7.4 Gewald reaction

7.4.1 Synthesis of aminotiophenes- method A

Synthesis of Methyl 2-Amino-5-(2-methoxy-2-oxoethyl)thiophene-3-carboxylate (111a)

E 43 (IV 69)

Starting amounts:
$0.188 \mathrm{~g} \quad(1.00 \mathrm{mmol})$ Siloxycyclopropanecarboxylate 53
2.0 ml DMF
$0.163 \mathrm{~g} \mathrm{NEt} 3 \cdot 3 \mathrm{HF}$
$0.3 \mathrm{ml} \quad \mathrm{NEt}_{3}$
$0.099 \mathrm{~g} \quad(1.00 \mathrm{mmol})$ Methyl cyanoacetate
$0.032 \mathrm{~g} \quad(1.00 \mathrm{mmol})$ Sulfur, pulverized

Procedure: Siloxycyclopropanecarboxylate 53 was dissolved in dimethylformamide and triethylamine and $\mathrm{NEt}_{3} \cdot 3 \mathrm{HF}$ were added simultaneously. After one hour stirring at room temperature, methyl cyanoacetate and sulfur were added to the reaction mixture, which was heated at $55^{\circ} \mathrm{C}$ for 5 hours, then stirred over night at room temperature. The solvent was removed under reduced pressure, ethyl acetate and water were added and the layers separated. The aqueous layer was extracted with ethyl acetate, the combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated.

Purification: Column chromatography on silica gel with hexane/ethyl acetate 2:1
Yield: $128 \mathrm{mg}(56 \%)$ of $\mathbf{1 1 1 a}$ as yellow solid

111a

Melting range: $74-7{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-$ NMR (250 MHz, CDCl $_{3}$): $\delta=3.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.72,3.78(2 \mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H}, \mathrm{OMe}), 5.94$ (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.77 (s, $1 \mathrm{H}, 4-\mathrm{H}$).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(62.9 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta=35.1\left(\mathrm{t}, \mathrm{CH}_{2}\right), 50.9,52.2(2 \mathrm{q}, \mathrm{OMe}), 105.9(\mathrm{~s}, \mathrm{C}-5)$, 116.1 ($\mathrm{s}, \mathrm{C}-3$), 124.8 (d, C-4), 162.8 ($\mathrm{s}, \mathrm{C}-2$), 165.5, 170.9 ($2 \mathrm{~s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3440-3335 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 3070-2855(\mathrm{C}-\mathrm{H}), 1740(\mathrm{C}=\mathrm{O}), 1680(\mathrm{C}=\mathrm{O}), 1590$, 1505, 1440 (N-H, CS-NH).

MS (EI, $\left.80 \mathbf{e V}, 90{ }^{\circ} \mathbf{C}\right): m / z(\%)=229\left(49,[\mathrm{M}]^{+}\right), 170\left(100,\left[\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}\right]\right), 138(67)$.
HRMS (EI, $80 \mathbf{e V}$) m / z calculated for $[\mathrm{M}]^{+}: 229.04088$, found: 229.04321.

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{~S}(229.3)$	calc.	C 47.15	H 4.84	N 6.11
	found	C 47.00	H 4.63	N 5.92

Synthesis of Benzyl 2-Amino-5-(2-methoxy-2-oxoethyl)thiophene-3-carboxylate (111b)

Starting amounts:

0.828 g	$(4.40 \mathrm{mmol})$ Siloxycyclopropanecarboxylate 53
10 ml	DMF
0.816 g	$\mathrm{NEt}_{3} \cdot 3 \mathrm{HF}$
1.5 ml	NEt_{3}
0.701 g	$(4.00 \mathrm{mmol})$ Benzyl cyanoacetate
0.128 g	$(4.00 \mathrm{mmol})$ Sulfur, pulverized

Procedure: Siloxycyclopropanecarboxylate 53 was dissolved in dimethylformamide and triethylamine and $\mathrm{NEt}_{3} \cdot 3 \mathrm{HF}$ were added simultaneously. After one hour stirring at room temperature, methyl cyanoacetate and sulfur were added to the reaction mixture which was heated at $55^{\circ} \mathrm{C}$ for 6 hours, then stirred over night at room temperature. The solvent was
removed under reduced pressure, ethyl acetate and water were added and the layers separated. The aqueous layer was extracted with ethyl acetate, the combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated.

Purification: Column chromatography on silica gel with hexane/ethyl acetate 2:1
Yield: 776 mg (64%) of 111b as brownish oil

111b
${ }^{1} \mathbf{H}-$ NMR ($250 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=3.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.67(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 5.23(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ph}$), 6.12 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.80 ($\left.\mathrm{s}, 1 \mathrm{H}, 4-\mathrm{H}\right), 7.21-7.46$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{Ph}$).
${ }^{13} \mathbf{C}$-NMR ($\mathbf{6 2 . 9} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=34.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 51.9(\mathrm{q}, \mathrm{OMe}), 65.0\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{Ph}\right), 105.1(\mathrm{~s}$, C-5), 115.7 (s, C-3), 124.6 (d, C-4), 127.6, 127.7, 128.2 (3 d, Ph), 136.3 (s, Ph), 163.3, (s, C2), 164.6, $170.8(2 \mathrm{~s}, \mathrm{C}=\mathrm{O})$.

IR (KBr): $v=3445-3340 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 3065-2850(\mathrm{C}-\mathrm{H}), 1740(\mathrm{C}=\mathrm{O}), 1675(\mathrm{C}=\mathrm{O}), 1590$, 1500, 1455 (N-H, -CS-NH-).

MS (EI, $\left.80 \mathbf{e V}, 140{ }^{\circ} \mathbf{C}\right): m / z(\%)=305\left(23,[\mathrm{M}]^{\dagger}\right), 245(19), 91\left(100[\mathrm{Bn}]^{+}\right)$.
HRMS (EI, $80 \mathbf{e V}$) m / z calculated for $\left[\mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}\right]: 305.07217$, found: 305.07366.

$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}(305.3)$	calc.	C 59.00	H 4.95	N 4.59
	found	C 58.42	H 4.79	N 4.32

Synthesis of tert-Butyl 2-Amino-5-(2-methoxycarbonyl-propyl)thiophene-3carboxylate (111c)

E 45 (IV 152)

Starting amounts:
0.100 g (0.495 mmol) Siloxycyclopropanecarboxylate $\mathbf{5 5}$
1.0 ml DMF
$0.082 \mathrm{~g} \mathrm{NEt} \cdot 3 \mathrm{HF}$
$0.2 \mathrm{ml} \mathrm{NEt}_{3}$
$0.070 \mathrm{~g} \quad(0.50 \mathrm{mmol})$ tert-Butyl cyanoacetate
$0.016 \mathrm{~g} \quad(0.50 \mathrm{mmol})$ Sulfur, pulverized

Procedure: Siloxycyclopropanecarboxylate 55 was dissolved in dimethylformamide and triethylamine and $\mathrm{NEt}_{3} \cdot 3 \mathrm{HF}$ were added simultaneously. After one hour stirring at room temperature, methyl cyanoacetate and sulfur were added to the reaction mixture, which was heated at $55^{\circ} \mathrm{C}$ for 5 hours, then stirred over night at room temperature. The solvent was removed under reduced pressure, ethyl acetate and water were added and the layers separated. The aqueous layer was extracted with ethyl acetate, the combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated.

Purification: Column chromatography on silica gel with hexane/ethyl acetate 2:1
Yield: 97 mg (69%) of 111c as brownish oil

111c
${ }^{1} \mathbf{H}-$ NMR ($250 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=1.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.51(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe} 3$), $3.68(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OMe}), 3.73(\mathrm{q}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.79\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.71(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(62.9 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta=18.7,28.4\left(2 \mathrm{q}, \mathrm{Me}, \mathrm{CMe}_{3}\right), 40.6(\mathrm{~d}, \mathrm{CH}), 52.2(\mathrm{q}, \mathrm{OMe})$, 80.1 (s, $C \mathrm{Me}_{3}$), 108.0 (s, C-5), 123.4 (d, C-4), 156.4 (s, C-3), 161.3 (s, C-2), 164.9, 174.0 (2 s, $\mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3450-3340 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 2980-2935(\mathrm{C}-\mathrm{H}), 1740(\mathrm{C}=\mathrm{O}), 1670(\mathrm{C}=\mathrm{O}), 1590$, 1500, 1455 (N-H, CS-NH).

MS (EI, $\left.80 \mathbf{e V}, 40^{\circ} \mathbf{C}\right): m / z(\%)=285\left(6,[\mathrm{M}]^{+}\right), 229(26), 212(12), 171(11), 170(100), 152$ (28).

HRMS (EI, $80 \mathbf{e V}$) m / z calculated for $[\mathrm{M}]^{+}: 285.10349$, found: 285.10466.

$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}(285.4)$	calc.	C 54.72	H 6.71	N 4.91
	found	C 55.34	H 5.86	N 4.36

7.4.2 Synthesis of aminothiophenes-method B

Synthesis of tert-Butyl 2-Amino-5-(2-methoxy-2-oxoethyl)thiophene-3-carboxylate (111d)

E 46 (IV 170)

Starting amounts:
$0.395 \mathrm{~g} \quad(2.10 \mathrm{mmol})$ Siloxycyclopropanecarboxylate 53
$0.282 \mathrm{~g} \quad(2.00 \mathrm{mmol})$ tert-Butyl cyanoacetate
$0.064 \mathrm{~g} \quad(2.00 \mathrm{mmol})$ Sulfur, pulverized
4.0 ml Methanol

5 drops Diethylamine

Procedure: Siloxycyclopropanecarboxylate 53, tert-butyl cyanoacetate and sulfur were suspended in methanol, then diethylamine was added. The reaction mixture was refluxed for 7 hours, and then stirred over night at room temperature. Ethyl acetate and water were added and the layers separated. The aqueous layer was extracted with ethyl acetate, the combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated.

Purification: Column chromatography on silica gel with hexane/ethyl acetate 2:1
Yield: 384 mg (71%) of 111d as brownish oil

111d
${ }^{1} \mathbf{H}$-NMR ($250 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=1.53\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 3.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.72(\mathrm{~s}, 3 \mathrm{H}$, OMe), 5.81 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.74 ($\mathrm{s}, 1 \mathrm{H}, 4-\mathrm{H}$).
${ }^{13} \mathbf{C}$-NMR ($62.9 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=28.4$ (q, CMe_{3}), $35.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 52.1$ (q, OMe), $79.9(\mathrm{~s}$, CMe_{3}), 107.7 ($\mathrm{s}, \mathrm{C}-5$), 115.5 ($\mathrm{s}, \mathrm{C}-3$), 125.5 (d, C-4), 161.9 ($\mathrm{s}, \mathrm{C}-2$), 164.7, 170.9 ($2 \mathrm{~s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3445-3255 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 3070-2845(\mathrm{C}-\mathrm{H}), 1740(\mathrm{C}=\mathrm{O}), 1670(\mathrm{C}=\mathrm{O}), 1590$, 1500, 1455 (N-H, CS-NH).

MS (EI, $\left.80 \mathbf{e V}, 7{ }^{\circ} \mathbf{C}\right): m / z(\%)=271\left(14,[\mathrm{M}]^{\dagger}\right), 215(64), 198(20), 197(26), 156$ (100), 138 (36), 57 (31), 41 (11).
HRMS (EI, $80 \mathbf{e V}$) m / z calculated for $[\mathrm{M}]^{+}: 271.08783$, found: 271.08633.

$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}(271.3)$	calc.	C 53.12	H 6.32	N 5.16
	found	C 53.37	H 6.28	N 4.85

Synthesis of tert-Butyl 2-Amino-5-(1-benzyl-2-methoxy-2-oxoethyl)thiophene-3carboxylate (111e)

Starting amounts:

0.160 g	$(0.58 \mathrm{mmol})$ Siloxycyclopropanecarboxylate 57
0.073 g	$(0.52 \mathrm{mmol})$ tert-Butyl cyanoacetate
0.017 g	$(0.52 \mathrm{mmol})$ Sulfur, pulverized
1.2 ml	Methanol
3 drops	Diethylamine

Procedure: Siloxycyclopropanecarboxylate 57, tert-butyl cyanoacetate and sulfur were suspended in methanol, then diethylamine was added. The reaction mixture was refluxed for 8 hours, and then stirred over night at room temperature. Ethyl acetate and water were added and the layers were separated. The aqueous layer was extracted with ethyl acetate, the combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated.

Purification: Column chromatography on silica gel with $10 \% i$-propanol/hexane Yield: $69 \mathrm{mg}(37 \%)$ of 111e as brownish oil

111e
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(250 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta=1.51\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 3.00\left(\mathrm{dd}, J=13.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, 3.25 (dd, $J=13.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.61 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.87 (dd, $J=8.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 5.81 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.70 (s, 1 H, 4-H), 7.11-7.32 (m, $5 \mathrm{H}, \mathrm{Ph}$).
${ }^{13}$ C-NMR ($62.9 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=28.4$ ($\mathrm{q}, \mathrm{CMe}_{3}$), 40.1 ($\mathrm{t}, \mathrm{CH}_{2}$), 48.7 (d, CH), 52.1 (q, OMe), 80.1 ($\mathrm{s}, \mathrm{CMe}_{3}$), 107.7 ($\mathrm{s}, \mathrm{C}-5$), 121.1 ($\mathrm{s}, \mathrm{C}-3$), 124.4 (d, C-4), 126.6, 128.4, 128.8 (3d, $\mathrm{Ph}), 138.2$ (s, Ph), 161.5 (s, C-2), 164.8, 172.9 ($2 \mathrm{~s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3450-3340 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 3090-2850(\mathrm{C}-\mathrm{H}), 1740(\mathrm{C}=\mathrm{O}), 1670(\mathrm{C}=\mathrm{O}), 1590$, 1500, 1455 (N-H, -CS-NH-).

MS (EI, $\left.80 \mathbf{e V}, \mathbf{1 2 0}^{\circ} \mathbf{C}\right): m / z(\%)=361\left(11,[\mathrm{M}]^{+}\right), 270\left(10\left[\mathrm{M}^{+}-\mathrm{Bn}\right]\right), 215(12), 214$ (100), 196 (12), 91 ($\left.16[\mathrm{Bn}]^{\dagger}\right), 59$ (16), 57 (44), 42 (12), 41 (16).
HRMS (EI, $80 \mathbf{e V}$) m / z calculated for $[M]^{+}: 361.13477$, found: 361.13522.
$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$ (361.5)
calc.
C 63.14
H 6.41
N 3.87
found*
C 61.59
H 6.47
N 3.86
*It was not possible to obtain better results for elemental analysis

Synthesis of tert-Butyl 2-Amino-5-(2-methoxy-2-oxoethyl)-4-methyl-thiophene-3carboxylate (113)

E 48 (IV 110)

Starting amounts:

0.260 g	(2.00 mmol) Levulinic acid methyl ester 112
0.2 ml	Diethylamine
0.282 g	$(2.00 \mathrm{mmol})$ tert-Butyl cyanoacetate
0.064 g	$(2.00 \mathrm{mmol})$ Sulfur, pulverized
0.6 ml	Methanol, dry

Procedure: Levulinic acid methyl ester 112, tert-butyl cyanoacetate and sulfur were suspended in methanol, then diethylamine was added. The reaction mixture was heated ($\mathrm{t}_{\text {bath }}=45^{\circ} \mathrm{C}$) for 78 hours. Ethyl acetate and water were added and the layers were separated. The aqueous layer was extracted with ethyl acetate, the combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated.

Purification: Column chromatography on silica gel with hexane/ethyl acetate 2:1, then HPLC ($3 \% i$-propanol/hexane, $64 \mathrm{ml} / \mathrm{min}, 80 \mathrm{bar}$)
Yield: $54 \mathrm{mg}(10 \%)$ of $\mathbf{1 1 3}$ as brownish solid

113

Melting point: $110-112{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$-NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=1.52\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe} e_{3}\right), 2.16(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{Me}), 3.52(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), 3.67 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 5.96 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$).
${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=15.3$, $28.5\left(2 \mathrm{q}, \mathrm{Me}, \mathrm{CMe} 3\right.$), $32.6\left(\mathrm{t}, \mathrm{CH}_{2}\right), 52.1(\mathrm{q}$, OMe), 79.9 ($\mathrm{s}, \mathrm{CMe}_{3}$), 108.2 ($\mathrm{s}, \mathrm{C}-5$), 109.6 ($\mathrm{s}, \mathrm{C}-4$), 133.5 ($\mathrm{s}, \mathrm{C}-3$), 161.7 ($\mathrm{s}, \mathrm{C}-2$), 165.4, 171.1 ($2 \mathrm{~s}, 2 \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3445-3330 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 2975-2930(\mathrm{C}-\mathrm{H}), 1740(\mathrm{C}=\mathrm{O}), 1665(\mathrm{C}=\mathrm{O}), 1580$, 1525, 1480 (N-H, CS-NH).

MS (EI, $80 \mathbf{e V}, 9{ }^{\circ} \mathbf{C}$): $m / z(\%)=285\left(24,\left[\mathrm{M}^{+}\right]\right), 229(69), 212$ (17), 211 (35), 170 (100), 152 (45), 126 (11), 57 (34), 41 (17), 29 (15), 28 (17).
HRMS (EI, $80 \mathbf{e V}) m / z$ calculated for $\left[\mathrm{M}^{+}, \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}\right]:$ 285.10349, found: 285.10522.

7.4.3 DCC and BOP mediated syntheses of tri- and tetrapeptide analogues

Synthesis of tert-Butyl 2-[(tert-Butoxycarbonyl)amino]-5-(2-methoxy-2-oxoethyl)thiophene-3-carboxylate (114)

E 49 (IV 223)

Starting amounts:

0.293 g	(1.08 mmol) tert-Butyl 2-amino-5-(2-methoxy-2-oxoethyl)thiophene- 3-carboxylate (111d)
1.20 g	$(5.50 \mathrm{mmol}) \mathrm{Boc}_{2} \mathrm{O}$ 1.01 g
$(8.25 \mathrm{mmol})$ DMAP 0.3 ml $\mathrm{Et}_{3} \mathrm{~N}$ 10 ml $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	

Procedure: tert-Butyl 2-amino-5-(2-methoxy-2-oxoethyl)thiophene-3-carboxylate (111d) was dissolved in dichloromethane and then $\mathrm{Boc}_{2} \mathrm{O}$, DMAP and finally triethylamine were added. The reaction mixture was stirred at room temperature over 7 days. The solvent was evaporated, the residue was dissolved in ethyl acetate and this solution was successively washed with 2 M HCl and brine. The organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure.

Purification: Column chromatography on silica gel with hexane/ethyl acetate 4:1
Yield: 268 mg (67%) of $\mathbf{1 1 4}$ as brownish oil

114
${ }^{1} \mathbf{H}-$ NMR ($250 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=1.50,1.53\left(2 \mathrm{~s}, 9 \mathrm{H}, 9 \mathrm{H}, \mathrm{CMe} 3\right.$), $3.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.69$ (s, $3 \mathrm{H}, \mathrm{OMe}$), 6.90 ($\mathrm{s}, 1 \mathrm{H}, 4-\mathrm{H}), 10.01$ (s, $1 \mathrm{H}, \mathrm{NH}$).

```
\({ }^{13} \mathbf{C}\)-NMR ( \(62.9 \mathrm{MHz}, \mathbf{C D C l}_{3}\) ): \(\delta=28.2,28.3\left(2 \mathrm{q}, \mathrm{CMe} 3\right.\) ), \(34.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 52.3(\mathrm{q}, \mathrm{OMe})\),
81.3, 82.0 ( \(2 \mathrm{~s}, C \mathrm{Cl}_{3}\) ), 112.2 ( \(\mathrm{s}, \mathrm{C}-3\) ), 123.1 ( \(\mathrm{s}, \mathrm{C}-2\) ), 124.0 (d, C-4), 150.0 ( \(\mathrm{s}, \mathrm{C}=\mathrm{O}\) ), 152.5 ( s ,
C-5), 164.7, 170.7 ( \(2 \mathrm{~s}, \mathrm{C}=\mathrm{O}\) ).
```

IR (KBr): $v=3440-3335 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 2980-2935(\mathrm{C}-\mathrm{H}), 1800(\mathrm{C}=\mathrm{O}), 1745(\mathrm{C}=\mathrm{O}), 1710$ (C=O), 1590, 1560, 1455 (N-H, CS-NH).

MS (EI, $\left.80 \mathbf{e V}, \mathbf{1 2 0}^{\circ} \mathbf{C}\right): m / z(\%)=371\left(9,[\mathrm{M}]^{+}\right), 259$ (30), 219 (48), 200 (11), 156 (32), 138 (11), 57 (100), 41 (24), 29 (19).
HRMS (EI, $80 \mathbf{e V}$) m / z calculated for $\left[\mathrm{M}^{+}, \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{~S}\right]: 371.14026$, found: 371.14244.

N -Boc deprotection of 114

E 50 (IV 248)

Starting amounts:

```
0.066 g (0.18 mmol) tert-Butyl 2-[(tert-butoxycarbonyl)amino]-5-(2-methoxy-2-
            oxoethyl)thiophene-3-carboxylate 114
0.041 g (0.18 mmol) Me SSiOTf
0.040 g (0.36 mmol) 2,6-Lutidine
1.5 ml CH2Cl
```

Procedure: To a solution of tert-butyl 2-[(tert-butoxycarbonyl)amino]-5-(2-methoxy-2-oxoethyl)thiophene-3-carboxylate (114) and 2,6-lutidine in dry dichloromethane, Me $\mathrm{S}_{3} \mathrm{SiOTf}$ was dropwise added at room temperature. The reaction mixture was stirred for 15 min , quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with diethyl ether several times. The combined organic phases were washed with water and brine, dried with MgSO_{4} and concentrated under reduced pressure. The crude silyl carbamate was dissolved in dry methanol, stirred for 20 min at room temperature and the solvent was evaporated.

Purification: Column chromatography on silica gel with hexane/ethyl acetate $4: 1$
Yield: 26 mg (53%) of 111d as brownish oil - for analytical data see E46 (IV 170)

Synthesis of \{4-(tert-Butoxycarbonyl)-5-[(tert-butoxycarbonyl)amino]thien-2yl\}acetic acid (118)

E 51 (IV 243)

Starting amounts:

0.214 g	$(0.58 \mathrm{mmol})$ tert-Butyl 2-[(tert-butoxycarbonyl)amino]-5-(2-
	methoxy-2-oxoethyl)thiophene-3-carboxylate (114)
0.073 g	$(1.74 \mathrm{mmol}) \mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$
1 ml	$\mathrm{H}_{2} \mathrm{O}$
1 ml	MeOH
3 ml	THF

Procedure: Compound $\mathbf{1 1 4}$ was dissolved in a mixture of methanol and tetrahydrofurane, a solution of LiOH in water was added, and the resulting mixture was stirred for 24 hours at room temperature. 2 M HCl was added to adjust pH 7 . Diethyl ether was added and the layers were separated. The aqueous layer was extracted with diethyl ether, the combined organic phases were dried with MgSO_{4} and the solvent was evaporated.

Purification: Column chromatography on silica gel with hexane/ethyl acetate $4: 1$, then methanol/dichloromethane $4: 1$

Yield: 203 mg (98%) of $\mathbf{1 1 8}$ as orange solid

Melting range: $169-172{ }^{\circ} \mathrm{C}$
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}\right): \delta=1.57,1.59\left(2 \mathrm{~s}, 9 \mathrm{H}, 9 \mathrm{H}, \mathrm{CMe} 3\right.$), $3.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.89$
(s, $1 \mathrm{H}, 4-\mathrm{H}$).
${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta=28.7,28.9\left(2 \mathrm{q}, \mathrm{CMe}_{3}\right), 49.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 82.6,83.6(2 \mathrm{~s}$, $C \mathrm{Me}_{3}$), 113.7 ($\mathrm{s}, \mathrm{C}-3$), 123.6 (d, C-4), 127.1 ($\mathrm{s}, \mathrm{C}-2$), 150.6 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 153.6 ($\mathrm{s}, \mathrm{C}-5$), 166.5, $180.6(2 \mathrm{~s}, \mathrm{C}=\mathrm{O})$.

IR (KBr): $v=3390-3300 \mathrm{~cm}^{-1}(\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}), 2980-2850(\mathrm{C}-\mathrm{H}), 1720(\mathrm{C}=\mathrm{O}), 1670(\mathrm{C}=\mathrm{O})$, 1565, 1540, 1475 (N-H, CS-NH), 1250 (C-O).

MS (EI, $\left.80 \mathbf{e V}, \mathbf{1 7 0}^{\circ} \mathbf{C}\right): m / z(\%)=357\left(0.2,[\mathrm{M}]^{+}\right), 57(15), 56(57), 55(25), 44$ (86), 43 (13), 41 (100), 40 (10), 39 (51).

HRMS (EI, $\mathbf{8 0} \mathbf{e V}$) m / z calculated for $\left[\mathrm{M}^{+}, \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{~S}\right]: 357.12460$, found: 357.12533.

Synthesis of Benzyl 2-\{[N-(tert-Butoxycarbonyl)-L-alanyl]amino\}-5-(2-methoxy-2-oxoethyl)thiophene-3-carboxylate (119b)

E 52 (IV 169)

Starting amounts:

```
0.192 g (0.63 mmol) Benzyl 2-amino-5-(2-methoxy-2-oxoethyl)thiophene-3-
    carboxylate (111b)
    0.179 g (0.95 mmol) N-Boc L-Alanine
    0.195 g (0.95 mmol) DCC
    3 ml CH2Cl2
```

Procedure: To a stirred solution of the benzyl 2-amino-5-(2-methoxy-2-oxoethyl)thiophene-3carboxylate (111b) and N -Boc L-alanine in dichloromethane, DCC was added at $0^{\circ} \mathrm{C}$. The resulting solution was stirred over 4 days at room temperature.

Purification: Flash chromatography on silica gel with 0.8% methanol/dichloromethane, then 30% ethyl acetate/dichloromethane, then $10 \% i$-propanol/hexane

Yield: $168 \mathrm{mg}(56 \%)$ of $\mathbf{1 1 9 b}$ as yellow solid
60 mg (31%) of 111b as brownish oil was recovered

119b

Melting range: $75-78{ }^{\circ} \mathrm{C}$

Optical rotation: $[\alpha]_{D}^{20}=-61.9(\mathrm{c}=1.05, \mathrm{MeOH})$.
${ }^{1} \mathbf{H}$-NMR ($250 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe} e_{3}\right), 1.44(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 3.65(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.67 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 4.37-4.41 (m, $\left.1 \mathrm{H}, \mathrm{CH}\right), 5.24$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 5.27 ($\mathrm{s}, 1 \mathrm{H}$, NH), 7.01 (s, $1 \mathrm{H}, 4-\mathrm{H}$), 7.22-7.38 (m, $5 \mathrm{H}, \mathrm{Ph}$), 11.40 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$).
${ }^{13}$ C-NMR ($\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=17.9$ (q, Me), 28.1 ($\mathrm{q}, \mathrm{CMe}_{3}$), 34.7 (t, CH_{2}), 50.4 (d, CH), $52.2(\mathrm{q}, \mathrm{OMe}), 66.1\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{Ph}\right), 80.3\left(\mathrm{~s}, C \mathrm{Me}_{3}\right), 112.4(\mathrm{~s}, \mathrm{C}-5), 123.0(\mathrm{~d}, \mathrm{C}-4), 125.3(\mathrm{~s}$, C-2), 128.0, 128.2, 128.5 (3 d, Ph), 135.7 (s, Ph), 155.1 (s, C-3), 148.1, 164.6, 170.2, 170.4 (3 $\mathrm{s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3350-3290 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 2980-2850(\mathrm{C}-\mathrm{H}), 1720(\mathrm{C}=\mathrm{O}), 1680(\mathrm{C}=\mathrm{O}), 1560$, 1530, 1455 (N-H, CS-NH).

MS (EI, $80 \mathbf{e V}, 170{ }^{\circ} \mathbf{C}$): $m / z(\%)=476\left(16,[\mathrm{M}]^{+}\right), 420(12), 307(27), 306(81), 305(90)$, 247 (11), 246 (33), 245 (35), 91 (100 [Bn] ${ }^{+}$), 57 (27).

HRMS (EI, $\mathbf{8 0} \mathbf{e V}$) m / z calculated for $\left[\mathrm{M}^{+}, \mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}\right]$: 476.16171, found: 476.16333.

Synthesis of tert-Butyl 2-\{[N-(tert-Butoxycarbonyl)-L-alanyl]amino\}-5-(2-methoxy-1-methyl-2-oxoethyl)thiophene-3-carboxylate (119c)

Starting amounts:

$$
\begin{array}{ll}
0.285 \mathrm{~g} & (1.00 \mathrm{mmol}) \text { tert-Butyl 2-amino-5-(2-methoxycarbonyl- } \\
& \text { propyl)thiophene-3-carboxylate (111c) } \\
0.218 \mathrm{~g} & (1.15 \mathrm{mmol}) \mathrm{N} \text {-Boc L-alanine } \\
0.237 \mathrm{~g} & (1.15 \mathrm{mmol}) \mathrm{DCC} \\
4 \mathrm{ml} & \mathrm{CH}_{2} \mathrm{Cl}_{2}
\end{array}
$$

Procedure: To a stirred solution of compound 111c and N-Boc L-alanine in dichloromethane, DCC was added, at $0^{\circ} \mathrm{C}$. The resulting solution was stirred for 20 hours at room temperature.

Purification: Flash chromatography on silica gel with 30% ethyl acetate/dichloromethane, then HPLC ($4 \% i$-propanol/hexane, $64 \mathrm{ml} / \mathrm{min}, 95 \mathrm{bar}$)

Yield: 242 mg (53%) of $\mathbf{1 1 9 c}$ as yellow solid
$22 \mathrm{mg}(8 \%)$ of 111 c as brownish oil was recovered

119c

Melting range: $45-47^{\circ} \mathrm{C}$

Optical rotation: $[\alpha]_{D}^{20}=-39.3(\mathrm{c}=1.34, \mathrm{MeOH})$.
${ }^{1} \mathbf{H}$-NMR ($500 \mathrm{MHz}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta=1.46(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.52(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe} 3$), 1.54 (d, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}$), 1.62 (s, $9 \mathrm{H}, \mathrm{CMe}_{3}$), 3.74 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.97 (q, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, CH), $4.30(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.00(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta=17.4$, 19.7 (2 q, Me), 29.0, 29.2 ($2 \mathrm{q}, \mathrm{CMe}_{3}$), 41.9, 49.4 (2 d, CH), 49.6 (q, OMe), 81.4, 83.1 ($2 \mathrm{~s}, \mathrm{CMe}_{3}$), 115.8 ($\mathrm{s}, \mathrm{C}-5$), 122.9 (d, C-4), 134.3 (s, C2), 158.1 ($\mathrm{s}, \mathrm{C}-3$), 148.1, 166.2, 173.0, 175.6 ($4 \mathrm{~s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3455-3260 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 2980-2880(\mathrm{C}-\mathrm{H}), 1745(\mathrm{C}=\mathrm{O}), 1675(\mathrm{C}=\mathrm{O}), 1590$, 1505, 1455 (N-H, CS-NH).

MS (EI, $80 \mathbf{e V}, \mathbf{8 0 - 1 2 0}{ }^{\circ} \mathbf{C}$): $m / z(\%)=425\left(4,\left[\mathrm{M}^{+}-\mathrm{OMe}\right]\right), 286$ (17), 285 (49), 231 (10), 230 (45), 229 (91), 228 (42), 214 (11), 212 (37), 211 (12), 172 (14), 171 (23), 170 (100), 152 (55).

HRMS (EI, $\mathbf{8 0} \mathbf{e V}$) m / z calculated for [M^{+}- OMe]: 425.17462, found: 425.17633.
$\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}(456.6)$
calc.
C 55.25
H 7.06
N 6.14
found
C 55.01
H 6.59
N 5.34

Synthesis of tert-Butyl 2-\{[N-(tert-Butoxycarbonyl)-L-alanyl]amino\}-5-(2-methoxy-2-oxoethyl)thiophene-3-carboxylate (119d)

Method A

E 54 (IV 157)

Starting amounts:

0.464 g	(1.71 mmol) tert-Butyl 2-amino-5-(2-methoxy-2-oxoethyl)thiophene- 3-carboxylate (111d)
0.372 g	$1.97 \mathrm{mmol}) \mathrm{N}$-Boc L-Alanine 0.406 g 6.5 ml $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Procedure: To a stirred solution of the compound 111d and N-Boc L-alanine in dichloromethane, DCC was added at $0{ }^{\circ} \mathrm{C}$. The resulting solution was stirred for 20 hours at room temperature.

Purification: Column chromatography on silica gel with 30% ethyl acetate/dichloromethane, then HPLC ($10 \% i$-propanol/hexane, $64 \mathrm{ml} / \mathrm{min}, 80$ bar)
Yield: $454 \mathrm{mg}(60 \%)$ of $\mathbf{1 1 9 d}$ as yellow solid
$74 \mathrm{mg}(16 \%)$ of 111 d was recovered as brownish oil

119d

Melting range: $85-90^{\circ} \mathrm{C}$

Optical rotation: $[\alpha]_{D}^{20}=-16.7(\mathrm{c}=0.42, \mathrm{MeOH})$.
${ }^{1} \mathbf{H}$-NMR ($250 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=1.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.49(\mathrm{~s}$, $9 \mathrm{H}, \mathrm{CMe} 3$), $3.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.66(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.38(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.18-5.20$ (m, $1 \mathrm{H}, \mathrm{NH}), 6.92$ ($\mathrm{s}, 1 \mathrm{H}, 4-\mathrm{H}), 11.47$ (s, $1 \mathrm{H}, \mathrm{NH})$.
$\left.{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=18.1(\mathrm{q}, \mathrm{Me}), 28.1,28.2(2 \mathrm{q}, \mathrm{CMe})_{3}\right), 34.8\left(\mathrm{t}, \mathrm{CH}_{2}\right), 50.4$ (d, CH), 52.2 (q, OMe), 80.3, 81.4 ($2 \mathrm{~s}, \mathrm{CMe}_{3}$), 114.4 (s, C-5), 123.6 (d, C-4), 124.7 (s, C-2), 155.1 ($\mathrm{s}, \mathrm{C}-3$), 147.0, 164.5, 170.1, 170.6 ($4 \mathrm{~s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3440-3290 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 2980-2930(\mathrm{C}-\mathrm{H}), 1670(\mathrm{C}=\mathrm{O}), 1560,1530,1455$ (CS-NH).

MS (EI, $80 \mathbf{e V}, 130{ }^{\circ} \mathbf{C}$): $m / z(\%)=442\left(12,[\mathrm{M}]^{+}\right), 330(17), 271$ (16), 216 (12), 215 (100), 197 (10), 156 (33), 56 (10).

HRMS (EI, $\mathbf{8 0} \mathbf{e V}$) m / z calculated for $[M]^{+}: 442.17737$, found: 442.17546.

$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}(442.5)$	calc.	C 54.28	H 6.83	N 6.33
	found $*$	C 50.50	H 6.21	N 5.78

*It was not possible to obtain better results for elemental analysis

Method B

E 55 (IV 199)

Starting amounts:
$0.188 \mathrm{~g} \quad(1.00 \mathrm{mmol})$ Siloxycyclopropanecarboxylate 53
$0.128 \mathrm{~g} \quad(0.91 \mathrm{mmol})$ tert-Butyl cyanoacetate
$0.029 \mathrm{~g} \quad(0.91 \mathrm{mmol})$ Sulfur, pulverized
2.0 ml Methanol

5 drops Diethylamine
0.172 g (0.91 mmol) N-Boc L-Alanine
0.187 g (0.91 mmol$) \mathrm{DCC}$
$4.5 \mathrm{ml} \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Procedure: The siloxycyclopropanecarboxylate 53, tert-butyl cyanoacetate and sulfur were suspended in methanol, and then diethylamine was added. The reaction mixture was refluxed for 6 hours, then stirred overnight at room temperature. The solvent was evaporated. The structure of the crude product 111d has been proved by NMR.

To a stirred solution of the Benzyl tert-butyl 2-amino-5-(2-methoxy-2-oxoethyl)thiophene-3carboxylate (111d) as a crude product from previous step and N -Boc L-alanine in dichloromethane, DCC was added, at $0^{\circ} \mathrm{C}$. The resulting solution was stirred over one week at room temperature.

Purification: Column chromatography on silica gel with 30% ethyl acetate/dichloromethane, then $5 \% i$-propanol/hexane

Yield: $225 \mathrm{mg}(51 \%)$ of $\mathbf{1 1 9 d}$ as yellow oil

Synthesis of tert-Butyl 5-(1-Benzyl-2-methoxy-2-oxoethyl)-2-\{[N-(tert-butoxycarbonyl)-L-alanyl]amino\}thiophene-3-carboxylate (119e)

Starting amounts:

$$
\begin{array}{ll}
0.066 \mathrm{~g} & (0.18 \mathrm{mmol}) \text { tert-Butyl 2-amino-5-(1-benzyl-2-methoxy-2- } \\
& \text { oxoethyl)thiophene-3-carboxylate (111e) } \\
0.039 \mathrm{~g} & (0.21 \mathrm{mmol}) \mathrm{N} \text {-Boc L-Alanine } \\
0.043 \mathrm{~g} & (0.21 \mathrm{mmol}) \mathrm{DCC} \\
1 \mathrm{ml} & \mathrm{CH}_{2} \mathrm{Cl}_{2}
\end{array}
$$

Procedure: To a stirred solution of the compound 111e and N -Boc L-alanine in dichloromethane DCC was added at $0{ }^{\circ} \mathrm{C}$. The resulting solution was stirred over 4 days at room temperature.

Purification: Column chromatography on silica gel with 30% ethyl acetate/dichloromethane Yield: 80 mg (84%) of $\mathbf{1 1 9 d}$ as yellow oil
$7 \mathrm{mg}(10 \%)$ of 111e was recovered as brownish oil

119e

Optical rotation: $[\alpha]_{D}^{20}=-6.1(\mathrm{c}=0.17, \mathrm{MeOH})$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta=1.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.52,1.54(2 \mathrm{~s}, 9 \mathrm{H}, 9 \mathrm{H}$, CMe $)^{2}$, 3.38-3.51 (m, 2 H, CH 2), 3.62 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.96-4.04 (m, $1 \mathrm{H}, \mathrm{CHBn}$), 4.37-4.47 (m, 1 H, CHMe), 5.29 (bs, $1 \mathrm{H}, \mathrm{NH}$), 6.94 (s, $1 \mathrm{H}, 4-\mathrm{H}$), 7.07-7.36 (m, $5 \mathrm{H}, \mathrm{Ph}$), 11.53 ($\mathrm{s}, 1$ $\mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathbf{C}$-NMR (125.8 MHz, $\mathbf{C D C l}_{3}$): $\delta=18.8$ (q, Me), 28.4, 29.8 ($2 \mathrm{q}, \mathrm{CMe}_{3}$), 49.0 (d, CHBn), 49.4 (d, CHMe), 50.7 (q, OMe), 80.2, 80.4 ($2 \mathrm{~s}, \mathrm{CMe}_{3}$), 116.9 (s, C-5), 122.6 (d, C-4), 126.7, 128.5, 128.9 (3 d, Ph), 129.2 (s, C-2), 139.9 (s, Ph), 154.7 (s, C-3), 149.7, 163.6, 172.2, 175.8 ($4 \mathrm{~s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3430-3325 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 2980-2855(\mathrm{C}-\mathrm{H}), 1740(\mathrm{C}=\mathrm{O}), 1670(\mathrm{C}=\mathrm{O}), 1590$, 1560, 1530, 1455 (N-H, C=C, CS-NH).

MS (EI, $80 \mathbf{e V}, 60^{\circ} \mathbf{C}$): $m / z(\%)=532\left(5,[\mathrm{M}]^{+}\right), 460(12), 442(24), 441$ (100), 288 (10).
HRMS (EI, $\mathbf{8 0} \mathbf{e V}$) m/z calculated for $\left[\mathrm{M}^{+}, \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}\right]: 532.22430$, found: 532.22644.

Synthesis of 4-(tert-Butoxycarbonyl)-5-\{[N-(tert-butoxycarbonyl)-L-alanyl]amino\}thien-2-yl)acetic acid (120)

E 57 (IV 156)

Starting amounts:

0.047 g	$(0.10 \mathrm{mmol})$ tert-Butyl 2-\{[N -(tert-butoxycarbonyl)-L-alanyl $]$ amino $\}$ -
	5-(2-methoxy-2-oxoethyl)thiophene-3-carboxylate (119d)
0.014	$(0.32 \mathrm{mmol}) \mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$
0.5 ml	$\mathrm{H}_{2} \mathrm{O}$
0.5 ml	MeOH
1.5 ml	THF

Procedure: The ester 119d was dissolved in a mixture of methanol and tetrahydrofuran, a solution of LiOH in water was added, and the resulting mixture was stirred over night at room temperature. 2 M HCl was added to adjust pH 7 . Diethyl ether was added and the layers were separated. The aqueous layer was extracted with diethyl ether, the combined organic phases were dried with MgSO_{4} and the solvent was evaporated.

Purification: Column chromatography on silica gel with hexane/ethyl acetate $4: 1$, then methanol/dichloromethane 4:1
Yield: 40 mg (93%) of $\mathbf{1 2 0}$ as yellow oil

120

Optical rotation: $[\alpha]_{D}^{20}=-5.0(\mathrm{c}=0.10, \mathrm{MeOH})$.
${ }^{1} \mathbf{H}$-NMR ($500 \mathrm{MHz}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta=1.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.49,1.57(2 \mathrm{~s}, 9 \mathrm{H}, 9 \mathrm{H}$, CMe 3), 3.58 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 4.23 (q, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 6.92 ($\mathrm{s}, 1 \mathrm{H}, 4-\mathrm{H}$).
${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta=17.4,28.6,28.8\left(3 \mathrm{q}, \mathrm{Me}, \mathrm{CMe} 3\right.$), $38.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 49.4$ (d, CH), 82.3, $82.5\left(2 \mathrm{~s}, \mathrm{CMe}_{3}\right.$), 115.6 ($\mathrm{s}, \mathrm{C}-5$), 122.8 (d, C-4), 130.8 ($\mathrm{s}, \mathrm{C}-2$), 157.8 ($\mathrm{s}, \mathrm{C}-3$), 147.6, 166.1, 172.5 ($3 \mathrm{~s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3280 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}, \mathrm{O}-\mathrm{H}), 2980-2930(\mathrm{C}-\mathrm{H}), 1715(\mathrm{C}=\mathrm{O}), 1675(\mathrm{C}=\mathrm{O}), 1560$, 1530, 1455 (N-H, CS-NH), 1250 (C-O).

MS (EI, $\left.80 \mathbf{e V}, 160{ }^{\circ} \mathbf{C}\right): m / z(\%)=428\left(10,\left[\mathrm{M}^{+}\right), 316(11), 257(11), 201\right.$ (94), 183 (12), 156 (21), 57 (57), 56 (35), 55 (15), 44 (100), 41 (74), 39 (22), 29 (20), 28 (35), 27 (11).
HRMS (EI, $\mathbf{8 0} \mathbf{e V}$) m/z calculated for [$\left.\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}\right]$: 428.16171, found: 428.16324.

Synthesis of tert-Butyl 2-(\{2-[(tert-butoxycarbonyl)amino]propanoyl\}-amino)-5-[(methoxy-1-methoxyoxoethyl)amino](oxo)ethyl]-3-thiophenecarboxylate (121)

Starting amounts:

```
0.069 g (0.16 mmol) 4-(tert-Butoxycarbonyl)-5-{[N-(tert-butoxycarbonyl)-L-
    alanyl]amino} thien-2-yl)acetic acid (120)
0.026 g (0.19 mmol) L-Ala-OMe-HCl
0.082 g (0.19 mmol) BOP
0.08 ml (0.48 mmol) DIEA
0.50 ml CH2Cl2
```

Procedure: 4-(tert-Butoxycarbonyl)-5-\{[N-(tert-butoxycarbonyl)-L-alanyl]amino\} thien-2yl)acetic acid (120), L-Ala-OMe $\cdot \mathrm{HCl}$ and BOP were dissolved in dry dichloromethane, and then DIEA was added. The reaction mixture was stirred at room temperature for 30 min . Ethyl acetate and water were added and the layers were separated. The organic layer was successively washed with saturated NaHCO_{3} solution, brine and water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure.

Purification: Column chromatography on silica gel with 30\% ethyl acetate/ dichloromethane Yield: 58 mg (71%) of $\mathbf{1 2 1}$ as yellow oil

121

Optical rotation: $[\alpha]_{D}^{20}=-100.0(\mathrm{c}=0.05, \mathrm{MeOH})$.
${ }^{1} \mathbf{H}$-NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=1.38(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.48(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$, Me), 1.56, 1.57 ($2 \mathrm{~s}, 9 \mathrm{H}, 9 \mathrm{H}, \mathrm{CMe}_{3}$), 3.64 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.73 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 4.44 (q, $J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.58(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.29,6.13(2 \mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}), 7.01(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H})$, 11.52 (s, $1 \mathrm{H}, \mathrm{NH}$).
${ }^{13} \mathbf{C}$-NMR (125.8 MHz, $\mathbf{C D C l}_{3}$): $\delta=18.4,18.2$ ($2 \mathrm{q}, \mathrm{Me}$), 28.4, 28.5 ($2 \mathrm{q}, \mathrm{CMe}$), 37.3 (t, $\left.\mathrm{CH}_{2}\right), 40.9,41.7(2 \mathrm{~d}, \mathrm{CH}), 52.5(\mathrm{q}, \mathrm{OMe}), 80.9,81.1\left(2 \mathrm{~s}, \mathrm{CMe}_{3}\right), 110.2(\mathrm{~s}, \mathrm{C}-5), 123.2(\mathrm{~d}, \mathrm{C}-$ 4), 126.9 ($\mathrm{s}, \mathrm{C}-2$), 153.0 ($\mathrm{s}, \mathrm{C}-3$), 151.7, 164.7, 167.7, 171.3 (4 s, C=O).

IR (KBr): $v=3300 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 2980-2850(\mathrm{C}-\mathrm{H}), 1745(\mathrm{C}=\mathrm{O}), 1670(\mathrm{C}=\mathrm{O}), 1560,1530$, 1455 (CS-NH).

MS (EI, $\left.80 \mathbf{e V}, 200{ }^{\circ} \mathbf{C}\right): m / z(\%)=513\left(38,[\mathrm{M}]^{+}\right), 401(19), 384$ (12), 342 (15), 287 (24), 286 (100), 271 (15), 204 (12), 183 (11), 157 (21), 156 (95), 138 (11), 59 (12), 57 (43), 56 (18), 44 (52), 43 (10), 41 (32), 29 (12), 28 (22).

HRMS (EI, $\mathbf{8 0} \mathbf{e V}$) m/z calculated for $\left[\mathrm{M}^{+}, \mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}\right]$: 513.21448, found: 513.21562.

7.4.4 TFFH mediated syntheses of tetra- and hexapeptide analogues

Synthesis of tert-Butyl 2-[(tert-Butoxycarbonyl)amino]-5-(2-\{[3-(tert-butoxycarbonyl)-5-(2-methoxy-2-oxoethyl)thien-2-yl]amino\}-2-oxoethyl)thiophene-3-carboxylate (122)

Method A

E 59 (IV 373)

Starting amounts:
$0.266 \mathrm{~g} \quad(0.74 \mathrm{mmol})\{4-($ tert-Butoxycarbonyl)-5-[(tert-butoxycarbonyl)amino]thien-$2-\mathrm{yl}\}$ acetic acid (118)
$0.202 \mathrm{~g} \quad(0.74 \mathrm{mmol})$ tert-Butyl 2-Amino-5-(2-methoxy-2-oxoethyl)thiophene-3carboxylate (111d)
$0.297 \mathrm{~g} \quad(1.13 \mathrm{mmol}) \mathrm{TFFH}$
0.44 ml DIEA
$6 \mathrm{ml} \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Procedure: The acid 118, amine 111d and DIEA were dissolved in dichloromethane, cooled in an ice bath and TFFH was added. The temperature was allowed to rise to room temperature and then the reaction mixture was stirred over 6 days. The reaction mixture was successively washed with 1 M HCl , saturated NaHCO_{3} solution and brine, dried with MgSO_{4} and the solvent was removed under reduced pressure.

Purification: Column chromatography on silica gel with hexane/ethyl acetate 4:1

Yield: 325 mg (72%) of $\mathbf{1 2 2}$ as colourless solid

122

Melting range: $78-85^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta=1.44,1.45,1.49(3 \mathrm{~s}, 9 \mathrm{H}, 9 \mathrm{H}, 9 \mathrm{H}, \mathrm{CMe} 3$), $3.62(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), 3.64 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $6.88,7.00(2 \mathrm{~s}, 1 \mathrm{H}, 1 \mathrm{H}, 4-\mathrm{H})$, 10.01, 11.14 (2 s, $1 \mathrm{H}, 1 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=28.2,28.3,28.4$ ($3 \mathrm{q}, \mathrm{CMe} 3$), $35.0,37.9\left(2 \mathrm{t}, \mathrm{CH}_{2}\right), 52.4$ (q, OMe), 81.4, 81.5, 81.7 (3 s, CMe $_{3}$), 112.7, 114.4 (2 s, C-5), 123.6, 124.9 (2 d, C-4), 125.1, 125.2 ($2 \mathrm{~s}, \mathrm{C}-2$), $150.5,151.4$ ($2 \mathrm{~s}, \mathrm{C}-3$), 147.3, 164.7, 166.6, 169.4, 170.6 ($5 \mathrm{~s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3290 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 3000-2850(\mathrm{C}-\mathrm{H}), 1745(\mathrm{C}=\mathrm{O}), 1720(\mathrm{C}=\mathrm{O}), 1670(\mathrm{C}=\mathrm{O})$, 1560, 1535, 1455 (CS-NH).

MS (EI, $\left.80 \mathbf{e V}, \mathbf{2 0 0}^{\circ} \mathbf{C}\right): m / z(\%)=610\left(4,[\mathrm{M}]^{+}\right), 339(21), 283(20), 271$ (21), 239 (23), 227 (28), 215 (58), 184 (20), 183 (100), 157 (11), 156 (54), 139 (11), 138 (26), 57 (26), 56 (12), 44 (12), 41 (26).

HRMS (EI, $80 \mathbf{e V}) \mathrm{m} / \mathrm{z}$ calculated for $[\mathrm{M}]^{+}: 610.20190$, found: 610.20355.

$\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}_{2}(610.7)$	calc.	C 55.07	H 6.27	N 4.59
	found	C 54.58	H 5.94	N 4.36

'Methode B

Starting amounts:

0.055 g	$(0.15 \mathrm{mmol})\{4-$ tert-Butoxycarbonyl)-5-[(tert- butoxycarbonyl)amino]thien-2-yl\}acetic acid (118)
0.049 g	$(0.15 \mathrm{mmol})$ tert-Butyl 2-amino-5-(2-methoxy-2-oxoethyl)thiophene-
	3 -carboxylate (111d)
0.024 g	$(0.18 \mathrm{mmol}) \mathrm{HOBt}$
0.037 g	$(0.18 \mathrm{mmol}) \mathrm{DCC}$
2 ml	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Procedure: To a stirred solution of the acid $\mathbf{1 1 8}$ and amine 111d in dichloromethane, DCC and HOBt were added at room temperature. The resulting solution was stirred over 10 days at room temperature, and then the solvent was evaporated. The residue was suspended in ethyl acetate and filtered through Büchner funnel. The solvent was evaporated.

Purification: Column chromatography on silica gel with hexane/ethyl acetate 4:1, then HPLC (20% i-propanol/hexane, $64 \mathrm{ml} / \mathrm{min}, 124 \mathrm{bar}$)

Yield: 14 mg (15%) of $\mathbf{1 2 2}$ as colourless solid

Synthesis of tert-Butyl 2-Amino-5-(2-\{[3-(tert-butoxycarbonyl)-5-(2-methoxy-2-oxoethyl)thien-2-yl]amino\}-2-oxoethyl)thiophene-3-carboxylate (123)

E 61 (IV 300)

Starting amounts:
$0.127 \mathrm{~g} \quad(0.21 \mathrm{mmol})$ tert-Butyl 2-[(tert-butoxycarbonyl)amino]-5-(2-\{[3-(tert-butoxycarbonyl)-5-(2-methoxy-2-oxoethyl)thien-2-yl]amino\}-2-oxoethyl)thiophene-3-carboxylate (122)
$0.047 \mathrm{~g}(0.21 \mathrm{mmol}) \mathrm{Me}_{3} \operatorname{SiOTf}$
$0.045 \mathrm{~g} \quad(0.42 \mathrm{mmol})$ 2,6-Lutidine
$6 \mathrm{ml} \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Procedure: To a solution of N -Boc protected compound 122 and 2,6-lutidine in dry dichloromethane, $\mathrm{Me}_{3} \mathrm{SiOTf}$ was added dropwise at room temperature. The reaction mixture was stirred for 30 minutes, quenched with saturated aqueous ammonium chloride solution and extracted with diethyl ether several times. The combined organic phases were washed with water and brine, dried with MgSO_{4} and concentrated under reduced pressure. The crude silyl carbamate was dissolved in dry methanol, stirred for 20 minutes at room temperature and the solvent was evaporated.

Purification: Column chromatography on silica gel with hexane/ethyl acetate 1:2, then HPLC (10% i-propanol/hexane, $64 \mathrm{ml} / \mathrm{min}, 80 \mathrm{bar}$)
Yield: 25 mg (23%) of $\mathbf{1 2 3}$ as colourless solid $18 \mathrm{mg}(14 \%)$ of $\mathbf{1 2 2}$ was recovered as colourless solid

123

Melting range: $87-93{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$-NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta=1.56$, 1.57 ($2 \mathrm{~s}, 9 \mathrm{H}, 9 \mathrm{H}, \mathrm{CMe} e_{3}$), 3.74 ($\mathrm{s}, 3 \mathrm{H}$, OMe), 3.78, 3.81 ($2 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 6.88, $6.97(2 \mathrm{~s}, 1 \mathrm{H}, 1 \mathrm{H}, 4-\mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta=28.9,29.2\left(2 \mathrm{q}, \mathrm{CMe} 3\right.$), 35.6, $38.2\left(2 \mathrm{t}, \mathrm{CH}_{2}\right)$, $53.1(\mathrm{q}$, OMe), 81.3, 83.2 ($2 \mathrm{~s}, \mathrm{CMe}_{3}$), 116.0, 116.1 ($2 \mathrm{~s}, \mathrm{C}-5$), 125.0, 127.3 (2 d, C-4), 128.4 ($\mathrm{s}, \mathrm{C}-2$), 148.4, 148.5 (2 s, C-3), 163.7 (s, C-2), 166.1, 166.8, 170.0, 173.0 (4 s, C=O).

IR (KBr): $v=3445-3270 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 3000-2930(\mathrm{C}-\mathrm{H}), 1740(\mathrm{C}=\mathrm{O}), 1670(\mathrm{C}=\mathrm{O}), 1560$, 1530, 1455 (CS-NH).

MS (EI, $80 \mathbf{e V}, 170{ }^{\circ} \mathbf{C}$): $m / z(\%)=510\left(5,[\mathrm{M}]^{+}\right), 239(23), 215(20), 183$ (73), 156 (55), 138 (28), 85 (13), 59 (15), 57 (28), 56 (43), 55 (20), 44 (36), 43 (17), 41 (100), 40 (10), 39 (42), 29 (18), 28 (26), 27 (19).

HRMS (EI, $\mathbf{8 0} \mathbf{e V}$) m / z calculated for $\left[\mathrm{M}^{+}, \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}\right]$: 510.14944, found: 510.14799.

Synthesis of \{4-(tert-Butoxycarbonyl)-5-[(\{4-(tert-butoxycarbonyl)-5-[(tert-butoxycarbonyl)amino|thien-2-yl\}acetyl)amino|thien-2-yl\}acetic acid (124)

Starting amounts:

0.228 g	$(0.37 \mathrm{mmol})$ tert-Butyl 2-[(tert-butoxycarbonyl)amino $]-5-(2-\{[3-$-tert- butoxycarbonyl)-5-(2-methoxy-2-oxoethyl)thien-2-yl]amino\}-2-
	oxoethyl)thiophene-3-carboxylate (122)
0.047 g	$(0.12 \mathrm{mmol}) \mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$
1.5 ml	$\mathrm{H}_{2} \mathrm{O}$
1.5 ml	MeOH
4.5 ml	THF

Procedure: The ester $\mathbf{1 2 2}$ was dissolved in a mixture of methanol and tetrahydrofuran, a solution of LiOH in water was added, and the resulting mixture was stirred over night at room temperature. 2 M HCl was added to adjust pH 7 . Diethyl ether was added and the layers were separated. The aqueous layer was extracted with diethyl ether, combined organic phases were dried with MgSO_{4} and the solvent was evaporated.

Purification: Column chromatography on silica gel with hexane/ethyl acetate 4:1, then methanol/dichloromethane 4:1

Yield: 216 mg (98 \%) of $\mathbf{1 2 4}$ as colourless solid

124

Melting point: $171-173{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$-NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta=1.53,1.55,1.56(3 \mathrm{~s}, 9 \mathrm{H}, 9 \mathrm{H}, 9 \mathrm{H}, \mathrm{CMe} 3$), 3.67, 3.68 (2 s, $2 \mathrm{H}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 6.63, $6.90(2 \mathrm{~s}, 1 \mathrm{H}, 1 \mathrm{H}, 4-\mathrm{H})$.
${ }^{13}$ C-NMR (125.8 MHz, CD $\mathbf{3}_{3} \mathrm{OD}$): $\delta=28.6,28.7$, $28.8\left(3 \mathrm{q}, \mathrm{CMe} 3\right.$), 35.6 , $35.7\left(2 \mathrm{t}, \mathrm{CH}_{2}\right)$, 82.8, 82.9, 83.0 ($3 \mathrm{~s}, C \mathrm{Cle}_{3}$), 113.6, 113.7 ($2 \mathrm{~s}, \mathrm{C}-5$), 124.9, 126.1 ($2 \mathrm{~d}, \mathrm{C}-4$), 126.2, 127.7 (2 s, C-2), 150.1, 153.5 (2 s, C-3), 148.3, 166.2, 169.3, 174.3, 183.7 ($5 \mathrm{~s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3385-3290 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}, \mathrm{O}-\mathrm{H}), 2980-2930(\mathrm{C}-\mathrm{H}), 1725(\mathrm{C}=\mathrm{O}), 1670(\mathrm{C}=\mathrm{O})$, 1560, 1535, 1480 (CS-NH), 1250 (C-O).

MS (EI, $\left.80 \mathbf{e V}, 180{ }^{\circ} \mathbf{C}\right): m / z(\%)=596\left(0.2,[\mathrm{M}]^{+}\right), 183(11), 156$ (12), 57 (22), 56 (69), 55 (27), 44 (66), 41 (100), 40 (11), 39 (45).

HRMS (EI, $80 \mathbf{e V}$) m / z calculated for $\left[\mathrm{M}^{+}, \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}_{2}\right]$: 596.18622, found: 596.18729.

Synthesis of [5-(\{[5-Amino-4-(tert-butoxycarbonyl)thien-2-yl]acetyl\}amino)-4-(tert-butoxycarbonyl)thien-2-yl]acetic acid (125)

Starting amounts:

0.066 g	(0.11 mmol) \{4-(tert-Butoxycarbonyl)-5-[(\{4-(tert-butoxycarbonyl)-5-[(tert-butoxycarbonyl)amino]thien-2-yl\}acetyl)amino]thien-2-yl\}acetic acid 124
0.047	g (0.22 mmol) Me_{3} SiOTf
0.036 g	(0.33 mmol) 2,6-Lutidine
5 ml	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Procedure: To a solution of N -Boc protected compound 124 and 2,6-lutidine in dry dichloromethane, $\mathrm{Me}_{3} \mathrm{SiOTf}$ was added dropwise at room temperature. The reaction mixture was stirred for 2 hours, quenched with saturated aqueous ammonium chloride solution and extracted with diethyl ether several times. The combined organic phases were washed with water and brine, dried with MgSO_{4} and concentrated under reduced pressure. The crude silyl carbamate was dissolved in dry methanol, stirred for 2 hours at room temperature and the solvent was evaporated.

Purification: Column chromatography on silicagel with hexane/ethyl acetate $4: 1$, then methanol/dichloromethane 4:1, then HPLC ($30 \% i$-propanol/hexane, $64 \mathrm{ml} / \mathrm{min}, 95 \mathrm{bar}$); after purification compound still contained some impurities which were visible in NMR and MS.

Yield: 51 mg (93 \%) of $\mathbf{1 2 5}$ as pale yellow solid

125

Melting range: $180-185^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z},\left[\mathbf{D}_{6}\right] \mathbf{D M S O}\right): \delta=1.63,1.65\left(2 \mathrm{~s}, 9 \mathrm{H}, 9 \mathrm{H}, \mathrm{CMe} e_{3}\right), 3.85,3.95(2 \mathrm{~s}, 2 \mathrm{H}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 7.16, 7.18 ($2 \mathrm{~s}, 1 \mathrm{H}, 1 \mathrm{H}, 4-\mathrm{H}$), 11.07 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$).
${ }^{13} \mathbf{C}-$ NMR ($\left.\mathbf{1 2 5 . 8} \mathbf{~ M H z},\left[\mathbf{D}_{6}\right] \mathbf{D M S O}\right): \delta=28.9,29.2\left(2 \mathrm{q}, \mathrm{CMe} e_{3}\right), 35.3,37.0\left(2 \mathrm{t}, \mathrm{CH}_{2}\right), 82.5$, 82.7 ($2 \mathrm{~s}, \mathrm{CMe}_{3}$), 116.7, 116.8 (2 s, C-5), 125.5, 127.8 (2 d, C-4), 136.2 (s, C-2), 146.1, 146.2 (2 s, C-3), 164.6 (s, C-2), 179.2, 183.2, 189.3 (3 s, 2 C=O).

IR (KBr): $v=3430-3230 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}, \mathrm{O}-\mathrm{H}), 3100-2930(\mathrm{C}-\mathrm{H}), 1720(\mathrm{C}=\mathrm{O}), 1670(\mathrm{C}=\mathrm{O})$, 1560, 1540, 1435 (CS-NH), 1250 (C-O).

MS (EI, $80 \mathbf{e V}, 180{ }^{\circ} \mathbf{C}$): $m / z(\%)=496\left(2,[\mathrm{M}]^{\dagger}\right), 183$ (11), 339 (10), 228 (10), 227 (17), 184 (19), 183 (32), 170 (12), 157 (10), 156 (18), 138 (14), 91 (13), 59 (21), 58 (11), 57 (46), 56 (100), 55 (39), 53 (12), 51 (11), 50 (12).

HRMS (EI, $\mathbf{8 0} \mathbf{e V}$) m / z calculated for [$\left.\mathrm{M}^{+}, \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}\right]$: 496.13379, found: 496.13482.

Synthesis of tert-Butyl 2-[(tert-Butoxycarbonyl)amino]-5-(2-\{[3-(tert-butoxycarbonyl)-5-(2-\{[3-(tert-butoxycarbonyl)-5-(2-methoxy-2-oxoethyl)thien-2-yl]amino\}-2-oxoethyl)thien-2-yl]amino\}-2-oxoethyl)thiophene-3-carboxylate (126)

E 64 (IV 372)

Starting amounts:
$0.079 \mathrm{~g} \quad(0.13 \mathrm{mmol})\{4-($ tert-Butoxycarbonyl)-5-[(\{4-(tert-butoxycarbonyl)-5-[(tert-butoxycarbonyl)amino]thien-2-yl\}acetyl)amino]thien-2-yl\}acetic acid (124)
$0.035 \mathrm{~g} \quad(0.13 \mathrm{mmol})$ tert-Butyl 2-amino-5-(2-methoxy-2-oxoethyl)thiophene-3carboxylate (111d)
$0.044 \mathrm{~g} \quad(0.17 \mathrm{mmol}) \mathrm{TFFH}$
0.07 ml DIEA
$2 \mathrm{ml} \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Procedure: The acid 124, amine 111d and DIEA were dissolved in dichloromethane, cooled in an ice bath and TFFH was added. The temperature was allowed to rise to room temperature and then the reaction mixture was stirred over 6 days. The reaction mixture was successively washed with 1 M HCl , saturated NaHCO_{3} solution and brine, dried with MgSO_{4} and the solvent was removed under reduced pressure.

Purification: Column chromatography on silica gel with hexane/ethyl acetate $4: 1$
Yield: 51 mg (46%) of $\mathbf{1 2 6}$ as colourless solid

Melting point: $197-199^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$-NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=1.49,1.50,1.51,1.54\left(4 \mathrm{~s}, 9 \mathrm{H}, 9 \mathrm{H}, 9 \mathrm{H}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 3.66$ (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.69(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.80,3.83\left(2 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.92,7.05,7.06(3 \mathrm{~s}, 1 \mathrm{H}, 1$ H, $1 \mathrm{H}, 4-\mathrm{H}$), 10.06, 11.17, 11.23 ($3 \mathrm{~s}, 1 \mathrm{H}, 1 \mathrm{H}, 1 \mathrm{H}, \mathrm{NH}$).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=28.2,28.3,28.4,28.5\left(4 \mathrm{q}, \mathrm{CMe}_{3}\right), 35.0,35.4,36.9(3 \mathrm{t}$, CH_{2}), 52.3 (q, OMe), 81.4, 81.7 ($2 \mathrm{~s}, \mathrm{CMe}_{3}$), 112.7, 114.8, 114.9 ($3 \mathrm{~s}, \mathrm{C}-5$), 121.7, 121.9, 122.0 ($3 \mathrm{~d}, \mathrm{C}-4$), 122.9, 123.6, 123.7 ($3 \mathrm{~s}, \mathrm{C}-2$), 149.2, 150.1, 150.8 ($3 \mathrm{~s}, \mathrm{C}-3$), 147.2, 164.7, 167.9, 168.7, 170.1, 172.1, 173.9 ($7 \mathrm{~s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3435-3200 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 2975-2930(\mathrm{C}-\mathrm{H}), 1715(\mathrm{C}=\mathrm{O}), 1675(\mathrm{C}=\mathrm{O}), 1565$, 1530, 1450 (CS-NH).

MS (FAB (+)): $m / z(\%)=850\left(0.6,[\mathrm{M}+\mathrm{H}]^{+}\right), 818\left(0.5,\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{O}\right]^{+}\right), 199(10), 183$ (17), 182 (26), 158 (13), 157 (40), 156 (71), 138 (12), 57 (100).
MS (EI, $80 \mathbf{e V}, 200{ }^{\circ} \mathbf{C}$): $m / z(\%)=749\left(0.02,\left[\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{CMe}_{3}\right]\right), 56$ (60), 55 (25), 44 (44), 41 (100), 40 (12), 39 (49).
HRMS (EI, $80 \mathbf{e V}$) m / z calculated for $\left[\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{CMe}_{3}, \mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{~S}_{3}\right]$: 749.21106, found: 749.21342.

Synthesis of \{4-(tert-Butoxycarbonyl)-5-[(\{4-(tert-butoxycarbonyl)-5-[(\{4-(tert-butoxycarbonyl)-5-[(tert-butoxycarbonyl)amino]thien-2-yl\}acetyl)amino]thien-2-yl\}acetyl)amino|thien-2-yl\}acetic acid (127)

Starting amounts:

0.036 g	$(0.042 \mathrm{mmol})$ tert-Butyl 2-[(tert-butoxycarbonyl)amino $]-5-(2-\{[3-($ tert- butoxycarbonyl)-5-(2-\{[3-(tert-butoxycarbonyl)-5-(2-methoxy-2- oxoethyl)thien-2-yl]amino\}-2-oxoethyl)thien-2-yl]amino $\}-2-$
0.005 g	$(0.12 \mathrm{mmol}) \mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$
0.5 ml	$\mathrm{H}_{2} \mathrm{O}$
0.5 ml	MeOH
1.5 ml	THF

Procedure: The ester $\mathbf{1 2 6}$ was dissolved in a mixture of methanol and tetrahydrofuran, a solution of LiOH in water was added, and the resulting mixture was stirred over night at room temperature. 2 M HCl was added to adjust pH 7 . Diethyl ether was added and the layers were separated. The aqueous layer was extracted with diethyl ether, the combined organic phases were dried with MgSO_{4} and the solvent was evaporated.

Purification: Column chromatography on silica gel with hexane/ethyl acetate 4:1, then methanol/dichloromethane $4: 1$; after purification compound still contained some impurities which were visible in NMR and MS.

Yield: 35 mg (98%) of $\mathbf{1 2 7}$ as yellow solid

127

Melting point: $>300^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$-NMR ($500 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{O D}$): $\left.\delta=1.50,1.51,1.52,1.54(4 \mathrm{~s}, 9 \mathrm{H}, 9 \mathrm{H}, 9 \mathrm{H}, 9 \mathrm{H}, \mathrm{CMe})_{3}\right)$, 3.40, 3.52, $3.60\left(3 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.60,6.84,6.85(3 \mathrm{~s}, 1 \mathrm{H}, 1 \mathrm{H}, 1 \mathrm{H}, 4-\mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}\right): \delta=29.0,29.1,29.2,29.3$ (4 q, CMe), 39.6, 39.8, 39.9 (3 t , CH_{2}), 81.0, 82.7, $82.8,83.5\left(4 \mathrm{~s}, \mathrm{CMe}_{3}\right.$), 113.8, 114.1, 115.1 ($3 \mathrm{~s}, \mathrm{C}-5$), 123.7, 123.9 ($2 \mathrm{~d}, \mathrm{C}-$ 4), 124.3 ($\mathrm{s}, \mathrm{C}-2$), 125.0 (d, C-4), 129.6, 129.9 ($2 \mathrm{~s}, \mathrm{C}-2$), $150.57,156.7,156.8$ ($3 \mathrm{~s}, \mathrm{C}-3$), $145.9,166.5,166.6,178.8,178.9,179.5,179.7(7 \mathrm{~s}, \mathrm{C}=\mathrm{O})$.

IR (KBr): $v=3435-3285 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}, \mathrm{O}-\mathrm{H}), 2980-2850(\mathrm{C}-\mathrm{H}), 1720(\mathrm{C}=\mathrm{O}), 1675(\mathrm{C}=\mathrm{O})$, 1560, 1530, 1455 (CS-NH), 1250 (C-O).

MS (FAB (+)): $m / z(\%)=834\left(<1,\left[\mathrm{M}^{+}-\mathrm{H}\right]\right), 818\left(<1,\left[\mathrm{M}^{+}-\mathrm{OH}\right]\right), 808(<1), 537(<1), 435$ $(<1), 281(1), 242(2), 227(<1), 163(10), 162(10), 112(11), 91(9), 60(21), 59(10), 56$ (11), 55 (11), 44 (100).

MS (EI, $80 \mathbf{e V}, 190{ }^{\circ} \mathbf{C}$): $m / z(\%)=514(<1), 413(<1), 340(<1), 284$ (8), 257 (7), 241 (4), 201 (23), 184 (13), 183 (15), 157 (15), 156 (32), 138 (14), 60 (10), 59 (14), 57 (28), 56 (100), 53 (13), 51 (10).

Synthesis of [5-(\{[5-(\{[5-Amino-4-(tert-butoxycarbonyl)thien-2-yl]acetyl\}amino)-4-(tert-butoxycarbonyl)thien-2-yl]acetyl\}amino)-4-(tert-butoxycarbonyl)thien-2yl]acetic acid (128)

Starting amounts:

0.039 g	(0.05 mmol) \{4-(tert-Butoxycarbonyl)-5-[(\{4-(tert-butoxycarbonyl)-5-[(\{4-(tert-butoxycarbonyl)-5-[(tert-butoxycarbonyl)amino]thien-2yl $\}$ acetyl)amino]thien-2-yl $\}$ acetyl)amino]thien-2-yl $\}$ acetic acid (127)
0.020 g	g (0.09 mmol) Me $\mathrm{Me}_{3} \mathrm{SiOTf}$
0.015 g	(0.14 mmol) 2,6-Lutidine
2 ml	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Procedure: To a solution of N -Boc protected compound 127 and 2,6-lutidine in dry dichloromethane, $\mathrm{Me}_{3} \mathrm{SiOTf}$ was added dropwise at room temperature. The reaction mixture was stirred for 2 hours, quenched with saturated aqueous ammonium chloride solution and extracted with diethyl ether several times. The combined organic phases were washed with water and brine, dried with MgSO_{4} and concentrated under reduced pressure. The crude silyl carbamate was dissolved in dry methanol, stirred for 2 hours at room temperature and the solvent was evaporated.

Purification: Column chromatography on silica gel with hexane/ethyl acetate 4:1, then methanol/dichloromethane 4:1; after purification compound still contained some impurities which were visible in NMR and MS.

Yield: 29 mg (86%) of $\mathbf{1 2 8}$ as yellow solid

Melting range: $95-100{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta=1.51,1.52,1.54(3 \mathrm{~s}, 9 \mathrm{H}, 9 \mathrm{H}, 9 \mathrm{H}, \mathrm{CMe} 3$), 3.56, 3.59, 3.63 ($3 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 6.84, 6.99, $7.06(3 \mathrm{~s}, 1 \mathrm{H}, 1 \mathrm{H}, 1 \mathrm{H}, 4-\mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta=28.3,28.4,28.5$ ($3 \mathrm{q}, \mathrm{CMe}_{3}$), 35.0, 35.2, 37.1 (3 t , CH_{2}), 80.2, $81.4,81.7$ ($3 \mathrm{~s}, \mathrm{CMe}_{3}$), 108.0, 114.4, 115.8 ($3 \mathrm{~s}, \mathrm{C}-5$), 123.6, 124.9, 125.7 (3 d, C4), 147.3 ($\mathrm{s}, \mathrm{C}-3$), 162.0 ($\mathrm{s}, \mathrm{C}-2$), 166.7, 170.7, 171.1 ($4 \mathrm{~s}, \mathrm{C}=\mathrm{O}$).
missing signals for C-2 and C-3 were not possible unambiguously to determine, ${ }^{13} \mathrm{C}$ spectrum was of poor quality because of very poor solubility of the substance in $C D_{3} O D$.

IR (KBr): $v=3440-3285 \mathrm{~cm}^{-1}(\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}), 2980-2855(\mathrm{C}-\mathrm{H}), 1725(\mathrm{C}=\mathrm{O}), 1675(\mathrm{C}=\mathrm{O})$, 1560, 1540, 1450 (CS-NH), 1250 (C-O).

MS (FAB (+)): $m / z(\%)=523(<1), 469(<1), 408(<1), 320(<1), 209(<1), 217(1), 176$ (23), 154 (52), 136 (48), 107 (21), 91 (83), 57 (100), 48 (22).

MS (EI, $80 \mathbf{e V}, 200{ }^{\circ}$ C): $m / z(\%)=357(<1), 257(<1), 245(<1), 201(<1), 183(<1), 156$ $(<1), 138(<1), 184$ (14), 156 (43), 138 (28), 112 (9), 84 (13), 56 (100).

Fragmentation of the compound is in accordance with the structure.

Synthesis of tert-Butyl 2-[(3-\{3-[(tert-Butoxycarbonyl)amino]imidazo[1,2-a]pyridin-2-yl\}-3-methylbutanoyl)aminol-5-(2-methoxy-2-oxoethyl)thiophene-3carboxylate (130)

E 67 (IV 307)

Starting amounts:
$0.153 \mathrm{~g} \quad(0.46 \mathrm{mmol}) 3-\{3-[($ tert-Butoxycarbonyl)amino]imidazo[1,2-a]pyridin-2-yl\}-3-methylbutanoic acid (96)
$0.124 \mathrm{~g} \quad(0.46 \mathrm{mmol})$ tert-Butyl 2-amino-5-(2-methoxy-2-oxoethyl)thiophene-3-
carboxylate (111d)
$0.158 \mathrm{~g} \quad(0.60 \mathrm{mmol}) \mathrm{TFFH}$
0.23 ml (1.38 mmol) DIEA
$5 \mathrm{ml} \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Procedure: The acid 96, amine 111d and DIEA were dissolved in dichloromethane, cooled in an ice bath and TFFH was added. The temperature was allowed to rise to room temperature
and then the reaction mixture was stirred over 48 hours. The reaction mixture was successively washed with 1 M HCl , saturated NaHCO_{3} solution and brine, dried with MgSO_{4} and the solvent was removed under reduced pressure.

Purification: Column chromatography on silica gel with hexane/ethyl acetate $1: 2$, then methanol/dichloromethane 4:1, then HPLC ($50 \% i$-propanol/hexane, $64 \mathrm{ml} / \mathrm{min}, 120 \mathrm{bar}$) Yield: 38 mg (14%) of $\mathbf{1 3 0}$ as brown oil

130
${ }^{1} \mathbf{H}$-NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\left.\delta=1.16,1.18,1.46,1.47(4 \mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H}, 9 \mathrm{H}, 9 \mathrm{H}, \mathrm{Me}, \mathrm{CMe})_{3}\right)$, 2.79, $3.59\left(2 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.68(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 6.84(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.91(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1$ H, 6’-H), 7.22-7.36 (m, 1 H, 7’-H), 7.49 (d, $\left.J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, 8^{\prime}-\mathrm{H}\right), 7.87$ (d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$, 5 '-H).
${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=28.0(\mathrm{q}, \mathrm{Me}), 28.1,28.3\left(2 \mathrm{q}, \mathrm{CMe} e_{3}\right), 29.6(\mathrm{q}, \mathrm{Me}), 35.6$, 39.7 ($2 \mathrm{t}, \mathrm{CH}_{2}$), 52.0 (q, OMe), 80.1, 81.9 ($2 \mathrm{~s}, \mathrm{CMe}_{3}$), 113.2 (d, C-6'), 114.1 (s, C-3), 116.3 (d, C-8'), 122.2 ($\mathrm{s}, \mathrm{C}-3$ '), 122.4 (d, C-5'), 126.4 (d, C-7’), 126.7 (d, C-4), 128.7, 129.6 (2 s, C2, C-2'), 140.3 (s, C-8a'), 146.9 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 153.8 ($\mathrm{s}, \mathrm{C}-5$), 161.5, 162.5, 173.6 ($3 \mathrm{~s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3235 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 2970-2855(\mathrm{C}-\mathrm{H}), 1785(\mathrm{C}=\mathrm{O}), 1740(\mathrm{C}=\mathrm{O}), 1670(\mathrm{C}=\mathrm{O})$, 1560, 1525, 1455 (CS-NH).

MS (EI, $\left.80 \mathbf{e V}, 150{ }^{\circ} \mathbf{C}\right): m / z(\%)=586\left(0.14,[\mathrm{M}]^{+}\right), 513\left(0.2,\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right]\right), 486\left(0.4,\left[\mathrm{M}^{+}\right.\right.$ - $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$]), 260 (14), 216 (20), 215 (65), 200 (100), 78 (22).

HRMS (EI, $80 \mathbf{e V}$) m / z calculated for $\left[\mathrm{M}^{+}, \mathrm{C}_{29} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}\right]$: 586.24609, found: 586.24733.
m / z calculated for $\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}, \mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}\right]: 513.21716$, found: 513.21682.

