Abbildungsverzeichnis

$1.1 \\ 1.2$	Darstellung des direkten und indirekten Photoemissions-Experiment . Elektronen-, Teilchen- und Quasiteilchensystem	$\frac{2}{3}$
$2.1 \\ 2.2$	Spektraldarstellung der Green-Funktion	26 27
3.1	Flussdiagramm DFT-Programm	38
3.2	Schematische Darstellung eines Pseudopotential	42
3.3	Flussdiagramm des $G_0 W_0$ space-time-Programms	54
3.4	Superzellenmethode	55
3.5	Illustration des makroskopischen dielektrischen Tensors	56
3.6	Dielektrischer Tensor als Funktion von $1/a_z$	57
3.7	Abhängigkeit der Quasiteilchen-Bandlücke vom Entwicklungsparame-	
3.8	Gemittelte und exakte Behandlung der Anisotropie des dielektrischen Tensors \ldots	61 62
4.1	Bandstruktur einer mit Wasserstoff passivierten zehn-Lagen Silizium- schicht	65
4.2	Wellenfunkionsquadrate für zwei sechs und zehn Lagen	66
4.3	DFT-LDA: Bandlücke als Funktion der Schichtdicke	67
4.4	Isolierte Schicht mit propagierendem Elektron und Langreichweitig- keit des Coulomb-Potentials	67
4.5	Induktion von Dipolen in benachbarten Schichten	68
4.6	Kopplung von benachbarten Schichten dargestellt mit Feynman-Dia-	
	grammen	70
4.7	Zerlegung von W in Kristall- und Oberflächenbeitrag $\ldots \ldots \ldots$	71
4.8	Potential inner halb und außerhalb einer Siliziumschicht $z=z'$	73
4.9	Potential inner halb und außerhalb einer Siliziumschicht $z\neq z'$	74
4.10	Periodizitäts- und Restbeitrag des induzierten Potentials	75
4.11	Induziertes Potential für eine isolierte Schicht	78

ABBILDUNGSVERZEICHNIS

4.12	Oberflächenbeitrag der Quasiteilchen-Korrektur als Funktion der Schicht- dicke	80
4.13	Induziertes Potential und Wellenfunktion bei Verdoppelung der Schicht- dicke	81
4.14	Oberflächenbeitrag der Quasiteilchen-Korrektur als Funktion der Schicht- und Vakuumdicke	82
4.15	Vergleich des Oberflächenbeitrags der Quasiteilchen-Korrektur zwi-	റെ
1 16	Schen Modell- und <i>uo-muuo</i> -Datell	00 04
4.10	Korroktur der Vakuumabhängigkeit für Siliziumschichten	04 86
4.17	Direkte Bandlücke von ultradünnen mit Wasserstoff abgesättigten Si-	00
4.19	liziumschichten als Funktion der Schichtdicke DFT-LDA: Direkte und indirekte Bandlücke der $Si(001)p(2\times1)$ -Ober-	88
	fläche	90
4.20	Wellenfunktionsquadrate der höchsten besetzten und tiefsten unbe- setzten Zustände der $p(2 \times 1)$ a-Oberfläche für 10 und 30 Lagen Schicht-	
	dicke	91
4.21	Direkte und indirekte Bandlücke der $p(2 \times 1)$ a-Oberfläche als Funktion der Vakuumdicke	93
4.22	Direkte und indirekte Bandlücke der $p(2 \times 1)$ a-Oberfläche als Funktion der Schichtdicke	95
4.23	Abhängigkeit der Quasiteilchen-Korrektur einer Silzium-Schicht und	
4.04	der Si(001) $p(2 \times 1)$ a-Oberflache von der Schichtdicke	96
4.24	<i>z</i> -Abhangigkeit der makroskopischen Abschirmung an der Si $(001)p(2 \times 1)a$ Oberfläche	-
5.1	Die $c(4 \times 2)$ -Struktur	103
5.2	2PPE-Spektrum und Bandstruktur der Si(001) $c(4\times 2)$ -Oberfläche 1	105
5.3	DFT-LDA: Dimer-Bildungsenergie als Funktion der Abschneidenenergie 1	.07
5.4	Abhängigkeit des dem D_{up} -Zustand zugeordneten 2PPE-Spektrums	
	von der Polarisation des Laserpulses und Charaktertafel der Punkt-	
	gruppe C_{2v}	.11
5.5	Quasiteilchen-Bandstruktur Si(001) $c(4\times 2)$ für 10 Lagen Silizium in der Nähe des $\overline{\Gamma}$ -Punkts	15
5.6	DFT-LDA: Bandstruktur Si(001) $p(2\times1)$ a für 10 und 22 Lagen Si in	
0.0	der Nähe des $\overline{\Gamma}$ -Punkts	117
5.7	PDOS der $p(2 \times 1)$ a-Oberfläche für 10 und 22 Lagen Si am $\overline{\Gamma}$ -Punkt.	118
5.8	DFT-LDA: Bandstruktur Si(001) $p(2 \times 1)$ a für 10 und 22 Lagen Si 1	19
5.9	DFT-LDA: Bandstruktur Si $(001)c(4\times 2)$ für 10 und 22 Lagen Si in der	
	Nähe des $\overline{\Gamma}$ -Punkts	120
5.10	Lokale projizierte Zustandsdichte für $c(4 \times 2)$	21

5.11	DFT-LDA: Anregungsspektrum in den D_{down} -Zustand der $c(4 \times 2)$ Struk-	
5.12	tur als Funktion der Schichtdicke \dots DFT-LDA. In r_{u} und r_{v} Komponente aufgeschlüsseltes Anregungs-	123
0.12	spektrum in den D_{down} -Zustand der $c(4\times 2)$ -Struktur	124
5.13	DFT-LDA: Konturflächen des Wellenfunktionsquadrats der $c(4 \times 2)$ -	
F 1 4	Struktur	124
5.14	DF1-LDA: Anregungsspektrum in den D_{down} -Zustand der $p(2\times 1)$ a- und $c(4\times 2)$ -Struktur	125
5.15	Berechnete Resonanz im Valenzbereich im Vergleich mit 2PPE-Daten	$120 \\ 127$
C.1	Zwei Halbräume mit unterschiedlicher Dielektrizitätskonstante	140
C.2	Positionen der Spiegelladungen im Fall der isolierten Schicht	141
C.3	Schema zur Berechnung der Spiegelladungen der isolierten Schicht	142
U.4	Schicht	144
C.5	Schema zur Berechnung der Spiegelladungen der periodisch fortgesetz-	
	ten Schicht	145
C.6	Abhängigkeit der Spiegelladung von der Entfernung	146
D.1	Einheitszelle und erste Brillouinzone des Siliziumkristalls	149
D.2	Zustandsgleichung von Murnaghan	150
D.3 D.4	DFT-und G_0W_0 -Bandstruktur des Siliziumkristalls	151
D.4	von der Gitterkonstanten	152
D.5	Schema projizierte Bandstruktur	153
D.6	Projizierte Bandstruktur der Si $(001)p(1 \times 1)$ -Oberfläche	154
E.1	Rekonstruktionen der Si(001)-Oberfläche	156
E.2	Brillouinzonen der Si(001)-Oberfläche	157
F.1	Elektrostatisches Potential eines Kristall- und Schichtsystems	160
G.1	DFT-LDA-Konvergenztest: k -Punktsatz vier Lagen Si-Schicht \ldots	164
G.2	DFT-LDA-Konvergenztest: Direkte Bandücke vier Lagen Si-Schicht	164
G.3	G_0W_0 -Konvergenztest: k -Punktfaltung	165
G.4 G.5	$G_0 W_0$ -Konvergenztest: Abschneideenergie	105 166
G.6	$G_0 W_0$ -Konvergenztest: Dielektrischer Tensor	166
I.1	Definition Oberflächenanteil	176