Adaptive Lossy Trajectory Compression
for Optimal Control of Parabolic PDEs

Dissertation

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

am Fachbereich Mathematik und Informatik
der Freien Universitat Berlin

vorgelegt von

Sebastian Gotschel

Berlin, Mai 2014

Erstgutachter:

Prof. Dr. Dr. h.c. Peter Deuflhard
Fachbereich Mathematik und Informatik
Freie Universitat Berlin

Arnimallee 2-6

14195 Berlin

Zweitgutachter:

Prof. Dr. Matthias Heinkenschloss

Department of Computational and Applied Mathematics
Rice University

6100 Main St. — MS 134

Houston, TX 77005-1892

USA

Datum der Disputation: 20. Januar 2015

Contents

Notation
1. Introduction
2. Optimal Control of Parabolic PDEs

2.1. Problem Setting
2.2. Optimality Conditions
2.3. Discretization oo

Compression in Scientific Computing and Optimal Control

3.1. General Floating Point Compression
3.1.1. Lossless Methods
3.1.2. Lossy Methods

3.2. Computer Graphics and Visualization
3.2.1. Mesh Compression
3.2.2. Compression of Time-Varying Data

3.3. Checkpointing
3.3.1. Fixed Timesteps
3.3.2. Adaptive Timesteps
3.3.3. Discussiono

3.4. Other Techniques
3.4.1. Model Reduction
3.4.2. Multiple Shooting

Lossy Compression with Pointwise Error Control

4.1. Multilevel Compression in Hierarchical Meshes
4.2. A-Priori Estimates
4.3. Temporal Correlations
4.4. Algorithms

Adaptive Error Control

5.1. Worst-Case Error Bounds
5.1.1. Reduced Gradient

o

— oo ot

16
16
17
19
19
20
21
21
24
24
25
25
26

27
28
31
36
37

39
40
40

Contents

5.1.2. Reduced Hessian-Vector Products 41

5.1.3. Computable Error Estimates 43

5.2. Steepest-Descent 47
5.3. BFGS-Quasi-Newton L. 49
5.3.1. Convergence of Inexact BFGS 50

5.3.2. Superlinear Convergence 53

53.3. Remarks. o7

5.4. Newton-CG e 58
5.4.1. Adaptive Quantization for Gradient Computation 59

5.4.2. Adaptive Quantization for Hessian-Vector Products 60

5.4.3. Realization 64

5.5. Discussion 67

6. Numerical Results 69
6.1. Auxiliary Test Functions 69
6.2. Linear Heat Equation 73
6.3. Kolmogorov Equation, 77
6.3.1. Steepest-Descent 77

6.3.2. Newton-CG 78

6.4. Monodomain Equations 81
6.4.1. Error Estimation 85

6.4.2. Newton-CG 88

6.4.3. BFGS-Quasi-Newton 90

7. Beyond Pointwise Error Control 95
7.1. Wavelet-Based Compression 96
7.1.1. Multiresolution Analysis 98

7.1.2. Fast Wavelet Transform 99

7.2. Construction of Wavelet Bases 100
7.2.1. Lifting 101

7.2.2. Finite Element Wavelets 102

7.3. Numerical Results 107

8. Conclusion 111
A. A Comparison Theorem 113
Bibliography 115
Acknowledgments 127
Zusammenfassung 129

ii

Notation

General Function Spaces and Norms

C* () space of k-times continuously differentiable functions on
QCR?

LP(Q) Lebesgue space

WkP(Q) Sobolev space

LP(a,b; V) linear space of vector-valued functions y : [a,b] — V with

b
/ ly@) dt < oo

C*(a,b; V) space of k-times continuously differentiable functions
y:la,b] =V

I-lys (5)v norm and scalar product on V

V* (v v dual space of V' and dual pairing

Optimal Control Problems

Y space of state variables y

U space of control variables u

Z space of adjoint variables A

J(y,u), j(u) objective functional and reduced objective functional

c(y,u) =0 state equations

iii

Notation

Lossy Compression

Qs(y), QL)

iv

quantization of y and de-quantization of ¢ with quantization
tolerance 0

de-compressed quantities, e.g. § = Q}(Q(;(y))
quantization error, e.g. £, = 9§ —y
inexact quantity due to compression of an input

error due to inexact input, e.g. A=\+ e

1. Introduction

Optimal control problems governed by nonlinear, time-dependent PDEs on three-
dimensional spatial domains are an important tool in many fields, ranging from
engineering applications to medicine. They occur, for example, in non-destructive
testing of materials by active thermography, where the aim is to reconstruct the
geometry of the inaccessible rear side from temperature measurements on the front
surface. This can be achieved by minimizing the difference between computed and
measured temperatures, subject to the heat equation. For medical applications,
we exemplarily mention the problem of cardiac defibrillation. Cardiac arrhythmia,
like ventricular fibrillation, are treated by applying an electrical shock. There, one
optimization goal is the design of shocks with amplitudes as small as possible, which
still are sufficient to extinguish fibrillation.

In typical applications, the control is not acting in the whole domain (distributed
control), but only on the boundary of the domain (thermography), or is spatially
localized on a part of the domain and only varying in time (defibrillation). For the
solution of such optimization problems, methods working on the reduced objective
functional are often employed to avoid a full spatio-temporal discretization of the
problem. There, the state variable (in the mentioned examples temperature or
transmembrane voltage, respectively) is interpreted as a function of the control,
which can be computed for any given admissible control by some method (black-
box approach). This leads to an unconstrained optimization problem, which can be
solved by standard gradient-based or higher-order methods. The evaluation of the
reduced gradient requires one solve of the state equation forward in time, and one
backward solve of the adjoint equation. The state enters into the adjoint equation,
requiring the storage of a full 4D data set. If Newton-CG methods are used, two
additional trajectories have to be stored.

To get numerical results that are accurate enough, in many cases very fine discretiza-
tions in time and space are necessary, leading to a significant amount of data to be
stored and transmitted to mass storage. Here, not only the mere storage size is im-
portant, with the ever-growing speed of CPUs, storage access time is more and more
becoming a bottleneck for large-scale simulation and optimization. To be able to
tackle real-world applications, compression methods are required in order to reduce
the amount of data.

1. Introduction

Two types of methods have been proposed to compress such trajectories: lossless
and lossy compression algorithms. Checkpointing is a lossless compression method,
originally developed for computation of gradients via the reverse mode of automatic
differentiation by Volin and Ostrovskii [135], and Griewank [45]. The state is stored
only at selected timesteps, from where on parts of the trajectory are re-computed as
needed. This incurs a significant computational overhead, even for optimal place-
ment of checkpoints, cf. Griewank and Walther [46]. Application of checkpointing
techniques to solve parabolic optimal control problems can be found, e.g., in the
works of Hinze and Sternberg [56, 117], and Becker, Meidner and Vexler [5].

Lossy methods typically consist of three ingredients. Depending on the actual appli-
cation, a change of basis is used to de-correlate the data; in our setting, this often is
performed using predictors based on previously encoded data, see, e.g., Lindstrom
and Isenburg [82]. Also, wavelet transforms are frequently used in this step, e.g. by
Lounsbery, DeRose and Warren [84] for geometry compression, or recently by Ret-
tenmeier [101] for computational fluid dynamics simulations. The accuracy of the
data is reduced by quantization, before finally the resulting values are entropy coded,
assigning fewer bits to more frequently occurring coefficients. Theory of quantiza-
tion has a long history, early works by Bennet [7] and Shannon [112] date back to
1948; a detailed overview was published by Gray and Neuhoff [42]. For entropy
coding, arithmetic encoders, introduced by Rissanen and Langdon [103] in the late
1970s, and variants thereof, are widely used.

Checkpointing is tailored to adjoint gradient computation, but computationally ex-
pensive. In contrast to this, lossy compression methods have not been designed for
adjoint gradient computation, and an analysis of the influence of the quantization
error on the gradient, and thus the optimization progress, is not available. Further-
more, these methods, to a large extent, rely on structured grids, or do not exploit
the hierarchical structure of (adaptively) refined finite element meshes.

In this thesis, we develop and analyze lossy compression techniques tailored to PDE-
constrained optimization. Besides a small computational overhead, we aim at meth-
ods that can be easily implemented and included in existing finite element software.
A special focus is on the adaptive control of the quantization error through the
course of optimization.

QOutline. In Chapter 2, we specify the problem setting and summarize important
results for the theory of PDE-constrained optimization. We give first and second
order optimality conditions. Focusing on methods working on the reduced objective
functional, we derive representations for the reduced gradient and reduced Hessian.

The chapter closes with a discussion of the discretization in space and time of the
arising parabolic PDEs.

Compression of scientific data—typically double precision floating point values—is
a wide area of research. Chapter 3 gives an overview over existing techniques and
algorithms. We discuss approaches for general floating point compression as well as
methods specialized for optimal control.

In Chapter 4, we develop and analyze a computationally inexpensive lossy compres-
sion method, adapted to the specific needs of PDE-constrained optimization. We
provide algorithms easily usable on unstructured, adaptively refined grids in two and
three space dimensions, and derive a-priori estimates for the achievable compression
factors.

Due to the inexact reconstruction, and thus inexact data for the adjoint equation,
the error induced in the reduced gradient, and reduced Hessian, has to be controlled,
to not impede convergence of the optimization. In Chapter 5, we analyze accuracy
requirements of different optimization methods, and derive (computable) error esti-
mates for the influence of lossy trajectory storage. These tools are used to adaptively
control the accuracy of the compressed data.

We present a variety of numerical results in Chapter 6. Examples range from a
simple boundary control problem for the linear heat equation to the optimal control
problem of cardiac defibrillation, where the dynamics are described by a reaction-
diffusion system.

In the previous chapters, the quantization error is controlled pointwise. In Chapter 7,
we substitute the hierarchical basis transform of the basic algorithm by a wavelet-
based transform and suitable quantization of the wavelet coefficients. This allows to
control the quantization error in norms other than L*°. We discuss the construction
of finite element wavelets, and give numerical results.

2. Optimal Control of Parabolic PDEs

Both application examples, thermography and cardiac defibrillation, lead to opti-
mization problems governed by parabolic PDEs. In this chapter we fix the problem
setting and briefly summarize the theory for optimal control problems. In Section 2.2
we state necessary and sufficient optimality conditions, and introduce adjoint gra-
dient computation. Finally, in Section 2.3 the discretization of the parabolic PDEs
is discussed. There, the multilevel nature of the spatial discretization is especially
important, as this will be the foundation for the compression method in Chapter 4.

2.1. Problem Setting

We consider the abstract optimal control problem

in J(y,u) subject to ,u) =0, 2.1
o (y,u) subj c(y, u) (2.1)
with ¢: Y xU — Z* a semi-linear parabolic PDE on Banach spaces Y, Z and Hilbert
space U. More precisely, we deal with semi-linear systems of m reaction-diffusion
equations

% DY (0Vy) = f(3) + galu) nQx (0,7)
Bo,y+ Cy = gr(u) on 99 x (0,7) (RDS)
y(70) =Y in

with y : Q x (0,7) — R™, and D € R"™*"™ a diagonal matrix with at least one
non-zero element. v = v(x) denotes the outward unit normal at some z € 9 in
the boundary condition. Often the distributed control is only supported on parts
of the space-time cylinder. A typical example is a time-dependent control which is
spatially constant on a control domain Q. C Q, go(u) = xqa.(x)u(t).

We assume that the spatial domain Q C R? has at least a Lipschitz-continuous
boundary T'; for application of comparison theorems (Appendix A), higher regularity
is required (C?2, or at least satisfying the interior sphere property, see, e.g., [34, 10]).
Further, we assume that the PDEs possess an at least locally unique solution y(u)

2. Optimal Control of Parabolic PDEs

for every control u € U. For error estimation in Chapter 5 we require the functions
ga, gr to be monotonously increasing in the control w.

Throughout this thesis, we assume that J : Y x U — R is given by

J(y,u) = Ji(y) + J2(u). (2.2)

Further, we assume that J and c are sufficiently smooth. Partial derivatives, e.g. of
the operator ¢, are denoted by

cy(y,u) Y = 7%, cyy(y,u) Y xY = 2%, c,(y,u) : U — Z*, etc.,
with the corresponding adjoints

cy(y,u)* : Z =Y, cy(y,u) : Z =Y xY*, ¢, (y,u)*: Z — U”, etc.

For a classical solution y of the parabolic equation (RDS) we would need at least
Y = C%1(Q2 x (0,T)), i.e. existence and continuity of all appearing derivatives. For
optimal control problems, where typically the control belongs to some L?-space, as
well as for the numerical treatment, this is too restrictive. Instead we will use the
weak formulation. Let given Hilbert spaces V, H form a Gelfand triple

Ve H<—V"
where the embeddings are continuous and dense. Further define
W(0,T) = {v € L*(0,T; V)|v, € L*(0,T;V*)},

where L2(0,T;V) denotes the space of Bochner integrable mappings f : (0,7) — V
and y; the distributional derivative (see, e.g., [2, 144]). With a mappinga : V xV —
R, linear in the second argument, which incorporates the spatial differential operator
and boundary conditions, we arrive at the weak formulation

(ye(8), v (@) v+ v +aly(t),0(t)) = (f(y(#), v())v+v

L0 - @) =0 wew@D). P

We refer to the literature, e.g. [127, 144], for a thorough discussion, and give two
examples for such optimal control problems to conclude this section.

Example 2.1.1. As a simple example we consider boundary control of the linear
heat equation. Let U = L2((0,T) x 09),V = H (),

Y ={yeL*0,T;V) |y € L*(0,T;V*)}

2.1. Problem Setting

and Z* = L?(0,T;V*) x L?(€2). The weak formulation

T T T
/ (Ye, @) vev dt+/ / Vy-Vo— fodx dt+/ /(y —u)p ds dt
0 0o Jao o Jr

+ [0O -we© do=0 Vpe.
Q

defines the bounded linear operator ¢ : Y x U — Z*. This weak formulation of the
PDEs corresponds to the initial-boundary value problem

y—Ay=f inQx(0,7T)
y+y=u onl x(0,7T)
y(-,0) =yo in Q.

As an exemplary objective functional we choose

17 9 a [T 9
J(y,u)—2/0 /Q(y—yd) dmdt+2/0 /mu ds dt,

i.e. the goal is to minimize the deviation from some desired state 4, with additional
penalization of the control effort.

Example 2.1.2. Optimal control of cardiac defibrillation. A simplified approxi-
mation for the electrical activity of the heart muscle is given by the monodomain
model, consisting of a reaction-diffusion equation for the transmembrane voltage,
coupled to ODEs defining the evolution of gating variables related to ion transport:

vy =V -0V — Lion(v,w) + I inQx(0,T)
wy = G(v,w) in Q% (0,7),

together with homogeneous Neumann boundary conditions and suitable initial con-
ditions. The weak formulation is given by

/ (v + Tion(v,w) — I) o+ 0Vv-Vodrdt =0 VYoec HY(Q) and a.a. t € (0,T)
Q
/ (wy — G(v,w))yp =0 Vo € L*(Q) and a.a. t € (0,T).
Q

Weak solutions v, w satisfying this system belong to the spaces

v e CY0,T; LA(Q) N LA0,T; HY(Q) N LP(2 x (0,T)), 2<p <6
w e C°0,T; L*(92)),

2. Optimal Control of Parabolic PDEs

see, e.g., [74, 76]. Here, the time-dependent external current stimulus I, € L2(0,T)
acts as the control. The objective functional

J(v,m:;/:/g

aims at dampening out the electrical excitation. We refer to Chapter 6 for more
details and numerical results.

a T
v2d:pdt+/ I? dt
2 Jo

obs

Next, we derive optimality conditions for the abstract optimal control problem given
by equation (2.1).

2.2. Optimality Conditions

This section is based on the textbooks [55, 127, 8]. A more general discussion of
optimality conditions can be found, e.g., in [89].

To derive optimality conditions, we assume that the state equation ¢(y,u) = 0 pos-
sesses a unique solution y = y(u) € Y for each control u € U. We additionally
assume that cy(y,u) : ¥ — Z* is continuously invertible. Then, by the implicit
function theorem (see, e.g., [143, Section 4.7]), the control-to-state mapping is con-
tinuously differentiable, and the derivative y'(u) is given by the solution of

cy(y,)y’ (u) + culy,u) = 0, (2.4)

By inserting y(u) into the optimal control problem (2.1) we arrive at the reduced
problem

min j(u) = J(y(uw), u). (2.5)

In this unconstrained setting, the following simple first order necessary optimality
condition holds.

Theorem 2.2.1. Let the above assumptions hold. If u* € U is a local solution of the
reduced problem (2.5) it satisfies j'(u*) = 0. If additionally the reduced functional j
s converx, this condition is also sufficient.

Proof. See [55, Thm. 1.48]. O

2.2. Optimality Conditions

Remark 2.2.2. If we allow control constraints, i.e. demand u € U,q with Uyq C U
non-empty, convex and closed, the optimality condition changes to the variational
inequality for the local minimizer u* € Uygq

(G'(u*)yu —u)gey >0 VYu € Uyg. (2.6)
As this generalization has no influence on the storage demands we restrict ourselves
to the unconstrained case.
Further we recall the following second order conditions, which can be found, e.g.,
in [8, Thm. 2.12].

Theorem 2.2.3. Let the reduced functional j be two times continuously Fréchet
differentiable. If u* € U is a local solution of the reduced problem (2.5) it satisfies

3" (u*)(6u, 6u) >0 Vou € U.

Theorem 2.2.4. Let the reduced functional j be two times continuously Fréchet
differentiable. Assume that u* € U satisfies j'(u*) = 0. Moreover, assume that there
exists a real constant v > 0 such that

3" (u*)(Ou, 6u) > ||6ullz Vou € U.
Then u* is a local solution of the reduced problem (2.5).

Remark 2.2.5. The optimality conditions were presented in the most simple set-
ting. Sufficient differentiability is often not clear, and a Hilbert space setting may be
not given in applications. More elaborate techniques to derive optimality conditions
are discussed e.g. in [65].

To formally derive a representation for the reduced gradient, we define the Lagrange
functional £:Y x U x Z — R,

‘C(yaua)‘) = J(Z/,U) + <)‘> C(yvu»Z,Z*- (27)

Clearly, inserting y = y(u) into (2.7), we get j(u) = L(y(u), u,) for arbitrary A € Z.
Differentiation in direction du € U yields

<j,(u)7 5U>U*7U - (/Jy(y(u), u,)‘>7 y/(u)5u>Y*,Y + <[’u(y(u)’ u,)‘)7 5U>U*7U~
Choosing A = A(u) such that
Ly(y(u), u, Mw) = Jy(y(u), u) + ¢y (y(u), u)*A(u) = 0 (2.8)

yields
') = Lu(y(u), u, ANu)) = Ju(y(u),u) + cu(y(u), u) Au). (2.9)
Equation (2.8) is the adjoint equation.

2. Optimal Control of Parabolic PDEs

Remark 2.2.6. In the Hilbert space setting, the reduced gradient Vj € U is defined
as the Riesz representative of the reduced derivative j'(u) € U*, i.e. via

(5u,Vj(u))U = j'(u)éu Yu € U.

For better readability we use the notation j'(u) for both, reduced gradient and
derivative, as the meaning is usually clear from the context. The only exception is
the analysis of the steepest-descent method in Section 5.2.

In the setting of parabolic optimal control problems, the adjoint equation (2.8) is
backward in time. Due to the occurrence of —Jy(y(u),u) as a source term, and—in
the nonlinear case—the dependence of ¢, (y(u), u) on the state solution y(u), adjoint
gradient computation consists of three steps (see also Figure 2.1):

1. solve ¢(y,u) =0 for y € Y and store the solution trajectory
2. solve ¢, (y, u)* A = —=Jy(y,u) for A€ Z

3. set j'(u) = Ju(y,) + cu(y, w)*A.

Figure 2.1.: Adjoint gradient computation

Example 2.2.7. We continue Example 2.1.1. Using the above formalism, the re-
duced gradient is given as

]l(u) = ou+)\|3Q

with the adjoint variable A solving

“M—AN=y—yson Q2x(0,7), dHA+A=00n002x(0,7), A(-,T)=0in Q.

Proceeding analogously, we can derive a representation for the reduced Hessian
-/

j"(u), see, e.g., [54]:

§"(u) = T(u)* (Loy) fZZE‘Z " ;D T(u), (2.10)

10

2.3. Discretization

with

() = (—cy(y,ul)d‘;cu(y,w> ’

where Idy : U — U denotes the identity operator.

Since for practical applications, the construction of the complete Hessian matrix
is infeasible, the representation (2.10) is used to compute Hessian-vector products,
e.g. during a Newton-CG method. This is discussed in more detail in Section 5.1.2.

2.3. Discretization

In this work we follow the first optimize, then discretize approach. To implement
optimization methods based on the optimality conditions of the previous section, we
need to discretize the arising parabolic PDEs in time and space. This is done using
the method of time layers (also known as Rothe’s method), so we discretize time
first. The resulting sequence of elliptic partial differential equations are discretized
in space by finite elements. This discretization order is especially suited for full
adaptivity in time and space.

We only give a short summary of the techniques, mainly to fix the notation used
throughout this thesis. For more details we refer to the textbooks [9, 32] on finite
elements, as well as [29], where a special focus is on adaptivity.

Discretization in time and space is exemplarily described for the state equation;
other arising PDEs, like the adjoint equation, are discretized similarly, possibly
with different spatial and temporal meshes, to account for different dynamics.

Time Discretization

We consider discretization of the parabolic state equation by a time stepping scheme
on a (not necessarily uniform) temporal grid 0 = t9 < --- < tp = T. For the
numerical experiments, we choose the linearly implicit Euler method. In abstract
form our model problem (RDS) can be generalized to

By, = F(y), (2.11)

where we assume that the operator B is independent of y. For our examples this
always holds true; for the generalization of non-constant B we refer to [85]. In the
abstract PDE (2.11), we left aside the dependence of F' on the control u, as for the
moment we are only interested in the PDE discretization. We assume here that

11

2. Optimal Control of Parabolic PDEs

u can be evaluated at arbitrary coordinates (z,t), e.g. by interpolation of a fixed
discretization of the control.

One step of length 7 of the linearly implicit Euler method is realized by

(B = 7F,(y°)0yx = TF (1)

(2.12)
Yk+1 = Yk + Ok,

where y° denotes the linearization point.

To increase the order, this linearly implicit Euler method is combined with -
extrapolation, as realized, e.g., by the code LIMEX [25, 27]. The step length 7 =
tr+1 —tx is subdivided into successively smaller timesteps 7; = 7/nj,7 = 1,. .., jmax,
where the harmonic sequence {n;} = {1,2,...} is used. Equation (2.12) with step
size 7; is used to compute approximations Y;1 to yr41. The extrapolation tableau
defining the higher order approximations Y, is given by

Yiioi—Y-1,1

nj/mj-iy1 =1

Yji=Yji—1+ s 7=1 . Jmax, t=1,...,7.

Instead of choosing a fixed number of extrapolation stages (determined above by
Jmax), an acceptance test can be realized by taking ||Y;; — Y j—1]| as an error esti-
mate, and accepting Y} ; as an approximation to yx41 when a prescribed tolerance
is met.

For more details, like adaptive order and step size control, we refer to [22, 99, 31] as
well as the textbooks [24, 29].

Space Discretization

At each timestep, the arising elliptic sub-problems are discretized with linear finite
elements on a hierarchical mesh. For ease of exposition we abstain from discussing
higher order finite elements. Further, we assume in the following that Q c R¢, d =
2,3 is polygonally bounded.

We consider a nested family 7o C --- C T; of triangulations, constructed from an
initial triangulation 7o with
a-J.

c€To

To be more precise, 7; is generated by j levels of refinement, either uniform, or adap-
tively via a-posteriori error estimators. We refer to j as the level of the triangulation
7;, and accordingly to 7; as the level-j-grid. The triangulation is supposed to be
conforming, i.e. for two distinct cells c1,c2 € 7T, the intersection ¢ N ¢y is either

12

2.3. Discretization

empty, a vertex, an edge, or a complete face. If) was not polygonally bounded, we
would need to allow curved faces for cells on the boundary. Let S; be the space of
piecewise linear finite elements over the triangulation 7,

S; ={y € C°(Q) | y is a linear polynomial on each T € T;}. (2.13)
The nested triangulations give rise to nested finite element spaces
SoCcS C---CS5CV,

with a suitable function space V' (depending on the PDE to be solved). The set of
nodes on level j is denoted by N, in the following we will sometimes write k € N
instead of z;, € ;. With the nodal basis of Sj,

O={p|i=0,...M| =1}, pi(xr) = b for z, € N, (2.14)

the PDE solution y(z,t) at a fixed timestep ¢ is represented as

y(@,t) = Y ye(t)pr(@). (2.15)

kEN,

As this section is mainly used to fix notation, we end the discussion here, and refer
to the literature for topics like adaptive mesh refinement, e.g. [29] and the references
therein. Some results on approximation theory are stated in Section 4.2, where they
are required for the derivation of a-priori estimates for the compression factor.

13

3. Compression in Scientific Computing
and Optimal Control

As we have seen in the previous chapter, for adjoint gradient computation the state
trajectory over the whole time interval [0, T is required, together with the adaptively
refined spatial grids. Also, for post-processing algorithms, visualization, or archiving
of results, the efficient storage of simulation results is important. For accurate
results, often very fine discretizations are needed, leading to large amounts of data
to be stored. In this chapter, we discuss various techniques to reduce the memory
requirements, both bandwidth and size.

A primary criterion to judge the quality of compression methods is the compression
factor, which is defined as the ratio between uncompressed and compressed storage
size. Typically—but not in all cases—a reduction of memory size leads also to a
similar reduction of the required memory bandwidth, as the amount of data trans-
ferred to and from the memory is reduced. Of course, when using lossy compression,
where parts of the original information are discarded, the compression factor has to
be discussed in relation with the induced error.

For the storage of scientific data, there exists a vast amount of literature. Of the
various different approaches, we discuss a selection in the following. Section 3.1 is de-
voted to general-purpose compression methods for floating-point data. In computer
graphics and visualization, (lossy) compression is a common tool; we briefly present
some important methods in Section 3.2, before we come to methods specialized for
optimal control problems. There, checkpointing methods are frequently used. We
summarize the basic approach and recent work in Section 3.3. Additionally, in Sec-
tion 3.4, we comment on two methods for solving optimal control problems with
memory reduction as a side-effect, Model Reduction and Multiple Shooting.

Most parts of this survey are published in [38]. Some parts of the analysis of check-
pointing are located in [141].

15

3. Compression in Scientific Computing and Optimal Control

3.1. General Floating Point Compression

In this section, we discuss approaches for general-purpose floating point-compression,
both lossless and lossy. While the list is by no means complete, the selected
algorithms—from a multitude of available methods—give an overview over the past
and ongoing research.

3.1.1. Lossless Methods

For lossless methods, the sole criterion for comparison of different approaches is the
compression factor. The comparison depends on the test data sets used, which differ
in the literature. Nevertheless, the reported compression factors are good indicators
for the quality and applicability of the algorithms to our problem at hand.

FPC. In [11], Burtscher and Ratanaworabhan present the lossless, single-pass, line-
ar-time compression algorithm FPC. It aims at compressing floating-point data with
unknown internal structure, with maximizing throughput, i.e. compression speed, as
the main objective. Sequences of double-precision floating-point values are processed
by predicting a value, determining the prediction error by an XOR operation, and
compressing the result.

As predictors, “finite context method predictors” (fcm, [107]) and “differential finite
context method predictors” (dfcm, [36]) are used. They count the occurrences of a
value following a certain pattern (context) of preceding values, such that prediction
is essentially a hash-table look-up to determine which value followed the last time a
given sequence of values occurred. If the predicted value is close to the true value,
the XOR operation produces many leading zeros. The number of leading zeros is
encoded in a 3-bit value, which is stored together with a single bit specifying the
chosen predictor and the remaining non-zero bytes of the prediction error. The
reported compression factors range between 1.02 and up to 15.05 (for one special
test data set), the geometric mean compression factor is 1.2-1.9 depending on the
size of the look-up table for the predictors.

fpzip. While FPC uses no information about the structure of the data, the algo-
rithm fpzip by Lindstrom and Isenburg, based on [82], traverses the data in some
coherent order, and uses the Lorenzo predictor [60] to estimate values based on a
subset of the already encoded data. Row-by-row traversal of the data works espe-
cially well for data on structured, cartesian grids. The predicted and true value is
mapped from floating-point to an integer representation. While fpzip is foremost

16

3.1. General Floating Point Compression

a lossless compression algorithm, it can be run in a lossy mode. Then, during the
mapping stage, the least significant bits are discarded, reducing the precision to 48,
32 or 16 bits/value, without control of the quantization error. The integer residual is
stored using range coding [87], a variant of arithmetic coding. Lossless compression
factors of 1.4-2.7 for a double precision test data set are reported in [82], with a
average factor of approximately 1.6.

3.1.2. Lossy Methods

As expected, lossless methods can not reduce the amount of data significantly, due
to many quasi-random least significant bits. To achieve good compression ratios, we
have to resort to lossy compression techniques. Typically, the accuracy is reduced by
quantization of the true values, or of predicted values, which essentially is rounding.
Here, control of the quantization error is of crucial importance.

Comparison criteria for lossy methods are the compression factor in relation with
the induced error. The different test data sets given in the literature, together with
the different error norms used to report the quantization errors, make it difficult to
give a quantitative comparison of the algorithms described below.

Adaptive coarsening/sub-sampling. This method by Shafaat, Baden, and cowork-
ers [111, 129] is closely related to adaptive mesh refinement. Starting from simulation
results on some fine, uniform mesh, the mesh is tentatively coarsened. After recon-
structing the solution, grid points are removed where the data is represented on the
coarser mesh with sufficient accuracy. This procedure is carried out recursively on
the new coarser meshes, until no further coarsening is possible without violating the
error bound. The result is an adaptive mesh representing the data up to a specified
accuracy. As no quantization is used, compression is solely achieved by adaptivity.
If the simulations are carried out using standard adaptive mesh refinement during
the solution process, data reduction is only possible, if the necessary accuracy for
solution and post-processing differ, like for adjoint gradient computation. In [129]
the reported compression factors range between 7.44 (3D data) and 25.1 (2D data)
for a pointwise relative ¢>-error of 1073.

Graph Decomposition. In a recent work, Iverson, Kamath and Karypis [66] pro-
pose a compression algorithm based on the decomposition of the computational grid
into so-called e-bounded sets. The method works on structured and unstructured
meshes, which are modeled via a graph. The nodes of the graph are the grid vertices
for which values are computed. These vertices are partitioned into non-overlapping

17

3. Compression in Scientific Computing and Optimal Control

sets V;, such that each set contains only vertices with values differing at most by a
specified €. In each set V;, the values are replaced by the mean value of the set, such
that the point-wise absolute error is bounded by €. If there is local smoothness in
the data, this substitution increases the redundancy of the data, which is afterwards
compressed using standard lossless compression methods. For a testset consisting
of data on structured and unstructured grids with between 486 015 and 100 663 296
vertices, they report average compression ratios between 20 and 50 for pointwise
relative £>-errors of orders 1072 to 1073,

ISABELA. Lakshminarasimhan et al. [78, 79] propose a method for “In situ Sort-
And-B-spline Error-bounded Lossy Abatement” (ISABELA), specifically designed
for spatio-temporal scientific data that is inherently noisy and random-like. In the
spatial domain, data is sorted from an irregular signal to a smooth monotonous
curve. Then a B-spline is fitted to the sorted data, the difference between data
and fitted curve is quantized and stored, together with the information necessary
to invert the sorting process. Their experience suggests that the ordering of the
sorted data is similar between adjacent timesteps such that delta-encoding can be
used to compress the ordering information. The accuracy of the reconstructed data
is reported by two quantities, the normalized root mean squared error (NRMSE),
and Pearson’s correlation coefficient p defined by

(ZiDi= D)) cov(D.D)
max(D) — min(D)’ U(D)U(ﬁ)7

NRMSE =

where D denotes the original data, D the de-compressed data, and o the standard
deviation. In [79] they report compression factors between 3.8 and 5.6 for error
bounds p > 0.99 and NRMSE < 0.01, and five different data sets.

FEMZIP. FEMZIP [125, 124] is a commercial tool for the compression of finite ele-
ment solutions created by certain finite element programs. After a quantization step
with prescribed relative or absolute tolerance, a prediction step follows. In space, a
hierarchical approximation of the finite element functions is performed, using coars-
ening of the computational grid by algebraic multigrid techniques [125]. In time,
prediction based on rigid body movements is used. As a final step, the approxima-
tion residual is compressed using arithmetic encoding. Compression factors of up to
13.3 are reported [124], but without quantitative specification of the accuracy.

Application-specific methods. To conclude this section, we exemplarily mention
two methods developed for specific applications. In [110], Schroder-Pander et al. use

18

3.2. Computer Graphics and Visualization

generalized multiresolution analysis to develop algorithms for compressing and an-
alyzing cell averages used in finite volume methods for the solution of systems of
hyperbolic conservation laws. They include a lossy step by discarding coefficients
smaller than some prescribed tolerance. For two test functions they achieve compres-
sion factors of 3-7 for relative L™-errors of approximately 104, and factors 13-53
for relative L>-errors of approximately 1072 (see Section 6.1 for the test functions
and comparison with the approach developed in this thesis).

Another data compression technique for computational fluid dynamics was recently
developed by Rettenmeier [101]. There, after a quantization step, two different
de-correlation methods are specified and compared. The first method uses the con-
nectivity of the mesh to predict coefficients, where the traversal order is based on
spanning trees of the connectivity graph. The second de-correlation technique is
based on an integer wavelet transform, utilizing algebraic multigrid methods to cre-
ate a multiresolution setting from a single-resolution mesh. They report compression
factors ranging between 4 and 30 for a testset containing data from several large-
scale simulations, and a fixed quantization tolerance 1072. In some special cases
factors of up to 40 were achieved.

3.2. Computer Graphics and Visualization

For the compression of general, possibly time-varying, data on unstructured grids as
needed in computer graphics and visualization, the combination of prediction and
lossy encoding of the prediction errors is a common approach, see, e.g., [61, 81, 134].
As there is a huge amount of work in this area, here we shortly discuss a selection of
methods only, and refer to the survey [3] by Alliez and Gotsman for a more detailed
overview.

3.2.1. Mesh Compression

Triangular meshes consist of two types of information: connectivity, i.e. the triangle-
vertex incidence graph, and geometry, i.e. the coordinates of the vertices. For con-
nectivity encoding, lossless compression methods are of main interest, to be able to
reconstruct the topology of the meshes exactly. Edgebreaker by Rossignac [105] and
its variant optimized Edgebreaker by Szymczak [123] are prominent algorithms, mak-
ing use of mesh regularity to create a compressed representation of the connectivity,
based on a certain traversal of the mesh. Other well-known, successful methods are
by Touma and Gotsman [126], or the more recent early-split coder by Isenburg and
Snoeyink [63].

19

3. Compression in Scientific Computing and Optimal Control

For geometry encoding wavelet transforms are usually used, either based on mesh
coarsening (e.g. Isenburg and Snoeyink [62]) or subdivision (e.g. Lounsbery, DeRose,
and Warren [84]). Here, typically lossy encoding is used, with the wavelet coefficients
being uniformly quantized to achieve a fixed bit-rate. Exemplarily we mention the
well-known “progressive geometry compression” method by Khodakovsky, Schroder,
and Sweldens (PGC, [73]), which is based on a wavelet transform, combined with
zerotree coding [113].

Improvements can be achieved by exploiting correlation between connectivity and
(already encoded) geometry information, as is done e.g. by the code Angle-Analyzer
of Lee, Alliez, and Desbrun [80] for quadrangular meshes, and FreeLence by Kélberer
et al. [68] for triangular meshes. For a root mean square error of order 10~ to 10~°
with respect to the bounding box diameter, average compression factors of 21 for
a test-set of irregular triangle meshes are reported for FreeLence. By exploiting the
mesh hierarchy and using context-based entropy coding, von Tycowicz et al. report
an average compression factor of 29 for a test-set consisting of adaptively refined
hierarchical meshes [136].

3.2.2. Compression of Time-Varying Data

For the compression of animated meshes, elaborate algorithms exist, e.g. FAMC [86,
116]. FAMC is based on motion-compensation for a sequence of frames with identical
mesh connectivity. In our setting, the grids for the PDE solution are typically
generated adaptively, with a varying connectivity at each timestep. Additionally, as
in most PDE solutions there are no distinct moving objects, the benefit of motion
compensation for optimal control of PDEs is questionable.

The most popular lossy compression approach to time-varying data on equidistant,
cartesian grids can be found in the MPEG video compression standard [92]. Videos
consist of a series of single frames showing spatial and temporal correlations. The
spatial correlations are reduced by the discrete cosine transform applied to blocks of
typically 8 x 8 or 16 x 16 pixels. The resulting coefficients are then quantized in a way
to maintain a certain optical quality of the video. For example, the human visual
system is more sensitive to low spatial frequencies than high spatial frequencies,
allowing for a coarser quantization of high frequency components. Quantization is
done by dividing the coefficients by predefined factors and a rounding step. Motion
prediction is performed to construct a frame from previous (and possibly later)
frames, as mostly only small changes occur from one frame to the next. Typically, the
encoding process, in particular the motion compensation, is rather time-consuming.
There is a vast amount of literature on video compression, we refer to [92, 102, 121]
and the references therein.

20

3.3. Checkpointing

3.3. Checkpointing

So-called checkpointing methods are a tool for the computation of the reduced gra-
dient using the adjoint equation, first introduced by Volin and Ostrovskii [135], and
Griewank [45]. Instead of keeping track of the whole forward trajectory, only the so-
lution at some intermediate timesteps is stored. During the integration of the adjoint
equation, the required states are re-computed, starting from the snapshots. Typi-
cally, for the analysis of checkpointing methods it is assumed that each checkpoint
has the same size. This means that only fixed grids are considered for discretization
in space.

3.3.1. Fixed Timesteps

During the forward simulation, the algorithm has to decide when to create a check-
point. In the simplest setting, the temporal mesh is fixed as well as the spatial grid,
and the checkpoint distribution can be computed beforehand (offfine checkpoint-
ing). In the following we denote by ¢ the total number of checkpoints, and by n; the
total number of timesteps of the time discretization.

One obvious strategy would be a to place checkpoints uniformly over the time
interval, a technique also known as windowing [5]. Recursive application of this
strategy to each group of timesteps between two checkpoints results in a multilevel
checkpointing strategy [5, 47]. Both techniques do not yield optimal distributions,
i.e., distributions leading to a minimal amount of re-computations. Binomial check-
pointing [45, 46] is based on the fact that the maximal number of timesteps 5(c,r)
that can be reversed fulfills
sen = (1),

when ¢ checkpoints and at most r re-computations of each timestep are allowed. Via
dynamic programming one can evaluate the minimal extra number of forward steps
t(n¢, ¢) necessary to compute the adjoint using ¢ checkpoints as

t(ng,¢) =rng — Ble+1,r —1),

where 7 is the unique integer satisfying B(c,r —1) < ny < f(c+1,r—1), see [46, 47].
An implementation called revolve by Griewank and Walther [46] is available. The
number 7, the so-called repetition number, is the maximum number of times a single
forward timestep is computed, and thus an upper bound of the cost of checkpointing
relative to the cost of a forward solve. For a given number of checkpoints, fixing r
determines the maximum number of timesteps that can be reversed using binomial
checkpointing.

21

3. Compression in Scientific Computing and Optimal Control

The achieved compression factor for storage space is given by n;/c. In Figure 3.1,
the resulting increase in runtime for a range of compression factors is shown, for a
fixed number of timesteps (n; = 100) and varying number of checkpoints.

9 T T T T
®
]t i
%
= Or 1
S
: 5t : i
g
o 4r °]
=
Z st . :
§ 2t o*® .
1-‘]
0 1 1 1 1
0 10 20 30 40 50
compression factor
Figure 3.1.: Relative work vs. compression factor for checkpointing, n; = 100
timesteps.

One appealing feature of checkpointing is the slow growth of the relative work for an
increasing number of timesteps. For r > ¢ = const, r &~ ni /e [47]. This is very satis-
factory for reversing a large number of timesteps, like in algorithmic differentiation,
where every single arithmetic operation has to be reversed. In the context of optimal
control of time-dependent PDESs, however, the number of forward timesteps is often
rather small in comparison, such that the excellent limit behavior of checkpointing

is not that crucial.

Due to multiple read- and write-accesses of checkpoints during the re-computations
for the adjoint equation, the reduction in memory bandwidth requirements is signif-
icantly smaller. An evaluation of the number of times a snapshot is written or read
can be found in [119]. There Stumm and Walther analyze a multistage approach,
where some checkpoints are kept in RAM, others written to a hard disk drive or
tape.

In Figure 3.2, the computed write counts are shown for n; = 1000 timesteps, and

22

3.3. Checkpointing

¢ =50,...,100 checkpoints, leading to compression factors between 10 and 20.
950 : : . . —
PY [J
o°®
° []

= 940 | o*]
) []
E °®
= ...
5930 b *® 1
2 o*®
2 o®
£ 920 o
'g P o'... _
Yy ..
e} ...
5 910 } i
Q
g
=)
= 900 -

890 1 1 1 1

10 12 14 16 18 20

compression factor

Figure 3.2.: Actual write accesses for checkpointing, n; = 1000 timesteps.

It is apparent that the amount of data transferred to the storage device, and hence
the memory bandwidth, is barely reduced. Evaluating the write counts for instance
for n; = 1000 timesteps, and ¢ = 50 checkpoints, i.e. compression factor 20, shows
that only about 5% reduction of memory bandwidth is achieved for these param-
eters. In this example we get r = 2, and the computational overhead amounts to
1948 additional forward steps. However, there are settings for which a reduction in
memory bandwidth actually is achieved, e.g. for r = 2 and n; < 2¢c+ 1. For such
a setting, the store-everything approach, i.e. writing all timesteps of the forward
solution to disk, turns out to be more expensive in terms of computation time than
checkpointing, despite the need for re-computations, see [119]. Moreover, frequently
accessed checkpoints can possibly be kept in RAM, decreasing the runtime. Clearly,
memory bandwidth has a significant impact on the computational efficiency of the
algorithm.

Here, we assumed that each timestep has the same computational cost; in case of
non-uniform timestep cost, optimal checkpoint distributions can be evaluated in
O(cen?) if the timestep costs are known a-priori [138], or generated using heuris-
tics [117].

23

3. Compression in Scientific Computing and Optimal Control

3.3.2. Adaptive Timesteps

If the number of timesteps is not known beforehand, the optimal checkpoint distri-
bution can not be computed. Thus, in practical applications the user has to resort
to online placement of checkpoints during the state integration

An extension of the revolve algorithm, named a-revolve, is proposed by Hinze and
Sternberg [56, 117], and applied to optimal control of the Navier-Stokes equations.
There, a heuristic strategy to overwrite the contents of a previously recorded check-
point is developed, based on estimates of the computational cost for the reversal of
the current and the updated snapshot distribution. While the resulting scheme is not
proven to be optimal, numerical experiments indicate that the generated checkpoint
distribution is close to the corresponding offline one.

Other work on online checkpointing was started by Heuveline and Walther [53],
with extensions and theoretical foundations by Stumm and Walther [120]. The
approach presented there is proven to be optimal in terms of re-computations for
repetition number » = 2 and ny < 3(¢,2). For r = 3 and S(c¢,2) < nt < B(c,3)
optimal checkpoint distributions can not be computed, but for a wide range of
timesteps n;, the resulting algorithm is close to optimal. The method works by
continuously overwriting certain previously set checkpoints, until the end of the
state integration. For re-computations during the adjoint integration, intermediate
snapshots are stored using optimal offline checkpointing.

A different strategy for choosing which checkpoints to replace is devised by Wang,
Moin, and Taccarino [139]. Although their algorithm, called dynamic checkpointing,
works for an arbitrary number of timesteps n;, the resulting distribution has just
an optimal repetition number r, but is not optimal in terms of the total number of
re-computations.

For all three methods the reduction in memory bandwidth is drastically smaller than
the reduction in storage space. In fact, due to the frequent overwriting of snapshots,
it is questionable if a reduction of bandwidth requirements can be achieved at all.

3.3.3. Discussion

Checkpointing is a compression method, which originally was developed for compu-
tation of gradients via the reverse mode of automatic differentiation, where a large
number of arithmetic operations has to be reversed. In that context, two features
are particularly important: checkpointing is lossless, and the additional computa-
tional work grows slowly for an increasing number of operations. For optimization
with time-dependent differential equations as constraints, the second property is not

24

3.4. Other Techniques

as important, as the number of timesteps is typically small compared to the num-
ber of arithmetic operations in automatic differentiation. The additional work, for
typical settings two up to four additional solves of the state equation, carries more
weight. Also, in terms of data transferred, only a small reduction of bandwidth can
be achieved, in particular with online checkpointing.

When using second order optimization methods, like Newton-CG, the state tra-
jectory is needed in each CG iteration to evaluate Hessian-times-vector products,
leading to higher computational work, as typically checkpoints are overwritten dur-
ing adjoint integration, and thus their original information is lost for the subsequent
CG iterations and has to be re-computed as well.

For non-uniform timestep cost which is not known a-priori, checkpoint distributions
have to be chosen heuristically. With adaptive mesh refinement, also the sizes of the
snapshots are unknown a priori. For this case, no optimal checkpoint distributions
are known, not even heuristics.

3.4. Other Techniques

In this section we briefly discuss two techniques for the solution of optimal control
problems, with memory reduction as a side effect.

3.4.1. Model Reduction

Model reduction techniques focus mainly on the reduction of computational com-
plexity via approximation of large-scale problems by smaller ones. First developed
for handling parameter-dependent differential equations, in the last years this algo-
rithm class is applied to optimal control and inverse problems as well. One popular
method for the construction of reduced models is proper orthogonal decomposition
(POD). There, a basis is computed from the solution of the state equation at a num-
ber of given timesteps by principal component analysis. If the involved eigenvalues
decay quickly, comparatively few basis vectors are sufficient for a good approxima-
tion of the solution. A detailed analysis of POD methods for parabolic PDEs can
be found in [75] by Kunisch and Volkwein, see Hinze and Volkwein [57] for the use
of POD in optimal control. In terms of memory requirements, only the snapshots
of the solution of the large-scale problem need to be stored.

Due to the reduced-order model, only sub-optimal controls can be computed. To
judge the quality of the approximate solution, a-posteriori error estimators were
developed. In [128], such an estimator is derived by Troltzsch and Volkwein for

25

3. Compression in Scientific Computing and Optimal Control

the linear-quadratic case, and extended to semilinear equations in [70]. For the
evaluation of the error estimate, state and adjoint solutions of the full problem are
needed, posing the same requirements for storage space as the original large-scale
problem. A different technique is suggested by Jorres, Vossen, and Herty [67]: they
use the full model to compute the gradient and only use reduced models to find a
suitable steplength for the control update. Again, no reduction in memory size is
achieved. While both methods reduce memory bandwidth, a combination with lossy
trajectory compression for evaluation of error estimators or gradient computation
appears attractive.

3.4.2. Multiple Shooting

Multiple shooting is a well established method for the solution of ODE boundary
value problems. The time interval [0, 7] is decomposed in a number of sub-intervals,
with auxiliary variables for the interfaces ensuring continuity of the solution. The
resulting cyclic, nonlinear system of equations is typically solved using Newton’s
method. Details and a short overview of the history of shooting methods can be
found in the textbook [24], for instance. In the last years, this principle was applied
to solve optimal control problems governed by time-dependent partial differential
equations by Heinkenschloss [49], Comas [17], as well as Hesse and Kanschat [51, 52],
for instance. The decomposition of the time domain leads to optimization problems
on the sub-intervals, where locally state and adjoint are implicit functions of the
control and auxiliary variables. Sequential solution of the local problems leads to
a storage reduction, as only the trajectory on the respective sub-interval is needed.
The coupling of the sub-problems via the auxiliary variables (“matching conditions”)
avoids the disadvantage of moving horizon techniques, where only sub-optimal con-
trols can be computed (see, e.g., [64]). Combination with adaptive mesh refinement
is discussed in [51, 52, 13], where a dual weighted residual (DWR) method [6] is
used for error estimation.

Although the resulting algorithms are easily parallelizable due to the splitting in
local sub-problems, significant storage reduction is only achieved in sequential com-
putations, or if the number of sub-intervals is considerably larger than the number of
CPUs. Each CPU then has to provide storage only for the currently processed local
problem, plus additional storage for the auxiliary variables. Again, a combination
with lossy trajectory storage is an attractive possibility.

26

4. Lossy Compression with Pointwise
Error Control

The review of compression methods in Section 3.1 indicates that lossless methods are
not suited to significantly reduce memory requirements. Moreover, for simulation
and optimal control we are interested in the actual physical problem, or, mathe-
matically, in the infinite-dimensional function space solution. The latter, however,
can not be achieved, as discretization, quadrature and iterative solution of linear
equation systems have to be used. In view of the errors incurred by these numerical
techniques, it seems evident to use lossy compression techniques to store the already
inexact solutions, and derive means to control the additional error.

In this chapter, we develop and analyze a computationally inexpensive lossy com-
pression method, adapted to the specific needs of PDE-constrained optimization.
We aim at algorithms easily usable on unstructured, adaptively refined finite ele-
ment meshes in two and three space dimensions, making use of the multilevel nature
of such grids.

For the compression algorithm, the principle of transform coding (Figure 4.1) is
used. It contains three main ingredients: a transform, e.g. realized by a predic-
tor, quantization of the transformed coefficients, and entropy coding. While the
transform—essentially a change of basis—reduces correlations in the data and is in-
vertible, the quantization step reduces the accuracy of the data. For this operation,
the inverse can only be approximated, leading to errors in the reconstructed val-
ues. By the lossless entropy coding step, symbols for the transformed and quantized
coefficients are created and a bitstream is written to the storage medium.

For our specific problem, these steps are adapted as follows. First, a prediction step
is used to construct an approximation to the finite element solution of the state
equation at the current timestep. As we require the predictor to be cheap in terms
of computational complexity, an inexact predictor is used. Spatial correlations are
exploited using prolongation in mesh hierarchies, while temporal correlations are
exploited by taking values from the next timestep into account. As the adjoint

27

4. Lossy Compression with Pointwise Error Control

transform quantization entropy coding
U : R™ — R™ Qs : R™ = Z™ c:Z"™ — {0,1}Ne
y—= £ g i—=b

‘ bitstream storage ’

inverse transform dequantization decoding ‘/
v-1.R" & R Q} (L™ — R™ c1:{0,1}Ne - 2Z"

£y i € b i

Figure 4.1.: Principle of transform coding

equation is integrated backwards in time, these values are available. Uniform quan-
tization of the prediction error and entropy coding of the quantized values reduces
the storage requirement at the price of a loss of information.

The remainder of this chapter is organized as follows. In Section 4.1, we make use of
the hierarchical spatial grids to compress a finite element solution at a fixed timestep.
Aiming at a quantization error of the same magnitude as the discretization error,
in Section 4.2 we derive a-priori estimates for the achievable compression factors.
For adjoint gradient computation, the state solution is only accessed backward in
time, which we exploit for temporal prediction in Section 4.3. For basic encoding
and decoding, prototype algorithms in a compact pseudo-code form can be found in
Section 4.4.

Many of these results are published in [141].

4.1. Multilevel Compression in Hierarchical Meshes

In this section, we exploit spatial correlations at a fixed time point and turn to
temporal correlations afterwards in Section 4.3. We discuss in detail each step of
the transform coding procedure.

Quantization. The essential step of lossy compression is quantization.

Definition 4.1.1. For a given error bound § > 0, let Q5 : R — Z with

Qs(y) = {y;—;&J

28

4.1. Multilevel Compression in Hierarchical Meshes

denote the quantization and st : Z — R the reconstruction defined by
QL(i) == 24i.

Then the actual pointwise quantization error |y — Q;(Q(s(ym is bounded by 4.

Prediction. Values y; of coarse level nodes x, € Ny are quantized directly to
ir = Qs(yx) to be stored, yielding a reconstructed value g := Q}(ik). For new
nodes k € N;\N;_; on level j > 0, we make use of the grid hierarchy and quantize
and store only the deviation of y; from a prediction Py(gm, : m € Nj_1) obtained
from reconstructed values g, of lower level nodes.

The most simple prediction Pj is linear interpolation between grid levels, which is
the usual multigrid prolongation operator. For a node k € N;\W,_; subdividing the
edge between nodes m; and meo € J\/}_l, we define

Pr(Gmy s Jmsy) = %(@m + s)-
This prediction step changes the basis for the finite element coefficient vector from
the standard nodal basis to the hierarchical basis. This observation is used in Sec-
tion 4.2 to derive a-priori estimates for the achievable compression factors. Fig-
ure 4.2 illustrates the effect of the transformation: instead of storing nodal coef-
ficients yr, k € N; of the finest grid level, only the coarse grid values y, k € Ny
together with the hierarchical basis-coefficients & have to be stored.

Y

nodal basis hierarchical basis

Figure 4.2.: Representation in nodal and hierarchical basis

Remark 4.1.2. Here we use a deliberately simple predictor working with the in-
herent hierarchical structure of the mesh. The prolongation can be realized using
cheap matrix-vector multiplication, where the sparse prolongation matrices P have

29

4. Lossy Compression with Pointwise Error Control

already been computed during the mesh refinement and can be re-used. Of course
more elaborate predictors, like higher order prolongation or wavelet transforms [84]
could be used as well.

We thus obtain quantized values iy = Q5(yx — Pk (Um, , Um,)) to be stored, and recon-
structed values Ux = Px(my, Um,) + Q}(ik). The effect of quantizing the prediction
error is that the quantized values iy, are clustered around 0, which allows to perform
a highly effective entropy coding.

Note that predicting the value of yj from the reconstructed values y,,, and ¥m,
instead of y,,, and y,,, allows the decompression routine to obtain the same pre-
dictions, as only information available to the decompression routine is used. A
similar technique is used in MPEG video compression, where the reconstructed val-
ues (i.e. inverse quantization, inverse discrete cosine transform, and, in the MPEG-
standard H.264/AVC, application of in-loop deblocking filters) are used for motion
prediction in the encoder as well as in the decoder [121].

Remark 4.1.3. We have presented a predict-then-quantize approach. The order
of prediction and quantization could be reversed, as is often done in geometry com-
pression, leading to a quantize-than-predict scheme: After quantization of all nodal
values, for a vertex k dividing the edge (m1, ms2) the predictor then yields

e = 5 ((QUQs(m.) + Qi Qoluma))

and Qs(7r) — Q(yx) is stored on disk. This leads to comparable results for com-
pression rates and runtimes in most cases. For linear y, however, in the worst case
Uk = yr £ 0, and generally Qs(yx +) # Qs(yr). When quantizing the residuals as
proposed here, Qs(yr£d—yr) = Qs(£d) = 0, leading to significantly better compres-
sion rates. Numerical tests show that this is also true for mildly nonlinear functions,
like f4(z) from Section 6.1. For more oscillatory functions, the quantize-then-predict
approach performs a little better, see Table 6.1 in Section 6.1.

Remark 4.1.4. Choosing the quantization error bound § individually for each node
makes it possible to perform spatially nonuniform quantization and to bound the
quantization error in weighted L*°-norms. E.g., the quantization error bound could

be determined from sensitivities

0|ley ||

o6
where e;; denotes the gradient error. If these quantities are computable by both
encoder and decoder, the interval bounds for each node need not be stored.

30

4.2. A-Priori Estimates

Entropy coding. The quantized coefficients i,k = 0,...,|N;| — 1 are written to
disk using range encoding [87]. According to their different frequency of occurrence,
the coeflicients are encoded with variable-sized symbols, assigning fewer bits to more
frequent coefficients. As the frequency distribution has a peak at 0, this increases the
compression factor. Since this peak becomes smaller for higher grid levels, entropy
coding is performed for all levels individually, using the corresponding frequency
distribution.

The frequency distributions can be computed and stored before encoding, or contin-
uously updated during encoding and decoding. While storing the frequency distribu-
tions introduces a minor overhead in storage space, numerical experience shows that
it may increase the performance of the range coder and thus the overall compression
factor more than updating, at least for moderate problem sizes.

Reconstruction. With adaptive mesh refinement and time stepping, interpolation
of the reconstructed state values in space and time will be needed for the adjoint
solution. When storing the state values, the mesh needs to be stored additionally,
see [69] for an efficient method. During the adjoint computation, at a given timestep
first the corresponding state time needs to be found, tstate = 1" — tadjoint- Since the
time grids will in general be different, y(¢state) has to be approximated from the
nearest state timesteps for which the solution was stored, e.g. by constant or linear
interpolation. Secondly, the state mesh needs to be restored, such that prediction,
de-quantization and correction is performed at the correct nodes. In space, the
reconstructed finite element solution of the forward equation can be evaluated by
interpolation.

4.2. A-Priori Estimates

As seen in Section 4.1, the trade-off between compression and quantization error
depends on the range of prediction errors on each level. For ease of presentation,
we look at a simple model problem on a 2D domain. As in this section we are
concerned with spatial prediction only, we leave out the time dependence, assume
y € W2>(Q), and use linear interpolation for prolongation. The semi-norm |- |2,00,0
is given by
[Y]2,00,0 = max |0y Lo -
|a|=2

with a multi-index o.

Let © C R? be a polygonal domain, and 7,...,7; a nested family of triangula-
tions of Q as before, with 7; generated from 7Ty by j uniform refinement steps,

31

4. Lossy Compression with Pointwise Error Control

i.e. every triangle on level j — 1 is subdivided into four congruent triangles in the
jth refinement step. The maximum diameter of a triangle on level j is given by
hj = maxrey; diam(7T).

From standard finite element theory, e.g. [32], an estimate for the interpolation error

is known:

Lemma 4.2.1. Let T; be a shape-regular family of triangulations of a polyhedral
domain (), and denote by I := Iy, the interpolation operator with linear polynomials.
Then for y € W2>(Q),

1y = Liyll poo () < €hFlyl2,00,0- (4.1)

For uniform refinement, h; = ho2~7 with given constant initial mesh-width hq.
For an a priori estimate of the error-to-compression ratio of the lossy compression
algorithm, we are interested in the prediction error on level j > 0,

||ij - Ij—ly”LOO(Q))

as the range of the prediction error determines the number of bits needed to keep a
given error bound.

Lemma 4.2.2. With the same assumptions as in Lemma 4.2.1, it holds

1
1L = Li—1)yll o (o) < 4Ch%@|y!2,oo,97 (4.2)

with ¢ independent of j.

Proof. With a generic constant ¢ independent of h;,
I1(Zj = L=yl ooy < 1Y = Limayll o () = h—1lYl2,00,0
1
< 4Ch?‘y|27oo,§2 = 46%@@’2,0@9-

O

Let S; be the space of piecewise linear finite elements over the family of triangulations
defined above, and consider the hierarchical basis splitting S; = Vo @ - -- ® V;, with
V; = span{t; : k € N;\N;_1}. Here, N_1 = (). With the notation introduced in
Section 2.3 the hierarchical basis v;; is given as follows:

Yor(zi) = o), = €N
VYjk(@i) = or(i), 2 € Nj\Nj1,

32

4.2. A-Priori Estimates

see [142]. Hence, y;, € S; can be written as
!
U= Y. itk (4.3)
7=0 keN;\Nj—1

This decomposition yields the coefficients

aok = (loy)(z), zr € No (4.4)
aje = (Liy — Li-wy)(@e), ok € Nj\Nj-1. (4.5)

With Lemma 4.2.2 we can estimate the £°°-norm of the coeflicients of the hierarchical
basis representation on a given level j > 0,

(@ 1)k]l oo < 27207 Dyl 00 (4.6)

Quantization is chosen such that a given error bound ¢ is maintained, yielding an
interval length 26, and thus at most

2 (4Ch§|y’2,oo,ﬂ + 5) B 4chj2~|y
20 B)

2,00,Q2

+1 (4.7)

different quantized values on a given level j. The additive factor 26 in the numerator
on the left is due to the inexact storage of the nodes on level j — 1, which will in the
worst case differ from the original nodes by this value, see Figure 4.3 for a sketch of
the situation.

. 1/x . o
Yima i(yj,ml + :Uj,m,g) Yj,ma

Figure 4.3.: Prediction and quantization error.

33

4. Lossy Compression with Pointwise Error Control

For reaching a given discretization accuracy, | refinements are needed. Allowing a
quantization error of the same magnitude as the interpolation error yields

8= lly = Iyl o) < chilylo,co0- (4.8)
Thus, the number of quantized values on level j can be estimated as

4ch? [Y12,00,0

e +1 =227+ 41, (4.9)
chilyl2,00,0

Each value can be stored using

1

2(1—j+1) g S
loga (2 +1) <20 =+ 1) + Hry)

(4.10)

bits, where the estimate is due to the concavity of the logarithm. If higher accu-
racy is desired, the number of bits can be estimated by scaling ¢ in the previous
computation.

Remark 4.2.3. The L*-approximation error for discretization by linear finite ele-
ments can be estimated as

Hy—thLoo(Q) < ch®|Inh|[yla,c0.0; (4.11)

which behaves like O(h?~¢) for any ¢ > 0 [15, 32]. Hence, the number of bits needed
for achieving discretization error accuracy will be slightly smaller than estimated
above.

For a uniformly refined grid, there are approximately ¢2¥ vertices on level j, with
2% — ¢240G-1) new vertices on that level. The overall number of bits needed can
thus be estimated as

l

d d(j—1 j
S e (2% — 216-0) <2(l—9+1>+22a—3+%<2>>“<2““”22<l+1m1(2))
i=1

ot (2221 = 28 In(2) 4 220 — 20 41
- (24 —1)(29+2 — 1) 1n(2)

(4.12)

For the last estimate, terms with —dl contributing to the exponent were dropped.
With 2% vertices in the finest mesh, the above estimate yields for d = 2 approxi-
mately 2.96 bits/vertex on average, which is a compression factor of 21.6 compared
to storing double precision floating point data at 64 bit per value. In Figure 4.4, the
resulting relation between error and compression is shown for 2D and 3D.

34

4.2. A-Priori Estimates

100

10

percentage of discretization error

0.1
: 2D —e—
: : 3D —=—
001 1 1 1 1 1
5 10 15 20 25 30 35

compression factor

Figure 4.4.: Error vs. compression factor: a-priori estimates for spatial compression

Remark 4.2.4. If we just assume y € H?(), it holds
1y = Inyll o () < ch®= |yl 2

as H2(Q) € W2 4/22(Q) for d = 2,3, see, e.g., [32]. The estimated number of bits
per vertex needed to reach discretization error accuracy can then be computed as

l
) . d 1
dj _ od(j—1) _Z —i4+1)+ +
— ¢ (2 2) ((2 2> (=j+1) 2(2—d/2)(I=5+1) ln(2)>

d 1
e((2-5) 0+ 0+ s)

For 2D, this yields approximately 1.95 bits/vertex, and 1.55 bits/vertex for 3D.
Compared to the estimate (4.12) for y € W°°(€), each additional uniform mesh
refinement requires only 2 — d/2 bits per new node to keep the discretization error
accuracy, due to worse interpolation properties. As before, the number of new
vertices is 2% — ¢240—1; thus, for a fixed discretization, less bits are needed than
in the previous case of y € W2>(Q).

7j=1

35

4. Lossy Compression with Pointwise Error Control

Impact of adaptive mesh refinement. Using adaptive mesh refinement instead of
uniformly refined grids can lead to a drastic reduction of degrees of freedom, and
thus to less data. As there are less nodes on higher levels in the mesh hierarchy, the
expected compression factors will be smaller than in the uniform refinement case. It
might appear that adaptivity renders compression ineffective. This, however, is not
true, see Section 6.1 for a numerical example. As in the uniform refinement case,
the prediction errors tend to be smaller on finer levels, such that the range to be
quantized contains fewer intervals. Moreover, while adaptivity is used to control the
error in the solution of the state equation, the quantization error affects the solution
of the adjoint equation only. The different error propagation mechanisms might lead
to different tolerances to be chosen.

4.3. Temporal Correlations

Up to now, only spatial correlations have been exploited for compression. For suf-
ficiently smooth domain and data in the PDE, it holds y € C(Q x [0,7]). Thus
the range of prediction errors on each level will usually not differ much between
timesteps. If gradient-based methods, like steepest-descent or quasi-Newton meth-
ods, are used, the state solution is only accessed backwards in time, and no random
access is required. The temporal correlation can be used to construct a second pre-
dictor, and use delta-encoding to further reduce the storage requirements. In the
simplest case, the temporal predictor assumes the quantized spatial prediction error
to be constant from one timestep to the next, i.e. the difference to be entropy coded
for k € Nj(t,)\Nj_1(t,) is calculated for t,, < T as

_ {ik(tn) —ik(tnt1), k€ WNj(tn) Wj1(tn)) N (Nj(tnt1)\Nj-1(tnt1))

di(tn) = 1 . . :
ik (tn), otherwise

(4.13)

Care has to be taken, as grids may change between timesteps, if adaptive refinement
is used. At final time,

dp(T) = in(T) Yk € N;j(T)\Nj—1(T). (4.14)

This ensures that decoding is possible backward in time. The number of different
residuals to be encoded is reduced by this approach, increasing the performance of
the range coder. For avoiding error accumulation due to quantization, the prediction
at the timestep ¢, is performed not for the reconstructed solution (t,), but for the
quantized coefficients of the prediction error.

Note that when using backwards in time prediction, the quantized finite element
solution of at least one previous timestep has to be kept in memory, as it is encoded

36

4.4. Algorithms

only after the following timestep is performed. For higher order predictors (linear,
quadratic), more than two timesteps have to be kept in memory, which is easily
implemented, but only feasible if the spatial discretization is not too fine.

Remark 4.3.1. Here, decoding is only possible backward in time, as only the final
state is stored completely. For second-order optimization methods, like Newton-CG,
the state solution needs to be reconstructed forward in time as well for the evaluation
of Hessian-vector products. In this case temporal correlations can only be used at
some larger computational cost: Instead of storing only the final timestep entirely,
the complete information has to be stored at additional timesteps to be able to start
delta-decoding from there (so called intra-frames in video compression [92]). Ac-
cessing the stored solution at an arbitrary timestep then requires to start decoding
at the next fully stored step, and continue delta-decoding until the requested time
is reached. While for that case delta-encoding still reduces the demand in stor-
age space, the reduction of memory bandwidth is smaller, and the computational
overhead increases.

4.4. Algorithms

For convenience, we present pseudo-code versions of the basic encoding and decoding
methods.

Algorithm 1 Encoding

Input: coefficient vector (yk)k:07._.7| Ni|—15 prolongation operators P, quantization
error tolerance §
1: for all k € Ay do
2: 4 « floor (y’;g‘S)
3 Ui 201y,
4: end for
5: for grid level j = 1 to maximum grid level | do
6
7
8
9

for all k € NV;\\Vj_1 do
gk < Yk — Pk(ymlaymg)

1, < floor (%)

: Ur < 200 + Pr(Gmy > Jms)
10: end for
11: end for
12: write ig, k = 0,...,|N;| — 1 to disk using entropy coding

Algorithm 1 saves a coefficient vector of the state equation solution at a single

37

4. Lossy Compression with Pointwise Error Control

timestep to disk for a given mesh. No delta-encoding in time is used. The quantiza-
tion error tolerance § is equal for all nodes. The prolongation operators Py transfer
a nodal basis vector from level [to [+ 1 and are typically available in finite element
codes at no additional expense.

Algorithm 2 Reconstruction
Input: prolongation operators Py, quantization error tolerance &
1: read i,k =0,...,]N;| — 1 from disk using entropy coding

2: for all k€ Ny do

3: U 201

4: end for

5: for grid level 7 = 1 to maximum grid level [do
6: for all k € N;\W,_; do

£ Gk < 200 + Pp(Jmys Gms)

8: end for

9: end for

Additional storage of the grids is required for de-compression.

In Algorithm 2, the finite element solution is reconstructed on a given mesh. The
prolongation operators P for the corresponding grids are required as input. When
solving the adjoint equation using adaptively refined meshes, these operators need
to be re-computed for the current state grid. For linear interpolation, this requires
access to father-child relations of elements in the hierarchical mesh, and leads to an
increase in computation time. For reasonable data structures and implementations
this is only a minor overhead.

38

5. Adaptive Error Control

Due to the inexact reconstruction, and thus inexact data for the adjoint equation,
the error induced in the reduced gradient, and reduced Hessian, has to be controlled,
to not impede convergence of the optimization. In this chapter, we analyze accuracy
requirements of different optimization methods. We derive error estimates and com-
putable approximations for the influence of lossy trajectory storage on the reduced
gradient and reduced Hessian, and propose techniques for the adaptive choice of
quantization tolerances.

After deriving worst-case error bounds in Section 5.1, in Section 5.2 we are concerned
with a simple steepest-descent method, where fulfilling the so-called angle condition
is sufficient to maintain convergence. As the convergence speed of steepest-descent
is too slow for the method to be of practical use, we consider a BFGS-quasi-Newton-
method in Section 5.3. There, the computed reduced gradients are used to update
an approximation of the reduced Hessian, such that the inexactness in the gradi-
ent influences not only a single iteration, but also the subsequent ones. Finally, we
analyze the behavior of the Newton-CG method under the influence of lossy com-
pression. Here, not only the state, but also adjoint and linearized-state solutions
have to be stored, which poses additional complications. Especially compression of
the linearized-state trajectory leads to errors in the reduced Hessian-vector products,
which vary every CG iteration. We deal with these difficulties in Section 5.4.

In this thesis we restrict the discussion to the three mentioned exemplary optimiza-
tion methods. Analysis of inexact problem information or inexact step computation
for some other algorithms can be found in the literature, for example for Trust-
Region SQP methods (e.g. by Heinkenschloss and Vicente [50]) or Interior Point
methods (e.g. by Schiela and Giinther [108]). The influence of lossy trajectory stor-
age can be analyzed for these algorithms in a similar fashion, using the tools provided
in this chapter.

Remark. Adaptivity here refers to the choice of quantization accuracy during the
progress of the optimization. In each optimization iteration, the trajectories are
quantized uniformly. We do not consider “adaptive quantization” in the sense of
choosing quantization tolerances varying in time and space.

The findings of this chapter are mainly published in [39].

39

5. Adaptive Error Control

5.1. Worst-Case Error Bounds

In this section we analyze the influence of quantization errors on the reduced gradient
and Hessian-vector products. We derive error equations and propose worst-case
estimates. The following notations are used to distinguish between different errors
as well as exact and inexact quantities:

e c. denotes the quantization error, e.g. €, is the quantization error of the state
variable y.

e - denotes a inexactness due to compression, e.g. § = y + &.

e - denotes an inexact quantity, where the inexactness is due to compression of
an input quantity. E.g., A denotes the adjoint equation using inexact state
values ¢ as an input (as opposed to A using the exact state solution y).

e e. denotes the error in quantities computed with inexact input, e.g. A = A+e,.

5.1.1. Reduced Gradient

As introduced in Section 2.2, the reduced gradient can be computed via the implicit
function theorem, yielding

J'(w) = Ju(y, u) + culy, u) A, (5.1)
where X solves the adjoint equation
¢y(y, u)" A = —=Jy(y,u). (5.2)

Due to compression, only an inexact reduced gradient 4/ can be computed, with y
replaced by its reconstruction g in (5.1) and (5.2).

Theorem 5.1.1. The error in the reduced gradient ejr = §' — 4 is given by
ejr = cu(y,u) ey, (5.3)
where the error in the adjoint equation ey = X — X\ fulfills
(ey(g,w)* = (eyy(Y, uey)") ex = —Jyy (9, u)ey — (cyy(9, u)ey)™ A, (5.4)

up to O(|ley|*)-

40

5.1. Worst-Case Error Bounds

Proof. Subtracting the adjoint equations for exact and inexact input gives

ey (0)" A = ¢y (y, u) A = = Jy(§,w) + Jy(y, u). (5.5)

Using Taylor expansion, we have that

Jy(y, U)

Ty(§:w) = Jyy (8, u)ey + O([ley[|*), and
Cy(y, U) 0

y\Y,
ey (1) = cyy (G, w)ey + O([ly %)

Thus (5.5) becomes

cy(g,u)"ex + (eyy (9, w)ey)” (A —ex) = —Jyy (§, u)ey,
which shows (5.4). As by assumption (2.2) J,(9,u) = Ju(y, u), as well as ¢, (y,u) =
cu(y,u) for (RDS), the claim follows. O

5.1.2. Reduced Hessian-Vector Products

To evaluate the action of the reduced Hessian j”(u), given by equation (2.10), on
some vector du € U, the following computations are needed:

—_

. Solve the linearized-state equation c,(y, u)v = ¢, (y,u)déu for v € Y.
2. Set z 1= Jyy(y, u)v + (cyy(y, u) (v,), \) 2+ z.

3. Solve the adjoint-for-Hessian equation ¢, (y,u)*w = z for w € Z.

4. Set 7" (uw)ou := Juu(y, w)du + cu(y,) w + cuu(y, u)* Aou.

In terms of storage, either v or z have to be kept. Both variants have the same
implementation complexity, and similar error analysis. Here we choose to store v
during Step 1, and generate z on-the-fly in Step 3 from the stored quantities.

In the following we analyze in detail the errors introduced by lossy trajectory com-
pression.

Step 1. Due to compression of y, the exact equation is not available. Instead,
¢y (Y, u)0 = ¢y (9, u)du is solved for v.

Lemma 5.1.2. The error e, = v — v fulfills
(Cy(?%u) - ny(?;7u)€y)ev = —cyy(9, u)eyd (5.6)

up to O(|ley|I*)-

41

5. Adaptive Error Control

Proof. Subtracting exact and inexact equation, and using Taylor expansion as in
the proof of Theorem 5.1.1 we get

cy (9, u)ey + cyy(g, u)eyv =0,

as for (RDS) ¢, is independent of y. Replacing v = 0 — e, the claim follows. O

Step 2. Instead of z, only 2 = J,, (9, u)0 + (¢yy (4, u)0, A) can be formed. Sources
of the inexactness here are not only the compression of y, but also the inexactly
computed and compressed trajectories A and .

Lemma 5.1.3. The error e, =z — z is given by

€z = (Jyy(Aau) = Jyyy (9, “)514)(61) + &v) + Jyyy (9, U)Qﬂz)
+ {(eyy (9, u) — cyyy(F, u)ey) (6w + ev), N+ {Cyyy (9, ey, N (5.7)
+ <(ny@a u) — cyyy@au)ey)f’v ex+ex)
- <(ny@au) nyy@a“)fy)(ev +ev), ex+en)

up to O(|ley[*)-

Proof. Computing zZ — z gives

€z = Jyy(@» u)é - Jyy(ya ’LL)U + <ny@7 u)éa 5‘> - <ny(y7 U)’U,)‘>7
—_———
()

Using Taylor expansion, we have

Thus (%) becomes

<ny (gv u)v — Cyyy (yv u)syv,)‘>

By inserting A = A—ey—exand v =10 — e, — &, as well as recombining the duality
products, the claim is shown.]

42

5.1. Worst-Case Error Bounds

Step 3. As y and z are available only inexactly, we can only solve ¢, (7, u)*w = Z
for w.

Lemma 5.1.4. The error e, = W — w fulfills

* ~

(Cy(?% u)* — (ny(?)) u)ay)*) Cw = €z — (ny(?}, U)Ey) w (5.8)

up to O(|ley[*)-

Proof. Subtracting exact and inexact equation, and using Taylor as before, we get

¢y (9, u)"ew + (ny@v U)gy)*w = €.

Substituting w = W — e,, gives the desired result. O

Step 4. Finally, only w is available instead of w.

Lemma 5.1.5. The error en, = j”(u)du— j”(u)du in the Hessian-vector product is
given by
Emp = Cu (U, 1) ey + Cun (G, u)*(ex + ex)du. (5.9)

Proof. For (RDS) and by assumption (2.2), Jy,, ¢, are independent of y. Subtracting
exact and inexact equation shows the lemma.]

5.1.3. Computable Error Estimates

While the error can, in principle, be estimated up to O(||e,||*) by solving the equa-
tions derived in the previous sections, this can not directly be used algorithmi-
cally for two reasons. First, the equations should only be solved on coarse, fixed
grids to keep both the computational overhead and the storage demand small. Sec-
ond, for adaptively choosing the quantization tolerances to store state, adjoint, and
linearized-state, the error equations have to be solved before the actual computation,
thus computationally unavailable quantities have to be replaced by estimates.

A worst case estimate for the error e, in the right-hand-side of the adjoint-for-
Hessian error equation (5.8) can easily be derived by taking absolute values, or
a suitable norm, and applying the Cauchy-Schwarz inequality. Here, and below,
taking the absolute value for the worst case is motivated by the parabolic nature of

43

5. Adaptive Error Control

the involved PDEs, which damp out oscillatory errors. Splitting the error into the
different contributions we arrive at

lezll < 19y (9, 1) = Tyyy (5, weyll lew + eoll + [Tyyy (G, wey | 2]

+ [leyy (9, u) — cyyy (9, u)eyll [len + el HS‘H + [leyyy (9, u)ey| HéHHS\H (5.10)
+ [leyy (9, u) — cyyy (9, u)ey |l HT’H llex +eall
+ [leyy (9, u) = cyyy (G,)yl lew + eoll [lex +exll -

We now turn to evaluating the errors e,, ey, and e,. The errors for adjoint and
adjoint-for-Hessian, given by (5.4) and (5.8), are governed by similar equations with
different right-hand-sides. We make use of Theorem A.2 to get an upper bound for
the error e in the adjoint and adjoint-for-Hessian equations. The right-hand-side of
the error equation is given by

r(z,t e) = (ny(?ﬁvu)ey)*q + o — (cyy (9, u)sy)*q/), (5.11)
where
_ —Jyy(y,u)ey, ¢ = A (adjoint)
7 {€Za ¢ = w (adjoint-for-Hessian),
and

Y=

w, ¢=w (adjoint-for-Hessian).

{5\, ¢ = X (adjoint)

For the error in the linearized-state e, given by equation (5.6), we note that this
equation can be transformed to a similar structure, using the standard time substi-
tution ¢ = T — 7 (to transform the equation to a backward-in-time equation like the
adjoint equations), and setting ¢ = 0, = 0.

Exemplarily, consider a generic tracking-type objective functional
1 2 1 2
J(y,u) = 5 ly — ?JQHL2(QX(0,T)) +) ly — ?JZHLQ(aQX(o,T))

1 2 a 2
+5 19(T) = yallzz) + 5 llully

which is to be minimized subject to the reaction-diffusion system (RDS). Then, the
error equation for the error in the adjoint with right-hand-side (5.11) corresponds
to the strong formulation

—lexlt = DV - (6Ven) — fy(@)ex + fyu(D)eyer = fuy(@)egh — ey in Q x (0,T)
Boyex + Cex = —[gyljoaxo,r) on 92 x (0,T)

ex(+,T) = —ey(T) in Q.
(5.12)

44

5.1. Worst-Case Error Bounds

For the error in the adjoint-for-Hessian, a similar strong formulation can be obtained,
see Section 6.3 for a scalar example. Thus, for (RDS) only the reaction function f(y)
contributes to the operator cy, (7, u).

Consider the Nemytskii-operator F' : y(-,-) — f(y(-,-)) generated by the nonlinearity
f. If f is sufficiently regular, the Nemytskii-operator F' is twice continuously Fréchet
differentiable in L>(Q2 x (0,7")) and the second derivative can be evaluated by

[F" () yrye] (2,8) = fyy(y(@,0)y1(, t)ya(z, 1),
i.e. the derivative F”(y) can be identified with the real-valued function fy,(y(z,t)).
Moreover we have
HF//(y) H[,(L°°(QX(O,T)),L',(L‘X’(QX(O,T)))) = ||fyy(y(7)) HLO“(QX(D,T)) ’

where £(X7, X2) denotes the normed space of all linear and continuous mappings
from X; into Xo. See, e.g., [127, Sections 4.3, 4.9] for details and a thorough
discussion.

For derivation of computable error estimates, we thus re-interpret Nemytskii-opera-
tors like ¢,y (9, u) as coefficient functions and denote by |cyy (9, u)*| etc. the pointwise
absolute value in Q x (0,7T).

To continue the discussion, we have to distinguish between scalar equations and
systems of reaction-diffusion equations.

Scalar equations. In the scalar case, the strong formulation (5.12) motivates the
following error bound, making use of a comparison principle for classical solutions
to the error equations.

Theorem 5.1.6. Let m = 1, and €, be the solution of
cy(gu)e =7(x,t,e), ve{Aw} (5.13)

with
T(z,t,e) = [eyy (9, u)*|ey e + |@] + |eyy (9, u)*Ple,, (5.14)

and an upper bound on the state quantization error e'* > ey(z,t) V(x,t) € Q x
(0,T). Then e, <e,.

Proof. The error estimate €, is the solution of a backward linear parabolic equa-
tion, where the source terms, boundary- and terminal values are non-negative. By

45

5. Adaptive Error Control

the parabolic maximum principle we get €, > 0. Thus, for all €, satisfying equa-
tion (5.13), we have

7z, t, e (x,t)) > r(x, t,e(x,t)),

and €, is a super-solution to equation (5.4) or (5.8), respectively. With the stan-
dard time transformation 7 = T' — ¢t the backward-in-time equations (5.4) or (5.8)
and (5.13) are transformed to forward equations. Then by Theorem A.2 in combi-
nation with Remark A.5 the claim follows. O]

Remark 5.1.7. The estimates €, are still not computable error bounds, as they
depend on g, and X or w. Possible remedies are the use of upper bounds of these
quantities specific to the actual equations being used, or heuristic choices like using
quantities from previous optimization iterations. In Section 5.4 we give more details
on the actual realization and sketch an algorithm (Algorithm 5, p. 65). See also
Sections 6.2, 6.3 for numerical examples.

Reaction-diffusion systems. Again motivated by the strong formulation (5.12), in
the case of reaction-diffusion systems we can construct a super-reaction function by
following [10], and apply the comparison theorem Theorem A.2.

Theorem 5.1.8. Let e be a sub-solution to the adjoint error equation (5.4) or (5.8)
for v = A\, w, respectively. Define 7 by

Fi(z,t,e) = sup ri(x, t,m), i=1,...,m. (5.15)
{nle<n<e, mi=ei}

As in the scalar case, let €;,1 € {\,w} be the solution of
Cy(ga U)*a = ?(xy ta a)a (516)

Then ey <&,.

Proof. The function 7 constructed by (5.15) is uniformly Lipschitz continuous in
e. It satisfies 7(x,t,e) > r(x,t,e) Ve € R™ and is quasi-monotone non-decreasing,
see [10]. Thus e, <€, by Theorem A.2. O

Remark 5.1.9. The construction of super-reaction functions by (5.15) needs the
derivation of a sub-solution to the original error equation, and thus is problem-
dependent. For the monodomain equations describing the electrical activity of the
heart this has been carried out in detail in [37] as well as in Section 6.4.

46

5.2. Steepest-Descent

5.2. Steepest-Descent

Descent methods are a common class of algorithms for computing solutions of the
optimization problem. In combination with additional requirements on the step
size, convergence can be shown if the descent directions §j satisfy the so-called
angle-condition

(7' (W),87) ey < —a |17/ (w)

for some fixed o > 0 [55].

o 1031y (5.17)

In this section we need to distinguish notationally between the reduced derivative
j'(u) € U* and the reduced gradient Vj(u) € U, defined with aid of the Riesz
isomorphism, as both of them are required in the following (cf. Remark 2.2.6).

Using the negative gradient 67 = —Vj(u) of the objective functional as a descent
direction yields the so-called steepest-descent method. Due to lossy compression
the reduced gradient can not be computed exactly, i.e. only §j = —Vj(u) + e can
be chosen. For convergence of the inexact steepest-descent method, we have the
following theorem.

Theorem 5.2.1. Let ¢ < § and compute §j = —Vj(u) + e such that || < e||53].
Then dj satisfies the angle-condition (5.17).

Proof. As [|6j] < [[=Vj(w)ll + llell < |=Vi(u)l| + e [|65]], we get

(7'(w),67) = = IV (w)|* + {5'(w), €)
< —(L =) [IVi(@)[la5]] + Vi (w)l[lle]l
< —(1=2¢) [Vi) lo5]]

A

and thus (5.17) with o =1 —2¢ > 0. O

Example 5.2.2. We consider again boundary control of the linear heat equation
(see also Example 2.1.1):

min 7 [y — valT2ox o)) + % el 2200 0.1y)
subject to
y—Ay=fonQx(0,7), Oy+y—u=00n0d2x(0,7), y(,0)=0in Q.
The reduced gradient is given as

Vij(u) = au+ Ao

47

5. Adaptive Error Control

with the adjoint variable A solving
“M—AN=y—yson Q2 x(0,7), dHA+A=00n002x(0,7), A(-,T)=0in Q.

As derived above in Section 5.1, for a perturbation of the state by a quantization
error, § = y + &y, the error in the reduced gradient amounts to ey = A — A, with
X the adjoint solution to the right hand side § — y4. Due to the linearity, ey is the
solution of

—lex]lt —Aey =€y on Q2 x (0,T), dyex+ex=00n092 x (0,7), ex(-,T)=01in €.

Here the error norm is bounded by the norm of the quantization error in the state
values, e.g. for e, € L?(Q x (0,T)), lexll 20,1, 11 (0)) < cHz—:yHLg(Qx(QT)) [127].

Using Theorems 5.1.1 and 5.2.1 combined with Theorem 5.1.6 or 5.1.8, an adaptive
strategy for choosing an upper bound ¢ for the quantization error in dependence on
the progress of the optimization can be derived (Algorithm 3), see also Section 6.2
for an example.

Algorithm 3 Adaptive quantization for steepest descent

1. Compute the solution ey to equation (5.13) or (5.16) for scalar equations or
systems, respectively, using some &;'**, and keep |[|cy (7, u)*ex||y -

2. In iteration i of the inexact steepest-descent method, set

1 i1

O < = ——————giax 5.18

1< S e wrenlig (5.18)
where)
’ Vji(u;) ’

;11 = U (5.19)
[)|

is an estimate for the gradient norm of the next step derived from the linear
convergence of the gradient descent method.

If, for linear problems, the equations in step 1 of Algorithm 3 are solved exactly,
the error estimate is reliable. For practical realization, the equations are only solved
approximately, typically on a rather coarse mesh to keep the computational overhead
reasonably small. This inaccuracy turns out to be of little consequence, as on one
hand the error bounds tend to be rather smooth and well represented on coarse
meshes, and on the the other hand, the computed error bounds are not particularly
sharp.

48

5.3. BFGS-Quasi-Newton

Example 5.2.3. In the setting of Example 5.2.2 we have the following result: Let
d be an upper bound for the quantization error in the state values, i.e. || < 4, and
& be the solution of

& —AE=00nQx(0,T), 0,£+&=00n00x (0,T), &£(,T)=01in Q.

Then

Hej’ L2(8Qx(0,T)) = Hg”LQ(‘aQX(O’T))?

where
ejr = au +)\laQ — (au +)\|aQ) = €x|9Q-

This can be shown as follows: By the parabolic maximum principle [100], the max-
imum M of n := ey — £ is attained either at t = 0 or on 92 x (0,7). Assume
M > 0. Then there is (z,t) € 00 x (0,T) with n(z,¢) = M. But then, again due to
the strong maximum principle, 9,n(Z,t) > 0, contradicting the homogeneous Robin
boundary condition. Hence, M < (0 and ey < €.

5.3. BFGS-Quasi-Newton

Quasi-Newton methods aim to increase convergence speed by constructing approx-
imations to the Hessian from gradient information. We restrict ourselves to the
well-known BFGS-method (named after its inventors Broyden, Fletcher, Goldfarb,
Shanno). It is one of the most efficient quasi-Newton methods due to fast theoretical
convergence and numerical experience, see, e.g., [21, 8]. The algorithm computes
an approximation to the reduced Hessian using rank-two modifications of an initial
approximation, see equation (5.23) below. The control iterates are created by the
formula

Ujt1 = U; — OéiBi_lj/(ui) = Uu; + a;p;, (5.20)

where the step-size a; fulfills the Wolfe-Powell conditions [98]

J(uit1) — jlus) < eroq(i'(us), piyuru (5.21)

(' (i), piyuru = ca(d (W), pi)uus (5.22)

0<c < %, c1 < cg < 1. Due to the Hilbert space setting, we identify U with its
dual U*, and use the scalar product (-, -)y instead of the duality product (-,)+ .

For simplicity, in the following we assume a given, fixed discretization, and comment
on quasi-Newton methods in function space later. To distinguish the notation, we
abbreviate the approximated Hessian in iteration i of the quasi-Newton algorithm

49

5. Adaptive Error Control

by B; and the gradient by g;. Defining v; = g;+1 — ¢; and s; = w;41 — u;, the update
for the Hessian approximation is given by

(Bisi,)B;si n (s>) vs
(si, Bisi) (si,74)

If B; is symmetric positive definite, B;11 has these properties as well.

Bit1 = B; —

(5.23)

With inexact gradient computation, g; = g; +ey,, instead of the search direction p; =
-B; Lg; we only have an inexact direction p; = -B; 1§;. Further, algorithmically
we can only satisfy an inexact variant of the Wolfe-Powell conditions:

J(uit1) = j(uwi) < 106 (3s, pi) (5.24)
(Gi+1,Pi) = €2(gis Pi), (5.25)

0 <& < 3%, & <& < 1. Thus, only the inexact quantities §; = &;p; and 7; =
Gi+1 — §i are available.

Throughout the section, we assume that the reduced Hessian j”(u) is positive definite
and Lipschitz-continuous.

Remark. A convergence analysis for BFGS with inexact gradients can also be found
in [33] by Felgenhauer. While the proof idea for superlinear convergence is similar—
making use of the Dennis-Moré condition (5.34)—the proof given in Section 5.3.1 is
somewhat simpler. There, we show that under certain conditions the inexact search
direction p; is a descent direction satisfying (5.17), thus leading to convergence of the
method. Moreover, we give accuracy requirements in Lemma 5.3.1 and Lemma 5.3.9
which are computationally available and thus can be used for implementation of the
algorithms.

5.3.1. Convergence of Inexact BFGS

To prove convergence of the inexact BFGS-quasi-Newton method, we need to show
that p; is a descent direction, and that symmetry and positive definiteness of B; is
preserved by the update (5.23) with inexact quantities.

Lemma 5.3.1. Assume that B is symmetric positive definite with bounded condition
number k(B), and p = B~1§. Choose ¢ < % and let the gradient error ey fulfill

g
£ =
legll < ()1 gll- (5.26)
Then 1—9
B ly) > _—_*° B3]l 5.27

50

5.3. BFGS-Quasi-Newton

Proof. From the proof of Theorem 5.2.1 we have the implication

(9,9)

legll <ellgll = -
? gl llgll

> (1 - 2). (5.28)

With this starting point we follow the steps of the proof of Prop. 2.2 in [41].
To treat the BFGS search direction —B~1§, we replace eg,g and g in (5.28) by
B/ 2eg,B_l/ 2 and B~Y/23, respectively. A short calculation similar to Theo-
rem 5.2.1 shows that the transformed implication

B2, B—-1/2;
(7 9) (1-—2¢) (5.29)

B-1/2 < ellB=1/25 .
f eql| << il [B-1724[B-24]] =

holds. Multiplying by HB_l/ 2H_1 and using the inequalities

1B 2ey|| < | B72| llegl

and
12825 > || B
yields
|B~/2g]] (9, B19) (1 - 2¢)
N e I Ve[l e R

Denoting the smallest singular value of B~/2 by o, (B~1/?), with HB_l/ng <
omin(B~Y?)||g|| the right-hand side of the implication (5.30) becomes

(9,B7'9) S (1-2)
omin(B7Y2) gl IB~1g| ~ || B2

(5.31)

—1/25
Extending EM on the left-hand side by HB*1/2H / HB*1/2H and using the
condition number x(B/?) = HBI/2H HB_I/QH we have
B_1/2§ BI/ZB—1/2§ c R
5 e g e)
1B=172] w(BY2) R(B2)
Combining these intermediate results with HB‘I/zH = omax(B~Y?), w(B'Y?) =
Omax(BY?) /omin(BY?) and k(BY/?) = k(B)'/? we arrive at
e (9.B7'9) _ (1-2¢)
el < ——— gl =) > : 5.33
ool < e 9= gl = w7 539
which shows the claim. O

o1

5. Adaptive Error Control

This lemma shows that —B~'§ is a descent direction and fulfills the angle condi-
tion (5.17) with o = (1 — 2¢)/+/k(B), if the error in the reduced gradient is small
enough. For the convergence speed as well as the effectivity of the compression
method it is important that the condition number of the updated Hessian approxi-
mation B does not become too large.

With this result it is easy to ensure that the inexact BFGS update preserves positive
definiteness of B;.

Lemma 5.3.2. Let By be symmetric positive definite. Then all Hessian approxi-
mations Bit1,i=0,1,... generated by (5.23) with inexact 5;,7%; are symmetric and
positive definite.

Proof. Let B; be symmetric positive definite. Then p; is a descent direction, and
there exists a step length &; such that the inexact Wolfe-Powell conditions (5.24),
(5.25) hold (see Remark 5.3.3). By (5.25)

(%4, 8i) > &(é2 — 1)(gs, pi) > 0,

such that the BFGS update is well-defined. As B; and the update are symmetric,
B;41 is symmetric as well.

As B; is positive definite we get (z, B;y12) > 0 for an arbitrary x # 0 by application
of the Cauchy-Schwarz inequality, as in the exact case. Using the update formula,
we evaluate

(Bi3i, x)* N (%,)2
(5i, Bisi) (%4, %)

If x, §; are linearly independent, we estimate

(7, Biy1z) = (7, Biz) —

20 BM?2) = (B, 5) (B, v),

K3 K3

(Bisi,)? = (B)*5, B/*x)? < (B*3;, B}*3,)(B
hence (z, Biy12) > 0. If on the other hand = = 03 for some o € R, (B;3;,)% =
(B;3i,3;)(Bix,x) and (z, Bij1z) > 0 as (%, 2)?/(5;, %) > 0. O

Remark 5.3.3. Felgenhauer [33] showed that every step length « satisfying the
exact Wolfe-Powell conditions with constants cq, co fulfills the inexact Wolfe-Powell
conditions with some other constants ¢1, ¢2, and vice versa, if the error in the gradient
is sufficiently small. In the present setting, existence of «, and thus of &; in the proof
of Lemma 5.3.2, follows from standard arguments, see, e.g., [98].

Now global convergence—for convex problems—follows.

92

5.3. BFGS-Quasi-Newton

Theorem 5.3.4. Let the reduced Hessian j"(u) be positive definite for all u € U.
For the BFGS-quasi-Newton method (5.20), (5.23) with inexact gradients, let the
error bound (5.26) hold. Then

lim j'(u;) = 0.

1—>00
Proof. As B; is symmetric and positive definite, p; = —B;" 15 is a descent direction
and fulfills the angle condition (5.17). This immediately yields convergence of the
BFGS-method with inexact gradients. O

5.3.2. Superlinear Convergence

Superlinear convergence for the BFGS method with exact quantities is a well-known
result [98]. Some work is also dealing with perturbed quasi-Newton methods, e.g. [33,
88].

In the exact case, superlinear convergence is usually characterized by the condition

B: — H.\p:
lim B: = Homill _ 0, (5.34)
i—00 14|
with p; = —B;” lg; and H, denoting the Hessian at the minimizer u*.

For the inexact case, we need an additional condition for the gradient error. In the
following we abbreviate the Hessian at u; by H; = H (u;).

Theorem 5.3.5. Let u; be the sequence of iterates generated by u;+1 = u; + Pi, P; =
—B;lgi, i.e. the update (5.20) with step length o; = 1. Assume that u; — u* linearly,
and the Hessian is positive definite and Lipschitz continuous at the minimizer u*.
Let the following two conditions hold:

lim M -0 (5.35)
i—00 |15l

. Hegi

lim ——~ = 0. 5.36
A% Tl (530

Then u; — u* superlinearly.

Proof. We follow the proof of [98, Thm. 3.7]. With the Newton step pY¥ = Hi_lgi
the conditions (5.35), (5.36) imply

i 122l
iwee |7

93

5. Adaptive Error Control

as

pi— i = H; ' (Hipi + 9:i) = H; ' (Hipi — Bipi — eg,),
and lim; o0 |leg, ||/|5i]l = 0 by (5.36) combined with ||p;]| > omin(B~1)|3:ll. By
quadratic convergence of the exact Newton method and using

i + B — w*|| < [Jug +pY —u*|| + |15 — ||

we get
lim L0 EP
1—00 ||ul — u*||
O

Lemma 5.3.6. For the BFGS-quasi-Newton method (5.20), (5.23) with inexact gra-
dients,
- s
i—00 1|51

(5.37)

holds, if u; — u* linearly.

Proof. The proof follows along the lines of [98, Thm. 6.6] for the exact case. Define

1

1 1
“3 F _ iz F._ g 3A
B:H, ?, &5 =H?s, Yi = H, *;,

Ei:H*

=

and, for brevity,

= (Gi,Bi&) - (GiBis) — |
080 = ==, = n, Mi= ==,
o ElBElT T &) NG

| Ti: i

1
Multiplying the inexact variant of the BFGS update (5.23) by H, ? from left and
right yields the update

(Bisi,) Bi3;
(8i, Bis;

+ iv')’yi.
i)

)

Biy1 = Bi —

.
Xl
&

[

9

Using

Vi — 8i = Ha * (% — Hy5:)

1
and 7; = H;5; with H; = / H(u; + Ta;p;) dr yields after a short computation
0

= = _l =
Fs =5l < Nl | 15| Lt

54

5.3. BFGS-Quasi-Newton

where L is the Lipschitz constant of H, and d; = max{||u;+1 — u*||, ||u; — u*||}. For

a constant ¢y > LHH:% H2 we thus get

15 = 5|

20 < o,
151
and by the triangle inequality
il = I5il] < codi[|3:]]
13:ll = 117:l] < cod:[[3:] -

Together this gives

(1 — Codz)HEZH § “§Z}| S (1 + COdz)ngH7
and the estimate m; > 1 — cod;. Using u; — u*, there exists a constant ¢ > cq such
that M; < 1+ ed; for sufficiently large 1.

As we work in a finite dimensional setting due to the fixed discretization, with
(B) = trace(B) — In(det(B)) we have

Y(Bis1) = ¥(Bi) + (M —In(m;) — 1) + (1 — 51; +In(51;)) +1In(cos? 6;).

cos? ©; cos? ©;

For sufficiently large ¢, we can assume cod; < % and
ln(ﬁl) > ln(l — Codi) > —2c¢pd; > —2cd;.

Thus,

0 < ¥(Biy1) < ¥(B;) — 3ed; + In(cos? 61) + <1 S In(qiT))
cos? ©; cos? O,

Summing up, again using that by linear convergence » >, |lu; — u*|| < oo, we arrive
at

i —1In(cos? 62) - (1 - aiT + In(51'7)) < (Bo) + 3c§:di < 0.

i—1 e cos? O cos? O, i—1

*)
As g;/(cos? 61) >0and 1 —z+In(z) <0 Ve > 0, the term (x) is non-positive. We

conclude that lim cos©; =1, lim G, =1.
1—00 1—00

95

5. Adaptive Error Control

Finally, we have

- -
B fd)slH =B 954150 fori— oo
I3 cos? ©;
As (B; —1d)5; = H;%(BZ — G4)3;, the claim follows. O

Additionally, we have to show that the step length «; = 1 is admissible for all ¢ > i
for a certain iteration index 4g.

Lemma 5.3.7. Let the assumptions of Theorem 5.3.5 hold. Then there exists an
iteration index iy such that o; = 1 satisfies the exact Wolfe-Powell conditions (5.21),
(5.22) for all iterations i > ig.

Proof. Consider

lgi + Hipil| _ ||[—Bipi — eq, + Hipi| < |=Bipi + Hipi | N leg: |l
Al 15 - Al |1

As u; — u*,i — oo, we have H; — H, and thus
))

lim H—Bz‘ﬁri-HiﬁiH _

= 0
ko0 15

due to (5.37). As lim; o ||eg, ||/]|Di]] = 0 by (5.36) we have

\|gi + Hipi | _

lim — 0.
imoo |l
This well-known condition yields the claim, see, e.g., [21, Thm. 6.4]. O

Remark 5.3.8. By Lemma 5.3.7, a; = 1 satisfies the exact Wolfe-Powell conditions.
By Remark 5.3.3 it satisfies the inexact Wolfe-Powell conditions as well, for slightly
different constants. With &; = 1, §; = p; and the condition (5.37) in Lemma 5.3.6
is the same as (5.35) in Theorem 5.3.5.

To fulfill the second condition (5.36) of Theorem 5.3.5 concerning the inexactness
of the gradients, we have to use a tighter error bound for the gradient error. This
can be achieved by letting e — 0 for ¢ — oo in condition (5.26), yielding a condi-
tion comparable to accuracy requirements for the inexact Newton-CG method, see
Section 5.4.

o6

5.3. BFGS-Quasi-Newton

Lemma 5.3.9. In iteration i of the BFGS-quasi-Newton method, let

=min{1/2,/[|gill} and [leg]l < (B)1/2 1gall - (5.38)

Then lim; o0 ||egz||/H§Z|| =0.

Proof. By convergence of the inexact BFGS method, we have ||g;|| — 0, such that,
after a certain iteration ig, /||gi|| < 1/2 Vi > ip. Thus ¢; — 0 for i — oo and the

result follows, as
&i

el _
lim — < lim ————,
i—00 ||§Z” T 00 I{(Bi)l/z

and k(B;) is bounded. O

5.3.3. Remarks

For the evaluation of the quantization tolerance we need to estimate the condi-
tion number of B;. An update formula for the condition number was derived by
Hoh Phua [58]. They make use of a Cholesky-factorization of B; ! to derive the
condition number of Bl 1 for SR1- and BFGS-quasi-Newton updates. From the
BFGS-update (5.23) it is possible to construct methods updating the Cholesky-
factors directly, which then can be used for condition estimation as well as step
computation [98].

From the BFGS update formula (5.23), a corresponding update for the inverse of
the Hessian approximation can be computed via the Sherman-Morrison-Woodbury
formula, allowing to compute B; 1§; without solving the linear system. When, for
large scale problems, storing this typically dense matrix is prohibitive, we can resort
to a matrix free implementation, computing the matrix-vector product from a initial
approximation Bo_l and the update vectors §;,%;,7 = 0,1,..., see, e.g., [97, 137].
Besides keeping all update vectors, this can be used as a limited memory version (L-
BFGS) by discarding all but M most recent vectors, at the cost of slower convergence
speed.

If the reduced Hessian is not positive definite, the BFGS-quasi-Newton method
might fail, for example due to violation of the condition (y,s) > 0. Exemplary
strategies to overcome such problems are the use of damped BFGS updates (cf. [98]
and the references therein), or regularization strategies (e.g. [83]).

While the BFGS-update formula in outer-product form, as given in equation (5.23)
can directly be used to construct a function space algorithm, the convergence analysis
becomes more involved. Early works giving convergence criteria include [90, 44, 106,

o7

5. Adaptive Error Control

71, 72]. Kupfer [77] investigates reduced SQP methods, using quasi-Newton updates
of the convex Broyden family (including BFGS). The following conditions for the
choice of the update sequences {;};, {s;}:; are needed to prove convergence in the
infinite dimensional setting:

(73, si)u > 0, H% - H*SiH <egillsil| Vi, and Zei < 00.

7

These conditions can serve as a starting point to develop accuracy requirements for
inexact gradients due to discretization errors and lossy trajectory storage.

If the initial Hessian approximation By is self-adjoint and positive, and Byg— H, small
enough, the quasi-Newton method yields convergence u; — u*. If further By — H,
is compact, the convergence is two-step superlinear, i.e.

|
m — =
Lo P

For optimal control problems, the compactness condition can be fulfilled using
BO - Euu(y*) U*))‘*)

[64], where £ denotes the Lagrange functional (see Section 2.2). For typical examples
with a quadratic tracking-type objective functional and state equations with linearly
entering controls, L, (y*,u*,*) = ald, where a here denotes the regularization
parameter and Id the identity operator of the control space U.

In this section we restricted the exposition to the BFGS-quasi-Newton method. The
convergence behavior of other updates using inexact gradient information remains
to be investigated.

5.4. Newton-CG

In this section we analyze the quantization accuracy required for the convergence
of Newton-CG methods in detail. Specific to an optimal control problem in cardiac
defibrillation, adaptive quantization for the Newton-CG method was introduced
in [37], see also Chapter 6. Here, we generalize and extend these results, based on
the error equations of Section 5.1.

We assume that we are in a neighborhood of a local minimizer, such that the re-
duced Hessian j”(u) is positive definite. In the Newton-CG algorithm, the Newton

o8

5.4. Newton-CG

direction is approximately computed by applying the conjugate gradient method to
the Newton equation

3" (u)ou = —j' (u).
Due to termination of the CG algorithm with a non-zero residual, as well as lossy
compression of state, adjoint, and linearized-state trajectories, we compute

7" (w)ou = —j'(u) + ey + 7,

where 7 is the inexactly computed residual. For convergence we require for the true
residual
Irl < plli' @), 0<p<1,

with p — 0 for super-linear convergence [28, 23]. As ||r|| < ||7|| + ||7 — r||, we need
to control three error contributions. Thus we have to ensure

lleg Il + 17l =+ 117 = 7l < pllg" (). (5.39)
As [l (w)]| = 117 (w) = ey || = 7' (W] — lleg ||, equation (5.39) is replaced by
L+ pllegll + 17l + 117 — 7l < plly" (@), (5.40)
which is fulfilled, if for ¢1,{2 € (0,1), (1 + ¢ <1

<Gp |7 @) /A +p), 17 < Gp |l @||, 7=l < (1 =G = G)pll7 (w)]]
(5.41)

le;
hold.

We discuss these three accuracy conditions in the following.

5.4.1. Adaptive Quantization for Gradient Computation

To satisfy the accuracy requirement [lej|| < (ip||7'(u)|| for the reduced gradient,
we have to determine a suitable quantization tolerance §Y before solving state and
adjoint equations.

Theorem 5.4.1. In iteration ¢ of the Newton method, define

pi = [Jeu(d, ui) ex|| (5.42)

with the error estimate ey from Theorem 5.1.6 or 5.1.8 for ' = 1. Let 6 <

Hjl(““rl)“ be an estimate for the inexact reduced gradient norm in iteration i + 1.
If the state quantization tolerance 5f+1 satisfies

0C1pit1
§v < oLl 5.43
= (14 pi) (5:43)

lejrava|l < Cupiva ||5 (wiva)|| /(1 + piya) holds.

99

5. Adaptive Error Control

Proof. For the error in the adjoint we have ey < €y for £y’ = 1. Thus by scaling
and using monotonicity of ¢, (7, u)*, we get |cu (9, u;)*ex|| < d|lcu(y,u;)*ex|| for
gy™* = 0. This yields

< 0C1pit1 < Gpin

~ .
> 1+pi+1 >~ 1+Pi+1 H] (uerl)H .

ejriv1]| < 671 lleu(d, ui)*exl]

O

For a computationally available approximation of u;, we refer to Section 5.4.3, see
especially equation (5.55).

Remark 5.4.2. For implementation, we point to the following difficulties:
1. As a computationally available approximation of €, we can choose
7 2
15" (wa)]]
g 9y
15" (ui)|

assuming linear convergence. If we aim at super-linear convergence of the
Newton-CG method, the gradient-norm estimate ¢ has to be adapted accord-
ingly, for example using 6 = p; ||5'(u;)|| (see [98]).

é:

2. As we only approzrimate the worst-case error €, and the gradient norm of
the next iteration, in practice we can not guarantee to keep the error bound
lej ll < Cipigr I3 (wisa)l| /(1 + pig1). Multiplication of 67, , by some safety
factor might be necessary to avoid impeding the convergence, depending on the
actual problem. However, as typically the error is significantly over-estimated,
no safety factor was needed in the numerical examples.

5.4.2. Adaptive Quantization for Hessian-Vector Products

In the CG method, we have to ensure that on exit the remaining two bounds

17l < Gp[l7' @], 17 =7l < (1= ¢ = G)p 7' (w)

are satisfied. While the condition for the inexact residual is fulfilled by using it as
a termination criterion for the CG, the bound on the inexactness of the computed
residuals is more demanding.

The quantization error in state, adjoint, and linearized-state leads to an inexact
Hessian-vector product in the CG iterations, see step 3 of Algorithm 4. Conse-
quently, approximate residuals 7#* are computed in iteration k of the CG algorithm
instead of the true residuals r*.

60

5.4. Newton-CG

Algorithm 4 CG for solving j”(u)du = —j'(u) with inexact matrix-vector products
1: set k= 0,0u’ = 0,7 = j/(u), p° = —7°
2: while kaH > TOL do
of = (7, 7) /(¢*, p*)
Subtt = guF 4 oFpP
L = kg gk
5k — (7:14:—&-1’ 7:1@4—1)/(7%7 7:19)
pFHl = k1 | ghok
9: k+—k—+1
10: end while

5.4.2.1. Quantization of v

First, we consider only the error contribution of the quantization of the linearized-
state solution. Due to compression of this trajectory, the Hessian-vector products
contain an error which might change in every CG iteration. Krylov subspace meth-
ods with inexact matrix-vector products have been discussed, e.g., by Simoncini and
Szyld [114], and van den Eshof and Sleijpen [130]. Adapted to our problem setting,
the theory presented there leads to the following Lemma.

Lemma 5.4.3. If, for a certain value l,,, in all CG iterations i < m,

3

el < lmierr 5.44
[l T (5.44)

holds, then ||7™ —r™|| < e.

In [37], we adapted their work to our setting, proposing a quantization tolerance

I (1 =G — G2)pi 17 (ua) |

5 -
"7 17

IN

(5.45)

for the linearized-state trajectory in iteration k of the CG (i denotes the Newton
iteration). Similar to Theorem 5.4.1, in equation (5.45) p; = ||cu (9, u;)*€w|| with a
worst case error bound €, for the error in the adjoint-for-Hessian solution.

The choice (5.45) for the quantization tolerance suffers from the fact that neither
Ly, nor p; is known exactly. The value of [,,, given in [114] is, unfortunately, compu-
tationally unavailable. In order to avoid computational overhead, the error bound
for e, is best computed on a coarse mesh, which leads to an inexact value of u;.
Consequently, ||7]| < TOLcg can not be guaranteed in practice. This may cause

61

5. Adaptive Error Control

the norm of the true residual to stay far above the required tolerance, while HFH
decreases further.

In practice, the inaccuracy of p; turns out to be of little consequence, see Section 5.2.
The other factor, [, is of more importance. A heuristic value I, = Apin/Mmax has
been proposed, where Ay, denotes the smallest eigenvalue of the reduced Hessian
matrix j”. As a computational estimate thereof, the (inexact) Rayleigh quotient can
be used,
(5" (ua)p® + ek, p*) i (@5 2Y)

(p*, p*) ok (pF k)’
where the minimum is taken over all CG iterations. Note that due to the inexact-
ness of the matrix-vector-product, underestimation of Ay, is possible, leading to a
smaller-than-necessary quantization tolerance.

Amin S mkin

Residual replacement. As discussed in the previous paragraph, Apin/m is used
as a heuristic for the unavailable, problem-dependent value l,,,. Combination with
a restart strategy—whenever significantly smaller value for A, is encountered,
the CG method is started new using the current éu” instead of Ju’—yielded good
results, see [37]. Such a restart approach was necessary, as due to the unknown true
values of [,, and Api, the accuracy requirement can not be guaranteed to hold. In
the following, we replace this heuristic restart strategy by a different, theoretically
better justified approach, that avoids a complete restart of the CG by tracking the
computed residual error and re-computing the residual if needed. It is motivated by
the analysis of CG in finite precision presented in Greenbaum [43], and Gutknecht
and Strakos [48].

If we consider inexact Hessian-vector products, the iterates in the CG satisfy

SuFtl = suP 4 oFpk (5.46)
P = — ok (u)pt o+ € (5.47)
with direction p* and o = (7, 7%) /(5" (ui)p* + €k, ., p¥). Here 81 = —akek

with eﬁlv,v denoting the error in the computed product j”(u;)p* due to compressed
storage of the linearized-state v. By equation (5.46) we can evaluate the true residual
belonging to the iterate du**!, and calculate the difference to the updated residual

#**1 using the recurrence (5.47) as

E+1
J'(ui) + j//(ui)(sukH —F = 7' (u;) + ju(uz')5u0 — - Z &
j=1

— k41

62

5.4. Newton-CG

Choosing 6u® = 0 allows to estimate the error in the residual as

k
41 41 £ 3 0] e] =2 B (5:45)
§=0

k

mv,v H we can cheaply monitor the error in

k+1

Thus by estimating an upper bound for He
the computed residual, and re-compute the residual from the current iterate du
when the error in the residual becomes too large, thus avoiding a restart strategy
based on Apip-

Residual replacement strategies were developed, e.g., by Sleijpen and van der Vorst
[115], as well as van der Vorst and Ye [131]. Analogously to the latter, we trigger the
restart in iteration k, when the estimated, accumulated residual error E fulfills

EF > e||f¥|, B >1.1B™¢ (5.49)

where € is a given threshold parameter, and E™? is the estimated error at the last
restart (respectively the estimated error of the initial Hessian-vector product, if no
restart was triggered before). On a restart, we replace the current residual #* by
§"(u;)éu® + j'(u;). For the evaluation of the inexact Hessian-vector product, &Y
is multiplied by some factor s¥ < 1, such that the linearized state is stored more
accurately.

A numerical comparison of the restart approach and residual replacement strategy
can be found in Section 6.3.2.

5.4.2.2. Quantization of y and)\

Besides the inexact linearized-state solution, quantization of the state y and the
adjoint A\ contribute to the error in the Hessian-vector products. Choosing suitable
tolerances 0Y,6 before solving state and adjoint equations poses the main diffi-
culty.

The error ey contributes only to the error e, in the right-hand side of the adjoint-
for-Hessian error equation (5.8). Considering the estimate (5.10), and neglecting
products of errors, |ley| is weighted by ||cyy (7, u) — Cyyy (9, u)ey|| Hf)H Thus, for
iteration 7 + 1 of the Newton method, we seek to fulfill the bound

TOL,

(G, ui) — cyyy (G, ui)ey |l |9

el <
”ny

63

5. Adaptive Error Control

by choosing §Y as
TOL, 1

ol llexll”

8y, . <

+1 > - " (5.50)
' ey (s wi) — cyyy(J, wi)ey|

As before, €y is the worst case error in the adjoint given by Theorem 5.1.6 or
Theorem 5.1.8, respectively.

For the evaluation of equation (5.50), an estimate for H5H has to be provided. Apart
from restarts, ¥ is determined by the linear parabolic equation

¢y(§,ui)0 = cu(g, us)p*

in CG iteration k. As p° = 70 = —j/(u;) we estimate Hf)H < cH}’(ul) , where the
unknown constant ¢ is replaced by some ¢ large enough, depending on the actual
problem. This is motivated by the fact that for exact CG, HpkH ~ HrkH For the
choice of TOL), we aim to achieve the same error level as in the reduced gradient,
i.e. TOLy = (1pit1 ||/ (wit1)]| /(1 + piy1). Combined, equation (5.50) becomes

C1Pit1 1
8 < - ! ! ey (5.51)
L1+ pis) lleyy (G us) — cyyy (9, wi)ey || el

For the quantization of the adjoint A it is sufficient to keep the quantization error
e well below the error ey. This can be achieved by choosing

TOL,

leyy (9, ui) — cyyy (G, ui)ey |l ||0]]

6 < 8 (5.52)

for some 0 < s* < 1.

5.4.3. Realization

To fix the details, we present an algorithm for a Newton-CG method using lossy
compression with adaptive quantization tolerances. The residual replacement strat-
egy is used to avoid complete restarts. For better readability, we focus on the
important steps and quantities and do not give a complete algorithm. Moreover,
we restrict the discussion to scalar problems; for reaction-diffusion systems, only the
right-hand-sides of the error equations need to be changed to suitable super-reaction
functions as given in Theorem 5.1.8.

In line 5 of Algorithm 5 we solve the error equation

ey (9, ui) e = |eyy (7, ui)*|5;ye +1. (5.53)

64

5.4. Newton-CG

Algorithm 5 Newton-CG with adaptive quantization

Input: 6,67, initial guess for control ug
1: fori=0,1,... do
2. solve state equation c(y, u;) = 0, encode y using 6

3. solve adjoint equation ¢(§, u;)* A = —Jy (9, u;), encode A using 0}

4: check optimality condition; if optimal: stop

5 solve cy(7,u;)*e = }cyy(gj,ui)*‘éfe + 1, keep |le]| , ||cu(9, wi) el

6: compute Newton step using CG: set du® = 0,p° =7 = —j/, E = 0,s" = 1,
estimate A\pin

7. while 7 > (op; ||7/(ui)|| and k < m do

8: solve linearized-state equation ¢, (4, u;)0 = ¢, (7, u;)p*, encode ¥ using s?6?,

with 6¥ given by (5.45)

9: solve adjoint-for-Hessian equation ¢, (g, u;)*w = 2

10: compute o, update duFt1, FEt1 phtl

11: estimate error of Hessian-vector product Hefnv,vH

12: update E < E + [of|||ek, .||

13: if E satisfies the restart conditions (5.49) then

14: decrease safety factor s¥ < 0.1s?

15: restart CG by evaluating the residual 741 = 5/ (u;) 4 57 (ug)du*!

16: end if

17: k+—k+1

18: end while

19: estimate new values for 47, 51

20: compute suitable step size s; and update w;41 = u; + siouk
21: end for

Compared to Theorem 5.1.6, the terms [¢| and [cy, (9, ui)*|e;'® are replaced by the
constant 1-function, allowing to re-use the solution by scaling with the appropriate
right-hand-sides.

For the initialization of the CG method (line 6), an estimate for the smallest eigen-
value of the reduced Hessian is required. As proposed in [37], this can be done at
the cost of an additional Hessian-vector product (computed on a coarse, fixed grid)

by the Rayleigh quotient
(4" (ui)p°, p°)

>\min S -7 0 n_
(%, 1Y)
During the CG, Apin can be updated in each iteration k& using
) (]”(uz)p] + egnij)
o < i —
min = 0k (p7,p7)

I

65

5. Adaptive Error Control

as all quantities needed for the inexact Rayleigh quotient are available at no addi-
tional cost. For the determination of 4V in line 8, I, = Amin/m is used in equa-
tion (5.45).

Further, p; needs to be specified. An estimate of €, taking e, into account is not
available at this stage of the algorithm. We thus use p; ~ ||y (9, ui)*e|| computed in
line 5 ignoring error contributions other than the quantization of the linearized-state
trajectory.

k

For the estimation of Hemv’v

state by solving

H in line 11 we have to evaluate the error in the linearized-

Cy(?;a ul)a = ‘ny(?gy uz) ‘531@ + Hcyy(?;a u2)8}|Lm5zJ,
which can be done by scaling the result of equation (5.53) by Hcyy(g), ui)fJHLoo 6.

Remark 5.4.4. For scalar equations where the spatial differential operator is not
self-adjoint, or systems of reaction-diffusion equations, the error equation for e,
differs from the error equation for the adjoint, and has to be solved additionally.
As before, this can be done on a coarser mesh to keep the computational overhead
small.

Additionally, we can evaluate e, by equation (5.10), using &, 47, (55‘, oY as well as €.

The latter is computed by scaling ||e|| (from the solution of equation (5.53)) by
H_Jyy(l}v u;) — cyy (Y, Ui)*S\HLoo(S{ya

a quantity which can be cheaply computed during solution of the adjoint equation.
With this we can estimate

e = llew(@,us) el ([[e=]] + llevy (3, w)* @] !). (5.54)

Remark 5.4.5. While theoretically this allows to estimate the overall error in the
Hessian-vector products, in practice the error is over-estimated significantly. For de-
termination of the quantization tolerances this decreases the performance of the com-
pression, but has no influence on the convergence of the optimization. To algorithmi-
cally assert the condition on the error in the residual, |7 — r|| < (1—-(1—C2)p H}’(u) H
these bounds are not sharp enough.

Before starting the next Newton iteration, new values for 67, , and 57,1 have to
be provided in line 19. The state quantization tolerance is computed by using the
minimum of the values given by equations (5.51), (5.43). In the latter,

i = [lew(@, ua)e|[| =Ty (5 i) = ey (G, ua) " Al (5.55)

66

5.5. Discussion

where—as a heuristic—the value of A from the current iteration is used as an ap-
proximation for the next iteration. For the adjoint, 53‘“ is determined by equa-
tion (5.52).

Remark 5.4.6. The computed error bounds are very coarse, leading to smaller-
than-necessary quantization tolerances. Whenever problem-dependent information
allows better estimates, the performance of the lossy compression algorithm will
increase. However, in practice the quantization error will be oscillatory in almost all
cases, so the true error will be significantly smaller than the worst-case estimates,
even if the error equations would be solved with high accuracy.

5.5. Discussion

For fixed discretizations, all optimization methods discussed in this chapter ulti-
mately require ||e; || — 0 for convergence, i.e. the trajectories have to be stored loss-
less. In the final optimization steps this results in the same storage space demand
as the algorithms without compression. However, during the course of optimization,
the reduction of required memory bandwidth is significant. Transferring less data to
storage media may result in an overall decrease in runtime, when memory access is
expensive, e.g. when having to use tape drives.

Typically, one is interested in convergence to the continuous solution instead of
convergence to the solution of the discretized problem. In order to achieve this, the
discretization errors in the reduced gradient have to be controlled via a-posteriori
error estimates and mesh refinement, exemplarily we refer to [91, 108, 140, 145,
146]. Adaptivity for optimal control problems is an active field of research and
beyond the scope of this thesis. Obviously, such adaptivity influences the trajectory
compression: higher discretization accuracy in the later iterations of the optimization
methods allow for storage reduction despite smaller quantization tolerances due to
finer grids. A thorough analysis of this influence remains as future work.

When storage space is limited the conditions on the accuracy, e.g. Theorem 5.2.1,
can be used as a stopping criterion—when these conditions cannot be fulfilled, no
meaningful progress can be achieved anymore. In order not to stop the optimization
prematurely, it is important to derive error bounds as sharp as possible. Thus
the worst-case estimates presented in this chapter have to be refined. To achieve
this, error control in norms other than L is desirable, particularly as numerical
experience shows that typically the quantization error is rather oscillatory.

67

6. Numerical Results

In this chapter, a variety of numerical results are presented, illustrating the com-
pression and error control techniques. We start with finite element interpolation of
some test functions in Section 6.1, showing the validity of the a-priori estimates of
Section 4.2. Additionally we compare our approach to fpzip (see Section 3.1.1). In
Section 6.2 we present results for the example of boundary control for the linear
heat equation, using the steepest-descent method. For optimal control of the semi-
linear Kolmogorov equation, the performance of steepest-descent and Newton-CG
methods using lossy compression is discussed in Section 6.3. For the Newton-CG
method with adaptive quantization we compare restart and residual replacement
strategies during the inexact CG method. To conclude this chapter, in Section 6.4
we study in more detail optimal control of the monodomain equations introduced
in Example 2.1.2. Results are shown using Newton-CG and BFGS-quasi-Newton
methods.

All numerical examples were implemented using the C++ finite element toolbox
Kaskade 7 [40]. Computation times were measured running the examples on a Dual-
Core AMD Opteron 8220 CPU with 2.8 GHz, without using parallelization.

The results of Sections 6.1, 6.2, and 6.3.1 are mainly published in [141]. Parts of the
results in the remaining Sections can be found in [37, 38, 39].

6.1. Auxiliary Test Functions

To demonstrate the effectivity of the lossy compression in a simple setting, we con-
sider the same two functions as Schroder-Pander et al. [110] (see also Section 3.1.2,
page 18),

fi(x) =sin(12(zg — 0.5)(z1 — 0.5))

sin(xo) cos(z1), xo > 0.5
fo(x) = . :
cos(xg) sin(z1), otherwise

69

6. Numerical Results

I;Ic;feilrllfs- function 1ntel;[;;)i?tlon ave. bits/node overallf;(();;:)[;resmon
f 7.8-107* 2.56 22.8 (24.3)
7 fs 1.69- 1072 2.81 22.1 (28.1)
fa 1.5-107° 1.55 42.3 (22.8)
fi 1.9-107* 2.56 24.9 (27.7)
8 fs 4.2-1073 2.87 22.8 (29.7)
fa 3.8.107° 1.49 48.3 (24.5)
f 4.9-107° 2.56 26 (27.9)
9 fa 1.1-1073 2.87 23.9 (31.2)
fa 9.5-107" 1.49 49.1 (25.2)

Table 6.1.: L*-interpolation errors and compression factors for the different test
functions f;(z), i« = 1,3,4. The average bits/node are counted after
quantization, based on the actual entropy of the data, the overall com-
pression factor contains some overhead like interval bounds, and benefits
from entropy coding. The numbers in brackets in the last column are
the compression factors for the quantize-then-predict approach, compare
Remark 4.1.3.

as well as two additional functions with different curvatures,

f3(x) = sin(50(zg — 0.5)(z1 — 0.5))

fale) = (e +a3).

In all cases we take = € [0, 1]%. As the functions do not depend on time, only spatial
prediction and lossy encoding of the prediction errors is performed. All functions are
interpolated with linear finite elements on different grids. The grids are generated
by uniform red refinement from an initial coarse mesh with 2 elements, resulting
in 32768 cells and 16641 nodes on the finest level for seven refinements, 131072
cells/66 049 vertices for eight refinement steps, and 524 288 elements/263 169 nodes
after nine refinements.

This setting allows to compare the a-priori estimates from Section 4.2 with the
numerical results, except for fo, which is discontinuous. The approximate L°-
interpolation errors are shown in Table 6.1 together with the compression factors
for a quantization error tolerance of the same magnitude. One can notice a rather
good agreement with the a-priori estimates. For function f4, which has a very slight
curvature, the linear interpolation used as a predictor performs expectedly good,
leading to higher compression factors.

70

6.1. Auxiliary Test Functions

Compression factors for fi; and fo using different tolerances § are shown in Tables
6.2 and 6.3.

refinements é compression factor saved storage
10-¢ 3.0 66.7%
7 107° 5.2 80.8%
1074 9.7 89.7%
106 7.8 87.2%
9 10° 13.6 92.6%
1074 30.1 96.7%

Table 6.2.: Errors and compression factors for test function f;

refinements 1 compression factor saved storage
107 7.0 85.7%
7 107° 13.9 92.8%
1074 34.1 97.1%
107° 22.6 95.6%
9 1075 83.9 98.8%
1074 213.3 99.5%

Table 6.3.: Errors and compression factors for test function fo

As expected, for a fixed error bound § the compression factor increases with the
number of grid levels, as the prediction error gets smaller each level, and fewer
bits need to be stored. In Figure 6.1, the reconstructed functions are shown for 7
refinement levels and § = 1072.

For further comparison, we use fpzip based on [82], a publicly available lossy floating-
point compression algorithm to store the double precision nodal values. As fpzip is
explicitly designed for structured, cartesian grid data, it is a good benchmark for
this special case. The results can be found in Table 6.4. Note that fpzip does
not keep a specific error bound, but can only be set to use a certain amount of
bits for storing a floating point value. The settings were 16 bit/value, leading to
§ =3.1-1072, and 32 bit/value, leading to 6 = 4.8 - 1077, As max,eq |fi(z)| = 1Vi,
relative and absolute L°-errors coincide and can be compared for all test functions.
For f4, and 32 bit/value, fpzip reconstructs the values exactly, as in 2D the Lorenzo
predictor used by fpzip is exact for functions f(x) = g(xg) + h(z1). For the larger
error tolerance, our algorithm is clearly better. For § = 4.8 - 1077, fpzip performs
better for some settings. However, the interpolation error in that case is larger than
§=4.8-10"".

Adaptive mesh refinement can be seen as a means of data compression itself. To

71

6. Numerical Results

Figure 6.1.: Reconstructed functions fi (left) and fo (right) at quantization error
1072 and compression factors of 45 (f;) and 127 (f2) for 7 uniform
refinements.

study the effect on the lossy storage approach, we consider adaptive interpolation of
f1. To reach an L>®-interpolation error of 1.9-107%, eight uniform refinements were
needed, leading to 66 049 vertices. Using an adaptive grid, the degrees of freedom
could be reduced to 42893, a compression factor of merely 1.5. Lossy storage of the
nodal values led to overall compression factors of 24.9 in the uniform case, and 13.8
for the adaptive interpolation.

For fi, adaptive interpolation had a rather small impact. We now consider interpo-
lation by linear finite elements of the 2D Gaussian function

o — V. 2 xr1 — U. 2
f(x)=exp(—(0 05)2;(1 05)),

with o = 0.025 on Q = [0,1]2. As f(z) exhibits a highly local peak, adaptive mesh
refinement leads to a drastic reduction of degrees of freedom, and thus of the values
which need to be stored. For reaching an L*-interpolation error of approximately
0.0015, a uniformly refined mesh consists of 263 169 vertices, whereas the adaptive
grid just needs 4237 nodes. This amounts to a compression factor of approximately
62. The compression factor of the lossy storage approach for a quantization error
bound of 0.0015 reduces from 54 on the uniform mesh to 12 for the adaptive grid.

72

6.2. Linear Heat Equation

5 function 7 refinements 9 refinements
v our algorithm fpzip our algorithm fpzip
fi 57.0 33.6 498.3 58.1
31.10-2 f2 214.4 81.2 1178.8 242.8
' fs 32.1 28.2 64.0 46.5
fa 374.0 47.7 4896.2 103.2
fi 2.6 4.3 6.7 6.3
10-7 f2 5.8 7.9 17.7 17.2
4.8-10 f3 1.9 3.7 3.8 5.0
fa 28.5 136.4* 31.6 587.8*

Table 6.4.: Compression factors for our algorithm and fpzip [82] for the different test
functions on a mesh with 7 and 9 levels of refinement. For the entries
marked with *, the predictor of fpzip is exact, such that no prediction
errors need to be stored.

The latter still amounts to 91.7% saved storage space, the combination of adaptive
mesh refinement and lossy storage saves 99.9% space and memory bandwidth.

6.2. Linear Heat Equation
We consider the simple model problem

1 o
min 7 [ly — vallT2x .y + 3 1l 2 o60x (0,7) (6.1)

subject to
ye— Ay =f in Qx(0,7)
dy+y=u ondQx(0,7T) (6.2)
y(~0)=0 inQ,
see also Examples 2.1.1, 5.2.2.

The above optimal control problem is solved with the aid of the compression algo-
rithm in its basic form, i.e. spatial prediction by linear interpolation between the
grid levels, and constant prediction in time.

The given data are

Q=(0,1?% T=1, a=107,
ya(z,t) = t((xo — 1)* + (21 — 1)%), flz,t) = (w0 — 1)* + (21 — 1)* — 4¢.

73

6. Numerical Results

We apply an implicit Euler method for time stepping, with a fixed step size dt = 0.05,
and a spatial discretization with linear finite elements on a grid with 32 768 cells on
the finest level, generated by 7 uniform refinement steps from the coarse grid. For
minimization, a simple steepest-descent algorithm with an Armijo step size rule is
used [5b5, 98]. The discretization errors in the reduced gradient and control are
estimated by using a solution of the problem on a fine mesh as reference.

For comparison, we stop the optimization after a certain number of iterations, and
use a fixed error bound for the quantization error, see Figure 6.2 for the results. The
qualitative behavior predicted by the a-priori estimates is clearly visible. In contrast
to these estimates, which were derived with regard to the interpolation error of the
state solution, in Figure 6.2 the discretization error of the reduced gradient and
control are depicted. Also, the impact of the simple temporal prediction can be
seen.

We apply the techniques for error control described in Section 5.2 to the above
optimal control problem, summarized in Algorithm 6.

Algorithm 6 Inexact steepest-descent with adaptive quantization tolerance

1: fix initial 67 (provided by user)

2: fori=1,... do

3: solve the state equations (6.2), encode y using &/

compute inexact gradient ij(uz) as given in Example 5.2.2, using decoded g
check optimality conditions, if optimal: end

update the control w;y1 = u; + a;Vj(u;) using the Armijo rule to determine
the step size q;

7. determine new quantization tolerance 5;1.’“ using Algorithm 3

8: end for

Figure 6.3 shows a comparison for the evolution of the gradient norm during the
optimization with and without lossy storage of the state values, as well as the cor-
responding compression factors. Clearly, lossy compression has no influence on the
convergence behavior, as long as the error is controlled. With an optimized im-
plementation of the lossy compression algorithm, one iteration of the optimization
algorithm (state solve, adjoint solve, gradient computation and control update) took
192s on average, with 1.3s for compressed writing and reading of the state values.
One optimization iteration without compression took 190.5s on average, with 0.03s
for writing and reading. The overall runtime increase for lossy compression thus is
approximately 1%. Note that despite the relatively small size all state values are
written to disk, and are not kept in RAM.

74

6.2. Linear Heat Equation

0~001 T T T T T T T T T

= //.

=

2

F‘E 0.0001 } .

&h

ae

8

= 1le-05 b

&

—

2

3 1le-06 | 1

3

~

g

e 1e-07 | b

=

) . . .

H without temporal prediction —e—
Le.08 with temporal prediction —a—
e_ 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100

compression factor

0~001 T T T T T T T T T

0.0001]

le-05 }]

1e-06 | E

1e-07 | E

relative L*°-error control

1e-08 | E

without temporal prediction —e—
with temporal prediction —a—

1le-09 L L
0 10 20 30 40 50 60 70 80 90 100

compression factor

Figure 6.2.: Relative error vs. compression factor for gradient (top) and control
(bottom) after 100 iterations for the linear boundary control prob-
lem (6.1), (6.2), for different tolerances for the quantization error. The
horizontal line shows the approximated discretization error. The tem-
poral predictor yields a noticeable increase of the compression factor at
virtually no computational cost.

75

6. Numerical Results

0-1 T

0.01 ¢

0.001 F

0.0001

1le-05 |

||5/(Ui)||L2(an(o,T))

1e-06 |

T T
compressed —>%¢—
uncompressed —s—
difference —e—

1e-07 L

100 150 200 250

iteration

800 T

700

600

500

400

300

compression factor

200

100

100 150 200 250

iteration

Figure 6.3.: Progress of the optimization algorithm (boundary control of linear heat
equation (6.1), (6.2)) with and without using compression (top), and
the corresponding adaptively chosen compression factors (bottom).

76

6.3. Kolmogorov Equation

6.3. Kolmogorov Equation

As a second example we consider an optimization problem governed by the semi-
linear Kolmogorov equation. The control is only varying in time and is constant in
space on each of five control domains. The optimal control problem is given by

wmin 2 lly = w320y + 5 1300 (63)
subject to .
ye— oAy = f(y)+ Y xo,uilt) inQx(0,7)
=1
0,y =0 on 002 x (0,T)
y(,0) = o in 2
with f(y) = y(y — a)(b—y) and

Q=(0,1)x(0,1), T=10, a=01, b=1, o=0.15
1 _
yd(x7t> = 1 1) yO(x) - yd(m70)7 a=10 5-
14 (=) 75 -1)

The control domain is given by . = U?:1 Q., with

Q., = [0.125,0.25] x [0.75,0.875], Q, = [0.75,0.875]?,
e, = [0.4375,0.5625)2, Q., = [0.125,0.25]%,
Qe, = [0.75,0.875] x [0.125,0.25].

This problem can be seen as a mock-up of cardiac defibrillation (see Section 6.4).
Without control, the solution to the state equation (6.4) is a wavefront traveling
through the domain until y ~ 1 everywhere; the control problem aims at a certain
speed and shape of that wavefront.

6.3.1. Steepest-Descent

As before, the optimal control problem is solved by a steepest-descent method,
with the PDEs being discretized in time by a linearly implicit, extrapolated Euler
method with fixed step size dt = 0.1, and linear finite elements in space. The
grid hierarchy consists of 8 levels, with 32768 cells and 16 641 nodes on the finest
level. Again, we obtain good compression rates with relative errors in the reduced

77

6. Numerical Results

N\

Figure 6.4.: Domain € (left) and reconstructed state (right) at t = 0.8 after 50
steepest-descent iterations (§ = 5 - 10™%, compression factor 56, 1.14
bits/double).

gradient and computed control well below the discretization error (see Figure 6.5),
approximated as in Example 6.2. The optimization algorithm is stopped after 50
iterations to be able to compare results for different compression rates. Note that
here the quantization error tolerance is fixed, and not chosen according to the current
size of the gradient norm in each iteration.

6.3.2. Newton-CG

Here we present results for the Newton-CG method using adaptive quantization.
Following the theory presented in Section 5.1, the error in the adjoint equation ey
fulfills

_[ek]t - UQA@A = fy@)ek - fyy@)gye)\ —&y+ fyy(g)gyj“
The error e, in the linearized-state v due to inexact storage of y satisfies the equa-
tion
lew]t — U2A6’U = fy(@))ev - fyy@)Eyev + fyy(?))ay@'

In the adjoint-for-Hessian, the error e, is determined by

—lew)t — o?Aey, = Fy(@)ew — fyy(O)eyew + fyy(§)eyw + e,

where e, is given by

~

€y =€y + &y — <(fyy(fg) - fyyy(f&)c‘:y) (ev + 51))7 5‘> - <fyyy(@)5y'8, 3‘)
(@) = Fyyy(@)ey) (ev +0), ex +€3)

78

6.3. Kolmogorov Equation

0.001

0.0001 F

1le-05 }

le-06 }

relative L®°-error

1e-07 |

1e-08 |

reduced gradient —e—
control —a—

1e-09 L L L L L L L L L

0 5 10 15 20 25 30 35 40 45 50 55 60

compression factor

Figure 6.5.: Relative error vs. compression factor for reduced gradient and con-
trol after 50 steepest descent iterations for the Kolmogorov prob-
lem (6.3), (6.4). The horizontal line shows the approximated discretiza-
tion errors for the reduced gradient (solid) and the control (dashed).

We use the algorithm sketched in Section 5.4.3, without any additional a-priori
information, on a fixed finite element grid with 32768 elements and 16 641 vertices.
Figure 6.6 shows the progress of the optimization. No significant difference between
compressed and uncompressed storage is visible. The corresponding quantization
tolerances for state and adjoint are shown in Figure 6.7, where s* = 1 for the
determination of 6* by equation (5.52). Before iteration 5, the state quantization
tolerance Y is determined by equation (5.51), afterwards the tolerance given by
equation (5.43) is smaller. We observe that, due to the worst-case error estimation,
the quantization tolerance is reduced severely in the final Newton iterations, such
that (nearly) no compression can be achieved in the last two iterations. A remedy
for this issue is to use more problem-dependent information for the error estimation,
to achieve tighter error bounds. To some extent the reduction of the compression
factors is due to the fixed grid, as the requested accuracy for quantization is far
below the discretization error.

For one solution of the state equation, 254.5s CPU time were needed (averaged
over all iterations), whereas the compression required 6.5s. Solution of the adjoint
equation required 267.6s on average, with additional 10.7s for compression. The
error equations were solved on a mesh with 4225 vertices; error estimation required

79

6. Numerical Results

38.6s CPU time per iteration. Overall, encoding/decoding incurred an overhead
of 3.3%, with additionally less than 1% overhead for error estimation (the latter
compared to the overall step computation time).

T T T
compressed —a—
01k reference —e—

0.01 }
0.001 ¢

0.0001 ¢

5" ()l L2 (0,7:m5)

le-05 F

le-06 F

1e-07 F

1e-08 L L L L L L L
1

iteration

Figure 6.6.: L?-norm of the reduced gradient with and without compression for the
Kolmogorov example (6.3), (6.4) using Newton-CG. No significant dif-
ference is notable.

For triggering the residual replacement during the CG method, the threshold

e=((1= G —)i |7 (w)|)"?

is used (see equation (5.49)). The safety factor sV is set to one in the beginning,
and multiplied by 0.1 on each re-computation of the residual. Figure 6.8 shows
the behavior of the residual during the CG in Newton iteration 6. Compression
factors ranging between 8.0 and 117.4 were achieved. Two residual replacements
were triggered, in CG iterations 3 and 6. For the re-computation of the residual from
the current iterate, the compression factors were 2.8 and 1.4, respectively. Overall,
142 CG iterations were needed during the 8 Newton iterations, with additional 12
residual replacement computations. At most three re-computations were necessary
per Newton iteration.

With the restart strategy from [37], 9 Newton iterations with 189 CG iterations
and 33 restarts were required for convergence. The behavior of both strategies is
compared in Figure 6.9. With residual replacement, re-computations were required
in CG iterations 3 and 4, whereas the restart approach leads to restarts in CG

80

6.4. Monodomain Equations

0.001
0.0001 F
le-05
le-06 |
1e-07

0.001

0.0001 |
le-05

1e-06

1e-08 | 1le-07 F
le-09 1e-08 F
le-10 | 1e-09 [
le-11
le-10
le-12
le-13 | le-11 |
le-14 L L L L L L L L L 1e-12
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
iteration iteration

Figure 6.7.: Adaptively chosen quantization tolerances and corresponding compres-
sion factors for state (left) and adjoint (right) for the Kolmogorov ex-
ample (6.3), (6.4) using Newton-CG.

iteration 2,3,4, and 6. Overall, using the restart strategy, more CG iterations are
required. The convergence of CG is impeded by the old approach, as, due to the
complete restart, the superlinear CG convergence is cut off. With the residual
replacement this perturbation is minimal, as all other quantities except the residual
itself are kept.

6.4. Monodomain Equations

As an example for reaction-diffusion systems, we consider an optimal control problem
for the monodomain equations (see, e.g., [96, 76] and Example 2.1.2) on a simple
2D unit square domain € = (0,1)2. This system describing the electrical activity of
the heart consists of a parabolic PDE for the transmembrane voltage v, coupled to
pointwise ODEs for the gating variable w. As membrane model, we use the Rogers-
McCulloch variant of the Fitzhugh-Nagumo model [104]. As in Example 2.1.2, the
state system is given by

vy =V -0Vv — Lion(v,w) + Io in Q x (0,T)

6.5
wy = G(U,U}) in x (O,T), ()
with
Tion(v,0) = go(1 = =) (1= =) + mow
on) 'Uth ,Up 1
v
G(v,w) = 772(17 — 13W)
P

81

6. Numerical Results

0.001 T T
recurrence —a—
true residual —e—
g
15)
=
= 0.0001 |
=
=
8
&
le-05

0 5 10 15 20 25 30

iteration

Figure 6.8.: Behavior of CG in Newton iteration 6 for the Kolmogorov exam-
ple (6.3), (6.4). The true residual denotes the residual without quan-
tization of the linearized state. In iterations 3 and 6 the residual was
re-computed.

and homogeneous Neumann boundary conditions and initial values. In this 2D
model o : R? — R**? and g,7;,vp, vy, € Ry are given parameters (see Table 6.5).
For details, see [94].

il Oit g Uth Up m 2 3
Q7 tem™] [Q7!em™!] [mS/cm?] [mV] [mV] [mS/cm?]
3-107% 3.1525-107* 1.5 13 100 4.4 0.012 1

Table 6.5.: Electrophysiological parameters (adapted from [35]).

Before turning to the actual 2D optimal control problem, a snapshot of a 3D sim-
ulation is shown in Figure 6.10. An excitation I, = 100 for 1ms in a small ball of
radius 1 around the coordinate (—0.9,1.7,1.1) leads to a excitation wave traveling
through the domain. This simulation was performed using heart geometry from [59].
In this snapshot, the mesh consists of 2251 410 elements/403 192 vertices on 5 levels.
Encoding of the 806 384 degrees of freedom took 4.9s, achieving a compression factor
of 15.4 for a relative L*™-error of order 10~ in the transmembrane voltage v and
1072 in the gating variable w.

82

6.4. Monodomain Equations

0.01 0.01

recurrence —a— recurrence —a—
true residual —e— true residual —e—

0.001 0.001

residual norm
residual norm

0.0001 0.0001
1 2 3 4 5 6 1 2 3 4 5 6 7 8 9

iteration iteration

Figure 6.9.: Behavior of CG in Newton iteration 5 for the Kolmogorov exam-
ple (6.3), (6.4). The true residual denotes the residual without quanti-
zation of the linearized state. Left: new residual replacement. Right:
restart strategy from [37].

For the optimal control problem initial values

101.0 in Qe
’U(;L”O) _ { m exl

0 otherwise

w(z,0) =0 in Q.

are prescribed. Here, Qe is a circle with midpoint (0.5,0.5) and radius 0.04. The
external current stimulus Io(x,t) = xq,(z)u(t), where the control u is spatially con-
stant on the control domain Q. = [0.37,0.4] x [0.45,0.55] U[0.6, 0.63] x [0.45, 0.55].

The evolution of the transmembrane voltage for u = 0 is depicted in Figure 6.11.
For encoding of the computational grids we used an implementation the algorithm
presented in [69, 136], which is available in JavaView [1], a toolkit for mathematical
geometry processing and visualization. Corresponding compressed factors for state
values and adaptive mesh are presented in Figure 6.12, both with and without
delta-encoding. Using delta-encoding in time more than doubles the achieved overall
compression factor for the state values. The bits/vertex for connectivity encoding are
reduced to 66% compared to compressing each timestep separately, see also [38].

For the objective functional we choose

1 2 @ 2
Ty, u) = 5 [vllz2(0,x0m) + 5 1ellz20m) (6.6)
i.e. we aim at damping out the excitation wave. We set

Qops = 2\ ([0.35,0.42] x [0.43,0.57) U [0.58, 0.65] x [0.43,0.57]),

83

6. Numerical Results

Figure 6.10.: Reconstructed 3D solution 15.3 ms after excitation (compression factor
15.4, relative L>®-error 10™%). Left: transmembrane voltage. Right:
computational grid (403192 vertices).

Figure 6.11.: Uncontrolled solution v at 1ms, 3ms and 6ms for the monodomain
equations (6.5).

T=4,and a =3-1076.
The optimality condition j'(u) = 0 is given by
au—{—/ pdr =0 ae. in (0,7), (6.7)

where p is defined through the adjoint equations

pr=—-V-0Vp—+ [Iion]vp + qu — UlQObs in Q x (0, T)

@t = —[Lion]wp — Guw (v, w)q in Q x (0,7) (6.8)

with homogeneous terminal and Neumann boundary conditions. For application of
the reduced Hessian to a vector du the following linearized-state equations (6.9) and

84

6.4. Monodomain Equations

100)) with delta-encoding —s— 0.8 with delta-encoding —s—
90 } without delta-encoding —e— | 07 without delta-encoding —e—
= SO
) 0.6 |
g g5 .
B c 0
g so0f 504}
=% 40 | 2
g 03}
o 30}
20 | 0.2}
10 0.1
0 1 2 3 4 5 6 0 1 2 3 4 5 6
time [ms] time [ms]

Figure 6.12.: Compression factor of the state values (uncontrolled solution) for § =
1072 (left) and bits/vertex for connectivity encoding (right), both with
and without delta-encoding between timesteps.

adjoint-for-Hessian equations (6.10) have to be solved for dp, dq :

dvy =V - (6Vév) — ([Lion], 00 + [Lion),, ow) + xo.0u in Q x (0,7T)

dwy = 25, - Non30w in Q x (0,7) (6.9)
Up
with homogeneous initial and Neumann boundary conditions, and
Spr = —V - V8p + [Lion]odp + 226q + 21 in Q x (0,T)
Up (6.10)

3¢t = —[Lion]w0p + 12130q + 22 in Q@ x (0,7),

also with homogeneous initial and Neumann boundary conditions. Here z;, and 2z
are given by z1 = dv|qobs — [Lion]ww POV — M1 dw p and zo = —n; Jvp. A detailed dis-
cussion of this optimal control problem and the derivation of the optimality system
can be found in [93, 37] and the references therein.

6.4.1. Error Estimation

For ease of notation, let us consider the abstract semi-linear problem

0
—V-oVyr =gi(y) inQx(0,7)
t N (6.11)
% —gay) QX (0.T),

together with homogeneous initial- and Neumann boundary conditions.

85

6. Numerical Results

We apply our findings of Section 5.1 to the defibrillation problem. For the error in
the reduced gradient, the error equations are given by

Oe . . .
87: -V Uvep = *[Iion]vep - Gveq + [Iion]vvgvep + [Iion]vwswep
+ 5v|ﬂobs - [jion}vvevﬁ - [fion]vwgwﬁ in 2 x (0, T),
Oeg - - < rf .
E = [Iion]wep + Gweq + [Iion]wvg’up + [Iion}wvg'uep in © x (0, T),
A (6.12)
where Tion = Lion (0, W).

For application of comparison principles, the backward-in-time system was trans-
formed to a forward system by the standard change of variables t =T — 7.

Using the abbreviations

CL(.Z', t) = _[Iion]v(xy t) + [Iion]vvgv + [Iion]vwfw

b(z,t) = —n2/v, = const < 0

c(@,1) = X (T)E0(T,) — [fion]vv($a t)ey(z,t)p(z,t) — [jion]vwsw(x,t)ﬁ(x»t)
d(l‘, t) = [jion]w + [jion]wvgv

e(x,t) = —nams = const < 0

f(xv t) = [fion]wvg'u (l’, t)ﬁ(l’, t)a

we can formulate the reaction function g(y) in the abstract system (6.11) as

g1(y1,y2) = ayr +by2 + ¢, ga(y1,y2) = dyr + eya + f. (6.13)

In our case, the transmembrane potential © and thus d(z,t) may be negative. More-
over, we have
091
Y2
Hence g is not quasi-monotone non-decreasing. With the aid of Theorem 5.1.8 and
a sub-solution y, we construct a super-reaction function:

=b<0.

_ b<0
g91(y) = sup g1(z) = ay1 + ¢+ sup bzo = ayr +c+ bgz
{zly<e<y, z1=y1} {z2ly,<z2<y2}
(6.14)
92(y) = sup gp(z)=ep+f+ sup dz.
{zly<z<y, zo=y2} {z1ly,<z1<u1}

We need to derive a sub-solution y to problem (6.11) with right-hand-side (6.13).
For simplicity, y should be constant in time and space.

86

6.4. Monodomain Equations

Lemma 6.4.1. Let e/, ™ > 0 and

Q(.’L‘,t) == (q}nax + H[jion]vvﬁHLoo(QX(O,T))gi;nax +m HﬁHLOO(QX(O,T)) Eg;lax) ’

max

S (@,) = = |Pl| o (axc(0,1)) Ev

Then the constant function y = (0, min{—c/b, —i/e})T is a sub-solution to (6.11)
with right-hand-side (6.13).

Proof. As y is constant in z, and ¢, the derivatives vanish. It remains to show that
0 < ay, —I—bg2 +cand 0 < dgl + ey, + f. As b,e <0, by definition ¢, f < 0, and
thus Yy < 0. We have:
ay, + by, +c=bmin{—c/b, —f/e} +c>bmin{—c/b, —f/e} +c
=—c+c=0, if —c/b<—f/e
= —b(f/e) +c> —b(c/b)+c >0, if —c/b>—f/e,

and

dy, +ey, +f= emin{—c/b, —f/e} + f > emin{—c/b, —f/e} + f
=—e(c/b) +f>—e(fle)+ >0, if —c/b<—f]e
=—f+f=0, if —c/b>—f]e.
]

Remark 6.4.2. Note that in Lemma 6.4.1 ¢, f are defined using p instead of p. In
the implementation, the occurring norms can be evaluated during the adjoint solve,
such that these quantities are available.

With this sub-solution at hand, we note for the super-reaction function g, that

sup dxn < sup |d|z = [d|yr.
{z1/0<21<y1} {z1(0<21<y1}

Thus we set

g1(y) =ay; + by, +¢
1(v) = av + by, (6.15)
2(y

92(y) = |dly1 +ey2 + £,
where we modify g given by (6.14) further, replacing ¢ and f by upper bounds

(@,8) = X (@)5™ + [LionJooB(, 1) €]™ + [mp(a, 1) el ™

o ! (6.16)
f(z,t) = [mp(z,t)[eg™,

87

6. Numerical Results

where e™#* = 1 are upper bounds for the quantization error of the state solutions.

Denote by e;**, eg*** the solution of the adjoint error equations (6.12) with modified
right-hand side (6.15). Then, using Theorem A.2, we get that

max
ep <e eqg<e

p — 4

The error in the adjoint-for-Hessian due to quantization of the linearized-state tra-
jectory is estimated by the same equation with modified term c(z,t),

C(.T,t) = |Xﬂob55v - [jion]vvgvgp - [fion]vwgw(ipL

As in the scalar case, the error equations are solved once with right-hand side 1,
and scaled with the correct right-hand side for evaluation of the error.

6.4.2. Newton-CG

As in the previous examples, the optimization progress is not affected by lossy com-
pression of the trajectories (Figure 6.13). We show the corresponding compression
factors for state and adjoint in Figure 6.14. As before, the quantization tolerances
decrease during the Newton iterations. In contrast to the results presented in [37],
here the quantization tolerance for the adjoint is chosen adaptively as well. The
method is summarized in Algorithm 7, adapting Algorithm 5 to the present exam-
ple.

Algorithm 7 Newton-CG with adaptive quantization for the monodomain example
1: fix initial 67,67 (provided by user)
2: fori=1,... do
3. solve the state equations (6.5), encode v, w using 6
solve the adjoint equations (6.8), decode v, w using §¢, and encode p using 5;‘
check optimality conditions, if optimal: end
solve the error estimator equations (6.12) with right-hand-side (6.15), (6.16)
on a coarse, fixed mesh
7. use the CG method (Algorithm 4) to compute the Newton update using the
quantization tolerance provided by equation (5.45) for encoding and decoding
the solutions Jv, Jw of the linearized-state equations (6.9) (v, w, p are decoded
using 47, 67)
8: update the control I, using the Armijo rule for the step size
. estimate new values for 67, ,, 67, using equations (5.43), (5.51), (5.52)
10: end for

88

6.4. Monodomain Equations

For one solution of the state equation on a fixed mesh with 16 641 vertices, 408s CPU
time were needed (averaged over all iterations), additionally compression required
24.6s. Solution of the adjoint equation required 388.1s on average, with additional
11.2s for compression. The error equations were solved on a mesh with 4225 vertices;
error estimation required 96.6s CPU time per iteration. Overall, encoding/decoding
incurred an overhead of 4.5%. During the eight Newton iterations, 25 linearized-
state and adjoint-for-Hessian solves were required. On average, one Hessian-vector
product required 1272.5s CPU time; the overhead for error estimation thus amounts
to less than 2% per iteration.

T T T
compressed —a—
uncompressed —e—

0.14
_ 0.01
&
S
| 0.001
=
0=
T 0.0001
le-05
le-06 1 1 1 1 1 1
1 2 3 4 5 6 7 8

iteration

Figure 6.13.: L?-norm of the reduced gradient with and without compression for the
monodomain example (6.5), (6.6), using Newton-CG.

We show the behavior of the CG method during Newton iteration 7 in Figure 6.15.
For comparison, the version without residual replacement is plotted as well, showing
stagnation of the true residual (computed without quantization of the linearized-
state trajectory) before the required accuracy is reached. Three residual replace-
ments were computed, in CG iteration 3, 4, and 6 with compression factors of 13,
11.2, and 10.2. For this example, very high compression factors were achieved during
the CG, ranging between 44 and 4758.7 over the course of the optimization. Overall,
eight residual replacements had to be computed.

89

6. Numerical Results

0.001 T T T T T T T T 0.001

0.0001 F
0.0001 }

le-05

1606 | Le-05 ¢

Le07 1606 |

le-08 |

1e-07
le-09

1e-10 N N N N N N N N 1e-08

iteration iteration

Figure 6.14.: Adaptively chosen quantization tolerances ¢ and corresponding com-
pression factors for state (left) and adjoint (right) for the monodomain
example (6.5), (6.6) using Newton-CG.

6.4.3. BFGS-Quasi-Newton

The same optimization problem is solved using the BFGS-quasi-Newton method.
For ease of implementation, the timestep size in the linearly implicit Euler method
is fixed to dt = 0.04. Spatial adaptivity is performed individually for state and
adjoint using the hierarchical DLY error estimator [26], with a restriction to at most
25000 vertices in space. The adaptively refines grids were stored using the methods
from [136], which reduced the storage space for the mesh to less than 1 bit/vertex.

Figure 6.16 shows the progress of the optimization method. For trajectory compres-
sion, different fixed quantization tolerances as well as the adaptively chosen § were
used. We estimate the spatial discretization error in the reduced gradient by using a
solution on a finer mesh as a reference. Clearly, lossy compression has no influence
on the optimization progress, up to discretization error accuracy.

The adaptively chosen quantization tolerances for the state values are shown in Fig-
ure 6.17. In the first iteration, a user-prescribed tolerance was used. The estimated
condition number of the reduced Hessian varies between 200-230. Again we note
that the adaptively chosen tolerances are too restrictive due to overestimation of the
error and the fixed tolerance for the discretization.

For comparison of BFGS and Newton-CG, we apply both methods on a fixed mesh

with 8321 vertices and dt = 0.04, with and without compression. We stop the
optimization when the L?-norm of the reduced gradient is below 1076.

90

6.4. Monodomain Equations

1e-05)) " recurrence —s— 3 1e-05))) recurrence —e— 7
true residual —e— true residual —e—

E 1e-06 é 1e-06 |
g g
= =
= =
] =]
S 1e07 S 1le-07 }

1e-08 le-08

1 2 3 4 5 6 1 2 3 4 5 6 7
iteration iteration

Figure 6.15.: Behavior of CG in the final Newton iteration of the monodomain ex-
ample (6.5), (6.6). The true residual denotes the residual without
quantization of the linearized state. Left: behavior without residual
replacement. Right: with residual replacement.

While the Newton-CG method is faster in terms of convergence speed (10 Newton
iterations vs. 15 BFGS-iterations), the number of PDE solves during the BFGS
method is drastically smaller, see Figure 6.18. On average, 16 CG iterations per
Newton iteration were necessary in this setting, each requiring the solution of two ad-
ditional PDEs. The slightly larger number of PDE solves for Newton-CG with com-
pression compared to the uncompressed version is due to residual re-computations.
For both, Newton-CG and quasi-Newton, we used a fixed quantization tolerance of
§Y = 1073 for the state, leading to a similar convergence behavior as in the uncom-
pressed case. For the Newton-CG, the same quantization tolerance is used for the
adjoint, 6 = 6, while the linearized-state is quantized adaptively as before. The
computed controls of both methods show a good agreement (Figure 6.19).

91

6. Numerical Results

1 T T T T T
reference —a—
adaptive —e—
factor 27.5 —x—
factor 38 —s¢—
0.1 ¢
)
S
= 0.01 }
=
=
0.001
0.0001
0

iteration
Figure 6.16.: Optimization progress of BFGS for the monodomain example (6.5),

(6.6), using different quantization tolerances for the state trajectory.
No delta-encoding between timesteps was used.

0.1 T T 1 1 1

21.3

0.01 f

0.001

0.0001

1e-05 L L L L L

iteration

Figure 6.17.: Adaptively chosen quantization tolerances §¥ and corresponding com-
pression factors for the monodomain example (6.5), (6.6) using BFGS.

92

6.4. Monodomain Equations

1 T T T
Newton-CG (uncompressed) —e—
Newton-CG (factor 22) ——
0.1} BFGS (uncompressed) —e— |
BFGS (factor 22)
N 0.01 E
&
8
= 0.001 :
2
.\D
T 0.0001 F J
1le-05 | b
16'06 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
iteration
1 " Newton-CG (uncompressed) —a
i Newton-CG (factor 22) ——]
BFGS (uncompressed) —e—
0.1 BFGS (factor 22) —— |
5 0.01 } 1
2
=
g 0.001 E
=
0.0001 } F
le-05 F E
1e-06 L L
1 10 100 1000

PDE solves

Figure 6.18.: Optimization progress of BFGS and Newton-CG for the monodomain
example (6.5), (6.6). Top: iterations. Bottom: PDE solutions.

93

6. Numerical Results

-1000
-1500

= 22000
3

-3000

-3500 Newton-CG —a— |
BFGS —e—
-4000 L L L L L L L L L
10 20 30 40 50 60 70 8 90 100

time ¢

Figure 6.19.: Computed controls of BFGS and Newton-CG for the monodomain ex-
ample (6.5), (6.6).

94

7. Beyond Pointwise Error Control

Partially due to the worst-case error estimation, the resulting adaptive quantization
tolerances are too restrictive, see Chapters 5 and 6. While, in the estimates, we
assume the quantization error to have a single sign, this is not the typical case
in the numerical experiments. There, the error is mostly oscillatory, such that it
is damped due to the smoothing properties of parabolic PDEs. To increase the
efficiency of the compression, it is of interest to estimate and bound the error in
different norms than L°. This can be achieved by modifying the transform-part
of the encoding scheme, and generalizing the hierarchical basis-decomposition of
Section 4.2 to a wavelet-decomposition.

Consider again the error in the adjoint equation due to lossy compression (Theo-
rem 5.1.1). For the simplified case of a linear state equation and a tracking-type
functional, we have

~

Cy(y7 u)*e,\ = _5y7

with homogeneous boundary- and terminal conditions (cf. Example 5.2.2). For solv-
ability of this equation, we require only £, € L*(0,T;V*), with V* = H~1({), and
get the a-priori estimate [144]

lexllw o) < Clleyll pz0.1m-1(0)) »
with [[yllw 0,7y = 1Wll 20,0y + 19/ L2071+ (see also Chapter 2).
In view of this function space setting, bounding the compression error in H~!(Q)
would be preferable, penalizing constant parts of the error and allowing for larger,
but oscillatory errors.
In this chapter we are again concerned with spatial compression only, as the temporal
compression is lossless. In Section 7.1, we discuss the ingredients of wavelet-based

compression in some detail, before turning to the actual construction of suitable
wavelet bases in Section 7.2. First numerical results are given in Section 7.3.

95

7. Beyond Pointwise Error Control

7.1. Wavelet-Based Compression

Let H be areal Hilbert space with scalar product (-, -), and let {S;};>0 be a sequence
of subspaces S; C H such that

S;j C Sj41 and clos|) S; = H, (7.1)
7=0

i.e. the sequence is strictly increasing and dense in H. Let further
v={y;|ieI}CH

be a wavelet basis, where Z denotes some suitable index set. In view of the hierar-
chical finite element spaces we split up the index i = (j, k), where j later refers to
the grid level and k € K; specifies the basis function. A function f € H can thus be
decomposed as

F@) =" &utbjn(). (7.2)

7=0 kEICj

The collection W is called H-stable if and only if the expansion (7.2) is unique for
every f € H and for some fixed positive weights w;, the norm equivalence

00 1/2 00 00 1/2
ALY ub) | T e <o Tuhd) 03
j=0 keK; j=0 kek; H 7=0 kek;

holds, where the constants cj, ¢y are independent of f, see Dahmen [19]. H-stability
means that the collection W is a Riesz basis of H. In the following we use z < y to
express that x can be bounded by a some constant multiple of y, and use z ~ y if
xSyandy <.

Fix some highest level I with subspace S; in the sequence (7.1). For a function y € S;

we get the expansion
l

y(z) = Z Z i kVik(T).-

J=0 kek;

The norm equivalence allows for two different compression strategies for such a
function y, see, e.g., DeVore [30]. If we allow for a given maximum number of n
coefficients, the smallest error is achieved by selecting those coefficients for which

ikl 15kl

96

7.1. Wavelet-Based Compression

is largest. Typically this strategy is modified, using thresholding to avoid sorting;:
all coefficients for which

&Gkl 195kl > €

for some given € > 0 are retained. This can be efficiently implemented using the
EZW (embedded zerotree wavelet) algorithm [113].

The second method is more in the flavor of this thesis, and can be seamlessly included
into the transform coding framework sketched in Figure 4.1. Here, the coefficients
&j.k are replaced by an approximation éj,ka i.e. their quantized version, such that for
some given tolerance e

19— yllm <e (7.4)

holds. These coefficients éj7k are then stored using entropy coding. From the norm
equivalence (7.3) we can derive a quantization tolerance § to ensure (7.4). Keeping
the coarse grid values uncompressed, i.e. lossless, we have

[
19— llE ~) wii(Ein —&n)” (7.5)
7=1 kE]Cj

2

Error equilibration, i.e. requiring w?k(éjk —&ik)” < 62 Vj,k, leads to a uniform

quantization tolerance
€

0 — . (7.6)
(Zzzl‘lcj‘)lﬂ

The sharpness of the estimated § depends on the condition of the wavelet basis,
i.e. the ratio co/c1 of the constants in the norm equivalence. The correct choice for
the weights w; ;, depends on the actual wavelet constructions and the norm ||-|| ;;, and
will be discussed in the numerical examples, Section 7.3. When a norm equivalence
is not available, the quantization tolerance § can be determined using the triangle
inequality. This will lead to smaller § and thus to worse compression factors. Using
the wavelet basis, the error norm ||g — y||g can be estimated as

! !
1= vller =32 3 Er—Gadin|, <D0 ik — &llialla. ()
J=1 kek; J=1kek;
Requiring |:§jk — &kl <0 V), k leads to a quantization tolerance
€

0SS =1
Zj:l’lcj’

again up to constants. For using this bound, an estimate for |[¢); ||z has to be
available.

(7.8)

97

7. Beyond Pointwise Error Control

7.1.1. Multiresolution Analysis

Before turning to the construction of suitable wavelet bases, we recapitulate some
facts on multiscale decompositions using wavelets as introduced above. There exists
a large amount of literature on multiresolution analysis and wavelet theory; for
a more detailed discussion than given here, we refer to Dahmen and coworkers
[12, 18, 19] and Sweldens [122], on which this and the following section are based.

We start from the subspace sequence {S;};>0 satisfying (7.1). Let ®; = {p; |
k € K;} be a Riesz basis of S; with finite index sets K;. Such a sequence of
closed subspaces is called multzresolutzon analysis, the functlons ¢ are called scaling
functions. A dual multiresolution analysis {S }j>0 consist of closed subspaces 5’ C
H with Riesz bases given by functions ¢;; dual to ¢;, satisfying blorthogonahty,
ie.
((p]"k, @j,k’) = 5k,k’ for k‘, k/ S]Cj.

The nestedness of the spaces {S;};>0 together with the stability of the bases ®;
implies the existence of filter coefficients {h;; | | € K;41} such that the refinement
relation

Z Pk 1j+1, (7.9)
lE’Cj+1

holds.

Due to (7.1), Sj41 can be decomposed as
Sip1 =80 Wj, (7.10)
with the complement space W; given by
W, = closspan{v; | k € M}

for M; = Kj11 \ K;. If ®; U, with ¥; = {¢; | kK € M;} is uniformly stable, the
functions 1, ;. are called wavelets.

On irregular, unstructured meshes, wavelet constructions yielding orthogonality
W; L S; typically are not available. Orthogonality thus has to be replaced by a
less restrictive condition. One suitable possibility is to require orthogonality of W;
not to S, but to a dual space Sj, W; L S’

Similar to Sj, the dual wavelet space Wj is given by a basis consisting of dual
wavelets v; ,,, biorthogonal to the primal wavelets,

(Vjms jrmr) = 6, j# e for mym’ € M;.

98

7.1. Wavelet-Based Compression

These dual spaces Wj complement S’j in S’jﬂ and are orthogonal to S, Wj L S;.
For any function f € H, the dual wavelets 1;; are used to define the coefficients
&k = (f, k) in the representation (7.2).

Like the scaling functions, the wavelets satisfy refinement relations
Vjm = Z 9j,m.kPj+1k- (7.11)
kEICjJrl

Additionally, also the dual scaling functions and dual wavelets fulfill similar refine-
ment relations with coefficients h, g.

Repeating the decomposition (7.10), the space S; for some fixed [can be written as
the sum of complement spaces,

with the multiscale basis

-1

;= {pok | k € Ko} [J{tjn | k € M;}.

=0

By density of the decomposition (7.1),

W = {pok | k € Ko} ({wsn | k € My}

j=0

is a candidate for a basis of the space H.

7.1.2. Fast Wavelet Transform

To use wavelet-based compression during the numerical solution of optimal control
problems, it is of utmost importance that the transform from the single scale repre-
sentation of the finite element solution y;, € S; to the multiscale representation (7.14)
(the wavelet transform, in signal processing often referred to as analysis), and vice
versa (the inverse wavelet transform, or synthesis) are computationally inexpensive.
This is achieved with the fast wavelet transform.

Let be given a set of single-scale coeflicients on a fixed, finest discretization level [,

{yir | k € K} such that y = > yirpik
ke,

99

7. Beyond Pointwise Error Control

Computing from this single scale representation the multiscale coefficients
{gj,m ‘ 0<s< l,me Mj}’ {yo,k ‘ ke ICO}

such that .
y = Z Yo,kPok + Z Z &mWjm
keKo j=0 meM;
is performed by recursive application from [— 1 to 0 of
vik= Y hpewirs and Gm= Y Gmayi (7.12)
1L (j.k) 1L (j,m)

The inverse transform, converting a multiscale representation to the single scale, can
be computed by

visri = > Mgkt Y. Gimi&im (7.13)
keK(5,) meM(j,l)
for j =1,...,0 — 1. In these formulas, the sets used for summation are given by

M(5,1) = {m € M; | gjmu # 0}
£(G,m) = {1 € Kja | m € M3, 1)}
/C(j,l) = {k (S IC]‘ ‘ hj}kJ 75 0},

with analogous definitions of L etc., see [122]. If the size of each of the sets K, L, /6, L
is uniformly bounded for all j, k,[, transform and inverse transform have linear
complexity.

7.2. Construction of Wavelet Bases

After the general discussion above, we turn now to the actual construction of suitable
wavelet bases satisfying stability and vanishing moment conditions. After a short
general introduction of the lifting scheme, we are concerned with wavelets based on
finite elements.

For the wavelet decomposition of a finite element function y € 5; let
SoCcSiC---CS CH

be a sequence of linear finite element spaces, constructed over uniformly refined
simplicial triangulations

%C’Tlc...c’ﬁ

100

7.2. Construction of Wavelet Bases

of a polyhedral domain Q C R%. We get

yn(x) = Z & rjk(x), (7.14)

l
J=0 kek;

with K; = Nj, the number of nodes on grid level j. Relation (7.3) yields the
equivalence of the ¢?-norm of the coefficients and the norm of the function 1 for
suitably chosen wavelets 1), .

7.2.1. Lifting

The lifting scheme due to Sweldens [122] is an easily implementable method to con-
struct wavelet bases satisfying vanishing moment conditions, starting from some
initial multiresolution analysis. It is a special case of the more general stable com-
pletion approach presented in Carnicer, Dahmen, and Pena [12].

TheoNrem 7.2.1. [122] Let an initial set of scalmg~functions go?’k, 959’,1@ and wavelets
Lb?’k,?ﬁ?’k be given, together with coefficients h;)-,k’l,hak’l,g?’m’l,g?’m’l from the refine-
ment relations. Then, for arbitrary lifting coefficients s; i m, the scaling functions
and wavelets defined by

Pik = ‘P(g)',k;
Bik = MY+ > SikmPim
l m
7.15
Vjm = ‘/’?,m - Z 5j,k7m¢?,k ()

k
N 5
Vim = D GjkmPi+1

l

are a collection of biorthogonal primal and dual scaling functions and wavelets. They
satisfy refinement relations with coefficients given by

_ 10
B = hj g

hj,k,l = h’?,k‘,l + Z Sj,k,mg?,m,l
" (7.16)

_ 0 . 0
gj7m7l - gj7m7l - Z Sj’k’mhjvkyl
k

-0
gj7m7l - gj,m,l’

101

7. Beyond Pointwise Error Control

The freedom in the choice of the coefficients s; 1 ,,, can be used to impose conditions
on the wavelets, like vanishing moments. The lifting procedure can be included
into the fast wavelet and inverse wavelet transforms in a straightforward way, see
Algorithm 8.

Algorithm 8 Fast lifted wavelet transform

Stage 1: Yjk Z ﬁ?,k,l Y1, Vk € N
l

Sim € Z!??,m,z Yj+1. Vm € Nji1 \ N
l

Stage 2: Yik < Yjk + Z Sjkm Ejm Yk € N
m

The lifting construction requires an initial set of scaling functions and wavelets. In
the linear finite element setting at hand, the hierarchical basis provides a simple
initial setting. There, the scaling functions go?,k are modified finite element basis
functions on level j,

i1 n = @j,k_%2m¢j7mv ke'/\/‘j
o Vi ks k€ Nji \ N,

while the finite element basis functions corresponding to the vertices on level j + 1
define the wavelets w?’m = gp? 4+1,m- The formal dual of these interpolating scaling
functions are Dirac functions Lﬁ?k(a:) = §(z — xy), where z;, as usual denotes the
coordinate of vertex k € Nj. Similarly, the dual wavelets are given by

ik :5(£U—l‘k)—% Z 0z —).

meN;11\N;

As the hierarchical basis has no dual in L?, and thus is not a Riesz basis for L?, it
can not be used for constructing compression algorithms bounding the L?-error, but
serves as a starting point for the construction of suitable wavelet bases.

7.2.2. Finite Element Wavelets

In this section we present two lifting-based constructions, starting from the hier-
archical basis decomposition. These constructions have the important advantage
that they can be easily integrated into existing finite element codes. Further, the
created dual wavelets have small support, allowing an efficient implementation and

102

7.2. Construction of Wavelet Bases

thus induce only a minor computational overhead. On the downside, these con-
structions do not yield H!-stable bases. Additionally, two other approaches are
shortly summarized, which yield H~! equivalence, but drastically increase the com-
putational complexity and implementation effort. All constructions are described
for two space-dimensions, but can readily be extended to 3D.

7.2.2.1. Linear interpolatory vertex bases

The first construction, described by Schroder and Sweldens [109], as well as Ama-
ratunga and Castrillén-Candés [4] adds one vanishing moment,

/ jk(z) de =0,
Q

to the wavelet construction. This is enforced using only the two parent nodes of a
vertex m € Nji1 \ Nj, such that the resulting wavelets and dual wavelets have local
support.

The scaling functions are defined by the refinement relation
1
Pik = Pkt > irim (7.17)
men(j,k)

with n(j, k) = {m € Nj41 \ N, | k € Nj is a parent of m}. Defining

Ik = / wjk(z) dz,
Q

the wavelets are constructed using the lifting coefficients s;xm = Ljt1,m/(2Lk)-
This gives the refinement relation

Vim = Pjtlm— D SikmPik- (7.18)
keA(jm)

There, A(j,m) = {k € N | m € N1 \ Nj is a child of k}. For illustration, a
resulting wavelet is depicted in Figure 7.2 (top).

In his thesis [14], Castrillén-Candds shows that the multiresolution analysis resulting
from these relations yields, for functions f € H3(f2), the norm equivalence (7.3) with
H = L?*(Q) and weights wj; = 1/h;j, where h; is the characteristic size of the level
J mesh, i.e. for uniform refinement h; ~ 277,

103

7. Beyond Pointwise Error Control

7.2.2.2. Construction due to Cohen et al.

Again starting with the hierarchical basis, Cohen et al. [16] develop a lifting-based
construction of biorthogonal wavelets on polygonal domains. To take care of irregu-
lar grids and boundary effects, they divide the nodes of the triangulation into three
classes, and choose the lifting coefficients adapted to each class.

This classification is created as follows. From the initial triangulation, all common
sides of two triangles such that these two triangles form a parallelogram are deleted.
The resulting object is called frame. A vertex is called exceptional, if it lies on
the intersection of different line segments of the frame. The remaining vertices on
the frame form the second class, the frame nodes. All remaining vertices are inner
nodes, see Figure 7.1. For their construction they require that at most one node
in a triangle is an exceptional node, which is fulfilled if the initial triangulation is
sufficiently fine. In the following A(j,m) and I, are defined as in the previous
section.

Figure 7.1.: Classification of vertices (adapted from [16]). Left: initial triangulation
of a domain €. Right: frame. On the left, exceptional nodes are marked
red, frame nodes blue, the remaining inner node green.

Exceptional nodes k are lifted using

(7.19)

R {Ij+1’m/1j7k, k is exceptional and a neighbor of m
]7 7m - °

0, otherwise

104

7.2. Construction of Wavelet Bases

For frame nodes two cases need to be distinguished. If both parents of m are on the
frame, the lifting coefficients are given by

_ {éfm,m/fj,k, ke A(j,m)
Sj7k7m - °

i (7.20)
0, otherwise

If only one parent ky € A(j, m) is on the frame, the lifting coeflicient is nonzero only
for this vertex:

1; L, k=k
S = { i/ i =Ry (7.21)
0, otherwise

Finally, for the inner nodes, the lifting coefficients are given by

3Liim/I: ke A(j
Sjkm = {4 J+1, / Jiks (]7m) (722)

7%Ij+1,m/lj,ka ke T(]a m)

Here, T'(j,m) C Nj \ A(j, m) denotes the vertices of the triangles of level j which
have m € Nj11 \ N, as midpoint of an edge and are not the parents of m. A wavelet
for inner nodes is depicted in Figure 7.2 (bottom), where it can be compared to the
wavelet resulting from the construction of the previous section.

In [16] it is shown that this construction yields dual scaling functions in H® with
§ < 0.114, and thus norm equivalences for H*, —0.114 < s < 3/2. Moreover, for
0<s<3/2and 0 < 3§ < 0.114 the estimates

gl e < €270 and (1@l s < C27EHD (7.23)

hold, with C' independent of j and k. By the refinement relation (7.11), these
estimates also hold for the wavelets v, ;.

7.2.2.3. Other approaches

To conclude the section, we present two additional wavelet constructions, which
yield the required norm equivalences.

In [20], Dahmen and Stevenson construct finite element wavelet bases, achieving
H?#(Q)-stability for —3/2 < s < 3/2. Nguyen and Stevenson [95] modify this con-
struction to improve the conditioning of the wavelets, i.e. the ratio cg/c; of the
constants in the norm equivalence (7.3). Their construction is split in two parts.
First, wavelets on a reference element are computed, depending on the space dimen-
sion and the requested number of primal and dual vanishing moments. In the second
step, adaptation of these wavelets to the actual mesh and boundary conditions are

105

7. Beyond Pointwise Error Control

Figure 7.2.: Comparison of lifted wavelets constructed due to Section 7.2.2.1 (top)
and Section 7.2.2.2 (bottom).

given. This construction can be implemented efficiently, and allows a fast inverse
wavelet transform, i.e. the transformation from wavelet to nodal basis. However,
as the construction does not yield localized dual wavelets it is not suitable for use
in compression algorithms, as the computational cost for the transformation from
nodal to wavelet basis is prohibitive.

As a continuation of that work, Stevenson [118] gives a construction for biorthogonal
wavelets on nonuniform meshes, which also give H*-stability for |s| < 3/2, but
in addition yield locally supported dual wavelets. The construction is based on
standard Lagrange finite elements on meshes created by uniform dyadic refinement
of an arbitrary initial mesh. Concrete realizations are given for examples in 1D
and 2D. On the downside, already in 2D the constructions are rather complex, and
computationally more expensive than the approaches presented above.

There are many other approaches available in the literature. Besides numerous
wavelet constructions in special settings, different ideas for stabilizing multireso-
lution decompositions can be found. One example, using wavelet-like basis func-

106

7.3. Numerical Results

tions to modify the classical hierarchical basis, was derived by Vassilevski and
Wang [132, 133]. They achieve L2-stability by subtracting from the hierarchical basis
functions their approximately computed L2-projection on coarser grid levels. While
their intention is the construction of an efficient multilevel preconditioner, it can be
used for compression as well. As a complete overview is beyond the scope of this
chapter, we restrict ourselves to the constructions given in Sections 7.2.2.1, 7.2.2.2
for the numerical experiments.

7.3. Numerical Results

As a first step, we consider the two test functions fi, f3 of Section 6.1,

fi(z) = sin(12(zg—0.5)(x1—0.5)), f3(z) = sin(50(xo—0.5)(z1—0.5)), =z € [0,1]>.

For comparison, the hierarchical basis transform together with L°°-quantization was
performed with a tolerance § to achieve interpolation error accuracy. In a second
step, the two wavelet transforms described in the previous section were used to
compress these functions with tolerances to keep the same L2, resp. H™!, accuracy
as the hierarchical basis compression.

For determination of the quantization tolerance ¢ for the wavelet compression, we
combine (7.6) with the decay estimates (7.23) yielding weights w; = 277 for con-
trolling the L?-norm. For H~! we use wj;, = 272, i.e. (7.23) with s = —1. Although
the regularity proofs do not give H~! equivalence, this heuristic choice works very
well in our examples. In Figure 7.3 the behavior of the H-norm of the wavelets with
regard to the grid levels is shown; a good agreement with the assumed decay can be
observed. Note that in the finite element setting at hand, in equation (7.6) we have
>, IK;1 = [N\ Nol, i.e. the number of vertices is the finest mesh without the coarse
grid nodes.

The results for encoding fi, f3 are depicted in Figure 7.4. For keeping the L? error
bound, no notable increase of the compression factor is achieved. In contrast, the
H~! error bound allows for a significantly larger quantization tolerance compared to
L®° quantization, and thus yields a compression factor up to four times higher than
before. For the latter, Figure 7.5 shows the quantization errors for f; on a uniform
mesh with 16 641 nodes on 7 levels.

As a second example, we use the construction from Section 7.2.2.2 for solving the
Kolmogorov optimal control problem from Section 6.3 with the BFGS-quasi-Newton
method. We discretize by finite elements on a fixed mesh with 8192 elements/4225
vertices and use the linearly implicit Euler scheme with timestep size dt = 0.05.

107

7. Beyond Pointwise Error Control

LQI_._

0.1 F

0.01

0.001 ¢

511

0.0001 ¢

1le-05 f

1e-06

level j

Figure 7.3.: Decay of the H-norm of the wavelets with regard to the grid levels.

For the hierarchical basis transform, we fix a quantization tolerance §"P = 1075,
controlling the L°°-norm of the reconstruction error. For the wavelet transform, pre-
scribing € = 1079 for controlling the H ~'-norm of the error yields the quantization
tolerance 0T = 1.54-1078, leading to a similar optimization progress (Figure 7.6).
While the average compression factor for the hierarchical basis compression is about
3.5, wavelet-based compression gives a factor 22.7, thus increasing the compression
factor by nearly 650%.

Remark. These first results indicate that wavelet-based compression schemes can
further improve the compression factors. In the example, we were able to control the
H~'error of the reconstruction, although theoretical results on norm equivalences
for H~! are not available. This short concluding chapter should serve as a starting
point for future research.

108

7.3. Numerical Results

200 T T

HB oo
180 fWLT-CC
WLT-Co

160

g 8

+ 140 -

13} 13}

& fa &
120 O

g g

@ 100 B

0 79)

< 80 °

g £ 3

8 60 J1 8
40 < % B
2 | 9% 0% o

3

2R3

kX
R

%
%

»

7 8 7 8 9
grid levels

Figure 7.4.: Comparison of different transforms. Left: compression factors for L?
error bounds. Right: compression factors for H~! error bounds. For the
wavelets, WLT-CC refers to the construction of Section 7.2.2.1, WLT-
CO to Section 7.2.2.2.

005

—0.001

Figure 7.5.: Comparison of quantization errors yielding the same H~! error. Left:
hierarchical basis. Right: wavelets.

109

7. Beyond Pointwise Error Control

]. T T T T
% reference —+—
HB (L*,6 =107°) —=—
WLT (H~t,e=1079)
0.1 F \]
K
o :::::\fl;‘{})
S o0}]
\?: bt {}:::Q
= \
= 0001 f N]
= X
0.0001 } ‘]
16-05 1 1 1 1
0 5 10 15 20 25
iteration

Figure 7.6.: Optimization progress of BFGS for the Kolmogorov example using
wavelet and hierarchical basis compression.

110

8. Conclusion

In this thesis, a computationally inexpensive lossy compression method adapted to
the specific needs of parabolic optimal control problems has been introduced and
analyzed. While lossy compression techniques are common tools in, e.g., computer
graphics and geometry processing, they are, up to now, rarely encountered in PDE-
constrained optimization.

All algorithms developed here work on unstructured, adaptively refined grids in
two and three space dimensions, and can be efficiently implemented. For keeping
a pointwise bound on the quantization error, a-priori estimates for the achievable
compression factors have been derived. Due to the inexact reconstruction of the
state trajectories, and thus inexact data for the adjoint equation, the error induced
in the reduced gradient, and reduced Hessian, has to be controlled, to not impede
convergence of the optimization. In this work, accuracy requirements of three exem-
plary optimization methods have been analyzed. Derivation of error representations
and computable error estimates for the influence of lossy trajectory storage allow
to control the accuracy of the compressed data adaptively during the progress of
the optimization. Going beyond pointwise error control, wavelet-based compression
has been presented, allowing to control the quantization error in norms other than
L.

The efficiency of the algorithms has been demonstrated on several numerical ex-
amples, ranging from a simple linear, scalar equation to a semi-linear system of
reaction-diffusion equations, modeling cardiac defibrillation. In all these examples,
significant reductions of storage space and memory bandwidth were achieved.

The tools and analysis presented in this dissertation can serve as one ingredient for
the adaptive solution of real-world application problems, allowing adaptive control
of storage requirements, in addition to more commonly used adaptive control of
discretization- and iteration errors. While adaptive quantization has been devel-
oped for gradient computation, it can easily be extended to other post-processing
applications, like visualization or data analysis.

111

A. A Comparison Theorem

In this section we briefly present a comparison principle for classical solutions to
semi-linear systems of m reaction-diffusion equations

0
S =DV (0Vy) = f(y) nQx(0,1)
Bo,y+Cy=0 on 90 x (0,T) (RDS’)
y(,0) =y inQ.
In the following, for vectors y,z € R™, y > z is defined as y; > z; Vi = 1,...,m.

Other relations etc. are also defined component-wise. For better readability, often
we do not state dependence of functions on (z,t), e.g. f(z,t,y) is abbreviated by

f().

Definition A.1. 1. A function y is a sub-solution to (RDS’), if in the differential
equations, initial- and boundary conditions “<” holds instead of “=". 7 is a

super-solution, if “>” holds instead of “=".

2. A function f : R™ — R™ is called quasi-monotone non-decreasing, if each
component f;(y) is non-decreasing in y; for each i # j.

3. é function f : R™ — R™ is called super-reaction function, if the inequality
f(y) > f(y) Yy € R™ holds.

If the reaction term f(y) in (RDS’) is not quasi-monotone non-decreasing, for exam-
ple in the monodomain equations (6.5), there is no comparison principle available
for error estimation. A remedy is the construction of a super-reaction function for
the error equations, and using the fact that the solution of the original equation is
a sub-solution for the modified system.

For use in Chapter 5, we state the following theorem, lemma and corollary, see, e.g.,
Fife and Tang [34], and Britton [10].

Theorem A.2. Let y,7 be a sub- respectively super-solution to (RDS’). Assume f
s uniformly Lipschitz continuous in y and is quasi-monotone non-decreasing. Then
y <y inQx[0,T]

113

A. A Comparison Theorem

Lemma A.3. Let f be defined by

fily) = sup fi(2)

{zly<2<y, zi=yi}

for some sub-solution y. Then f(y) > g(y) Yy, f is uniformly Lipschitz continuous,
provided f is and is quasi-monotone non-decreasing.

Corollary A.4. Let f be a quasi-monotone non-decreasing, uniformly Lipschitz
continuous super-reaction function. Lety be a super-solution of the problem (RDS)
with f replaced by f, and y a sub-solution of (RDS’). Then y <7 in Q x [0,T].

Remark A.5. In the scalar case m = 1 the required quasi-monotonicity is trivially
fulfilled.

114

Bibliography

1]
2]
[3]

[6]

[7]

8]

JavaView homepage. www. javaview.de.
R. A. Adams. Sobolev Spaces. Cambridge University Press, 2001.

P. Alliez and C. Gotsman. Recent advances in compression of 3D meshes. In
N. Dodgson, M. Floater, and M. Sabin, editors, Advances in Multiresolution
for Geometric Modelling, Mathematics and Visualization, pages 3—26. Springer
Berlin Heidelberg, 2005.

K. Amaratunga and J. E. Castrillon-Candés. Surface wavelets: a multireso-
lution signal processing tool for 3D computational modelling. Int. J. Numer.
Meth. Engng., 52(3):239-271, 2001.

R. Becker, D. Meidner, and B. Vexler. Efficient numerical solution of parabolic
optimization problems by finite element methods. Optim. Methods Softw.,
22(5):813-833, 2007.

R. Becker and R. Rannacher. An optimal control approach to a posteriori
error estimation in finite element methods. Acta Numer., 10(1):1-102, 2001.

W. R. Bennett. Spectra of quantized signals. Bell Sys. Tech. J., 27(3):446-472,
1948.

A. Borzi and V. Schulz. Computational Optimization of Systems Governed
by Partial Differential Equations. Computational Science and Engineering.
SIAM, Philadelphia, 2012.

D. Braess. Finite elements: Theory, Fast Solvers, and Applications in Solid
Mechanics. Cambridge University Press, 2001.

N. F. Britton. Reaction-Diffusion Equations and Their Application to Biology.
Academic Press, 1986.

M. Burtscher and P. Ratanaworabhan. FPC: A high-speed compressor for
double-precision floating-point data. IEEE Trans. Comput., 58(1):18-31, 20009.

J. M. Carnicer, W. Dahmen, and J. M. Pena. Local decomposition of refinable
spaces and wavelets. Appl. Comput. Harmon. Anal., 3(2):127-153, 1996.

115

Bibliography

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

116

T. Carraro, M. Geiger, and R. Rannacher. Indirect multiple shooting for
nonlinear parabolic optimal control problems with control constraints. SIAM
J. Sci. Comput., 36(2):A452-A481, 2014.

J. E. Castrillén-Candés. Spatially adaptive multiwavelet representations on
unstructured grids with applications to multidimensional computational mod-
eling. PhD thesis, Massachusetts Institute of Technology, 2001.

P. G. Ciarlet. The finite element method for elliptic problems. North-Holland,
Amsterdam, 1978.

A. Cohen, L. M. Echeverry, and Q. Sun. Finite element wavelets. Technical
report, Université Pierre et Marie Curie, Paris, 2000.

A. Comas. Time—Domain Decomposition Preconditioners for the Solution of
Discretized Parabolic Optimal Control Problems. PhD thesis, Rice University,
2005.

W. Dahmen. Wavelet and multiscale methods for operator equations. Acta
Numer., 6:55—-228, 1997.

W. Dahmen. Wavelet methods for PDEs — some recent developments. J.
Comput. Appl. Math., 128(1):133-185, 2001.

W. Dahmen and R. Stevenson. Element-by-element construction of wavelets
satisfying stability and moment conditions. STAM J. Numer. Anal., 37(1):319-
352, 1999.

J. E. Dennis, Jr. and J. J. Moré. Quasi-Newton methods, motivation and
theory. SIAM Rev., 19(1):46-89, 1977.

P. Deuflhard. Recent progress in extrapolation methods for ordinary differen-
tial equations. SIAM Rev., 27(4):505-535, 1985.

P. Deuflhard. Newton Methods for Nonlinear Problems: Affine Invariance and
Adaptive Algorithms. Springer, 2nd edition, 2006.

P. Deuflhard and F. Bornemann. Scientific computing with ordinary differen-
tial equations, volume 42. Springer, 2002.

P. Deuflhard, E. Hairer, and J. Zugck. One-step and extrapolation methods
for differential-algebraic systems. Numer. Math., 51(5):501-516, 1987.

P. Deuflhard, P. Leinen, and H. Yserentant. Concepts of an adaptive hierar-
chical finite element code. IMPACT Comp. Sci. Eng., 1(1):3-35, 1989.

Bibliography

[27]

[28]

[35]

[36]

P. Deuflhard and U. Nowak. Extrapolation integrators for quasilinear implicit
ODEs. In P. Deuflhard and B. Engquist, editors, Large Scale Scientific Com-
puting, volume 7 of Progress in Scientific Computing, pages 37-50. Birkh&auser,
1987.

P. Deuflhard and M. Weiser. Local inexact Newton multilevel FEM for non-
linear elliptic problems. In M.-O. Bristeau, G. Etgen, W. Fitzgibbon, J.-L.
Lions, J. Periaux, and M. Wheeler, editors, Computational science for the 21st
century, pages 129-138. Wiley, 1997.

P. Deuflhard and M. Weiser. Adaptive numerical solution of PDEs. de Gruyter,
2012.

R. A. DeVore. Adaptive wavelet bases for image compression. In P. J. Laurent,
A. L. Méhauté, and L. L. Schumaker, editors, Wavelets, Images, and Surface
Fitting, pages 197-219. A K Peters, 1994.

R. Ehrig, U. Nowak, L. Oeverdieck, and P. Deuflhard. Advanced extrapola-
tion methods for large scale differential algebraic problems. In H.-J. Bungartz,
F. Durst, and C. Zenger, editors, High Performance Scientific and Engineer-
ing Computing, volume 8 of Lecture Notes in Computational Science and En-
gineering, pages 233-241. Springer Berlin Heidelberg, 1999.

A.Ern and J.-L. Guermond. Theory and Practice of Finite Elements. Springer,
New York, 2004.

U. Felgenhauer. On the stable global convergence of particular quasi-Newton-
methods. Optimization, 26:97-113, 1992.

P. C. Fife and M. M. Tang. Comparison principles for reaction-diffusion sys-
tems: Irregular comparison functions and applications to questions of stability
and speed of propagation of disturbances. J. Differential Equations, 40(2):168—
185, 1981.

P. C. Franzone, P. Deuflhard, B. Erdmann, J. Lang, and L. F. Pavarino.
Adaptivity in space and time for reaction-diffusion systems in electrocardiol-
ogy. SIAM J. Numer. Anal., 28(3):942-962, 2006.

B. Goeman, H. Vandierendonck, and K. De Bosschere. Differential FCM:
Increasing value prediction accuracy by improving table usage efficiency. In
High-Performance Computer Architecture, 2001. HPCA. The Seventh Inter-
national Symposium on, pages 207-216. IEEE, 2001.

S. Gotschel, N. Chamakuri, K. Kunisch, and M. Weiser. Lossy compression in
optimal control of cardiac defibrillation. J. Sci. Comput., 60(1):35-59, 2014.

117

Bibliography

[38]

[39]

[40]

[42]

[43]

[44]

[47]

[48]

118

S. Gotschel, C. von Tycowicz, K. Polthier, and M. Weiser. Reducing mem-
ory requirements in scientific computing and optimal control. In T. Carraro,
M. Geiger, S. Korkel, and R. Rannacher, editors, Multiple Shooting and Time
Domain Decomposition Methods, Contributions in Mathematical and Compu-
tational Sciences. Springer, 2015. to appear.

S. Gotschel and M. Weiser. Lossy compression for PDE-constrained optimiza-
tion: Adaptive error control. Comput. Optim. Appl., 2014. online first.

S. Gotschel, M. Weiser, and A. Schiela. Solving optimal control problems
with the Kaskade 7 finite element toolbox. In A. Dedner, B. Flemisch, and
R. Klofkorn, editors, Advances in DUNE, pages 101-112. Springer, 2012.

S. Gratton, P. L. Toint, and A. Troltzsch. How much gradient noise does
a gradient-based linesearch method tolerate? NAXYS Technical Report 04-
2012, Department of Mathematics, Namur Center for Complex Systems, CER-
FACS, ENSEEIHT-IRIT, 2012.

R. M. Gray and D. L. Neuhoff. Quantization. IEFEE Trans. Inform. Theory,
44(6):2325-2383, 1998.

A. Greenbaum. Estimating the attainable accuracy of recursively computed
residual methods. STAM J. Matriz Anal. Appl., 18(3):535-551, 1997.

A. Griewank. Rates of convergence for secant methods on nonlinear problems
in Hilbert space. In J.-P. Hennart, editor, Numerical Analysis, volume 1230
of Lecture Notes in Mathematics, pages 138—157. Springer Berlin Heidelberg,
1986.

A. Griewank. Achieving logarithmic growth of temporal and spatial complexity
in reverse automatic differentiation. Optim. Methods Softw., 1(1):35-54, 1992.

A. Griewank and A. Walther. Algorithm 799: revolve: an implementation of
checkpointing for the reverse or adjoint mode of computational differentiation.
ACM Trans. Math. Software, 26(1):19-45, 2000.

A. Griewank and A. Walther. Fvaluating derivatives: principles and techniques
of algorithmic differentiation. STAM, Philadelphia, 2008.

M. H. Gutknecht and Z. Strakos. Accuracy of two three-term and three
two-term recurrences for Krylov space solvers. SIAM J. Matriz Anal. Appl.,
22(1):213-229, 2000.

M. Heinkenschloss. A time-domain decomposition iterative method for the
solution of distributed linear quadratic optimal control problems. J. Comput.
Appl. Math., 173(1):169-198, 2005.

Bibliography

[50]

[51]

[52]

[58]

[59]

[60]

M. Heinkenschloss and L. Vicente. Analysis of inexact trust-region SQP algo-
rithms. SIAM J. Optim., 12(2):283-302, 2002.

H. K. Hesse. Multiple Shooting and Mesh Adaptation for PDE Constrained
Optimization Problems. PhD thesis, University Heidelberg, 2008.

H. K. Hesse and G. Kanschat. Mesh adaptive multiple shooting for partial
differential equations. part I: linear quadratic optimal control problems. J.
Numer. Math., 17(3):195-217, 20009.

V. Heuveline and A. Walther. Online checkpointing for parallel adjoint com-
putation in PDEs: Application to goal-oriented adaptivity and flow control.
In Euro-Par 2006 Parallel Processing, pages 689-699. Springer, 2006.

M. Hinze and K. Kunisch. Second order methods for optimal control of time-
dependent fluid flow. SIAM J. Control Optim., 40(3):925-946, 2001.

M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE
constraints. Springer, Berlin, 2009.

M. Hinze and J. Sternberg. A-revolve: an adaptive memory-reduced pro-
cedure for calculating adjoints; with an application to computing adjoints of
the instationary Navier-Stokes system. Optim. Methods Softw., 20(6):645-663,
2005.

M. Hinze and S. Volkwein. Error estimates for abstract linear—quadratic opti-
mal control problems using proper orthogonal decomposition. Comput. Optim.
Appl., 39:319-345, 2008.

P. K. Hoh Phua. Eigenvalues and switching algorithms for quasi-Newton up-
dates. Optimization, 42(3):185-217, 1997.

D. A. Hooks, M. L. Trew, B. J. Caldwell, G. B. Sands, I. J. LeGrice, and B. H.
Smaill. Laminar arrangement of ventricular myocytes influences electrical be-
havior of the heart. Circ. Res., 101(10):e103-12, 2007.

L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak. Out-of-core com-
pression and decompression of large n-dimensional scalar fields. In Computer
Graphics Forum, volume 22, pages 343-348. Wiley Online Library, 2003.

L. Ibarria and J. Rossignac. Dynapack: space-time compression of the
3D animations of triangle meshes with fixed connectivity. ACM SIG-
GRAPH/Eurographics Symposium on Computer animation, pages 126-135,
2003.

M. Isenburg and J. Snoeyink. Mesh collapse compression. In In Proceedings
of SIBGRAPI’99, pages 27-28, 1999.

119

Bibliography

[63]

[64]

[65]

120

M. Isenburg and J. Snoeyink. Early-split coding of triangle mesh connectivity.
In Graphics Interface Conference Proceedings, pages 89-97, Toronto, Ont.,
Canada, Canada, 2006. Canadian Information Processing Society.

K. Ito and K. Kunisch. Receding horizon optimal control for infinite dimen-
sional systems. ESAIM Control Optim. Calc. Var., 8(1):741-760, 2002.

K. Ito and K. Kunisch. Lagrange Multiplier Approach to Variational Problems
and Applications. Advances in Design and Control. STAM, 2008.

J. Iverson, C. Kamath, and G. Karypis. Fast and effective lossy compression
algorithms for scientific datasets. In Furo-Par 2012 Parallel Processing, pages
843-856. Springer, 2012.

C. Jorres, G. Vossen, and M. Herty. On an inexact gradient method us-
ing proper orthogonal decomposition for parabolic optimal control problems.
Comput. Optim. Appl., 55(2):459-468, 2013.

F. Kalberer, K. Polthier, U. Reitebuch, and M. Wardetzky. Freelence — coding
with free valences. Computer Graphics Forum, 24(3):469-478, 2005.

F. Kalberer, K. Polthier, and C. von Tycowicz. Lossless compression of
adaptive multiresolution meshes. In Proc. Brazilian Symposium on Computer
Graphics and Image Processing (SIBGRAPI), volume 22, 2009.

E. Kammann, F. Troltzsch, and S. Volkwein. A method of a-posteriori er-
ror estimation with application to proper orthogonal decomposition. ESAIM:
M2AN, 47:555-581, 2013.

C. T. Kelley and E. W. Sachs. Quasi-Newton methods and unconstrained
optimal control problems. SIAM J. Control Optim., 25(6):1503-1516, 1987.

C. T. Kelley and E. W. Sachs. Approximate quasi-Newton methods. Math.
Program., 48(1-3):41-70, 1990.

A. Khodakovsky, P. Schroder, and W. Sweldens. Progressive geometry com-
pression. In SIGGRAPH ’00 Proceedings, pages 271-278, 2000.

K. Kunisch, C. Nagaiah, and M. Wagner. A parallel Newton-Krylov method
for optimal control of the monodomain model in cardiac electrophysiology.
Comput. Vis. Sci., 14(6):257-269, 2011.

K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition meth-
ods for parabolic problems. Numer. Math., 90:117-148, 2001.

Bibliography

[76]

[77]

(78]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

K. Kunisch and M. Wagner. Optimal control of the bidomain system (I): The
monodomain approximation with the Rogers—McCulloch model. Nonlinear
Anal. Real World Appl., 13(4):1525-1550, 2012.

F.-S. Kupfer. An infinite-dimensional convergence theory for reduced SQP
methods in Hilbert space. SIAM J. Optim., 6(1):126-163, 1996.

S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham, R. Ross,
and N. F. Samatova. Compressing the incompressible with ISABELA: In-
situ reduction of spatio-temporal data. In Furo-Par 2011 Parallel Processing,
pages 366-379. Springer, 2011.

S. Lakshminarasimhan, N. Shah, S. Ethier, S.-H. Ku, C.-S. Chang, S. Klasky,
R. Latham, R. Ross, and N. F. Samatova. ISABELA for effective in situ
compression of scientific data. Concurrency Computat.: Pract. Ezxper., 25:524—
540, 2013.

H. Lee, P. Alliez, and M. Desbrun. Angle-Analyzer: A triangle-quad mesh
codec. Computer Graphics Forum, 21:383-392, 2002.

J. E. Lengyel. Compression of time-dependent geometry. ACM Symposium on
Interactive 3D Graphics, pages 89-95, 1999.

P. Lindstrom and M. Isenburg. Fast and efficient compression of floating-point
data. IEEFE Trans. Visual. Comput. Graphics, 12(5):1245-1250, 2006.

T.-W. Liu. A regularized limited memory BFGS method for nonconvex un-
constrained minimization. Numer. Algorithms, 65(2):305-323, 2014.

M. Lounsbery, T. D. DeRose, and J. Warren. Multiresolution analysis for
surfaces of arbitrary topological type. ACM Trans. Graph., 16:34-73, 1997.

C. Lubich and M. Roche. Rosenbrock methods for differential-algebraic sys-
tems with solution-dependent singular matrix multiplying the derivative. Com-
puting, 43(4):325-342, 1990.

K. Mamou, T. Zaharia, and F. Préteux. FAMC: The MPEG-4 standard for
animated mesh compression. IEEE International Conference on Image Pro-
cessing, pages 2676-2679, 2008.

G. N. N. Martin. Range encoding: an algorithm for removing redundancy
from a digitised message. Presented at Video & Data Recording Conference,
Southampton, 1979.

H. J. Martinez, Z. Parada, and R. A.Tapia. On the characterization of g-
superlinear convergence of quasi-Newton interior-point methods for nonlinear
programming. Bol. Soc. Mat. Mezicana (3), 1, 1995.

121

Bibliography

[89]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

122

H. Maurer and J. Zowe. First and second-order necessary and sufficient opti-
mality conditions for infinite-dimensional programming problems. Math. Pro-
gram., 16(1):98-110, 1979.

R. V. Mayorga and V. H. Quintana. A family of variable metric methods in
function space, without exact line searches. J. Optim. Theory Appl., 31(3):303~
329, 1980.

D. Meidner and B. Vexler. Adaptive space-time finite element methods for
parabolic optimization problems. SIAM J. Control Optim., 46:116-142, March
2007.

J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall, editors. MPEG
video compression standard. Chapmann & Hall, New York, 1997.

C. Nagaiah and K. Kunisch. Higher order optimization and adaptive numerical
solution for optimal control of monodomain equations in cardiac electrophys-
iology. Appl. Numer. Math., 61:53-65, 2011.

C. Nagaiah, K. Kunisch, and G. Plank. Numerical solution for optimal con-
trol of the reaction-diffusion equations in cardiac electrophysiology. Comput.
Optim. Appl., 49:149-178, 2011. 10.1007/s10589-009-9280-3.

H. Nguyen and R. Stevenson. Finite element wavelets with improved quanti-
tative properties. J. Comput. Appl. Math., 230(2):706-727, 2009.

B. F. Nielsen, T. S. Ruud, G. T. Lines, and A. Tveito. Optimal monodomain
approximations of the bidomain equations. Appl. Math. Comput., 184(2):276—
290, 2007.

J. Nocedal. Updating quasi-Newton matrices with limited storage. Math.
Comp., 35(151):773-782, 1980.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York,
2006.

U. Nowak. A fully adaptive MOL-treatment of parabolic 1-D problems with
extrapolation techniques. Appl. Numer. Math., 20:129-141, 1996.

M. H. Protter and H. F. Weinberger. Mazimum principles in differential equa-
tions. Springer, New York, corr. reprint of the second edition, 1999.

M. Rettenmeier. Data compression for computational fluid dynamics on irreg-
ular grids. PhD thesis, Universitat zu Koln, 2012.

I. E. G. Richardson. Video codec design. Wiley, Chichester, 2002.

Bibliography

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

J. Rissanen and G. G. Langdon Jr. Arithmetic coding. IBM J. Res. Deu.,
23(2):149-162, 1979.

J. M. Rogers and A. D. McCulloch. A collocation-Galerkin finite element
model of cardiac action potential propagation. IEEFE Trans. Biomed. Eng.,
41:743-757, 1994.

J. Rossignac. Edgebreaker: Connectivity compression for triangle meshes.
IEEE Trans. Visual. Comput. Graphics, 5(1):47-61, 1999.

E. W. Sachs. Broyden’s method in Hilbert space. Math. Program., 35(1):71-82,
1986.

Y. Sazeides and J. E. Smith. The predictability of data values. In Microarchi-
tecture, 1997. Proceedings., Thirtieth Annual IEEE/ACM International Sym-
posium on, pages 248-258. IEEE, 1997.

A. Schiela and A. Giinther. An interior point algorithm with inexact step
computation in function space for state constrained optimal control. Numer.
Math., 119(2):373-407, 2011.

P. Schréder and W. Sweldens. Spherical wavelets: Efficiently representing
functions on the sphere. In SIGGRAPH ’95 Proceedings of the 22nd annual
conference on Computer graphics and interactive techniques, pages 161-172.
ACM, 1995.

F. Schroder-Pander, T. Sonar, and O. Friedrich. Generalized multiresolution
analysis on unstructured grids. Numer. Math., 86(4):685-715, 2000.

T. M. Shafaat and S. B. Baden. A method of adaptive coarsening for com-
pressing scientific datasets. In B. Kagstrom, E. Elmroth, J. Dongarra, and
J. Wasniewski, editors, Applied Parallel Computing. State of the Art in Sci-
entific Computing. 8th International Workshop, PARA 2006, Umea, Sweden,
June 18-21, 2006, Revised Selected Papers, volume 4699 of Lecture Notes in
Computer Science, pages 774-780. Springer, 2007.

C. E. Shannon. A mathematical theory of communication. Bell Sys. Techn.
J., 27, 1948.

J. M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients.
IEEFE Trans. Signal Process., 41:3445-3462, 1993.

V. Simoncini and D. B. Szyld. Theory of inexact Krylov subspace methods and
applications to scientific computing. SIAM J. Sci. Comput., 25(2):454-477,
2003.

123

Bibliography

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

124

G. L. G. Sleijpen and H. A. van der Vorst. Reliable updated residuals in hybrid
Bi-CG methods. Computing, 56(2):141-163, 1996.

N. Stefanoski and J. Ostermann. Spatially and temporally scalable compres-
sion of animated 3D meshes with MPEG-4/FAMC. [EEE International Con-
ference on Image Processing, pages 26962699, 2008.

J. Sternberg and M. Hinze. A memory-reduced implementation of the Newton-
CG method in optimal control of nonlinear time-dependent PDEs. Optim.
Methods Softw., 25(4):553-571, 2010.

R. Stevenson. Locally supported, piecewise polynomial biorthogonal wavelets
on nonuniform meshes. Constr. Approz., 19(4):477-508, 2003.

P. Stumm and A. Walther. Multi-stage approaches for optimal offline check-
pointing. SIAM J. Sci. Comput., 31(3):1946-1967, 2009.

P. Stumm and A. Walther. New algorithms for optimal online checkpointing.
SIAM J. Sci. Comput., 32(1):836-854, 2010.

G. J. Sullivan and T. Wiegand. Video compression — from concepts to the
H.264/AVC standard. Proceedings of the IEEE, 93(1):18-31, 2005.

W. Sweldens. The lifting scheme: A construction of second generation
wavelets. STAM J. Math. Anal., 29(2):511-546, 1998.

A. Szymczak. Optimized Edgebreaker encoding for large and regular triangle
meshes. In DCC ’02 Proceedings, page 472, Washington, DC, USA, 2002.
IEEE Computer Society.

R. I. Teran, C.-A. Thole, and R. Lorentz. New developments in the compres-
sion of LS-DYNA simulation results using FEMZIP. 6th European LS-DYNA
Users’ Conference, 2007.

C.-A. Thole. Compression of LS-DYNA3D™ simulation results using
FEMZIP(@©. 3. LS-DYNA Anwenderforum, 2004.

C. Touma and C. Gotsman. Triangle mesh compression. In Graphics Interface
Conference Proceedings, pages 26-34, 1998.

F. Troltzsch. Optimal control of partial differential equations: Theory, methods
and applications, volume 112 of Graduate Studies in Mathematics. AMS, 2010.

F. Troltzsch and S. Volkwein. POD a-posteriori error estimates for linear-
quadratic optimal control problems. Comput. Optim. Appl., 44:83-115, 2009.

Bibliography

[129]

[130]

[131]

[132]

133

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

D. Unat, T. Hromadka, and S. B. Baden. An adaptive sub-sampling method for
in-memory compression of scientific data. In Data Compression Conference,
2009. DCC 09, pages 262—271. IEEE, 20009.

J. van den Eshof and G. L. G. Sleijpen. Inexact Krylov subspace methods for
linear systems. SIAM J. Matriz Anal. Appl., 26(1):125-153, 2004.

H. A. van der Vorst and Q. Ye. Residual replacement strategies for Krylov
subspace iterative methods for the convergence of true residuals. SIAM J. Sci.
Comput., 22(3):835-852, 2000.

P. S. Vassilevski and J. Wang. Stabilizing the hierarchical basis by approximate
wavelets, I: Theory. Numer. Linear Algebra Appl., 4(2):103-126, 1997.

P. S. Vassilevski and J. Wang. Stabilizing the hierarchical basis by approximate
wavelets II: Implementation and numerical results. SIAM J. Sci. Comput.,
20(2):490-514, 1998.

L. Vasa. Optimised mesh traversal for dynamic mesh compression. Graphical
Models, 73:218-230, 2011.

Y. M. Volin and G. M. Ostrovskii. Automatic computation of derivatives
with the use of the multilevel differentiating techniques—1. algorithmic basis.
Comput. Math. Appl., 11(11):1099-1114, 1985.

C. von Tycowicz, F. Kalberer, and K. Polthier. Context-based coding of
adaptive multiresolution meshes. Computer Graphics Forum, 30(8):2231-2245,
2011.

G. von Winckel and A. Borzi. Computational techniques for a quantum control
problem with H!-cost. Inverse Problems, 24(3):034007, 2008.

A. Walther. Program reversal schedules for single-and multi-processor ma-
chines. PhD thesis, Institute of Scientific Computing, Technical University
Dresden, Germany, 1999.

Q. Wang, P. Moin, and G. laccarino. Minimal repetition dynamic check-
pointing algorithm for unsteady adjoint calculation. SIAM J. Sci. Comput.,
31(4):2549-2567, 2009.

M. Weiser. On goal-oriented adaptivity for elliptic optimal control problems.
Optim. Methods Softw., 28(5):969-992, 2013.

M. Weiser and S. Goétschel. State trajectory compression for optimal control
with parabolic PDEs. SIAM J. Sci. Comput., 34(1):A161-A184, 2012.

125

Bibliography

[142] H. Yserentant. On the multi-level splitting of finite element spaces. Numer.
Math., 49(4):379-412, 1986.

[143] E. Zeidler. Nonlinear Functional Analysis and its Applications I: Fized-Point
Theorems. Springer, New York, 1986.

[144] E. Zeidler. Nonlinear Functional Analysis and its Applications II/A: Linear
Monotone Operators. Springer, New York, 1990.

[145] J. C. Ziems. Adaptive multilevel inexact SQP-methods for PDE-constrained
optimization with control constraints. SIAM J. Optim., 23(2):1257-1283, 2013.

[146] J. C. Ziems and S. Ulbrich. Adaptive multilevel inexact SQP methods for
PDE-constrained optimization. SIAM J. Optim., 21(1):1-40, 2011.

126

Acknowledgments

First of all, I wish to thank Dr. Martin Weiser, head of the Computational Medicine
group and of the Numerical Analysis and Modelling department at the Zuse Institute
Berlin (ZIB), for introducing me to the field of data compression for optimal control
problems, and for many constructive discussions. Without his constant support and
guidance this work would not have been possible.

I am grateful to my advisor Prof. Dr. Dr. h.c. Peter Deuflhard, FU Berlin and former
president of ZIB, for giving me the opportunity to work in an inspiring environment
and his continued interest in my work.

Also, I want to thank Prof. Dr. Matthias Heinkenschloss, Rice University, for the
readiness to act as the second referee for this thesis. I am grateful to Dr. Chamakuri
Nagaiah, RICAM Linz, and Prof. Dr. Karl Kunisch, University of Graz, for their
interest in my work and the fruitful collaboration.

I acknowledge, with thanks, partial funding by the DFG research center MATHEON
“Mathematics for key technologies”, projects C25/F9. Thanks also to Prof. Dr. Kon-
rad Polthier and Dr. Christoph von Tycowicz, FU Berlin, for helpful discussions and
the collaboration in these projects.

Special thanks go to all my former and present colleagues at ZIB for their company,
many interesting discussions, and for creating a pleasant work environment.

Last, but not least, a huge thanks to my friends and family, especially to my wife
Martina, for their everlasting support, encouragement, and patience.

127

Zusammenfassung

Optimalsteuerungsprobleme mit parabolischen partiellen Differentialgleichungen als
Nebenbedingung werden hiufig in ein unrestringiertes Optimierungsproblem mit
reduziertem Zielfunktional tiberfiihrt. Zur Berechnung des reduzierten Gradienten
muss eine adjungierte Gleichung gelost werden. Diese ist eine Riickwértsgleichung,
fiir die die zuvor berechnete Losung der Zustandsgleichung benétigt wird. Bei hohen
Anforderungen an die Diskretisierungsgenauigkeit fallt dafiir ein hoher Speicherbe-
darf an. Die vorliegende Arbeit befasst sich mit der Entwicklung und Analyse von
Verfahren zur verlustbehafteten Kompression solcher Finite-Elemente-Lésungen.

Die entwickelten Methoden verwenden einen Basiswechsel, um Korrelationen in den
zu speichernden Daten zu reduzieren, sowie Quantisierung, welche die Genauigkeit
der Daten verringert. Fiir den grundlegenden Algorithmus wird die Transformation
von Knoten- zu Hierarchischer Basis verwendet, und anschliefend die Koeffizienten
auf die gewiinschte Prézision gerundet.

Ein Schwerpunkt der Arbeit liegt auf der adaptiven Wahl der erforderlichen Ge-
nauigkeit, um den Verlauf der Optimierung nicht zu beeintréichtigen. Dafiir werden
berechenbare Fehlerabschéitzungen sowie Kriterien zur Wahl der Quantisierungstole-
ranz fiir verschiedene Optimierungsverfahren hergeleitet. Wihrend fiir Gradienten-
und Quasi-Newton-Verfahren nur der Fehler im reduzierten Gradienten von Bedeu-
tung ist, muss bei Newton-CG-Verfahren beriicksichtigt werden, dass Matrix-Vektor-
Produkte wéhrend des CG-Verfahrens nur inexakt berechnet werden kénnen. Mittels
Fehlerverfolgung und rechtzeitiger Neuberechnung des Residuums kann verhindert
werden dass der Algorithmus vorzeitig abbricht.

Die entwickelten Verfahren werden an verschiedenen Bespielen getestet. In allen nu-
merischen Experimenten kann durch adaptive Wahl der Genauigkeit erreicht werden,
dass trotz verlustbehafteter Kompression keine signifikante Abweichung im Konver-
genzverhalten der Optimierungsverfahren zu beobachten ist.

Um iiber punktweise Fehlerkontrolle hinausgehen zu koénnen, wird die Transforma-
tion auf die Hierarchische Basis durch eine Wavelet-Transformation ersetzt. Hierfiir
werden effizient implementierbare Wavelet-Konstruktionen vorgestellt. Numerische
Experimente belegen, dass durch Fehlerkontrolle in der passenden Norm deutlich
verbesserte Kompressionsfaktoren erreicht werden kénnen.

129

