A STARK DECELERATOR ON A CHIP

Am Fritz-Haber-Institut
der Max-Planck-Gesellschaft
entstandene und

VE|RI | IVSITI
TR|S+* *

im Fachbereich Physik
der Freien Universitat Berlin
eingereichte Dissertation
von

Samuel A. Meek

Berlin, 2010



Erstgutachter:

Zweitgutachter:

Disputation:

Prof. Dr. Gerard Meijer
Fritz-Haber-Institut der Max-Planck-Gesellschaft
Freie Universitat Berlin

Prof. Dr. Martin Wolf

Freie Universitat Berlin
Fritz-Haber-Institut der Max-Planck-Gesellschaft

12. Juli, 2010



KURZFASSUNG

Fin lithographisch gefertigter Chip, der 1254 mikroskopische Elektroden mit einem Mitten-
Abstand von 40 um besitzt, wird genutzt, um eine lineare Anordnung von Minima des elektri-
schen Feldes zu generieren in einem Abstand von 120 wm und eine Hohe von 25 pum iiber der
Oberflache. Hierzu werden sechs Spannungen benétigt, die extern angelegt werden. Fiir polare
Molekiile in einem tieffeld-suchenden Zustand sind diese Feldminima auch mechanische Mini-
ma und fungieren als Fallen. Werden die angelegten Spannungen in definierter Weise variiert,
bewegen sich die Feldminima langs der Struktur mit konstantem Abstand zur Oberfliche.

Experimente wurden mit CO im metastabilen a®II;, v = 0, J = 1 Zustand durchgefiihrt,
der eine starke lineare Stark-Verschiebung fiir tieffeld-suchende Komponenten aufweist. Er hat
eine Anregungsenergie von 6 eV, die einfachen Nachweis iiber einen Augerprozess erlaubt, und
eine natiirliche Lebensdauer von 2,6 ms, die fiir die hier beschriebenen Experimente ausreicht.
Metastabiles CO wird in einem gepulsten Molekularstrahl durch direkte Anregung mit einem
5 ns Laserpuls produziert. Die Molekiile durchlaufen einen Skimmer und erreichen den Chip
in einer Flugbahn parallel zur Oberfliche und senkrecht zur Elektrodenrichtung. Uber dem
Chip selbst werden sie durch die elektrischen Felder gefiihrt und verlassen ihn in Richtung des
Detektors.

Metastabile '2CO Molekiile wurden bei konstante Geschwindigkeiten zwischen 276 and
360 3 gefithrt und auch von 360 % zu Endgeschwindigkeiten zwischen 336 und 240 = ab-
gebremst. Wenn die Endgeschwindigkeit abnimmt, reduziert sich die Zahl der detektierten Mo-
lekiile. Wihrend dieser Effekt erwartet wird, ist die im Experiment beobachtete Anzahl aller-
dings weitaus geringer als vorausgesehen. In den Experimenten betréigt diese Reduktion fiir eine
Abbremsung von 360 auf 240 % 1:25 (relativ zu den bei 360 ' gefiihrten Molekiilen), wihrend
parallele Simulationsrechnungen der Trajektorien eine Reduktion von 1:6 erwarten lieflen.

Als wesentlicher Verlustmechanismus, der bei stirkerer Abbremsung deutlich wird, konnte
der nichtadiabatische Ubergang in Zustinde identifiziert werden, die nicht eingefangen sind.
Bei elektrischem Nullfeld ist das tieffeld-suchende Niveau des a3II;, v = 0, J = 1 Zustands von
12C160 streng mit einem Niveau entartet, das nur schwach mit dem elektrischen Feld wech-
selwirkt. Durchlaufen die Molekiile in den Mikrofallen nun einen Bereich nahe der Nullfeld-
Region, kann ein Ubergang in diesen Zustand erfolgen, so dass das Molekiil die Falle verlift.
Eine Moglichkeit, diesen Verlustkanal zu unterdriicken, bietet das 3C'0O Isotopolog. Da der
13C Kern einen Spin besitzt, weist 13C160 Hyperfeinstruktur auf, und im «®II;, v =0, J =1
Zustand resultiert eine minimale Aufspaltung von 50 MHz zwischen dem tieffeld-suchenden
und dem schwach beeinflussten Zustand, womit nichtadiabatische Uberginge weitgehend un-
terdriickt sind. Wihrend bei einer Abbremsung von 2C'0 von 312 % auf unter 240 = kein
Signal nachweisbar war, war fiir 3C160 eine Abbremsung auf 96 & problemlos beobachtbar,
eine Reduktion der kinetischen Energie von iiber 90%.

Ensembles von metastabilem C'0 wurden auch bis zum Stillstand iiber dem Chip abge-
bremst und fiir einen Zeitraum zwischen 0 und 2,5 ms gehalten. Die Zahl der nachgewiesenen
Molekiile nahm zwar fiir lingere Haltezeiten ab, aber die Verlustrate ist vereinbar mit der
natiirlichen Lebensdauer des metastabilen CO von 2,6 ms.

Weitere Experimente zeigen, daf nichtadiabatische Verluste in "2CO ebenfalls unterdriickt
werden, wenn zusétzlich ein magnetisches senkrecht zum elektrischen Feld angelegt wird.
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ABSTRACT

A lithographically-etched chip containing 1254 microscopic electrodes at a center-to-center spac-
ing of 40 um is used to produce an array of electric field strength minima 25 um above the
surface with a spacing between neighboring minima of 120 um. These minima are produced
by applying a series of six potentials to the electrodes. For polar molecules in low field seeking
states, the electric field minima are potential energy minima and thus act as traps. By varying
the potentials in a controlled manner, the field minima can be translated with respect to the
electrodes at a constant distance from the surface.

Experiments were performed with CO in the metastable a®Il;, v = 0, J = 1 state, which
has a strong, linear Stark shift with low field seeking components, a 6 eV internal energy that
enables easy detection through an Auger process, and a radiative lifetime of 2.6 ms, which is
long enough for the experiments here. CO molecules in a pulsed molecular beam are directly
excited to the metastable state with a 5 ns laser pulse. The metastable CO molecules pass
through a skimmer and arrive to the chip traveling parallel to the surface and perpendicular to
the electrodes. While above the chip, the molecules are manipulated by the electric fields and
subsequently ejected from the other side toward the detector.

Metastable 2CO molecules have been guided over the chip at constant velocities ranging
from 276 3 to 360 7 and decelerated from 360 = to final velocities ranging from 336 = to
240 7. As the final velocity decreases (i.e. the deceleration increases), the decelerated molecules
arrive at the detector successively later, and the number of decelerated molecules reaching the
detector also decreases. While this effect is expected, the fraction of molecules lost is much
greater than expected: in the experiment, the number of molecules decelerated from 360 7 to
240 7 is 2—15 of the number guided at 360 7, whereas trajectory simulations predict that this
ratio should be %.

Most of this excess loss at higher decelerations results from non-adiabatic transitions to
untrapped states. At zero electric field, the low field seeking level of the a®II;, v = 0, J = 1
state of 2C!00 is exactly degenerate with a level that is only weakly affected by the fields. As
the molecules pass near the zero field region at the center of a microtrap, they can transition
to this level, after which they are lost from the trap. One way to avoid this loss channel is
to use 13C10 instead of 2C'0: because the C nucleus has a non-zero spin, *C'%0 has
hyperfine structure, and in the a3II;, v = 0, J = 1 state, this hyperfine structure results in
a 50 MHz minimum splitting between the low field seeking levels and the levels unaffected by
electric fields. While deceleration of 2C160 from 312 % to velocities below 240 % could not be
observed, 3C160 is easily decelerated to 96 &, corresponding to a removal of over 90% of the
molecules’ kinetic energy.

Ensembles of metastable 13C'0O molecules have been decelerated to zero velocity above
the chip and held for variable durations ranging from 0 ms to 2.5 ms. It is observed that
fewer molecules are detected after longer trapping times on the chip, but the rate of this loss is
consistent with the 2.6 ms radiative lifetime of the metastable CO molecules.

Further experiments demonstrate that the Zeeman splitting due to an external magnetic
field perpendicular to the electric field is a valid and more general way to prevent non-adiabatic
losses in 2CO.
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Chapter 1

Cold molecules and microchips

Producing cold molecules and gaining complete control over both their internal state and
translational motion has become a hot field of research with applications ranging from
high resolution spectroscopy to studying low energy collisions. Among the many devices
that have been constructed to produce cold molecules, one that has been particularly
successful in producing sub-Kelvin samples of polar molecules is the Stark decelerator
[1]. These decelerators operate on the principle that polar molecules in certain states
have a higher potential energy in an electric field than in a field free region. If molecules
in these so-called low field seeking states move from a region of low electric field strength
to a region of higher electric field strength, they will lose kinetic energy. A molecular beam
produced in a pulsed supersonic expansion provides the molecules to be decelerated: such
a beam contains a packet of molecules that starts at the same position at the same time.
Although the molecules are traveling fairly fast (several hundred meters per second), they
are simultaneously cold, in the sense that all molecules are traveling at roughly the same
velocity. The kinetic energy that the molecules lose when traveling from the low field
to the high field region is not sufficient to stop molecules in even the slowest molecular
beam. If the electric field configuration is switched, however, when the molecules reach
the high field region such that they are in a low field region again, the molecules can once
more climb from a low field region to a high field region, and more kinetic energy can
be removed. If this process is repeated about a hundred times, the entire kinetic energy
of the molecules can be removed, and the molecules can be loaded into an electrostatic
trap that confines the molecules in three dimensions around an electric field strength
minimum [2].

The Stark decelerators used thus far to trap cold molecules have been relatively large:
the largest of these are over one meter long [3], and the smallest devices constructed that
are capable of trapping molecules are still over 40 cm long [2]. The smaller of these two
decelerators utilizes pairs of 3 mm diameter rods separated by 1.6 mm, and the molecular
packets it decelerates have a volume of a few cubic millimeters [1]. These dimensions
are partly a consequence of the techniques used to build and assemble the decelerator:
since the electrodes are fashioned using lathes and assembled with human hands, there
are practical lower limits to the size at which they can be built. For producing small
samples of cold trapped molecules, though, such large device dimensions are not strictly
necessary. A decelerator constructed to capture molecules in a cylindrical volume 20 pm
in diameter and 4 mm long and in a 4 *-wide velocity distribution along each axis would
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2 Cold molecules and microchips

have a position-velocity phase space volume of 1071 ?—; If this decelerator is loaded

using a standard pulsed supersonic molecular beam, typically containing 10! trappable
molecules per cubic centimeter and having a full-width-half-maximum velocity spread of
50 %, corresponding to a peak phase space density of 1012 ;—36), a hundred molecules could
be simultaneously decelerated.

A 10 um-scale Stark decelerator has certain advantages over the larger models. For
one, the electric potentials necessary to produce the same electric field strength are much
lower: instead of applying 10 kV to the electrodes, only 100 V is necessary. Also, because
the electric field strength transitions from low field strength to high field strength over
a very short distance, the electric field gradients and thus the forces on the molecules
are much higher than in the traditional decelerators. With these stronger forces, such a
miniature decelerator can bring molecules to a standstill in a few centimeters instead of
a few meters. A number of other benefits offered by such a decelerator will be described
later. While constructing a Stark decelerator this small is impractical using the con-
struction techniques used to build larger models, modern lithographic techniques enable
fabrication of planar structures at this length scale [4].

This thesis describes a miniature Stark decelerator based on an planar array of 1254
10 um-wide and 4 mm long electrodes arranged with a center-to-center spacing of 40 um.
Every sixth electrode in the array is connected together, and by applying a specific set of
potentials to the six sets of electrodes, an array of 418 two-dimensional local electric field
minima (one for every third electrode) can be produced about 25 wm above the chip’s
surface. By changing the six potentials applied to the electrodes, the electric field minima
can be shifted parallel to the surface of the chip while retaining the same shape. Since low
field seeking molecules are attracted to regions of low electric fields, the minima serve as
movable molecular traps. These traps are initially translated at a velocity that matches
that of the molecules in the beam. After the molecules are captured in the moving traps,
the traps are decelerated, and if this deceleration is gradual enough, the molecules will
remain in the traps and will themselves be decelerated. If the traps are brought to a
standstill, the molecules will be trapped above the chip.

The following sections will motivate this research and summarize the work that has
been done so far. Section 1.1 will list some of the applications for cold molecules, both
those that have been experimentally demonstrated and those that have so far only been
proposed. The various methods for producing cold molecules that have been shown in
experiments will be described in section 1.2. Finally, in section 1.3, the subject of minia-
turization will be addressed, particularly why making devices smaller has advantages
beyond just making them more compact.

1.1 Applications of Cold Molecules

Once the external motions of the molecules are completely under control, many experi-
ments can be performed with these molecules that were impractical or impossible before.
Particularly, experiments that benefit from long interaction times are improved when the
molecules being examined are either slow enough that they require much more time to
pass through the interaction region or are trapped and thus prevented from leaving. One
such class of experiments are those involving high resolution spectroscopy: since time

SAMUEL A. MEEK, A Stark Decelerator on a Chip



1.1 Applications of Cold Molecules 3

and energy are related by an uncertainty relation given by

AEAL> D (1.1)
2

measuring an energy with a very high resolution requires allowing a system to evolve
unperturbed for a long period of time.

High resolution spectroscopy using trapped fundamental particles and atoms has al-
ready enabled the measurement of fundamental constants with unprecedented precision.
Trapped electrons, for example, have been used to measure the electron spin g-factor to
better than one part in 10 [5], and ultracold cesium atoms that are trapped and subse-
quently ejected upward have become the basis for official time standards [6]. With cold
molecules, several new measurements will become possible. It is expected that the parity-
violating weak nuclear force will induce a small difference in the energy level spacings
between the two enantiomers of a chiral molecule, and experiments are already under-
way to measure such differences [7]. Cold molecules also have the potential to determine
whether electrons have a non-zero electric dipole moment (EDM), which would be a vio-
lation of time reversal symmetry and an indicator for physics beyond the Standard Model
[8]. The most sensitive tests so far, carried out using a beam of thallium atoms, constrain
the magnitude of this dipole moment to be less than 1.6-1072" e-cm [9], and it is expected
that heavy diatomic molecules, such as YbF, are a thousand times more sensitive to an
electron EDM, since they can be much more strongly polarized in an electric field [8].
Cold molecules also hold promise for measuring possible time variation of fundamental
constants such as the fine structure constant o and the proton to electron mass ratio —2
Since energy splittings due to nuclear degrees of freedom (such as vibration and rotatlon)
have different dependencies on « and 2 than energy splittings due to electronic degrees
of freedom (such as fine and hyperﬁne sphttmgs) splittings between nearly-degenerate
states with very different quantum numbers (e.g. nearly-degenerate states that have dif-
ferent rotational quantum numbers in different spin-orbit manifolds) are very sensitive to
small changes in these constants [10, 11]. By measuring these splittings with high preci-
sion over a period of several years, upper limits can be placed on the time variation of «
and 2. The experiments using molecules in the works cited above were carried out using
fast molecular beams, and in each of these experiments, the sensitivity could potentially
be improved if the molecules were slowed or even trapped (although it is not clear whether
high resolution spectroscopy in traps is feasible [12]). In a proof-of-principle experiment,
high resolution spectroscopy was carried out on Stark-decelerated ND3 molecules, and it
was shown that the resolution could be significantly enhanced over that obtained using
a fast molecular beam [13].

Confining molecules in a trap also enables the measurement of the lifetimes of long-
lived excited states. Once Paul traps for ions became available, for example, lifetimes
of long-lived ionic states on the order of tens of seconds could be measured [14]. While
excited states of molecules with short lifetimes can be measured in a fast beam, longer
lived states are somewhat more difficult to measure, since the fraction of the molecules
that decay during the interaction time is small and also because the measurements must
be carried out at two different positions in the molecular beam, posing normalization
issues. By trapping the molecules, the interaction times can be much longer, and the
measurements are always done at the same position. Several such experiments have
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4 Cold molecules and microchips

already been carried out using trapped molecules. Using Stark decelerated molecules
confined in an electrostatic quadrupole trap, the lifetime of the X?I3/, v =1, J = 3/2
state of OH was measured to be 58.0 + 1.0 ms [15], the lifetime of the a®*II;, v =0, J =1
state of CO was found to be 2.63 £0.03 ms [16], and the lifetime of the a'A, v = 0, J = 2
state of NH was constrained to be longer than 2.7 s [17]. More recently, the lifetime
of the X3¥ ", v = 1, N = 0 state of NH was measured to be 37 ms using a magnetic
trap loaded by buffer gas cooling [18]. It should be noted that the lifetime of the a®IIy,
v =0, J = 1 state of CO was previously measured in a fast molecular beam, using
detectors 1.0 m and 1.8 m away from the source, to have a lifetime of 3.8 £ 0.5 ms [19].
While this measurement is almost consistent with the newer result, the large uncertainty
demonstrates the difficulty of measuring a lifetime of even a few milliseconds in a beam.

Some proposals suggest that single trapped polar molecules could be used as qubits
in a quantum computer. A single molecule could be trapped at each antinode of an
optical standing wave and an inhomogeneous electric field could be applied such that each
molecule sees a slightly different electric field strength and can thereby be individually
addressed [20]. In addition to the externally-applied electric field, a molecule would also
see the electric field produced by the electric dipole moment of neighboring molecules,
so the parallel/antiparallel energy splitting for each molecule would be shifted slightly,
depending on the state of its neighbors. This arrangement can be used as a conditional-
NOT (CNOT) gate, since radio frequency radiation applied at the shifted frequency
would only change the orientation of the molecule if its neighbors are in one particular
orientation. This scheme would work well on polar molecules due to the large dipole-
dipole interaction: the energy levels of two molecules with an effective electric dipole
moment of one Debye separated by 532 nm (the spacing between antinodes in a standing
wave produced by a 1064 nm laser) will be shifted by 1 kHz as a result of the neighboring
molecule. In contrast, the energy levels of two atoms with a magnetic dipole moment
of one Bohr magneton separated by the same distance will be shifted less than 0.1 Hz.
Single polar molecules could also be trapped in microscopic electrostatic traps coupled to
superconducting microwave stripline resonators [21]. Pairs of trapped molecules would
be selectively coupled to each other by changing the electric field strength in the two
traps containing these molecules and by applying a resonant microwave pulse [21].

Slowing molecules also enables the study of collisions in an energy regime where only
a few partial waves contribute. In other words, since angular momenta must be quantized
in units of A, the angular momentum of the two collision partners in the center-of-mass
frame at low collision energies is small enough that only a few discrete values are possible.
Reducing the number of partial waves, limiting the initial molecular state to a single
quantum state, and state-selectively detecting the molecules after the collision enables
detailed studies of collision mechanisms. Collisions between ground state CO and helium
at energies below 4 cm™!, for example, are expected to show sharp resonances in the
elastic cross section due to contributions of individual partial waves [22]. At very low
energies, only the zero angular momentum partial wave contributes, and the collision
cross section for neutral particles becomes inversely proportional to relative velocity [23].
First experiments have been carried out in which low energy collisions between OH and
xenon [24], helium, deuterium molecules [25], or argon [26] have been studied.

SAMUEL A. MEEK, A Stark Decelerator on a Chip



1.2 Methods for Producing Cold Molecules )

1.2 Methods for Producing Cold Molecules

Several methods have been developed starting in the mid 1990s for producing samples of
translationally cold molecules. The first method developed to successfully trap neutral
molecules was buffer gas cooling [27]. This method operates on the principle of thermal-
izing molecules with a cold environment. Although directly cooling gas-phase molecules
to temperatures near 1 K is somewhat difficult since the molecules will stick to most solid
surfaces at this temperature, the molecules can transfer their heat to the walls through a
helium buffer gas. Since helium has a significant vapor pressure, even below 1 K, sufficient
quantities of the gas can be available to facilitate this heat exchange. The molecules can
be cooled in the presence of a magnetic quadrupole field so that the molecules in dia-
magnetic states will be trapped near the magnetic field minimum as the collisions cool
them.

Another class of techniques for producing cold molecules makes use of supersonic
molecular beams: although the molecules in such beams have a high velocity in the
laboratory frame, their velocity distribution is relatively narrow. Using non-dissipative
forces, a significant fraction of the molecules can be decelerated to a low velocity in the
laboratory frame. The earliest experiments in this class used the force experience by
neutral polar molecules in an inhomogeneous electric field as a result of the Stark effect.
Stark deceleration was first demonstrated for decelerating metastable CO [1] and decel-
erating and trapping NDj3 [2] but has since been used to decelerate or trap many other
molecules [28]. Following the example set by Stark decelerators, other devices were con-
structed to make use of other forces to decelerate molecules: optical Stark decelerators
have been used to slow molecules using the force in an optical standing wave due to the
AC Stark effect [29], Zeeman decelerators have slowed diamagnetic atoms and molecules
in an inhomogeneous magnetic field with forces due to the Zeeman effect [30, 31], and
anion decelerators have shown, in a proof of principle experiment using [~, that molecular
anions could be slowed in an electrostatic potential and that the extra electron could sub-
sequently be photodetached, resulting in slow neutral molecules [32]. Direct deceleration
is not the only way that the narrow velocity distribution of a supersonic molecular beam
can be used to produce cold molecules, though. One type of device uses rotating arms
to simply move the nozzle backwards at a velocity comparable to that of the molecular
beam, eliminating the need for a deceleration force [33, 34]. Slow molecules could also
be produced by scattering the molecules in supersonic beam from a paddle that recedes
from the beam source: already, a helium beam was slowed by 250 %' using this approach
[35].

The narrow velocity distribution in a molecular beam can also be used in conjunction
with collisions, chemical reactions, or photodissociation to produce cold molecules. This
is done by arranging the system such that one of the collision partners, reaction products,
or dissociation fragments carries most of the momentum of the system away, leaving the
other particle nearly at rest. Slowing of molecules with collisions has been shown with a
pair of crossed molecular beams [36]. Since the kinetic energy must be conserved in an
elastic collision, the particle carrying away the momentum of the system must also carry
away the initial kinetic energy of both particles, but this condition can often be satisfied
by choosing the proper angle between the two beams. Production of slow NO molecules
has also been demonstrated by photodissociating NOs with a laser slightly above the
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6 Cold molecules and microchips

dissociation threshold [37, 38]. If the oxygen fragment dissociates in the direction of
the molecular beam, the NO fragment will recoil in the opposite direction, and its final
velocity in the laboratory frame can be much lower than the velocity of the parent NO,,
or it can even be at rest. The direction of the dissociation can be preferentially aligned
along the molecular beam axis by choosing the polarization of the dissociation laser. Slow
KBr molecules have been produced in the reaction of HBr and potassium atoms from two
counterpropagating beams [39]. After the reaction, the hydrogen atom can carry away
the initial momentum and absorbs both the initial kinetic energy and the reaction energy
into its final kinetic energy. All of these techniques in principle rely on the narrow velocity
distribution of molecular beam, since they only produce slow molecules if the collision
partners or parent molecules have the correct velocities before the collision, reaction, or
dissociation.

It is also possible to produce cold molecules by simply extracting the low energy
molecules already present in any thermal distribution. Even in a monoatomic gas with
a temperature of 300 K, one in 10* particles has an energy less than kp-1 K, and if the
temperature of the gas is reduced to 77 K, this fraction increases to one in 103. The main
challenge for producing cold molecules in this manner is separating the cold fraction from
the rest before they undergo collisions, since after the molecules have collided, a different
subset of molecules is cold. One solution is to inject the molecules into vacuum in an
effusive molecular beam (i.e. a beam with a low enough density such that the molecules do
not experience collisions) and into a curved electrostatic [40] or magnetostatic [41] guide.
The guide serves two purposes: first, it selects the cold fraction of molecules by guiding
the slow fraction around the bend while allowing the faster molecules to escape over the
barrier, and second, it spatially separates the cold fraction from the hot fraction before
the molecules in the two groups can collide. This method can produce a continuous
stream of slow molecules, but the molecules are only translationally slow: since many
different rotational and vibrational states can be guided if they are slow enough, the
temperature of the internal rotational and vibrational degrees of freedom is often much
higher than the translational temperature [42].

One final approach to producing cold molecules is to first cool the constituent atoms
using standard atom cooling techniques and associate the cold atoms in a controlled
manner. So far, the most successful technique for converting a pair of free atoms into
a strongly bound diatomic molecule requires two steps. First, the atoms are associated
using a magnetic Feshbach resonance to form a molecule in a highly-excited vibrational
state. After being associated, the molecule is transferred into a more deeply bound state
using stimulated Raman adiabatic passage (STIRAP). This technique has been used to
produce KRb molecules in the rovibronic ground state [43], deeply-bound Css molecules
[44], and Rby molecules in the triplet rovibrational ground state [45]. It is also possible to
radiatively transfer a pair of atoms from an unbound state to a deeply-bound molecular
state. In one instance, LiCs molecules were produced by exciting them from an unbound
state to an electronically-excited bound state, after which the molecule decayed with 23%
probability to the vibronic ground state [46]. Unfortunately, only diatomic molecules
consisting of atoms that can be laser cooled can be produced in this way.
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1.3 Miniaturization

While cold molecules have only been an experimental reality for a little over a decade, cold
atoms have now been available for nearly 25 years already [47]. Many of the achievements
of the cold atom community, such as measuring atomic transitions with high precision
[48], studying low energy collisions [49], and Bose-Einstein condensation [50], have more
recently been pursued in cold molecule research. One field that developed out of cold
atom research is the production of ultracold atoms in miniaturized magnetic traps. Cre-
ating such traps is not merely an effort to make ultracold atom production more compact:
in fact, their development was initially motivated by the desire to create strong confine-
ment, which brings quantum degeneracy to higher temperatures [51]. The short distances
possible due to the microscopic trap size also permits coupling through short range forces,
which can be used to detect atoms in strongly coupled optical cavities [52, 53] and which
makes the atoms sensitive to small variations in the current carrying wires that provide
the trapping potential [51]. Since neighboring microtraps can be very closely spaced,
quantum interference between atoms stored in these traps can be more readily observed
[54]. Perhaps most importantly, the microtraps can be built on a planar substrate using
lithographic techniques, making it possible to integrate many different devices onto the
same chip.

Extending this research to polar molecules, trapping them above the chip using electric
instead of magnetic fields, offers new advantages. Due to the additional vibrational
and rotational degrees of freedom present in molecules, it is possible to couple them to
photons over a wide range of frequencies. In particular, many molecular transitions, such
as those between A-doublet or rotational levels, can be driven by microwave radiation.
Polar molecules also couple to each other with a long range dipole-dipole interaction. A
pair of molecules separated by a distance on the order of 1 pum can have a measurable
energetic splitting between an aligned and an antialigned state that can be driven by radio
frequency radiation, and such a transition can form the basis for a gate in a quantum
computer, as discussed earlier [20, 21]. Molecules confined in microscopic traps would,
like atoms, reach quantum degeneracy at much higher temperatures than in macroscopic
traps, but as a result of the dipole-dipole interaction, the stability of a molecular Bose-
Einstein condensate should depend on the geometry of the trap [55]. The effect of a
magnetic dipole-dipole interaction has recently been observed in a BEC of *2Cr atoms
[56].

The manipulation of polar molecules above a chip with electric fields holds great
promise but also faces major challenges. Likely the biggest challenge is the production
of cold, dense samples of gas-phase molecules: laser cooling, which has been an essential
process for loading atom chips, remains unrealized for molecules, despite several propos-
als of possible implementations [57, 58, 59|, although first promising results have been
obtained [60]. Detecting molecules is also much more difficult than detecting atoms:
while atoms trapped above a chip can be efficiently detected either through absorption
or laser induced fluorescence, since a single atom can scatter as many as 107 photons per
second [61], molecules generally can only scatter one photon before decaying to another
vibrational or rotational state, and as a result, such detection methods are much less
sensitive for molecules.

The molecule chip presented in this thesis offers a solution to both of these difficulties.
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Molecules are loaded onto the chip from a pulsed supersonic molecular beam that, while
fast in the lab frame, is cold in a frame that moves with the packet of molecules. Since
the microtraps can be continuously translated over the chip, they can initially move at
the same velocity as the incoming packet of molecules and gradually bring the molecules
to a standstill. At the end of the experiment, the trapped molecules are reaccelerated
and ejected from the chip. Doing so enables sensitive detection techniques developed for
molecules in a free beam, such as resonance-enhanced multiphoton ionization (REMPI)
or detection using Auger processes for molecules in energetic metastable states, to be
exploited. The ability to trap molecules on a chip and subsequently detect them is an
important first step toward the production of a molecular laboratory on a chip.
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Chapter 2

Manipulation of Polar Molecules
Using Electric Fields

In 1913, Johannes Stark observed that emission lines of hydrogen and helium atoms split
into multiple components with slightly different wavelengths when the atoms are in an
electric field [62]. This observation that the energy levels in a quantum system shift when
an external electric field is applied is thus referred to as the Stark effect. Based on Stark’s
observations, one can devise a thought experiment: first, a particle that experiences a
Stark shift in an electric field is excited in a field free region, and then flies into a region
with a strong electric field. We assume that it decays to the original state while in this
region, emitting a photon that, due to the Stark shift, is shifted in energy relative to the
photon that it absorbed. For the purpose of this thought experiment, it is assumed that
the emitted photon is more energetic than the photon initially absorbed. The particle
then continues flying and returns to a field free region. Since the photon emitted was more
energetic than the photon absorbed, and the particle both starts and ends the experiment
in a field free region, it might naively seem that energy was created in this process, but
in fact, this “extra” energy must have been extracted from the particle’s kinetic energy.
Either in the process of traveling from the low field region to the high field region in
the excited state or in traveling from the high field region to the low field region in the
ground state (or possibly in both processes), the molecule was decelerated. It becomes
clear from this that the Stark effect can be used to create a mechanical potential.

When Stark first observed the splitting of spectral lines in an electric field, he was
ill-equipped to explain the effect quantitatively. For one thing, the Schrodinger equation
would not be written for another 13 years [63], and even the Bohr model of the hydrogen
atom had only just been published a few months earlier [64]. Based on the informa-
tion available at the time, it could not be determined how much each of the two levels
connected by an emission line was shifted by the electric field, as only the difference of
the shifts was observed. Later, using the solution of the hydrogenic wavefunction that
came with the development of quantum mechanics, the observations of the Stark shift in
hydrogen could be readily explained.

For polar molecules, i.e. molecules that have an electric dipole moment along a fixed
axis relative to the nuclei of the molecule, the Stark shift can be understood largely in
terms of an electric dipole of a well defined magnitude in an electric field. Classically, the
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potential energy given by a dipole in a field is
U=—ji-E=—|fi||E|cost (2.1)

where i is the electric dipole vector and E is the electric field vector. Classically, U
can vary from —|||E| to |ji||E|, but quantum mechanically, cosf can only take discrete
values. Since |ji| is constant, it follows that the potential energy is proportional to |E |.

This is only a rough approximation: in reality, many details of the rotational, fine,
and hyperfine structure of the molecule come into play. Such details, particularly those
applicable to the a®II state of CO used in the experiments, will be discussed at length
in chapter 4, and in later sections of this chapter, a somewhat better model will be
described. It is generally assumed, however, that U is only a function of |E | and is not
affected by the direction of the vector. If this is the case, it is possible to create electric
field distributions that confine the molecules to a small region in free space. A framework
for describing these field distributions is outlined in section 2.1. This ability to confine
the molecules in free space forms the basis of the deceleration and trapping presented in
subsequent chapters. Using the Stark shift as a mechanical potential requires that, as E
changes in time (either as a result of the motion of the molecule or as a result of a time
dependence of the applied potential), the molecules do not transition to another quantum
state where cos ) takes a different value. The conditions under which this assumption is
valid will be examined in section 2.2.

2.1 Fields for Manipulating Molecules

In most cases, the states of molecules that have a Stark shift in an electric field can
be divided into two classes: those that increase in energy as a function of electric field
strength and those that decrease in energy. While there are states where the slope of the
Stark shift changes sign, these are generally not considered except if the electric fields
are limited to a region where the energy is monotonic. These two classes of states are
described as low field seeking and high field seeking, respectively: since the force on a
molecule always points toward regions of lower energy, molecules in states with increasing
energy in a field will be attracted to regions of lower field and molecules in states with
decreasing energy in a field will be attracted to regions of higher field. To confine the
molecules to a specific region, it is necessary to create a local electric field strength
minimum for low field seeking levels or a local maximum for high field seeking levels.
A static electric field strength maximum, however, is not compatible with Maxwell’s
equations, so it is not possible to build a static trap for molecules in high field seeking
states [65]. This is rather unfortunate: because the absolute ground state is always high
field seeking, transitions from this state are energetically impossible if the surroundings
have a low enough temperature. While a minimum of the electric field strength is possible,
allowing the trapping of molecules in a low field seeking state, molecules in this state can
always undergo transitions to a high field seeking state and become lost from the trap.

The electric fields that can be created to manipulate molecules cannot be arbitrar-
ily chosen; their form must obey Maxwell’s equations. In particular, they must obey
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2.1 Fields for Manipulating Molecules 11

Faraday’s Law and Gauss’s Law:

. OB
VxE = —= (2.2)
L (2.3)

€0

=
I

V-

For the case of a quasi-static field (i.e. the timescale of changes is much longer than the
typical length scale divided by the speed of light) in a region free of electric charges, both
of these equations must be zero. The first equation being zero implies that the electric
field E can be written as a gradient of a potential, i.e.

E=-VV (2.4)
Combining equations (2.3) and (2.4) results in Laplace’s equation

o*V. OV 9*V
+ =5+

—
viv= ox?  Oy*> 022

—0 (2.5)

Any electric potential distribution V' (x,y, 2) satisfying equation (2.5) can be produced in
free space using a static distribution of charge.

2.1.1 Two Dimensional Multipole Fields

This work deals with electric field distributions and potentials that are two dimensional.
While the physical system used in the experiments is, of course, three dimensional, the
electrodes used to produce the electric fields change little along one direction, so the
electric potential is mostly independent of this coordinate. Laplace’s equation (equation
(2.5)) can be written in two-dimensional polar coordinates as

= 10,0V 1 0%V
2

vV r8r<r8r>+r28¢2 0 (2:6)

This partial differential equation can be solved using a separation of variables ansatz: by

choosing R and ¢ such that

V(r,¢) = R(r)®(¢) (2.7)
the left side of the equation can be rewritten as the sum of a term depending only on r
and a term depending only on ¢.

rd g/ dRy 1d%®
R i — =0 2.8
Rdr (T d7~> d dg? (28)

As a result, both terms must be independent of both r and ¢. The first term is assigned
the value n? and the second term —n?, resulting in the solutions

AT+ By n#0
R(r) = { Ag+ Bylnr  n=0 (2.9)
O(¢) = C,, cos(ng + 6,,) (2.10)
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12 Manipulation of Polar Molecules Using Electric Fields

Solutions where B,, # 0 diverge at r = 0 and represent the potential produced by a charge
distribution near the origin at points farther away from the origin. It is more relevant
to consider only A, terms, which represent potentials produced by charges far away at a
charge-free region near the origin. Because equation (2.6) is linear, linear combinations
of solutions to the differential equation are also solutions. A complete solution for V' can
then be written as o
V=A+ Z An! (L>n cos(neg + 0,) (2.11)
n=1 "o
Here, each A,, has been redefined so as to absorb the C), coefficient and incorporate the
typical length scale parameter rq. A factor of n has also been included in A,, to simplify
subsequent equations, hence the factor of n=! in equation (2.11). Because each term can
be negated by adding 7 to d,, A, is assumed, without loss of generality, to always be
positive.

The terms of equation (2.11) are named based on the minimum number of distinct
charges needed to produce them as a leading order term. For example, because the term
where n = 1 oscillates once as a function of ¢, creating it as a leading order term requires
at least two charges: a positive charge where ¢ + 0; = 0 and a negative charge where
¢+ 61 = m. As a result, the n = 1 term is referred to as the “dipole” term. Producing
the n = 2 term requires two positive and two negative charges, and thus is called the
“quadrupole” term, and n = 3 and n = 4 are referred to as “hexapole” and “octopole”
terms, respectively. In a charge-free region around the origin, the potential can always
be expanded in terms of these multipole components.

The electric field resulting from this potential in equation (2.11) is given by

R . e An n—1 R ) “
E=-VV = Z . <rio> (—cos(ng + 8,)7 + sin(ne + 6,,)p) (2.12)

If only a single A,, is non-zero, the strength of the electric field is given by

\E|:w3-ﬁzﬂ(i)" 1 (2.13)
To \To

For molecules in low field seeking states, this creates a restoring force toward r = 0,
since the potential energy is a monotonically-increasing function of electric field strength.
If n = 2, the two level system molecule sees a mechanical potential proportional to 72
near r = 0 and proportional to r farther away. For small displacements from the origin,
this potential is harmonic, which implies, for the molecules moving in this potential, a
well-defined oscillation frequency independent of amplitude and separability of motions in
two orthogonal Cartesian directions (e.g. in the x and y coordinates). Farther away from
r = 0 where the mechanical potential is linear, the frequency is no longer independent of
oscillation amplitude, and the x and y motions become coupled. To achieve a harmonic
potential farther away from the origin, a potential with n = 3 is needed, but this results
in a potential that is proportional to r* at small .

Two dimensional multipole potentials have been frequently applied to transverse fo-
cusing of beams of molecules, but this only works optimally when the mechanical potential
produced is harmonic, since only then is the time required for half an oscillation indepen-
dent of the amplitude of the oscillation. If the splitting A is very large, the mechanical
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2.2 The Adiabatic Theorem 13

potential remains quadratic in r even for large fields, so it is possible for such molecular
states to create an accurate harmonic potential using a quadrupole (n = 2) electric poten-
tial. Such a quadrupole potential was used to focus a low field seeking state of ammonia
for which A is 23.87 GHz (a rather large value) into a microwave cavity, producing the
population inversion needed to power a maser [66]. For states in which A is very small,
the anharmonicity of the mechanical potential produced by a hexapole (n = 3) electric
potential near » = 0 can be neglected, so for low field seeking states with a highly linear
Stark shift, a hexapole is an efficient focuser [67].

In certain cases, a combination of multiple multipole components creates a useful field
configuration not possible with a single component. One case of particular interest is the
combination of a dipole (n = 1) and a hexapole (n = 3) field. If only these two terms are
non-zero, the electric field strength is given by

5= 2012 (D) o204 -+ (2(1))

A A 2 /A
~ _1 + _3<L> COS(QQS + 53 — 51) lf r << To !
Ag

To To \To

(2.14)

At r = 0, the field strength is f—ol, in the directions where ¢ = 3(6; — d3) or ¢ =
%((51 — 03) + 7, the field strength increases quadratically in r, and in the directions where

= 3(6, — d3) —1—5 or ¢ = 3(6, — d3) + 2, the field decreases quadratically in r. If
the field strength T is large enough that the Stark shift is linear, then this electric field
distribution results in a saddle-shaped mechanical potential, focusing molecules in one
direction and defocusing them in the perpendicular direction. This is true regardless
whether the molecule is in a low field seeking state or a high field seeking state. While
the molecules would eventually be lost along the direction where they are defocused, if the
field is switched such that the defocusing direction becomes the focusing direction (and
vice versa), the molecules that are in the process of being defocused will be refocused. The
potential in a given direction is quadratic, so the focusing or defocusing force increases
proportionally to r. Because of this, the molecules that were defocused in the first part of
the switching cycle and have moved to a position with larger r are focused more strongly
in the second part of the switching cycle. Similarly, the molecules that were focused
in the first part of the switching cycle have moved to a position with smaller r and are
defocused less strongly in the second part of the switching cycle. For the correct switching
frequency, the result is a net restoring force toward » = 0 for all molecules in the trap.
This principle has been used in the Paul trap for ions [68] and for molecules with a linear
Stark shift in an inhomogeneous electric field [69].

2.2 The Adiabatic Theorem

The adiabatic theorem states that, if the states of a system are enumerated in order of
increasing (or decreasing) energy, as long as the Hamiltonian changes sufficiently slowly,
a system initially in the nth eigenstate will remain in the nth instantaneous eigenstate.

The task of understanding how a quantum mechanical system evolves under a chang-
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14 Manipulation of Polar Molecules Using Electric Fields

ing Hamiltonian begins with the time-dependent Schrodinger equation

9 )
m‘a—% — A1) (2.15)
Assume [¢) has the form

) (1) = Y calt)dn) (t)ei o B )" (2.16)

n

where ¢, is a complex coefficient and E,, and |¢,) are the nth instantaneous eigenvalue
and eigenvector of H(t), respectively, i.e.

H(1)|n)(t) = En(t)]n)(t). (2.17)

Since the eigenvectors |¢,) form a complete basis set, any |¢) can be written in this form.
Substituting |¢) from equation (2.16) into (2.15) results in the equation

Z(dcn|¢”> Lo 5¢n>>6 3 Jo B dt’ _ (2.18)

ot
En(t )dt’(

By multiplying on the left by e~ i Jo ®m|, the first-order differential equation for

¢, can be reduced to

de 8¢n wmn ) .
= ch<¢m > —0 (2.19)
where .
1
bonlt) = 3 | 1En®) = Ealt)] (2:20)
0
The factor <gz§m 8§)t"> can be calculated by taking a time derivative of equation (2.17)
and multiply on the left by (¢,,].
dpn\ _ dE, Odn,
(6] 2 ¢n> n(m| S ) = 0 + <¢m =) (2.21)
If the eigensystem is non-degenerate (i.e. FE, = E, — n m), <gz5m‘agt“> can be

computed as

<¢m a¢n> <¢ | E"gb >E dt (2‘22)

and equation (2.19) can be reformulated in terms of @
Cl;—?+c < a¢m> Z <¢m}5t‘¢"> fmnl®) = (2.23)

It can be quickly shown that <¢m‘ 8¢>m> must be pure imaginary
0 0¢m 3¢m
<¢m 8¢m> <¢m Oy (2.21)
P
- 2§R<¢m ot > =0

SAMUEL A. MEEK, A Stark Decelerator on a Chip



2.2 The Adiabatic Theorem 15

As a result, the second term of equation (2.23) only represents a time-dependent change of
the complex phase of ¢,,,. By instead attributing any possible phase shift to the individual
|pm) (such a shift would not affect the orthonormality of the basis set, nor does it change
equation (2.17)), this term can be ignored.

If the Hamiltonian evolves from an initial to a final form over a time 7', the final
wavefunction can be found by rewriting equation (2.23) as an integral equation

en(T) = (0 Z/ n<¢m‘ ’¢n> ot i [Bn =B v g (2.25)

n#m

By substituting ¢ = s7T, this becomes

Cm( Z/ ¢ Qsm{ |¢n lT T [ [Em )—En(s") ]ds/ ds (2.26)

n#Em

If T is changed such that the passage from the initial to final Hamiltonian, while following
the same path, takes a different amount of time, only the phase factor in equation (2.26)
will change. For small T', the phase will change slowly as a function of s, and significant
amplitude can be accumulated during the integration. If T is large, however, the phase
will change very rapidly, and the integral will accumulate little amplitude. A more
mathematically-rigorous treatment of the integral in equation (2.26) is given by Born
and Fock [70]. If there is no degeneracy between the [, at any point in the path, and

the real and imaginary parts of (E,, — <¢m‘ |¢n> have a bounded number N of
piecewise monotone segments, then as long as T satlsﬁes the condition
(| T 10| _ 1 (0m] )
T > Nh (Em—En) _Nh]E "] (2.27)

non-adiabatic transitions between the mth and nth states will be minimal.

The second form of the adiabatic criterion given in equation (2.27) indicates a simpler
approximation of this rule. If the system would progress from its initial to its final state in
such a way that ‘%" is constant, ‘<¢m}%>‘ will always be less than or equal to one, and
so if a‘bs" is never significantly larger than its average value, |<¢m‘%’l>‘ will be at most
of order one. As a result, non-adiabatic transitions between the mth and nth state are
small as long as the timescale of changes is long compared to the inverse of the splitting

between those levels, i.e.

h
T _ 2.28
> EE (2.28)

To examine the adiabatic theorem in more detail, two specific Hamiltonians are now
considered.

2.2.1 Two Level System

Consider a system consisting of two levels that, unperturbed, are separated by an energy
A and are subsequently mixed with a parameter with a strength given by e.

b= (% GA) (2.29)
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Choosing 3 such that tan(23) = %, the eigenvalues E and eigenvectors U of H can be

written as
AN2 A
pu— _— 2 pu— _—
By ==/ <2) +e2 == 5 sec(20) (2.30)

[ — (cosﬂ sin 3 ) (2.31)

sinf —cosf

If the ratio of € to A changes in time, i.e. § changes in time, transitions can occur between
the upper and lower states. The value of <gz5m‘aai:> is given in this case by

0p+ ag d e
—:i—:i—(—) 2(2 2.32

<¢i’ Os > ds ds \ A cos”(28) (2:32)
If £ is changing at a constant rate, the most critical region will be near where £+ = 0= (¢ =
0. From the criterion given in equation (2.27), non-adiabatic transitions will be avoided

as long as the system passes uniformly through the region between { = —1 and § =1
on a timescale much longer than hA~!. In all other regions, losses are suppressed by the

2\ —1
factor cos?(2f3) = (1 + (%) ) , so passage through such regions can be correspondingly

faster without the occurrence of non-adiabatic losses.

The two level system can be used as a model for a polar molecule with two closely-
spaced parity levels in an electric field. Since the zero-field eigenstates have definite
parity and electric fields only mix states of opposite parity (more on this in chapter 4),
A describes the splitting between the two zero-field states, and e describes the coupling
of the states due to an external electric field. In the case of *CO in the aII;, v = 0,
J =1, M; = 1 state, the zero-field splitting A is 394 MHz and € = 0.4967ugFE,, where
pur = 1.37Debye is the body-fixed dipole moment of the molecule and FE, is the electric
field strength (it is assumed here that the electric field is always along the Z-axis). If
the electric field strength is changing rapidly but at a constant rate, as long as it passes
through the region where |E,| < 15 over a period much longer than 3 ns, the non-
adiabatic losses will be minimal.

2.2.2 Symmetric Top State

Unfortunately, the two level model assumes that the electric field always stays along
the same axis. Because rotations around the electric field axis leave the Hamiltonian
invariant, the projection of the total angular momentum along that axis, M}, is a good
quantum number, and as a result, only states with the same M; can be mixed by the
electric field. As soon as the field is free to rotate, however, states with different M ; can
mix. At zero field, states whose quantum numbers differ only in M; become degenerate,
leading to a divergence in equation (2.27). In regions where the electric field is very
small, non-adiabatic transitions become very likely. Chapter 4 will address the subject
of quantum mechanical symmetric tops in detail, but for now, the basis set and matrix
elements described in that chapter are applied here without further explanation.

To examine the effects of rotating fields more quantitatively, we consider the case of
a molecular symmetric top with a total angular momentum of J = 1 and an angular
momentum along its body-fixed axis of magnitude |2| = 1. This molecule is assumed to
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2.2 The Adiabatic Theorem 17

have a splitting between its positive and negative parity components of A and is placed in
an external electric and magnetic field: the magnetic field is along the space-fixed Z-axis,
and the electric field is in the xy-plane with and angle with respect to the z-axis a. Six
basis states can contribute to this wavefunction and are enumerated as follows:

L. Q=1,M=1
2.Q0=1,M=0
3.0=1M=—1
4. Q=-1,M=1
5. Q=-1,M=0
6. Q=—1,M=—1

Using these six states, the Hamiltonian can be written as follows

—ia A

z —Leing o A 0 0

—756 S 10 ‘ —756 S 0 ) [0\

N 0 ——=e'S -7 0 0 =

— V2 . 2
H 4 0 0 zZ  gzees 0 (2:33)

A 1 i« 1 —i«a
0 b 2 756 S ) 0 756 S

Here, S and Z are proportional to electric and magnetic field strengths, respectively. For
the case of 12CO in the a®Il;, v = 0, J = 1, M; = 1 state, A is 394 MHz and S and Z
are given by

S = 0.4967 ju| E| = 343 MHz (-) Iol (2.34)
cm
Z = 0.3332 up B, = 0.466 MHz Gauss ' B, (2.35)

In these equations, the body-fixed electric dipole moment pug is 1.37 Debye and ugp is
the Bohr magneton. The prefactors are derived by fitting Stark and Zeeman curves
calculated using the more rigorous treatment given later in chapter 4. If there were no
mixing between states of different €2, both of these prefactors should be exactly %

A parameter [ is chosen, as in the two level system, such that tan(2(3) = % Using
the unitary transformation given by

%e*m cos 3 —%e*ia %e*m sin 3 %e* cos 3 —%e*ia %e*ia sin 8
\%sinﬁ 0 —\%cosﬁ —\%Sinﬂ 0 \/Licosﬁ
[ %ew"cos I} %el‘?‘ %e“’"sin I} %e“"‘ cos 3 %e“’_ %ewf sin 3 (2.36)
—% 1_“.1 cos 3 %e"o‘ —%el_w‘ sin 3 %el_w‘ cos 3 —%e‘“’“ %e‘lm sin 3 ’
Yismﬁ 0 —ﬁcosﬁ Esinﬂ 0 _TECOSﬁ
—secos 3 —te  —lesing  lecosB  le  lesing
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the Hamiltonian H can be reduced to

—2sec(28) —Zcos 0 0 0 0
—Z cos 3 —% —Zsin 8 0 0 0
P 0 —Zsinf  2sec(2p) 0 0 0
1 _ 2
UIHU = 0 0 0 %sec(Zﬁ) —Z cos 3 0
0 0 0 —Z cos 3 2 —Zsin 3
0 0 0 0 —Zsinf —4sec(20)

(2.37)
In the absence of a magnetic field, the matrix is already diagonal, and U contains the

eigenvectors. If it is assumed that [ is constant, the various <¢m‘85i8"> are given by
0 0 0 0
<¢1‘ ¢2> = <¢2‘ ¢1> = <¢4‘ ¢5> = <¢5| ¢4> = zcosﬁ— (2.38)
8 8 8 8 d
(¢s] ¢3> (¢3] ¢2> = (¢ ¢6> = <¢6| ¢5 = zsmﬁ—j (2.39)

and all others are zero. Since states 1 and 2 and states 4 and 5 become degenerate as (3
or % go to zero, the timescale of passage between states must become very long to avoid
non-adiabatic losses.

2
T _h cosf3  da

A sec(26) — 1 ds (240)

Equivalently, v = (2)7'% = (27T)7'9 represents the frequency with which the
electric field vector rotates in the xy-plane, and using this, the criterion for the suppression
of non-adiabatic losses can be rewritten as

v <L hlg(sec@ﬁ) — 1)secf (2.41)

For S <A, this condition is v < A, so at low fields, the maximum frequency decreases
quadratically with the field strength. At 100 % in the state of CO mentioned above,
for example, the frequency of rotation should be much lower than 12 MHz to prevent
transitions, but at 50 Clm, the frequency must be much lower than 3 MHz.

These arguments apply for a system initially in a non-rotating field, and describes
the transitions that result when the field suddenly starts to rotate. If the field always
rotates, however, it is possible that there is a stationary state in the rotating frame. In
fact, the field distributions used in the experiments have exactly this property: as they
are translated in space, the electric field vector at every point in the distribution rotates
at a constant rate. A stationary state in a rotating frame can potentially be found by
applying a unitary transformation to the wavefunction such that [¢(t)) = U )| (t)).
Substituting this into equation (2.15) and operating on the left with UT results in

oY’ NN
zh‘a—‘i> - (UTH(t)U _ it )|¢> (2.42)
Though its individual components are time dependent, the coefficient of |1') on the right
side can be time independent for certain U(t). The result is an equation that has the same

form as the time-dependent Schrodinger equation for a time independent Hamiltonian,
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2.2 The Adiabatic Theorem 19

and can be similarly solved as an eigenvalue problem. The eigenvalues that result are
called “quasienergies” [71, 72].
In fact, the U(a(t)) given in equation (2.36), in conjunction with the real Hamiltonian
H(a(t)) (2.33) results in a time-independent quasienergy Hamiltonian if the field rotates
da

at a constant rate, i.e. ¢ is constant.

P - dU
UTH(t)U — ihUT o

—% sec(2f) Rcosf3 0 0 0 0
Rcos 3 —2 Rsin 3 0 0 0 (2.43)
B 0 Rsinf 4 sec(2p) 0 0 0
N 0 0 0 Lsec(23) Rcosp3 0
0 0 0 Rcos % Rsin 8
0 0 0 0 Rsinf3 —2sec(20)

Here, R = h”(ll—‘;‘ — Z is the frequency of the rotation of the electric field in units of energy
minus the magnetic field coupling strength. Interestingly, the effect of a continuously
rotating field and a magnetic field on the quasienergy Hamiltonian is exactly the same
in this particular Hamiltonian: a magnetic field that would induce a 1 MHz splitting
between neighboring M states within a single parity level is equivalent to the electric
field rotating with a frequency of 1 MHz.

Until now, it has been assumed that (3 is constant in time and that the entire time
dependence of H and U comes from the phase factor a. If o is now assumed to increase
at a linear rate (i.e. Ccll—? is constant), the effect of a time-dependent (3 can be considered.
At low electric field strength (§ < 1), the couplings of the form sin 3 can be neglected,
especially since they always couple states separated in energy by %(sec(?ﬁ) + 1), in
contrast to the couplings of the form cos 3, which couple states separated in energy by
only 4(sec(203) — 1). Using this approximation, the third and sixth quasistates become
decoupled, but in fact, transitions involving these quasistates would still be possible for
changes of magnitude A3 = 1 on the timescale hA™!, according to the criterion developed
in section 2.2.1. The remaining two pairs of quasistates have the same form, so only the
pair consisting of the fourth and fifth state is considered. This pair of states is strongly
coupled by R, even when # — 0, so it is useful to apply a unitary transform such that
the matrix is diagonal when 3 = 0. The relevant section of the quasienergy Hamiltonian
and the unitary matrix are

A
(2 sec(23) Rcos 5) 2.44
< Rcos % ( )

V2 V2

I
U = (VP V2 ) (2.45)
and transformed, the matrix takes the form

APRPSA A
UTH'U = 5 sec(20) cos® 3 ((1) (1))

1 %% sec(2(3) sin 3 tan 5)

(2.46)
T ficos ) (% sec(2(3) sin § tan 3 -
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20 Manipulation of Polar Molecules Using Electric Fields

The first term of equation (2.46) is an energy offset that shifts all levels by the same
amount. The second term, however, has the same form as a two level system that can be
described with a parameter 3’ that is defined such that tan(24’) = % sec(2f3) sin B tan 3,
and to lowest order in 3, 3’ = A% + O(3*). From the form of equation (2.46), it can
be concluded that changes to 3’ of magnitude order 1 (equivalently, changes to [ of

magnitude order %) will not result in transitions between quasienergy states as long

as the timescale of these transitions is much longer than %. Additionally, because (' is
quadratic in (3, at very low fields, losses will be further suppressed.

2.3 Summary

It has been shown that, as long as the time variation of the electric field seen by a
molecule is sufficiently slow, the molecules can be manipulated and confined by these
electric fields. This means that the time variation of the externally applied fields and the
motion of the molecules in these fields must be slow enough that the molecules do not “lose
their orientation” and end up in an untrappable state. The exact timescale at which the
non-adiabatic transitions become important is often difficult to calculate, since it depends
on many details of the motion, but a number of experimental results presented in later
chapters show that the assumptions of slow time variation are being pushed to their limits,
and non-adiabatic transitions do, in fact, play a major role in the loss of molecules from
their confining potentials. This is not surprising, since the rate at which fields change on
a microchip is much higher than in the macroscopic molecular manipulation devices that
have been constructed previously, both in terms of high frequency of the applied fields
and of the high oscillation frequency of the molecules within the traps. The experimental
effort toward preventing of these losses will be described in more detail in chapter 7.
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Chapter 3

The Electric Field of a Periodic
Electrode Array

It has long been known that it is possible to make an electric field minimum above a
surface using overlapping dipoles. A short dipole produces an electric field that dominates
close to a surface and a longer dipole produces a field that dominates farther from the
surface. If these dipoles are oriented in opposite directions, then they will cancel out
at some position, forming a zero-field minimum along the central axis of the dipoles. If
these dipoles are realized with physical electrodes, the minimum is centered between two
electrodes.

It is said that a little knowledge is a dangerous thing. Sometimes, though, new
discoveries come from not knowing all the details. During the work on a molecular mirror
for NDj3 [73], plans were being made to load a trap above a chip from a Stark decelerated
beam, much in the same way that atom chips are generally loaded from a MOT. Stephan
Schulz, the student on this project at the time, knew that it was possible to make a
trap above the chip, but not knowing how exactly it should be constructed, set out to
find the correct electrode configuration for himself. It was only through later comparison
that everyone involved realized that this configuration produced a field minimum at a
different position relative to the electrodes: while the previous configuration produced
a minimum between two electrodes, this one produced a minimum directly above an
electrode. Nevertheless, both configurations produced minima with about the same shape
and depth. If these two positions are possible, it was reasoned, then shouldn’t other,
intermediate positions also be possible? With a bit of interpolation it was found that
minima at other positions are indeed possible, and in the end, the minima can be moved to
an arbitrary position above the electrodes by choosing the right potentials. Surprisingly,
the shape of the minima always remained relatively unchanged.

This method of creating movable quadrupole minima was discovered mostly by acci-
dent. To understand how these minima are formed and why their shape changes so little
as they are moved, it is necessary to approach the problem from first principles. By doing
so, it is possible to discover other potentials that may not have become evident from a
more haphazard approach. The first section will discuss the mathematical form that the
electric fields must have. In the next section, it will be shown how these potentials can be
created with discrete electrodes, and in the third section, how any potential created can
be translated over the surface. The fourth section will describe how to create multipole
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22 The Electric Field of a Periodic Electrode Array

potentials using these building block, and finally, the fifth section will describe the details
of the chip that was constructed for experiments described in this thesis.

3.1 A Periodic Solution to Laplace’s Equation

An electric potential in free space V(z,y,z) must be a solution to Laplace’s equation
(equation (2.5)). If the electrodes used to produce the electric fields extend over a suffi-
ciently long distance in x without changing, then V' is effectively independent of z, and
the first term in equation (2.5) vanishes. The equation can then be solved in y and z
using a separation of variables ansatz:

Viy, z) =Y (y)Z() (3.1)
This results in two ordinary differential equations
d*y
— — kY = 0 3.2
0 (32)
d*Z
——+kZ =0 3.3
2t (3.3)
(3.4)
The general solution of these equation is given by*
Y(y) = Crexp(—ky)+ Cyexp (ky) (3.5)
Z(z) = R {C’g exp (zkz)} (3.6)

If the condition is imposed that V' vanish as y — oo, then C; must be zero. Additionally,
if Z(z) is constrained to be periodic such that Z(z) = Z(z + {), this forces k to obey
the equation k¢ = 27n, where n is an integer. Combining equations (3.5) and (3.6) with
these constraints yield a solution to V'

Valy, z) =R {fln exp (27rznz) } exp (_27rgny)

=|A,| cos (2%% + arg fln> exp (— 27;”3/)

(3.7)

Finally, because Laplace’s equation is linear, linear combinations of V,, are also solutions
to Laplace’s equation

Viy,2) = go Vi(y, 2) = go R {An exp (2”2”2> } exp (—QWE”y) (3.8)

3.2 Building Fields with Discrete Electrodes

The building blocks of the fields described in following sections will be the V,, terms
described above. In order to produce the fields, however, one must generally rely on the

IR denotes the real component of a complex number, while S (used later) denotes the imaginary part.
Variables with a tilde, such as C3 denote complex quantities.
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4

Figure 3.1: Periodic electrodes on a surface, spaced at an interval of %. Every Mth
electrode has the same potential, and the electrodes repeat for many periods in either
direction.

use of discrete electrodes. The simplest approach is to use an array of identical electrodes
in a single plane, spaced at an interval of ﬁ, where M is a natural number. To generate
the desired periodicity, the electrodes should be grouped together such that an electrode
at position (1, zo) has the same potential as the electrode at (yo, 20 + ¢), i.e. every Mth
electrode has the same potential. Arranging the electrodes in this manner provides M
degrees of freedom which can be used to control the A, in equation (3.8).

The solution of the electric potential distribution for M arbitrary electrode voltages
can be solved by first solving the case in which 1 volt is applied to one set of electrodes
and 0 to all other electrodes. This solution for which the 1 volt is applied to the mth set
of electrodes must have the same form as equation (3.8)

= - ~ 2minz 2mn
Vi(y,z) = Z Vim(y, 2) = Z R {Af{”) exp ( 7 ) } exp (— i y) (3.9)
n=0

n=0

If this is repeated for each of the electrode sets, then the general solution can be computed
as a linear combination of these individual solutions.

In general, once the problem is reduced to this form, the electric potential for the
simplified case must be calculated numerically to determine the coefficients AT the
numerically calculated potential satisfies the conditions that it be periodic with a period
length ¢ and that it vanish as y goes to infinity, then it must be possible to describe the
electric potential in the region above the electrodes (toward increasing y) using equation
(3.9). At a constant y value, equation (3.9) represents a Fourier series in z. Thus, the
coefficients A!™ can be found by computing a discrete Fourier transform in z on the
numerical solution along the line y = yo. The choice of yq is in principle arbitrary; the
only requirement is that no part of the electrodes should be above this value. In practice,
however, the best results will be obtained by choosing a y, to be as close to the electrodes
as possible: since the voltages applied to the electrodes constrain the electric potential
in the free space around the electrodes, the potentials are most accurate at the surface
of the electrodes.

If all sets of electrodes are identical, it is only necessary to compute V(): the other
single electrode solutions V(™ are obtained by shifting the solution by an integral number
of electrode spacings in the z direction.

Vi(y,z) = VO (y z— mﬁg) (3.10)

Incidentally, if each individual electrode has a mirror symmetry across a plane of constant
z, then the position of z = 0 can be chosen, without loss of generality, to correspond to
the center of an electrode from the m = Oth set. By choosing z in this way, V() will be
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24 The Electric Field of a Periodic Electrode Array

symmetric in z, and thus all AY will be real. Subsequent equations do not rely on this
assumption, however.

If the shape of all electrodes is the same, the overall solution can be obtained by
superimposing the V(™ obtained by shifting (%), The electric potential V(y, z) obtained
when applying voltages V(™ to the M electrodes is then given by

M—-1
Viy,z) = Vv, z)
m=0 (3.11)

= Z R {fln exp (QWETLZ) } exp (— QWEHy)
=0

where

~ o= 2mimn
A, =AD"V exp (— ) (3.12)

Equation (3.12) gives the A, coefficients in equation (3.8) in terms of the set of
potentials applied to discrete electrodes V™) and the [17(10) that define the geometry of
the electrodes. It would also be useful to be able to express V™ in terms of A, and AW
in order to find the potentials that need to be applied to the chip to produce a specific
field distribution. To do this, we first recognize that the summation in equation (3.12) is
essentially a Fourier series and express the set of applied voltages V™ in terms of their
Fourier components f/p.

Sl ~ 2mwipm
yim — Z %{Vpexp ( i >} (3.13)

p=0

The range of this summation is chosen without loss of generality to extend from 0 to
| M /2] based on two fundamental symmetries. The first is that increasing or decreasing
p by a multiple of M does not change the value of exp (27”%) for any integer value of m.
As a result, l~}p+Mk, where k is an integer, has the same effect on the V(™ as f)p, SO p can
be limited to the range 0 < p < M without losing the ability to express any arbitrary
set of V™. The second symmetry is that replacing p with M — p while simultaneously
replacing ]}p with its complex conjugate also does not not change the values of V™. This

makes values of p larger than | M /2] also unnecessary.

Physically, the limitation on possible values of p is a result of the harmonic waveforms
being described by discrete electrodes. Particularly, the Shannon sampling theorem [74]
states that it is impossible, using M sampling points, to represent a waveform that
oscillates more than M /2 times. Waves that oscillate more than M /2 times over the set
of electrodes are mapped back to the range between 0 and M /2, so the only meaningful
values of p are in the range 0 < p < M/2.

To obtain the inverse of equation (3.13) (V, in terms of V™) both sides of equation
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3.2 Building Fields with Discrete Electrodes 25

(3.13) are multiplied by exp ( M) and summed over all m from 0 to M — 1.

(3.14)
B LMZ/2J MZ—I lf; 2mi(p — p')m i 1]}* _2mi(p+p)m
= : 2 peXp M 2 peXp M

The first term will vanish when summed over m unless (p—p’)/M is an integer.? Similarly,
the second term can only sum to a non-zero value when (p+p’)/M is an integer. Since p
and p’ are limited to the range from 0 to M /2, (p—p')/M is only an integer when p = p/,
and (p + p')/M is only an integer when p = p’ = 0 or p = p’ = M/2. Equation (3.14)
then reduces to

M-1 .
2mip'm M - M -,
Z exp (_ D ) pm) — 7121), + 7]}}), (0pr0 + Opr aa/2) (3.15)

M

m=0

and the inverse transform is given by

~ { %ZM:IV(m)eXp (—QWXfl’m) p=0orM/2

m=0

% Z%;ol VI exp (—%) otherwise

(3.16)

In addition to having a different leading factor than the other coefficients, V, and f/M/g
are also always real. The coefficient Vy is real because it is the mean of the voltages
applied to the electrodes, and fiM/g is real because exp (—mip) can only be +1. That
f/M/Q is real also reflects the physical reality that only one possible phase exists for a
waveform that completes an oscillation over two electrodes: one of the two electrodes will
contribute the maximum of the wave while the other contributes the minimum.
Substituting equation (3.13) into equation (3.12) results in A, in terms of f)p.

LMZ/2J Aﬁf{ V, exp (W) + %f}; exp (_W)} (3.17)

p=0 m=0

When the sum over m is carried out, the first term sums to zero unless p = n mod M,
and the second term sums to zero unless p = (M — n) mod M. The explicit conversion
from the Vp, the Fourier transform of the potentials applied to the electrodes, to the A,

in equation (3.8) that describe the phase and amplitude of the periodic potentials in z
can be simplified to

MAL V(andM) nmod M = 0or M/2

Ay =4 MAQ V(nmodM) 0 <nmod M < M/2 (3.18)
MA (-mymodnry  M/2<nmod M <M

2This is the orthogonality condition used for discrete Fourier transforms. If n and M are integers,

the series
M—1 .
Z ox 2mimn
P\

m=0

can only be non-zero if n is a multiple of M. A simple explanation of this can be given in terms of evenly
spaced vectors around a unit circle: due to symmetry, the vectors will sum to zero, unless all the vectors
are spaced by a multiple of 27, in which case the vectors add constructively.
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26 The Electric Field of a Periodic Electrode Array

Using M discrete electrodes per period, it is possible to “write” A, with an arbitrary
phase and amplitude, as long as n < M /2. As a side effect of writing A, however, other
coefficients, such as A,;_, and fln+ u must appear as well, unless the corresponding AW
(such as [1}2) ,, OT fl(o}r ) are zero. It is also possible to determine a coefficient Ay, /2, but
since this coefficient is always real, its phase is fixed. If these limitations are accepted,
equation (3.18) can be used to find the individual V, in terms of A,, and these V, can
be converted to V™, the real potentials applied to the electrodes, using equation (3.16).

3.3 Moving the Electric Potentials

For a given electric potential, V (y, z), it is useful to be able to translate it by a certain
amount, i.e. to create a new potential such that V'(y, 2) = V(y — 4o, 2 — 29). Such a shift
is equivalent to scaling A,, in equation (3.8).

~ ~ 2 2mi
A, — A, exp ( ﬂnyo) exp (— mnzo) (3.19)

l l

When the fields are produced with discrete electrodes, however, exerting the necessary
control over A, can require a large number of electrodes per period. Specifying the first s
terms in equation (3.8) with full phase control requires the use of at least 2s+1 electrodes
per period. Terms after V; cannot be constrained, and cannot be forced to follow this
transform.

It is possible to reduce the relative effect of terms after V; by shifting the potential
in the 4y direction. When the amplitude of A, is scaled using transformation (3.19),
coefficients with larger n must be scaled more. When using real electrodes, however,

flM_n will be scaled the same amount as fln, and so the relative influence of A M—n Will
2 (M—2n)Ay
7

by at least a factor of two, the potential should be shifted upward by 1“2€ S

For polar molecules, where only the strength and not the direction of the electric field
is important, it is not absolutely necessary to shift V' perfectly; it would suffice to simply
shift the field strength. The electric field produced by a single V,, is

be reduced by exp <— > To guarantee that all undesired terms are suppressed

E, =—-VV,

. j - j 3.20
:%Tn exp (— 27;”3/) (?R {An exp (QWan) } U+ {An exp (ZWEHZ) } 2) (3.20)

The field strength produced by a single V,, is independent of z and the argument of A,;
it is only a function of y and the magnitude of A,,. The direction of the field rotates in
the yz plane. If ¢ is defined as the angle of the field vector with respect to the +y axis
toward the 42 axis, then

2mnz

14

b = + arg A, (3.21)

For the general case, in which there are multiple V,, terms in V, multiplying each A,
by a constant phase factor exp (id) would rotate the field at every position but would leave
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3.4 Expanding Field Geometries as Multipoles 27

the electric field magnitude unchanged. The transformation in (3.19) can be expanded
to include this phase shift

~ ~ 2 2mi 2mi
A, — A, exp ( Wzyo) exp ( ’/TZZ’ZO — mgnzo) (3.22)

The result is that Vi no longer needs to be phase shifted to shift the potential, and only
2s electrodes are needed to define s terms in equation (3.8). Yet, there is a much more
profound effect in this transformation than simply eliminating one electrode per period.
If n > s, the change in phase to A, has the opposite sign as for n < s. More specifically

exp (27‘(‘@;20 B 2m(25£_ n)20> — exp <_ (QMZZO _ 27”;20)) (3.23)

The phase shift in equation (3.22) follows the same relation as the V in equation (3.18)
for 0 < n < M if M = 2s. Thus, by using the transformation (3.22) instead of (3.19)
to shift the potential in z, the transformation is guaranteed to be accurate for V,, up to
n=M.

3.4 Expanding Field Geometries as Multipoles

The electric potential described in equation (3.8) can be used to produce a cylindrical
multipole potential, i.e. a potential of the form V o " cos(n¢ + d,,) in two-dimensional
polar coordinates. A single multipole field produces an electric field strength proportional
to r"~ !, so for n > 2, a multipole field forms a trap for low field seekers. Combinations
of multipole fields can also produce useful field arrangements. A combination of a dipole
(n = 1) field and a hexapole (n = 3) field, for example, produces a saddle point of electric
field strength at » = 0. This is discussed in more detail in chapter 2.

A single V,, component in equation (3.8) can be expanded in a multipole series. If
r and ¢ are defined such that y = rcos¢ + yg and 2z = rsin¢ + 2y, then y — iz =
rexp (—i¢) + (yo — 120). This can be substituted into equation (3.7) and the result
expanded as a series.

Valy.2) = R {An exp @%)}
R {fln exp <_W) exp (_ 21y exgp (_w)) } o

i <_(;)q (2#7”)(17@9% {/In exp (——Qﬂn(yz_ iz@) exp (—iq¢)}

q=0

By summing over all V,,, as in equation(3.8), V' is found to be

Vig2) :i%{/xn o (-2 =150}

i <277T)q a 'R { Ay exp (~igo) }

g=1

(3.25)
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28 The Electric Field of a Periodic Electrode Array

where
q

ZA exp( w> n? (3.26)

A potential consisting of a single multipole term can be created by solving the system
of equations given by (3.26) such that only one Al is non-zero.®> An exact solution would

q—l

require an infinite number of diverging A,, so is only possible in practice to exclude
unwanted A; up to ¢ = go. This requires ¢y A, components to be constrained. To

produce a potential that is locally a multipole of order ¢, all fl; with ¢ < ¢o must be
suppressed, requiring control over qq A, coefficients.

3.4.1 Quadrupole Potentials

The simplest lociﬂ quadrupole field can be created by eliminating the dipole field. If
(Yo, 20) = (0,0), A} is given by

A= —(A +24, +3434+...)=0 (3.27)
This can be solved non- tr1v1ally using two A,, by choosing A,, = —A,(ny —ny)"'n;* and
A,, = Ay(ny — ny)"'ny ! if all other A, are zero. The electric potential is then

= o (2 20
(3.28)

. (27m'n22) < 27m2y))}
ny ' exp ; exp | — 7

While the resulting quadrupole electric field minimum is centered at (yo,20) = (0,0),
additional minima are formed when the condition

27?2@2 — 27?12 =2Tm (3.29)

is satisfied, where m is an integer. There are therefore a total of |ny — n| evenly spaced
minima in each period of the potential.

By choosing n; and ny to be widely separated, it is possible to improve the packing
of minima, that is, to decrease the number of electrodes needed per minimum. If n; =1
and ny = 2, one minimum is created per period, and four electrodes are needed to form
the V5 potential. If ny is increased to 3, two minima are formed per period, but only
two additional electrodes are needed to produce the V3 potential, yielding one minimum
for every three electrodes. In general, if n; = 1, a minimum can be formed for every
2(1 — ny")~! electrodes. The limiting case as ny — oo, there is a minimum every two
electrodes: this corresponds to a dipole field with a period of two electrodes combined
with a rotating external field.

3Using this definition of flf], any pure multipole components A; will produce an electric field at a
characteristic length scale r = ro = £/(2n) of |E| = |fl;|ral. If ro is a reasonable estimate of the size of
the trap, then the maximum field produced with two different pure multipole terms A} and Aj, will be
comparable if |A] | = [Af,
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Figure 3.2: Two quadrupole potentials each formed with two A,. On the left, A; =1
and Ay = %, while all other terms are zero. On the right, A, = % and As = %. Near
the minima, both potentials have the same strength. While the configuration on the
right results in one minimum for every three electrodes, in contrast to the case on the
left for which there is one minimum for every four electrodes, the height of barrier is

lower.

If exactly two A, are non-zero, an array of quadrupole minima will always be pro-
duced. A quadrupole minimum occurs when

) 5 . ) 5 .
A, exp (_ ™1 (Yo @zo)) ny = A, exp <_ mn2(Yo 220)) - (3.30)

14 4

By solving this equation for yy — izg, the position of this minimum can be found.

A
Yo —izg = ¢ In ( ~”2”2> (3.31)

21(ng — ny) A, g

For any flnl and flm, the quadrupole minima will be found at a position (yo, z0), given
in equation (3.31), assuming that all other A,, are zero.

A more exact quadrupole field can be created by excluding higher order terms. This
requires more A, to be constrained and also requires the individual A4, to have higher
amplitudes. To eliminate the hexapole term, at least three A,, must be constrained.
Using Ay, Ay, and Az to form a quadrupole minimum at (yo, z9) = (0,0) results in the
system of equations

12 3\ (4 —4 0

1 4 9 Ay | = A =|A (3.32)

1 8 27) \A, —2A 0
which has the solution 1211 = ——fl flg = 2121 and 1213 = ——/~1 In contrast, for the
quadrupole potential described before using n; = 1 and ny = 2, the solution A; = —A
and A, = —A will produce a quadrupole potential of the same Strength even with smaller

A,
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Figure 3.3: By controlling three A,, it is possible to control three /lel. On the left,
a hexapole potential is made by eliminating the dipole and quadrupole terms. On the
right, a more accurate quadrupole potential is produced by eliminating both the dipole
and the hexapole terms.

3.4.2 Hexapole and Saddle-Point Potentials

By eliminating both the dipole and the quadrupole terms, it is possible to produce a
hexapole potential. This requires constraining at least three A,. Using A;, As, and As
to form a hexapole minimum at (yo, 2z0) = (0,0), the system of equations is

12 3\ [A — A, 0
14 9| (A= 4 |=| 0 (3.33)
1 8 27) \A; —24, —24

for which the solution is A; = —fl, Ay = fl, and 1213 = —%fl. The hexapole potential has
the advantage that, for molecules with a linear Stark shift, the potential is harmonic, so
the motion in the y direction is decoupled from the motion in the z direction.

Combining a hexapole potential with a dipole potential can create a saddle point
in the electric field strength. This can be used to manipulate molecules in high field
seeking states. A saddle point will focus molecules in one direction (along which the
saddle point is a maximum) and defocus them in the perpendicular direction (where the
field is a minimum). If the saddle point is reversed, such that the molecules are focused
where they were previously defocused and vice versa, the net effect will be to focus the
molecules in both directions. This reversal can be achieved by changing the sign of the
hexapole while keeping the dipole the same.

The system of equations for this potential is

1 2 3 {11 —:‘1/1 —A
14 9| (A= A4 |=[ o (3.34)
1 8 27) \A 24, F24

For the case where Ay = A}, A} = —4A, Ay = A, and Ay = —2A. When A} = — A,
1211 = —2121, AQ = %A, and /Ig = 0.
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Figure 3.4: Two different configurations of a saddle point potential. Red contours
describe fields higher than those at the saddle point and blue contours describe fields
lower than those at the saddle point. By alternating rapidly between these two config-
urations, molecules in both high and low field seeking states could be confined.

3.4.3 Forming Multipole Fields with Real Electrodes

Until now, the multipole fields have been described using the assumption that all A,
above a certain n are zero. With a set of M periodic electrodes, creating a non-zero A,
will generally lead to a non-zero Ay;_,, so this assumption may not be valid. However,
it is possible to formulate the multipole components in terms of V, instead of A, by
combining equations (3.18) and (3.26).

Ly MHE : ~
A = oy > % (Rq(k;M 4n)+ Ry(kM + M — n)) V. (3.35)
R,(n) = A9n%exp (—W) (3.36)

Using these equations, it is possible to write a linear relation between Y, and fl; for a

given gy and zq if the AY are known. This relation will be given explicitly in the next
section.

3.5 The Chip as Constructed

The design used to produce the potentials used in the experiments in this thesis con-
sists of six independent electrodes per period. The electrodes are 10 micrometers wide,
with a center-to-center spacing of 40 micrometers, giving a period length ¢ = 240 pum.
These electrodes are deposited on a glass substrate and are covered with layer of SU-8
photoresist. For calculation purposes, the glass and SU-8 are assumed to have a relative
permittivity of ¢, = 4, and the dielectric layer is assumed to extend 5 um above the
center of the electrodes. The electrodes themselves are assumed to have a thickness of 2
um, and the height of their centers defines y = 0.
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Figure 3.5: The electric potential produced by setting one set of electrodes to 1 volt
and the rest to 0. By computing a Fourier transform along a line of constant y, it is
possible to obtain the 1217(10) coefficients.

The fields are calculated numerically and then read out along the line yy = 5 pum.
This corresponds the top of the dielectric layer and is the bottom edge of the vacuum
region above the electrodes. By calculating the Fourler transform along this line in z and
scaling each Fourier component by exp (2”"y°) the A can be calculated. The Fourier
transform is carried out with z = 0 defined by the center of an electrode from the Oth
set, so the Aﬁ?’ components are real.

A(()O) A§0) Ago) Ag)) /L(;O) Aéo) A((SO) Agm
0.16544 0.30334 0.25737 0.19929 0.13365 0.06544 0.00168 0.02273
Although there are many more AY components, their effect at positions greater than 20

um from the surface is minimal. Eliminating these components reduces both the compu-
tation time and the noise found at short length scales in the numerical field calculations.

Using this electrode arrangement, it is possible to constrain the coefficients Ay, A,
Ay, and Aj in equation (3.8). As stated before, however, this will have side effects on
higher-order coefficients, starting with A,, which will gain intensity from a non-zero Vs.
On the other hand, by eliminating A,, the first undesired coefficient will be As.

If V; and Vs are the only non-zero Vn, then a quadrupole minimum will be formed

for every thlrd electrode. If V1~ and Vg are chosen such that Vg = -V = V then

A = —3A 'V and A, = 6A V. According to equation (3.31), this should produce a
7(0)

minima at a height yy = 60;““1 % ~ 26.2 um above the surface. In reality, due to
1

the A component, the minimum will be slightly lower, at 24.75 um above the surface.
If equation (3.35) is expanded around (yo, 29) = (24.75 um, 0), the relationship between

41t should be noted that all experiments described in later chapters use this choice of V,. Other
configurations described merely show what could be possible for future experiments.
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Figure 3.6: Electric field strength of potentials produced by real electrodes. Left: the
quadrupole potential produced by setting V3 = —V;. Right: By solving equation (3.37)
for fl’l =0, 121’2 =0 and 4} = fl, a hexapole potential can be produced, although it is
much weaker than a quadrupole produced with similar applied potentials.

fl; and V,, can be found.

{1’1 —0.520 —0.549 —0.520 3
Al 0.710  1.382  1.600 V1
1| = -0.877 —2.048 2577 | |V, (3.37)
1 1.291 2543  3.110 Vs
Ag —1.853 —3.095 —3.534
Note that, for 1}3 = —171, fl’l will be zero, leaving a quadrupole as the lowest order term.

In addition to a quadrupole field, it is also possible to make a hexapole potential by
solving equation (3.37) for A} =0, A, =0, and A} = A. The resulting electric fields are
roughly a factor of ten weaker than those in a quadrupole potential for the same applied
potentials.

3.6 Calculating Forces and Particle Trajectories in
an Inhomogeneous Field

If the mechanical potential experienced by the molecules is only dependent on the mag-
nitude - and not the direction - of an external electric field, the force experienced by the
molecules in such a field can be calculated using the first and second partial derivatives
of V' with respect to y and z. Given a mechanical potential, U(y, z), the force is defined
by

F=-VU (3.38)

If U is only a function of electric field strength, i.e. U(y,z) = U(|E|(y, z)), then equation
(3.38) can be split into two factors by the chain rule

a dU =, = 1 dU \ (1= =
F=——SV|El=-|>%—% (—V|E|2) (3.39)
d|E| |E|d|E]) \2
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Figure 3.7: By applying the transformation in (3.22), the quadrupole potential shown
in the left half of figure 3.6 can be translated over the chip in a continuous manner.
The electrodes are shown schematically at the bottom of each frame along with the
potential applied to each one to produce the electric field strength contours. Contour

lines are separated by 500 %
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Because |E|? = (%—‘y/)z + (%_Z) , 3V V|E|? can be expanded as

2 2 2 2
(1 |>:(8VOV 8V0V)A (3‘/0‘/ 8V8V) (3.40)

VIE Oy? Oy + Dy 0z 0z Oyoz dy 022 0z

Thus, the force F' can be written (in matrix form) as

2y 82V oV
(?) = —( 1 dU) ( H ayaé) (ﬁ) (3.41)
z |E| d|E| dyoz  oy? Oz

Using Laplace’s equation (equation (2.5)), 2 8 9V has been replaced with — 8 9V reducing
the number of partial derivatives that need to be computed to four. These four par-
tial derivatives can easily be computed using the analytic form of the electric potential
presented earlier in this chapter. Even in cases where an analytic form is not available,
equation (3.41) can still be used by storing numerically computed partial derivatives in
a table. The advantage of storing partial derivatives of the electric potential instead of
force vectors is that the partial derivatives can be superimposed, so that contributions
from multiple electrodes can be varied in a continuous manner.

The computation of the Stark potential, U(|E]), will be described in detail in the next
chapter. However, there is a simple analytic form that is valid in many cases, given by

U(E]) = i\/(%)Q + (ueﬁlﬁ|)2 (3.42)

where Ej is the A-doublet splitting, pes is the effective dipole moment (see equation
(4.125)), and the plus-minus sign distinguishes between low field seeking states (positive)
and high field seeking states (negative). The first factor in equation (3.41) can then be
computed as

1 dU ot
=1 fot (3.43)

|E]dE| N N\
(4) ()

The computed force directly gives the acceleration on a molecule, and the acceleration
can be incorporated into a system of four first-order ordinary differential equations for
the position and velocity of the molecule as a function of time.

% :%Fy(y, z,t) (3.44)
d;j :%Fz(y,z,t) (3.45)
% o, (3.46)
% o, (3.47)

Here, v, and v, are the y- and z-components of the velocity and m is the mass of the
molecule. Given an initial position and velocity, i.e. vy, v;, y, and z at any time t = ¢,
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these equations can be solved unambiguously. In later chapters, this system of equations
will be solved to find the trajectory of low field seeking molecules near moving quadrupole
minima above the chip.

In general, this system of differential equations cannot be solved algebraically and
must be solved instead numerically. This is carried out using algorithms that, given the
system of differential equations and the values v, (o), v.(to), y(to), and z(to), approximate
the values of v, (to + At), v.(to + At), y(to + At), and z(to + At) for a small value of At.
The position and velocity of a particle at any time ¢t > ¢y can be calculated by repeating
the algorithm many times, each time advancing ¢t by At. As long as the magnitude of
the error at each step is of order At? or higher, the accuracy of the calculation can be
improved by decreasing the size of At and increasing the number of steps.

The simplest stepping algorithm, the Euler method [75], assumes that the time deriva-
tives are constant between to and to+ At, so v, (¢ + At), for example could be calculated

as
vy (to + At) = v, (to) + % At = v,(ty) + iFy(y(to), z(to), to) At (3.48)
t=to m
The Euler method is not very efficient, though: since it has an error of order At?, At
must be very small and the number of steps very large to achieve a solution with reason-
able accuracy. Another somewhat better class of stepping algorithms, the Runge-Kutta
algorithms, evaluate the right sides of the differential equations in the system for several
values of t, vy, v,, ¥, and z and combine the results of these evaluations to produce esti-
mates of the state of the system at time ¢, + At that have errors of order At* or higher.
Due to the frequency with which Runge-Kutta algorithms are used, there are many soft-
ware libraries available that implement the stepping algorithms and handle many of the
subtle details, such as choosing the step size. The trajectory simulations shown in later
chapters make use of an implementation from the GNU Scientific Library [76].

3.7 Conclusions

Using the equations presented here, a multipole field can be produced at z = 0 with M
electrodes with control up to the %th order. For the chip that has been used in experi-
ments thus far, multipole components up to the hexapole can be controlled. Regardless
of what potential is created, its position can be shifted with high accuracy in z; the
lowest order error caused by shifting the potential will occur in the term Vj;, 1. For most
purposes, this is good enough. If higher accuracy is required, however, the multipole
expansions can also be constructed at positions where z # 0. By calculating the V,
required to produce the desired multipole at each position, more accurate movement can
be achieved.

The equations here assume that the electrodes are evenly spaced, symmetric, and
identical, but this is also not strictly necessary. Due to perceived technical limitations,
early designs of the chip required the electrodes to be placed in three separate levels,
though this was fortunately not necessary. The consequence of breaking this symmetry is
merely that the various V™, which are here computable by a shift in the z direction, must
be individually calculated. For a given position, the multipole expansion produced by
each electrode set individually can be calculated, using a slight modification of equation
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(3.24), and the system of equations solved for the individual V(m) While this is probably
necessary for complicated, asymmetric electrode arrangements, much of the insight shown
above would be lost.

In the end, even the most fundamental assumptions, such as two-dimensional struc-
ture and strict periodicity, may be mutable. Breaking either of these assumptions would
likely lead to an explosion of complexity. If the electrodes can no longer be assumed to
be periodic, the sum in equation (3.8) becomes an integral, and it is no longer possible
to enumerate the coefficients. Similarly, by adding a third dimension x to the potentials,
equation (3.8) becomes at the very least a two-dimensional sum, and at worst, includes
an integral as well. Currently, these effects are neglected: while the electrodes are neither
infinitely long (V' does in fact vary in ), nor do the electrode sets repeat infinitely (the
electrode sets are not strictly periodic), these effects only play a role near the edges of the
electrode array. Nevertheless, in future designs where strong three-dimensional confine-
ment becomes more important, it may be necessary to handle these effects quantitatively.
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Chapter 4

Properties of ¢°I1 Metastable CO

In its X'+ ground state, carbon monoxide is relatively uninteresting for Stark manipu-
lation. It has a closed-shell electronic structure given by

XY (1s0)*(1sC)?*(2s0)2(2s 0*)*(2p ) (2p 0)? (4.1)

The dipole moments produced by these orbitals nearly cancel out, so the experimentally
observed dipole moment is small (about 0.112 Debye) [77]. Furthermore, the first two
states that can be mixed by an electric field are 3.8 cm™! apart at zero field, and thus the
Stark shift that results at any reasonable field is quadratic in its electric field strength
dependence.

The a®II state, in contrast, has many advantages over the ground state. Its electronic
configuration is given by:

a’ll: (1s0)*(1s 0)*(2s0)*(2s0*)*(2pm)* (2p o) (2p 7*) (4.2)

The 2p 7* orbital has a significantly lower electron density around the carbon atom than
the 2p o orbital from which the electron was excited [78]. Because of this, the a state has a
much larger body-fixed dipole moment, determined experimentally to be 1.37 Debye [79].
For reasons that will become clear shortly, each rotational level of a II electronic state is
split into two closely spaced sublevels which have opposite parity and can therefore mix
in an electric field. For the state of '2CO where J = 1, M = 1, and Q = 1, this splitting

is Ey = 394MHz, and as a result, this state has a strong, linear Stark shift already at 1
kV

The a®II state has the additional advantage that molecules in this state carry with
them 6.0 eV of internal energy. When a molecule collides with the surface of a metal
such as gold, this internal energy can be used to drive an electron from the metal, which
can be directed toward an electron detector such as a microchannel plate (MCP), which
amplifies the electron.

To understand the motions of this molecule in an electric field, it is necessary to
understand its fine and, in the case of the 3CO isotopologue, hyperfine structure. The
process of calculating a quantum mechanical eigenenergy is conceptually fairly simple.
First, an orthonormal basis set, i.e. a set of ¢, where (¢;|¢;) = d;;, is chosen that can
describe the wavefunction of the system. Next, the Hamiltonian matrix elements H;;
based on this basis are calculated. These describe how basis vectors are coupled through
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40 Properties of a*II Metastable CO

the Hamiltonian operator.
Hi; = (il H|¢;) (4.3)

Finally, this matrix is diagonalized. The resulting eigenvalues give the energies of the
various energy eigenstates.

The basis set used to calculate the rotational energy level structure of a3II CO, the
Hund’s case (a) basis set, will be described in section 4.1. In order to enable the calcula-
tion of the matrix elements, certain mathematical tools will be introduced, particularly
the formalism of spherical tensor operators in section 4.3. The fine structure and hy-
perfine structure Hamiltonian contributions will be described and their resulting matrix
elements calculated in section 4.4. Finally, the resulting level structure will be shown,
including the effect of electric and magnetic fields, in section 4.5.

4.1 Hund’s Case (a) Basis Set

In 1926, Friedrich Hund published an article describing four different possible hierarchies
which describe the coupling of electronic motion and nuclear motion in various molecules
[80]. The first of these, now known as Hund’s coupling case (a), provides a good descrip-
tion of 3II molecules such as metastable CO at reasonable low .J values.

Hund’s case (a) assumes that the interaction between the nuclear rotation and the
total electronic motion is small compared to the interaction between the electron orbital
and spin angular momenta, and that both of these interactions are much smaller than the
interaction of the electronic orbital angular momentum with the internuclear axis. Thus,
it is possible to describe a case (a) molecule through a hierarchy of angular momentum
contributions. The first of these is the projection of the electronic orbital angular momen-
tum along the internuclear axis, which is labeled with the quantum number A. Because
the orbital and spin angular momenta are also strongly coupled, the projection of the
electronic spin along the internuclear axis is also well defined and is given the quantum
number . Unlike the electron orbital angular momentum, however, the electron spin
angular momentum is not so strongly coupled to the internuclear axis that the total spin
is mixed, so the total electron spin can be assigned a quantum number S. These two
projection quantum numbers form a total electronic angular momentum projection given
by £ = A+ 3. The electronic angular momentum finally couples to the nuclear rotation
to form a total angular momentum given by J. Because J obeys the normal angular
momentum commutation relations, it is also possible to quantize its projection along a
space-fixed axis (generally assumed to be the Z axis). This quantum number is labeled
M.

Of the six quantum numbers listed above (A, S, ¥, J, Q, and M), only J and M
are rigorously good, though even these quantum numbers can mix in an external electric
or magnetic field. The total spin S is also treated as being a rigorously good quantum
number, even though it is ever so slightly mixed. This small amount of mixing leads
to the @31l state of CO to have a finite lifetime, despite the fact that the transition to
the ground state is spin forbidden. For all other purposes, however, this mixing can be
ignored.

Basically, there is no molecule that fits Hund’s case (a) exactly. Nevertheless, for
many molecules, it is good enough that it can be used as a basis set to describe the
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molecule’s rotational and fine structure. The true energy eigenstates then contain a
mixture of states with different quantum numbers A, X, and €. By calculating the
couplings between the different basis states, expressing these couplings as a matrix, and
diagonalizing the matrix, the energy eigenvalues can be calculated

If one or more of the nuclei in the molecule have a spin, Hund’s case (a) must be
extended. In nearly all case (a) molecules, the nuclear spin I is included by coupling
it directly to all other components of the angular momentum J to form a total angular
momentum F. This coupling scheme is usually referred to as ag, and consists of the
quantum numbers A, S, ¥, J, Q, I, F', and Mg for a given vibronic state [81]. The
quantum number J from case (a) is no longer rigorously good, and M ceases to be
included in the basis. Instead, the total angular momentum F' and its projection along
the space-fixed Z axis, Mp, become the rigorously defined quantum numbers in the
absence of a field. While [ is not strictly a good quantum number, mixing between
different I states is almost non-existent.

To summarize, in the absence of a nuclear spin, the wavefunction within a vibronic
state effectively has three parts: an electron orbital angular momentum wavefunction,
given by the quantum number A, an electron spin angular momentum wavefunction,
given by the quantum numbers S and X, and a total angular momentum wavefunction,
given by the quantum numbers J, €2, and M. If a nuclear spin is included, M ceases to
be used as a quantum number, and two new wavefunction parts appear: a total nuclear
spin wavefunction, given by the quantum number [ and a total angular momentum
wavefunction including nuclear spin, given by the quantum numbers F' and Mp.

4.2 Orientation of a CO Molecule

For certain energetic properties of a molecule, it is useful to know the orientation of the
molecule with respect to an external coordinate system. The dipole moment of a polar
molecule will be fixed with respect to the nuclei for diatomic molecules, so the orienta-
tion describes the angle between the dipole and the external electric field, and hence the
energy due to this field. Certain symmetry properties, such as parity, are also connected
to the orientation of the molecule, and so a state of a given parity will have a wavefunc-
tion of a particular form as a result. Even the end-over-end rotation of the molecule has
a wavefunction that is a function of the orientation. Describing the orientation wave-
function can provide insight into some aspects of a molecule’s spectroscopy without any
specific knowledge of its internal structure.

4.2.1 Euler Angles

It is possible to uniquely describe an arbitrary rotation of two coordinate systems with
respect to each other using three angles. This is useful for describing a rigid molecule,
since it allows the characterization of some aspects of the system with respect to a set
of fixed nuclei and other aspects with respect to the outside world. In this spirit, we
define two coordinate systems: a space-fixed, given by (X,Y,Z), and a molecule-fixed,
given by (z,y,z). Following the convention of Brown and Carrington [82], we define a
transformation between these two systems. Assume that the two systems are initially
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aligned, i.e. X = 2, Y = gy, and Z = 2. The molecule-fixed coordinates are then
transformed with three sequential rotations:

1. Rotation through an angle x about the Z axis.
2. Rotation through an angle # about the Y axis.
3. Rotation through an angle ¢ about the 7 axis.

In matrix form, this can be written as

X cos¢ —sing 0 cos# 0 sinf cosy —siny 0 x

Y | = | sing cos¢ O 0 1 0 siny cosy O Y

A 0 0 1 —sinf 0 cosé 0 0 1 z
(4.4)

From this equation, it becomes obvious that the inverse Euler angles to (¢,0,y) are
(—x, —0,—¢). The full transformation matrix from space-fixed coordinates to molecule-
fixed coordinates is then given by

x X
y |=R| Y (4.5)
z A
where
cosxy cosfcosp —sinysin¢g  cosycosfsing + sin ycos¢ — cosxsinf
R=| —cosxsing —sinycosfcos¢ cosycos¢p —sinycosfsing sinysinf

sin 6 cos ¢ sin # sin ¢ cos
(4.6)
Generally, the angle 6 is limited to the domain [0,7]. This restriction is made without
loss of generality, since Euler angles (¢,6,x) with 6 larger than 7 can be reduced to
(p+m2m —0,x + 7).

4.2.2 The Quantum Mechanical Effect of Rotations

To extend the Euler angle description to quantum mechanical systems, it is useful to
describe the effect of a rotation on an angular momentum wavevector |JM). A rotation
cannot alter the total angular momentum, but it can alter the projection of the angular
momentum on a space-fixed axis. Thus, after a rotation through the Euler angles w =
(9,0, x), the state |J, M) is projected onto a linear combination of several states |JM’)
whose intensities are described by a matrix.

w)|JM) = Z DY (W) JM) (4.7)

The symbol D4,,,, is the rotation matrix or the Wigner © matrix. Their exact form is
described elsewhere [83]. For the purposes of this chapter, a couple of their symmetry
properties are listed here.

QM/M*( ):( 1)Ml MD{M/ ( ) QMM/( ) (4-8)
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4.2 Orientation of a CO Molecule 43

Additionally, if a Wigner ® matrix is integrated over all Euler angles, the result is zero
unless J = M' = M = 0.

2r  pm p2W
/ DY (W) dw = /0 /0 /O D s (0,0, %) do sin 0df dy = 87%6 5000000 (4.9)

In a system with two coupled angular momenta, rotating each angular momentum
vector separately and rotating the total angular momentum vector are equivalent. The
first takes the form

R(@)| WM T Ma) = Y D00 (@)D, (@) M 5 M) (4.10)

M M;
and the latter has the form

R(w)|Js My JoMa) = (Ji My Jy My | T M) R(w)| J M)
JM
= > (LM LMy TM)D 300 ()] JM')
JMM'
= > (IWMLMy|TM) (T M{ T My JM YDy ()] Jy M o Mj)
JMM' M| M}

(4.11)

Because the angular momentum vectors in the last expression of each equation are the
same, the coefficients must also be the same.

Dt an (WDt ns, (W) = > (AM I M| TM) (T M J, My TM ) Dy (w) - (4.12)

JMM'

This is commonly referred to as the Clebsch-Gordan series. Since the Clebsch-Gordan
coefficients are directly related to 3-j symbols

JoJ J
_ (_1\J1—Jo+M 1 2
(JL My Jo M| JM) = (—1) \/2J+1(M1 i _M) (4.13)

the Clebsch-Gordan series can be rewritten in terms of 3-j symbols.

Q}{}{Ml (w)@ﬁéMQ (w)
_ M—M' Jl JQ J Jl J2 J 7 (4.14)
_J%m(—l) 27+ (Ml My —M)\M; M; —M D (W)

The Clebsch-Gordan series allows the computation of integrals over multiple © ma-
trices. For example, the integral over two ® matrices can be computed by combining
equations (4.9) and (4.14).

i Jo o2 J1 J2 0 Jl JQ 0
/@M{Ml(w)gMéMg(w)dw =81 (Ml M, 0 M M, 0 (4.15)

=870 1,100ty a0 a1 (21 + 1)1 (=) M
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The integral over three ® matrices can be computed by combining this with another
instance of the Clebsch-Gordan series.

/@ﬁ;Ml <w)@ﬁ§M2 (w)@Jz\}éMg (w) dw

= Z (_1)M12*M{2(2J12 + 1) /@ﬁ?sz (w)ngéMg (w) dw

Ji2Mi2 M,

Jl JQ J12 J1 J2 J12
My, My, —My) \M; M) —Mj,

—g? Ji Ja J3 Jv Ja T3
M, M, M) \M! M, M,

4.2.3 Symmetric Top Wavefunction

(4.16)

A Hund’s case (a) molecule behaves approximately like a rigid rotor. Although the
moment of inertia along the internuclear axis in a linear molecule is not well defined, the
angular momentum along this axis due to the electrons must still be accounted for when
computing the molecule’s orientation. As a result, the molecule’s wavefunction cannot be
described as a free rotor, for which the wavefunctions are spherical harmonics. Instead,
the wavefunctions must be calculated using a symmetric top model. This model can then
be used as a description of the orientation of the molecule.
The Hamiltonian of a rigid body is given in the molecular frame by

H=AJ2+BJ}+CJ? (4.17)

where J,, J,, and J, are the angular momenta along the principal axes in the body-fixed
system. The coefficients B and C, which are perpendicular to the internuclear axis, are
equal. Since the coefficients are inversely proportional to the moment of inertia, the
coefficient A, which relates to the moment of inertia of the electrons, is much larger than
B or C'. Thus the Hamiltonian of the symmetric top is

H=BJ>+(A-B)J.” (4.18)

Since the molecule-fixed angular momentum operator J, commutes with the space-fixed
angular momentum operators, we define a wavefunction |JM) which is an eigenstate of
J? (with an eigenvalue J(J +1)) and Jz (with an eigenvalue M). In principle, a rotation
of a coordinate system around a particular set of Euler angles is equivalent to rotating the
function itself in the opposite direction. Thus, one can evaluate a function at a position
given by the Euler angles (¢, 8, x) by rotating the entire function through the Euler angles
(—x, —0,—¢) and then evaluating the transformed function at § = 0. Combining this
fact with the definition of the Wigner ® matrix, the wavefunction can be expressed as

[JM)(¢,0,x) = R(=x,—=0,—¢)[JM)(0,0,0)

::%;anxaomnﬁgwﬂ—xf—&—¢> (4.19)

= Z ‘JQ/> (0, O, O) 9%49’*(¢7 07 X)
Q/
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4.2 Orientation of a CO Molecule 45

Because J, commutes with the Hamiltonian, the molecule has a well defined angular mo-
mentum along its internuclear axis, and |JM) is an eigenfunction of .J, with an eigenvalue
defined to be €. Since the Wigner matrix is already an eigenfunction of .J,

D% (6,0,X) = VD307 (6,0, %) (4.20)

|J€)(0,0,0) is only non-zero when €' = Q. Including the normalization, the symmetric

top wavefunction is then

Because A is not well-defined, since it can represent both the energy of electron orbital
angular momentum and electron spin angular momentum, which both contribute to the
total €1, the eigenenergies given by this wavefunction are not particularly meaningful.
The wavefunction itself, however, is independent of A, and thus accurately describes the
orientation of the molecule.

4.2.4 The Inversion Operator

It is often informative to consider the effect of the inversion operator on a wavefunc-
tion. The inversion operator simply reverses the sign of all coordinates in the space-fixed
coordinate system.

PICX,Y, Z) = (=X, ~Y,~Z) (4.22)

The main utility of this operator comes from the fact that electromagnetic forces are
invariant under inversion: a physical system and its mirror image are both valid from
the point of view of electrodynamics, and will both have the same energy. As a re-
sult, the inversion operator will commute with any purely electromagnetic Hamiltonian,
ie. [ﬁ ,p] = 0. This implies that any eigenvector of the Hamiltonian must also be an
eigenvector of p.!
Applying p to a wavefunction twice returns it to its initial form, so p? is the identity
operator.
PI(X,Y, Z) = pf(—X,—Y,~Z) = [(X,Y, 2) (1.23)

As a result, the only possible eigenvalues for p are +1 and -1. The corresponding eigen-
vectors are described as having positive parity or negative parity, respectively.

Since the wavefunction of a symmetric top is described in terms of Euler angles,
we first seek to find the effect of this operator on the Euler angles. That is, we seek
transformations to the Euler angles which produce an inversion in the space-fixed frame
while leaving the molecule-fixed frame unchanged. Of course this is not strictly possible,
since Euler angles can only describe a rotation group, of which an inversion is not a
member. It is possible, however, to fix the x and z coordinates and allow y to invert to
account for the reflection. The operation of p on the internal coordinates is then defined
as

ﬁf(xaya Z) = f(ili', —-Y, Z) (4‘24)

LAn exception to this can occur when two or more states are degenerate: while certain linear com-
binations of these states will also be eigenvectors of p, if there is more than one possible p eigenvalue
among the degenerate states, then other linear combinations of these states will not be eigenvectors of p.
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To preserve the z coordinate when X, Y, and Z invert requires that 6 — 7 — 6 and
¢ — m + ¢, since the bottom row of the transformation matrix in (4.6) must be negated
to compensate. Preserving the x component similarly requires y — 7 — x in order to
negate the top row. The second row is then unchanged by the transformations to the
Euler angles, implying y — —y.

To summarize, the effect of the inversion operator on the Euler angles is

ﬁ(¢797X) = <7T+¢77T_077T_X) (425)

with the caveat that the reflection in the zz plane must be accounted for separately. This
is the approach used in Brown and Carrington [84].

Next, we examine the effect of p on the Hund’s case (a) wavefunction. Using the
symmetric top wavefunction (equation (4.21)) as description of the external degrees of
freedom of the molecule, we find

D10 (6,0,%) = Diq (m+ o1 — 0,7 —x) = (—=1)"DY,_ (6,0, x) (4.26)

Accounting for the reflection through the xz plane of the internal wavefunctions shows
that ¥ — —Y and A — —A, as expected, and contributes an additional factor of
(—1)A+5+2 [84]. The inverted wavefunction is then

PIASSIOM) = (—1)" 5| =AS—SJ—QM) (4.27)

Therefore, a single A, 3, or €) state is not an eigenfunction of the inversion operator and
might not be a stationary state. To assure that the wavefunctions have a definite parity,
i.e. that they are eigenvectors of p, the wavefunction should instead take the form

1
V2

In the definite parity form of the basis vector, A is assumed, by convention, to always
be positive: if A were negative, the same vector would be obtained up to a phase factor.
The quantum number ¥ can still vary from —S to S, and 2 will vary from A — S to
A+ 5. If S <A, Q will always be non-negative.

There is then a direct relation between matrix elements calculated between states of
a single A, ¥, and 2 and matrix elements calculated between states of definite parity.

IASSIQM4) = —=(JASSTJQM) + (—1)"%|-AS—XJ-QM)) (4.28)

(ASSJQM + |H|ASY J'QY M'+) :%(ASEJQMHEHASZ’J’Q’M’)
1 : .
+§(—1)J—J (=AS—XJ—-QM|H|-AS-X'J—Q' M)

i%(—l)J‘S(—AS—ZJ—QM|1£I]ASE/J/Q/M/>

1 ! A
:|:§(—1)J “S(ASSJIQM|H|-AS—Y'J —Q'M')
(4.29)

For most contributions to the effective Hamiltonian described later in this chapter, only
the first two terms are non-zero, and in these cases, the first two terms turn out to be
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4.3 Spherical Tensor Operators 47

equal. As a result, these contributions can be calculated using only the first term. For
another set of components of the effective Hamiltonian, the A-doubling Hamiltonian,
only the last two terms are non-zero, and thus these components introduce an explicit
dependence on parity into the Hamiltonian.

An energy eigenstate is only required to have definite parity if all contributions to the
Hamiltonian are affected by the inversion operator. If some components are exempted,
then states of opposite parity can mix. Such a situation can occur with an externally
applied field. A complete inversion operator would reverse the positions of the charged
electrodes that generate the external electric field, thus reversing the direction of the
electric field, but because a “reasonable”? inversion operator does not affect macroscopic
objects, the external electric field will only mix states of opposite parity, and parity will
no longer commute with the full Hamiltonian. Magnetic fields, on the other hand, do not
change direction under inversion of spatial coordinates anyway, since both the position
and the velocity of the charges generating them are reversed, so a magnetic field will not
mix states of opposite parity.

The matrix elements between two states of opposite parity are given by

N 1 ~
(ASTIQM & [HIASE T M'F) =5 (ASSIQM|H|ASS J'YM')

1 , X
—5(—1)” (=AS—SJ-QM|H|-AS-X'J—Q' M)

i%(—l)"5(—AS—ZJ—QM|ﬁ]ASEYJ’Q’M’)

1 : .
;5(—1)J “SASSIQM|H|-AS—Y'J' —' M)

(4.30)

In the case of an external electric field, only the first two terms are non-zero, and they
are equal, so it is only necessary to calculate the first term.

4.3 Spherical Tensor Operators

To evaluate the elements of the Hamiltonian in the case (a) basis set, it is useful to
express the operators in terms of spherical tensors. A spherical tensor operator is an
object that transforms like a spherical harmonic under rotations. The transformation for
a spherical harmonic is given by equation (4.7): a single rotation of the physical system
produces a linear combination of projection eigenstates whose coefficients are given by the
Wigner © matrices. In order to rotate a spherical tensor operator, however, two rotations
of the physical system are required: one rotates the system over a set of Euler angles
—w = (—x,—0,—¢), which effectively rotates the operator through the Euler angles

2In principle, one could work with an inversion operator that reverses the position of the plates
generating the electric field. The result would be a coherent superposition of the electrodes with two
different orientations, and parity would again be conserved. Of course, this is not exactly reasonable:
first, coherent superpositions of macroscopic objects do not generally occur, and secondly, to make the
superposition would require the plates, or at least the charges in them, to tunnel to the opposite side,
a process which likely has an extremely high barrier. It is much simpler and much more instructive to
exclude the plates from the inversion operator.
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w = (¢,0,x). After the operator is applied, the system is rotated back to its original
position through the set of angles w. If Tf is a spherical tensor operator, it should satisfy

the equation
RW)TyR(~w) = > Dk ()T} (4.31)
q/

IfT f is transformed by an infinitesimal rotation given by R = 1 — ieJ¢, where ¢ is
an arbitrary space-fixed axis and € is an infinitesimally small angle, then equation (4.31)
becomes

TF —ie[Je, TF] + O(e Z@ (4.32)

Note that R™' = 1 + ieJe. The rotation matrix, 1nstead of being defined using Euler
angles, is defined here by the infinitesimal rotation itself. Using the definition given in
equation (4.7), @';,Q(R) can be calculated by

Dyyo(R) = (kq'|Rlkq) = 0yq — ie(kq'| Je|ka) (4.33)
By substitution, it can be seen that a spherical tensor operator must satisfy the equation
e TH = S (k| Jelka) T (4.34)

!

q

Three special cases of this equation are seen when J; = Jz and when Je = J4 = Jx £iJy.
[Jz, T} = qT} (4.35)
[Je, T3] = Vh(k + 1) — q(g £ )T, (4.36)

The angular momentum vectors Jx, Jy, and .J; can be written as spherical tensor oper-
ators. Because they span a space of dimension three, £ must be 1, so that the dimension-
ality is the same; ¢ then has three possibilities: -1, 0, and 1. Because 7 must commute
with J, it can be concluded that T2(J) may be set equal to Jz. Since [Jy, Jz] = FJ4,
T1,(J) must then be :F\%Ji. Using this result, it is possible to write a dot product in
terms of spherical tensors.

. 1 . .
A-B=AxBx+AyBy + AzBy = §(A+B, +A_By)+ AzBy = Z( )T, (A)T2,(B)

q

(4.37)
Because spherical tensor operators rotate in the same way as spherical harmonics,
they also couple the same way, namely through Clebsch-Gordan coefficients.

Ty (TM(A), T*(B)) =) (kiaikagolka) Ty (A)Ty2 (B)
q192

YR Ne ey (A T

g1 g2 —q

(4.38)

q192

This makes the dot product simply a special case of coupling two tensors where k = ¢ = 0.
TO Tk1 A Tk1 B _ (_1)kl_q1 k1ka
$(TH(A), THB) =) =g TR T,
a (4.39)
S
- B

N S
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4.3 Spherical Tensor Operators 49

4.3.1 Wigner-Eckart Theorem

When evaluating matrix elements, if the bra, the ket, and the operator are all rotated
through the same Euler angles, the result should be independent of the rotation. Using a
spherical harmonic basis and a spherical tensor operator, this rotation can be expressed
using Wigner rotation matrices

k -1 kp—1
(JM|T;|J'M') =(JM|R™ (w)R(w)T,; R~ (w)R(w)|J' M')
= 3 D) D @)D TUIT Ty A0
Hop! g
The integral of the product of the three Wigner matrices over all Euler angles is given by
1 * / _ J kJ J kJ
oz [Pl DDy do =y (KT (0 )
By integrating the first and last part equation (4.40) over the Euler angles and dividing
by 872, we find

I _ J k J
Eaizr) = o (2 b ) e (1.42)
where N
/ — J J' 71
Ty = X e ()8 i) (443
g

Thus, any matrix element of a spherical tensor operator can be reduced to the product of
a factor that is only dependent on J, J" and k, and a 3-j symbol that contains the entire
dependence on M, M’ and q.

Calculation of the Reduced Matrix Element

While it is in principle possible to calculate (J||T*||.J") by directly evaluating equation
(4.43), in practice, it is much easier to evaluate a specific case of (JM|T}|.J’M’) and then
solve equation (4.42) for (J||T*||J").

To calculate the reduced matrix element (J||T%(J)||.J'), for example, we first calculate
(IMITL ()]

(JM|TY )| J' MY =(TM|Jz|J My = 655000 M

wfJ 1T . (4.44)
o7 (2 ) I
By solving this equation for (J||T*(.J)||.J"), we find that
(JITHDTY = /T (T +1)(2J + 1), (4.45)

Equation (4.45) can be generalized to include reduced matrix elements for higher order
tensors that consist of only one angular momentum coupled together multiple times. We

start by noting that, for a spherical tensor T,f(j, e j), T,f:ll(j, - j) is given by

A A A ~ A

T, D) =T, ..., )T () (4.46)
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The matrix elements for 7, ,fjll(J J ) can be either computed directly or can be com-
puted as a product of the matrix elements of the two factors on the right hand side of
the equation.

(IMITER (T, DMy = Y (IMITE, . D) M7) (M| T ()] M) (4.47)
J//M//
From the Wigner-Eckart theorem, this equation is only non-zero when M’ = M — (k+ 1)
and M"” = M — k. From equation (4.45), J” = J'. Equation (4.47) thus simplifies to

gm( J  k+1 J' k17 NI
O (R w ey VI )

s (kT peorw(J 1T 448
=(=1) (—M k M—k;) (=)™ )<—(M—k) 1 M—(k+1)) A
ST DY TH DI

It has been assumed thus far that, although the reduced matrix element of 7"(.J) only
connects states of the same J, T"’(j R, J ) could in principle connect different J values.
However, an inductive argument shows that this is not the case: if (J||T%(J, ..., J)||J")
is only non-zero when .J = .J', it follows from equation (4.48) that (J||T**1(J, ..., J)||J’)
is also only non-zero when J = J’. Since this condition has been shown previous to be
true for £ = 1, it must also be true for all £ > 1.

Using equation (4.45), equation (4.48) can be further reduced to

T, D) = 2\/(2‘] O DT G D) (a9

Using this recursive formula and equation (4.45), it is possible to write a general formula
for (J||T*(J,...,J)||J").

TITH, . DT = k \/ @I+k+1! (4.50)

(2J — k)1(2k)12k77

It should be noted that, although equation (4.50) was only proven for k£ > 1, it also
produces the correct reduced matrix element for 7° = 1. This trivial reduced matrix
element is (J||T°||J") = V2J + 18,

One final commonly used spherical tensor is the complex conjugate of the Wigner
matrix, D% "(w), where p is used as the lower index. The matrix element of DF " (w)
evaluated in a symmetric top basis (equation (4.21)) is given by an integral over three ©
matrices.

(JOM|DE " (w)|J' M)

:\/(2J—|—1)(2J/—|—1) /CD]{/[Q(L«J)@’; *( )’DM/Q/ () dw

2

! * (451)
_(—pu-ay @I DRI+ D ( JEEREL BT >dw)

72

—(—)M BT T DRI + 1) (_{W ' ]\‘]4) (_JQ : é)
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Thus it is possible to write a reduced matrix element for @][fq*(w).

(T ()| ') = (—1)72 (_JQ ’; é) N(ECESVCVESY (4.52)

The fact that it is possible to write a reduced matrix element for ’D’;q*(w) shows that it
is a spherical tensor operator with an index p and ¢ fixed. In equation (4.52), the symbol
@@q*(w) represents the general form of this tensor. This tensor can also be used in other
contexts, such as being incorporated into a scalar product.

4.3.2 Evaluating Spherical Tensor Operators in Molecule-Fixed
Coordinates

Normally, it is acceptable to evaluate a spherical tensor in any coordinate system, includ-
ing molecule-fixed coordinates. The exception to this is when the coordinate system itself
is a function of the integration variable, which occurs when integrating over the wavefunc-
tion that represents the orientation of the molecule. Several solutions have been devised
to deal with this problem, but the safest is to simply transform the offending spherical
tensor into a space-fixed coordinate system and evaluate it there [85]. In a Hund’s case (a)
basis set, the total angular momentum J depends on the orientation of the molecule. The
spherical tensor operators in the molecule-fixed coordinates, T’ j(j ey J ), must therefore

be rewritten in terms of space fixed spherical tensor operators TIf(JA R ) in order eval-
uate them in this basis. Note that in the remainder of this chapter, the index p refers to
space-fixed coordinates, while the index ¢ refers to molecule-fixed coordinates, following
the notation used by Brown and Carrington [86].

The transformation from molecule-fixed coordinates to space-fixed coordinates is given
by

A

TH,. . ) =) Dk (W) TE(J, ..., J) (4.53)

To evaluate @’;q(w) and T If“(j o d ) separately, we insert a complete projection operator
between the two factors

(JOM|TF(J,.... )| J' QA M)

=N (JQM|T (], ..., J)DF (W) M)
Zp: . " (4.54)

= Y (JAMITE(,.. DT M) (Y M| DS, (w)| QM)

p7J//7Q// ’M//
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The first factor can only be non-zero when J” = J, Q" =Q, and M" = M — p.

> (JAM|TE(, ..., J)Dk (w)|JYM') =
p
S IQMITE(T, ..., J)JQM — p)(JQM — p|(—1)P~1D* | "(w)|J'UM') =

p

S (b ) I D)

soriia (T kTN, gl kT ,
(Lol L ) e (Cy L, ) VETrner D
(4.55)

Using the orthogonality relation

(2J+1)Z(_‘§W l; M‘]_p) (—(M]—p) _kp ]\‘Z,) = 8770 (4.56)

this can be reduced to

J kK J

RS = / 1\ —9+q
(JOM|TF(,..., J)|JYM) = (-1) (_Q e

)(JHT’“(j,...,j)HJ) (4.57)

4.3.3 Tensors Acting on Individual Parts of a Coupled Angular
Momentum

Often, matrix elements are calculated in a basis set that consists of coupled angular mo-
mentum vectors, but the Hamiltonian is defined in terms of each of the components sepa-
rately. In other words, the matrix elements have the form (.Jy.Jo JM|TF(T*, T*2)|J; J;.J' M'),
where T*' only acts on the first part of the angular momentum (J; and Jj), T** only
acts on the second part (Jo and J5), and the two angular momenta couple to form a total
angular momentum J with a projection M. To calculate this element, the coupled basis
vectors and the coupled spherical tensor operators must first be decoupled as is shown in
equations (4.13) and (4.38).

(Jiod M|TH(TS T J) J3 ) M) =
S (F)I M (i (Rt /(2] + 1) (207 + 1) (2K + 1)

M1 My M| Mjp1p2

Bood IN(T T TN [k ke k
My My —M)\M; My —=M')\p1 p2 —p (4.58)
J k !
_ J1—M; 1 1 1 k1 !/
e () e

_ J. k ;
0 (L e ) AT
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By permuting and inverting the bottom row of various 3-j symbols, this can be rewritten
as

(N1 M|TH(T™ T J) J3 ) M) =
(=17 (=DM + 1)+ 1) 2k + DT [ ) (S T*]|J5)

Yy J J Jy k J}
VAt M\ +M( q\kit+ka—p 1 2 2 2 2
B O BT I IR | CA Y

My Mo M{ M} p1p2
/SN R i Jh k(b kK
M, —M' M{ M7 My, —p pr —p P2

(4.59)

This sum over five 3-j symbols and phase factors on the last two lines can be reduced
to the product of a 3-j symbol and a 9-j symbol [87].

(J1oJ M|TY (T, T*2)|J1 J5 0 M)
—(=1)7 IR ()M 20 + 1) (20 +1)(2k + 1)
!
I k) J J ok

BTk
_ / 1
MME2) gy 0 ks (4.60)

RS 1I) Cal 1) (

=(—1)"M /(2] +1)(2J + 1)(2k + 1)
J J ok

, i (T kT
A PN PR AR A
A

Interestingly, (J1JoJ M|Ty(T™,T*)|.J{.Jy.J'M") in terms of the reduced matrix element
in the coupled basis set has a similar form.

(J1Jo MITY(T*, T%2)|Jy 3 J M)
(4.61)

_ J kJ
=(-1)’ M(_M » M,) (I ToJ|[THT* T |73 1T

Therefore, it is possible to write the reduced matrix element in the coupled basis set in
terms of the reduced matrix element in the uncoupled basis set.

T I J||TH(T™ %) || T 5Ty =
12

J J ok
4.62
N RS SV A A A LR O A A T

Jo J} ks

There are a couple of recurring cases to which this equation can be applied in a
simplified form. One is the case of a scalar product between two tensors acting on
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different components of the coupled angular momentum.

\V2k + 15 5
NoAES] JJOMM
(J1Jo J|| T°(TH(A )aTk(A2))||J{J§J>

=(=1D)F/(2k + 1)(2J + 1)1 0001

(Jy o JM|TF(Ay) - TR A | JL T, T MY =(—1)F

B J ok
(ITHADI Ll TH(A)(1J5) S o Ty k
J J 0

:(_ 1)J{+J2+J5JJ/5MM/

(H]ITH(A math*maww{ﬁ ) ?}

Another frequent example is the case where the tensor only applies to one of the two
angular momentum components.

(JL o J||TRAD| T T3 Ty =/ (2T +1)(2J + 1)(2k + 1)

J J ok
(ITHADI (DI § o ik
Jy Jy 0 (4.64)

() BT T DRI D)
(T Tk
il {5

A similar relation exists for spherical tensors that only depend on the second component
of the coupled angular momentum, and differs from this one only in a phase factor.

4.4 Fine Structure of ’Il, v =0 CO

It was stated previously that calculating a quantum mechanical eigenenergy consists of
three steps: a basis set is chosen that can represent the wavefunction of the system, the
Hamiltonian matrix elements H;; are calculated, and the resulting matrix is diagonalized,
yielding eigenenergies and energy eigenstates. In general, however, each energy eigenstate
is a linear combination of an infinite number of basis vectors, and thus the matrix H is
infinite. Choosing a reasonable basis set can minimize these couplings. After that, the
remaining couplings can be handled in such a way that they remain within a single
vibronic state. One way to do this is to follow the effective Hamiltonian framework
described in Brown and Carrington [88]. Effective Hamiltonian theory is a method of
eliminating the interactions which mix vibronic states by replacing them with effective
interactions which operate within a single vibronic state. Formally, this is described
through two projection operators: P, which projects a wavefunction onto the vibronic
state of interest, and Q, which projects the wavefunction onto all other vibronic states.
The results are reminiscent of standard perturbation theory used in quantum mechanics.
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4.4 Fine Structure of ¢®II, v = 0 CO 55

As in perturbation theory, the Hamiltonian, H=Hy+ H , is divided into two parts: a
zeroth order term which has the basis functions as eigenfunctions, and a perturbing term,
which can mix these states. The first order term of the effective Hamiltonian is

o) = PH'P (4.65)

that is, the effect of the perturbing state within the vibronic state. The second order
term has the form

~

_Q
Hy — E
This accounts for first order couplings to other vibronic states, but leaves the eigenvalues
of the operator within the same state. While higher order terms are possible, these are
not necessary to describe the energy levels of the a®II state of CO.

Using the Hund’s case (a) basis set and the effective Hamiltonian formalism to cal-
culate the zero-field levels in aII *2CO only requires considering three basis vectors at a
time. To calculate the zero-field levels in the same state in '*CO using the ag basis set
still requires only six states. Even when external fields are included, no more than a few
hundred states are required to describe the energy level structure quite accurately. Such
calculations can be easily performed on modern computers

Here, we consider seven components of the effective Hamiltonian in order to describe
the fine structure energy levels within the a3II,v = 0 state of 2CO, and one additional
term to include the hyperfine structure seen in *CO. Four of these already appear in
the zeroth-order Hamiltonian: the rotation of the nuclei around each other (I:Imt), the
spin-orbit interaction of the electrons (I:ISO), the spin-spin interaction (I:ISS), and the
spin-rotation interaction (]:Isr). Additionally, the rotational Hamiltonian and the spin-
rotation Hamiltonian include first-order coupling that mix states within the vibronic level.
The centrifugal distortion terms, such as ﬁcd, result from second-order mixings of other
vibrational states through H,. The A-doubling term, Hip is another second-order term
resulting from a combination ]:Imt and ﬁso mixing the wavefunction with other electronic
states.

With the exception of the A-doubling terms, the Hamiltonian used here is taken from
Brown and Carrington [89]. In the case of the A-doubling terms, the sign is reversed,
as this results in positive coefficients, and also reflects the convention followed in other
works [90, 91]. As is done elsewhere in this chapter, some notation is also adopted from
Brown and Carrington. Particularly, the coefficients of the Hamiltonian terms all contain
the subscript nv (e.g. B,,), indicating that the coefficient applies to a single vibronic
state. In addition, this helps to distinguish the A-doubling parameters p,, and g, from
the space- and molecule-fixed spherical tensor indices p and q.

a% = pa H'P (4.66)

4.4.1 Nuclear Rotation Hamiltonian

The energy of two nuclei rotating around each other is given by
Hrot B/ R2 (467)

where R is the rotational angular momentum of the nuclei. Generally, it is considered
simpler to express this in terms of N = R+ L = J — S because this mostly eliminates
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the dependence of the function on the components of the orbital angular momentum L,
and L,,, which are ill defined in a diatomic molecule. The operator in this form is

Ho = B, (N - L)? = <N2 + Z 1T} (L)T* (L) — 2 Z 1)IT} (N (i))

(4.68)
The terms involving T)_.,(L)T,_-,(L) are not measurable and are generally included

in the overall offset of the electronic state, since they are the same for all sublevels.

The terms qu:ﬂ(N )7, ;ZJFl(ﬁ) mix with other electronic states, which can produce en-

ergy perturbations to second order. ACross terms in the second order Hamiltonian such
as Pquzl(N)T1 (L)% Q T,_ (N)T,_(L) P have the same form as the first order

g=-1 qg=-1
operator, and therefore produce a small correction to Bv’vv‘ Terms such as

PT,__ 1(N)T;:1(13) i QE T;——1(N)T¢}:1(E> P can mix states with AA = 2 and become
important for the A- doubhng component. X ) ) ) )
The only remaining terms are proportional to N?, T,_o(L)T,_o(L), and T,_(N)T,_,(L).

Thus, the H,o operator can be simplified to

H,o = B,(N* — N.?) (4.69)

where B, now includes the second order terms previously mentioned.

Because the coefficient B, is a function of the internuclear distance, it can mix
different vibrational states, leading to a second-order perturbation, which is called the
centrifugal distortion. This effect will be described in more detail later, but the rotational
centrifugal distortion term is proportional to the square of the rotational Hamiltonian.

~

Hrotcd - _Dnv(N2 - Nz2)2 (470)

While many texts describe I;Tmt and ﬁmwd in this form, it is not strictly necessary to
include N, since it is the same for all levels of an electronic state. The sum of these two
terms can then be written as

Hyot + Hyotea = —(N.”B,, + N.*D,,) + (B, + 2N,?D,,)N* — D,,,N* (4.71)

Thus, ﬁrot and I:Irotcd can be simplified to

~

H.y = anNQ (472)
I:Irotcd = _Dm)N4 (473)
where B,, = B,, + 2NZ2DW. The remaining term, —(NZ2B7’W + Nz4Dnv): produces an
overall offset to the Hamiltonian for a particular vibronic state.

To calculate the matrix elements, the rotational Hamiltonian, which is proportional
to N2, must be rewritten in terms of the J and S used in the Hund’s case (a) basis set.

f{rot = anN2 = an(J S) 77’0(‘]2 + 52 2j : g) (474)

The terms .J2 and 52 are diagonal in the case (a) basis, with eigenvalues .J(.J 4 1) and
S(S +1) respectively. The dot product, however, can mix terms of differing ¥ values. To
calculate the dot product, we express it in terms of spherical tensors.
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Because S is defined in the molecule fixed axes in the case (a) basis, while J must
be defined in external coordinates, the spherical tensors based on J must be rotated into
the external coordinate system.

T8 =) (=) (NT}S) =D ()T ())D)_,(w)T, (5) (4.75)

q q
q p.q

The index p is defined in space-fixed axes, while the index ¢ is effectively defined in
molecule-fixed axes. The factor T, (S) acts on the electron spin component of the wave-
function, and can be computed using the Wigner-Eckart theorem.

sEInENse) = (05 (5 ) 5 ) ST Eis)
(4.76)
= (-1)5"% (_SE ; g) VS(S+1)(25+ 1)

The remaining factors, T’ pl(j )D,_,(w), act on the total angular momentum component of
the wavefunction. It was shown previously (equation (4.57)) that this part of the matrix
element could be reduced to

D (=DUIQM|T) (N)D)_ (W) [JYM) = \/T(J +1)(2] + 1)(-1)"° ( J 1 J>

—-Q q
P
(4.77)
Thus, the rotational Hamiltonian can be written as
1 .
(ASSJQM |H, ot |ASY T MY =6qq sy (J(J +1)+S(S+1))—
nv

2/ J(J +1)(2J + 1)(=1)"4 <_JQ Q —1 o 52])

VEEFIEs -0 (5 oty 5
(4.78)

Since Q = A+ Y and ' = A+ Y/, then Q — Q' =3 — ¥/ and replacing g by Q — Q' in
the first 3-j symbol and by ¥ — Y’ in the second is valid. Because the sum of the lower
components in a 3-j symbol must be zero, ¢ = Q2 — Q' = ¥ — ¥/ is the only non-vanishing
term in the series.

4.4.2 Spin-Orbit Hamiltonian

The coupling of the electronic spin to the electronic orbital angular momentum produces
a term given by

A~

Hy = ApL -8 =AY (=1)T}(L)T,(S) (4.79)

q

As in the nuclear rotation Hamiltonian, the terms involving 7 C}:ﬂ(f})T;:jFl(S') mix the
wavefunction with other electronic states. Cross terms such as

Dissertation, Fachbereich Physik der Freien Universitat Berlin, 2010



58 Properties of Il Metastable CO

(S*) H QE qu=—1
0—L£0
rections to the spin-orbit Hamiltonian and spin-spin Hamiltonian. As with the rotational
Hamiltonian, second order terms of the form P T,_, (L)T,__,(S5) HOC—?EO T, \(L)T)__(S)P

contribute to the A-doubling. R )
The remaining term, A,,T,_(L)T,_,(5), acts within the vibronic state. In the Hund’s
case (a) basis, the spin-orbit Hamiltonian is diagonal, and the matrix elements take the

form

Pquzl(ﬁ)Tl

y——1 (ﬁ)T;Zl(S’)P simultaneously produce second-order cor-

1
Apy

(ASSJQM|Hyo| ASSTQM) = AS. (4.80)

4.4.3 Spin-Spin and Spin-Rotation Hamiltonians

Two other contributions to the fine structure Hamiltonian which are important for fitting
the energy levels of a®II CO are the couplings of electron spins with each other and the
coupling of electron spins to the rotation of the nuclei. These energies are given by

~ 2 A N
Hy, = g)‘nv(?’(qu:o(S))Q — 5% (4.81)
f{sr = ,YT]UN : S (482)

Both of these terms receive second-order contributions from the other couplings. The
spin-spin term has a contribution from the spin-orbit terms mixing in other states, and
the spin-rotation term through the rotation and spin-orbit terms simultaneously coupling
other states. However, neither term couples to other electronic states.

The spin-spin Hamiltonian is diagonal in the case (a) basis set: T;ZO(S’) has the

eigenvalue ¥ and 52 has the eigenvalue S(S+1). The matrix elements are then given by

1

(ASEJOM || ASEIOM) = 5(322 _S(S+1)) (4.83)

nv

To calculate the matrix elements for the spin-rotation Hamiltonian, N must be rewritten
as J— S, resulting in two terms. The first is proportional to J - S, whose matrix elements
have already been calculated in conjunction with the rotational Hamiltonian. The second
term is proportional to 52, which is diagonal in the case (a) basis and has the eigenvalue
S(S + 1). Thus, the matrix elements for the spin-rotation Hamiltonian are

1 .
— (ASSJQM | Hy [ASS T M) =/J(J + 1)(2J + 1)(=1)72 ( JQ a ! 0 S{)
nv N N

vEEEnE -0 (5 oy o)

— 6QQ/522/S<S + 1)
(4.84)

4.4.4 A-Doubling Hamiltonian

If A =1, terms of the Hamiltonian of the form quzl(fl)T;:_l(lA}), where A is angular
momentum other than L, can mix in another electronic state with A = 0. This A = 0 state
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can then be coupled to A = —1 through a Hamiltonian term of the form T;ZI(A’)T;:_I(ﬁ).
Since A = —1 represents the same electronic state as A = 1, this pair of terms can lead to
a second-order contribution to the effective Hamiltonian. In particular, two such terms
exist that can result in such a coupling. The nuclear rotation Hamiltonian contains terms
of the form T, (N)T (L), and the spin-orbit Hamiltonian contains terms of the

form 7)1, (S)T_.;(L). These factors, along with their cross terms, form the A-doubling
Hamiltonian

Hip =0y Y e T3 (S, 8)—pyp Y e T3 (N, S)+qp Y e 2"T5 (N, N) (4.85)

q==1 q==+1 q==+1

The €% factors are included to explicitly connect the A = 1 states to the A = —1 states.
This assumes an effective form of the A component of the wavefunction

|A) = e (4.86)

As in other cases, in order to evaluate the matrix elements in the case (a) basis set,
the N operators must be replaced with J — S. The Hamiltonian can then be rewritten
as

f{LD - (Onv +p7]v + an) Z 6_2qi¢T22q<‘§7 g)
q==1

—(pyo + 2a90) > € 21OTE (], S) (4.87)
q==+1
g Y € 2T (], )

g==*1

The matrix elements of e¥2¢T2,(5,S) can be calculated using the Wigner-Eckart
theorem and equation (4.50). Additionally, the matrix elements of e¥2¢T?2,(.J, S) can
be computed by first decomposing T2,(J, S) to T2,(J,S) = TL,(J)TL,(S). Since the
tensors T'L, (J) and T2,(.J, J) are defined in a molecule-fixed coordinate system, the total
angular momentum component of the matrix elements of e¥>*T2,(.J, S) and the matrix
elements of e¥2¢T2,(J,.J) must be evaluated using equation (4.57).

(A = FDS(FE)J(FOM|eT (S, S)|(A = £1)S(£T)J (£2) M)

sy (S2 S (25 + 3)!
o % +2 +%) |/ 24(25 - 2)!
(4.88)
a1y (S 28 (25 + 3)!
a0 2 2 )\ 2425 - 2)!

1
:§5Q+Q/70(52+E/7_2 \/(S - — 1)(5 — E)(S + X+ 1)(5 + X+ 2)
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(A =F1)S(FX)J( ¢Q)M\e¢2“¢’T2 (J,9)|(A = £1)S(£X)J(£Q) M)
s 1 S

(_1)7E0sED (iQ 4 iQ’)(iZ L iZ’) VIT DT+ 1)S(S + )28 + 1)

=(—1)/FHSFEH (é 11 o )(g } g,) VI +1)(2] +1)S(S+1)(2S +1)

= S aborm 2T - 0T DT+ DG DB 15+ 1)
(4.89)
(A = FD)SEFD)T(FQMITOT,(J, DA = £1) () (£)M)
ol J 2 J (27 + 3)!
=" (iﬂ T2 iQ’) 24(27 — 2)!
(4.90)

ofJ 2 J (27 + 3)!
==’ <Q —2 Q’) 24(2J — 2)!

1
:§5Q+Q/7252+E/70\/(<} - Q —f- 1>(J - Q —f- 2)(J —f- Q - ].)(J + Q)

The factor do1qr in the first equation arises because the matrix element only depends
on the spin portion of the wavefunction and thus vanishes unless F = +£'. Similarly,
the factor dx4yv o in the last equation arises because the matrix element only depends on
the total angular momentum. The two Kronecker deltas in each equation are, however,
redundant: because Q =X +1 and Q' =X’ +1, then Q4+ Q' = X + X'+ 2. In subsequent
equations, only Kronecker deltas involving € + €’ will be used.

It was stated earlier, in section 4.2.4, that wavefunctions that are eigenfunctions of
the inversion operator are comprised of a linear combination of states where A = |A| and
A = —|A|. Equation (4.29) shows the matrix elements between two states of the same
parity. Since the A-doubling Hamiltonian can only mix states of different A, the first two
terms vanish. The last two terms can, however, mix states A = —1 and A = 1. Equations
(4.88), (4.89), and (4.90) demonstrate that these last two terms are the same for the Hyp,
so the matrix elements for definite-parity wavefunctions can be written as

(A =1)STJQM + |Hyp|(A = 1)ST/ Q' M'+)

_ . (4.91)
==+ (=1)75((A = =1)S(=%)J(—=Q)M|Hyp|(A = 1)SE' QM)

For matrix elements between two states of opposite parity, the first two terms of equation
(4.30) are zero and the last two terms cancel, so the A-doubling Hamiltonian can only
connect states of the same parity. This confirms that Hyp commutes with the inversion
operator.
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The matrix elements of Hyp in a definite-parity basis set are given by

(A =1)SSJQM + |Hyp|(A = 1)ST/JQY M=) =

(1)’ ((om, + Do+ G)dar0 0V (S— 2 — DS — D) (ST + 1)(S+ 2 +2)

1
2

— (Do + 2ap0)00s 1V (J = Q+ D(J + Q)(S = S)(S+ X +1)

+qm}69+91’2\/(<] - Q + 1)(J - Q + 2)(J + Q- 1)(J + Q))

(4.92)
The matrix elements of the two parities are equal and opposite. In the case of a®II CO,
the eigenfunctions of the form |A = 1) + |A = —1) have positive matrix elements, and
the eigenfunctions of the form |[A = 1) — |A = —1) have negative matrix elements. If

there are no other parity-dependent components of the Hamiltonian, the upper level of a
A-doublet will always have a parity of (—1)775.

4.4.5 Centrifugal Distortions

It has been stated previously that, because the rotational constant B is dependent on
internuclear distance, a second-order correction term arises that is proportional to N4,

Because many terms depend at least slightly on internuclear distance, such terms can
couple to other nearby vibrational states. The second-order coupling to other vibrational
states is given by

~ 1 ~ ~ ~ «
(2) _ ! 2 / / ! 2
Hiy = Z;; ml@)(UI(H + B(r)N7)[v)(v'|(H" + B(r)N7)|v) (v] (4.93)
One of the product terms is the rotational centrifugal distortion term seen before, given
by
: [(WIB)V) 4
HI‘O Cf - = N
od = ) T N (4.94)
v'#v
In addition, two cross terms appear

A "B A A "B A N A A
e = ; —%' ng) {(lir), N2} = ; %' , E?“E) (¢wl ') N2+ N2 ol 1))
(4.95)
However, other parameters are also dependent on internuclear distance, resulting in

a centrifugal distortion terms of the form

- tant (o o~ tant -~ o 4 PN
Cd:—conzan { g o} :—conzan (N?Ho + HoN?) (4.96)

For example, in the spin-orbit Hamiltonian, H,,, the dependence of the coefficient A,
on the internuclear distance results in a centrifugal distortion term of the form

2 AD v 72 1 7 1 G
Hipoa = 5% {N ,TqZO(L)TqZO(S)} (4.97)
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The matrix elements in the Hund’s case (a) basis can be calculated by inserting a complete
projection operator between N* and T,_,(L)T,_y(S5).

1

(ASEJQM |Hyoea| NS/ TV M)

Dnv
1 O " " " " T Q / /
=5 ) (ASSIQM|N?|ASE" JQ MY(ASE" JQ MI|T,_o(L) T, (S)|AST T M) (4.98)
EIIQN

43 > (ASSIQM(T) (L) T)_o(S)|ASS T M)(ASS" JQ" M|N?|ASE J M)

Z//Q//

Since T (L)T_,(S) is diagonal in the Hund’s case (a) basis set, the first term is only
non-zero when ¥’ = ¥’ and Q" = ' in the first term and when ¥” = ¥ and Q" = Q in
the second term. Using the matrix elements for TC}ZO([A/)TQIZO(S ) given in equation (4.80),
equation (4.98) can be reduced to

1

ADnv

(ASSIQM | Hypeq| NS T M) = %(AZ + AYV(ASSIQM|N?ASS T M) (4.99)

The matrix elements of N? can be found in equation (4.78).
Other centrifugal distortion terms are given by

. Abry (< . .
Hsscd = ];7] {N27 3<qu:0(s>>2 - SQ} (4100)
Haod = % {NZ,N : S} (4.101)
Hipea = ODQ"V 3 {NQ,e—WT;q(S, S)} - p];"v 3 {N?,e—ngq(N, S)} (4.102)

q==+1 g=+1

+ L S A e e (N, )
q==1

(4.103)

As in equation (4.87), Hipeq can be rewritten in terms of J and S.

Yy o v+p V+q v ; —2qgi & A
Flipeq = 22 POm =0 N7 {2, o2oiope (§,.9) |
g==*1

v 2 v ; —2qgi T A
— Py T S +2 e 3 {NQ,e 2q’¢T§q(J,S)} (4.104)
g==*1

donv 12 _—2qi¢p2 (T T
+Tq§1{]\7 T2 (],0) )

In Hyeq and the first term of Hipeq in equation (4.104), the right side of the anticom-
mutator is diagonal in the Hund’s case (a) basis set, so the matrix elements of these
terms can be calculated in the same manner as in equation (4.99). For all other Hamil-
tonian components, the matrix elements must be calculated using a complete projection
operator, as in equation (4.98).
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4.4.6 Magnetic Hyperfine Hamiltonian

If one or more nuclei in the molecule have a non-zero spin, this additional angular mo-
mentum can couple to the other angular momenta already present. In some molecules,
coupling can occur through the electric quadrupole moment of a nucleus, but this is zero
unless the nucleus has a spin of at least 1 [92]. For a molecule such as 13CO, in which
the oxygen nucleus has no spin, but the carbon nucleus has a spin I = 3, L coupling be-
tween the nuclear spin and other angular momenta is entirely through magnetie dipole
interactions.

For the case that only one nucleus has an angular momentum, the magnetic hyperfine
Hamiltonian has the form

. . . \/6 A ey
e = ay To—o (DT (L) + by T (1) - T (S) + oo 5 Lizo(1,8) —dy, > e T (1,5)
q==1
(4.105)
The first term is the coupling between the nuclear spin and the electron orbital angular
momentum, which is proportional to TYI)-T'(L). Because, to first order, terms con-
taining TC}#O(L) only couple to other electronic states, the first term can be written as

being proportional to 7 ql:O(.f )T, ;:O(ﬁ). Terms where ¢ # 0 can couple to second order,
however, and this results in a term resembling a A-doubling. The last term of the mag-
netic hyperfine Hamiltonian is effectively a cross term between the nuclear spin-electron
orbital angular momentum coupling and the standard spin-orbit coupling.

The second and third terms are interactions between the nuclear spin and the electron
spin. The third term is the normal dipole-dipole interaction. The second term, known as
the Fermi contact term, results from the fact that the nucleus has a finite size, so if an
electron is inside the nucleus, it sees a fairly constant field parallel to the nuclear spin. In
the effective Hamiltonian framework, this term also receives a second-order contribution
from the same terms that lead to the last term in the magnetic hyperfine Hamiltonian.

What each of these terms have in common is that they require knowledge of the nuclear
spin in molecule-fixed coordinates, but in the ag basis, I is only defined in space-fixed
coordinates. Therefore, it is necessary to rotate spherical tensors defined in molecule-fixed
coordinates, qu(f ), to tensors defined in space-fixed coordinates, T, pl(f ).

:ZT;(f)cgl
_Z PN I)D, [ (w) (4.106)
=(—1)qT1(I) DL, (W)

The dot product T(I) - ®! (w) has a part that operates on the nuclear spin wave-

function (7"(1)) and a part that operates on the total angular momentum wavefunction
(@}_q*(w)). Using equation (4.63), this can be rewritten as

I I F
(JUDL, WITYUNINTH (D))

~ / !
(JOAIFMp|D' [ (w) - T (D) J'YTFMp) =(=1)" " {J T } (4.107)
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Therefore, the matrix element of qu(_f ) in the ag basis is

A / J J 1 J 1 J
1 10y _(_ 1\ HI+F+J-Q+q
(JOIFMp|T} ()| J'QTFMg) =(—1) {] / F} (_Q _q Q,>

VI +1)(20 +1)(2 +1)(2J' +1)

(4.108)

In the magnetic hyperfine Hamiltonian, qu(f ) is the only factor dependent on the
total angular momentum and the nuclear spin angular momentum: the other factors
depend only on the electronic orbital angular momentum and the electron spin angular
momentum. The quzo(f)) factor in the first term operates only on the electronic orbital
angular momentum part of the wavefunction and has an eigenvalue of A. Thus, the
matrix element of T;ZO(IA)T(;ZO(IA/) is

(AJQSEIFMp|T,_o(I)T—o(L)|AJ'QSSIF Mp)

—A(—1)7H =0 {}7 ’? }} (_JQ [1) “{2) VI(I+1)(21 +1)(2] +1)(2J' + 1)
(4.109)

The second and third terms only contain I and S , and these can be divided into separate
factors

THI) - T(S) =) (=0T, (DT, (S) (4.110)
72 (1.5 - 3 (e - S (3 )

(4.111)

The matrix elements of the T, ql(g) factors can be evaluated using the Wigner-Eckart
theorem. The matrix elements for T%(1) - T*(S) and %équzo(j, S) are then given by

(JQASSIFMp|TY(I) - TH(S)|J'YSETF M) =

: JJ L\ (J 1 J\(S 18
NS I+ F+I—Q+5-3%
> (1) {I 7 F} (_Q J Q,) (_2 ‘ 2’) (4.112)

q

VS(S+1)(2S + D)I(I 4 1)(21 +1)(2J + 1)(2J' + 1)

6 A A
<JQSEIFMF|\§T§O(I, S JQVSETFMp) =

/ _ougs_x(2 J J 1 J 1 J S 1 85
Z(_1>J+I+F+J Q+5 2<§_q2) {[ ; F} (_Q ] Q’) (—Z ] E’) (4.113)

q

VS(S+1)(2S + D)I(I 4 1)(2 +1)(2J + 1)(2J" +1)

In both equations, the 3-j symbol is zero unless ¢ = Q — Q' = ¥ — ¥'. Therefore, each
sum can be reduced to a single term.
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The final term of the magnetic hyperfine Hamiltonian resembles a A-doubling: it
only connects A = 1 states to A = —1 states. Using the fact that T ,,(I,5) =

qu:il(f )qu:il(g ), the matrix element is given by
(A =F1)J(FQ)S(FE)IFMp| — T2 (I, 9)|(A = :I:l)J/(:I:Q'

(1) RS J J 1 J 1 J
I I F(\+£Q F1 =+ iEil

VS(S+1)(2S + D)I(I 4 1)(2 +1)(2J + 1)(2J' +1)

S
VTS (O AN E R AN VRPN ASU I A SR-TESl (VA |
(1)} -1) OTHELHETS

VS(S+1)(2S + DI(I +1)(2I +1)(2J +1)(2J' + 1)

(£2)TF Mp)

(4.114)

Using the definite-parity basis set, the third and fourth term of equation (4.29) are equal,
and the matrix element is given by

> (A =1)JQSSIFMp £ | — e 29T5 (1,9)|(A = 1)J' QST TF Mpk) =

q==1

4 (1) Y J J 1 J 1 JN\N(S 1 S (4.115)
I I F Q -1 > 1 ¥

VS(S+1)(2S + D)I(I 4 1)(21 +1)(2J + 1)(2J' + 1)

Combining these equations, the matrix elements of the magnetic hyperfine Hamiltonian
are given by

(NQSSIFMp + |Hype | AJ'YSS'TF Mp )

—=(—1)/ I {‘; JI ;} VI +1)21 +1)(27 +1)(2J' +1)

J 1J
(CLm,A(SQQr <—Q 0 Q)

_ J 1 J' S 1 S

ran-0 (- @-7) (7 o lg 5) (% oly o) VEGT D@D

w(J 1 J\(S 1
+dyu0p1(—1)7 E(Q O Q,) (2 o 2>\/S (S+1 (2S+1))

(4.116)

4.5 a3l CO States

4.5.1 Zero-Field Energy Levels

The fine structure energy levels of @I CO in the absence of a field can be calculated
by writing the couplings within and between states in a matrix and diagonalizing the
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matrix. If the definite parity basis vectors are used (as in equation (4.28)), a maximum
three basis vectors can contribute to any given energy eigenvector in 12CO: [(A = 1)(S =
(X = Q—1)JQM=), where Q can be 0, 1, or 2. In the same state in *CO, at most
six vectors from the ag basis contribute: [(A =1)(S =1)(X =Q—1)JQ( = 1) FMp),
where 2 is 0, 1, or 2, and J is F + % or F'— % If J < 2, certain values of €2 would lead
to a non-physical state, so for such cases, these states must be excluded.

What are still missing are the various parameters used in section 4.4. In principle,
these can be found from ab initio calculations of the electronic structure. However,
it is generally more accurate and somewhat more straightforward to use spectroscopic
measurements. With a reasonable initial guess of the parameters, one can perform a
non-linear least squares fit of the splittings between individual states. For 2CO, data is
available in the form of microwave measurements of the A-doubling splittings [79], mil-
limeter wave spectroscopy of transitions between rotational states [93, 94, 95], and optical
absorption measurements involving transitions from the electronic ground state [96]. For
13CO, somewhat less data is available: only measurements of A-doubling splittings [97]
and a few measurements of rotational transitions [98] have been performed. Using this
data, it is possible to fit the various parameters of the Hamiltonian and produce a model
that can reproduce all of the energy levels of the a®II, v = 0 state.

The results of fitting these parameters in '2CO and '*CO are shown in table (4.1). The
parameters Ap, Ap, op, pp, and qp are the centrifugal distortion parameters for A, A, o,
p, and g, respectively. An additional parameter, Ey, is an offset added to all eigenenergies
and is chosen such that an energy of zero corresponds to the absolute ground state of the
molecule (X'¥T, v =0, N =0).

In 12CO, Ej can be determined using the measurements of optical transitions from the
ground state [96], but this requires knowledge of the ground state rotational structure.
Fortunately, there is very little structure in a 'Y state of a molecule with no nuclear spin:
the energy only depends on the rotational quantum number N [99].

BEgna/cm ™ = 1.9225289523N(N+1) —6.121064- 10" (N(N+1))*+5.727- 10 *(N(N +1))?
(4.117)
In 3CO, the only information available on the a®II state with respect to the ground
state is the shift that we have measured in the ()3(1) transition (from N = 1 in the
ground state to upper A-doublet component of J = 1, 2 = 1 in the excited state) in
12C0O and 3CO. In 3CO, the transition is 4.929 ecm~! higher than in >CO. Combining
this with the energy of the N = 1 level in the ground state (i.e. the N =1to N =0
splitting) [100, 99] and the energy of the upper A-doublet component of the J =1, Q =1
in 2CO, the energy of the upper A-doublet component of the J =1, Q = 1 in ¥CO is
found to be 48483.247 cm ™! above the absolute ground state. The value of Ey for ¥CO
is chosen to match this information.

4.5.2 Energy Levels in an Electric Field

Although a neutral molecule has no charge, it can have a net separation of charge that
leads to a dipole moment. A molecule with a dipole moment in an electric field has a
potential energy proportional to the dot product of the dipole moment and the electric
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Parameter 2CO 13CO

Eoye 48471.537 £+ 0.002 48476.637 £+ 0.005

By, 1.68167658 + 5.6 - 10~ 1.60776012 £ 2.6 - 10~°

D,, 6.37710308 - 107+ 6.9- 10710 | 5.18927095- 10"+ 7.0-107®
Ay 41.4317699 + 2.1 - 1073 41.3988657 + 1.5- 1072

Asz 1.06547611 - 103+ 1.1- 1074 0

Ao 1.78318960 - 1072+ 6.9- 104 5.13591547 - 1072+ 9.5-10~*
ADnw —1.72911227 - 1075 £3.0- 1077 | 3.17305905 - 10~* £ 1.8 - 107
Vv 1.40252011 - 1072+ 1.3- 103 2.70157650 - 1073+ 1.0 - 1073

) + P + dnv

0.875262252 + 1.4 - 1074

0.867485922 + 1.5 - 1073

ODnu + PDno + qDno

—3.63060479 - 107°+2.0- 1077

—2.32050770 - 107+ 7.5- 1077

v

Do + 2Gn0 5.59958031 - 1072 +2.9-107° 5.20960655 - 1072 £ 6.1 -107°
PDnv + 24D 1.09566676 - 107" £5.5- 107 0

Qo 6.15801494 - 107> £ 3.6 - 107 5.47376305 - 107> +1.5-107°
[ 0 5.43605630 - 1072 £ 4.4 - 1077
Yo 0 2.14291502 - 1072 £ 7.3- 1077
Cro 0 2.38473581-107* £1.1-107°
d 0 3.57380271-10% £1.3-107°

Table 4.1: Fine and hyperfine structure parameters for the a3II, v = 0 state of 12CO
and 3CO. Positions containing “0” represent parameters that were constrained to be

zero during the fit. All parameters are given in cm™-.

1

12CO 1300
Upper A-doublet F =3/2 | 48483.2475803757
component (+ parity) A8478.4873553909 F =1/2| 48483.2456319736
Lower A-doublet F =3/2 | 48483.2353135044
component (- parity) 48478 4742107712 F =1/2 | 48483.2340791135

Table 4.2: Zero-field levels for the a3Il;,v = 0,J = 1 state of 2CO and CO,
calculated using the parameters in table 4.1 and the matrix elements given throughout

the chapter. Values given in cm™".

1
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Figure 4.1: The lowest energy levels of the a®II state of 2?CO and *CO. The spin-
orbit coupling divides the state into three manifolds, where (from left to right) Q = 0,
Q =1, or 2 = 2. Each manifold is divided into rotational levels, and each rotational
level is divided into two A-doublet components with opposite parity (indicated to the
right of the level). In 13CO, hyperfine coupling causes each of these states to split into
two more levels.
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field. This potential energy is known as the Stark shift

—

Hstae = —ji - E (4.118)

The vector i, by convention, points from negative charge to positive charge, while the
vector F is defined by the direction and magnitude of the force on a positive test charge.
Energy is minimized when the two vectors are aligned.

To calculate the matrix elements of the Stark shift, it is useful to rewrite the dot
product above in terms of spherical tensor operators.

e = = S (~PT (DT (E) = = S (-1PD, THATHE)  (4119)

For symmetry reasons, the electric dipole moment must be along the internuclear axis
in a diatomic molecule. As a result, only quzo(ﬁ) can be non-zero. For the a®II, v = 0
state in both *CO and *CO, the dipole moment T,_,(j) is 1.375 Debye [79, 97].

—

(ASSTQM | Hspar | ASS T QM) = ZTl 0T (E) (1)Y= /(2] + 1) (20" + 1)
J 1 J J 1J
M —p M'J\-Q 0 Q

From the 3-7 symbols in this equation, it is seen that the ]:Ismk operator can only connect
symmetric top states of the same Q with AJ = 0,+1. If only TI}ZO(E) is non-zero, i.e.
the electric field is along the space-fixed Z-axis, only states of the same M are connected,
and M remains a rigorously good quantum number.

When applied to the definite-parity zero-field states given in equation (4.28), the
Hgane Operator mixes only states of opposite parity. When A, ¥, and €2 in equation
(4.120) are inverted, the matrix element only changes by a phase factor.

(4.120)

(=AS—SJ—QM|Hsorie| -AS—SJ —QM') = (=1)" "/ THASETQM | Hgport [ ASET' QM)

(4.121)
As a result, matrix elements of ]fIStark between two states with the same parity must
vanish. Only two states of opposite parity can be connected.

(ASSJIQM + | Hpontc|[ASST' QM +)

1 A

:5<ASZJQM|HStark|ASZJlQM,> (4.122)
1 : )

+§(—1)H (=AS—XJ QM| Hgoric| —AS—XJ' —QM’) = 0

ASSIOM =+ |Hepar|[ ASS T QM'F)

—~

= (ASSJQM|Hggoric| ASET' QM)
) (4.123)
(=1)7 7 (=AS—%J—QM|Hgporsc|-AS ST —QM’)

l\')l}—‘[\')IH

/\

=(ASSJQM |Hepric | ANSS.T QM)
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In states where M is non-zero, the first states that mix to produce a Stark shift are
in opposite components of the A-doublet. Because these pairs of states are much closer
to each other than any other states that they can mix with, in the low to moderate field
region, the Hamiltonian can be approximated as having just these two states, and an
effective Hamiltonian can be written of the form

- 9 —|ji]| E| 725
2 =1 70051

o= (—VHEI . SOt (4.124)
R o) 2

where F, is the splitting between the upper and lower A-doublet component. The diag-
onal elements represent the zero-field energy levels of these two components, and the off-
diagonal elements, calculated by evaluating equation (4.120) assuming that only T;ZO(E)
is non-zero, describe their mixing in the field.

The eigenvalues for this Hamiltonian are

U= i\/<%>2 + (Meﬂfuﬂ)2 (4.125)

where

| MQ
J(J+1)

| —

i (4.126)

Heft =

This equation fits well with the actual level structure seen in figure 4.2 of 12CO, Q = 1,
J =1 1If \E| > 25:3, then U is directly proportional to |E\, with a proportionality
constant peg. In this moderate field region, the sign of M) becomes well defined: for
negative M (2, the Stark energy increases as a function of electric field, and for positive
M, it decreases. The two states that show almost no dependence on the electric field

are states where M = 0.

At much higher fields, usually above 100 IC‘—IYI for a®I1 CO, the states with linearly
increasing energies from one rotational level approach the states with linearly decreasing
energies from the next rotational level. When this happens, the Stark shift is no longer
linear: the two levels experience an avoided crossing, the level whose energy was decreas-
ing as a function of electric field starts to have an increasing energy, and the level whose
energy was increasing starts to have a decreasing energy.

For 13CO, M is no longer a good quantum number, so the Stark shift must be evaluated
in a basis where J couples to I to produce a total angular momentum F' with a projection

SAMUEL A. MEEK, A Stark Decelerator on a Chip



4.5 a®I1 CO States

600 —12CO

400 -

200

Energy [MHz]
=)
T

—200

—400 +

—600 -

600 —13CO

400 -

200

Energy [MHz]
o
T

—200

—400

—600

0 0.5 1 1.5
Electric Field [kV/cm]

Figure 4.2: CO in the a®II, J =1, Q = 1 state in a small electric field.
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on the space-fixed Z-axis Mp.
(ASSJIQIF My + |Hspark | ASS T QIF M}, F) =

> T ()T (E)(— 1) (ASSJIQIF M| — D, [ASSQIF' My) =

ZTl (0)T)(E)(—1)FMretr (-AF4F _1p ]\Z) (ASSIQIF|| — DY ||ASSTQIF) =

ST @ E-T e (5 L) e B e )

F F S
{55 ey -

ZTl (0) Ty (E)(—1) T ari=Mete, JQF + 1)(2F + 1)(2J + 1)(2J' + 1)
F F' 1 F 1 FN\N(J 1.J
J T If\-Mp —p ML)]\-Q 0 Q

Although the simple two-level model can no longer be applied to the low-field Stark
shift in ¥CO, there are still certain similarities. At moderate fields, the Stark shift shows
the same linear behavior as in *>CO, since the mixing due to electric fields becomes much
stronger than the mixing due to hyperfine interactions. However, as the electric field
strength goes to zero, the hyperfine interaction maintains a splitting within each doublet.
In the upper doublet component of the J = 1, = 1 state, the quadruply degenerate
F = g level has an energy about 58 MHz higher than the doubly degenerate F' = %
component in the absence of a field. The four F' = % levels pass adiabatically into low
field seeking states in the presence of a field, while the two F' = % states become states
that have little interaction with an electric field. These two groups of states are never

less than 50 MHz apart at any field strength.

(4.127)

4.5.3 Energy Levels in a Magnetic Field

In a magnetic fields, energy levels are shifted due to the Zeeman effect. While any charged
particle with an angular momentum can contribute to the shift, the most significant
contributions are those from the electron orbital angular momentum and from the electron
spin angular momentum. The Zeeman Hamiltonian resulting from these two contributions
is

Hzeeman = pipB - (gr.L + gs.5) (4.128)

where p is the Bohr magneton and B is the magnetic field vector. Unless high accuracy
is needed in the calculation of the Zeeman shift, it can be assumed that g, = 1, g5 = 2,
and that all other contributions, such as those from rotation of the molecule and from
the nuclear spin, can be neglected.
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In spherical tensor form, the Zeeman Hamiltonian has the form

E&ammn:=j{:(—JquBlﬂ(Eﬁ(gLTEp(i)*—gsTprgﬁ

B - (4.129)
_Z IJ,BT B)@qu (gLTq (L>+gSTq (S))

In 2CO, D' " acts on the total angular momentum wavefunction, while 7}(L) and
T, ql(S ) act on the electron orbital angular momentum and electronic spin angular momen-
tum wavefunctions, respectively. The matrix element of @qu* can be calculated using
equation (4.52). The operator qu(L) only connects levels in the same vibronic state when
¢ = 0 and then has an eigenvalue A. The matrix elements of qu(S’) can be calculated
using the Wigner-Eckart theorem. Since the resulting 3-j symbols are only non-zero when

qg=0Q—Q =% -3 the matrix elements can be calculated as

(ASSIQM | Hyeeman | ASE 'Y M) =

SurEen o (O LT () oty o) VETTIETED

p

(gLA(522/ +gs(—1)%% (_SE 5 ! s g) VS(S+1)(25 + 1)>

(4.130)

For '¥CO, the matrix element for ©' * must be calculated in a basis where F and
Mp are good quantum numbers. Using the same technique as in equation (4.127), we
find that

(ASSJIQIF My Hyeoman| NS J'QYTF' M},)
= : F 1 F\[F F 1
. 1 _ A\ +F'+Q+F—Mp+p
p

(_JQ Q _1 o éi) V2F + 1) (2F +1)(2J 4+ 1)(2J' 4+ 1)

(4.131)

(gLA(sEz/ +gs(—1)%> (_SE 5 _1 5 g) VS(S +1)(25 + 1))

When A, ¥, and €2 are inverted in the matrix elements of the Zeeman Hamiltonian, a
phase factor of (—1)7'~7 is introduced, instead of the phase factor (—1)”'~/*! seen in the
matrix elements of the Stark Hamiltonian. The result of this is that, when calculating
matrix elements using definite parity basis vectors, the Zeeman Hamiltonian only mixed
states of the same parity.

(ASSJQOM =+ |Hyeeman| ASST'QM'+) = (ASSJQM | Hyeeman|[ASST' QM) (4.132)

Because magnetic fields can mix states with the same parity, they can produce diag-
onal contributions to the Hamiltonian, which leads to a true linear shift. By applying
a small magnetic field, the components of each level split linearly according to their re-
spective M or Mp quantum number. The case where an electric field is perpendicular
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to a small electric field is shown for the 2 = 1, J = 1 state in figure 4.3. Because the
electric field is applied perpendicular to the magnetic field, the M or Mg levels can be
mixed. In a strong electric field, where the electric field component of the Hamiltonian
is much stronger than the magnetic field component, the effect of the magnetic field
become negligible, and the energies asymptotically approach the value they would have
without a field. At lower fields, however, the strengths of the electric field and magnetic
field Hamiltonians become comparable, and since the M or Mp quantum are mixed, the
energy levels do not cross as the electric field increases. If the two fields were parallel,
states of different M or My would not mix.

4.6 Conclusions

The a®II electronic state of CO has a rich structure. Even in a single vibrational state,
there are three manifolds, labeled by the €2 quantum number, that are divided in energy
by the spin-orbit coupling. Within each of these three manifolds is an extended series of
rotational states, each of which is further subdivided into two levels, due to A-doubling.
In 3CO, each of these levels (with the exception of those where J = 0) are split once
more due to hyperfine interactions. In the presence of an external electric or magnetic
field, these levels can split many more times according to their M or My components.

Using just a few parameters, the energies and other properties for hundreds of states
can be calculated. Because the fine and hyperfine structure is closely tied to angular mo-
mentum, their Hamiltonian can be written entirely in terms of spherical tensors, greatly
simplifying many calculations. The matrix elements of terms of the Hamiltonian between
Hund’s case (a) basis vectors can be compactly represented in terms of 3-j symbols, 6-j
symbols, and algebraic expressions. Once the matrix elements are calculated, diagonaliz-
ing the matrix simultaneously reveals the energy eigenvalues and the linear combination
of basis states that form that state.

The energy level structure of a*II CO is well suited to manipulation with electric
fields, particularly in many of the closely spaced A-doublets which are strongly mixed by
an electric field. The most strongly mixed states are the 2 = 1, J = 1 state, which has
a linear Stark shift of peg = 3|fi| and the Q = 2, J = 2 state, which has a linear Stark
shift of peg = 21/i.

Examining the Q = 1, J = 1 levels of CO shows that, for the 2CO isotopologue
with only an electric field (first part of figure 4.2), the energetic level structure is very
simple. In the upper doublet component, one degenerate pair of states has increasing
energy as a function of electric field (i.e. are low field seeking), and another state is
mostly independent of field. At zero field, however, all three states are degenerate. This
opens up a possibility that molecules initially in the low field seeking states can, when
approaching regions of zero electric field, exit in the state that is uninfluenced by the
field.

There are a few possible ways to avoid this problem. The first is to create an elec-
tric field distribution that never reaches zero field. The molecules will never see the
degeneracy, and non-adiabatic losses can be prevented. This has already proven effective
for preventing losses of ammonia molecules from a three-dimensional electrostatic trap
[101]. Such a scheme is more difficult to implement in a two-dimensional trap: a purely
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Figure 4.3: CO in the ¢®II, J = 1, Q = 1 state in a small electric field with a 50
Gauss magnetic field applied perpendicular to the electric field.
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two-dimensional field cannot contain a field minimum that is at non-zero field [102]. A
homogeneous offset field could be added in the third dimension, but the long electrodes
used to produce a two-dimensional field would tend to screen this effect. Another more
effective solution is to use a magnetic field instead of an electric field in the third dimen-
sion: this also breaks the degeneracy observed at zero electric field, but is not screened
by non-magnetic electrodes. A third solution is to chose an isotopologue with a favorable
hyperfine structure that breaks the degeneracy between low field seeking states and states
unaffected by electric fields.

Simply breaking the degeneracy by an infinitesimal amount will not suffice to prevent
non-adiabatic transitions, but exactly how much splitting is needed is not clear. Ex-
perimental studies must be carried out to examine such losses. In order to understand
such measurements quantitatively, it becomes essential to understand the energy level
structure in detail. Only then can the nature of these losses be properly understood.
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Chapter 5

Experimental Setup

In this chapter, we describe the experimental apparatus that has been used to conduct the
experiments presented in this thesis. At the center of the apparatus are the components
of the molecular beamline seen in figure 5.1. All components shown in this figure are
contained in two differentially-pumped high vacuum chambers that are separated by a
skimmer with a 1 mm opening. The first chamber, which contains the pulsed valve and
through which the excitation laser passes, is maintained at an average pressure of 107°
mbar during operation using a 300 L/s turbomolecular pump backed by a 16 m?/hr
rotary pump; the second chamber, containing the molecule chip and the Auger detector,
is pumped by a 120 L/s turbopump backed by the same rotary pump and typically has
a pressure of 4 - 1078 mbar. The experiment typically runs as follows: ground state CO
molecules, initially in a gas bottle and diluted in a noble gas, expand into the first vacuum
chamber through the pulsed valve, creating a molecular beam. They are then excited
into their metastable state using a narrow-bandwidth pulsed laser and pass through
the skimmer into the next chamber. After 19 cm of free flight, the excited molecules
reach the molecule chip, where they are manipulated by electric fields. Finally, after the
molecules leave the chip, they continue to the Auger detector, where the arrival time of
each molecule is recorded. This sequence is repeated at 10 Hz, and the data collected
in each run is averaged many times (typically for 1 to 4 hours) to produce arrival time
distributions.

Subsequent sections of this chapter describe these various components in detail: the
pulsed valve/molecular beam, the laser system used to produce the excitation pulse, the
molecule chip, along with its precision mechanical manipulator and the amplifiers used
to apply potentials to its electrodes, and the Auger detector. While many of the devices
described are not unique to this experiment (the laser system was developed previously
and a variant of the metastable CO detector had already been constructed [103]), their
importance to the experiment warrants a brief discussion of their operation. The molecule
chip, along with its manipulator and electronics, is a new development of this project and
will be described in more detail.

5.1 Supersonic Expansion and Molecular Beam

At the beginning of the experiment, molecules are injected into vacuum through a series
99 General Valve. In this valve, a 1 mm opening to the vacuum chamber is initially
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Figure 5.1: The molecular beamline used in the experiments presented here. The
components are contained in two differentially pumped high vacuum chambers, sepa-
rated by a skimmer. A pulsed beam of molecules is emitted from the valve, which then
passes through the skimmer. The molecules are manipulated by the chip and afterward
continue to the Auger detector.

sealed by a conical poppet, which is held in place by a spring. The poppet is retracted by
means of a solenoid to which a 300 volt, ~100 us pulse is applied, and the gas expands
into the vacuum. Because the opening is large and the density of gas molecules behind
the opening is high, an individual molecule will undergo many collision with other gas
molecules as it enters the vacuum chamber. This results in what is known as supersonic
expansion.

Injecting molecules into vacuum in this manner accomplishes two goals. Firstly, simply
by bringing the molecules into vacuum, they enter an environment where they behave as
isolated particles. The molecules can then be manipulated without colliding or otherwise
interacting with other molecules. Secondly, a supersonically expanded molecular beam
cools the molecules. In fact, the supersonic expansion is the only point in the experiment
where real cooling occurs: once the expansion is over and the molecules stop colliding,
energetic particles can still be removed, but the resulting particle energy distribution will
no longer have a thermal distribution.

The properties of an ideal supersonic expansion are based on the assumption that
the gas expands adiabatically, i.e. without exchanging heat with its surroundings, and
in order to conserve energy, the sum of the enthalpy of a parcel of gas and its kinetic
energy must be constant [104]. Since the enthalpy per particle of a given sample of gas
can be described as a function of its temperature and pressure, the differential enthalpy
per particle, dH, is given by

oH o0H

dH = (a—T>PdT + (a—P>TdP — Op(T, P)(dT + puyr(T, P)dP) (5.1)

Here, Cp = (g—?) is the heat capacity per particle at constant pressure and pyr =
P
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oP
For the most part, it is assumed that the gases being expanded are ideal gases. An
ideal gas can be defined as fulfilling the condition PV = kT, where P is pressure, V is
the volume per particle, k is the Boltzmann constant, and 7" is the absolute temperature.

<8—T> is the Joule-Thomson coefficient.
H

Based on this, it can be shown that <gg >T = 0!, i.e. the enthalpy per particle depends

only on temperature, and equation (5.1) can be simplified to dH = Cp(T)dT. For the
expansion of an ideal gas, the maximum possible velocity at the end of the expansion
(terminal velocity) is found by assuming that all enthalpy is converted to kinetic energy,
ie.
m To

Here, m is the mass of an individual particle, Tj is the initial temperature, and v; is the
terminal velocity. In most cases, Cp can be treated as being independent of temperature:
though this is not quite true at very low and sometimes very high temperatures, the effect
of these regions on the expansions of interest is negligible [104]. Using this approximation,
v is given by

QCPTO

m

Vy = (54)

If the expansion of an ideal gas is adiabatic (7dS = 0) and Cp is constant, there
is a simple expression for temperature as a function of pressure or volume. First, it is
noted that dH = CpdT = VdP, since dH can generally be written as dH = TdS + VdP.
Dividing C'pdT by kT and VdP by PV which are the same for ideal gases, results in the

differential equation (Cp/k)4- = & which can be rewritten as (Cp/k)d(InT) = d(In P).
The solution to this differential equation is given by

P T \Crlk 55

()= (%) (5:5)

If (%) is replaced by (%), an equation relating the volume per particle and the

temperature can be written.

(- Z

For CO, Cp = 3.5k and m = 28 amu, so an expansion of CO from room temperature
(295 K) could have a terminal velocity as high as v; = 7807, much higher than is
desirable. From equation (5.4) it is seen that there are three parameters that can be
changed to lower this speed: the temperature of the gas in the source, the heat capacity
of the molecules being expanded, and their mass. Lowering the temperature of the gas in

'Based on the differential definition of enthalpy dH = TdS + VdP, (%)T can be written as

OH oS
(56).=T(5p). +V (5:2)
Using the Maxwell relation derived from Gibbs free energy, — 6‘9;65T (3—) = —(%)P. From the

= \opP
ideal gas equation, (%)P = % = %, from which it follows that ( ) = 0 for an ideal gas.
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the source easily reduces the expansion velocity: if the same expansion is performed using
a sample of CO near its boiling point (82 K), the terminal velocity is only v; = 410 7.
Although it is impossible to change the heat capacity or mass of CO directly, it is possible
to effectively improve them using a technique known as seeding. If a small fraction of CO
is mixed with a heavy noble gas, such as krypton or xenon, and the resulting mixture is
expanded, the terminal velocity will be determined by the properties of the noble gas.
The properties of heavy noble gases are much better suited to producing a slow beam.
Krypton and xenon, in particular, are nearly three times and five times more massive,
respectively, than CO. Additionally, C'p is only 2.5 k for a monoatomic molecule instead
of 3.5k as for CO: Cp depends on the number of degrees of freedom of the particle,
increasing by %k for each additional degree of freedom, and since an atom lacks the two
rotational degrees of freedom present in CO, its Cp is reduced by k. More than just
lowering the terminal velocity, reducing the heat capacity Cp also improves the cooling?,
if the collision cross sections of the two gases are the same. Even in a mixture with a
somewhat higher concentration of CO (e.g. 20% CO), the seeding principle works, though
Cp and m in equation (5.4) must be taken as the average heat capacity per particle and
the average mass per particle, respectively.

In the experiments presented here, three different carrier gases were used: xenon,
krypton, and argon. In each case, the gas mixture that was expanded consisted of 20%
CO and 80% noble gas at an initial total pressure of about 1 bar. To achieve the lowest
possible velocity, the mixtures were cooled to a temperature slightly above the boiling
point of the noble gas: 200 K for xenon, 140 K for krypton, and 102 K for argon.
Although these initial temperatures are higher than the 0.8 bar boiling points of each
noble gas (see details in table 5.1), it was empirically determined that temperatures much
lower than those used led to an instability of the expansion. The inability to use initial
temperatures closer to the boiling point is probably a result of the rapid cooling during
the expansion. For example, after each mixture has expanded to half its initial pressure,

2A complete argument as to why lowering Cp improves the cooling is somewhat subtle. One simple

argument would be to assume that cooling stops at a specific collision rate, which for a given collision
VT

cross section and mass, should be proportional to %7, where 7" is the temperature and V' is the volume
per particle.
N
T Vv [T\ "7
S=21n /2 (5.7)
T WV T
The initial collision rate is larger than the final collision rate, so (“//0 7;9) is larger than 1. Since the
exponent increases for decreasing C), (as long as C), > %), the degree of cooling S = % must be larger
when C), is smaller.
A more exact solution, presented by D.R. Miller [104], is given by
S = A(V2Vy 'ed)? (5.8)

where Vj is the volume per particle in the source, o in the collision cross section, d is the nozzle diameter,
and A and B are parameters that depend on Cp. The factor Vo_lcrd describes the ratio of the nozzle
diameter to the mean free path of molecules in the source, so this is generally much larger than 1. As
a result, larger exponents correspond to larger cooling. For Cp = 3.5k, B = 0.353, but for Cp = 2.5k,
the exponent increases to B = 0.545, yielding a better cooling. Surprisingly, these values of B are not
much different from the values 0.333 and 0.5 given by the simple model above.

SAMUEL A. MEEK, A Stark Decelerator on a Chip



5.2 The Laser System 81

Xe | Kr | Ar
Carrier gas boiling point at 0.8 bar [K] 162 | 117 | 87
Minimum valve temperature [K] 200 | 140 | 102
Temperature of gas after expanding to P = 0.5F, [K] | 155 | 108 | 79
Boiling point at 0.4 bar [K] 153 | 109 | 80
Expected terminal velocity [m/s] 285 | 294 | 349
Observed terminal velocity [m/s] 310 | 310 | 360

Table 5.1: Parameters of the supersonic expansion of mixtures of 20% CO in xenon,
krypton, and argon, starting with an initial total pressure of 1 bar. While it would be
expected that the initial temperature of the gas could be lowered to just above the 0.8
bar boiling point, the minimum temperature below which the expansion breaks down
is actually somewhat higher. On the other hand, a gas expanding adiabatically from
the observed minimum valve temperature to half of its initial pressure will cool to a
temperature close to the 0.4 bar boiling point of the carrier gas. Using equation (5.4), it
is possible to predict the terminal velocity of the expansion, but the experimentally ob-
served velocities are consistently somewhat higher. Vapor pressure data from reference
[105].

the temperature of the gas will reduce to a value close to the 0.4 bar boiling point. After
further expansion, it is likely that some amount of clustering will occur as the noble gas
cools below its boiling point, which will cause the molecules in the expansion to cool less
due to the heat released in cluster formation. Since the boiling point of CO is 82 K and
its partial pressure is only 0.2 bar, however, CO is never a limiting factor in the minimum
initial temperature of the expanded gas. Using equation (5.4), it is possible to estimate
the terminal velocity of the expansion (summarized in table 5.1). The observed velocity
is somewhat higher, possibly due to clustering in the beam. Additionally, the observed
velocity of a krypton-seeded beam at 140 K is no faster than the xenon-seeded beam
at 200 K, but because the krypton-seeded beam results in more signal at the detector
(possibly due to a lower transverse velocity distribution), krypton is used preferentially
in later experiments.

5.2 The Laser System

The freshly-expanded CO molecules are cold, occupying only the first few rotational
levels of its XX, v = 0 ground state. Unfortunately, CO in its ground state has little
Stark shift: the combination of a relatively tiny 0.1 Debye dipole moment and the large
splitting between states that can be mixed by the electric field results in a quadratic
Stark shift that, even at 100 %7 is less than 100 MHz. In the a®II electronic state,
however, the body fixed dipole moment of 1.37 Debye and the small splittings between
field mixed states result in strong linear Stark shifts even at 1 % In principle, optical
dipole transitions should not be allowed between the ground state and the a state, due
to selection rules that forbid changes of spin state. The a®II state, however, is not a
pure triplet state: through spin-orbit coupling, it is slightly mixed with the higher-lying
A state, and transitions between this state and the ground state are strongly allowed.
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12CO 13CO
Q2(1) 48474.642 = 48479.571 =
Produces low field seekers | 3-16158.214 cm™! | 3-16159.857 cm ™!
Ry(0) 48478.474 = 48483.234 =
Produces high field seekers | 3-16159.491 cm ™! | 3-16161.078 cm ™!

Table 5.2: Experimentally-relevant a3I[(v' = 0) « XX T (v” = 0) transitions in CO.
Because the light used to drive these transitions is frequency tripled, the frequencies of
the fundamental (i.e. before tripling) are included for convenience.

Because the spin-orbit interaction in diatomic molecules preserves angular momentum
along the internuclear axis, this mixing is only possible when |Q2| = 1, so levels that have
the most |Q2| = 1 character are easiest to reach.

To excite CO to the a state with a pulsed laser requires that laser to have a fairly
high pulse energy and narrow bandwidth. The laser system available produces 3 ns
pulses of 206 nm light with a pulse intensity of 2 mJ and a bandwidth of 150 MHz, a
bandwidth limited only by the width of the pulse. If these 2 mJ are focused to a 1 mm?
spot, transitions to |Q2| = 1 levels can be saturated. In principle, it is also possible to
reach [Q2] = 0 and || = 2 levels, since they contain a slight |Q2| = 1 character, but the
transitions cannot be saturated so easily.

The largest Stark shift in the |[€2| = 1 manifold occurs in the J = 1, |M| = 1 levels,
so the transition is generally driven to this state. At zero field, the state is divided
into A-doublet components separated by 394 MHz, and as a field is applied, low field
seeking components originate from the upper doublet component and high field seeking
components originate from the lower component (see figure (4.2)). The two components
have opposite parity: the upper has positive parity and the lower negative parity. Because
the parity of the state must change during a transition, the upper level can only be
excited from states of negative parity and the lower level can only be excited from states
of positive parity. In the ground state, the parity of the Nth rotational state is given by
(—=1)N. Combined with AJ selection rules, the lower level can be excited from N = 0 or
N = 2, but the upper level can only be excited from the N = 1 rotational level in the
ground state. To produce low field seeking CO molecules, a (Q3(1) transition is induced:
@ implies that AJ = 0, the subscript 2 refers to the second spin-orbit manifold, i.e.
|2] = 1, and 1 indicates that the transition originates from N = 1 in the ground state.
To produce high field seekers, either an R2(0) (AJ = +1, N =0) or a P»(2) (AJ = —1,
N = 2) can be driven, but because the population of molecules in the N = 2 state in the
beam is relatively low, using the Ry(0) transition is much more practical. The frequencies
of these transitions are summarized in table 5.2.

The first components of the laser system used to drive these transitions operate in
continuous wave (CW) mode (see figure 5.2). A frequency doubled Nd:YVO, laser (Co-
herent Verdi), producing a power of 5 W at a wavelength of 532 nm, is used to pump a
ring dye laser. The 532 nm laser is focused onto a thin, fast moving jet of sulforhodamine
B dye dissolved in ethylene glycol. A configuration of four mirrors is placed such that
photons emitted from this laser focus can reflect once from each mirror, tracing out a
path that resembles a bow tie, and return to the jet at the same position from which it
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Figure 5.2: Overview of the laser system used to produce Fourier limited bandwidth
pulses of 206 nm light. A continuous 619 nm laser beam from a ring dye laser is pulse
amplified and subsequently tripled. These pulses are used to excite CO molecules to
the a®II; metastable state.

left, traveling in the same direction [106]. It can then induce stimulated emission in the
dye jet, and if the photon experiences an integral number of oscillations over this path,
the light will be amplified. Since the path through the four mirrors in about 3 m long,
the laser could in principle resonate on thousands of modes, separated by 100 MHz, over
the entire gain curve of the dye. To prevent this, several additional elements are inserted
into the cavity: a birefringent filter provides a wide mode structure (a few THz), a thin
etalon provides an intermediate mode spacing (200 GHz), and a thick etalon yields a fine
mode spacing (10 GHz). Only a very narrow range of modes (< 1 GHz) are transmitted
by all three elements, and only one is amplified, resulting in a single mode laser.

The beam that emerges from the ring dye laser has a wavelength of 619 nm and a
power of about 300 mW. This beam continues to the pulsed dye amplifier and passes
through three cuvettes containing a solution of DCM Special dye in ethanol. These three
cuvettes are then illuminated from the side by a 5ns pulsed Nd:YAG laser. This pulse-
amplifies the 619 nm beam, resulting in a 100 mJ pulse with very narrow bandwidth. A
KDP crystal frequency doubles the vertically-polarized 619 nm laser pulse, producing a
horizontally-polarized pulse of 309 nm radiation. The polarization of the 309 nm light is
made vertical with a %—plate, and the vertically-polarized 619 nm and 309 nm beams are
sum frequency mixed to produce 2 mJ of 150 MHz-bandwidth 206 nm light.

5.3 The Molecule Chip

After the CO molecules are excited to their metastable state, they pass through a skimmer
and continue flying to the chip, where they are manipulated by electric fields. The chip
itself is based around an array of 1254 gold electrodes deposited onto a glass substrate,
each 10 um wide and approximately 100 nm high with a 40 um center-to-center spacing,
forming a decelerator structure that is 50.16 mm long. The electrodes are arranged into
six independent sets of 209 electrodes.

In a single plane, it is only possible to connect two sets of independent periodic
electrodes. (This arrangement resembles two interleaved combs and can be seen in [73].),
To connect all six sets of electrodes, the chip needs to have more than one layer. In the
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Figure 5.3: The molecule chip at actual size, with a section magnified by a factor
of 17. The 10 um wide electrodes, separated by a center-to-center spacing of 40 um,
extend alternatingly to the two sides of the chip. In the magnified image, only the lower
side is shown. The electrodes terminate at three different lengths and are connected to
the amplifiers through six nickel strips, three of which are shown here.
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present chip, this is solved as follows: all electrodes extend over a central 4 mm region,
but outside this region, the electrodes extend alternatingly to the left or to the right and
terminate at three different lengths. The portions of the electrodes outside the central
region are covered with a 200 nm-thick layer of dielectric, except at the tips, where the
dielectric is etched away. Six 0.5 mm wide nickel strips, running perpendicular to the
electrodes, are deposited on top of this dielectric layer such that they each only make
contact to one of the sets of electrodes through the etched holes. The six nickel strips,
three on each side, are used to connect the microscopic electrodes to the amplifiers.

Because the microelectrodes are very long (4 mm) compared to their width and spac-
ing, the potential they produce is quasi two dimensional: the changes in the electric
potential along the direction parallel to the long axis of the electrodes is very gradual
(on the millimeter length scale) compared to changes in the other two directions and can
be neglected when calculating electric fields. Chapter 3 extensively discusses the fields
produced by two-dimensional periodic arrays of electrodes, and describes how, using six
electrodes per period, two movable quadrupole minima per period are produced (see fig-
ure 3.7). For molecules in low field seeking states, these electric field minima act as traps.
The form of these traps is shown in figure 5.4 for the low field seeking components of
a’lly, v = 0,J = 1 CO for various positions above the surface. The shape of the contour
lines is very similar to the shape of the electric field strength contours except near the
electric field minima, where the form of the mechanical potential is slightly quadratic in
electric field due to the A-doubling, described in chapter 4. The waveforms required to
produce this motion are sine waves, three positive and three negative with 120 degree
phase shifts, that are applied as shown in figure 5.5.

One question that arises, however, is what happens near the edges of the active area,
where the assumptions of a purely two dimensional potential and strict periodicity break
down. At the ends of the array, the assumption of periodicity breaks down when the
electrodes stop repeating. In practice, however, the minima have already attained their
normal form one period (6 electrode spacings) from the ends of the array. At the sides,
where half of the long, thin electrodes terminate, the structure of the fields is no longer
two-dimensional. In fact, three-dimensional calculations show that, even 1 mm from the
edge of the 4 mm active area, there is a noticeable distortion of the minima, but the depth
of the trap is hardly influenced. The same calculations also show that the traps have an
electric field barrier in the third dimension that is as strong as the saddle point that
limits the trap depth in the other two dimensions. Qualitatively, this can be understood
by recognizing that, on the side of the array where all negative electrodes end, all positive
electrodes continue to their connection points: the negative ends surrounded by a most
positive environment results in a strong electric field. A similar argument can be made
for the other side of the chip by reversing positive and negative.

The chip is oriented such that the metastable CO molecules fly parallel to the surface
and perpendicular to the electrodes. In this way, the molecular beam axis matches the
translation direction of the two-dimensional potential wells, and by translating the traps
over the surface at the same velocity as the molecules, the molecules can be carried in
moving traps over the surface. Additionally, if the velocity of the traps is decreased
while the molecules are in them, as long as the rate of deceleration is not too high, the
molecules will be decelerated along with the traps. Since the minima maintain the same
shape while traveling over the chip, one way to visualize the deceleration is to consider
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Figure 5.4: Potential energy contours seen by >CO in the low field seeking compo-
nents of the a®Il; (J = 1, v = 0) state when waveforms with a 200 V peak-to-peak
amplitude are applied to the electrodes. Roughly 70 mK deep traps can be translated
at a constant distance from the surface. The electrodes are shown schematically at the
bottom of each frame along with the potential applied to each one. Contour lines are
separated by 7.5 mK.
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Figure 5.5: Schematic diagram of the six electrodes that make up a period on the
chip. All six electrodes in each period extend over a central region, but to facilitate
connections to the amplifiers, the electrodes extend alternatingly to opposite sides and
terminate at three different lengths, where they connect to larger conductors that run
over the tips of the electrodes. The six waveforms applied to the electrodes are three
positive and three negative sine waves with 120 degree phase shifts. Using this arrange-
ment, the positive waveforms are all applied from the right side of the chip, and the
negative waveforms from the left side of the chip.
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Figure 5.6: If a microtrap is decelerated at a constant rate, the potential energy
surface is distorted by the addition of a pseudoforce. Here, this effect is shown for
potentials created by waveforms with a peak-to-peak amplitude of 90 V, 120 V, or 180
V. Contour lines are separated by 2.6 mK, 3.5 mK, and 5.3 mK in the 90 V, 120 V, and
180 V plots, respectively. At zero acceleration, the traps are symmetric around z = 0,
but as the deceleration increases, the traps tilt to the right and become shallower. In
the extreme case, seen at the upper right, the trap completely disappears.
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the equations of motion in an accelerated frame moving with the decelerating traps. In
an accelerated coordinate system, an additional term must be added to the potential to
account for the pseudoforce which has the form Upgendgo = —maz, where m is the mass of
the molecule, a is the rate of deceleration, and z is the longitudinal position. The result
of combining the standard trap potential with this pseudopotential is shown in figure
5.6 for various peak-to-peak waveform amplitudes and accelerations. As the traps are
decelerated, the potential is distorted, and the volume and depth of the traps decrease,
from which it becomes clear that fewer molecules will be captured at higher decelerations.
In the extreme case (seen in figure 5.6 for 90 V waveforms at an acceleration of 1.0 %),
the potential no longer contains a minimum, and no molecules can be captured at all.

Two razor edges are placed 50 um above the first and the last electrodes of the array,
parallel to the electrodes. In the region outside the potential wells there is a strong electric
field gradient away from the surface, i.e. the fields are very strong near the surface and
decay exponentially as a function of transverse position. The front razor edge ensures
that molecules arriving above the chip are at most 50 wm from the surface. Low field
seeking molecules that are this close to the surface but are not in traps are pushed away
and will be filtered out by the back razor edge. Molecules that are in the traps, however,
will be efficiently guided to the end of electrode array. Not all metastable CO molecules
that are not in the traps are filtered out: molecules in the M = 0 state are weakly high
field seeking, and will see a slight force toward the surface. This force, when applied
during the molecule’s entire flight over the chip, is of a sufficient order of magnitude that
a large fraction of the molecules will be pulled to the surface and thus be lost. Some
smaller fraction, however, can just barely pass over the entire chip without colliding with
the razors or the surface. These molecules will generally pass just under the first razor
with an initial transverse velocity away from the chip, reach a maximum distance from
the surface near the center of the chip, and pass under the second razor with a transverse
velocity toward the chip. The M = 0 molecules that reach the detector produce a broad
background signal that can make the molecules that were in the traps more difficult to
detect.

5.3.1 Chip Manipulator

To effectively bring the molecules onto the chip, it is necessary to have precise control of
the position and orientation of the chip with respect to the incoming molecular beam.
Fortunately, not all degrees of freedom are important. The exact position along the
molecular beam, for example, while important for the timings of the waveforms, does
not need to be adjusted on length scales shorter than a centimeter. Precise control of
the tilt around the molecular beam axis is also unimportant. The tilt around the axis
perpendicular to the chip surface and the position of the chip along the axis parallel to the
microelectrodes should be adjusted such that the molecular beam axis is perpendicular
to the electrodes and centered on the active area. Since the active area is 4 mm wide,
the adjustments only need to be made within about 0.5 mm. This can be done with
sufficient accuracy by replacing the valve with a HeNe laser, directing the laser beam
through the skimmer, and adjusting the chip so that the beam is centered on the array
over its entire length. Because the adjustment does not need to be done while the chip
is under vacuum, it can be accomplished with normal fine-threaded screws.
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Figure 5.7: The precision manipulator for the molecule chip. Linear motion
feedthroughs allow precision adjustment of the height and tilt of the chip while it
is in vacuum, and other adjustments are possible while the chamber is vented. (Design
and drawing by H. Haak)

There are two remaining degrees of freedom: the tilt of the chip around the axis
parallel to the electrodes and the position of the chip along the direction perpendicular
to its surface. Though the position only needs to be adjusted within 0.5 mm, the tilt
must be adjusted very precisely. First, the depth of the traps is much less than the
longitudinal kinetic energy of the beam. In early experiments, the trap was only 25 mK
deep, so a molecule at the center of the trap with a relative velocity of 4 m/s would have
enough energy to escape. If the chip were tilted even by a few tenths of a degree with
respect to the molecular beam, the molecules would gain a significant transverse velocity
component and could no longer be confined by the traps. The ability to precisely control
the tilt of the chip also enables the suppression of signal from molecules in M = 0 states
that contribute to background signal. If the chip is slightly tilted toward the incoming
molecular beam, i.e. such that the molecules have a slight transverse velocity toward the
surface, molecules in the M = 0 states will be blocked, since they must have a transverse
velocity away from the surface to traverse the entire length of the chip. To accomplish
these tasks effectively, the control of this tilt should be better than 0.1 degree.

The manipulator constructed to precisely position the chip is shown in figure 5.7. The
chip, represented by the large, dark gray plate near the top of the figure, can be manip-
ulated while in vacuum using two linear motion feedthroughs with micrometer screws.
Their extension can be adjusted to a precision of 10 um, allowing linear positioning of the
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Figure 5.8: Vacuum tube amplifier used to produce the waveforms applied to the
chip. (Design by H. Miiller and drawing by V. Platschkowski)

chip perpendicular to its surface by the same amount. Since the two contact points are
roughly 56 mm apart, a 1 mm change in the position of one of the two linear positioners
tilts the chip around the long axis of the electrodes by about 1°, giving an adjustment
precision of 0.01°. If the chamber is vented, the chip can also be translated in the plane of
its surface and rotated perpendicular to the surface by sliding the light gray plate across
the top surface of the yellow part in figure 5.7. In addition to the mechanical positioning
features, the manipulator also contains sockets for the six electrical connections to the
chip’s electrodes and clamps for the entrance and exit slits.

5.3.2 Amplifiers

To manipulate the molecules on the chip requires waveforms with peak-to-peak ampli-
tudes up to 200 V and frequencies between 0 and 3 MHz. Creating an amplifier that is
capable of a slew rate of up to 2 % and covers such a wide bandwidth (especially when
the bandwidth range includes zero frequency) pushes the limits of current technology.
The solution that was developed uses pentode vacuum tubes to achieve this high slew
rate and a high frequency op-amp to operate the negative feedback loop. The schematic
for this amplifier is shown in figure 5.8. The input signal is preamplified using an LM7171
high frequency (700 MHz unity-gain bandwidth) op-amp and passed to the positive input
of a second LM7171 that drives the grid of a PL508 pentode. This pentode is the sinking
component of a push-pull amplifier; a second PL508 (upper pentode in the diagram)
sources current to the intermediate output when the first pentode stops conducting. The
intermediate output is coupled back to the positive input of the second op-amp to provide
negative feedback. Since the intermediate output can only vary from 100 V to 300 V, it is
offset in a positive amplifier by 100 V using Zener diodes to produce an output potential
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Figure 5.9: The Auger process involving a metal surface and a molecule in an excited
state. As the molecule approaches the surface, an electron in the metal’s conduction
band (at the Fermi level in the diagram) can tunnel into the unoccupied molecular
orbital, releasing enough energy to drive the electron in the excited orbital into the
vacuum.

from 0 V to 200 V. In the negative version of the amplifier, the offset is 300 V, resulting
in an output between —200 V and 0 V.

5.4 Auger Metastable CO Detector

After the molecules have been manipulated by the chip, they are ejected toward the
detector. This detector makes use of the Auger process, shown in figure 5.9. Because
the CO molecule is in an excited state, one electron is in an orbital that is normally
unoccupied in the ground state, and a normally occupied orbital with lower energy is left
unoccupied. As the metastable CO molecule approaches a metal surface, a conduction
band electron can tunnel into the lower unoccupied orbital, and the energy released is
then transferred to the electron in the higher-lying orbital. Since the energy of metastable
COis 6.0 eV, if the Fermi level is less than 6.0 eV below the vacuum energy (i.e. the work
function is less than 6.0 V) the higher-lying CO electron can receive enough energy from
an electron tunneling from the Fermi level to leave the CO molecule and thus becomes a
free electron.

Given this requirement, one would ideally choose a metal with a work function that
is as low as possible, such as cesium, with a work function of only 1.95 eV [107]. Cesium,
however, is hard to work with: it reacts violently when exposed to air, and thus a detector
incorporating cesium or any other alkali metal must be designed such that it is never
exposed to the atmosphere. In general, many of the metals that have low work functions,
such as alkali metals, alkaline earth metals, and lanthanides have surfaces that change
unpredictably when exposed to the atmosphere, reacting with oxygen and water vapor to
form oxides and hydroxides that have much different work functions than the elemental
metal they contain. Unless these surfaces are carefully prepared, the work function is
often not reproducible. One metal that offers a reasonable, reproducible work function

SAMUEL A. MEEK, A Stark Decelerator on a Chip



5.4 Auger Metastable CO Detector 93

Figure 5.10: Schematic view of the Auger detector as it is placed relative to the
chamber and microchannel plate (left) and an exploded view showing the individual
parts (right). Metastable CO molecules enter through the rectangular, mesh-covered
slot and hit the front of the gold covered rod, where they produce low energy electrons.
These electrons are deflected around the rod, through the second mesh, and toward the
MCP. A heater is inserted inside of the rod to heat the gold surface and keep it free of
contaminants.

with little preparation is gold. While its work function is somewhat higher (5.4 eV),
its surface does not form oxide layers when it is exposed to air. Heating the surface to
100°C ensures that it remains free of contamination such as oils that are present in trace
amounts in the vacuum system.

The detector constructed is shown in figure 5.10. Metastable CO molecules, arriving
from the left side, pass through a mesh on the front side of the can and collide with the
surface of a gold-coated rod where they can emit Auger electrons. Potentials are applied
to the rod and the outer metal can such that the electrons are directed around the rod,
through the grounded metal mesh behind the can, and toward the microchannel plate
(MCP), which multiplies the single electron into many to produce a measurable signal.
Bringing the electrons to the MCP efficiently requires a careful balance of potentials: the
can is charged to —3 kV, while the rod is about 20 V less negative. If this potential
difference between the rod and can is too small, the electrons pass through the mesh
at the front of the detector (where the metastable CO molecules entered), but if it is
too large, the electrons are repelled back to the rod. It is difficult to predict the exact
potential difference needed between the can and the rod a priori, since it can be affected
by objects on the other side of the mesh, so the potential is best adjusted by optimizing
the count rate seen at the MCP. The rod is hollow to allow space for a heater, which
consists of a thin tungsten wire inserted into a ceramic tube. This enables the gold coated
rod to be heated while remaining electrically insulated from the heater’s power supply.

It is estimated that this device detects metastable CO molecules with an efficiency of
1%, and does so in such a way that the entire arrival time distribution can be recorded in
every measurement cycle. This is a major advantage over molecular detect methods that
use a pulsed laser: since the pulsed laser generally only runs once per measurement cycle,
only one arrival time can be measured in any given experiment, and to measure an arrival
time distribution, the measurement must be performed many times with different delay
times for the pulsed laser. However, the Auger detector only works with molecules with

Dissertation, Fachbereich Physik der Freien Universitat Berlin, 2010



94 Experimental Setup
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Figure 5.11: Trajectories of the electrons in the Auger detector. With the proper
ratios of potentials, the low energy electrons produced at the front surface of the gold-
coated rod are deflected around the rod, through the mesh, and to the microchannel
plate. Although the trajectories shown assume an initial kinetic energy of 1 eV, elec-
trons with much lower kinetic energies also reach the MCP

a large internal electronic energy, such as metastable CO. Also, because the electrons
emerging from the surface take a rather complicated path while at low velocity, the
efficiency with which they reach the detector is greatly influenced by external magnetic
fields: in fact, magnetic fields of only a few Gauss completely eliminate all signal at the
MCP. If only measurements of a single arrival time are desired, methods using a pulsed
laser for detection are superior as these offer efficiencies much higher than 1%.

For situations in which the Auger metastable CO detector is not suitable, there are
a few other options available to detect a®II CO molecules. One possibility is to detect
their phosphorescence: since the v = 0, |2 = 1, J = 1 level has a radiative lifetime
of 2.6 ms [16], the molecules must emit photons on this timescale. Over 90% of the
molecules decay back to the first four vibrational levels of the ground state, resulting in
four sharp emission lines between 206 nm and 238 nm [19]. This technique is, in a sense,
non-destructive: while the molecules that emitted photons are no longer metastable,
they indicate the presence of many more molecules that have not yet decayed. For the
experiments presented in this thesis, the metastable CO beam is monitored by placing a
photomultiplier tube (PMT) off the molecular beam axis between the skimmer and the
chip to observe the phosphorescence. By doing so, the wavelength of the laser can be
stabilized to maximize the production of metastable molecules.

Metastable CO can also be detected using transitions to the b>+ state with a 283 nm
laser. This strongly-allowed transition (The lifetime of b3>XT, v = 0 is 54 ns [108], after
which the molecules primarily decay to the a3II state) can be saturated with a 0.1 cm™!-
bandwidth pulsed laser with a fluence of 10 % The fluorescence of this state can be
detected with a PMT, or by increasing the power of the 283 nm laser, the CO molecule
can be ionized from the b state, and the ions can be detected on an MCP. This enables
14+1 REMPI detection of the a state with high efficiency. Further discussion of this and
other detection methods for metastable CO can be found in reference [103].
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Chapter 6

Guiding, Decelerating, and Trapping
Metastable CO on a Chip

6.1 Guiding of CO* Molecules at Constant Velocity

In the first experiments, a mixture of 20% CO in Xe with an initial pressure of about 1 bar
and an initial temperature of 200 K was expanded into vacuum through a pulsed valve.
The resulting arrival time distribution observed at the Auger detector when no potentials
are applied to the chip is shown in figure 6.1. In this and all subsequent figures, arrival
time ¢ = 0 is given by the laser pulse that excites the CO molecules to their metastable
state. Since the distance between the laser excitation point and the detector is 298.3 mm,
the peak of the distribution at 0.96 ms corresponds to a velocity of 310 %, and the full
width at half maximum (FWHM) arrival time spread of 160 us corresponds to a FWHM
velocity spread of 50 2.

Figure 6.2 shows, in red, the arrival time distribution measured when 2.6 MHz, 90
V peak-to-peak amplitude waveforms like those shown in figure 5.5 are applied to the
molecule chip’s electrodes. These waveforms produce a series of 25 mK deep traps moving
at a constant velocity of 312 =. Most of the molecules are either not spatially in one of
these traps or have a velocity relative to the traps that is too large to be captured. Some
small fraction of the molecules that have the correct initial velocity and are in the volume
of the trap can be guided over the surface of the chip. Because these molecules have the
same velocity and the same initial position, they arrive at the detector at the same time,
resulting in the small peak seen at an arrival time of 0.96 ms.

If waveforms with other frequencies are applied to the electrodes, molecules in the
molecular beam with the corresponding initial velocities can be selectively guided. Figure
6.3 shows several such arrival time distributions, along with the field-free distribution,
scaled down by a factor of 9. The relative intensities of the peaks of guided molecules
nicely match the field-free distribution: fewer molecules are detected in the 348 =+ guiding
peak, for example, because there are fewer molecules in the molecular beam with that
velocity. The 2.6 MHz peak has a FWHM of 9 us which, based on trajectory simulations,
corresponds to a FWHM velocity spread of 5 .
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Figure 6.1: Arrival time distribution at the Auger detector when a mixture of 20%
CO in xenon with an initial pressure of about 1 bar and an initial temperature of 200
K is expanded through the pulsed valve, and no fields are applied to the electrodes of
the chip. Since arrival time and velocity are directly correlated, the peak arrival time
corresponds to a velocity of 310 % with a spread of about 50 7.
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Figure 6.2: The arrival time distribution when waveforms with a constant frequency
of 2.6 MHz (resulting in traps moving at a constant velocity of 312 %) are applied to
the chip (red) contrasted to the case where no fields are applied to the chip (black).
When fields are applied to the chip, most of the molecules are either not spatially in
a trap or have a velocity relative to the traps that is too large to be captured. Some
small fraction of the molecules, however, have an initial velocity close to 312 %+ and are

initially in the volume of the trap. These molecules arrive at the detector at 0.96 ms,
forming a narrow peak.
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Figure 6.3: Arrival time distributions when 90 V amplitude waveforms with various
frequencies are applied to the chip. The field-free arrival time distribution has been
included for comparison, scaled down by a factor of 9.

6.1.1 Trajectory Simulations for Arrival Time Distributions

The basic framework for molecular trajectory simulations is given in chapter 3. To
summarize the results in that chapter: based on the electric potentials applied to the chip,
it is possible to calculate an electric field distribution, and using the assumption that the
mechanical potential only depends on electric field strength, the force on a molecule as a
function of position and time can also be calculated. Simulating the molecule’s trajectory
is then only a matter of solving a system of second-order ordinary differential equations:
%f = FT(,:), where 7 is position of the molecule in space, F (r) is the force and m is the
molecule’s mass. Such calculations can be carried out numerically, e.g. using a Runge-

Kutta algorithm, as long as the initial position 7(t = 0) and the initial velocity 3—7; ’ of

a particle are known.

The calculations in chapter 3 assume that the chip is two dimensional (i.e. the elec-
trodes are infinitely long) and that the electrodes are strictly periodic, repeating over
infinitely many periods. Since neither of these conditions is strictly true, two approxi-
mations are made. First, the finite length of the electrodes is ignored: it is assumed at
the point where traps are closed by the fringe fields at the end of the electrodes is a hard
wall, and the molecules simply bounce back from this edge with no motion parallel to the
electrodes being coupled to the other two dimensions. Second, it is assumed that in the
region near where the electrodes stop repeating, the field distribution transitions sharply
from a field free region to the field distribution that would be produced by an infinite
array at the first and last electrodes of the array. Since the molecules spend very little
time in this transition region compared to their total time above the chip, this assumption
is allowed.

Based on these approximations, the calculation of the two-dimensional path of the
molecules from the laser excitation to the detector can be divided into calculations in
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three separate regions. In the first region, between the laser excitation point and the
beginning of the chip, the molecules fly freely, in the second region, above the chip, the
motion of the molecules is affected by the electric fields, and in the third region, between
the end of the chip and the detector, the molecules again fly freely. The trajectory of a
molecule in the field-free regions is given by 7(t) = vt +7(t = 0), where ¢/ is the molecule’s
velocity: in the field free regions, a molecule flies with a constant velocity in a straight
line. If this trajectory crosses the physical barriers posed by the surface of the chip or the
razor edges at the ends of the electrode array, however, it is discarded, since the molecule
it represents would likely not remain in a detectable state after a collision with a surface.
In the region above the chip, the trajectory is calculated using the numerical methods
described before, and the trajectory is discarded if the trajectory ever passes below the
surface of the chip.

To calculate the arrival time distributions, a random starting position and velocity is
chosen for each molecule, its trajectory from the excitation to the detector is calculated,
and if the molecule reaches the detector without colliding with any obstacles, its arrival
time is recorded. The positions of the molecules at time ¢ = 0 are assumed to be
distributed uniformly over a cylinder at the laser excitation position. One circular face of
the cylinder coincides with the aperture of the skimmer, the axis of the cylinder extends
backwards along the molecular beam axis toward the valve. Since the molecules that are
detected must be excited by the ~1 mm wide laser pulse and pass through the skimmer’s
opening, the molecules must originate somewhere in this volume. The initial longitudinal
velocity distribution is chosen to have a Gaussian distribution with a mean and standard
deviation chosen to match those observed experimentally in the molecular beam, and the
initial transverse velocity is chosen from the range of values that lead to trajectories that
pass through the chip’s entrance slit.

Figure 6.4 shows simulated arrival time distributions for molecules guided over the chip
at a constant velocity under the same conditions as those in the experiment. The initial
longitudinal velocity distribution is chosen from a Gaussian distribution with a mean of
308 = and a standard deviation of 23 *F. For each applied waveform, 107 trajectories
are calculated for molecules in the low field seeking J = 1, |Q2] = 1, MQ = —1 state,
and a further 107 trajectories for molecules in the weakly high field seeking M = 0 state.
Another 107 trajectories are calculated with no fields applied to the chip. The accepted
molecules in the M) = —1 state arrive in a narrow peak, while the molecules in the
M = 0 state, which are less affected by the fields, arrive with a wider distribution that
resembles the initial distribution (although the presence of the fields reduces the number
of molecules in the M = 0 state that reach the detector to one-third of the amount that
would reach the detector without electric fields). By taking a weighted average of the
arrival time distributions of molecules in each of the two states, assuming that 10% of the
molecules are in the M = 0 state and the remaining 90% are in the M€ = —1 state, the
relative magnitudes of the narrow peaks and the broad background can be matched to
the ratio seen in experiments. The field-free arrival time distribution, in black, is scaled
down by a factor of 6. This is somewhat smaller than the scaling factor of 9 used in the
experiments and may be a sign of the non-adiabatic losses that are described in section
6.3.
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Figure 6.4: Simulated arrival time distributions for molecules guided over the chip at
a constant velocity. The molecules are assumed to have an initially Gaussian velocity
distribution with a mean velocity of 308 %' and a standard deviation of 23 Z* (corre-
sponding to a FWHM of slightly over 54 ). By assuming that 10% of the molecules
are in the M = 0 (weakly high field seeking) state, the relative intensities of the narrow
peaks and the broad background are well matched to those seen in the experimental
data. The field-free arrival time distribution, in black, is scaled down by a factor of 6.

6.2 Deceleration of 2CO

In the next set of experiments, molecules in the traps were decelerated by decreasing the
frequency of the waveforms and thus the velocity of the traps. For these experiments, the
gas mixture expanded into vacuum consisted of 20% CO in argon with an initial pressure
of about 1 bar and an initial temperature of 102 K. The resulting molecular beam is
somewhat faster than before (360 % instead of 310 ) but also has a somewhat narrower
velocity spread (45 = versus slightly more than 50 ) and has roughly double the peak
intensity. Since the largest number of molecules in the molecular beam have an initial
velocity around 360 =, waveforms with an initial frequency of 3.0 MHz are used in the
measurements. Figure 6.5 shows the arrival time distribution when no fields are applied
to the chip (black) and when waveforms with a peak-to-peak amplitude of 120 V and
constant frequency of 3.0 MHz are applied (red, scaled up by a factor of 25). As before,
most of the molecules either are not in the physical volume of the trap or have a velocity
relative to the traps that is too large to be captured; only the molecules initially in the
trap volume with an initial velocity close to 360 * contribute to the small peak at an
arrival time of 0.83 ms. The scaling factor of 25 between the signal without potentials
and the guided signal is larger than expected and may be the result of a combination the
structure being tilted less than before (and thus allow more molecules through when no
potentials are applied) and the non-adiabatic losses that will be described in section 6.3.

Unlike in the previous experiments, the waveforms are first switched on after the
guided molecules have traversed the first 3 mm of electrodes (530 us after the laser
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Figure 6.5: Arrival time distribution at the detector when a mixture of 20% CO in
argon with an initial pressure of about 1 bar and an initial temperature of 102 K is
expanded through the pulsed valve. The black curve shows the distribution when no
fields are applied to the electrodes of the chip. The peak arrival time corresponds to
a velocity of 360 3 with a spread of about 45 7. For the red curve, waveforms with
an amplitude of 120 V and a frequency of 3.0 MHz are applied to the chip, guiding
molecules over the chip at 360 3+ which arrive at the detector in a narrow peak at
0.83 ms. The red curve has been scaled up by a factor of 25.
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excitation) and are switched off again when they are less than 1 mm from the last electrode
(130 ps later). Because of this, the fastest molecules in the molecular beam traverse the
entire active area of the chip before the fields are even switched on. This effect is seen
in the arrival time distribution at 0.665 ms, where there is a sudden drop in signal:
molecules arriving at the detector just before the drop had just left the chip as the fields
were switched on while those that do not arrive right after the drop were still on the chip.
In other experiments, a similar effect can also be observed for molecules that are slow
enough that they do not reach the start of the chip until the fields have already been
switched off: in such cases, a sudden rise in signal will be observed at late arrival times.
With the waveforms applied in figure 6.5, the rise would be expected at 1.05 ms after the
laser excitation; this sudden rise is not observed because very few molecules in the beam
are traveling slowly enough.

These two effects can also be used to measure the position of the chip along the
molecular beam axis. If the distance from the laser excitation to the detector, dge, is
already known (this can be measured using the arrival time of molecules guided at a
constant velocity), the distance from the laser excitation to the edge of the chip facing

the detector, dpaq, is given by

tOH
dback - ddet_ (61)
Lran

where t,, is the time, relative to the laser excitation, that the waveforms are turned on,
and tg, is the time of the falling edge in the early part of the arrival time distribution.
Similarly, the distance from the laser excitation to the edge of the chip facing the valve
dgront can be found with the equation

lo
dfront - ddet_ff (62)

trise
where t.g¢ is the time that the waveforms are turned off, and ¢, is the time of the rising
edge in the late part of the arrival time distribution. If these two values are consistent,
Apack — dgony should be close to the length of the chip, 50.1 mm.

Figure 6.6 shows the arrival time distributions that result when waveforms with an
initial frequency of 3.0 MHz are reduced at a constant rate to a different final frequency
while the molecules are above the chip. In each case, the waveforms are switched on
530 us after the laser excitation, after the molecules moving at 360 %' have traversed
the first 3 mm of electrodes. The leftmost trace is the same as that seen in figure 6.5:
here, waveforms with a constant frequency of 3.0 MHz are applied to the chip for 130 us,
guiding the molecules at a constant velocity over the length of the chip. In the next traces,
the frequency of the waveforms was reduced to (from left to right) 2.8 MHz, 2.6 MHz,
2.4 MHz, 2.2 MHz, or 2.0 MHz over a time-interval of 133 us, 137 us, 144 us, 148 us, or
154 us, respectively, after which the waveforms were switched off. The time period of the
sweeps is chosen such that the traps 3 mm from the first electrode at the beginning of
the sweep are less than 1 mm from the last electrode at the end. The peaks, as a result,
shift to progressively later arrival times, indicating that some of the molecules initially
traveling at 360 * have been decelerated to lower velocities. Since a molecule must stay
in the same trap in order to reach the detector, the final frequency of the waveform
corresponds to the final velocity of the molecules; the various peaks then correspond to
molecules decelerated to 336 7, 312 2, 288 =2 264 2, or 240 %, respectively.
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Figure 6.6: Guiding and deceleration of CO molecules in an argon-seeded expansion
from 360 3 to various final velocities. Waveforms are applied to the chip that have an
initial frequency of 3.0 MHz starting 530 us after the laser excitation. In the leftmost
trace, the waveforms have a constant frequency of 3.0 MHz and are applied for 130 us,
and the arrival time distribution shows a peak at 0.83 ms, corresponding to a constant
velocity of 360 *¥. In subsequent traces, the frequency of the waveform is reduced to
(from left to right) 2.8 MHz, 2.6 MHz, 2.4 MHz, 2.2 MHz, or 2.0 MHz over a time-
interval of 133 us, 137 us, 144 s, 148 ps, or 154 us, respectively, after which the
waveforms are switched off. The molecules are decelerated to 336 %, 312 =, 288 =,
264 =, or 240 T+ and arrive successively later at the detector as the final velocity
decreases.
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Figure 6.7: Calculated initial positions and velocities of molecules that reach the
detector after being guided at a constant velocity of 360 % ((a)-(c)), after being decel-
erated from 360 % to 312 % ((d)—(f)), and after being decelerated from 360 = to 240 3
((g)—(i)). The top row shows the initial position of each molecule, plotted together with
the effective trap (trap combined with pseudopotential), the middle row shows the ve-
locity distribution, and the bottom row shows the integrated velocity distribution along
the principal axes indicated in the middle row.
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It can be seen that, as the deceleration increases, the total number of molecules
decelerated decreases. This is expected: in the previous chapter (figure 5.6) it is shown
that, as the acceleration increases, the volume and depth of each trap decreases. Figure
6.7 shows the effective traps (traps combined with pseudopotentials), together with the
initial positions and velocities of particles in these traps which reach the detector. Parts
(a)—(c) show the case in which molecules are guided at a constant velocity of 360 =,
(d)-(f) when molecules are decelerated from 360 = to 312 2, and (g)—(i) when molecules
are decelerated from 360  to 240 **. The initial positions and velocity are found by
randomly choosing 107 initial positions and velocities in a uniform distribution from a 50
um x 50 pm x 20 = X 20 7 hyperrectangle centered at y = 30 pm, z = 0 pm, v, =
0 2, and v, = 360 =+. For each of the chosen initial conditions, a particle trajectory is
calculated, and if this shows that the particle would reach the detector, the initial position
and velocity are recorded. The top row shows the initial positions overlayed on contour
plots of the effective traps. While most of the particles reaching the detector generally
fall in the region where the potential energy is lower than the potential energy of the
barrier to the field free region far from the chip, there are some molecules along an axis
perpendicular to the barrier that, despite having a total energy above the barrier, never
find the exit. The middle row shows the velocity distribution, and the bottom row shows
the integrated velocity distribution along the principle axes indicated in the middle row.
It can be seen in these plots that the velocity distribution perpendicular to the barrier is
somewhat higher that the velocity distribution in the direction of the barrier.

To quantitatively understand the effect of increasing acceleration on the number of
molecules reaching the detector, simulations of the expected arrival time distribution have
been carried out for each set of waveforms. The results of these simulations are shown
in figure 6.8. The dashed black curves represent the simulated arrival time distributions
for the same six sets of waveforms used for figure 6.6, and the solid red curves show
the experimentally-measured distributions with the broad background signal subtracted.
The experimental and simulated data have been independently scaled such that the peak
intensity of the molecules guided at a constant 3.0 MHz (360 ) is one in each of the two.
Comparing the simulated data with the experimental data, it becomes clear that as the
acceleration increases, many more molecules are lost from the traps in the experiment
than would be expected from the simulations. The inset shows the integrated intensity of
each peak as a function final velocity for the simulated (dashed black) and experimental
(solid red) data. In the last point, deceleration from 360 £ to 240 I, simulations predict
that the number of molecules reaching the detector should be reduced by a factor of six
compared to guiding at a constant 360 %, but the experiment shows that the number is
in fact reduced by a factor of about 25.

6.3 Results in Decelerating and Trapping “CO

The discrepancy between theory and experiment regarding the fraction of the molecules
lost at high accelerations was somewhat of a mystery for a while. At the time, there
were two leading hypotheses. The first was that collisions with the carrier gas in the
molecular beam cause the molecules to be ejected from the traps, and that this effect was
stronger at high accelerations because the molecules then have a higher velocity relative
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Figure 6.8: Simulated (dashed black) and experimental (solid red) arrival time dis-
tributions for molecules guided at 360 % and molecules decelerated from 360 = to 336

mo312 M 988 M 264 M or 240 M.

While the trajectory simulations predict that

the number of decelerated molecules should decrease as the acceleration increases, the
loss in experiments is much higher than the simulations predict. The inset shows the
integrated intensity of each peak, plotted against final velocity of the molecules in that
peak. While the simulations predict that the number of molecules that can be deceler-
ated from 360 % to 240 7 is a factor of six lower than the number of molecules than
can be guided at 360 i, the experiments show the ratio to be about 25.
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to the carrier gas. To mitigate this effect, an electrostatic deflector was designed that
could be inserted between the laser excitation and the chip to separate the carrier gas
from the low field seeking molecules. The second hypothesis was that imperfections in
the waveforms applied to the chip or imperfections in the electrodes cause the effective
depth of the traps to be much lower than if the waveforms and electrodes were perfect.

In the end, the dominant loss mechanism over the relevant range of velocities turned
out to be non-adiabatic transitions from the low field seeking J =1, 2 =1, MQ = —1
state to the M = 0 state. The idea had been considered early on in the experiment and
was tested at the time by applying a 30 Gauss magnetic field to the chip (accomplished
practically by setting a large, permanent magnet on top of the machine) to separate
the low field seeking states from the M = 0 levels by 14 MHz. Since the 14 MHz
splitting was much larger than the frequency of the waveforms applied to the chip and
the maximum oscillation frequency of the molecules in the traps, it was reasoned that
this splitting should prevent any non-adiabatic transitions. An experiment was carried
out in which waveforms were applied to decelerate the molecules from 300 ¥ to 288 7,
and no change was observed in the arrival time distribution, so it was assumed that there
were not significant losses due to non-adiabatic transitions to untrapped states. Likely,
the strength of the magnetic field was not large enough: it is shown in chapter 7 that
fields upward of 50 Gauss (that must be in the right direction) are needed to expect a
significant decrease in the non-adiabatic losses. Inspired by an article showing that non-
adiabatic loses are a dominant loss mechanism for NDj in quadrupole electric traps [101],
we began to reconsider the possibility that such losses could nevertheless be a problem.
Instead of using a magnetic field to break the degeneracy of the levels in 12CO, the 3CO
isotopologue was used. Due to its hyperfine structure, the low field seeking levels of the
J =1, Q) =1 state are never closer than 50 MHz to the non-trappable M = 0 states.

Figure 6.9 shows the arrival time distributions of *CO (black) and '*CO (red) molecules
guided over the chip at 312 7 and decelerated from 312 = to various final velocities. Even
during guiding, many more *CO molecules reach the detector than 2CO, despite the fact
that the beams of *CO molecules and 2CO molecules are comparable in their velocity
distribution and intensity. When the 2CO molecules are decelerated from 312 = to 240
=, only half as many molecules reach the detector as when the molecules are guided at
312 %, and deceleration to velocities lower than 240 7 results in no measurable signal.
In contrast, when the *CO molecules are decelerated from 312 2 to 240 2, the number
of molecules reaching the detector is almost the same as when they are guided at 312
% and when the molecules are decelerated from 312 = to 168 % or 96 =, 45% or 5%,
respectively, of molecules still reach the detector. Trajectory simulations confirm that,
compared to guiding at 312 7, few molecules should be lost when decelerating to 240 %,
and 50% or 10% of the molecules should remain when decelerating to 168 2 or 96 2,
respectively.

Since ¥*CO molecules are much more resistant to non-adiabatic transitions, the re-
maining experiments shown in this chapter will be performed with ¥CO. In the next
chapter, however, we will return to 12CO and reexamine the prevention of non-adiabatic
loss through the application of a magnetic field.
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Figure 6.9: Guiding and deceleration of *CO (black) and *CO (red) from 312 2.
For all traces, waveforms with an initial frequency of 2.6 MHz were applied to the
electrodes, starting 605 ps after the laser excitation. The molecular beam is produced
with a mixture of 20% CO in krypton with an initial pressure of 1 bar and initial
temperature of 140 K. In the leftmost traces, waveforms with a constant frequency of
2.6 MHz were applied to the chip for 159 ps, guiding the molecules over the chip at
312 ==, Despite the molecular beams having similar intensities, nearly five times more
13CO molecules are guided to the detector than 2CO molecules. In the next three sets
of traces, the frequency of the waveforms is reduced to 2.0 MHz over 180 us, to 1.4 MHz
over 207 us, or to 0.8 MHz over 244 s, decelerating the molecules to 240 7, 168 7,
or 96 ¥, respectively. When 12CO is decelerated to 240 %, the number of molecules
reaching the detector is reduced by half compared to when they are guided, and when
waveforms are applied to decelerate to lower velocities, no decelerated molecules are
detected. In contrast, the integrated intensity of *CO molecules decelerated to 240 =
is not less than that of the 312 % guiding peak, and after decelerating to 168 % or
96 =, 45% or 5%, respectively, of the molecules remain.
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6.3.1 Velocity and Space Focusing

Although the molecules above the chip must have roughly the same longitudinal velocity
as the moving traps in order to reach the detector, before they reach the chip and after
they leave, the molecules can have a velocity different from that of the traps. Since all
molecules originate from the same 1 mm long region at the same time, molecules with
different velocities will reach the chip at different times. The velocity of the molecules
arriving at the chip at any given time is given by

o) = T (63
where dgon is the distance from the laser excitation to the first electrode of the chip. If
the velocity of the traps is chosen to match equation (6.3) during the time that molecules
are arriving at the chip, molecules with many different initial velocities can be captured
on the chip simultaneously. This technique is called velocity focusing.

There are two practical limits to the velocities and range of velocities that can be
captured simultaneously. The first is that the physical length of the packet of captured
molecules cannot exceed the length of the chip. If the molecules are captured starting at
time ¢; and ending at time ¢, the length of the packet on the chip, dpacket, is given by

dfron t
dpacket = / front dt dfront In <t2>
t1

vl vy — v (6-4)
dfron 1n< 1) ~ dfron #
"\ "1y + va)
Here, v; = df;—‘;“t and vy = df;—‘;‘“ are the fastest and slowest velocities captured. The

second limitation comes from the fact that changing the velocity of the traps requires an
acceleration, and if the acceleration is too high, the molecules do not remain in the traps.
The acceleration that the traps experience, a(t), is only a function of the velocity of the

traps and dgont,i.e.

dv dront v(t)?
t = - = — = — .
a( ) dt t2 dfront (6 5)

The choice of dgoy is a trade off between having a reasonably low acceleration and
having a reasonably short packet. If dgon is large, the acceleration of the traps is low,
but the packet on the chip for a given velocity spread will be long, and if dg.op is small,
the packet on the chip will be short, but the acceleration required to bring it on the chip
will be much higher. A large dgon also leads to a lower density of molecules arriving at
the chip. In the configuration used for most of the experiments in this thesis, dgon i
188 mm, so at 300 %, the required acceleration is a modest 4.8 - 10° & but capturing
a 20% velocity spread uses more than two-thirds of the entire electrode array, leaving
little space left to decelerate the molecules to low velocities. For the experiments in the
next chapter, the machine was rebuilt and the laser excitation brought much closer to the
chip, resulting in a new dgoy; of 59 mm. While the same 20% velocity spread will only
be 12 mm long on the chip, the acceleration at 300 2 increases to 1.5 - 10° =, pushing
the limits of the ability of the traps to confine the molecules

In the discussion of velocity focusing, the emphasis has been on capturing molecules
with many different velocities at the entrance of the chip, but in fact, the entire sequence
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can be carried out in reverse as the molecules exit the chip. The question that must be
posed is, at what velocity do the molecules need to leave the chip to reach the detector
at a specific time? If t4; is the detection time then the velocity they must have when
leaving the chip is given by

U(t) _ ddet - dback (66)

tdet —t

where dge; — dpack 1S the distance from the exit of the chip to the detector. The corre-
sponding acceleration and packet length are

v(t)?
a(t) = ———— 6.7
() ddet_dback ( )
(%1 V1 — V2
dace:de_dac 1<_)%de_dac— 6.8
packet (dt bk)ﬂv2 (dt bk)%(vl_H}Q) ( )

If the velocity function given in equation (6.6) is followed as the trapped molecules are
exiting the chip, all of these molecules will reach the detector at a single time t4.;. Thus,
this technique is called space focusing.

In the original version of the beamline, the distance from the exit of the chip to the
detector is 60 mm. If the velocity of the molecules leaving the chip were still 300 7,
an acceleration of 1.5 - 108 % would be necessary, but because this step is done after the
molecules have been decelerated, and the necessary acceleration is proportional to velocity
squared, the acceleration actually needed to bring the molecules onto the detector at the
same time is much lower. Molecules leaving the chip at 120 7, for example, would only be
accelerated at 2.4 - 10° 7. Because the distance from the chip exit to the detector is less
than one-third the distance from the laser excitation to the chip entrance, the velocity
spread of the molecules exiting the chip will be three times larger than the velocity spread
of the captured packet.

Figure 6.10 shows two arrival time profiles in which waveforms were applied to capture
a large distribution of velocities. For both traces, the velocity of the traps is set according
to equation (6.3) over the period from time t; = 582 us to time ¢ty = 683 us. This
deceleration sequence captures molecules in the velocity range from 324 % (corresponding
to a frequency of 2.7 MHz) down to 276 % (2.3 MHz). The 30 mm long packet is then
decelerated from 276 = to 180 =+ in 80 s, at which point the first molecules to enter the
chip are now at the end of the electrode array. If the molecules are guided off the chip at
a constant velocity of 180 7, the broad distribution seen in the black trace is observed.
For the red trace, the velocity of the traps was accelerated according to equation (6.6),
using tgee = 1.098 ms, as the molecules are leaving the chip. Instead of arriving over a
large range of times, the molecules arrive together, producing a single sharp peak in the
arrival time distribution. In order to arrive simultaneously, these molecules must span a
range of velocities from 180 = for the first molecules leaving the chip to 300 % for the
last molecules to leave.

The results of trajectory simulations for this pair of waveforms are shown in figure 6.11
as a phase space plot. Here, the longitudinal position and longitudinal velocity of each
particle that eventually reaches the detector are plotted at various snapshots in time. At
the first snapshot (A), the molecules have just been excited into their metastable state,
so while they have a large velocity distribution, their spacial distribution is only 1 mm.
At a time 0.58 ms later (B), the fastest molecules of the distribution that will be captured
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Figure 6.10: Velocity and space focusing of ¥CO molecules. Waveforms are applied
to load molecules in the velocity range from 324 <= down to 276 =+ onto the chip. The
30 mm long packet is then decelerated to 180 3, at which point the first molecules
to arrive on the chip are near the chip’s exit. In the black curve, all molecules leave
the chip at 180 7, producing a broad arrival time distribution. In the red curve, the
molecules are reaccelerated, focusing their arrival times into an intense, narrow peak.
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Figure 6.11: Trajectory simulations for velocity and space focusing waveforms, illus-
trated through the longitudinal position and velocity distributions at various snapshots
in time for the molecules that eventually reach the detector. Immediately after the
laser excitation, the molecules have a wide range of velocities. The fastest molecules
reach the chip first (B) and are loaded at high velocity. The velocity of the traps is
then reduced to load molecules with successively lower velocities (C and D). While
on the chip, the packet of molecules is contained in roughly 250 individual minima.
The molecules are decelerated to 180 % (E) and are either extracted from the chip
at constant velocity (H’) or are reaccelerated (F and G). If the acceleration is chosen
correctly, all molecules will arrive at the detector at the same time (H).

SAMUEL A. MEEK, A Stark Decelerator on a Chip



6.3 Results in Decelerating and Trapping *CO 111

have just reached the chip, while the slowest molecules are still a few centimeters away.
At time (B), the waveforms are switched on with a frequency of 2.7 MHz (corresponding
to 324 ), and during the period from (B) to (D), are ramped down to 2.3 MHz (276
), bringing the entire packet onto the chip at time (D). From time (D) to time (E), the
traps are rapidly decelerated to 180 %2 (1.5 MHz), at which point the first molecules to
arrive on the chip are at the end of the electrode array. In one alternative, the molecules
leave at a constant velocity and arrive to the detector over a long time period (H’). In
the other alternative, the molecules are reaccelerated as they are leaving the chip (E-G)
such that the slowest molecules are close to the detector and the fastest molecules are far
from the detector at time (G). At time (H), all of the molecules in the packet arrive at
the detector.

6.3.2 Trapping 2CO

With the assistance of the velocity focusing and space focusing techniques, a waveform
sequence is composed to bring molecules to a standstill on the chip. First the molecules
with a longitudinal velocity from 312 2 (2.6 MHz) down to 300 % (2.5 MHz) are velocity
focused onto the chip. In the next 250 ps, the molecules are rapidly decelerated from 300
L (2.5 MHz) to 0 &. After a variable time at standstill, the molecules are reaccelerated
to 96 = (0.8 MHz), at which point the first molecules to enter the chip are near the last
electrode. The velocity of the traps is then accelerated at a rate such that the molecules
all reach the detector 0.63 ms later.

The resulting arrival time distributions are shown in figure 6.12. In the uppermost
trace of the main figure, the molecules, after being brought to a standstill, are immediately
reaccelerated, and arrive at the detector 1.6 ms after the laser excitation. In the next
trace, the molecules are held at standstill for 0.5 ms before being reaccelerated, so the
molecules arrive 0.5 ms later than before, i.e. at 2.1 ms. The holding time on the chip
has been increased in successive traces in 0.5 ms steps up to 2.5 ms. Although some
molecules can still be detected after they have been stored in the trap for 2.5 ms, the
number reaching the detector is significantly less than in the case where the molecules
were immediately reaccelerated after being stopped. This loss is expected though: since
the lifetime of the a®II; state of CO is only 2.6 ms [16], less than 40% of the molecules
should remain in the trap after 2.5 ms of trapping time. The inset of figure 6.12 shows
the integrated intensity of the peaks as a function of trapping time (points with error
bars). These points agree well with the 2.6 ms exponential decay curve (solid curve).

6.3.3 Mechanical Resonances

Although molecules have been trapped above the chip successfully, the number of molecules
that reach standstill and are successfully reaccelerated is very small: on average, a
molecule is detected only once every ten laser pulses. This is smaller than simple density
arguments would suggest: there are likely about 10'! metastable CO molecules per cubic
centimeter in the laser excitation, and by the time these molecules reach the chip, the
density will have dropped to 107 cm 3. Each trap has a volume of about 1075 cm?, and
about 60 traps were filled when the molecules were decelerated to standstill, so one could
expect about 600 molecules per pulse to be trapped. With a 1% detection efficiency, this
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Figure 6.12: Arrival time distributions for molecules that have been trapped on the
chip. Molecules in the velocity range from 312 % (2.6 MHz) down to 300 % (2.5 MHz)
are velocity focused onto the chip, and in the next 250 ps, are decelerated to 0 .
After a variable holding time above the chip, the molecules are reaccelerated to 96
o (0.8 MHz) and then space focused to the detector. In the uppermost trace, the
molecules are immediately reaccelerated after being brought to a standstill, and in
subsequent traces, the molecules are held for 0.5 ms, 1.0 ms, 1.5 ms, 2.0 ms, or 2.5 ms.
The inset shows the total number of molecules reaching the detector per pulse as a
function of holding time. While the integrated intensity of the peaks decreases with
increasing holding time, this loss is expected as a consequence of the 2.6 ms lifetime of
the a®II; state.
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Figure 6.13: A series of waveforms were constructed to decelerate molecules to suc-
cessively lower velocities without changing how the molecules enter the chip, leave the
chip, or the maximum acceleration they experience. The velocities of these waveforms
as a function of time after the laser excitation are shown on the right. Molecules from
312 ¥ to 300 7 are velocity focused and the packet is then decelerated at 1.2- 106 2 to
a minimum velocity ranging from 84 = down to 24 . After being guided at the low
velocity for a period of time, the molecules are reaccelerated to 96 % at an acceleration
of 1.2-106 2z and space focused from the chip to the detector. The guiding period is
chosen such that the molecules traverse the same distance over the chip, i.e. the inte-
gral of all of the velocity curves is the same. On the left are arrival time distributions
for molecules manipulated by these waveforms. The molecules in the uppermost trace
have been decelerated to 84 %, and the molecules in subsequent traces to 72 ¥, 60 i,
48 3, 36 7, and 24 7. As the minimum velocity of the traps decreases, fewer and
fewer molecules reach the detector.
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should result in about 6 molecules being detected per pulse, about 60 times larger than
what was actually observed.

The losses seem to occur most strongly when the molecules are decelerated to very low
velocities, but generally to reach these lower velocities, several features of the waveform
sequence are changed simultaneously: higher acceleration is used, and the waveform
sequence used to couple the molecules onto the chip or eject them from the chip might
also be different. To disentangle losses associated with molecules being in the traps at
low velocities from these other effects, a series of waveforms were constructed in which
the lowest velocity on the chip is varied without changing the maximum acceleration, the
waveform sequence to couple the molecules onto the chip, or the waveform sequence to
eject molecules from the chip. The trap velocity produced by the waveform sequences as a
function of time is shown in the right half of figure 6.13. Each of the waveform sequences
uses the same velocity focusing at the beginning, followed by a 1.2 - 105 % deceleration to
various final velocities. At the end, the molecules are reaccelerated at 1.2-10° =, and the
same space focusing is used in each sequence. In between, a segment of constant velocity
guiding is inserted so that the molecules are at the same position on the chip when the
space focusing waveforms begin. The arrival time traces in the left half of figure show the
molecules that have been decelerated to the various minimum velocities, ranging from
84 = in the uppermost trace to 24 7 in the lowermost. Despite nearly all details of the
waveform sequences other than the minimum velocity being the same, fewer molecules
reach the detector if they have been decelerated to a lower velocity.

Although most parameters other than the minimum velocity were kept the same in
each waveform sequence, the total deceleration time and the total time that the molecules
spend on the chip both increased as the minimum velocity decreased. To test whether
either of these parameters could be responsible for the decrease in signal observed in figure
6.13, a second set of waveform sequences was constructed with much higher minimum
velocities, ranging from 252 % to 180 . These waveforms sequences and the resulting
arrival time distributions are shown in figure 6.14. Unlike before, the number of molecules
reaching the detector seems to depend little on the minimum velocity that the molecules
see on the chip. From this, it can be concluded that neither the time that the molecules
spend on the chip nor the time that they are being accelerated or decelerated significantly
affects the number of molecules reaching the detector.

One likely explanation for a trap loss that becomes significant at lower velocities
is that, due to imperfections in the applied waveforms introduced in the amplifier, the
electric field minima do not move over the chip at a constant velocity but instead jitter
around the ideal, constant velocity point. This jittering motion could heat the molecules
in the trap if it contains frequency components that are not too much higher than the
oscillation frequency of the molecules within the trap. Since the quadrupole traps produce
a potential that is a linear function of displacement from the center for a molecule with
a linear Stark shift, there is no single oscillation frequency in the trap. Because the
A-doubling makes the potential somewhat quadratic at very low electric field strengths,
there is a maximum trap frequency: for waveforms with a 160 V peak-to-peak amplitude,
this maximum frequency is about 220 kHz. A more typical trap frequency, assuming
a linear potential and a maximum displacement from the trap center of 5 pm, would
be about 110 kHz. If the waveforms are periodic, the jittering motion has frequency
components that are multiples of one half of the frequency of the applied waveforms. If
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Figure 6.14: A second set of waveforms constructed to probe a higher range of mini-
mum velocities, but still without changing how the molecules enter the chip, leave the
chip, or the maximum acceleration they experience. The velocities of these waveforms
as a function of time after the laser excitation are shown on the right. Molecules from
324 7 to 300 T are velocity focused and the packet is then decelerated at 1.2 - 106 =z
to a minimum velocity ranging from 252 %+ down to 180 7. After being guided at the
minimum velocity for a period of time, the molecules are space focused from the chip
to the detector. The guiding period is chosen such that the molecules traverse the same
distance over the chip, i.e. the integral of all of the velocity curves is the same. On
the left are arrival time distributions for molecules manipulated by these waveforms.
The molecules in the leftmost trace have been decelerated to 252 7, and the molecules
in subsequent traces to 228 ¥, 204 ¥, and 180 7. In contrast to the losses seen at
lower velocities in figure 6.13, little change is seen between the waveform sequences
with different minimum velocities.
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Figure 6.15: Position (left) and velocity (right) of the quadrupole minimum generated
by real waveforms relative to an ideal trap that travels at constant velocity. The
2.5 MHz, 180 V peak-to-peak waveforms applied to the chip were recorded with an
oscilloscope, and for each point in time, the six potentials are used to calculate the
position of the minimum. By numerically taking the derivative of position with respect
to time, the velocity of the trap center is also found.

the waveforms have a frequency of 1 MHz, corresponding to a trap velocity of 120 =, the
jittering motion of the minimum can have Fourier components with a frequency as low
500 kHz.

To examine the motion of the real traps, 2.5 MHz, 180 V peak-to-peak waveforms
were applied to the electrodes and simultaneously recorded on an oscilloscope. Using
the six applied potentials recorded at each point in time, the position of the quadrupole
minimum is calculated for every point of the waveform. The left side of figure 6.15 shows
position of this minimum relative to an ideal trap moving transversely over the surface at
300 * over one cycle of its oscillation or two cycles of the applied waveform. Relative to
the ideal motion, the trap wanders over a +2 pm-wide region, a motion that corresponds
to nearly 20% of the width of the entire trap. The velocity of this motion, found by
numerically taking the derivative of the position, is shown on the right side of the figure.
It can be seen that the real minimum frequently has a velocity in excess of 50 7} relative
to the ideal minimum, although at lower frequencies, the velocity of the jittering would
be proportionally lower.

With motions with such extreme displacement and velocity, it is somewhat surprising
that the molecules can be trapped in the moving potential wells at all. The trapping
in the moving potential likely only works because the jittering is much faster than the
motion of the molecules in the traps and the molecules still see a trap on average. If
the trap velocity is greatly reduced, however, the frequency of these motions is similarly
reduced, and the assumption that the trap motion is much faster than the motion of
the molecules no longer holds. Mechanical heating is not the only problem that results
from this rapid motion: in the next chapter, it will be shown that the rapid jittering also
leads to non-adiabatic transitions. In future experiments, it will likely be necessary to
improve the quality of the waveforms to improve the guiding, deceleration, and trapping
of molecules above the chip.
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Chapter 7

Suppression of Non-Adiabatic Trap
Losses Using a Magnetic Field

The goal of the most recent experiment is to quantify how much energetic splitting is
needed between low field seeking levels and levels with little Stark shift to prevent losses
from the traps due to non-adiabatic transitions. It was shown in the last chapter that
the 50 MHz splitting in ¥*CO due to hyperfine interactions suppresses these losses, but
because this splitting cannot be varied, it is not clear how large the splitting needs to be
to suppress all losses. In chapter 4, it was observed that if a magnetic field is applied to
12C0O molecules in the ¢®II;, v = 0, J = 1 state, the low field seeking levels are split from
the levels with little Stark shift by an amount given by the Zeeman splitting, and if an
electric field is applied perpendicular to the magnetic field, the splitting only increases.
By applying a uniform magnetic field to the chip along the axis of the electrodes (along
which there is no electric field) and measuring the number of molecules that reach the
detector after being guided over the chip for various magnetic field strengths, it can be
determined how much splitting is necessary to prevent trap losses due to non-adiabatic
transitions.

7.1 A New Machine

Preliminary experiments were conducted in the same machine used for all experiments
in the last chapter and described in chapter 5. Unfortunately, the Auger detector is
fairly sensitive to magnetic fields, since the electrons leave the surface with low kinetic
energy and must be accelerated along a curved path to reach the detector. At magnetic
fields higher than a few Gauss, no more signal is observed at the MCP, and since the
magnetic field was applied to the chip using a pair of 30 cm diameter coils, the field at the
Auger detector was nearly as high as at the chip. This problem could not be mitigated
by turning off the magnetic field during the time that the molecules fly from the chip
to the detector, because of the eddy currents induced in the metal chamber and frame.
This was further exacerbated by a support frame out of magnetic steel that could remain
magnetized for more than a millisecond.

These issues can be eliminated by detecting the molecules using resonance-enhanced
multiphoton ionization (REMPI). For metastable CO, a molecule in the a®II state is
excited to the b state using a 283 nm, 4 mJ, 5 ns laser pulse, after which one more
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Figure 7.1: The new beamline used for the experiments in this chapter. The setup
features a third differentially-pumped chamber to improve the pressure in the chamber
containing the chip and a laser excitation much closer to the first electrode of the
array. Additionally, the new beamline includes an ionization detector in which the
metastable CO molecules are ionized in a 1+1 REMPI process and the ions extracted
to a microchannel plate. The ionization detection scheme has the advantage of being
insensitive to magnetic fields.

283 nm photon is sufficient to ionize the molecule. Once the CO molecule is ionized,
it can be accelerated directly to a microchannel plate (MCP) detector, and because the
ion is much heavier than an electron, its trajectory is less influenced by magnetic fields.
Since major modifications would be needed to implement REMPI in the existing machine,
plans to move the chip to a new machine were accelerated.

The beamline of the new machine is seen in figure 7.1. To improve the vacuum
in the chip chamber for future experiments, the new machine is separated into three
differentially-pumped chambers, separated by two skimmers. The molecular beam is
produced using the same pulsed valve as before and passes through the first skimmer
(not shown). Immediately before passing through the second skimmer, the CO molecules
are excited to their metastable state. The region around the chip is in a uniform magnetic
field produced by a pair of 30 cm diameter planar coils, separated by 23 c¢m, outside the
chamber. The direction of this field is chosen such that it is always perpendicular to the
electric fields that manipulate the metastable CO molecules on the chip. After exiting
from the chip, the molecules can be detected in one of two ways: either they can be ionized
between the ion extractor plates, after which the CO ions are extracted to the side and
detected on the off-axis MCP, or they can fly further and be detected by the same Auger
detector used previously. The REMPI detection scheme is insensitive to magnetic fields:
calculations show that, even in a 100 Gauss magnetic field, the ions are deflected by less
than 2 mm from their magnetic field free trajectory, which is sufficiently small to still
impact the 8 mm diameter MCP. Even though the magnetic field can now in principle
be applied continuously, it is switched off after the molecules have been detected and
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Figure 7.2: Relative number of '2CO molecules in the low field seeking levels of the
a’ll;, v = 0, J = 1 metastable state guided over the chip at 300 & as a function
of magnetic field. The signal intensity is normalized such that the guiding signal at
zero magnetic field is one. The direction of positive magnetic field corresponds to the
direction shown in figure 7.1, which is also the +Z-axis, if the +g¢-axis is defined as a
normal vector directed away from the chip surface and the +Z-axis is the direction of
the molecular beam. At the highest magnetic field strengths, the number of guided
molecules is enhanced by a factor of six.

switched on again shortly before the new pulsed beam is emitted to reduce the heating
of the coils.

7.2 Experimental Results

To examine the rate of non-adiabatic losses as a function of magnetic field strength,
metastable CO molecules are guided over the full length of the chip at a constant 300 =+
and subsequently detected using REMPI. The relative number of guided metastable 2CO
molecules detected as a function of magnetic field is shown in figure 7.2. In this and all
subsequent data plots in this chapter, the signal is normalized to the signal at zero mag-
netic field. The measurements are also carried out for positive and negative magnetic
fields along a single axis: the direction of positive magnetic field is shown in figure 7.1,
and it coincides with the +z-axis, if the +y-axis is defined as a normal vector directed
away from the chip surface and the +2-axis is in the direction of the molecular beam.
At the highest magnetic field strengths, the number of guided molecules is enhanced by
a factor of six. This supports the idea that, as the splitting between low field seeking
states and untrapped states increases, the probability of non-adiabatic transitions de-
creases, and fewer molecules are lost from the moving traps. The enhancement depends
on the direction of the magnetic field: while there is significant enhancement for negative
magnetic fields, less enhancement is seen for positive magnetic fields.

Figure 7.3 shows the intensity of *CO guided at 300 % as a function of magnetic
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Figure 7.3: Relative number of '3CO molecules in the low field seeking levels of the
a’lly, v = 0, J = 1 metastable state guided over the chip at 300 s as a function of
magnetic field. The normalization of the signal and the direction of positive magnetic
field are the same as in figure 7.2. While '2CO guiding is enhanced by a magnetic field,
applying a magnetic field to the chip while guiding '3CO actually decreases the number
of guided molecules reaching the detector.

field. While 2CO guiding is enhanced by a magnetic field, applying a magnetic field to
the chip while guiding *CO actually decreases the number of guided molecules reaching
the detector. This signal reduction can be explained by the level structure of *CO. With
zero magnetic field, the low field seeking levels in the a®Il;, v = 0, J = 1 state of ¥CO
are already well separated from the levels unaffected by electric fields (see figure 4.2).
By applying a magnetic field, the splitting between some of the low field seeking levels
and some of the levels unaffected by electric fields decreases, increasing the likelihood
of non-adiabatic transitions between these states (see figure 4.3). As in '2CO, the *CO
guiding signal is asymmetric for positive and negative magnetic fields. While it appears
from the guiding data of 2CO that these could be symmetric around a magnetic field
strength of 415 Gauss, no such symmetry exists for the 3CO data.

7.3 Quasienergy Hamiltonian in a Rotating Field

The strength of non-adiabatic transitions that lead to loss of molecules from the traps is
determined largely by the minimum separation between the low field seeking levels and
the levels with little Stark shift. In a static trap, this splitting would be given by the
Zeeman shift in 12CO and a combination of the Zeeman shift and hyperfine structure in
13CO. The electric fields in the trap are not static, however: as the minima move over
the chip, the direction of the electric field vector at every point relative to the minimum
rotates at a rate 1.5 times the frequency of the applied waveforms. If this rotation is
ignored, and a wavefunction is chosen that is an eigenvector of the Hamiltonian at a
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Figure 7.4: Quasienergies in the upper A-doublet component of the a*II;, v = 0,
J = 1 state of 2CO that result from the combination of a static magnetic field and a
3.75 MHz rotating electric field. The three levels are degenerate at B = +8.0 Gauss
and have a structure that is symmetric about this point.

particular time, the wavefunction will rapidly oscillate from its original eigenstate to
other eigenstates.

In chapter 2, it was shown that, for the specific case of 2CO in the a®II;, v = 0,
J = 1 state, it is possible to choose a linear combination of instantaneous eigenstates
that is stationary under the rotating Hamiltonian, i.e. as the wavefunction evolves, it
remains the same linear combination of the instantaneous eigenstates up to a phase. The
rate at which this phase changes is given by the quasienergy, in much the same way that
the rate of change of phase in a time-independent Hamiltonian is given by the energy.
To extend the quasienergy description to *CO in a rotating field, we first consider a
general Hamiltonian that rotates at a constant rate around the Z-axis (although the
rotation is around the z-axis in the experiment, it is more conventional to use the 2z-
axis as a symmetry axis). Such a Hamiltonian can be expressed as a sequence of three
operations: a rotation of the system around the Z-axis through an angle —27vt, the
application of a time-independent Hamiltonian, and a rotation back through an angle
2mvt. Mathematically, the Hamiltonian can be written as

H(t) _ e—z’FZZTrut]floeiFZQWVt (71)

where F is the total angular momentum operator along the space-fixed z-axis, and v is the
frequency of the rotation. If U in equation (2.42) is chosen to be U = e~ =2 (a rotation
about the Z-axis through an angle 27vt) then the resulting quasienergy Hamiltonian is
given by

fo = O ()T — mm%_f _ Iy — hob. (7.2)

This quasienergy Hamiltonian is time independent.

In 2CO, the Zeeman splitting is proportional to E, for all levels of the a?II;, v = 0,
J = 1 state, so the magnetic field and the rotation have the same effect on the quasienergy
Hamiltonian, but act with opposite signs. If the direction of the rotation, as defined by the
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Figure 7.5: Quasienergies in the upper A-doublet component of the a3Il;, v = 0,
J = 1 state of ¥CO that result from the combination of a static magnetic field and
3.75 MHz rotating electric field. Unlike in '?CO, the application of a magnetic field
to 13CO brings some of the low field seeking levels (upper four levels at zero field)
closer to the levels with little Stark shift (lower two levels), increasing the likelihood
of non-adiabatic transitions. With the inclusion of the rotating electric field, the level
structure is no longer symmetric around a particular magnetic field as in '2CO: the
upper four levels become nearly degenerate at 11.8 Gauss, while the lower two levels
become degenerate at 5.9 Gauss.

right hand rule, and the direction of the magnetic field are the same, then at a particular
field strength, the two components cancel each other out. Furthermore, the quasienergy
Hamiltonian as a function of magnetic field strength is symmetric around the point at
which the rotation and magnetic field cancel out. Qualitatively, the data for 12CO guided
at 300 3 match this prediction: the measured signal seems to be symmetric around the
magnetic field B = +15 Gauss. Based on the Zeeman shift known for this state and
the field rotation frequency of 3.75 MHz, the symmetry point is expected at B = +8.0
Gauss (see figure 7.4). Although this differs in magnitude from the experimental value
by almost a factor of two, the correct sign is obtained.

The quasienergy of 3CO in a combined magnetic field and rotating infinitesimal
electric field is shown in figure 7.5. While applying a magnetic field to 2CO separates
the low field seeking levels from the states with little Stark shift, applying a magnetic field
to 13CO pushes some of the levels closer together. Additionally, the symmetry around
a specific magnetic field strength seen in 2CO is absent in '*CO: the upper four levels
become nearly degenerate at 11.8 Gauss, while the lower two levels become degenerate
at 5.9 Gauss. The data qualitatively reflect the decreased splitting and asymmetry: the
maximum intensity is observed at +4 Gauss, and the intensity decreases asymmetrically
around this point.
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7.4 Theoretical Calculations for 2CO

Since it is not possible to greatly enhance the number of ¥*CO molecules that can be
guided over the chip by applying a magnetic field (in fact, for most magnetic field
strengths, applying a field makes the signal worse), the remainder of this chapter will
focus on better understanding the non-adiabatic losses that occur when 2CO molecules
pass near the center of the microtraps and how these losses can be influenced by a mag-
netic field. To do this, we start with the quasienergy Hamiltonian given in equation
(2.43). This quasienergy Hamiltonian produces two low field secking states. The first,
with intensity primarily in the third basis vector, is only coupled to levels in the lower
A-doublet component, and this coupling is especially weak at low electric field strengths.
The second low field seeking level, with intensity primarily in the fourth basis vector,
is strongly coupled to levels in the upper A-doublet component and can undergo non-
adiabatic transitions. Based on the given quasienergy Hamiltonian, the first low field
seeking level should not undergo non-adiabatic transitions. If this were the case, though,
half of all low field seeking molecules would be immune to non-adiabatic transitions, yet
the data show that the number of molecules reaching the detector increases by more
than a factor of two between zero magnetic field and high magnetic fields. One likely
explanation is that the population in the two low field seeking levels redistributes at
higher electric field strengths: figure 4.3 shows that the splitting between the two low
field seeking levels asymptotically approaches zero as the electric field strength increases.
To obtain a pessimistic estimate of non-adiabatic loss rates, it will be assumed that only
the second of these two low field seeking levels is populated.

Since the quasienergy Hamiltonian only mixes the fourth basis vector with the fifth
and the sixth, the three by three submatrix in the lower right corner is used as the
quasienergy Hamiltonian for calculations here.

i A(sec(28) — 1) Rcosf3 0
Ho(t) = Rcos 3 0 Rsin 3 (7.3)
0 Rsinf3 —2(sec(28) +1)

The parameter A = 394 MHz is the A-doublet splitting. The diagonal elements here are
offset by —% from the quasienergy Hamiltonian in chapter 2: this does not change the
physics, but the numerical calculations become easier if the levels that contain most of the
intensity are closer to zero. In chapter 2, the quasienergy Hamiltonian was written based
on the assumption that the magnetic field is along the z-axis and that the electric field is
in the xy-plane, automatically making the two perpendicular. To match the quasienergy
Hamiltonian to the coordinate system of the experiment, in which the electric field is in
the yz-plane and the magnetic field is along the Z-axis, the coordinates are cycled: all
instances of the x in the previous definition are replaced with y, all instances of y with
z, and all instances of z with . The parameters R and (8 are then derived from |E |, the
strength of the electric field, «, the angle of the electric field vector in the yz-plane with
respect to the +y-axis (positive values toward the +z-axis), and B,, the magnetic field,
which is positive if the magnetic field is in the +2-direction and negative if the magnetic
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field is in the —z-direction.

do

2z 4
R o (7.4)
25
tan(203) = N (7.5)
S = 0.4967 ju5| E| = 343 MHz <—V> |E| (7.6)
cm
7 =0.3332 up B, = 0.466 MHz Gauss ™' B, (7.7)

The parameters S and Z are the Stark and Zeeman splittings, respectively.

Using this quasienergy Hamiltonian matrix, the time-dependent Schrodinger-like equa-
tion (equation (2.42)) is solved numerically as a system of coupled first-order ordinary
differential equations. While the magnetic field strength and direction is held constant,
E changes in time, due both to the motion of the molecule through the inhomogeneous
field and the inherent time dependence of the electric field. To track the motion of the
molecules in the electric field, the system of differential equations is augmented with
four additional equations, describing the velocity components v, and v, and the position
components y and z. The force on the molecule, which determines the rate of change
of its velocity, is calculated using the mechanical potential U(|E]) of a low field seeking
molecule in the manner described in chapter 3. The effect of the magnetic field and
electric field rotation on the potential energy are neglected for this calculation.

The spatial distribution of the field is taken to be an infinite quadrupole field. At
each position relative to the quadrupole minimum, the electric field vector rotates at a
constant rate, simulating the rotation that occurs as the minima move over the electrodes
in the experiment. The electric potential for this field can then be written as

A
1% =
2

—§r2 cos(2¢ — 2mvt) = — = (y* — 2%) cos(2mvt) — Ayzsin(27vt) (7.8)

E = A(ycos(2mvt) + zsin(2mvt))j + Ay sin(2mvt) — z cos(2mvt))2 (7.9)

The parameter A is non-negative. In the current set of experiments, A = 0.054 %,
corresponding to a peak-to-peak amplitude of the applied waveforms of 180 V, and v =
3.75 MHz, 1.5 times the frequency of the applied waveforms. Using this electric potential,
the electric field strength |E | and the angle of the field vector « are given by

|E| = A\/(y cos(2muvt) + zsin(2mvt))? + (ysin(2rvt) — 2 cos(2mvt) )2 (7.10)
a(t) = arg((y cos(2mvt) + zsin(27vt)) + i(y sin(2wvt) — z cos(2mvt))) (7.11)

which simplify to

AVt 2 (7.12)

arg(y —iz) + 2mvt (7.13)

2
a(t)

From this, the parameter R can be calculated.
R=h(y*+ z2)_1(zvy —yv,) + (hv — 2) (7.14)
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Figure 7.6: Transition probability as a function of closest approach at several differ-
ent interaction velocities with hv — Z = 0. As the velocity increases, the integrated
probability increases, although the peak transition probability only grows slightly.

To find the transition probability of a molecule that passes the quadrupole minimum
at a velocity vy and a closest approach distance b, a set of initial conditions are chosen
where v, = v9, v, = 0, y = 0, and z = b, and for now, the equations that determine the
wavefunction are ignored. The differential equation solution is propagated backwards in
time until y = —3 pm. At this point, the components of the wavefunction are given initial
values corresponding to the eigenvector of the quasienergy Hamiltonian with the highest
quasienergy, which is the low field seeking state. Note that the electric field rotation due
to the velocity of the molecule is also included in the quasienergy Hamiltonian used to
initialize the wavefunction. From here, the differential equation solution is propagated
forward in time until y = +3 pm, passing a point where v, = vy, v, = 0, y = 0, and
z = b along the way. At the end of the propagation, the wavefunction is decomposed
into eigenvectors of the quasienergy Hamiltonian (which again includes the electric field
rotation from the velocity of the molecule), and from this, the probability of the molecule
being in one of the two lower eigenstates is calculated. The calculations are repeated for
a range of b, both positive and negative, for fixed values of vy and hv — Z.

Through repeated simulations, it was found that the transition probability integrated
over all b increases as a function of velocity. Figure 7.6 shows the transition probability as
a function of closest approach (b) at several different interaction velocities (vg) with hy —
Z = 0. While the maximum transition probability does not increase significantly as the
velocity increases, the distribution becomes wider, so the overall transition probability for
a sample of molecules passing within 1 um of the minimum increases. For the case where
hv — Z = 0, the integrated transition probability as a function of velocity empirically
follows a power law scaling, and is given by

o = 0.07926v,°*% (7.15)

Here, vy is measured in meters per second and the integrated transition probability, o,
has units of micrometers.

It was initially assumed that, since the maximum velocity of the molecules in the
traps is about 5 =, applying a magnetic field to prevent transitions for all molecules with
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Figure 7.7: Transition probability as a function of closest approach at several values of
hv — Z with an interaction velocity of 5 7. While the integrated transition probability
increases from hv — Z = 0 MHz to hv — Z = 2 MHz, at higher splittings, the transition
probability decreases. At hv — Z = 10 MHz, the maximum transition probability is less
than 107

this velocity should prevent trap losses. Figure 7.7 shows the transition probability as a
function of closest approach for several values of hv —Z for vy = 5 7. While the integrated
transition probability initially increases from hy — Z = 0 MHz to hv — Z = 2 MHz,
between 2 MHz and 4 MHz, the transition probability rapidly decreases. It is estimated
from further calculations that if hv — Z = 10 MHz, the transition probability per pass
is less than 1076 for all closest approach distances. This splitting can be produced by a
15 Gauss magnetic field applied opposite to the direction of the electric field rotation.

The experimental data clearly show, however, that trap losses continue to decrease
at fields more negative than —15 Gauss. While the reason for this was not immediately
clear, it now seems that the excess field needed to suppress non-adiabatic losses is a
consequence of the trap jittering seen in chapter 6. Figure 6.15 shows that, as a result of
the real waveforms applied to the chip, the field minima move with a velocity in excess
of 50 7 with respect to the molecules moving over the chip at 300 . The non-adiabatic
losses are not due to the molecules passing the minima at 5 7 but rather the minima
passing the molecules at 50 . Because the frequency of this motion is much higher than
the oscillation frequency of the molecules in the traps, the number of passes of the electric
field minimum is increased, magnifying the loss rate.

Figure 7.8 shows the transition probability as a function of closest approach distance
when the molecules and traps pass at 50 7. While a splitting of 10 MHz suppresses
all non-adiabatic transitions in molecules passing the trap center at 5 *3, the integrated
transition probability actually increases for molecules encountering the minimum at 50 2.
Only when the splitting is increased above 10 MHz is the transition probability reduced.

To estimate the splitting necessary to suppress all non-adiabatic transitions in the
jittering trap, transition probabilities were calculated for molecules traveling at 100 =,
a cautious estimation of the maximum relative velocity between the field minimum and
the molecules. For a splitting of 60 MHz, the maximum transition probability per pass
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Figure 7.8: Transition probability as a function of closest approach at several values
of hv — Z with an interaction velocity of 50 . Although non-adiabatic transitions are
completely suppressed at hv — Z = 10 MHz when the interaction velocity is 5 %, the
integrated transition probability actually increases from hv — Z =0 MHz to hv — Z =
10 MHz but decreases thereafter. At hvy — Z = 50 MHz, the maximum transition
probability is about 1076

is 4 - 107°. The left side of figure 6.15 shows that, in one cycle of the motion of the
minimum, the minimum passes any point a maximum of about six times, corresponding
to one pass per electrode. In the worst case, the molecules would remain at the most
unfavorable position for their entire traversal of the chip, seeing 1254 passes of the mini-
mum. For molecules in this position, the total transition probability would only be about
5%, so it can be assumed that with 60 MHz of splitting, nearly all non-adiabatic losses
should be prevented. This degree of splitting can be produced with a magnetic field of
120 Gauss applied opposite to the direction of rotation. It can be predicted from this
that measurements of the guided molecule signal as a function of magnetic field should
saturate somewhere between —80 Gauss and —120 Gauss.

7.5 Additional Measurements

Based on the predictions that the jittering of the microtraps is responsible for non-
adiabatic losses at magnetic fields more negative than —15 Gauss and that nearly all non-
adiabatic transitions can be prevented with magnetic field around —80 to —120 Gauss,
two additional measurements were carried out. One measurement was made under nearly
the same conditions as in figure 7.2 but for magnetic fields from —20 to —140 Gauss.
The results of these measurements are shown in red in figure 7.9, together with the
measurements from figure 7.2 in black. At —80 Gauss, the guiding signal reaches a
maximum value, and at more negative field strengths, the signal remains nearly constant,
indicating that all non-adiabatic have been prevented. The discrepancy between the two
sets of measurements in the overlap region results from a slight misalignment of the
detection laser in the earlier experiments: at zero magnetic field, the packet of CO* ions
was impacting the MCP near its edge and some ions were not being detected, but at
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Figure 7.9: Relative number of '2CO molecules in the low field seeking levels of the
a’ll;, v = 0, J = 1 metastable state guided over the chip at 300 & as a function
of magnetic field. The new measurements (red crosses) extend the range of magnetic
fields measured to —140 Gauss, and the measurements from figure 7.2 (black pluses)
are included for comparison. At magnetic fields more negative than —80 Gauss, the
signal saturates, indicating that all non-adiabatic transitions have been prevented.
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Figure 7.10: Due to a misalignment of the detection laser when measuring the black
data points in figure 7.9, the signal at zero magnetic field was underestimated, and as
a result, the normalized signal for large, negative magnetic field is overestimated. If
these black plus points in figure 7.9 are scaled down to 70% of their original value and
the red cross points, which were not affected by this error, are left unchanged, the two
data sets agree well in their overlap region.
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Figure 7.11: Position (left) and velocity (right) of the quadrupole minimum generated
by the improved waveforms relative to an ideal trap that moves at constant velocity.
The harmonic distortion was reduced by inserting an LC circuit into the output stage
of the amplifier. By doing so, the maximum velocity of the field minimum relative to
the ideal trap was reduced from nearly 100 3 to less than 50 7. Unfortunately, the
modification introduces a strong frequency dependence to the amplification factor, so
the modified amplifiers cannot be used for deceleration.

higher magnetic fields, the deflection of the ions by the magnetic fields results in the
entire ion packet reaching the MCP. If the earlier data set is scaled to 70% of its original
value (which is appropriate if 30% of the ions were not detected at zero magnetic field),
the two data sets agree quite well in their overlap range (figure 7.10).

A second measurement was carried out in which 2CO molecules were guided over
the chip at 300 % using more accurate waveforms to produce the moving minima. By
inserting an LC circuit into the output stage of the amplifier, the harmonic distortion
of the sine waves was reduced, and the maximum velocity of the electric field minimum
around its average value is reduced from nearly 100 £ (figure 6.15) to less than 50 =&
(figure 7.11). The result is shown in figure 7.12 in red, together with the measurements
from figure 7.2 in black. With the improved waveforms, the guiding signal saturates at
a magnetic field strength of 40 Gauss instead of 80 Gauss, and the ratio between the
number guided at large magnetic fields and the number guided at zero field is smaller,
likely because fewer molecules are lost when there is no magnetic field. The asymmetry
between positive and negative magnetic fields is also reduced, and the data are largely
unchanged by reflection around +8 Gauss (blue line), consistent with the theoretical
prediction in section 7.3.

7.6 Conclusions

By applying a magnetic field to the chip perpendicular to the electric fields, non-adiabatic
transitions to untrapped states can be prevented in ?CO. The minimum magnetic field
strength necessary to prevent all losses also depends on the accuracy of the waveforms

applied to produce the moving traps: errors in the applied waveforms lead to a jitter-
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Figure 7.12: Relative number of >CO molecules in the low field seeking levels of the
a®Il;, v = 0, J = 1 metastable state guided over the chip at 300 s as a function of
magnetic field with improved waveforms (red crosses) compared to the data from figure
7 (black pluses). While magnetic field strengths of more than 80 Gauss were needed
to prevent all non-adiabatic losses when using the original waveforms, only 40 Gauss is
needed with the improved waveforms. The asymmetry between positive and negative
magnetic fields is also reduced, and the data are largely unchanged by reflection around
+8 Gauss (blue line), consistent with the theoretical prediction in section 7.3.

ing of the electric field minima that amplify the non-adiabatic losses. Modeling the
non-adiabatic loss rate theoretically requires including this motion, and while first calcu-
lations are based on a single pass at a particular velocity and closest approach distance,
a better approach would be to include the full motion of the jittering field minimum.
The discrepancy between the theory and experiment on the asymmetry of the signal en-
hancement as function of magnetic field (described in section 7.3) might also be better
explained by including this motion. Future experiments could also benefit from improved
waveforms, since this reduces the strength of the magnetic field needed to prevent the
non-adiabatic losses.
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Chapter 8

Summary and Outlook

It has been shown in thesis that neutral polar molecules can be guided, decelerated,
and trapped 25 um above the surface of a microstructured electrode array using electric
fields. The large number of individual traps on the chip enables efficient manipulation
of the phase space distribution: molecules in the beam with a wide distribution of ini-
tial velocities can be focused to a single velocity on the chip, and molecules leaving the
chip can be reaccelerated such that all molecules reach the detector at the same time,
resulting in an order of magnitude more signal at the detector. One critical loss mecha-
nism that has been identified during this work results from non-adiabatic transitions to
untrappable states. Such losses are exacerbated by a rapid “jittering” of the electric field
minima around their average positions. It has been shown that non-adiabatic losses can
nonetheless be suppressed by using the *C!0 isotopologue or by applying a magnetic
field when decelerating 2C°0, but at low velocities, the same jittering also causes many
molecules to be lost through mechanical resonances. Since the jittering is caused by im-
perfections in the waveforms applied to produce the moving minima, it will be critical
in future experiments to gain better control over the waveforms. Constructing better
amplifiers that provide a more linear amplification of the input waveforms will probably
be the best solution in the long term. Some improvement might be found in the more
immediate future by implementing a feedback mechanism in which the input waveforms
are iteratively modified in order to compensate for the amplifier distortions.

A new chip with a 74 mm-long electrode array (consisting of about 1850 electrodes
that each have the same dimensions as in the previous chip) has been constructed and
is presently being installed. The extra space on this chip will allow the molecules to be
brought to a standstill with a low deceleration and will also enable longer packets to be
velocity focused onto the chip. Once a larger number of molecules can be trapped on
the chip, the lifetime of various isotopologues of CO (starting with 3C*0) in various
vibrational and rotational levels of the a®II state can be measured above the chip. In
principle, figure 6.12 already shows a lifetime measurement, albeit with a low signal to
noise ratio.

Metastable CO molecules can in principle be detected while they are trapped above
the chip by imaging the phosphorescence they emit when they decay back to the ground
state, though a previous attempt to detect the molecules in this way was unsuccessful due
to too much background signal. The signal to noise ratio might by improved by exciting
a®Il, v = 0 CO molecules to the ¥¥EF, v = 0 state using a pulsed laser and imaging
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the off-resonant fluorescence of molecules decaying to the a®II, v = 1 state. Off-resonant
imaging enables filters to be used to suppress scattered light from the excitation laser, and
background from ambient light and dark counts are also reduced, since the fluorescent
light arrives in a narrow 100 ns time interval. Such a method would also be applicable to
the wider range of polar molecules that can be detected using laser-induced fluorescence
(LIF).

An experiment is planned to drive transitions from the low field seeking components of
the a®II;, v = 0, J = 1 to the low field components of the J = 2 level using a millimeter-
wave source. Since both of these states are trappable, such an experiment could be a first
step toward quantum information storage using molecules on a chip.

The relatively low electric fields present in the microtraps (less than 5 % so far) make
them suitable for deceleration of molecular states that are only low field seeking at low
field strengths. For example, the X2, v = 0, N = 1 state of YbF has a component
that is low field seeking, but only up to a field strength of 18 1;—:1 While decelerating this
state would be very inefficient using a standard Stark decelerator, it should be feasible
using the chip decelerator.

In the more distant future, new chips will be designed and constructed. One feature
that might be useful to include in such a design is an electric field bias such that the
minimum field strength is non-zero. Such a design could be useful for preventing non-
adiabatic losses while decelerating polar molecules that do not have a significant Zeeman
shift. This practice is well established for atom chips, where Z-shape traps are used to
prevent losses due to spin flip transitions[51]. Optical cavities integrated on the chip
could provide a means of on-chip detection that would be applicable to a wide range of
molecules. Low-energy chemical reactions between molecules could be studied by creating
a chip with two parallel decelerators. Molecules arriving from opposite directions would
be decelerated to a standstill in opposite decelerators, and after reaching standstill, the
microtraps would be merged to allow the two species to react. Many new experiments will
certainly become possible as work is continued toward building a molecular laboratory
on a chip.
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