7.3 Ugi type three component reaction

General procedure for Ugi-type reaction with 2-aminopyridine

U2-AP

Dry methanol was placed into a flame-dried flask under an argon atmosphere. Siloxycyclopropanecarboxylate, amine and isocyanide were added to the reaction vessel, followed by addition of acetic acid. The reaction mixture was stirred under argon for 19-48 hours. 1 M HCl solution was added to adjust pH 1 , the mixture was stirred for 30 min to destroy unreacted isocyanide and then evaporated to dryness. The residue was taken up in saturated aqueous NaHCO_{3} solution and extracted with ethyl acetate. The combined organic phases were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure.

Synthesis of Methyl 3-[3-(Benzylamino)imidazo[1,2-a]pyridin-2-yl]propanoate (95a)

E 18 (IV 54)

Starting amounts:

0.376 g	$(2.00 \mathrm{mmol})$ Siloxycyclopropanecarboxylate 53
0.188 g	$(2.00 \mathrm{mmol})$ 2-Aminopyridine
0.236 g	$(2.00 \mathrm{mmol})$ Benzylisocyanide
6 ml	MeOH, dry
0.250 g	$(4.00 \mathrm{mmol})$ Acetic acid 96%

Procedure according to U2-AP
Reaction time: 24 hours
Purification: Column chromatography on silica gel with hexane/ethyl acetate $1: 2$, then HPLC (20% i-propanol/hexane, $64 \mathrm{ml} / \mathrm{min}, 95 \mathrm{bar}$)
Yield: 211 mg (33 \%) of $\mathbf{9 5 a}$ as yellow oil

95a
${ }^{1} \mathbf{H}$-NMR ($250 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=2.65-2.81\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.60(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.90(\mathrm{t}, J=$ $5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), 4.10 (d, $\left.J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.69(\mathrm{td}, J=6.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.04$ (ddd, $J=9.0,6.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 7.19-7.36 (m, $5 \mathrm{H}, \mathrm{Ph}), 7.40(\mathrm{dt}, J=9.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), 7.96 (dt, $J=6.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$).
${ }^{13} \mathbf{C}$-NMR ($62.9 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=21.8,33.1\left(2 \mathrm{t}, \mathrm{CH}_{2}\right), 51.4(\mathrm{q}, \mathrm{OMe}), 52.7\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 111.0 (d, C-6), 116.7 (d, C-8), 122.1 (d, C-5), 123.0 (d, C-7), 125.9 (s, C-3), 126.8, 128.2, 128.4 ($3 \mathrm{~d}, \mathrm{Ph}$), 136.8 (s, Ph), 139.4 ($\mathrm{s}, \mathrm{C}-2$), 141.2 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 173.9 (s, C=O).

IR (KBr): $v=3340-3225 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 3060-2850(\mathrm{C}-\mathrm{H}), 1735(\mathrm{C}=\mathrm{O}), 1635(\mathrm{C}=\mathrm{N})$.

MS (EI, $\left.80 \mathbf{e V}, 150{ }^{\circ} \mathbf{C}\right): m / z(\%)=309\left(27,[M]^{\dagger}\right), 219(14), 218(100), 191$ (15), 186 (10), 159 (10), 135 (12), 131 (12), 91 (20), 78 (47).

HRMS (EI, $\mathbf{8 0} \mathbf{e V}$) m / z calculated for $[M]^{+}: 309.14772$, found: 309.14593.

| $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}(318.4)$ | calc. | C 67.92 | H 6.33 | N 13.20 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | found | C 67.97 | H 5.71 | N 12.61 |

Synthesis of Methyl 3-\{3-[(1,1,3,3-Tetramethylbutyl)amino]imidazo[1,2-a]pyridin-2-yl\}propanoate (95b)

Starting amounts:

0.827 g	$(4.40 \mathrm{mmol})$ Siloxycyclopropanecarboxylate $\mathbf{5 3}$
0.376 g	$(4.00 \mathrm{mmol})$ 2-Aminopyridine
0.558 g	$(4.00 \mathrm{mmol}) 1,1,3,3$-Tetramethylbutylisocyanide
12 ml	MeOH, dry
0.500 g	$(8.00 \mathrm{mmol})$ Acetic acid 96%

Procedure according to U2-AP
Reaction time: 48 hours
Purification: Column chromatography on silica gel with hexane/ethyl acetate 1:2
Yield: $1.068 \mathrm{~g}(79 \%)$ of $\mathbf{9 5 b}$ as yellowish oil

95b
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(250 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta=1.05,1.12(2 \mathrm{~s}, 9 \mathrm{H}, 6 \mathrm{H}, \mathrm{Me}), 1.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.76(\mathrm{t}, J$ $\left.=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.01\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.21(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 3.56(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, 6.63 (td, $J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.86(\mathrm{ddd}, J=9.0,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.34(\mathrm{dt}, J=$ $9.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), 8.11 (dt, $J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$).
${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=22.8\left(\mathrm{t}, \mathrm{CH}_{2}\right), 29.1$ (q, Me), 31.7 ($\mathrm{s}, \mathrm{CMe}_{3}$), 31.9 (q , Me), 33.3 (t, CH_{2}), 51.4 (q, OMe), $56.8\left(\mathrm{t}, \mathrm{CH}_{2}\right), 59.5(\mathrm{~s}, \mathrm{NCMe} 2), 110.6(\mathrm{~d}, \mathrm{C}-6), 116.6(\mathrm{~d}$, C-8), 123.2 (d, C-7), 123.5 (d, C-5), 123.8 ($\mathrm{s}, \mathrm{C}-3$), 139.2 ($\mathrm{s}, \mathrm{C}-2$), 142.0 (s, C-8a), 173.9 (s, $\mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3335 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 3090-2870(\mathrm{C}-\mathrm{H}), 1735(\mathrm{C}=\mathrm{O}), 1630(\mathrm{C}=\mathrm{N})$.

MS (EI, $\left.80 \mathbf{e V}, 70{ }^{\circ} \mathbf{C}\right): m / z(\%)=331\left(27,[\mathrm{M}]^{+}\right), 220(14), 219(100), 218$ (79), 186 (22), 161 (12), 160 (71), 159 (16), 158 (12), 146 (21), 131 (16), 119 (11), 85 (53), 84 (71), 79 (11), 78 (40), 57 (42), 55 (18), 49 (14), 47 (18), 43 (20), 41 (23), 29 (15), 28 (34).

HRMS (EI, $\mathbf{8 0} \mathbf{e V}$): m / z calculated for $[M]^{+}: 331.22598$, found: 331.22644.

| $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}(340.5)$ | calc. | C 67.03 | H 8.80 | N 12.34 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | found | C 66.68 | H 8.29 | N 12.29 |

Synthesis of Methyl 3-[3-(Benzylamino)imidazo[1,2-a]pyridin-2-yl]butanoate (95c)

E 20 (IV 25)

Starting amounts:

0.202 g	$(1.00 \mathrm{mmol})$ Siloxycyclopropanecarboxylate $\mathbf{6 0}$
0.094 g	$(1.00 \mathrm{mmol})$ 2-Aminopyridine
0.118 g	$(1.00 \mathrm{mmol})$ Benzylisocyanide
3 ml	MeOH, dry
0.125 g	$(2.00 \mathrm{mmol})$ Acetic acid 96%

Procedure according to U2-AP
Reaction time: 24 hours
Purification: Column chromatography on silica gel with hexane/ethyl acetate $1: 2$, then HPLC ($10 \% i$-propanol/hexane, $64 \mathrm{ml} / \mathrm{min}, 80 \mathrm{bar}$)

Yield: $105 \mathrm{mg}(32 \%)$ of $\mathbf{9 5 c}$ as brownish oil

95c
${ }^{1} \mathbf{H}$-NMR ($250 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=1.22(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 2.50-2.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 3.10-3.24 (m, $1 \mathrm{H}, \mathrm{CH}$), $3.52(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.91(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 4.04$ (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.14\left(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.68(\mathrm{td}, J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.04$ (ddd, $J=$ $9.1,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.20-7.34(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.45(\mathrm{dt}, J=9.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.95$ (dt, $J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$).
${ }^{13} \mathbf{C}$-NMR ($62.9 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta=20.3$ (q, Me), $27.6(\mathrm{~d}, \mathrm{CH}), 41.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 51.4$ (q, OMe), 52.9 (t, $C_{2} \mathrm{Ph}$), 111.1 (d, C-6), 117.0 (d, C-8), 122.3 (d, C-5), 123.0 (d, C-7), 125.1 ($\mathrm{s}, \mathrm{C}-3$), 127.4, 128.3, 128.5 (3 d, Ph), 139.5 (s, Ph), 140.1 ($\mathrm{s}, \mathrm{C}-2$), 141.4 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 173.7 (s, C=O).

IR (KBr): $v=3340 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 2950-2875(\mathrm{C}-\mathrm{H}), 1735(\mathrm{C}=\mathrm{O}), 1635(\mathrm{C}=\mathrm{N})$.

MS (EI, $\left.80 \mathbf{e V}, 120{ }^{\circ} \mathbf{C}\right): m / z(\%)=323\left(33,[\mathrm{M}]^{\dagger}\right), 233(15), 232(100), 205(11), 200(20)$, 173 (12), 145 (12), 91 (18, [Bn] ${ }^{+}$), 78 (41).
HRMS (EI, $80 \mathbf{e V}$) m / z calculated for $[\mathrm{M}]^{+}: 323.16337$, found: 323.16565.

| $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}(332.4)$ | calc. | C 68.65 | H 6.67 | N 12.64 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | found | C 68.62 | H 6.19 | N 11.71 |

Synthesis of Methyl 3-[3-(Butylamino)imidazo[1,2-a]pyridin-2-yl]butanoate (95d)

Starting amounts:

0.202 g	$(1.00 \mathrm{mmol})$ Siloxycyclopropanecarboxylate $\mathbf{6 0}$
0.094 g	$(1.00 \mathrm{mmol})$ 2-Aminopyridine
0.083 g	$(1.00 \mathrm{mmol}) n$-Butylisocyanide
3 ml	$\mathrm{MeOH}, \mathrm{dry}$
0.125 g	$(2.00 \mathrm{mmol})$ Acetic acid 96%

Procedure according to U2-AP
Reaction time: 19 hours
Purification: Column chromatography on silica gel with hexane/ethyl acetate 1:2, then HPLC ($20 \% i$-propanol/hexane, $64 \mathrm{ml} / \mathrm{min}, 80 \mathrm{bar}$)
Yield: 123 mg (43%) of $\mathbf{9 5 d}$ as brownish oil

95d
${ }^{1} \mathbf{H}$-NMR (250 MHz, CDCl ${ }_{3}$): $\delta=0.89-1.65\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{Me}\right), 2.63-3.00(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}$, CH_{2}), 3.46-3.60 (m, $1 \mathrm{H}, \mathrm{NH}$), $3.55(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 6.73(\mathrm{td}, J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.07$ (ddd, $J=9.1,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.47(\mathrm{dt}, J=9.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 8.01(\mathrm{dt}, J=6.8,1.2$ $\mathrm{Hz}, 1 \mathrm{H}, 5-\mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($62.9 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=13.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 20.2,20.7(2 \mathrm{q}, \mathrm{Me}), 27.8(\mathrm{~d}, \mathrm{CH}), 32.9$, 41.1, 48.8 ($3 \mathrm{t}, \mathrm{CH}_{2}$), 51.4 (q, OMe), 111.2 (d, C-6), 116.9 (d, C-8), 122.4 (d, C-5), 122.8 (d, $\mathrm{C}-7$), 123.2 ($\mathrm{s}, \mathrm{C}-3$), 141.3 ($\mathrm{s}, \mathrm{C}-2$), 146.0 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 154.0 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3345 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 2960-2870(\mathrm{C}-\mathrm{H}), 1735(\mathrm{C}=\mathrm{O}), 1675(\mathrm{C}=\mathrm{N})$.

MS (EI, $80 \mathbf{e V}, 9{ }^{\circ} \mathbf{C}$): $m / z(\%)=289\left(100,[\mathrm{M}]^{\dagger}\right), 258(14), 246$ (26), 233 (10), 232 (52), 216 (26), 205 (15), 200 (22), 173 (16), 172 (10), 145 (15), 131 (17), 121 (10), 79 (13), 78 (54), 59 (14), 43 (16).

HRMS (EI, $80 \mathbf{e V}$): m / z calculated for [$\left.\mathrm{M}^{+}, \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}\right]$: 289.17902, found: 289.17755 .

Synthesis of Methyl 3-[3-(Benzylamino)imidazo[1,2-a]pyridin-2-yl]-3methylbutanoate (95e)

Method A

E 22 (IV 24)

Starting amounts:

0.216 g	$(1.00 \mathrm{mmol})$ Siloxycyclopropanecarboxylate 54
0.094 g	$(1.00 \mathrm{mmol})$ 2-Aminopyridine
0.118 g	$(1.00 \mathrm{mmol})$ Benzylisocyanide
3 ml	MeOH, dry
0.125 g	$(2.00 \mathrm{mmol})$ Acetic acid 96%

Procedure according to U2-AP
Reaction time: 19 hours
Purification: Column chromatography on silica gel with hexane/ethyl acetate $1: 2$, then HPLC (15% i-propanol/hexane, $64 \mathrm{ml} / \mathrm{min}, 80 \mathrm{bar}$)
Yield: 201 mg (57%) of $\mathbf{9 5 e}$ as pale yellow oil

95e
${ }^{1} \mathbf{H}$-NMR ($250 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=1.58(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 2.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.50(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, 3.62 (bs, $1 \mathrm{H}, \mathrm{NH}), 4.13\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.69(\mathrm{td}, J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.06$ (ddd, $J=$ $9.0,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.25-7.49(\mathrm{~m}, 6 \mathrm{H}, 8-\mathrm{H}, \mathrm{Ph}), 7.94(\mathrm{dt}, J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($62.9 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=28.4$ (q, Me), 35.3 (s, CMe_{2}), $46.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 51.1(\mathrm{q}$, OMe), 52.9 (t, $\mathrm{CH}_{2} \mathrm{Ph}$), 111.1 (d, C-6), 117.1 (d, C-8), 122.2 (d, C-5), 123.2 (d, C-7), 124.8 (s , $\mathrm{C}-3$), 127.5, 128.0, 128.6 ($3 \mathrm{~d}, \mathrm{Ph}$), 139.2 (s, Ph), 140.4 ($\mathrm{s}, \mathrm{C}-2$), 143.1 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 172.6 (s , $\mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3375 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 3085-2950(\mathrm{C}-\mathrm{H}), 1735(\mathrm{C}=\mathrm{O}), 1630(\mathrm{C}=\mathrm{N})$.

MS (EI, $80 \mathbf{e V}, 160{ }^{\circ} \mathbf{C}$): $m / z(\%)=337\left(32,[\mathrm{M}]^{\dagger}\right), 247(16), 246$ (100), 219 (22), 214 (21), 105 (32), 78 (29), 73 (13).

HRMS (EI, $\mathbf{8 0} \mathbf{e V}$) m / z calculated for $[M]^{+}: 337.17902$, found: 337.17843.

| $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(355.4)$ | calc. | C 67.59 | H 7.09 | N 11.82 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | found | C 67.69 | H 6.22 | N 11.95 |

Method B

E 23 (IV 207)

Starting amounts:

0.216 g	$(1.00 \mathrm{mmol})$ Siloxycyclopropanecarboxylate 54
0.094 g	$(1.00 \mathrm{mmol})$ 2-Aminopyridine
0.118 g	$(1.00 \mathrm{mmol})$ Benzylisocyanide
3 ml	MeOH, dry
0.125 g	$(2.00 \mathrm{mmol})$ Acetic acid 96%

Procedure: Dry methanol was placed into flame-dried flask under argon atmosphere. Siloxycyclopropanecarboxylate 54, amine and isocyanide were added to the reaction vessel, followed by addition of acetic acid. The reaction mixture was irradiated in a microwave reactor in 5 cycles. 1 M HCl solution was added to adjust pH 1 , the mixture was stirred for 30
min to destroy unreacted isocyanide and evaporated to dryness. The residue was taken up in aqueous NaHCO_{3} solution and extracted with ethyl acetate. The combined organic phases were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure.

Microwave irradiation conditions:
Duration: 60 min
Power: 200 W
Min T: $28^{\circ} \mathrm{C}$
Max T: $30^{\circ} \mathrm{C}$

Purification: Column chromatography on silica gel with hexane/ethyl acetate 1:2
Yield: $46 \mathrm{mg}(14 \%)$ of $\mathbf{9 5 e}$ as pale yellow oil

Synthesis of Methyl 3-Methyl-3-\{3-[(1,1,3,3-tetramethylbutyl)amino]imidazo[1,2a]pyridin-2-yl\}butanoate (64f) and 3-(3-Aminoimidazo[1,2-a]pyridin-2-yl)-3methylbutanoic acid (96)

Method A

E 24 (IV 261)

Starting amounts:

0.951 g	$(4.40 \mathrm{mmol})$ Siloxycyclopropanecarboxylate 54
0.376 g	$(4.00 \mathrm{mmol})$ 2-Aminopyridine
0.558 g	$(4.00 \mathrm{mmol}) 1,1,3,3$-Tetramethylbutylisocyanide
12 ml	MeOH, dry
0.500 g	$(8.00 \mathrm{mmol})$ Acetic acid 96%

Procedure according to U2-AP
Reaction time: 48 hours
Purification: Column chromatography on silica gel with hexane/ethyl acetate 1:2
Yield: 797 mg (56%) of $\mathbf{9 5 f}$ as yellow oil
$280 \mathrm{mg}(30 \%)$ of $\mathbf{9 6}$ as colourless crystals

${ }^{1} \mathbf{H}$-NMR ($250 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=1.08,1.22,1.58(3 \mathrm{~s}, 9 \mathrm{H}, 6 \mathrm{H}, 6 \mathrm{H}, \mathrm{Me}), 1.69,2.91(2 \mathrm{~s}, 2$ $\mathrm{H}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $3.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.52(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 6.63(\mathrm{td}, J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.99$ (ddd, $J=9.0,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.38(\mathrm{dt}, J=9.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 8.16(\mathrm{dt}, J=6.8,1.2$ Hz, 1 H, 5-H).
${ }^{13} \mathbf{C}$-NMR (125.8 MHz, $\mathbf{C D C l}_{3}$): $\delta=29.0,30.3,31.9(3 \mathrm{q}, \mathrm{Me}), 32.0,35.9\left(2 \mathrm{~s}, \mathrm{CMe}_{3}\right.$, CMe_{2}), $46.6\left(\mathrm{t}, \mathrm{CH}_{2}\right), 51.1(\mathrm{q}, \mathrm{OMe}), 57.8\left(\mathrm{t}, \mathrm{CH}_{2}\right), 58.8(\mathrm{~s}, \mathrm{NCMe} 2), 110.3(\mathrm{~d}, \mathrm{C}-6), 116.8(\mathrm{~d}$, C-8), 122.5 (d, C-5), 123.1 (d, C-7), 123.8 ($\mathrm{s}, \mathrm{C}-3$), 140.8 ($\mathrm{s}, \mathrm{C}-2$), 144.9 (s, C-8a), 172.6 (s, $\mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3370 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 3075-2870(\mathrm{C}-\mathrm{H}), 1735(\mathrm{C}=\mathrm{O}), 1630(\mathrm{C}=\mathrm{N})$.

MS (EI, $\left.80 \mathbf{e V}, \mathbf{8 0}^{\circ} \mathbf{C}\right): m / z(\%)=359\left(66,[\mathrm{M}]^{+}\right), 328$ (11), 248 (18), 247 (86), 246 (100), 219 (29), 215 (13), 214 (51), 188 (17), 174 (44), 105 (17).

HRMS (EI, $80 \mathbf{e V}$): m / z calculated for $[M]^{+}: 359.25726$, found: 359.25544 .
$\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{2}(359.5)$
calc.
C 70.16
H 9.25
N 11.69
found
C 69.90
H 9.14
N 11.70

96

Melting point: $250-251^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$-NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta=1.47(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 2.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.88(\mathrm{td}, J=6.8$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.13$ (ddd, $J=9.2,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.44(\mathrm{dt}, J=9.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), 8.06 (dt, $J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta=27.2(\mathrm{q}, \mathrm{Me}), 33.1\left(\mathrm{~s}, \mathrm{CMe}_{2}\right), 48.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 113.8(\mathrm{~d}$, C-6), 117.5 (d, C-8), 121.3 (d, C-5), 122.5 (d, C-7), 123.9 (d, C-3), 139.3 ($\mathrm{s}, \mathrm{C}-2$), 142.1 ($\mathrm{s}, \mathrm{C}-$ 9), 172.4 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3335-2865 \mathrm{~cm}^{-1}(\mathrm{OH}, \mathrm{NH}, \mathrm{CH}), 1680(\mathrm{C}=\mathrm{O}), 1570(\mathrm{C}=\mathrm{N}), 1235(\mathrm{C}-\mathrm{O})$.

MS (EI, $\left.80 \mathbf{e V}, 160{ }^{\circ} \mathbf{C}\right): m / z(\%)=215\left(87,\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}\right), 201(29), 200(100), 173$ (13), 172 (11), 158 (12), 145 (20), 79 (19), 78 (57), 52 (10), 51 (17), 41 (12), 39 (12), 28 (16), 27 (10). HRMS (EI, $80 \mathbf{e V}$) m / z calculated for $\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 215.10587$, found: 215.10633.

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}(233.3)$	calc.	C 61.73	H 6.48	N 18.01
	found	C 61.49	H 5.28	N 17.00

Method B

E 25 (IV 301)

Starting amounts:
$0.951 \mathrm{~g} \quad$ (4.40 mmol) Siloxycyclopropanecarboxylate 54
$0.376 \mathrm{~g} \quad(4.00 \mathrm{mmol})$ 2-Aminopyridine
$0.558 \mathrm{~g} \quad(4.00 \mathrm{mmol})$ 1,1,3,3-Tetramethylbutylisocyanide
12 ml MeOH, dry
$0.500 \mathrm{~g} \quad(8.00 \mathrm{mmol})$ Acetic acid 96%

Reaction time: 72 hours

Purification: Column chromatography on silica gel with hexane/ethyl acetate 1:2
Yield: 559 mg (60%) of $\mathbf{9 6}$ as colourless crystals

Synthesis of Methyl 3-\{3-[(4-Methoxyphenyl)amino]imidazo[1,2-a]pyridin-2-yl\}-3-methylbutanoate (95g)

Method A

E 26 (IV 126)

Starting amounts:

0.238 g	$(1.10 \mathrm{mmol})$ Siloxycyclopropanecarboxylate 54
0.094 g	$(1.00 \mathrm{mmol})$ 2-Aminopyridine
0.133 g	$(1.00 \mathrm{mmol}) p$-Methoxyphenylisocyanide
3 ml	MeOH, dry
0.125 g	$(2.00 \mathrm{mmol})$ Acetic acid 96%

Procedure according to U2-AP
Reaction time: 20 hours
Purification: Column chromatography on silica gel with hexane/ethyl acetate 1:2
Yield: 152 mg (43%) of $\mathbf{9 5 g}$ as brownish crystals

95g

Melting point: $140-143{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-$ NMR ($250 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=1.50(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 2.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.55,3.72(2 \mathrm{~s}, 3 \mathrm{H}$, $3 \mathrm{H}, \mathrm{OMe}), 5.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.20-6.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.50(\mathrm{td}, J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H})$, 6.54-6.60 (m, $2 \mathrm{H}, \mathrm{Ar}$), 6.94 (ddd, $J=9.1,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.34(\mathrm{dt}, J=9.1,1.2 \mathrm{~Hz}, 1$ $\mathrm{H}, 8-\mathrm{H}), 7.58(\mathrm{dt}, J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(62.9 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=28.3$ (q, Me), 35.3 ($\mathrm{s}, \mathrm{CMe}_{2}$), $46.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 51.1$ (q, OMe), 55.6 (q, p-OMe), 111.4 (d, C-6), 114.0 (d, C-8), 115.1 ($\mathrm{d}, \mathrm{C}-5$), 117.2 (d, C-7), 118.6 ($\mathrm{s}, \mathrm{C}-3$), 122.6, 124.0 ($2 \mathrm{~d}, \mathrm{Ar}$), 139.2 (s, Ar), 141.4 ($\mathrm{s}, \mathrm{C}-2$), 146.3 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}), 153.1$ (s, Ar), 172.9 (s, $\mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3270 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 3105-2825(\mathrm{C}-\mathrm{H}), 1730(\mathrm{C}=\mathrm{O}), 1675(\mathrm{C}=\mathrm{N})$.

MS (EI, $\left.80 \mathbf{e V}, 120{ }^{\circ} \mathbf{C}\right): m / z(\%)=354\left(100,\left[\mathrm{M}^{+}\right), 294(30), 282(13), 281\right.$ (38), 151 (11), 147 (25), 112 (15), 108 (10), 105 (16), 97 (10), 95 (12), 94 (42), 91 (13), 86 (21), 85 (16), 84 (42), 83 (17), 82 (11), 79 (15), 78 (28), 73 (21), 71 (23), 70 (20), 69 (32), 67 (15), 60 (22), 59 (11), 58 (13), 57 (46), 56 (19), 55 (35), 49 (10), 45 (37), 44 (37), 43 (71), 42 (14), 41 (38), 39 (19), 32 (18).

$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}(353.4)$	calc.	C 67.97	H 6.56	N 11.89
	found	C 67.83	H 6.47	N 11.44

Crystal data and structure refinement for $\mathbf{9 5 j}$:
Crystals of 95j for X-ray analysis have been obtained after keeping the substance at low temperature (in refrigerator) for several months.

Empirical formula	C20 H23 N3 O3
Formula weight	353.41
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P2(1)/c
Unit cell dimensions	$\mathrm{a}=9.870(4) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=10.817(4) \AA \quad \beta=98.166(8)^{\circ}$.
	$\mathrm{c}=17.218(7) \AA \quad \gamma=90^{\circ}$.
Volume	1819.6(13) \AA^{3}
Z	4
Density (calculated)	$1.290 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.088 \mathrm{~mm}^{-1}$
F(000)	752
Crystal size	. $5 \times .2 \times .1 \mathrm{~mm}^{3}$
Theta range for data collection	2.08 to 30.55°.
Index ranges	$-12<=\mathrm{h}<=14,-15<=\mathrm{k}<=14,-22<=1<=24$
Reflections collected	13376
Independent reflections	5119 [$\mathrm{R}(\mathrm{int})=0.0296]$

Completeness to theta $=30.55^{\circ}$
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
91.9%
Full-matrix least-squares on F^{2}
5119 / 0/244
1.153
$\mathrm{R} 1=0.0526, \mathrm{wR} 2=0.1346$
$\mathrm{R} 1=0.0673, \mathrm{wR} 2=0.1400$
0.025(2)
0.371 and -0.257 e. \AA^{-3}

Table 16. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{9 5 g} . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $\mathrm{U}^{i j}$ tensor.

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{N}(3)$	$6086(1)$	$1874(1)$	$8198(1)$	$19(1)$
$\mathrm{N}(2)$	$3785(1)$	$4027(1)$	$7032(1)$	$18(1)$
$\mathrm{N}(1)$	$4068(1)$	$3164(1)$	$8232(1)$	$16(1)$
$\mathrm{O}(3)$	$10278(1)$	$3244(1)$	$10582(1)$	$24(1)$
$\mathrm{O}(1)$	$6951(1)$	$5322(1)$	$7358(1)$	$35(1)$
$\mathrm{O}(2)$	$8853(1)$	$5024(1)$	$6806(1)$	$29(1)$
$\mathrm{C}(19)$	$11157(2)$	$2330(2)$	$10989(1)$	$26(1)$
$\mathrm{C}(16)$	$9254(2)$	$2833(2)$	$10007(1)$	$17(1)$
$\mathrm{C}(17)$	$8929(2)$	$1599(1)$	$9849(1)$	$19(1)$
$\mathrm{C}(18)$	$7870(2)$	$1289(1)$	$9253(1)$	$17(1)$
$\mathrm{C}(13)$	$7121(2)$	$2207(1)$	$8810(1)$	$16(1)$
$\mathrm{C}(14)$	$7452(2)$	$3447(1)$	$8978(1)$	$18(1)$
$\mathrm{C}(15)$	$8509(2)$	$3754(1)$	$9567(1)$	$19(1)$
$\mathrm{C}(7)$	$5121(2)$	$2723(1)$	$7847(1)$	$16(1)$
$\mathrm{C}(8)$	$3791(2)$	$2970(2)$	$8982(1)$	$23(1)$
$\mathrm{C}(9)$	$2684(2)$	$3540(2)$	$9213(1)$	$29(1)$
$\mathrm{C}(10)$	$1820(2)$	$4307(2)$	$8690(1)$	$28(1)$
$\mathrm{C}(11)$	$2110(2)$	$4502(2)$	$7947(1)$	$23(1)$
$\mathrm{C}(12)$	$3278(2)$	$3941(1)$	$7709(1)$	$17(1)$
$\mathrm{C}(6)$	$4931(2)$	$3283(1)$	$7121(1)$	$16(1)$
$\mathrm{C}(3)$	$5779(2)$	$3122(2)$	$6462(1)$	$20(1)$
$\mathrm{C}(4)$	$5593(2)$	$1792(2)$	$6147(1)$	$27(1)$
$\mathrm{C}(5)$	$5313(2)$	$4021(2)$	$5783(1)$	$26(1)$
$\mathrm{C}(2)$	$7318(2)$	$3344(2)$	$6760(1)$	$23(1)$
$\mathrm{C}(1)$	$7645(2)$	$4659(2)$	$7013(1)$	$24(1)$
$\mathrm{C}(20)$	$9263(2)$	$6269(2)$	$7044(1)$	$35(1)$

Method B

E 27 (IV 202)

Starting amounts:

0.238 g	$(1.10 \mathrm{mmol})$ Siloxycyclopropanecarboxylate 54
0.094 g	$(1.00 \mathrm{mmol})$ 2-Aminopyridine
0.133 g	$(1.00 \mathrm{mmol}) p$-Methoxyphenylisocyanide
3 ml	MeOH, dry
0.125 g	$(2.00 \mathrm{mmol})$ Acetic acid 96%

Procedure: Dry methanol was placed into a flame-dried flask under an argon atmosphere. Siloxycyclopropanecarboxylate 54, amine and isocyanide were added to the reaction vessel, followed by addition of acetic acid. The reaction mixture was irradiated in a microwave reactor in 5 cycles. 1 M HCl solution was added to adjust pH 1 ; the mixture was stirred for 30 min to destroy unreacted isocyanide and evaporated to dryness. The residue was taken up in aqueous NaHCO_{3} solution and extracted with ethyl acetate. The combined organic phases were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure.

Microwave irradiation conditions:
Duration: 60 min
Power: 200 W
Min T: $28^{\circ} \mathrm{C}$
Max T: $30^{\circ} \mathrm{C}$

Purification: Column chromatography on silica gel with hexane/ethyl acetate 1:2 Yield: 218 mg (62%) of $\mathbf{9 5 g}$ as brownish crystals.

Synthesis of Methyl 3-[3-(Benzylamino)imidazo[1,2-a]pyridin-2-yl]-2,3dimethylbutanoate (95h)

Starting amounts:

$$
\begin{array}{ll}
0.277 \mathrm{~g} & (1.20 \mathrm{mmol}) \text { Siloxycyclopropanecarboxylate } 56 \\
0.094 \mathrm{~g} & (1.00 \mathrm{mmol}) \text { 2-Aminopyridine } \\
0.118 \mathrm{~g} & (1.00 \mathrm{mmol}) \text { Benzylisocyanide } \\
3 \mathrm{ml} & \mathrm{MeOH}, \mathrm{dry} \\
0.125 \mathrm{~g} & (2.00 \mathrm{mmol}) \text { Acetic acid } 96 \%
\end{array}
$$

Procedure according to U2-AP
Reaction time: 17 hours
Purification: Column chromatography on silica gel with hexane/ethyl acetate 1:2
Yield: $140 \mathrm{mg}(40 \%)$ of $\mathbf{9 5 h}$ as pale yellow oil

95h
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{2 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=1.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.54(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 3.17(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.44(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 3.50(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.07(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ph}$), 6.66 (td, $J=6.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$), 7.04 (ddd, $J=9.0,6.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), $7.24-$ 7.55 (m, $6 \mathrm{H}, 8-\mathrm{H}, \mathrm{Ph}), 7.91$ (dt, $J=6.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$.
${ }^{13}$ C-NMR ($62.9 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=13.1,24.0,26.0(3 \mathrm{q}, \mathrm{Me}), 38.5\left(\mathrm{~s}, \mathrm{CMe}_{2}\right), 48.5(\mathrm{~d}, \mathrm{CH})$, 51.0 (q, OMe), 52.8 (t, $\mathrm{CH}_{2} \mathrm{Ph}$), 111.2 (d, C-6), 117.0 (d, C-8), 122.1 (d, C-5), 123.3 (d, C-7), 125.3 (s, C-3), 127.5, 127.9, 128.6 (3 d, Ph), 139.0 (s, Ph), 140.2 (s, C-2), 142.3 (s, C-8a), 176.2 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3375 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 3085-2950(\mathrm{C}-\mathrm{H}), 1735(\mathrm{C}=\mathrm{O}), 1630(\mathrm{C}=\mathrm{N})$.

MS (EI, 80 eV, $120{ }^{\circ} \mathbf{C}$): $m / z(\%)=351\left(34,[M]^{+}\right), 264$ (14), 261 (20), 260 (100), 233 (16), 229 (12), 228 (66), 201 (10), 174 (16), 176 (15), 158 (14), 121 (21) 105 (19), 91 (10, [Bn] $]^{+}$,, 78 (13).

HRMS (EI, $80 \mathbf{e V}$) m / z calculated for $[M]^{+}: 351.19467$, found: 351.19633.

7.3.1 Cyclization reactions

Cyclization reaction of 95 e to compound $100 e$

E 29 (IV 91)

Starting amounts:

0.060 g	$(0.178 \mathrm{mmol})$ Methyl 3-[3-(Benzylamino)imidazo[1,2-a]pyridin-2-
	$\mathrm{yl}]-3-m e t h y l b u t a n o a t e ~(95 e)$
1 mg	$(0.02 \mathrm{mmol})$ Sodium cyanide
2 ml	MeOH, dry

Procedure: Dry methanol was placed into a flame-dried flask under an argon atmosphere. Methyl 3-[3-(benzylamino)imidazo[1,2-a]pyridin-2-yl]-3-methylbutanoate (95e) was added to the reaction vessel, followed by addition of sodium cyanide. The reaction mixture was heated ($\mathrm{t}_{\text {bath }}=85^{\circ} \mathrm{C}$) for 43 hours, and then the solvent was evaporated to dryness. Ethyl acetate and water were added and the layers were separated. The aqueous layer was extracted with ethyl acetate, the combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure.

Purification: Column chromatography on activated alox with hexane/ethyl acetate 1:1
Yield: 50 mg (92%) of $\mathbf{1 0 0 e}$ as colourless crystals

100e

Melting point: $138-140{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{2 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=1.38(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 2.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $6.64(\mathrm{td}, J=6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.01(\mathrm{ddd}, J=9.1,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.23-7.37(\mathrm{~m}, 5$ H, Ph), $7.55(\mathrm{dt}, J=9.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.77(\mathrm{dt}, J=6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($62.9 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=26.3(\mathrm{q}, \mathrm{Me}), 31.5\left(\mathrm{~s}, \mathrm{CMe}_{2}\right), 46.5,48.4\left(2 \mathrm{t}, \mathrm{CH}_{2}\right), 112.6$ (d, C-6), 118.2 (d, C-8), 121.6 (d, C-5), 121.8 (d, C-7), 122.0 ($\mathrm{s}, \mathrm{C}-3$), 126.7, 127.7, 128.9 (3 d, Ph), 136.6 (s, Ph), 138.6 ($\mathrm{s}, \mathrm{C}-2$), 141.4 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 170.9 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3065-2865 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{H}), 1680(\mathrm{C}=\mathrm{O}), 1630(\mathrm{C}=\mathrm{N})$.

MS (EI, $\left.80 \mathbf{e V}, 190{ }^{\circ} \mathbf{C}\right): m / z(\%)=305\left(32,[\mathrm{M}]^{+}\right), 215(14), 214\left(100,[\mathrm{M}-\mathrm{Bn}]^{+}\right), 91(13$, $\left.[\mathrm{Bn}]^{+}\right), 78$ (18).
HRMS (EI, $80 \mathbf{e V}$) m / z calculated for [$\left.\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}\right]: 305.15280$, found: 305.15355.

Cyclization reaction of $\mathbf{9 5 g}$ to compound 100 g

E 30 (IV 186)

Starting amounts:

0.134 g	$(0.38 \mathrm{mmol})$ Methyl 3-\{3-[(4-methoxyphenyl)amino]imidazo[1,2-
	$a]$ pyridin-2-yl\}-3-methylbutanoate $\mathbf{(9 5 g})$
2 mg	$(0.04 \mathrm{mmol})$ Sodium cyanide
4 ml	MeOH, dry

Procedure: Dry methanol was placed into a flame-dried flask under an argon atmosphere. Methyl 3-\{3-[(4-methoxyphenyl)amino]imidazo[1,2-a]pyridin-2-yl\}-3-methylbutanoate (95g) was added to the reaction vessel, followed by addition of sodium cyanide. The reaction mixture was heated ($\mathrm{t}_{\text {bath }}=85^{\circ} \mathrm{C}$) for 48 hours, and then the solvent was evaporated to dryness. Ethyl acetate and water were added and the layers separated. The aqueous layer was extracted with ethyl acetate, the combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure.

Purification: Column chromatography on silica gel with hexane/ethyl acetate 1:2
Yield: 37 mg ($\mathbf{3 0} \%$) of $\mathbf{1 0 0 g}$ as brownish solid $55 \mathrm{mg}(40 \%)$ of $\mathbf{9 5 g}$ as brownish solid was recovered

100 g

Melting point: $160-162{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-$ NMR ($250 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=1.48(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 2.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.83(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, 6.47 (td, $J=6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.79$ (ddd, $J=9.1,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.94-7.01(\mathrm{~m}, 3$ H, 8-H, Ar), 7.13-7.19 (m, 2 H, Ar), 7.55 (dt, $J=6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=26.6(\mathrm{q}, \mathrm{Me}), 31.8\left(\mathrm{~s}, \mathrm{CMe}_{2}\right), 48.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 55.5(\mathrm{q}$, OMe), 112.0 (d, C-6), 114.8 (d, C-8), 117.8 (d, C-5), 120.9 ($\mathrm{s}, \mathrm{C}-3$), 121.7 (d, C-7), 121.9, 127.7 (2 d, Ar), 128.6 (s, Ar), 138.8 (s, C-2), 141.5 (s, C-8a), 158.9 (s, Ar), 170.0 (s, C=O).

IR (KBr): $v=3445-2855 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{H}), 1690(\mathrm{C}=\mathrm{O}), 1510(\mathrm{C}=\mathrm{N})$.

MS (EI, $80 \mathbf{e V}, 110{ }^{\circ} \mathbf{C}$): $m / z(\%)=321\left(100,[\mathrm{M}]^{+}\right), 307(12), 306(54), 261$ (11), 233 (24), 156 (11), 149 (25), 145 (12), 135 (11), 123 (10), 121 (13), 111 (17), 99 (12), 97 (19), 95 (15),

94 (27), 85 (18), 83 (27), 81 (12), 79 (10), 78 (21), 71 (23), 70 (12), 69 (31), 67 (24), 57 (49), 56 (20), 55 (36), 45 (12), 43 (49), 42 (11), 41 (39), 39 (14), 32 (12), 31 (13), 29 (29), 28 (58), 27 (15).
HRMS (EI, $80 \mathbf{e V}$) m / z calculated for $\left[\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}\right]$: 321.14774, found: 321.14844.

Cyclization reaction of 95 h to compound 100 h

E 31 (IVMK5)

Starting amounts:

0.414 g	$(1.12 \mathrm{mmol})$ Methyl 3-[3-(Benzylamino)imidazo[1,2-a]pyridin-2- yl]-2,3-dimethylbutanoate (95h)
6 mg	$(0.12 \mathrm{mmol})$ Sodium cyanide
14 ml	MeOH, dry

Procedure: Dry methanol was placed into a flame-dried flask under an argon atmosphere. Methyl 3-[3-(Benzylamino)imidazo[1,2-a]pyridin-2-yl]-2,3-dimethylbutanoate (95h) was added to the reaction vessel, followed by addition of sodium cyanide. The reaction mixture was heated ($\mathrm{t}_{\text {bath }}=85^{\circ} \mathrm{C}$) for 48 hours, and then the solvent was evaporated to dryness. Ethyl acetate and water were added and the layers separated. The aqueous layer was extracted with ethyl acetate, the combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure.

Purification: Column chromatography on activated alox with hexane/ethyl acetate 1:1
Yield: 350 mg (98%) of $\mathbf{1 0 0 h}$ as colourless crystals

100h

Melting point: $114-115{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=1.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.19(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.42(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{Me}), 2.66(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}), 5.16\left(\mathrm{dd}, J=16.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.62(\mathrm{td}, J=6.9$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.98$ (ddd, $J=9.1,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.19-7.33$ (m, 5 H, Ph), 7.54 (dt, $J=9.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.72(\mathrm{dt}, J=6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=10.0,21.3,25.3(3 \mathrm{q}, \mathrm{Me}), 34.3\left(\mathrm{~s}, C \mathrm{Me}_{2}\right), 46.6\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, 48.8 (d, CH), 112.5 (d, C-6), 118.1 (d, C-8), 121.3 (d, C-5), 121.5 (d, C-7), 121.7 ($\mathrm{s}, \mathrm{C}-3$), 126.6, 127.6, 128.8 ($3 \mathrm{~d}, \mathrm{Ph}$), 136.7 (s, Ph), 139.0 ($\mathrm{s}, \mathrm{C}-2$), 141.2 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 173.9 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3085-2870 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{H}), 1680(\mathrm{C}=\mathrm{O}), 1635(\mathrm{C}=\mathrm{N})$.

MS (EI, $80 \mathbf{e V}, 6{ }^{\circ} \mathbf{C}$): $m / z(\%)=319\left(53,[\mathrm{M}]^{+}\right), 258(17), 229(17), 228\left(100,[\mathrm{M}-\mathrm{Bn}]^{+}\right)$, 121 (30), 108 (22), 106 (17), 94 (25), 91 (38, [Bn] $]^{+}$), 86 (37), 84 (64), 79 (10), 78 (33), 70 (37), 69 (15), 67 (17), 57 (10), 55 (23), 51 (11), 49 (11), 47 (16), 45 (10), 44 (11), 43 (21), 42 (11), 41 (24), 39 (13), 32 (17), 29 (12), 28 (96), 27 (13).

HRMS (EI, $80 \mathbf{e V}$) m/z calculated for [$\left.\mathrm{M}^{+}, \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}\right]: 319.16846$, found: 319.16655.

7.3.2 Dealkylation and hydrolysis reactions

Synthesis of Methyl 3-(3-Aminoimidazo[1,2-a]pyridin-2-yl)propanoate (101)

E 32 (IV 315)

Starting amounts:

$$
\begin{array}{ll}
0.643 \mathrm{~g} & (1.94 \mathrm{mmol}) \text { Methyl 3-\{3-[(1,1,3,3- } \\
& \text { Tetramethylbutyl)amino]imidazo[1,2-a]pyridin-2-yl\}propanoate (95b) } \\
5 \mathrm{ml} & \text { TFA } / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1
\end{array}
$$

Procedure: Methyl 3-\{3-[(1,1,3,3-tetramethylbutyl)amino]imidazo[1,2- a]pyridin-2yl \}propanoate ($\mathbf{9 5 b}$) was dissolved in $\mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ solution and stirred for 2 hours at room temperature. The reaction mixture was loaded on a Dowex cation exchange resin, washed with methanol until it was acid-free and then eluted with saturated methanolic ammonia. The solvent was removed under reduced pressure.

Purification: Column chromatography on silica gel with methanol/dichloromethane 1:19 Yield: 399 mg (94%) of $\mathbf{1 0 1}$ as yellowish oil.

101
${ }^{1} \mathbf{H}-$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=2.78\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.02(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), $3.52(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 6.05\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.76(\mathrm{t}, J=6.8,1 \mathrm{H}, 6-\mathrm{H}), 7.03-7.19(\mathrm{~m}, 1 \mathrm{H}$, $7-\mathrm{H}), 7.42(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 8.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR (125.8 MHz, $\mathbf{C D C l}_{3}$): $\delta=21.6,33.2\left(2 \mathrm{t}, \mathrm{CH}_{2}\right), 51.6$ (q, OMe), 111.6 (d, C-6), 116.7 (d, C-8), 122.1 (d, C-5), 123.3 (d, C-7), 123.4 (s, C-3), 132.7 ($\mathrm{s}, \mathrm{C}-2$), 140.2 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 174.1 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3320-3180 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 2950-2850(\mathrm{C}-\mathrm{H}), 1730(\mathrm{C}=\mathrm{O}), 1670(\mathrm{C}=\mathrm{N})$.

MS (EI, $\left.80 \mathbf{e V}, 100{ }^{\circ} \mathbf{C}\right): m / z(\%)=219\left(58,[M]^{+}\right), 188(16), 161$ (14), 160 (100), 159 (19), 146 (52), 133 (14), 121 (16), 119 (25), 115 (14), 91 (10), 80 (24), 79 (82), 67 (12), 59 (12), 55 (15), 51 (17), 28 (16).

HRMS (EI, $80 \mathbf{e V}$): m / z calculated for $\left[\mathrm{M}^{+}, \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}\right]$: 219.10078, found: 219.10155.

Synthesis of 3-(3-Aminoimidazo[1,2-a]pyridin-2-yl)-3-methylbutanoic acid (96)

E 33 (IV 266)

Starting amounts:

```
0.861 g (2.40 mmol) Methyl 3-Methyl-3-{3-[(1,1,3,3-
    tetramethylbutyl)amino]imidazo[1,2-a]pyridin-2-yl} butanoate (95f)
5 ml TFA/CH2Cl 1:1
```

Procedure: Methyl 3-Methyl-3-\{3-[(1,1,3,3-tetramethylbutyl)amino]imidazo[1,2-a]pyridin-2yl \} butanoate ($\mathbf{9 5 f}$) was dissolved in TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ solution and stirred for 2 hours at room temperature. The reaction mixture was loaded on a Dowex cation exchange resin, washed with methanol until it was acid-free and then eluted with methanolic ammonia. The solvent was removed under reduced pressure.

Purification: Column chromatography on silica gel with methanol/dichloromethane 1:19 Yield: 450 mg (80%) of $\mathbf{9 6}$ as colourless crystals - for analytical data see E22 (IV261)

Synthesis of Methyl 3-(3-Aminoimidazo[1,2-a]pyridin-2-yl)-3-methylbutanoate (102) and 3-(3-Aminoimidazo[1,2-a]pyridin-2-yl)-3-methylbutanoic acid (96)

E 34 (IV 206)

Starting amounts:

```
0.116 g (0.32 mmol) Methyl 3-Methyl-3-{3-[(1,1,3,3-
    tetramethylbutyl)amino]imidazo[1,2-a]pyridin-2-yl}butanoate (95f)
2 ml TFA/CH2Cl 1:1
```

Procedure: Methyl 3-Methyl-3-\{3-[(1,1,3,3-tetramethylbutyl)amino]imidazo[1,2-a]pyridin-2$\mathrm{yl}\}$ butanoate ($\mathbf{(9 5 f)}$ was dissolved in TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ solution and stirred for 5 min at room temperature. The reaction mixture was loaded on a Dowex cation exchange resin, washed with methanol until it was acid-free and then eluted with methanolic ammonia. The solvent was removed under reduced pressure.

Purification: Column chromatography on silica gel with hexane/ethyl acetate 1:2
Yield: $20 \mathrm{mg}(25 \%)$ of $\mathbf{1 0 2}$ as yellow oil
$37 \mathrm{mg}(50 \%)$ of $\mathbf{9 6}$ as colourless crystals - for analytical data see E22 (IV261)

102
${ }^{1} \mathbf{H}$-NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=1.35(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 2.54\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.91(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, 6.75 (td, $J=6.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.02$ (ddd, $J=9.0,6.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.49(\mathrm{dt}, J=$ $9.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 8.09(\mathrm{dt}, J=6.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$; the NH_{2} signal could not be detected.
${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=27.0(\mathrm{q}, \mathrm{Me}), 32.2\left(\mathrm{~s}, \mathrm{CMe}_{2}\right), 42.8\left(\mathrm{t}, \mathrm{CH}_{2}\right), 53.7(\mathrm{q}$, OMe), 111.8 (d, C-6), 117.1 (d, C-8), 121.5 (d, C-5), 122.4 (d, C-7), 127.5 ($\mathrm{s}, \mathrm{C}-3$), 135.8 (s , $\mathrm{C}-2$), 141.9 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 165.9 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3380-3085 \mathrm{~cm}^{-1}(\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}), 2950-2875(\mathrm{C}-\mathrm{H}), 1720(\mathrm{C}=\mathrm{O}), 1610(\mathrm{C}=\mathrm{N})$.

MS (EI, $\left.80 \mathbf{e V}, 50{ }^{\circ} \mathbf{C}\right): m / z(\%)=229\left(100,\left[\mathrm{M}-\mathrm{NH}_{4}\right]^{+}\right), 215(14), 214$ (95), 200 (15), 199
(14), 111 (10), 109 (10), 108 (11), 107 (15), 99 (13), 97 (14), 95 (15), 94 (11), 91 (25), 85 (21), 84 (14), 83 (21), 82 (13), 81 (14), 79 (17), 78 (21), 73 (20), 71 (30), 70 (18), 69 (28), 67 (15), 60 (33), 59 (11), 58 (25), 57 (37), 56 (28), 55 (40), 51 (10), 45 (25), 44 (14), 43 (74), 42 (17), 41 (46), 39 (22), 29 (31), 28 (64), 27 (27).

HRMS (EI, $80 \mathbf{e V}$) m / z calculated for $\left[\mathrm{M}^{+}-\mathrm{NH}_{4}, \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$]: 229.09770, found: 229.09822 .

Synthesis of Methyl 3-(3-Aminoimidazo[1,2-a]pyridin-2-yl)propanoate (101) and compound (103)

Starting amounts:

0.420 g	$(1.27 \mathrm{mmol})$ Methyl 3-\{3-[(1,1,3,3-Tetramethylbutyl)amino]imidazo[1,2-
	$a]$ pyridin-2-yl $\}$ propanoate (95b)
6 ml	TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$

Procedure: Methyl 3-\{3-[(1,1,3,3-Tetramethylbutyl)amino]imidazo[1,2-a]pyridin-2yl \} propanoate ($\mathbf{9 5 b}$) was dissolved in $\mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:1 solution and stirred for 2 h at room temperature. The reaction mixture was loaded on a Dowex cation exchange resin, washed with methanol until it was acid-free and then eluted with methanolic ammonia. The solvent was removed under reduced pressure.

Purification: Column chromatography on silica gel with hexane/ethyl acetate 1:2
Yield: 118 mg (42%) of $\mathbf{1 0 1}$ as yellowish oil - for analytical data see E31 (IV315)
47 mg (20%) of $\mathbf{1 0 3}$ as brownish solid

103

Melting range: $278-282^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$-NMR (500 MHz, CD $_{3} \mathbf{O D}$): $\delta=2.83\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.07(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), $6.91(\mathrm{td}, J=6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.16$ (ddd, $\left.J=9.1,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}\right), 7.44(\mathrm{dt}$, $J=9.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 8.08(\mathrm{dt}, J=6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($125.8 \mathrm{MHz}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta=21.5,33.1\left(2 \mathrm{t}, \mathrm{CH}_{2}\right), 114.1(\mathrm{~d}, \mathrm{C}-6), 117.7(\mathrm{~d}, \mathrm{C}-8)$, 122.6 (d, C-5), 124.4 (d, C-7), 129.8 ($\mathrm{s}, \mathrm{C}-3$), 135.9 ($\mathrm{s}, \mathrm{C}-2$), 142.4 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 172.8 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3440 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 3100-2860(\mathrm{C}-\mathrm{H}), 1675(\mathrm{C}=\mathrm{O}), 1625(\mathrm{C}=\mathrm{N})$.

MS (EI, $\left.80 \mathbf{e V}, 140{ }^{\circ} \mathbf{C}\right): m / z(\%)=187\left(62,[\mathrm{M}]^{+}\right), 160(14), 159$ (41), 145 (16), 144 (29), 132 (20), 131 (18), 118 (19), 94 (15), 79 (43), 78 (100), 67 (20), 52 (19), 51 (29), 44 (14), 39 (14), 28 (38), 27 (12).

HRMS (EI, $80 \mathbf{e V}$) m / z calculated for [$\left.\mathrm{M}^{+}, \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}\right]$: 187.0745, found: 187.0744.

Synthesis of 3-[3-(Benzylamino)imidazo[1,2-a]pyridin-2-yl]-3-methylbutanoic acid (104)

Starting amounts:

0.109 g	$(0.32 \mathrm{mmol})$ Methyl 3-[3-(Benzylamino)imidazo[1,2-a]pyridin-2-yl]-
	3-methylbutanoate (95e)
0.041 g	$(0.96 \mathrm{mmol}) \mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$
1 ml	$\mathrm{H}_{2} \mathrm{O}$
1 ml	MeOH
3 ml	THF

Procedure: Methyl 3-[3-(benzylamino)imidazo[1,2-a]pyridin-2-yl]-3-methylbutanoate (95e) was dissolved in a mixture of methanol and tetrahydrofuran, a solution of LiOH in water was added, and the resulting mixture was stirred 22 hours at room temperature. 2 M HCl was added to adjust pH 7 . Diethyl ether was added and the layers were separated. The aqueous layer was extracted with diethyl ether, the combined organic phases were dried with MgSO_{4} and the solvent was evaporated.

Purification: Column chromatography on silica gel with hexane/ethyl acetate 1:2
Yield: 80 mg (77%) of $\mathbf{1 0 4}$ as pale yellow solid

104

Melting range: $111-115^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{2 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=1.38(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 2.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 6.65 (td, $J=6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.01$ (ddd, $J=9.1,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.24-7.40(\mathrm{~m}, 5$ $\mathrm{H}, \mathrm{Ph}), 7.56(\mathrm{dt}, J=9.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.76(\mathrm{dt}, J=6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$; the NH signal could not be detected.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(62.9 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta=26.4(\mathrm{q}, \mathrm{Me}), 31.6\left(\mathrm{~s}, \mathrm{CMe}_{2}\right), 46.6\left(\mathrm{t}, \mathrm{CH}_{2}\right), 48.5(\mathrm{t}$, $\mathrm{CH}_{2} \mathrm{Ph}$), 112.8 (d, C-6), 118.2 (d, C-8), 121.8 (d, C-5), 121.9 (d, C-7), 122.1 ($\mathrm{s}, \mathrm{C}-3$), 126.8, 127.8, 129.0 ($3 \mathrm{~d}, \mathrm{Ph}$), 136.7 (s, Ph), 138.6 ($\mathrm{s}, \mathrm{C}-2$), 141.5 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 171.0 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3230-3030 \mathrm{~cm}^{-1}(\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}), 2960-2870(\mathrm{C}-\mathrm{H}), 1680(\mathrm{C}=\mathrm{O}), 1235(\mathrm{C}-\mathrm{O})$.

MS (EI, $80 \mathbf{e V}, 190{ }^{\circ} \mathbf{C}$): $m / z(\%)=323\left(31,[\mathrm{M}]^{+}\right), 305(32), 233(16), 232\left(100,[\mathrm{M}-\mathrm{Bn}]^{+}\right)$, 215 (14), 214 (94), 205 (42), 121 (31), 105 (17), 91 (39, [Bn] ${ }^{+}$), 83 (11), 79 (14), 78 (59), 41 (11), 28 (12).

HRMS (EI, $\mathbf{8 0} \mathbf{e V}$) m / z calculated for $[\mathrm{M}]^{+}: 323.16337$, found: 323.16632.

$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}(323.4)$	calc.	C 70.57	H 6.55	N 12.99
	found	C 69.87	H 6.63	N 13.52

7.3.3 Reaction with RuO_{4}

Synthesis of 1-Benzyl-4,4-dimethylpiperidine-2,3,6-trione (105)

E 37 (IV 93)

Starting amounts:

0.137 g	$(0.422 \mathrm{mmol})$ 3-[3-(Benzylamino)imidazo[1,2-a]pyridin-2-yl]-3-
	methylbutanoic acid (104)
0.360 g	$(1.68 \mathrm{mmol}) \mathrm{NaIO}_{4}$
1 mg	$(0.008 \mathrm{mmol}) \mathrm{RuO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
1.0 ml	MeCN^{2}
1.0 ml	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
1.5 ml	$\mathrm{H}_{2} \mathrm{O}$

Procedure: 3-[3-(Benzylamino)imidazo[1,2-a]pyridin-2-yl]-3-methylbutanoic acid (104) was dissolved in a $\mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$ mixture, then NaIO_{4} and $\mathrm{RuO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ were added. The reaction mixture was stirred for 2 hours at room temperature. 5 ml Water and 5 ml dichloromethane were added and the layers were separated. The aqueous layer was extracted with dichloromethane, the combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was dissolved in diethyl ether and filtered through a pad of celite and the solvent was evaporated to dryness.

Purification: Column chromatography on silica gel with hexane/ethyl acetate 1:2
Yield: 37 mg ($\mathbf{3 6} \%$) of $\mathbf{1 0 5}$ as colourless solid
$21 \mathrm{mg}(15 \%)$ of $\mathbf{1 0 4}$ was recovered as pale yellow solid

105

Melting point: $>300^{\circ} \mathrm{C}$
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.24(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 2.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.99\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 7.18-7.50 (m, 5 H, Ph).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(62.9 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta=23.2(\mathrm{q}, \mathrm{Me}), 42.8(\mathrm{~s}, \mathrm{C}-4), 44.0,44.8\left(2 \mathrm{t}, \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{C}-5\right)$, $127.9,128.3,129.3$ ($3 \mathrm{~d}, \mathrm{Ph}$), 135.8 (s, Ph), 158.4, 169.0, 192.2 (3 s, C-2, C-3, C-6).

IR (KBr): $v=3360 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 2960-2855(\mathrm{C}-\mathrm{H}), 1745(\mathrm{C}=\mathrm{O}), 1685(\mathrm{C}=\mathrm{O})$.

MS (EI, $\left.80 \mathbf{e V}, 190{ }^{\circ} \mathbf{C}\right): m / z(\%)=245\left(100,[\mathrm{M}]^{+}\right), 106(18), 91\left(19,[\mathrm{Bn}]^{+}\right)$.
HRMS (EI, $80 \mathbf{e V}) m / z$ calculated for $\left[\mathrm{M}^{+}, \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3}\right]: 245.10519$, found: 245.10733.

7.3.4 Esterification reactions and protection of the amino group

Synthesis of Methyl 3-(3-Aminoimidazo[1,2-a]pyridin-2-yl)-3-methylbutanoate (102)

Method A

E 38 (IV 339)
Starting amounts:
$\begin{aligned} 0.254 \mathrm{~g} \quad & (1.09 \mathrm{mmol}) 3-(3-A m i n o i m i d a z o[1,2-a] \text { pyridin-2-yl)-3-methylbutanoic } \\ & \operatorname{acid} \mathbf{(9 6)}\end{aligned}$
$\mathrm{CH}_{2} \mathrm{~N}_{2}$ in diethyl ether, prepared from 8 mmol of N -nitrosourea
$50 \mathrm{ml} \quad \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 10: 1$

Procedure: 3-(3-Aminoimidazo[1,2-a]pyridin-2-yl)-3-methylbutanoic acid (96) was dissolved in a $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 10: 1$ solution, in a new wide neck Erlenmeyer flask. The diethyl ether solution of diazomethane was slowly added while shaking until permanent yellow colour was developed.

Purification: Column chromatography on silica gel with hexane/ethyl acetate 1:2
Yield: $68 \mathrm{mg}(25 \%)$ of $\mathbf{1 0 2}$ as yellow oil - for analytical data see E33 (IV206)

Method B

E 39 (IV 192)

Starting amounts:
$0.098 \mathrm{~g} \quad(0.42 \mathrm{mmol})$ 3-(3-Aminoimidazo[1,2-a]pyridin-2-yl)-3-methylbutanoic acid (96)
0.21 ml (0.43 mmol) $\mathrm{Me}_{3} \mathrm{SiCHN}_{2}, 2 \mathrm{M}$ solution in hexanes
$2.5 \mathrm{ml} \quad \mathrm{PhMe} / \mathrm{MeOH} 1: 1$

Procedure: 3-(3-Aminoimidazo[1,2-a]pyridin-2-yl)-3-methylbutanoic acid (96) was dissolved in a toluene/methanol $1: 1$ mixture and cooled to $0{ }^{\circ} \mathrm{C}$, then the $\mathrm{Me}_{3} \mathrm{SiCHN}_{2}$ solution was added under argon. The reaction mixture was stirred 18 hours at room temperature; the solvent was removed under reduced pressure.

Purification: Column chromatography on silica gel with hexane/ethyl acetate 1:2
Yield: 27 mg (26 \%) of $\mathbf{1 0 2}$ as yellow oil - for analytical data see E33 (IV206)

Synthesis of 3-\{3-[(tert-Butoxycarbonyl)amino]imidazo[1,2-a]pyridin-2-yl\}-3methylbutanoic acid (106)

E 40 (IV 246)

Starting amounts:
$0.090 \mathrm{~g} \quad$ (0.386 mmol) 3-(3-Aminoimidazo[1,2-a]pyridin-2-yl)-3-methylbutanoic acid (96)
$0.016 \mathrm{~g} \quad(0.038 \mathrm{mmol}) \mathrm{NaH}(60 \%)$
$0.168 \mathrm{~g} \quad(0.772 \mathrm{mmol}) \mathrm{Boc}_{2} \mathrm{O}$
cat. amt. DMAP
6 ml THF

Procedure: A stirred solution of 3-(3-aminoimidazo[1,2-a]pyridin-2-yl)-3-methylbutanoic acid (96) in tetrahydrofuran was treated with NaH , stirred for 1 h , treated with $\mathrm{Boc}_{2} \mathrm{O}$, stirred for another hour, treated with a catalytic amount of DMAP and stirred for one more hour. The
mixture was partitioned between ethyl acetate and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure.

Purification: Column chromatography on silica gel with $10 \% i$-propanol/hexane Yield: 100 mg (78%) of $\mathbf{1 0 6}$ as brownish oil

106
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{2 5 0 ~ M H z}, \mathbf{C D C l}_{3}\right): \delta=1.36(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 1.49\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe} e_{3}\right), 2.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $6.75(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.07(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.43-7.53(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{H}, 5-\mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=26.0(\mathrm{q}, \mathrm{Me}), 27.7,85.2\left(\mathrm{q}, \mathrm{s}, \mathrm{CMe}_{3}\right), 31.6$ (s, CMe_{2}), $50.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 111.8(\mathrm{~d}, \mathrm{C}-6), 117.5(\mathrm{~d}, \mathrm{C}-8), 118.0(\mathrm{~s}, \mathrm{C}-3), 122.7$ (d, C-5), 123.0 (d, C-7), 140.4 ($\mathrm{s}, \mathrm{C}-2$), 142.3 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 148.5, 172.4 ($2 \mathrm{~s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3445 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 3050-2875(\mathrm{C}-\mathrm{H}), 1785,1740(\mathrm{C}=\mathrm{O}), 1635(\mathrm{C}=\mathrm{N}), 1290$ (C-O).

MS (EI, $80 \mathbf{e V}, 100{ }^{\circ} \mathbf{C}$): $m / z(\%)=315\left(2,\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}\right), 215(62), 200(100), 78(15), 57$ (27).

HRMS (EI, $80 \mathbf{e V}$) m / z calculated for $\left[\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}\right]: 315.15829$, found: 315.15733 .

7.3.5 Synthesis of novel peptidomimetics 107 and 108

Synthesis of Methyl N-(3-\{3-[(tert-Butoxycarbonyl)amino]imidazo[1,2-a]pyridin-2-yl\}-3-methylbutanoyl)-L-alaninate (107)

E 41 (IV 251)

Starting amounts:

$$
\begin{array}{ll}
0.074 \mathrm{~g} & (0.222 \mathrm{mmol}) 3-\{3-[(\text { tert-Butoxycarbonyl)amino]imidazo[1,2- } \\
& a] \text { pyridin-2-yl }\}-3 \text {-methylbutanoic acid (106) } \\
0.036 \mathrm{~g} & (0.26 \mathrm{mmol}) \mathrm{L}-\mathrm{Ala-OMe} \cdot \mathrm{HCl} \\
0.115 \mathrm{~g} & (0.26 \mathrm{mmol}) \mathrm{BOP} \\
0.1 \mathrm{ml} & (0.66 \mathrm{mmol}) \text { DIEA } \\
2 \mathrm{ml} & \mathrm{CH}_{2} \mathrm{Cl}_{2}, \text { dry }
\end{array}
$$

Procedure: 3-\{3-[(tert-Butoxycarbonyl)amino]imidazo[1,2-a]pyridin-2-yl\}-3-methylbutanoic acid (106), $\mathrm{H}-\mathrm{Ala}-\mathrm{OMe} \cdot \mathrm{HCl}$ and BOP were dissolved in dry dichloromethane, and then DIEA was added. The reaction mixture was stirred at room temperature over 10 days. Ethyl acetate and water were added and the layers were separated. The organic layer was successively washed with saturated NaHCO_{3} solution, brine and water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure.

Purification: Column chromatography on silica gel with hexane/ethyl acetate $1: 2$, then methanol/dichloromethane 1:1, then HPLC ($50 \% i$-propanol/hexane, $64 \mathrm{ml} / \mathrm{min}, 124$ bar) Yield: $89 \mathrm{mg}(97 \%)$ of $\mathbf{1 0 7}$ as colourless solid

Melting point: $70-72{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$-NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=1.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.54,1.55(2 \mathrm{~s}, 9 \mathrm{H}, 6 \mathrm{H}$, $\left.\mathrm{CMe}_{3}, \mathrm{Me}\right), 2.60-2.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.60(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.35(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.64$, $6.74(2 \mathrm{bs}, 1 \mathrm{H}, 1 \mathrm{H}, \mathrm{NH}), 6.82(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.11-7.24(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 7.52(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.86(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): $\delta=17.7,28.2$ ($2 \mathrm{q}, \mathrm{Me}, \mathrm{CMe} 3$), 36.0 ($\mathrm{s}, \mathrm{CMe}_{2}$), 47.7 (d, CH), $50.6\left(\mathrm{t}, \mathrm{CH}_{2}\right), 52.1(\mathrm{q}, \mathrm{OMe}), 81.3\left(\mathrm{~s}, \mathrm{CMe}_{3}\right), 112.0(\mathrm{~d}, \mathrm{C}-6), 117.0(\mathrm{~d}, \mathrm{C}-8), 122.9(\mathrm{~d}, \mathrm{C}-$ 5), 124.7 (d, C-7), 128.0 ($\mathrm{s}, \mathrm{C}-3$), 142.5 ($\mathrm{s}, \mathrm{C}-2$), 148.7 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 154.1, 171.4, 171.5 (3 s , $\mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3290 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 3055-2880(\mathrm{C}-\mathrm{H}), 1725(\mathrm{C}=\mathrm{O}), 1655(\mathrm{C}=\mathrm{N})$.

MS (EI, $\mathbf{8 0} \mathbf{e V}, 100{ }^{\circ} \mathbf{C}$): $m / z(\%)=418\left(6,[\mathrm{M}]^{+}\right), 345(15), 344$ (48), 318 (39), 260 (12), 242 (20), 223 (14), 216 (15), 215 (71), 214 (45), 201 (11), 200 (85), 188 (57), 175 (13), 174 (100), 173 (14), 158 (13), 147 (11), 145 (10), 121 (12), 79 (12), 78 (30), 57 (32).
HRMS (EI, $\mathbf{8 0} \mathbf{e V}$) m / z calculated for $\left[\mathrm{M}^{+}, \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5}\right]$: 418.22162, found: 418.22351.

Optical rotation: $[\alpha]_{D}^{20}=-27.4(\mathrm{c}=0.95, \mathrm{MeOH})$.

Synthesis of Methyl 3-(3-\{[N-(tert-Butoxycarbonyl)-L-alanyl]amino\}imidazo[1,2-a]pyridin-2-yl)propanoate (108)

Starting amounts:

0.026 g	$(0.12 \mathrm{mmol})$ Methyl 3-(3-Aminoimidazo[1,2-a]pyridin-2-
	yl)propanoate (101)
0.022 g	$(0.12 \mathrm{mmol})$ Boc-Ala-OH
0.042 g	$(0.15 \mathrm{mmol}) \mathrm{TFFH}$
0.06 ml	$(0.36 \mathrm{mmol})$ DIEA
3 ml	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dry

Procedure: Methyl 3-(3-aminoimidazo[1,2-a]pyridin-2-yl)propanoate (101), Boc-Ala-OH and DIEA were dissolved in dry dichloromethane, cooled in an ice bath, then TFFH was added. The temperature was allowed to rise to room temperature; the reaction mixture was stirred over 4 days. The reaction mixture was successively washed with 1 M HCl , saturated NaHCO_{3} solution and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure.

Purification: Column chromatography on silica gel with hexane/ethyl acetate $4: 1$, then methanol/dichloromethane 4:1, then HPLC ($50 \% i$-propanol/hexane, $64 \mathrm{ml} / \mathrm{min}, 124$ bar) Yield: 12 mg (26%) of $\mathbf{1 0 8}$ as pale yellow oil

108
${ }^{1} \mathbf{H}-$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.55(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 2.75-$ $2.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.91-2.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.60(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.43(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, CH), 5.15 (bs, $1 \mathrm{H}, \mathrm{NH}$), 6.75 (td, $J=6.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.13$ (ddd, $J=9.0,6.8,1.1 \mathrm{~Hz}, 1$ H, $7-\mathrm{H}$), $7.46(\mathrm{dt}, J=9.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.75(\mathrm{bs}, 1 \mathrm{H}$, NH).
${ }^{13} \mathbf{C}$-NMR (125.8 MHz, $\mathbf{C D C l}_{3}$): $\delta=18.2$ (q, Me), $\left.21.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 28.3(\mathrm{q}, \mathrm{CMe})_{3}\right), 33.0(\mathrm{t}$, CH_{2}), 38.6 ($\mathrm{s}, C \mathrm{Me}_{2}$), $50.6(\mathrm{~d}, \mathrm{CH}), 51.7(\mathrm{q}, \mathrm{OMe}), 80.3\left(\mathrm{~s}, C \mathrm{CMe}_{3}\right), 111.8(\mathrm{~d}, \mathrm{C}-6), 115.5(\mathrm{~s}$, C-3), 117.1 (d, C-8), 123.6 (d, C-5), 124.2 (d, C-7), 138.6 ($\mathrm{s}, \mathrm{C}-2$), 142.8 (s, C-8a), 155.8, 172.7, 174.6 ($3 \mathrm{~s}, \mathrm{C}=\mathrm{O}$).

IR (KBr): $v=3295 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}), 3055-2855(\mathrm{C}-\mathrm{H}), 1715(\mathrm{C}=\mathrm{O}), 1635(\mathrm{C}=\mathrm{N})$.

MS (EI, $\left.80 \mathbf{e V}, 150{ }^{\circ} \mathbf{C}\right): m / z(\%)=390\left(15,[\mathrm{M}]^{+}\right), 334(12), 290(10), 247(13), 246$ (86), 219 (56), 218 (18), 214 (16), 187 (10), 186 (20), 160 (38), 159 (14), 146 (15), 144 (11), 131
(15), 80 (11), 79 (42), 73 (19), 59 (29), 57 (100), 56 (11), 55 (16), 44 (59), 43 (42), 41 (45), 39 (11), 31 (11), 29 (24), 28 (35).

HRMS (EI, $\mathbf{8 0} \mathbf{e V}$) m/z calculated for [$\left.\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~N}_{4}\right]$: 390.19031, found: 390.191444.

Optical rotation: $[\alpha]_{D}^{20}=-25.6(\mathrm{c}=0.09, \mathrm{MeOH})$.

