Inhaltsverzeichnis

1	\mathbf{Ein}	leitung	g und Motivation	1
	1.1	Ziele o	ler Arbeit	5
		1.1.1	Methodische Entwicklungen	5
		1.1.2	Quasiteilchen-Rechnungen im Superzellenansatz	5
		1.1.3	Anwendung auf die Si(001)-Oberfläche	6
	1.2	Aufba	u der Arbeit	6
2	Näł	nerung	slösungen für das quantenmechanische Vielteilchenpro-	
	bler	n		9
	2.1	Das q	uantenmechanische Vielteilchenproblem	9
		2.1.1	Born-Oppenheimer-Näherung	10
	2.2	Näher	ungslösungen der elektronischen Schrödingergleichung	11
	2.3	Effekt	ive Einteilchen-Theorien	12
		2.3.1	Hartree-Theorie	12
		2.3.2	Hartree-Fock-Theorie	13
		2.3.3	Konfigurations-Wechselwirkung	14
		2.3.4	Dichtefunktional-Theorie (DFT)	15
			2.3.4.1 Hohenberg-Kohn-Theorem	15
			2.3.4.2 Kohn-Sham-Gleichungen	16
			2.3.4.3 Näherung des Austausch-Korrelations-Funktionals	18
		2.3.5	Interpretation von Eigenwerten und Bandlücken-Problem	20
	2.4	Green	-Funktionen-Selbstenergie-Theorie	22
		2.4.1	Zweite Quantisierung	22
		2.4.2	Einteilchen-Green-Funktion	23
			2.4.2.1 Einteilchen wechselwirkende Green-Funktion G	24
			2.4.2.2 Spektraldarstellung der Green-Funktion	24
			2.4.2.3 Spektralfunktion	27
		2.4.3	Definition der Selbstenergie	28
		2.4.4	Hedin's Gleichungen	29
		2.4.5	G_0W_0 -Näherung	32
		2.4.6	Quasiteilchen-Rechnung	33

INHALTSVERZEICHNIS

	2.5	Zusam	menfassu	ung der Näherungslösungen	35
3	Nur	neriscł	ne Imple	ementierung	37
	3.1	DFT			38
		3.1.1	Kohn-Sl	ham-Gleichungen mit periodischen Randbedingungen .	38
			3.1.1.1	Abschneideenergie	39
			3.1.1.2	\mathbf{k} -Punktsatz	40
		3.1.2	Pseudop	potentiale	40
		3.1.3	Berechn	ung der Gesamtenergie	43
		3.1.4	Berechn	ung der Kräfte auf Atome zur Strukturoptimierung	43
	3.2	$G_0 W_0$			44
		3.2.1	Die spac	<i>ce-time</i> -Methode	45
		3.2.2	Berechn	ung der dielektrischen Matrix	48
		3.2.3	Invertie	rung der dielektrischen Matrix	50
		3.2.4	Berechn	ung der abgeschirmten Wechselwirkung	52
		3.2.5	Zusamm	nenfassung <i>space-time</i> -Methode	53
		3.2.6	Erweiter	rung auf nicht kubische Systeme	53
			3.2.6.1	Der Superzellenansatz	55
			3.2.6.2	Eigenschaft des makroskopischen dielektrischen Ten-	
				sors einer Schicht im Superzellenansatz	56
			3.2.6.3	Abgeschirmte Wechselwirkung für nicht kubische Sy-	
				steme	58
			3.2.6.4	Zusammenfassung der Erweiterung auf nicht kubi-	
				sche Systeme	61
4	The	oretise	he Besc	hreibung von Oberflächen und dünnen Schichten	63
	4.1	Unters	suchung v	von Kristallzuständen	64
		4.1.1	Parame	terabhängigkeit in DFT-LDA	64
		4.1.2	Paramet	terabhängigkeit innerhalb der G_0W_0	66
		4.1.3	Modell	zur Beschreibung der Parameterabhängigkeit	69
			4.1.3.1	Betrachtung der isolierten Schicht	77
			4.1.3.2	Betrachtung von periodisch fortgesetzten Schichten .	80
			4.1.3.3	Vergleich des Modells mit den space-time G_0W_0 ab-	
				<i>initio</i> -Daten	81
			4.1.3.4	Bestimmung des Periodizitätsbeitrags	83
		4.1.4	Korrekt	ur des Periodizitätsbeitrags	85
		4.1.5	Zusamn	nenfassung Silizium-Kristallzustände	87
		4.1.6	Elektron	nische Eigenschaften von ultradünnen Siliziumschichten	88
	4.2	Unters	suchung v	von Oberflächenzuständen	89
		4.2.1	Vakuum	nabhängigkeit	93
		4.2.2	Schichte	lickenabhängigkeit	94

		4.2.3	Zusammenfassung Oberflächenzustände $Si(001)p(2 \times 1)a$. 98			
		4.2.4	Diskussion des Werts der indirekten Oberflächen-Bandlücke	. 99			
	4.3 Diskussion des numerischen Konzepts						
5	Geometrie und Bandstruktur der Si(001)-Oberfläche 1						
	5.1	Geom	etrie und Bildungsenergie der Si(001)-Oberfläche	. 105			
		5.1.1	Geometrie	. 106			
		5.1.2	Bildungsenergie	. 106			
	5.2	Elektr	onische Struktur im Bereich des $\overline{\Gamma}$ -Punkts	. 108			
		5.2.1	Experimentelle Informationen über Valenzzustände \ldots .	. 111			
		5.2.2	Literatur zur elektronischen Struktur am $\overline{\Gamma}$ -Punkt	. 113			
	5.3	Rechn	ungen	. 114			
		5.3.1	Bandstrukturen	. 115			
			5.3.1.1 $c(4 \times 2)$, 10 Lagen	. 115			
			5.3.1.2 $p(2 \times 1)a$, 10 und 22 Lagen	. 116			
			5.3.1.3 $c(4\times 2)$, 10 und 22 Lagen	. 120			
		5.3.2	Anregungsspektren	. 122			
	5.4	Zusam	ımenfassung elektronische Struktur am Γ -Punkt	. 128			
6	Zus	Zusammenfassung und Ausblick					
	6.1	Zusan	menfassung	. 129			
	6.2	Ausbli	ck	. 131			
\mathbf{A}	Kor	ventio	onen und Variablen	133			
	A.1	Konve	ntionen	. 133			
	A.2	Deklar	cation der Variablen und Operatoren	. 134			
	A.3	Abkür	zungen	. 135			
В	Nor	mieru	ngen und Definitionen im G_0W_0 space-time-Programm	137			
\mathbf{C}	Met	thode	der Spiegelladungen	139			
	C.1	Potent	tial an der Grenzfläche zweier Halbräume	. 139			
	C.2	Potent	tial im Bereich einer einzelnen Schicht	. 141			
	C.3	Potent	tial im Bereich einer periodisch fortgesetzten Schicht	. 144			
D	Vol	umene	igenschaften von Silizium	149			
	D.1	Krista	ll-Bandstruktur	. 149			
	D.2	Projiz	ierte Bandstruktur	. 152			
\mathbf{E}	Rek	onstru	ıktion und Brillouinzone der Si(001)-Oberfläche	155			

INHALTSVERZEICHNIS

\mathbf{F}	Anpassung der Bandstruktur von Schicht- und Kristallrechnungen								
	F.1	DFT-LDA	159						
	F.2	$G_0 W_0$	162						
\mathbf{G}	Kon	vergenztests Silizium-Schichten	163						
	G.1	Vier Lagen Siliziumschicht	163						
		G.1.1 DFT-LDA	163						
		G.1.2 G_0W_0	164						
	G.2	Zusammenfassung	167						
	G.3	Konvergenzparameter für beliebige Schicht- und Vakuum dicken $\ .\ .$.	167						
н	Konvergenzparameter für die verschiedenen Rekonstruktionen der								
	Si(001)-Oberfläche 16								
	H.1	$p(2 \times 1)a \dots \dots$	169						
	H.2	$p(2 \times 1)s$	170						
	H.3	$p(2 \times 2)$	170						
	H.4	$c(4 \times 2)$	170						
	H.5	Dipolkorrektur	170						
Ι	Analyse der Einteilchen-Zustände 173								
	I.1	Berechnung der Übergangswahrscheinlichkeiten	173						
	I.2	Symmetrieanalyse	173						
	I.3	Projektion auf Pseudo-Atomorbitale	174						
	I.4	Projizierte Zustandsdichte	175						
	I.5	Oberflächenanteil	175						