the (1×1) surface, however, the sticking probability of oxygen is increased leading now

to a preferred adsorption of oxygen and, consequently, to an enhanced consumption

of adsorbed CO due to reaction. If the CO coverage has dropped below 0.5 ML, the

surface starts to reconstruct until the (1×2) missing row structure is reestablished at

CO coverages below 0.2 ML. Now, the sticking probability for oxygen is reduced again

and the process can start all over, see Fig. 2.7 [45].

Besides the (1×2) ↔ (1×1) structural transition, a different microscopic restructuring

process of the catalyst surface was observed. At temperatures below 530 K and un-

der the influence of the catalytic reaction, the initially flat Pt(110) surface undergoes

faceting into new orientations [127]. The characteristic size of the microfacets is about

100 Å and their formation occurs on a time scale of tens of minutes. Faceting of the

Pt(110) plane is associated with an increasing catalytic activity and may lead to an

induction period in the development of rate oscillations in catalytic CO oxidation [128].
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Under certain conditions, the formation of an additional oxygen species could be ob-

served [129]. Adsorbed oxygen was found to migrate underneath the top layer of the

platinum surface upon an increase of temperature to form subsurface oxygen [130]. The

subsurface oxygen can be released back onto the surface thus influencing the forma-

tion of concentration patterns on the catalyst. Detailed studies were performed for the

Pt(100) [130,131] and later the Pt(110) surface [132–134].

Two different mechanisms establish spatial coupling between the different locations on

the catalyst surface. On the one hand, CO is diffusively mobile along the platinum sur-

face as described in the previous section, providing local coupling between neighboring

sites on the surface. On the other hand, global coupling through the gas phase is known

to affect the dynamics of CO oxidation on Pt(110) significantly [135]. In the present

work, only low pressure conditions are considered. In this regime, the mean free path

of gas molecules is large compared to the dimensions of the vacuum vessel. Therefore,

small changes in partial pressure induced by local consumption of educts from the gas

phase will spread instantaneously throughout the system establishing a global coupling

that equally acts on all parts of the system. The synchronizing effect of global gas phase

coupling [136] and its impact on the formation of spatiotemporal patterns like standing

waves [46] or oscillating cellular structures [137] were discussed in detail. A additional

coupling may occur through the transport of heat in the catalyst. However, under low

pressures, the heat production of the reaction can be neglected, so that isothermal

conditions prevail and heat transport is absent. Only for higher pressures [97, 138] or

ultrathin catalysts [139] the effects of thermal coupling become important.

2.2.4 Mathematical modeling

A simple mathematical model for the catalytic oxidation of CO on Pt(110) has been

developed by Krischer, Eiswirth, and Ertl (KEE model) [48, 140]. Depending on the

choice of external parameters, the model not only shows monostable and bistable be-

havior but also excitable and oscillatory dynamics. The bifurcation diagram of the

homogeneous system has been analyzed in great detail [48,104] and diffusive coupling

was introduced to model the behavior of the spatially extended system [141]. The KEE

model is well established and has been used for over a decade to study the dynamics
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of catalytic CO oxidation on Pt(110) numerically. Many experimental observations of

spatiotemporal pattern formation in the CO oxidation system could be reproduced, at

least to a qualitative degree, in numerical simulations of the KEE model.

The KEE model The model consists of three coupled ordinary differential equations

for the local dynamics, taking into account the most significant physical processes

described in the previous section,

∂tu = k1 sCO pCO − k2 u− k3 uv , (2.7)

∂tv = k4 sO pO2 − k3 uv , (2.8)

∂tw = k5 [f(u)− w ] . (2.9)

The three variables u, v, and w are normalized between zero and one. They denote the

CO coverage, the oxygen coverage, and the local fraction of the surface found in the

nonreconstructed (1×1) structure, respectively. The system of Eqs. (2.7) – (2.9) can

be regarded as a specific example of a dynamical system of type (2.1).

Both COad and Oad are consumed by reaction to carbon dioxide, proceeding with a

rate constant of k3 and taken into account by the last term in the Eqs. (2.7) and

(2.8). In addition, the coverage with CO is reduced due to desorption with a rate

constant of k2, while oxygen desorption can be neglected at temperatures relevant in

the context of this work. The adsorption processes of CO and oxygen are determined

by the respective impingement rates k1 and k4, the sticking coefficients sCO and sO,

and the partial pressures pCO and pO2 of the two components, respectively. As pointed

out above, the sticking coefficients are coverage dependent. For sCO a precursor effect

has to be considered and is modeled following Gasser and Smith [114]. In the case of

oxygen sticking sO, a second order kinetics in the fraction of free sites is assumed and

the difference in sticking probability between the (1×1) and (1×2) surface structures

has to be accounted for. We thus obtain

sCO = s0
CO (1− u3) , (2.10)

sO = [ s0
O,1×1w + s0

O,1×2(1− w)] (1− u− v)2 , (2.11)

where s0
CO and s0

O,1×1, s
0
O,1×2 denote the initial sticking probabilities of CO and oxygen

on the clean surface, respectively.
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Figure 2.8: Plot of function f(u) with
u0 = 0.35 and δu = 0.05, cf. Eq. (2.12).

Equation (2.9) describes the coverage dependent transition between the (1×2) missing

row structure and the (1×1) bulk terminated surface taking place with a rate constant of

k5. While adsorption of CO induces a lifting of the (1×2) reconstruction, no such effect

is observed for oxygen adsorption. Therefore, the function f , describing the equilibrium

value of w in Eq. (2.9), is exclusively determined by u. In the original form of the KEE

model [48], a piecewise approximation of f was used. Here, we use a different ansatz

that was proposed later [132] and is computationally more convenient to handle while

showing only small deviations from the piecewise approximation,

f(u) =
1

1 + exp
(

u0−u
δu

) . (2.12)

The parameters u0 and δu determine the threshold above which the surface struc-

ture is significantly affected by the CO coverage and the steepness of the threshold,

respectively.

The model shows three external control parameters that can be changed at will, namely

the partial pressures pCO and pO2 of the two reactants and temperature. The rate

constants k2, k3, and k5 show a significant temperature dependence that is generally

modeled assuming a simple Arrhenius-type relation,

ki = νi exp

(
−Ei

kT

)
. (2.13)

The reaction specific parameters such as sticking coefficients or activation energies

were taken from the literature or determined in experimental studies of the individual

reaction steps, see Refs. [48,104,142] and references therein.
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The model Eqs. (2.7) – (2.9) describe the local dynamics of a single surface element

without taking into account any spatial degrees of freedom (homogeneous dynamics,

cf. Section 2.1.1). By introducing a spatial dependence of the variables u, v, and w,

the dynamics on an extended single crystal surface can be modeled. Since diffusion of

oxygen can be neglected at the temperatures considered here, local coupling between

the different locations on the platinum surface is only established by diffusion of CO.

Adding a respective diffusion term to Eq. (2.7) [49,141,143], the KEE model becomes

an example of a spatially extended dynamical system of type (2.5).

Modifications The KEE model was changed and modified in many ways. A reduced

two-variable version of the model was derived that gives qualitatively similar results

for many aspects of the spatiotemporal dynamics [49,144]. Spiral waves [145,146] and

the emergence of chemical turbulence in the excitable regime [85,147] were successfully

studied using the two-variable version.

Furthermore, the three-variable model has been extended to account for additional

phenomena that were neglected in the original version. An important effect is the pres-

ence of global coupling through the gas phase as explained in the previous section.

The model has been extended by an additional equation accounting for the evolution

of CO partial pressure in the reaction chamber. In numerical simulations of the ex-

tended model, global coupling was found to influence the spatiotemporal dynamics

significantly, inducing e.g. standing waves and cluster patterns [134, 148–153]. Other

extensions of the three-variable version were proposed taking into account the influ-

ence of subsurface oxygen [132–134], or the overall effect of faceting of the single crystal

surface on the dynamics [48].

2.2.5 Experimental setup

In this section, the laboratory setup for the experimental part of this work is briefly

introduced. In particular, the photoemission electron microscope (PEEM) is described

that was used to obtain spatially resolved images of adsorbate patterns on the catalyst.
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UHV system The experimental studies of CO oxidation presented below were carried

out in a stainless steel ultrahigh vacuum (UHV) chamber with a volume of about

60 L that is kept at a base pressure of approximately 10−10 mbar. The vacuum is

maintained by a combination of two rotary vane pumps and three turbomolecular

pumps. The rotary vane pumps are connected via zeolite traps to prevent contamination

of the chamber by their lubricating oil. They establish a pressure of 10−3 mbar which

serves as a fore-vacuum for the turbomolecular pumps used for evacuating the chamber.

A titanium sublimation pump further improves the vacuum. The pressure inside the

chamber is measured using an ionization manometer at low pressures and a baratron

differential capacitance manometer under reaction conditions.

The chamber is equipped with standard instruments for surface studies under UHV

conditions like low-energy electron diffraction (LEED) and Auger electron spectroscopy

(AES). A differentially pumped quadrupole mass spectrometer (QMS) is used for de-

tection of the different chemical species and for measuring of their partial pressures.

The photoemission electron microscope (PEEM) is also operated under differential

pumping. It is employed for imaging of concentration patterns on the crystal surface

and will be described in more detail below.

The circular Pt(110) single crystal sample has a diameter of about 10 mm and is fixed

inside the chamber to a sample manipulator that allows controlled movement of the

sample in x-, y-, and z-direction as well as radial and azimuthal rotation by electric step
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Figure 2.9: Schematic drawing of the UHV chamber with pumping and gas supply system.
Reproduced from Ref. [105].
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motors. Two different samples were used. The experiments presented in Chapters 3.2,

and 4 were carried out on a Pt(110) crystal that was covered to approximately 80% by

microlithographic deposition with Ti, leaving a number of small (about 1 mm2 in size)

isolated active Pt areas uncovered. Ti is easily oxidized to TiO2, which is catalytically

inert in the present reaction. In this way, the effects of intrinsic global gas phase coupling

could be reduced. For experiments in the excitable regime (Chapter 6), a plain Pt(110)

crystal was used. Sample heating was achieved by a halogen projector lamp mounted

inside the sample holder directly behind the crystal. Prior to each experiment, the

single crystal surface was prepared by repeated cycles of argon ion sputtering below

470 K, oxygen treatment at 570 K, and subsequent annealing up to 1000 K. Only

purified gases were used for sample preparation and experiments (Ar 5.0, CO 4.7, and

O2 5.6). They were supplied by manually operated leak valves. To ensure stable partial

pressures in the chamber, the supply of the reactants was additionally manipulated via

electromagnetic valves that were automatically controlled by an electronic feedback

system. During experiments, gases were constantly supplied and pumped so that the

chamber was operated as a continuous flow reactor. For more details on the UHV

system see Ref. [154].

Photoemission electron microscope In this work, spatiotemporal pattern formation

during CO oxidation on Pt(110) was experimentally studied by means of photoemission

electron microscopy (PEEM). Since 1990, photoemission electron microscopy is used for

imaging of adsorbate patterns on catalytic surfaces [46,96,155,156]. The PEEM yields

spatially resolved information on the local work function across the sample surface. Due

to the adsorbate dependence of the work function, different values of work function

can be translated into adsorbate coverages so that images of lateral concentration

distributions on the catalyst surface become accessible in real time. For a review the

reader is referred to [94,157].

To induce the emission of photoelectrons, the platinum sample is irradiated with ul-

traviolet light from a 200 W deuterium discharge lamp. Under air, the spectrum of the

lamp is limited towards high energies at around 6.8 eV due to absorption of oxygen.

In the platinum CO oxidation system, this causes large variations in the photoelectron

yield because here the Pt surface shows a work function ϕ between 5.5 and 6.5 eV de-

pending on the adsorbate coverage. To capture as many photoelectrons for the imaging
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Figure 2.10: Schematic drawing of the photoemission electron microscope (PEEM). Repro-
duced from Ref. [155].

as possible, the objective of the PEEM is mounted in a distance of about 4 mm closely

in front of the sample. In addition, the electrons are accelerated in a potential differ-

ence of 20 kV between sample and front opening of the PEEM. The distribution of

electrons is then imaged by a system of three electrostatic lenses onto a channelplate

with a diameter of 4 cm [155]. Here, the local electron signal is amplified by a factor of

103. A phosphor screen converts the electron distribution into a light intensity image

which is then recorded by a CCD camera at a frame rate of 25 images per second.

The clean Pt surface has the lowest work function ϕ and, therefore, displays the bright-

est image intensity. The work function of the CO-covered surface is slightly increased

compared to the clean surface (∆ϕ = +0.3 eV) causing a small decrease in the yield of

photoelectrons and hence in the intensity of the PEEM image compared to the clean

surface. Finally, O-covered areas appear nearly dark due to a more pronounced increase

of the work function (∆ϕ = +0.8 eV). In the experiments presented here, the imaged

area on the sample surface is typically of a diameter of 500µm with a spatial resolution

of 1µm.
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2.3 Electrochemical oxidation of hydrogen on Pt

Apart from heterogeneous catalytic reactions, there are many other chemical processes

that display spatiotemporal self-organization. There is, in particular, a large number

of electrochemical systems showing instabilities and complex space-time behavior. For

a review of nonlinear phenomena in electrochemical systems see Refs. [10,158].

In this section, the electrochemical oxidation of hydrogen is introduced as an exam-

ple of an electrochemical system with rich spatiotemporal dynamics. It complements

the CO oxidation system in several aspects as a model system for the experimental

study of pattern formation. In the present setup, the space-time behavior of electro-

chemical hydrogen oxidation is investigated along a ring electrode. As the width of

the electrode is small compared to its circumference, a quasi-one-dimensional system

with periodic boundary conditions is realized. This allows to contrast the results from

the two-dimensional CO oxidation system with the dynamical behavior in one spatial

dimension. Besides, in this type of system, diffusive transport can be neglected and

spatial coupling is established by migration instead. The range of migration coupling

in electrochemical systems can be controlled by changing the geometry of the elec-

trochemical cell allowing to study the spatiotemporal behavior for different coupling

ranges.

2.3.1 General remarks

In the following, a few selected general aspects of electrochemical systems are recalled,

as far as they are essential for the subsequent discussion. A comprehensive introduction

to the subject can be found in standard electrochemistry textbooks, e.g. in Refs. [159,

160].

In Fig. 2.11 (a), the schematic view of an electrochemical setup is displayed. A voltage

U is applied between working electrode (WE) and reference electrode (RE), the total

current I flowing between working and counter electrode (CE). Both potentiostatic or

galvanostatic control can be established in this setting maintaining constant U or I,

respectively. At the electrode-electrolyte interface, charge distributions reorganize and
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Figure 2.11: (a, upper part)
Schematic view of an electro-
chemical cell with (a, lower
part) voltage drops across the
different parts of the sys-
tem. (b) Equivalent circuit of
an electrochemical cell, repro-
duced from Ref. [158]. C, R,
Zreac, U , and φDL are the dou-
ble layer capacitance, the elec-
trolyte resistance, the Faradaic
impedance, the externally ap-
plied voltage, and the interfa-
cial potential, respectively.

an electric double layer may form that consists of hydrated ions accumulating in front of

the electrode. They are compensated by equal counter charges in the metal. Although

its detailed structure is complicated, it is sufficient to describe the double layer in this

context as a capacitor characterized by the specific double layer capacitance C. The

voltage drop across the double layer is denoted as the double layer potential φDL. It is

the key quantity in most electrochemical processes and also the essential dynamical

variable for nonlinear behavior of electrochemical systems. Taking into account the

resistance R of the electrolyte, the total potential drop between WE and RE is

U = φDL + IR , (2.14)

with I denoting the current flowing through the cell. An equation for the temporal dy-

namics of the double layer potential can be derived considering the standard equivalent
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R
u

Figure 2.12: N-NDR system. (a) Negative differential resistance due to an N-shaped current-
potential characteristic. (b) Bistability in current vs. external voltage curve, sn denoting the
saddle node bifurcations. (c) Bifurcation diagram in the parameter plane spanned by the
external voltage and the cell resistance. At the dashed line, a Hopf bifurcation to oscillatory
behavior occurs. Reproduced from Ref. [158].

circuit of an electrochemical cell, see Fig. 2.11 (b). Current can pass the double layer

on two routes: as a Faradaic current jreac arising from charge transfer in an electrode

reaction or as a capacitive current charging the double layer. The resistance R of the

bulk electrolyte appears in series with the interface. Applying Kirchhoff’s law and nor-

malizing to unit electrode area, the temporal evolution of the double layer potential

for a WE of area A is governed by

C
dφDL

dt
= −jreac +

U − φDL

RA
. (2.15)

2.3.2 Reaction

Similar to self-organization in other extended nonequilibrium systems, spatiotemporal

pattern formation in electrochemical systems can be explained as a combination of

local dynamics and spatial coupling between the different locations in the system [158].

Here, the homogeneous dynamics of electrochemical hydrogen oxidation on Pt will be

presented followed by a discussion of coupling mechanisms in the next section.

Most instabilities in electrochemical systems are related to a negative differential re-

sistance (NDR) in the current-potential characteristic occurring in almost any electro-

chemical system for an appropriate choice of parameters. Two types of NDR may be

distinguished. On the one hand, the current-potential curve can exhibit an N-shaped

characteristic (N-NDR) as shown in Fig. 2.12 (a). This behavior is found in many elec-
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trochemical systems. Although it may occur as the result of different physical processes,

this feature can be modeled in most cases by assuming a third order polynomial de-

pendence of the reaction current jreac on the double layer potential φDL. With changing

potential drop in the electrolyte, the polarization curve can change its shape, leading

to bistability and oscillatory dynamics, see Fig. 2.12 (b), (c). In some of these systems,

generally referred to as HN-NDR systems (hidden N-NDR), the N-shaped characteris-

tic is hidden by another potential dependent process. Here, the NDR is observed only

in a subsystem while the reaction for the full system is inhibited at the respective

potential values. On the other hand, NDR is encountered in some systems displaying

a S-shaped polarization curve (S-NDR). This case is considerably less frequent and

behaves in many aspects complementary to the N-NDR situation.

The electrochemical oxidation of hydrogen on Pt is an example of a system with N-

shaped polarization curve that can be turned into a HN-NDR system by addition of

electrosorbing ions like Cl− and Cu2+. The anodic hydrogen oxidation proceeds through

the following mechanism,

H bulk
2 −→ H surface

2

2 Pt + H surface
2 −→ 2 Pt−H (2.16)

Pt−H + H2O −→ H3O
+ + e− + Pt ,

accounting for hydrogen diffusion from the bulk electrolyte to the electrode surface,

dissociative adsorption of hydrogen on the Pt electrode, and electrochemical oxidation

of adsorbed hydrogen with subsequent hydration of the protons. For details on the

electrocatalytic oxidation of hydrogen, see Ref. [161] for a recent review and references

therein. With growing potential, formation of platinum oxide increasingly blocks free

sites on the electrode surface leading to a decrease in current and hence to a NDR.

If Cl− ions are present, they may adsorb on the electrode inducing an additional NDR

at smaller potentials. In the same range, Cu2+ inhibits the reaction and desorbs only

for increasing potential thus forming a prototypical HN-NDR type system. For an

appropriate choice of parameters, the counteracting adsorption kinetics of these two

additives lead to oscillatory behavior of the reaction, see e.g. Refs. [162,163].
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2.3.3 Migration coupling

Different mechanisms may introduce spatial coupling between the individual locations

on the electrode [10]. For instance, both galvanostatic and potentiostatic control of

the experiment can externally impose a global coupling by making the local dynamics

dependent on the average double layer potential. The basic mechanism that provides

an intrinsic spatial coupling in electrochemical systems is due to migration and will be

presented in the following.

As discussed in Section 2.3.1 above, current can pass the double layer on either the

Faradaic or the capacitive pathway, cf. Fig. 2.11 (b). Complying with local charge

balance at the interface, a change in the double layer potential has to be equal to the

difference between the migration current flowing into the double layer and the Faradaic

current density at each location. Thus, the spatiotemporal evolution of the double layer

potential φDL(x, t) can be written as

C
∂φDL

∂t
= −jreac − σ

∂φ

∂z

∣∣∣∣
WE

. (2.17)

Here, the left hand side expresses the local charging of the interface with C the spe-

cific double layer capacitance. The local Faradaic current density is denoted by jreac.

The migration current density is proportional to the normal derivative of the electric

potential in the electrolyte φ at the position of the working electrode (WE) with σ the

specific conductivity of the electrolyte.

Spatial coupling is established through the last term in Eq. (2.17). Assuming a uni-

form distribution of concentrations, the electric potential φ in the bulk electrolyte can

be determined by solving Laplace’s equation. Since the solution depends on boundary

conditions, the geometry of the system plays a crucial role. In a two-dimensional ar-

rangement, as is sufficient to consider here, the distance d between WE and CE is the

important geometric parameter. Note that in the present arrangement, where the RE

is located behind the CE, also the potential drop between WE and RE is determined

by d, since there is effectively no current flowing beyond the CE. Moreover, with the

WE being one of the boundaries, local changes in the double layer potential affect the

potential distribution in the whole electrolyte. They are felt instantaneously all over
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Figure 2.13: Coupling function H of
a ring electrode for nonlocal migration
coupling (solid line). With decreasing
d, the coupling becomes more localized
(arrows) and converges to the diffusive
case in the limit d → 0 (dashed line).
The width of the ring is assumed to
be small compared to the circumference
L and the distance between WE and
RE is larger than 2L. The coordinate
x denotes angular direction. Reproduced
from Ref. [158].

the electrode and induce variations in the migration currents at all other locations

on the electrode. Thus, migration coupling acts not only between next neighbors, but

shows a long-range impact.

The contributions to the migration current that are actually due to lateral differences

in the interfacial potential can be expressed by subtracting the current that is flowing

in the case of a homogeneous potential distribution,

C
∂φDL

∂t
= f − σ

[
∂φ

∂z

∣∣∣∣
WE

+

(
U − φDL

d

)]
, (2.18)

where f = −jreac +σ(U −φDL)/d. This equation shows an analogy to reaction-diffusion

systems (2.5) in the sense that the first term on the right hand side represents the

dynamics of the uniform system, while the second term accounts for coupling due to

local differences in the dynamic variable.

Similar to diffusion, migration coupling acts synchronizingly. However, as outlined

above, it is mediated through the electric potential φ in the electrolyte and there-

fore can show a long-range effect. The range of migration coupling depends on the

distance d between WE and CE. For large d, the coupling is nonlocal. A localized per-

turbations in the interfacial potential leads to a reorganization of the electric potential

φ in the electrolyte. The impact of such a perturbation is felt not only in z-direction but

also spreads in x-direction and affects more remote positions on the ring. For smaller

d, the spread in x-direction becomes less, so that the coupling is more localized and

converges to diffusive coupling in the limit d→ 0. The nonlocal character of migration



2.3 Electrochemical oxidation of hydrogen on Pt 35

Figure 2.14: Experimental setup [165]: Ring
shaped working electrode (WE) and counter elec-
trode (CE), reference electrode (RE, Hg/Hg2SO4

saturated) located below the plane of the CE.
The WE is rotated with 20 Hz and the spatial
distribution of the interfacial potential is sam-
pled by a potential probe (PP) with a resolution
of 50 points per rotation. The two different sepa-
rations of WE and CE refer to the different cases
presented in Section 3.1.

coupling becomes more obvious when transforming the last term of Eq. (2.18) into a

more intuitive integral formulation as demonstrated by Christoph et. al. [164],

−σ
[
∂φ

∂z

∣∣∣∣
WE

+

(
U − φDL

d

)]
= σ

∫
WE

H(|x− x′|)(φDL(x
′)− φDL(x)) dx . (2.19)

For a ring electrode of circumference L, Fig. 2.13 displays the typical shape of the

coupling function H for nonlocal migration coupling (solid line) and diffusion coupling

(dashed line) in comparison.

2.3.4 Experimental setup

A schematic draft of the experimental setup is presented in Fig. 2.14. The ring shaped

WE is made of polycrystalline Pt embedded in a cylindrical Teflon piece. It is 1 mm

in width and has a mean circumference of 85 mm. The local electric potential in the

electrolyte close to the WE is recorded using a stationary potential probe. By rotating

the WE over the potential probe, the temporal evolution of the angular potential

distribution in front of the Pt ring can be obtained in situ. Besides, the rotation of

the ring ensures a defined mass transport of H2 as well as Cu2+ and Cl− ions from the

bulk electrolyte to the reaction plane at the WE. To establish radial symmetry in the

electrochemical cell, also the Pt counter electrode was ring shaped. For further details

on the experimental setup see Refs. [166–168].
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2.4 General models

In the last part of this chapter, general models are introduced that describe common

aspects of extended oscillatory systems. Throughout this work, the results from specific

experimental systems, in particular from catalytic CO oxidation, will be discussed in

comparison to theoretical predictions from these simplified universal descriptions. In

this way, it is possible to evaluate the relevance of experimental observations from a

specific system for the class of oscillatory systems at large.

2.4.1 The complex Ginzburg-Landau equation

The complex Ginzburg-Landau equation (CGLE) is one of the most thoroughly stud-

ied nonlinear equations in physics. For a detailed discussion and a recent review, see

Ref. [169] and references therein. In the following section, only a few introductory re-

marks to the CGLE are presented and its basic properties are briefly reviewed with

some emphasis on spatiotemporal chaos.

General remarks The individual properties of a dynamical system (2.5) can be com-

plex and may differ strongly from one system to another. However, close to a bifurcation

point, the description of such systems can be simplified considerably. In general, insta-

bilities in extended systems are classified by analyzing the response behavior to single

Fourier mode perturbations. By linearizing around a uniform steady state, the evo-

lution of modes uj(x, t) = uj0 e
iqx+λt is studied, focusing on the most unstable mode

(the mode for which Re(λ) is largest). Near the bifurcation point, Re(λ) is close to

zero for these modes. Thus, their evolution becomes slow compared to the remaining

stable modes. Due to this separation of time scales in the vicinity of a bifurcation

point, the dynamics of a large number of stable modes relaxes to the evolution of a

few leading critical modes. Their behavior is ‘enslaved’ to the evolution of the most

unstable modes so that they may be eliminated adiabatically. In this way, the system

of Eqs. (2.5) can be reduced to a simple amplitude equation for the critical modes that

captures the dynamics of the full system close to the bifurcation point. The form of the

amplitude equation depends on the type of instability and is universally valid for all

systems showing this bifurcation. For amplitude equations in general, see e.g. Ref. [66].
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With respect to oscillatory systems, the supercritical Hopf bifurcation is of particu-

lar interest as the most simple bifurcation leading to oscillatory dynamics, cf. Sec-

tion 2.1.1. By the above arguments, the dynamics of any system showing this type

of bifurcation can be described, in the immediate vicinity of the bifurcation point,

by a universal equation. Retaining only the leading modes close to the Hopf point,

the complex Ginzburg-Landau equation (CGLE) is obtained for an extended system

of diffusively coupled elements. Because of its universal character, the CGLE can be

considered as a model system for extended oscillatory systems in general. At the onset

of periodic behavior in a supercritical Hopf bifurcation, oscillations have small ampli-

tudes and are approximately harmonic. The CGLE describes these oscillations in terms

of a complex variable η = ρ eiφ with amplitude ρ = |η| and phase φ = arg(η). After

appropriate scaling of the coefficients, the CGLE reads

∂tη = (1− iω)η − (1 + iβ)|η|2η + (1 + iε)∇2η . (2.20)

For details of the derivation of Eq. (2.20) from a full dynamical system of type (2.5), see

e.g. Ref. [68]. The linear frequency parameter ω denotes the difference to the oscillation

frequency at the Hopf point and can be eliminated by changing to a rotating coordinate

frame, η → η eiωt. Thus, the dynamics of the CGLE effectively depends on the two

real parameters β and ε, denoting a nonlinear frequency shift and a linear dispersion

coefficient, respectively.

The values for β and ε can be determined for any specific reaction-diffusion system

(2.5) close to a Hopf point. In this work, however, the CGLE coefficients are not de-

rived from a realistic model and no quantitative comparison with experimental results

is carried out. Instead, the CGLE will be considered as a general model for oscilla-

tory systems and its behavior will be taken to complement observations from specific

experimental systems with aspects common to all oscillatory media. Although strictly

applicable only sufficiently close to the onset of oscillations, it was found in many cases

that the predictions of the CGLE remain qualitatively valid in a wider distance from

the bifurcation point. The dynamics of the CGLE shows a wealth of different spa-

tiotemporal phenomena including the occurrence of plane waves and spiral waves as

well as localized coherent structures and spatiotemporally chaotic regimes.



38 Background

Figure 2.15: Spiral
wave solution of the
two-dimensional CGLE,
reproduced from Ref. [171].
Phase (left) and amplitude
(right) are displayed in gray
scale. Dark (light) denote
low (high) values.

Uniform oscillations If oscillations in the complex amplitude η are uniform through-

out space, diffusive coupling can be neglected and the dynamics is effectively described

by an ordinary differential equation for a single oscillator,

∂tη = (1− iω)η − (1 + iβ)|η|2η , (2.21)

sometimes referred to as the Stuart-Landau equation (SLE). Obeying this equation, the

complex amplitude performs stable limit cycle oscillations, η = ρ0 e
−iΩt, with constant

frequency and amplitude,

Ω = ω + β and ρ0 = 1 . (2.22)

In the spatially extended system (2.20), uniform oscillations are stable only if the con-

dition 1+ εβ > 0 is fulfilled. If the Newell criterion 1+ εβ < 0 is satisfied, synchronous

oscillations become linearly unstable. They undergo the Benjamin-Feir instability and

turbulence spontaneously develops [170], see below.

Plane and spiral wave solutions The CGLE has a family of plane wave solutions,

η(x, t) = ρk exp(ikx− iωkt) , (2.23)

with amplitude ρk =
√

1− k2 and frequency ωk = Ω + (ε − β)k2, where Ω = ω + β

denotes the frequency of uniform oscillations. The amplitude of plane waves converges

to the amplitude of uniform oscillations in the long-wavelength limit (k → 0) and

vanishes as k approaches unity (k → 1) not allowing a wavelength smaller than 2π.

However, plane waves are only stable for wave numbers k2 < k2
E, where kE is determined

by the so-called Eckhaus instability [169].
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Particularly well studied typical solutions of the CGLE in two spatial dimensions are

spiral waves, see Fig. 2.15 for an example. In general, the complex amplitude of a spiral

wave is described by

η(r, θ, t) = ρ(r) exp(−iφ(r, θ, t)) , (2.24)

where r, θ are polar coordinates in the two-dimensional plane. The phase φ of a spiral

wave can be written as

φ(r, θ, t) = ωt−mtopθ − ψ(r) . (2.25)

Here, ω, mtop, and ψ denote the frequency, the topological charge, and the radial

phase contribution of the spiral wave, respectively. The topological charge takes the

value mtop = ±1 for single-armed spirals, the direction of rotation depending on the

sign of mtop. Along any closed contour around the center of such spiral waves, the

phase changes by an amount of ∆φ = ±2π. The center itself constitutes a topological

defect, where the real amplitude ρ vanishes and the phase is not defined. The total

topological charge of a medium with periodic boundaries is conserved. Thus, topological

defects can be only created and annihilated in pairs of opposite sign. Spiral waves may

become unstable leading to spiral breakup that typically results in a spatiotemporally

chaotic behavior [172]. Spiral breakup was also observed experimentally [67, 173] and

in numerical simulations [174].

Turbulence In the Benjamin-Feir unstable regime, 1+εβ < 0, uniform oscillations are

unstable with respect to small perturbations and irregular, spatiotemporally chaotic

states spontaneously develop in the system. These dynamical regimes are often referred

to as chemical turbulence [68, 69].

For a one-dimensional system, the first systematic study was performed by Shraiman et

al. [170]. Close to the Benjamin-Feir boundary, phase turbulence is observed. Here, the

local oscillation phase exhibits weak irregular fluctuations. The real amplitude remains

saturated and is characterized by randomly traveling shocks of increased oscillation

amplitude. For space-time diagrams of both phase and amplitude, see Fig. 2.16 (a). In

this regime, the system still shows long-range phase correlations. Farther away from

the instability, amplitude or defect turbulence develops, characterized by strong fluctu-
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Figure 2.16: (a) Phase turbulence and (b) amplitude turbulence in the one-dimensional
CGLE. (top) Space-time diagrams showing lines of constant phase φ and (bottom) the am-
plitude fields ρ in gray scale are displayed. Dark (light) denote low (high) values of the
amplitude. Space-time defects occur at the end of constant phase lines. The system size is
L = 256 and the displayed time interval is ∆t = 300. The parameters are (a) β = −0.91, (b)
β = −1.4, and ε = 2, ω = 0 in both cases.

ations of both phase and real amplitude which are due to the presence of space-time

defects — locations with vanishing real amplitude where abrupt changes in the phase

occur (phase slips), see Fig. 2.16 (b). The transition from phase to amplitude turbulence

is associated with a pronounced decrease in spatial correlation. It has been studied since

the beginning of the 1990s [170, 175] and is a matter of ongoing debate [176, 177]. De-

pending on the choice of ε, the two turbulent regimes may be separated by a so-called

“bichaotic” region, where both phase and amplitude turbulence can occur. Besides,

defect chaos may even coexist with stable plane wave solutions in the Benjamin-Feir

stable regime. In this range of intermittent turbulence, laminar patches of plane waves

are typically separated by defects that are replicating in repeated cascades but do not

invade the entire medium [178,179].

The most detailed numerical studies of chaotic regimes in two dimensions were carried

out by Chaté and Manneville [172, 180]. As in one spatial dimension, two types of

turbulent behavior can be distinguished. Close to the instability, phase turbulence

prevails, where phase correlations show a slow power-law decay. In this parameter

range, disordered cellular structures are formed that slowly evolve in time, see snapshots
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Figure 2.17: Snapshots of (a) phase
turbulence and (b) amplitude turbulence
in the two-dimensional CGLE, repro-
duced from Ref. [171]. (top) Phase φ and
(bottom) amplitude ρ are displayed in
gray scale. Dark (light) denote low (high)
values.
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in Fig. 2.17 (a). In the strongly irregular regime of amplitude turbulence, both spatial

and temporal correlations decay exponentially with short correlation lengths and times.

Amplitude turbulence in two dimensions is characterized by the presence of topological

defects [181]. They are continuously created and annihilated, and their behavior can

be described in terms of statistical properties [182]. A snapshot from a time series

displaying amplitude turbulence is shown in Fig. 2.17 (b).

2.4.2 Phase dynamics approximation

Under certain conditions, the description of an oscillatory medium can be simplified

even further to a reduced formulation in terms of a phase variable only [25, 68]. For

a limit cycle oscillator amplitude, frequency, and orbital form of self-oscillations are

specific features determined by the properties of the individual oscillator. The phase,

however, remains arbitrary. Upon application of a small perturbation, the initial shape

and amplitude of oscillations will be reestablished after a characteristic relaxation time

τr. The phase, on the other hand, will not recover its initial value but will maintain a

small shift induced by the perturbation. In an extended system of diffusively coupled

limit cycle oscillators, the evolution of a spatial phase distribution will therefore depend

on the length scale L of phase variations across the medium. If the phase distribution is

sufficiently smooth, the characteristic time scale of its evolution will be large compared
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to τr. In this case, the amplitude adjusts adiabatically to the local phase gradient and

can be eliminated as an independent variable. This yields an effective equation for the

dynamics of smooth phase distributions. It has the following universal form,

∂tφ = a(∇φ)2 + b∇2φ , (2.26)

and remains valid as long as the characteristic length scale L of the phase distribution

fulfills L�
√
b τr. The parameters a and b depend on the particular system. By use of

the Hopf-Cole transformation, φ = (b/a) lnQ, Eq. (2.26) can be rewritten as a simple

linear equation,

∂tQ = b∇2Q . (2.27)

For positive b, Eq. (2.27) has the form of a standard diffusion equation. Here, localized

perturbations in Q (and thus in φ) get smoothed out and oscillations will eventually

become synchronized. On the other hand, if b is negative, spatial perturbations will

grow in magnitude and get increasingly localized. In this case, uniform oscillations

are linearly unstable. They undergo a Benjamin-Feir-type instability leading to an

irregular spatiotemporally chaotic dynamical state. Note that in this regime, phase

gradients become steeper in the course of time, so that the condition of sufficiently

smooth phase variations gets violated and Eq. (2.26) is no longer valid. Therefore, a

complete description of the turbulent regime can be given only in terms of the full set

of equations of the dynamical system. However, close to the Benjamin-Feir line, it can

be expected that the instability develops slowly and the system remains in the vicinity

of uniform limit cycle oscillations. In this case, the emerging chaotic state of phase

turbulence can still be described in terms of a phase dynamics approximation — the

Kuramoto-Sivashinsky equation [68]. It is derived by an extension of Eq. (2.26) to

higher-order terms in the spatial phase derivatives.


