Aus dem Julius Wolff Institut der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

DISSERTATION

Development and Application of a Three-dimensional Finite Element Model of Spino-pelvic Complex

> zur Erlangung des akademischen Grades Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

von

Rui Zhu aus Shandong, V.R. China

Datum der Promotion: 12.06.2013

# Table of contents

| TABLE OF CONTENTS                     | 1  |
|---------------------------------------|----|
| ZUSAMMENFASSUNG                       | 2  |
| ABSTRACT                              | 3  |
| AFFIDAVIT                             | 4  |
| PRINTED COPY OF SELECTED PUBLICATION: | 7  |
| THE JOURNAL'S RELATIVE RATING         | 14 |
| CURRICULUM VITAE                      | 19 |
| COMPLETE LIST OF PUBLICATIONS         | 20 |
| ACKNOWLEDGEMENT                       | 21 |

# Zusammenfassung

Nach einer vollständigen Sakrektomie ist es zur Wiederherstellung des Kraftflusses notwendig, die Verbindung zwischen Lendenwirbelsäule und Becken zu rekonstruieren. Es existieren nur wenige biomechanische Studien, in denen unterschiedliche Methoden der Rekonstruktion verglichen wurden. Das Ziel dieser Studie war es, mit Hilfe von dreidimensionalen Finite-Element-Modellen des Beckens und der Wirbelsäule vier unterschiedliche Methoden der Rekonstruktion nach vollständiger Sakrektomie zu vergleichen. Die folgenden vier Rekonstruktionsmethoden wurden simuliert: eine Sakral-Stab-Rekonstruktion, eine Vier-Stab-Rekonstruktion, eine Beidseitige-Fibulaspan-Rekonstruktion eine und Verbesserte-Verbund-Rekonstruktion. Zur Simulation der Standardlastfälle Stehen, Flexion, Extension, Seitneigung und axiale Rotation wurden eine sogenannte Geführte Kraft und ein reines Drehmoment in der jeweiligen Richtung auf die Finite-Element-Modelle mit Rekonstruktion appliziert. Diese Art der Lasten wird häufig in In-vitro-Studien verwendet. Anschließend wurden die in den Modellen berechneten Verformungen sowie die in den Implantaten auftretenden Spannungen berechnet und verglichen. Für die auftretenden Rotationen zwischen dem fünften Lendenwirbel und dem Darmbein sowie für die Abwärtsverschiebung des fünften Lendenwirbels ergab sich folgende, absteigend sortierte Reihenfolge der Vier-Stab-Rekonstruktion Rekonstruktionsmethoden: >Sakral-Stab-Rekonstruktion > Beidseitige-Fibulaspan-Rekonstruktion > Verbesserte-Verbund-Rekonstruktion. Die in den Implantaten auftretenden maximalen Vergleichsspannungen führten zu folgender, absteigend sortierter Reihenfolge: Sakral-Stab-Rekonstruktion > Vier-Stab-Rekonstruktion > Verbesserte-Verbund-Rekonstruktion. Beidseitige-Fibulaspan-Rekonstruktion >Aus mechanischer Sicht zeigt die Verbesserte-Verbund-Rekonstruktion die besten Ergebnisse mit der im Vergleich höchsten Stabilität und kleinsten auftretenden maximalen Vergleichsspannungen. Allerdings müssen bei der Wahl der Rekonstruktionsmethode für einen spezifischen Patienten auch klinische Aspekte berücksichtigt werden.

Diese Dissertation wurde entsprechend der Promotionsordnung vom 3. Dezember 2012 auf der Basis "einer Peer-reviewed-Orginalpublikation als Erstautorin/Erstautor in einer international führenden Fachzeitschrift" erstellt. In zwei weiteren, bei Fachzeitschriften eingereichten Arbeiten wurde die Eignung des verwendeten Modells sowie der applizierten Lasten begründet und diskutiert. Diese Arbeiten sind nicht Bestandteil dieser Dissertation, wurden aber zur Vollständigkeit in der Publikationsliste aufgeführt.

Schlagwörter: Wirbelsäule, vollständige Sakrektomie, Finite-Elemente-Methode

## Abstract

After total sacrectomy, it is mandatory to reconstruct the continuity of the force flow between the lumbar spine and the pelvis. In only few biomechanical analyses different reconstructions were compared. The aim of the study was to compare four different reconstruction methods after total sacrectomy using a three-dimensional finite element model of spino-pelvic complex. A sacral-rod reconstruction, a four-rod reconstruction, a bilateral fibular flaps reconstruction and an improved compound reconstruction were simulated. A follower load and a pure moment which are common in *in vitro* studies were applied to the reconstruction models to simulate standing, flexion, extension, lateral bending and axial rotation of the spine. The deformation of the models and the stresses in the implants were calculated and evaluated. The decreasing order of the rotations between L5 vertebra and ilium as well as of the L5 shift-down displacement for the studied reconstruction methods was: four-rod reconstruction > sacral-rod reconstruction > bilateral fibular flaps reconstruction > improved compound reconstruction. The decreasing order of the maximum von Mises stress in the implants was: sacral-rod reconstruction > four-rod reconstruction > bilateral fibular flaps reconstruction > improved compound reconstruction. From the mechanical point of view, the improved compound reconstruction is superior to the other methods studied here as it shows the highest stability and the lowest maximum equivalent stresses. However, clinical aspects must also be regarded when choosing a reconstruction method for a specific patient.

The dissertation was created based on the Thesis Regulation dated December 3, 2012, requiring "one peer-reviewed original publication as the first author in a leading international professional journal". In two additional manuscripts submitted to peer-reviewed journals the applicability of the used model and of the commonly used load application method were justified. They are not part of this dissertation, but cited in the list of publications for completeness.

Key Words: Spine; Total sacrectomy; Finite element method

# Affidavit

I, Rui Zhu, certify under penalty of perjury by my own signature that I have submitted the thesis on the topic *Development and application of a three-dimensional finite element model of spinopelvic complex*. I wrote this thesis independently and without assistance from third parties, I used no other aids than the listed sources and resources.

All points based literally or in spirit on publications or presentations of other authors are, as such, in proper citations (see "uniform requirements for manuscripts (URM)" the ICMJE www.icmje.org) indicated. The section on methodology (in particular practical work, laboratory requirements, statistical processing) and results (in particular images, graphics and tables) corresponds to the URM (s.o) and are answered by me. My contribution in the selected publication for this dissertation corresponds to those that are specified in the following joint declaration with the responsible person and supervisor.

The importance of this affidavit and the criminal consequences of a false affidavit (section 156,161 of the Criminal Code) are known to me and I understand the rights and responsibilities stated therein.

Date

Signature

### **Detailed Declaration of Contribution**

Rui Zhu had the following share in the publication:

Zhu R, Cheng LM, Yu Y, Zander T, Chen B and Rohlmann A, Comparison of four reconstruction methods after total sacrectomy: A finite element study, Clin Biomech (Bristol, Avon), 2012 Oct, 27(8): 771-6

Contribution in detail (please explain in detail):

(1) Rui Zhu did more than 95% of the work in the current study regarding *reviewing literature*:

After total sacrectomy, it is mandatory to reconstruct the continuity between the lumbar spine and the pelvis. Rui Zhu jointed a cadaveric experiment focusing on different reconstruction methods after total sacrectomy. However, in that study the mechanical stability was only

investigated for the loading case standing. Elaborated finite element analyses allow a more detailed mechanical analysis and the investigation of several reconstruction designs under various loading cases. Therefore, Rui Zhu decided to use this scientific tool to investigate the mechanical stability of different reconstructions methods after total sacrectomy. After a detailed literature review, several reconstructions methods after total sacrectomy were identified. However, up to date only a few biomechanical analyses compared different reconstructions methods. A biomechanical optimal method has not been established, partly due to the lack of biomechanical evidence. Currently, there is a lack of consolidated knowledge regarding the stability and the risk of implant failure for different reconstruction methods.

(2) Rui Zhu did more than 80% of the work of in the current study regarding *designing the study*:

Based on the existing literature of different biomechanical studies and clinical case reports, the present study was designed. Four different reconstruction methods after total sacrectomy were involved. The stability of reconstruction method was evaluated by the rotation between 5th lumbar vertebra (L5) and the ilium and the L5 shift-down displacement. Relative risk of implant breakage was evaluated by the relative maximum von Mises stress in the implants. Finite element models were used to calculate the above mentioned parameters for elementary activities of the spine: standing, flexion, extension, lateral bending and axial rotation. Rui Zhu integrated the opinions of all co-authors and designed the study.

(3) Rui Zhu did 100% of the work in the current study regarding *developing the pelvic finite element model*:

A nonlinear FE model of lumbar spine was used. This model was created and validated by the Julius Wolff Institut, Charité – Universitätsmedizin Berlin. A rigid pelvic model which was taken from the data of Virtual Human was meshed by tetrahedron elements. Homogeneous elastic material properties were assigned. This pelvic model was added into the lumbar model, in order to provide the anatomical structures for the implants in different reconstructions. The sensitivities of the material properties used for pelvis were additionally studied to increase the reliability of the calculated stress.

(4) Rui Zhu did 100% of the work in the current study regarding *simulating all different* reconstructions after total sacrectomy:

Four different reconstruction methods after total sacrectomy were simulated. Detailed pieces of information regarding the surgical procedure and the biomechanical experiments were gathered from literature. The spatial locations of the implants were checked from a clinical point of view. All parameters such as diameters, elastic modulus and Poisson's ratio for the implants were collected from literature. The mesh size of the implant was tested to ensure the convergence of the finite element analyses. The numbers of the beam elements which simulate

contact between screws and bone were tested.

(5) Rui Zhu did 100% of the work in the current study regarding validation:

For validation purposes, the same loads and the same boundary conditions as used in the cadaveric study were applied. The same parameters as in the cadaveric study - rotation between L5 and the ilium and the L5 shift-down displacement - were calculated and compared with each other.

(6) Rui Zhu did 90% of the work in the current study regarding *carrying out calculations and analysing data*:

Follower loads and pure moments from literature were applied to simulate elementary activities of the spine: standing, flexion, extension, lateral bending and axial rotation. Parameters regarding stability and relative risk of implant breakage were calculated and gathered. The results were discussed by all co-authors.

(7) Rui Zhu did 80% in the current study regarding *Drafting and revising the article*:

Rui Zhu wrote the manuscript and discussed it with all co-authors. During revision process, the questions from the reviewers were answered and the manuscript was revised following the reviewers' suggestions.

Signature, date and stamp of the supervising University teacher

Signature of the doctoral candidate

# **Printed Copy of Selected Publication:**

**Zhu R**, Cheng LM, Yu Y, Zander T, Chen B and Rohlmann A. Comparison of four reconstruction methods after total sacrectomy: A finite element study. *Clin Biomech (Bristol, Avon), 2012 Oct, 27(8): 771-6.* DOI:10.1016/j.clinbiomech.2012.05.008

(5-year IF = 2.468; IF (2011) = 2.071; Eigen factor = 0.01099)

# The journal's relative rating

Eigen factor: 0.01099 Impact Factor: 2.071 5-year Impact Factor: 2.468

Sorted by **Eigen factor** in the categories **Orthopedics** listed from ISI Web of Knowledge *Clinical biomechanics* located at 17<sup>th</sup> of 65 journals.

Sorted by **Impact Factor** in the categories **Orthopedics** listed from ISI Web of Knowledge *Clinical biomechanics* located at 20<sup>th</sup> of 65 journals.

Sorted by **Eigen factor** in the categories **Sport Science** listed from ISI Web of Knowledge *Clinical biomechanics* located at 10<sup>th</sup> of 85 journals.

Sorted by **Impact Factor** in the categories **Sport Science** listed from ISI Web of Knowledge *Clinical biomechanics* located at 24<sup>th</sup> of 85 journals.

### ISI Web of Knowledge<sup>™</sup>

### Journal Citation Reports®

welcome ? Help MARKED

🖇 Journal Summary List

Journals from: subject categories ORTHOPEDICS 🔞 VIEW CATEGORY SUMMARY LIST

Sorted by:

Eigenfactor® Score

core SORT AGAIN

Journals 1 - 20 (of 65)
MARK ALL UPDATE MARKED LIST

### 

Page 1 of 4

Journal Title Changes

2011 JCR Science Edition

Ranking is based on your journal and sort selections.

|              |      | Abbreviated Journal Title<br>(linked to journal information) |           |                |                  | JC                         | Eigenfactor® Metrics ) |          |                    |                       |                                            |
|--------------|------|--------------------------------------------------------------|-----------|----------------|------------------|----------------------------|------------------------|----------|--------------------|-----------------------|--------------------------------------------|
| Mark         | Rank |                                                              | ISSN      | Total<br>Cites | Impact<br>Factor | 5-Year<br>Impact<br>Factor | Immediacy<br>Index     | Articles | Cited<br>Half-life | Eigenfactor®<br>Score | Article<br>Influence <sup>®</sup><br>Score |
|              | 1    | <u>SPINE</u>                                                 | 0362-2436 | 32709          | 2.078            | 2.949                      | 0.363                  | 614      | 9.7                | 0.04821               | 0.855                                      |
|              | 2    | CLIN ORTHOP RELAT R                                          | 0009-921X | 28888          | 2.533            | 2.617                      | 0.379                  | 420      | >10.0              | 0.03555               | 0.901                                      |
|              | 3    | J BONE JOINT SURG AM                                         | 0021-9355 | 34294          | 3.272            | 4.289                      | 0.303                  | 310      | >10.0              | 0.03435               | 0.937                                      |
|              | 4    | AM J SPORT MED                                               | 0363-5465 | 14958          | 3.792            | 4.427                      | 0.626                  | 313      | 7.6                | 0.02732               | 1.159                                      |
|              | 5    | OSTEOARTHR CARTILAGE                                         | 1063-4584 | 7723           | 3.904            | 4.365                      | 0.812                  | 170      | 5.2                | 0.02327               | 1.279                                      |
|              | 6    | JORTHOP RES                                                  | 0736-0266 | 10618          | 2.811            | 3.197                      | 0.480                  | 281      | 8.3                | 0.02115               | 1.007                                      |
|              | 7    | EUR SPINE J                                                  | 0940-6719 | 5658           | 1.965            | 2.524                      | 0.219                  | 343      | 5.3                | 0.01955               | 0.799                                      |
|              | 8    | J BONE JOINT SURG BR                                         | 0301-620X | 18253          | 2.832            | 3.405                      | 0.416                  | 296      | >10.0              | 0.01736               | 0.648                                      |
|              | 9    | ARTHROSCOPY                                                  | 0749-8063 | 8684           | 3.024            | 3.079                      | 0.616                  | 229      | 6.8                | 0.01675               | 0.780                                      |
|              | 10   | J ARTHROPLASTY                                               | 0883-5403 | 7227           | 2.384            | 2.293                      | 0.248                  | 270      | 7.4                | 0.01615               | 0.722                                      |
|              | 11   | INJURY                                                       | 0020-1383 | 6623           | 1.975            | 2.336                      | 0.309                  | 282      | 6.3                | 0.01584               | 0.660                                      |
|              | 12   | GAIT POSTURE                                                 | 0966-6362 | 4909           | 2.123            | 2.693                      | 0.286                  | 245      | 5.5                | 0.01254               | 0.705                                      |
|              | 13   | KNEE SURG SPORT TR A                                         | 0942-2056 | 4309           | 2.209            | 2.254                      | 0.301                  | 339      | 5.0                | 0.01223               | 0.588                                      |
|              | 14   | J SHOULDER ELB SURG                                          | 1058-2746 | 5242           | 2.747            | 2.818                      | 0.283                  | 230      | 6.6                | 0.01207               | 0.798                                      |
|              | 15   | J HAND SURG-AM                                               | 0363-5023 | 7364           | 1.354            | 1.778                      | 0.199                  | 266      | >10.0              | 0.01173               | 0.499                                      |
|              | 16   | BMC MUSCULOSKEL DIS                                          | 1471-2474 | 2444           | 1.577            | 2.324                      | 0.172                  | 285      | 3.9                | 0.01155               | 0.737                                      |
| $\checkmark$ | 17   | CLIN BIOMECH                                                 | 0268-0033 | 5009           | 2.071            | 2.468                      | 0.244                  | 156      | 7.6                | 0.01099               | 0.792                                      |
|              | 18   | <u>SPINE J</u>                                               | 1529-9430 | 2956           | 3.290            |                            | 0.781                  | 151      | 4.7                | 0.01093               |                                            |
|              | 19   | J ORTHOP TRAUMA                                              | 0890-5339 | 4713           | 2.135            | 2.651                      | 0.165                  | 176      | 7.6                | 0.01043               | 0.844                                      |
|              | 20   | ACTA ORTHOP                                                  | 1745-3674 | 6454           | 2.168            | 2.541                      | 0.210                  | 119      | >10.0              | 0.01037               | 0.845                                      |

### ISI Web of Knowledge<sup>™</sup>

### Journal Citation Reports®

MARKED ? HELP

🖗 Journal Summary List

#### Journals from: subject categories ORTHOPEDICS 🔞 VIEW CATEGORY SUMMARY LIST

Sorted by:

Impact Factor

SORT AGAIN

Journal Title Changes

2011 JCR Science Edition

Journals 1 - 20 (of 65)

MARK ALL UPDATE MARKED LIST

## 

Page 1 of 4

Ranking is based on your journal and sort selections.

|              | Rank | Abbreviated Journal Title<br>(linked to journal information) | ISSN      |                |                  | JC                         | Eigenfactor <sup>®</sup> Metrics j |          |                    |                       |                                            |
|--------------|------|--------------------------------------------------------------|-----------|----------------|------------------|----------------------------|------------------------------------|----------|--------------------|-----------------------|--------------------------------------------|
| Mark         |      |                                                              |           | Total<br>Cites | Impact<br>Factor | 5-Year<br>Impact<br>Factor | Immediacy<br>Index                 | Articles | Cited<br>Half-life | Eigenfactor®<br>Score | Article<br>Influence <sup>®</sup><br>Score |
|              | 1    | OSTEOARTHR CARTILAGE                                         | 1063-4584 | 7723           | 3.904            | 4.365                      | 0.812                              | 170      | 5.2                | 0.02327               | 1.279                                      |
|              | 2    | AM J SPORT MED                                               | 0363-5465 | 14958          | 3.792            | 4.427                      | 0.626                              | 313      | 7.6                | 0.02732               | 1.159                                      |
|              | 3    | <u>SPINE J</u>                                               | 1529-9430 | 2956           | 3.290            |                            | 0.781                              | 151      | 4.7                | 0.01093               |                                            |
|              | 4    | J BONE JOINT SURG AM                                         | 0021-9355 | 34294          | 3.272            | 4.289                      | 0.303                              | 310      | >10.0              | 0.03435               | 0.937                                      |
|              | 5    | PHYS THER                                                    | 0031-9023 | 7427           | 3.113            | 3.517                      | 1.053                              | 133      | >10.0              | 0.01019               | 0.884                                      |
|              | 6    | ARTHROSCOPY                                                  | 0749-8063 | 8684           | 3.024            | 3.079                      | 0.616                              | 229      | 6.8                | 0.01675               | 0.780                                      |
|              | 7    | JORTHOP SPORT PHYS                                           | 0190-6011 | 3272           | 3.000            | 2.980                      | 0.645                              | 93       | 8.5                | 0.00527               | 0.723                                      |
|              | 8    | J BONE JOINT SURG BR                                         | 0301-620X | 18253          | 2.832            | 3.405                      | 0.416                              | 296      | >10.0              | 0.01736               | 0.648                                      |
|              | 9    | JORTHOP RES                                                  | 0736-0266 | 10618          | 2.811            | 3.197                      | 0.480                              | 281      | 8.3                | 0.02115               | 1.007                                      |
|              | 10   | J SHOULDER ELB SURG                                          | 1058-2746 | 5242           | 2.747            | 2.818                      | 0.283                              | 230      | 6.6                | 0.01207               | 0.798                                      |
|              | 11   | J AM ACAD ORTHOP SUR                                         | 1067-151X | 2480           | 2.662            | 2.955                      | 0.247                              | 89       | 6.2                | 0.00809               | 1.092                                      |
|              | 12   | CLIN ORTHOP RELAT R                                          | 0009-921X | 28888          | 2.533            | 2.617                      | 0.379                              | 420      | >10.0              | 0.03555               | 0.901                                      |
|              | 13   | JARTHROPLASTY                                                | 0883-5403 | 7227           | 2.384            | 2.293                      | 0.248                              | 270      | 7.4                | 0.01615               | 0.722                                      |
|              | 14   | KNEE SURG SPORT TR A                                         | 0942-2056 | 4309           | 2.209            | 2.254                      | 0.301                              | 339      | 5.0                | 0.01223               | 0.588                                      |
|              | 15   | ACTA ORTHOP                                                  | 1745-3674 | 6454           | 2.168            | 2.541                      | 0.210                              | 119      | >10.0              | 0.01037               | 0.845                                      |
|              | 16   | JORTHOP TRAUMA                                               | 0890-5339 | 4713           | 2.135            | 2.651                      | 0.165                              | 176      | 7.6                | 0.01043               | 0.844                                      |
|              | 17   | GAIT POSTURE                                                 | 0966-6362 | 4909           | 2.123            | 2.693                      | 0.286                              | 245      | 5.5                | 0.01254               | 0.705                                      |
|              | 18   | CLIN J SPORT MED                                             | 1050-642X | 2320           | 2.119            | 2.356                      | 0.405                              | 84       | 6.6                | 0.00543               | 0.689                                      |
|              | 19   | <u>SPINE</u>                                                 | 0362-2436 | 32709          | 2.078            | 2.949                      | 0.363                              | 614      | 9.7                | 0.04821               | 0.855                                      |
| $\checkmark$ | 20   | CLIN BIOMECH                                                 | 0268-0033 | 5009           | 2.071            | 2.468                      | 0.244                              | 156      | 7.6                | 0.01099               | 0.792                                      |

# ISI Web of Knowledge™

### Journal Citation Reports®

? HELP

### 🖗 Journal Summary List

Journals from: subject categories SPORT SCIENCES 🔞 VIEW CATEGORY SUMMARY LIST SORT AGAIN

Sorted by:

Eigenfactor® Score

Journals 1 - 20 (of 85) MARK ALL UPDATE MARKED LIST

### [1]2]3]4]5] > > >

Page 1 of 5

Journal Title Changes

2011 JCR Science Edition

Ranking is based on your journal and sort selections.

|              |      | Abbreviated Journal Title<br>(linked to journal information) |           |                |                  | JC                         | Eigenfactor <sup>®</sup> Metrics i) |          |                    |                                   |                                            |
|--------------|------|--------------------------------------------------------------|-----------|----------------|------------------|----------------------------|-------------------------------------|----------|--------------------|-----------------------------------|--------------------------------------------|
| Mark         | Rank |                                                              | ISSN      | Total<br>Cites | Impact<br>Factor | 5-Year<br>Impact<br>Factor | Immediacy<br>Index                  | Articles | Cited<br>Half-life | Eigenfactor <sup>®</sup><br>Score | Article<br>Influence <sup>®</sup><br>Score |
|              | 1    | J APPL PHYSIOL                                               | 8750-7587 | 39387          | 3.753            | 4.103                      | 0.790                               | 405      | >10.0              | 0.05457                           | 1.274                                      |
|              | 2    | MED SCI SPORT EXER                                           | 0195-9131 | 24428          | 4.431            | 5.017                      | 0.741                               | 293      | 9.3                | 0.03607                           | 1.407                                      |
|              | 3    | AM J SPORT MED                                               | 0363-5465 | 14958          | 3.792            | 4.427                      | 0.626                               | 313      | 7.6                | 0.02732                           | 1.159                                      |
|              | 4    | ARCH PHYS MED REHAB                                          | 0003-9993 | 14982          | 2.284            | 2.655                      | 0.440                               | 284      | 9.3                | 0.02075                           | 0.759                                      |
|              | 5    | BRIT J SPORT MED                                             | 0306-3674 | 7592           | 4.144            | 3.790                      | 1.104                               | 193      | 5.9                | 0.01801                           | 1.019                                      |
|              | 6    | EUR J APPL PHYSIOL                                           | 1439-6319 | 10139          | 2.147            | 2.321                      | 0.433                               | 321      | 8.7                | 0.01725                           | 0.641                                      |
|              | 7    | GAIT POSTURE                                                 | 0966-6362 | 4909           | 2.123            | 2.693                      | 0.286                               | 245      | 5.5                | 0.01254                           | 0.705                                      |
|              | 8    | KNEE SURG SPORT TR A                                         | 0942-2056 | 4309           | 2.209            | 2.254                      | 0.301                               | 339      | 5.0                | 0.01223                           | 0.588                                      |
|              | 9    | J SHOULDER ELB SURG                                          | 1058-2746 | 5242           | 2.747            | 2.818                      | 0.283                               | 230      | 6.6                | 0.01207                           | 0.798                                      |
| $\checkmark$ | 10   | CLIN BIOMECH                                                 | 0268-0033 | 5009           | 2.071            | 2.468                      | 0.244                               | 156      | 7.6                | 0.01099                           | 0.792                                      |
|              | 11   | J ORTHOP TRAUMA                                              | 0890-5339 | 4713           | 2.135            | 2.651                      | 0.165                               | 176      | 7.6                | 0.01043                           | 0.844                                      |
|              | 12   | SPORTS MED                                                   | 0112-1642 | 6646           | 5.155            | 5.770                      | 0.574                               | 61       | 8.7                | 0.01036                           | 1.605                                      |
|              | 13   | J STRENGTH COND RES                                          | 1064-8011 | 6018           | 1.831            | 2.338                      | 0.217                               | 465      | 4.9                | 0.00973                           | 0.359                                      |
|              | 14   | <u>J SPORT SCI</u>                                           | 0264-0414 | 4696           | 1.931            | 2.446                      | 0.209                               | 196      | 7.2                | 0.00877                           | 0.616                                      |
|              | 15   | SCAND J MED SCI SPOR                                         | 0905-7188 | 3087           | 2.867            | 3.024                      | 0.577                               | 163      | 5.7                | 0.00775                           | 0.849                                      |
|              | 16   | INT J SPORTS MED                                             | 0172-4622 | 5446           | 2.433            | 2.264                      | 0.448                               | 154      | 9.7                | 0.00770                           | 0.545                                      |
|              | 17   | APPL PHYSIOL NUTR ME                                         | 1715-5312 | 1456           | 2.131            | 2.401                      | 0.306                               | 124      | 3.7                | 0.00750                           | 0.694                                      |
|              | 18   | J REHABIL MED                                                | 1650-1977 | 2826           | 2.049            | 2.376                      | 0.688                               | 141      | 5.1                | 0.00726                           | 0.645                                      |
|              | 19   | J ELECTROMYOGR KINES                                         | 1050-6411 | 2715           | 1.969            | 2.269                      | 0.293                               | 147      | 6.5                | 0.00613                           | 0.604                                      |
|              | 20   | AM J PHYS MED REHAB                                          | 0894-9115 | 3334           | 1.581            | 1.848                      | 0.281                               | 121      | 8.2                | 0.00597                           | 0.527                                      |

### ISI Web of Knowledge™

#### Journal Citation Reports®

WELCOME ? HELP

#### 🞾 Journal Summary List

Journals from: subject categories SPORT SCIENCES 🔞 VIEW CATEGORY SUMMARY LIST

Sorted by:

Impact Factor

#### 

SORT AGAIN

0

Page 2 of 5

2011 JCR Science Edition

Journal Title Changes

MARK ALL UPDATE MARKED LIST

Journals 21 - 40 (of 85)

# Ranking is based on your journal and sort selections.

JCR Data i) Eigenfactor<sup>®</sup> Metrics i) Abbreviated Journal Title ISSN 5-Year Article Mark Rank Eigenfactor<sup>®</sup> Immediacy Cited Total Impact (linked to journal information) Impact Articles Influence® Half-life Cites Factor Index Score Factor Score 21 GAIT POSTURE 0966-6362 4909 2.123 2.693 0.286 245 5.5 0.01254 0.705 0.00543 22 CLIN J SPORT MED 1050-642X 2320 2.119 2.356 0.405 84 6.6 0.689 23 J AGING PHYS ACTIV 1063-8652 2.085 2.013 0.077 26 0.00162 0.586 702 6.7  $\checkmark$ 156 0.01099 0.792 24 CLIN BIOMECH 0268-0033 5009 2.071 2 468 0.244 7.6 25 J REHABIL MED 1650-1977 2826 2.049 2.376 0.688 141 5.1 0.00726 0.645 26 INT J SPORT NUTR EXE 1526-484X 1327 2.010 2.195 0.364 55 7.3 0.00230 0.530 27 J ELECTROMYOGR KINES 1050-6411 2715 1.969 2.269 0.293 147 6.5 0.00613 0.604 0 6 1 6 28 J SPORT SCI 0264-0414 4696 1 931 2 4 4 6 0 209 196 72 0.00877 29 PSYCHOL SPORT EXERC 1469-0292 1200 1.867 2.590 0.444 81 4.7 0.00378 0.687 30 J STRENGTH COND RES 1064-8011 6018 1.831 2.338 0.217 465 4.9 0.00973 0.359 0.167 48 0.00175 0.440 31 INT J SPORT PHYSIOL 1555-0265 438 1.796 1.972 3.4 0.00492 0.760 31 J ATHL TRAINING 1062-6050 2278 1.796 2.935 0.214 84 6.7 0.00434 0.767 33 HUM MOVEMENT SCI 0167-9457 2135 1.775 2 4 9 0 0.309 94 8.3 34 HIGH ALT MED BIOL 1527-0297 539 1.771 1.693 0.425 40 5.3 0.00127 0.418 35 KNEE 0968-0160 1577 1.736 1.901 0.240 104 5.3 0.00544 0.613 PEDIATR EXERC SCI 0899-8493 47 0.00188 0.538 36 1183 1.711 2.010 0.043 8.7 37 J INT SOC SPORT NUTR 1550-2783 259 1.643 1 880 0.083 24 36 0.00086 0 402 38 J MOTOR BEHAV 0022-2895 1753 1.638 1.775 0.167 54 >10.0 0.00256 0.615 AM J PHYS MED REHAB 0894-9115 3334 1.581 1.848 0.281 121 8.2 0.00597 0.527 39 40 CLIN SPORT MED 0278-5919 1529 1.554 1.973 0.860 57 9.7 0.00235 0.575

# **Curriculum Vitae**

Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht.

# **Complete List of Publications**

(in chronological order)

- **Zhu, R**., Zander, T., Dreischarf, M., Rohlmann, A., Duda, G. and Schmidt, H.. Considerations when loading spinal finite element model with predicted muscle forces from inverse static analyses. *(under revision, Journal of Biomechanics)*
- Dreischarf, M., Rohlmann, A., **Zhu, R**., Schmidt, H. and Zander, T.. Is it possible to estimate the compressive force in the lumbar spine from intradiscal pressure measurements? *(under revision, Medical Engineer & Physics)*
- Zhu, R., Cheng, L. M., Yu, Y., Zander, T., Chen, B. and Rohlmann, A. Comparison of four reconstruction methods after total sacrectomy: A finite element study. *Clin Biomech (Bristol, Avon)*, 2012, 27(8): 771-6.
- Zhu, R., Zander, T. and Rohlmann, A.. Comparison of different loading conditions on spinal load. Proceeding, CMBBE 2012, (10<sup>th</sup> International Symposium on Biomechanics and Biomedical Engineering)
- Cheng, L.M., Yu, Y., Zhu, R., Lv, H.X., Jia, Y.W., Zeng, Z.L., Chen, B. and Ding, Z.Q.. Structural stability of different reconstruction techniques following total sacrectomy: a biomechanical study. *Clinical Biomechanics*. 2011 Dec; 26 (10): 977-81.
- Zeng, Z.L., Cheng, L.M., Zhu, R., Wang, J.J., Yu, Y.. Building an effective nonlinear three-dimensional finite-element model of human thoracolumbar spine. NATIONAL MEDICAL JOURNAL OF CHINA, 2011, 91(31) (Chinese)
- Cheng, L.M., Wang, J.J., Zeng, Z.L., Zhu, R., Yu, Y., Li, C.B. and Wu, Z.R.. Pedicle screw fixation for traumatic fractures of the thoracic and lumbar spine. *Protocol, Cochrane Database of Systematic Reviews 2011, Issue 4. Art. No.: CD009073. DOI:* 10.1002/14651858.CD009073.
- Zhu, R., Cheng, L.M., Yu, Y., Lv, H.X., Jia, Y.W., Zeng, Z.L., Chen, B. and Ding, Z.Q., Development and validation of a three dimensional finite element model of  $3^{rd}$ lumbo-pelvic-femoral complex. Proceeding, International Conference on **Biomedical** 2009, **Bioinformatics** and Engineering, June DOI: 10.1109/ICBBE.2009.5162637
- Zhu, R., Cheng, L.M.. The advance in construction of three-dimensional finite element models after sacrectomy and reconstructing lumbosacral spine. *Journal of Medical Biomechanics*. 2008, Vol 23:327-331 (Chinese)

# Acknowledgement

The work for this thesis was performed in the Julius Wolff Institute of Charité-Universitätsmedizin Berlin, Medical Faculty of the Humboldt Universität and Freie Universität, Berlin. I would like to express my gratitude to all those who helped and guided me to complete the project and this thesis. Special thanks go to my mentors Dr. Antonius Rohlmann and Dr. Thomas Zander, who have played a pivotal role throughout this project, providing me their enthusiasm and confidence. Their advice and friendship will always be appreciated and remembered lifelong. My sincere thanks also go to Professor Georg Duda, the director of the Julius Wolff Institute, for providing me constant encouragement and guide.

Many thanks go to my colleagues, all members of the spine team headed by Dr. Rohlmann. These include PD Dr. Hendrik Schmit, Dip. -Ing Marcel Dreischaf, Dr. Kap-soo Han, Dip. –Ing Hadi Boustani. I am deeply thankful for their support and valuable advice. This work would not have been completed without their help and I would not have had such an unforgettable time in Berlin without their friendship. Special thanks to my friend, Dip. -Ing Marcel Dreischaf.

I appreciate the selfless help from my master supervisor Prof Cheng. His encouragement gives me confidence. Many thanks for the financial support by the China Scholarship Council.

Lastly, I am grateful to my parents and all my family. Thanks for their support and understanding. These make me more energetic to ensure my work to succeed.