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Abstract

This thesis reports on theoretical investigations of the ultrafast nonequilibrium dynamics
in superconductors. In particular, two nonequilibrium scenarios are modeled by combining
several analytical and numerical methods: transient superconducting phase transition and
collective excitations of a superconducting condensate.
In the first part of the thesis the possibility to induce singlet superconducting correlations

far from equilibrium is explored by applying time–dependent Lanczos algorithm to the one–
dimensional extended Hubbard model. Here, the system is driven into a nonequilibrium
state by (i) interaction quench and (ii) quench by pulse. In both cases the buildup of the
superconducting correlations is studied in view of several correlation functions. Moreover,
a transient Meissner effect, which reflects fingerprints of the induced superconductivity,
is observed in calculations of the important for experiments time–dependent optical con-
ductivity. In addition, the differences between nonequilibrium dynamics of the extended
Hubbard model initiated by interaction quench and by pulse quench are discussed in detail.
The second part is devoted to the excitation of collective modes in a superconductor out

of equilibrium. First of all, focus is given to the properties of collective modes close to equi-
librium conditions, where a linearized response can be expected. Within the framework of
the (Nambu-) matrix kinetic theory in the clean limit a comprehensive gauge–invariant de-
scription of the collective modes associated with phase fluctuations of the order parameter
is analytically formulated for the generalized case of two–band superconducting systems.
Particular emphasis is on the application to the recently discovered noncentrosymmetric
superconductors. A detailed analysis of the collective modes includes specification of the
gauge mode (common to all superconductors) and the Leggett mode (collective fluctua-
tions of the interband phase difference), and investigation of their subtle interplay in view
of validity of the charge conservation law and the participation in the Anderson-Higgs
mechanism. Further, the nonequilibrium excitation of the superconducting gaps for the
case of two–band superconductors with singlet pairing correlations is investigated in a view
of optical pump–probe experiments. For this purpose a semi–numerical method based on
the density–matrix theory is formulated. In this case additional amplitude (Higgs) modes
were identified, which allow to directly detect the properties of the superconducting con-
densates as a function of time. Moreover, a new interplay between the phase (Leggett) and
amplitude (Higgs) modes is studied in detail. In particular it was found that the nona-
diabatic excitation process leads to strong coupling between both modes. Finally, based
on calculations of the time–dependent optical conductivity the prediction is made that the
coupled Higgs and Leggett modes can be clearly visible in the pump–probe absorption
spectra.
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Zusammenfassung
In der vorliegenden Arbeit werden Resultate zu theoretischen Untersuchungen der ul-

traschnellen Nichtgleichgewichtsdynamik in Supraleitern vorgestellt. Insbesondere wer-
den zwei Nichgleichgewichtssituationen mit Hilfe von verschiedenen analytischen und nu-
merischen Methoden simuliert: ein transienter Phasenübergang in einen supraleitenden
Zustand und kollektive Anregungen eines supraleitenden Kondensats.
Im ersten Teil dieser Arbeit wird die Möglichkeit der Entstehung supraleitender Spin–

Singulett–Korrelationen in einem eindimensionalen erweiterten Hubbard–Modell weit vom
Gleichgewicht unter Verwendung eines zeitabhängigen Lanczos–Algorithmus erforscht. Das
System wird dabei mit Hilfe (i) eines Wechselwirkungs–Quenches und (ii) eines starken
Pulses in einen Nichtgleichgewichtszustand gebracht. In beiden Fällen wird die Entstehung
supraleitender Korrelationen im Hinblick auf verschiedene Korrelationsfunktionen unter-
sucht. Außerdem wird eine für Experimente wichtige zeitabhängige optische Leitfähigkeit
berechnet, bei der ein transienter Meissner–Effekt als Charakteristikum eines induzierten
supraleitenden Zustandes beobachtet werden kann. Anschließend wird der Unterschied in
den Nichtgleichgewichtsdynamiken eines erweiterten Hubbard–Modells hervorgerufen vom
Wechselwirkungs–Quench und vom starken Puls im Detail diskutiert.
Der zweite Teil dieser Arbeit beschäftigt sich mit den Anregungen kollektiver Moden

in Supraleitern weit weg vom Gleichgewicht. Zunächst werden die Eigenschaften kollek-
tiver Moden im Fall der linearen Antwort eines Supraleiters unter den Bedingungen unter-
sucht, die dem Gleichgewicht nahekommen. Dabei wird eine umfassende eichungsinvariante
Beschreibung der Phasenfluktuationen des Ordnungsparameters und der damit assoziierten
kollektiven Moden für den allgemeinen Fall der Zweiband–Supraleiter unter Verwendung
der Nambu–Matrix–Kinetischen Theorie im reinen Grenzfall analytisch formuliert. Ins-
besondere wird die Anwendung auf die nicht–zentrosymmetrischen Supraleiter diskutiert.
Es folgt dann eine detaillierte Analyse dieser kollektiven Moden, die eine Beschreibung
der Eichmode (tritt in allen Supraleitern auf) und der Leggett Mode (kollektive Fluk-
tuation in der Interbandphasendifferenz) und auch Untersuchungen des subtilen Zusam-
menspiels beider Moden im Hinblick auf die Teilchenzahlerhaltung und den Anderson–
Higgs–Mechanismus beinhaltet. In Bezug auf optische pump–probe Experimente werden
anschließend die Nichtgleichgewichtsanregungen von supraleitenden Energielücken im Fall
der Zweiband–Supraleiter mit Spin–Singulett–Paarung untersucht. Für diesen Zweck wird
eine halbnumerische Methode basierend auf der Dichtematrixtheorie formuliert. In diesem
Fall können zusätzliche Amplitudenmoden (Higgs) identifiziert werden, die ermöglichen
die Eigenschaften supraleitender Kondensate als Funktion der Zeit zu messen. Außerdem
wird ein neues Zusammenspiel zwischen der Phasen–(Leggett–) und der Amplitudenmoden
(Higgs) im Detail analysiert. Insbesondere wird gezeigt, dass ein nichtadiabatischer An-
regungsprozess zu einer starken Kopplung beider Moden führt. Schließlich wird anhand
der zeitaufgelösten Berechnungen der optischen Leitfähigkeit vorausgesagt, dass die gekop-
pelten Higgs- und Leggett–Moden in optischen pump–probe Spektren klar zu beobachten
sind.
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Chapter 1
Introduction and Motivation

In this chapter we introduce the experimental time–resolved methods and different theo-
retical approaches to study dynamics in superconductors driven far away from equilibrium.
We begin with the general aspects and possible unresolved questions in physics of supercon-
ductivity. Further, after presenting of the basic ideas of the nonequilibrium pump–probe
technique, we discuss its recent success in investigation of the ultrafast phenomena in solids,
like electron and phonon dynamics or transient phase transitions. In addition, we give a
careful overview of the known theoretical approaches and motivate the choice of theoretical
methods for this work. Finally, the thesis overview will be presented.

1.1. Superconductors: from zero resistivity to Higgs mode
Since its discovery in 1911 by Heike Kamerlingh Onnes, superconductivity continues to

keep solid state researchers on their toes and surprises consistently with the abundance
of fascinating and complex physical phenomena. Owing to analogies in the description
to the Lorentz invariant theories, superconductors even offer a playground for studying
different processes, which are similar to that from the high energy physics. In both cases
the symmetry–breaking phase transitions play an important role. In fact, according to
the BCS 1 theory [1] the electrons in a conventional superconductor build pairs by cooling
below its critical temperature Tc and appear in a collective ground state. The Cooper pair
formation is responsible for the effect of zero resistivity in superconductors and leads to
an important perfect diamagnetism, which is also known, as Meissner–Ochsenfeld effect.
This superconducting transition can be understood in terms of a two–component order
parameter ∆ = |∆|eiϕ with an amplitude |∆| and a phase ϕ. Hereby, its free energy F in
the ground state as a function of ∆ changes its shape from the paraboloid to a Mexican
hat potential (shown in Fig. 1.1) revealing a new energy minimum for the system. This
process is connected with the breaking of the U(1) symmetry and has analogies in the
electroweak theory in the high energy physics.

1named after J. Bardeen, L. Cooper, and J. R. Schrieffer
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2 1.1. Superconductors: from zero resistivity to Higgs mode

The breaking of the continuous symmetry has far–reaching consequences. For instance,
it is well–known [2, 3] that this process leads to appearance of collective excitations. The
free energy in a symmetry–broken phase is invariant with respect to the phase variation of
the order parameter. Hence, its phase fluctuation corresponds to a massless boson, which
was described in Refs. [4–6] and commonly referred as the Nambu–Goldsone mode 2. While
in the electroweak theory this boson yields a massless excitation, in case of superconductors
it leads to fluctuation of the charge density, as was recognized by P.W. Anderson in 1958 [6,
7]. As a consequence of the long–range Coulomb interaction between the electrons, the
Anderson–Bogoliubov boson gets a mass and is shifted to the plasma mode of higher energy.
This process is generally known as the Anderson–Higgs mechanism [6,8].
In 1964 P.W. Higgs predicted [8] the existence of another massive mode by using similar

formalism, which is connected with the small amplitude fluctuations of the order parameter
and was named after him. In the unified electroweak theory the interaction with this Higgs
mode leads to the mass of W- and Z-bosons. In analogy, the amplitude fluctuation of the
order parameter in a superconductor is responsible for the Meissner–Ochsenfeld–Effect,
since this mode lends the photons as exchange particles of the magnetic field a "mass" and
by this means expel them from the superconductor.

Figure 1.1: Illustration of the effective free–energy landscape F [∆] for a single band supercon-
ductor. The amplitude (Higgs) mode and phase (Anderson–Bogoliubov) mode are
shown with the orange and blue arrows, respectively.

Although the experimental possibilities of the solid state physics are more flexible and do
not require high energies, the observation of the amplitude Higgs mode in superconductors
is still a quite challenging task. The reason is that this mode has neither charge nor dipole
moment and can not be captured by the optical experiments. Moreover, the energy of the
Higgs mode lies at 2∆ and therefore is not detectable with Raman measurements. Some
indirect methods to excite the Higgs mode are, however, possible. At present there are
only two known measurements [9–11], where the Higgs mode was observed under some
special conditions. First experiment deals with the 2H–NbSe2 material, where the charge

2in case of superconductors this mode is also known as Anderson–Bogoliubov mode
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density wave (CDW) order and superconductivity can coexist below the superconducting
critical temperature Tc=7.1K. In this case the CDW may couple to the superconducting
condensate, which results in the excitation of the amplitude (Higgs) mode as indicated in
Refs. [12, 13]. The measurements of the Raman susceptibility for 2H-NbSe2 at different
temperatures verifies this process and shows the transfer of the spectral weight from the
CDW mode to the Higgs mode below Tc, which is shown in Fig. 1.2 (a).
An alternative experiment was accomplished on NbN films with different grades of dis-

order [11]. In this case an effect similar to that of the Raman experiment can be expected
(see Fig. 1.2 (b)). In fact, with increased disorder in NbN films the critical temperature
Tc and accordingly energy gap ∆t gets smaller in this material. This was confirmed by the
tunneling conductance measurements. An additional measurements of the real part of the
dynamical conductivity σ1(ω) versus frequency (energy) below Tc indicates qualitatively
similar behavior. However, the comparison of the measured data σ1(ω) with the calculated

Figure 1.2: Experimental observation of Higgs mode in different superconducting materials. (a)
Measurements of the Raman susceptibility for 2H-NbSe2 at different temperatures.
The preexisting charge density wave (CDW) couples to the superconducting con-
densate and the transfer of the spectral weight from the CDW mode to the Higgs
mode below Tc=7.1K is observed. Figure is adapted from Ref. [10]. (b) Real part of
the dynamical conductivity σ1(ω) versus frequency (energy) measured above (gray
dots) and below Tc (blue dots) for NbN film with different grades of disorder. A
comparison of the measured data σ1(ω) with the calculated curve (green line) based
on the results from an additional tunneling experiment reveals a significant differ-
ence in their behavior in the case of the highly disorder material (yellow region).
This indicates excitation of the Higgs mode. Figure is adapted from Ref. [11].
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curve based on the corresponding tunneling results shows a significant difference in their
behavior for the case of the disordered material and indicates excitation of the Higgs mode.
A detection of the Higgs mode in an experiment for all types of superconductors is an

important piece of puzzle for our present understanding of the superconductivity. Indeed,
order parameter in unconventional superconductors, like d–wave, has a lower grade of
symmetry in contrast to the BCS type of superconductors and depends on the momentum
k. As a result, several Higgs modes reflecting gap symmetry can be expected in this
case [14]. Also for exotic types of superconducting systems the studies of the collective
modes may give an important information about its gap structure. For instance, in case
of the not so long ago discovered noncentrosymmetric superconductors [15], where, due to
the absence of the inversion center in its crystal structure, a superposition of both spin–
singlet and spin–triplet contributions to the superconducting gaps is possible [16–18], the
triplet–to–singlet ratio to the superconducting gap is still unknown.
A direct excitation of the Higgs mode may be achieved by the time–resolved spectroscopy,

which uses ultrashort light pulses to drive a condensed matter system into a nonequilbrium
state. With this technique one is able to access the intrinsic processes of the condensed
matter on their fundamental time scale. And, what is more important, a system driven far
away from equilibrium may reveal some novel properties, which are not reachable under
normal thermodynamic conditions. This time–resolved spectroscopy will be introduced in
the next section.

1.2. Time–resolved technique: Relevant experiments and
theoretical methods

The pioneer in a field of the time–resolved measurements is believed to be a photographer
Eadweard Muybridge, who invented photographic studies of motion and worked on motion–
picture projection. In 1878 he was able to take images of a galloping horse for the first time
by using several photo cameras with a relatively short exposure time. With this method he
clearly put an end to the debate whether there is a moment in time when all four hooves
of a horse are off the ground.
The work of Muybridge makes it clear that in order to capture an event which appears

on a fast timescale and therefore is hidden to the naked eye one need a measuring instru-
ment with a good time resolution. For instance, in conventional photo cameras the time
resolution is regulated by a mechanical device called shutter, which in turn determines
the exposure time. In this case, by adjusting the shutter speed one may get a series of
sharp images of an object in motion, if the changes are negligibly small during the whole
exposure period. Otherwise, the object on the image gets blurred. A combination of all
taken images gives a reconstructed motion of the object. While modern cameras with a
high speed shutter and an exposure time of some milliseconds can even resolve the motion
of a flying bullet, the investigations of the dynamics in a solid state system on the atomic
scale requires much better time resolution.
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The invention of ultrashort pulsed laser systems in 80’s opened new perspectives for
studying the fundamental problems in condensed matter physics, chemistry and biology.
In fact, only after developing femtosecond laser pulses one was able to investigate molecular
motions and to analyze the transition states in the chemical reactions [19]. This pioneering
work was rewarded in 1999 by the Nobel price in Chemistry. Now, the advances in laser
technique enable to apply laser pulses with typical duration time lying in between some
femtoseconds (10−15s) and attoseconds (10−18s) 3. Hence, it is possible to resolve the
dynamics of electrons and atoms in a solid state system in real time [20, 21]. Despite
the complexity of the laser equipment, the basic concept of this type of measurements,
which are generally known as the time–resolved spectroscopy, differs little from the high
speed photography initiated by Muybridge. Here, instead of a photo camera one typically
uses two laser pulses. The first strong ("pump") pulse induces dynamics in a solid state
system by driving it far away from equilibrium. Then, the second weak one ("probe pulse")
makes the "snapshots" of the nonequilibrium state and plays in this case a role similar to
a photo camera. Hereby, the changes in the intensity of the laser pulse act as a camera
shutter and its duration time determines the time resolution. Finally, by tuning the time
delay ∆t between pump and probe pulses and simultaneously studying transmitted light
one is able to reconstruct the temporal evolution of the solid state system. The common
experimental techniques include time resolved measurements of transmissivity, reflectivity
or optical conductivity versus absorption frequency. Also angle–resolved photoemission
spectroscopy with an additional time dependence 4 is possible [22].
Depending on the measuring conditions one is able to access different degrees of freedom

in a solid state system. The relevant nonequilibrium experiments can be divided into several
different categories [23, 24]. In the following we will discuss two of them with particular
emphasis on application to studies of superconductors.

1.2.1. Non–Equilibrium spectroscopy
Into the first category fall experiments where the focus is given to relaxation processes

in a solid state system. In this case a material is quenched by a light pulse on the ultrafast
timescale, which at the same time acts quite softly to reduce temperature effects. The range
of applications of this nonequilbrium technique varies from studies of relaxation dynamics in
manganites [25], charge density wave insulators [26] and manipulation of spin dynamics in
antiferromagnets [27] to disentangling different degrees of freedom in semiconductors [23].
Beginning with the pioneering work from the year 2005 on Bi2Sr2CaCu2O8+δ com-

pound [28], where, for the first time, the dynamics of Cooper pair formation was studied by
using ultrashort near–infrared optical pulses, the nonequlibrium pump–probe spectroscopy
became an essential part in investigation of superconductors as well [29–39]. In particular,
early nonequilbribum experiments already include studies of relaxation dynamics of the hot
incoherent quasiparticles and the corresponding recovery of the superconducting conden-

3the pulses with the duration time shorter than 10−12s are generally called ultrafast
4which is also known, as tr-ARPES
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sate [29,31,32]. This way, it became possible to get access to important information about
the electron–lattice interaction. Furthermore, by developing the measuring technique one
was able to disentangle the electronic and phononic contributions to the superconduct-
ing glue by their different temporal evolution [33]. This type of measurements opened new
way for investigations of electron–boson coupling in unconventional superconductors. Also,
time–dependent Raman experiments with coherent phonon generation [30, 37] could shed
some light on the mechanism responsible for superconductivity. However, in all these cases
a direct probe of the superconducting order parameter was not possible, since the experi-
ments were done with near–visible or mid–infrared ultrashort pulses. In other words, the
photoexcited hot electrons with energies of several eV generate large amounts of phonons,
which break Cooper pairs in the superconducting condensate. Thus, a coherent excitation
of the superconducting gap can not be observed [32,34]. A necessary prerequisite for these
studies are, however, photon energies of the order of the superconducting gap, which are
typically lying in the terahertz (THz) frequency range. In this case a laser pulse should
directly modify the superconducting Mexican hat potential of the free energy (see Fig. 1.1)
as a function of time in such a way that the amplitude (Higgs) oscillations around its
minimum, reflecting the properties of the order parameter (see section 1.1), can occur.
The excitation of Higgs mode in superconductors in nonequilibrium represents a large

effort not only from the experiment side, but also from the theory side. The first at-
tempts to describe the condensate dynamics in superconductors use time-dependent meth-
ods based on the phenomenological approaches, like time–dependent Ginzburg–Landau
theory [40,41], Boltzmann equation [41,42] or Rothwarf and Taylor model [43]. Some others
describe a nonequilibrium distribution of quasiparticles in terms of an effective temperature
T ∗ [44, 45] or of a new chemical potential µ∗ [45, 46]. Because of the limited application
range 5, these methods do not capture the important coherent excitation of the quasiparti-
cles on a very short time range. A possible numerical solution was proposed in Refs. [47,48],
where the nonequilibrium dynamics in a superconductor is described in the mean–field BCS
approximation by using the extended density matrix formalism (DMF) [49]. In contrast to
the common models, where the nonequilibrium situation is modeled by a quench and an
analytical solution is possible [50–54], this technique enables to include a direct interaction
between the fast varying electromagnetic field and the superconducting condensate. More-
over, the DMF method was used to describe the resonant generation of coherent phonons
in superconductors [55], which is important for time–dependent Raman studies. This effect
was further used in Refs. [56,57] to show that by tuning the intensity of the pump pulse one
can bring the oscillations of the order parameter into resonance with the coherent phonons.
In this way one can amplify the signal from superconducting oscillations in an experiment.
Finally, some attempts towards nonequilibrium dynamics in unconventional superconduc-
tors based on DMF were reported in Refs. [58,59]. It should be also mentioned that other
different aspects of the nonequilbrium behavior in a superconductor were studied by using
alternative theories [60–66].

5for example, limitations to the temperature region close to the critical temperature Tc, or to the time
scales, which are much larger than the typical changes of the order parameter
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Since a detection of Higgs mode oscillations in a superconductor is essential for studying
properties of the superconducting gap (see section 1.1), in this thesis we wish to give
a comprehensive investigation of the possibility for a direct excitation of this and other
collective modes in different types of superconducting systems. For this purpose we use
density matrix formalism, which represents a very powerful tool not only for analytical
studies of the superconductors under the close to equilibrium conditions, but also can be
easily implemented and extended for nonequilibrium numerical calculations.

1.2.2. Optical control of matter
A solid state system driven far away from equilibrium may reveal some other interesting

phenomena, like transient phase transitions. Indeed, a controlled switching between dif-
ferent phases of matter on the ultrafast timescale can be achieved by an intense pumping
of the solid state system with ultrashort laser pulses [67,68]. In the last years this type of
nonequilbrium experiments has built a new research frontier of modern solid state physics
and can be therefore allocated in the second category. Beginning with the investigations
of the insulator to metal [68–73] or insulator to charge density wave (CDW) state transi-
tions [74–76], as results of photodoping, where the system is driven into highly excited states
and the effects of correlations may, however, get lost, the novel studies turned to the exper-
iments with phase control by coherent manipulation of particular phonon mode [67,77–80].
The latter type of measurements with the selective vibrational excitation enables to get
a direct access into the dynamics of the electronic ground state of the system. This has
become possible due to the development of pulsed technique to terahertz (THz) regime
with lower photon energy compared to photodoping and even opened perspectives for con-
trolled transient superconducting transitions, which attracted a high interest from both
theoretical [81–87] and experimental [78, 80, 88–92] point of view. Since the possibility to
induce superconductivity is of particular interest for this work, the progress in this field
will be discussed in some details below.
Over already 100 years the condensed matter physicists try to find a root to enhance the

critical temperature Tc of a superconductor and bring it closer to the room temperature
mark. Therefore, in the pioneering optical control experiments on superconductors the
preference was given to the high temperature cuprate compounds La1.8−xEu0.2SrxCuO4
(LESCO) [78, 93] and YBa2Cu3O6+δ (YBCO) [80, 88], since they already have a quite
high Tc. In both cases the intense light pulse at THz frequency has been tuned to a
selected vibrational mode of the solid state system. In this way one was able to manipulate
the position of the oxygen octahedra and consequently the electronic properties of the
materials. In case of the LESCO compound [78] the measurements were done at x = 1/8,
where the superconductivity is almost suppressed due to the emergence of competing spin
and charge order (static stripe state) in the copper–oxygen plans. In contrast, in the
La2−xSrxCuO4 (LSCO) compound without europium (Eu) the "striped order" is not so
pronounced and its Tc is much higher (see Fig. 1.3 (a)). A measurement of reflectivity
for LESCO1/8 above its critical temperature after pumping at time delay τ = 5ps showed
appearance of a plasma edge at 60cm−1 (see Fig. 1.3 (b)). Since this effect reminiscent of
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Figure 1.3: Light–induced superconductivity, as a result of melting the competing order. (a)
Schematic phase diagram for La1.8−xEu0.2SrxCuO4 (LESCO) in equilibrium with
the superconducting dome (yellow region). At the investigated 1/8 doping a striped
order of charges and spins appears in copper–oxygen planes (left inset), which is
associated with a low temperature tetragonal (LTT) distortion of the oxygen octa-
hedrals (right inset), and results in suppression of superconductivity. For compar-
ison, the superconducting dome for La2−xSrxCuO4 (LSCO) with less pronounced
LTT structural modulation is shown by the red dashed curve. (b) Measurement of
the normalized reflectivity for LESCO1/8 above Tc after optical excitation with time
delay τ = 5ps. The plasma edge at 60 cm−1 indicates a superconducting transition.
For comparison, results of the equilibrium measurements for LSCO above and below
Tc are shown in the inset. Figures are adapted from Ref. [78].

Josephson plasma resonance can be seen at the same frequency as in optically measured
LSCO below Tc in equilibrium (see inset in Fig. 1.3 (b)), this property reflects a possible
fingerprint of the superconducting state 6. Hence, one may conclude that an optical pump
pulse induces a melting of the competing "striped order" in LESCO1/8, which recovers on
a larger timescale than superconducting correlation and, as a result a "regeneration" of
the superconductivity can be observed. Similar behavior was also found in recent optical
experiments with stripe ordered La2−xBaxCuO4 [91, 94].
In case of the bilayered YBCO compound with the conducting CuO2 planes the effects

of competing order may not be crucial in nonequilibrium since its superconducting dome
in equilibrium is quite robust. However, the optical experiments with YBCO at different
doping and different temperatures above Tc showed enhanced coherent transport along the
axis perpendicular to the copper–oxygen plane [80, 88]. Hereby, the optical pump pulse
was tuned to address the c–axis infrared–active (B1u) mode, which basically modulates the
displacement of the apical oxygen along the c–axis (see Fig. 1.4(a)). The measurements of
transient c–axis optical properties of YBCO reveal, at all measured temperatures, a plasma

6Moreover, an additional measurement of optical conductivity reported in Ref. [93] indicates a transient
superconducting state as well.
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edge in reflectivity spectra and an approximate 1/ω divergence at low frequencies ω in
the imaginary part of optical conductivity (see Fig. 1.4(b)), indicating coherent transport
along the c–axis. These results opened plenty of discussions about the nature of this
transient phenomenon and whether or not one deals in this case with the possibly induced
superconductivity [95,96]. A possible interpretation was given in Refs. [81,89,90] by using
an ab initio density function theory calculation. It was found that a nonlinear coupling
of the laser pulse to an infrared–active phonon mode in the YBCO compound causes
displacement of the apical oxygen along the c–axis and induces simultaneously changes in
the electronic structure. As a result a transient increase of the interlayer superconducting
coupling was proposed. Also a phenomenological study of the electron–phonon coupling
in nonequilibrium supports this idea [84]. Some alternative theories propose suppression
of phase fluctuations [82, 83], as well as melting of the competing charge density wave
order [85,86], which may give an additional contribution to the enhanced superconductivity.

Figure 1.4: Light–induced coherent transport along the c–axis in YBa2Cu3O6+δ (YBCO). (a)
Schematic illustration of the structural modulations in a bilayered YBCO compound
caused by optical pump pulse. Light pulse addresses the infrared–active B1u mode
which modulates the displacement of apical oxygen along the c–axis. (b) Changes in
imaginary part of the optical conductivity (upper panels) and in reflectivity (lower
panels) were measured at different temperatures T above Tc after optical excitation
with time delay ∆t = 0.8ps are shown with blue dots. Equilibrium measurements
below Tc are indicated by gray dots. Figures are adapted from Ref. [92].

To summarize experimental results with cuprates one may say that the controlled phase
transition into a superconducting–like state can be achieved in these layered materials
by the resonant phonon excitation. However, the reasonable question would be whether
the underlying physics is special in this case. In this thesis we wish to give a proof–of–
principles and investigate the possibility to induce singlet superconducting correlations in
nonequilibrium. For this purpose we analyze a one dimensional Hubbard model by using
a time–dependent exact diagonalization technique based on the Lanczos algorithm. This
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method represents a very powerful tool in the cases when one needs to obtain properties of
the ground state and some low–energy states of a system very fast and reliably. Further-
more, application of the Lanczos algorithm at every moment in time enables to exactly
follow the changes induced in a solid state system by an external perturbation. It should
be noted that a similar question was also addressed recently from the experimental point
of view [92]. The results of experimental investigations of a conventional s–wave supercon-
ductor K3C60 in nonequlibrium will be discussed in chapter 4 and compared qualitatively
with our numerically simulated data.

1.3. Thesis overview
This thesis deals with two different time–resolved studies of a superconducting system

in nonequilibrium, and is organized as follows:
In Part I the possibility to induce singlet superconducting correlations in the one dimen-

sional extended Hubbard model (EHM) far from equilibrium is investigated. We start in
Chap. 2 by discussing equilibrium properties of an electron system on a lattice described
by EHM. In particular, we introduce several correlation functions to identify different
phases in the model. Further, in Chap. 3, we generalize the extended Hubbard model to
a nonequilibrium case and consider two possible nonequilibrium scenarios: (i) interaction
quench and (ii) quench by pulse. For studying the temporal evolution of the electron sys-
tem the time–dependent Lanzcos method is introduced. Additionally, we consider optical
response of a solid state system in a linear response approximation and in the pump–probe
experiment. Finally, in Chap. 4, the results of the time–dependent calculations after the
interaction quench and quench by pulse for an electron system on a lattice of 10 sites are
presented and discussed.
Part II is devoted to the collective modes in a superconductor out of equilibrium. First,

in Chap. 5, we introduce two different classes of the multiband superconducting systems:
ordinary two–band superconductors with s–wave pairing and noncentrosymmetric super-
conductors. Then, in Chap. 6, we formulate (Nambu-) matrix kinetic theory in the clean
limit at zero temperature. Employing this approach we investigate analytically, within the
linear response approximation, the collective modes in noncentrosymmetric superconduc-
tors, which are associated with phase fluctuations of the order parameter. In addition, we
derive an expression for the gauge and Leggett mode in these materials. Chap. 7 deals
with the extension of the density matrix theory to the nonequilibrium case. Here, a semi–
numerical method is formulated in application to the two–band superconductors with the
singlet pairing correlations. Finally, in Chap. 8, we present the results of our study of the
collective excitations in MgB2–like superconductors in nonequilibrium.



Part I

Optical control and induced
superconductivity
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Chapter 2
Extended Hubbard model in
equilibrium

The physical properties of a solid state system are determined by the underlying interac-
tions between its different degrees of freedom. In fact, strong Coulomb repulsion between
electrons on a lattice may lead to a Mott isolator state with a spin–density wave (SDW)
order. On the other hand, an additional attractive interaction mediated, e.g. by phonons
in conventional BCS systems, results under certain circumstances in the occurrence of the
superconducting correlations. Thus, the interplay between the dominant interactions in
a system gives rise to a variety of the distinct stable phases. In turn, a possibility to
control the strength of interactions and, consequently, the properties of a material is an
important and challenging task in the solid state physics. A promising technique to realize
such controlled phase transitions is the pump–probe method, where one uses a pump pulse
excitation of high intensity in order to drive the system out of equilibrium [67, 71]. This
way an energy landscape of the system can be changed and a crossover to a new phase
might appear. With a development of pulsed technique to terahertz regime, where photon
energy is almost of the order of the superconducting gap, controlled transient transitions
into a superconducting state became possible [78, 80, 88–92]. As discussed in introduction
this phenomenon was observed mostly in layered cuprate materials.
A good opportunity for studying controlled phase transitions from both experimental

and theoretical point of view represents a one dimensional (1D) solid state system, where
the strong correlations between its different degrees of freedom play an important role.
Therefore, in this part of thesis we investigate the properties of the 1D strongly corre-
lated electron system driven out of equilibrium by a strong pump excitation. We simulate
the solid state system by using the extended Hubbard model and study its temporal evo-
lution within the time–dependent Lanczos algorithm. Hereby, we consider two different
nonequilibrium scenarios arised by (i) an interaction quench and by (ii) including a laser
pulse into the Hamiltonian. Particular emphasis is on the possibility to induce singlet
superconducting correlations in the extended Hubbard model.

13
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2.1. The Extended Fermionic Hubbard model
Let us start with a discussion of a 1D electron system in equilibrium. The simplest "toy"–

model to describe the interacting electrons on a lattice represents the extended Hubbard
model (EHM) [97–99], which in one dimension given by the Hamiltonian:

ĤEHM = −th
∑
〈i,j〉σ

(
ĉ†i,σ ĉj,σ + H.c.

)
︸ ︷︷ ︸
kinetic term ("hopping")

+ U
∑
i

n̂i↑n̂i↓︸ ︷︷ ︸
"on-site"

interaction

+ V
∑
〈i,j〉

n̂in̂j︸ ︷︷ ︸
nearest neighbor

interaction

(2.1)

with th being the nearest neighbor hopping constant, and U and V describing the strength
of the on–site and nearest neighbor interaction, respectively. The operator ĉ†i,σ (or ĉi,σ)
creates (or annihilates) one electron with spin σ =↑, ↓ at a site i. Further, the occupation
number operator is given by n̂i = n̂i↑ + n̂i↓ with n̂iσ = ĉ†i,σ ĉi,σ.
For our studies we consider the model with a half–filling at zero temperature, which

is well–known in the literature [98–101] and can even be solved analytically for some
parameter regions. Thus, a comparison of the results with previous equilibrium studies
is possible. Despite its simplicity, EHM reveals several different phases due to the strong
quantum fluctuations. Roughly speaking, a variation of the parameters U , V and th leads
to various types of correlations, which dominates the ground state of the system. This
give rise to different distributions of the electrons on a lattice. The results of previous
theoretical studies [98–101] can be summarized in a diagram form presented in Fig. 2.1.
Here, one observes for repulsive nearest neighbor interaction V > 0 appearance of the
spin- (SDW) and charge–density–wave (CDW) phases, which are separated by the phase
transition boundary at U = 2V . In case of the CDW phase the electrons build pairs on the

Figure 2.1: (a) Illustration of the equilibrium phase diagram (T=0) for the 1D extended Hub-
bard model at half filling with U and V being the strength of the on–site and nearest
neighbor interaction from Eq. (2.1), respectively. Different phases are indicated on
the diagram by different shaded regions. (b) Schematic representation of the phases
from (a) showing a spatial distribution of the electrons on a 1D lattice.
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lattice with an alternating order of double occupied and empty sites (see Fig. 2.1(b)). On
the other hand, an alternating order of the unpaired electrons with different spin directions
dominates in the SDW region. Besides the already mentioned phases, in case of V < 0
(attractive) the states with the dominant superconducting correlations (singlet and triplet)
can be found in the proximity to a phase separation (PS) area, where the electron pairs
build a cluster on one end of the lattice (see Fig. 2.1(b)). The superconducting singlet and
triplet phases are characterized by paired electrons on a site and between neighbored sites,
respectively. These pairs are homogeneously distributed over the lattice.

2.2. Exact diagonalization technique
An established method for obtaining relevant physical properties 1 of a finite–size system

with strongly correlated electrons represents the Lanczos based exact diagonalization (ED)
method [102, 103]. This numerical technique is generally used for diagonalizing sparse
matrices and requires only the storage of the non–zero matrix elements in the computer
memory. Therefore, ED algorithm provides results fast and reliable. In following we discuss
some important principles of the method in application to EHM. In particular, it will be
used in section 2.3 to reproduce a part of the phase diagram in Fig. 2.1.

2.2.1. Basis set for the Hubbard Hamiltonian
Let us start with the construction of a Hamiltonian matrix for the Hubbard model

defined in Eq. (2.1) with a given interaction U , V and hopping th parameters. This matrix
can be built from the orthonormal basis vectors, where each vector in the basis represents a
unique configuration of the electrons on the lattice. For the N–sites model it is convenient
to define the basis elements in the following way:

|i〉 =
Ne↑∏
m=1

ĉ†m↑

Ne↓∏
n=1

ĉ†n↓ |V S〉 (2.2)

with Ne↑ and Ne↓ being the number of up and down electrons, respectively. |V S〉 represents
the vacuum state. Here, we separate electrons in groups according to their spin direction
and sort them afterwards by the lattice index. The positive effect of this ordering is that
there are no additional phase factors, which otherwise can appear due to the next neighbor
hopping. Another advantage is that the Hilbert subspaces for up and down electrons can be
considered separately. This simplifies the computation of numerical problem enormously.
Now, in order to translate the basis vectors introduced in Eq. (2.2) into the computer

language we use the bit patterns. In this case, each electron on a lattice site corresponds
to "1" and its absence is "0". For illustration we present in Table 2.1 the basis vectors for
2–site Hubbard model with one up–spin and one down–spin electrons. Hence, the electron
system introduced in Eq. (2.1) is now modeled by the bit operations.

1for example, ground state energy, correlation or response functions
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no. basis vector configuration bit pattern

| 0〉 ĉ†1↑ĉ
†
1↓ |V S〉 (0, ↑)× (0, ↓) 01× 01

| 1〉 ĉ†1↑ĉ
†
2↓ |V S〉 (0, ↑)× (↓, 0) 01× 10

| 2〉 ĉ†2↑ĉ
†
1↓ |V S〉 (↑, 0)× (0, ↓) 10× 01

| 3〉 ĉ†2↑ĉ
†
2↓ |V S〉 (↑, 0)× (↓, 0) 10× 10

Table 2.1: Basis vectors for 2–site lattice with one up–spin and one down–spin electron. For
simplicity, the electron position on the lattice together with the corresponding bit
pattern is presented separately in the Hilbert subspace of each electron.

2.2.2. Lanczos algorithm

For obtaining the ground state of the strongly correlated electron system we apply Lanc-
zos algorithm [102] and diagonalize the previously computed Hubbard Hamilton matrix
ĤEHM. The basic idea of this numerical method consists in the recursive construction of
a real symmetric tridiagonal matrix T from the (hermitian) matrix Ĥ of the size N ×N .
Hereby, one performs the unitary transformation by using the matrix U of the following
form:

U = ( |u1〉 , |u2〉 . . . |uN〉)

Here, |ui〉 , i = 1 . . . N denotes orthonormal vectors with N components, so that

U †ĤU = T , U †U = I . (2.3)

In this case, the matrix T should take the form:

T =



a1 b2 · · · 0

b2 a2 b3
...

. . . . . . . . .
... aN−1 bN

0 · · · bN aN


The elements of this matrix can be calculated from Eq. (2.3) and obey the following
recursive relations:

Ĥ |u1〉 = a1 |u1〉+ b2 |u2〉
Ĥ |ui〉 = bi |ui−1〉+ ai |ui〉+ bi+1 |ui+1〉 , if 2 ≤ i ≤ N − 1
Ĥ |uN〉 = bN |uN−1〉+ aN |uN〉

(2.4)
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In practice, one does not need to calculate all matrix elements of T in order to obtain
the ground state together with some low–energy states of the strongly correlated electron
system. A good convergence can be realized already for the matrix size M × M with
M < N .
A numerical implementation of this Lanczos algorithm is quite straightforward and con-

sists of the following steps: First, we construct a normalized initial vector

|u1〉 =
N∑
i=1

αi |i〉 (2.5)

with the randomly chosen coefficients αi. It should be noted that the results of the matrix
diagonalization do not depend on the exact form of this vector. Then, by applying the
Hamilton matrix on the initial vector we can define a new one |v1〉 ≡ Ĥ |u1〉. Its scalar
product with |u1〉 leads to the first element of the matrix T :

〈u1 |v1〉 = 〈u1| Ĥ |u1〉 = a1

Further, we repeat this procedure M − 1 times and calculate the remaining contributions
to the tridiagonal matrix: 

|ωi〉 ≡ |vi〉 − ai |ui〉
bi+1 =

√
〈ωi |ωi〉

|ui+1〉 = |ωi〉 /bi+1

|vi〉 = Ĥ |ui+1〉 − bi+1 |ui〉
ai+1 = 〈ui |vi〉

The tridiagonal matrix T is subsequently diagonalized by using the standard numerical
routines from the MKL package 2. Thus, the resulting eigenvalues represent the approx-
imate eigenvalues Ẽi with i = 0 . . .M − 1 of the hermitian matrix Ĥ. The ground state
energy and a few excited states (and also upper part of the spectrum) converge rapidly
to the exact eigenvalues of the Hamiltonian Ĥ. For our numerical calculations M = 40
iterations give us sufficiently good results.
Finally, by knowing the eigenvector |x0〉 and corresponding eigenvalue Ẽ0 of the lowest

state of the matrix T , one can construct the ground state wave vector in the following way:

|GS〉 =
M∑
i=1

[ |x0〉]i |ui〉 (2.6)

with [ |x0〉]i being the i-th component of the vector |x0〉.

2Math Kernel Library
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2.3. Phases identification
Based on the knowledge of the ground state vector | GS〉, we can calculate the relevant

physical quantities of a strongly correlated electron system. Thus, we consider the corre-
lation functions in order to characterize its different phases. Unless specifically mentioned,
these functions are calculated for a 10–sites lattice model with periodic boundary condi-
tions. The energy is measured in units of hopping constant th. In following we discuss the
behavior of the several correlation functions, which we will use for the identification of the
important for this thesis CDW, SDW, and singlet superconducting phases.

2.3.1. Density–density correlation function
The signatures of the charge density wave phase can be captured by the density–density

correlation function, which for each lattice distance j reads:

C(j) ≡ 1
L

L−1∑
l=0
〈GS|n̂l+jn̂l|GS〉 = 1

L

L−1∑
l=0
〈GS| (n̂l+j↑ + n̂l+j↓) (n̂l↑ + n̂l↓) |GS〉 (2.7)

with L being the size of the one dimensional lattice. Indeed, depending on the electron
configuration of a strongly correlated system this function reveals different behavior. For
illustration we calculate C(j) for several parameter values U , V of the lattice model, which
according to section 2.1 should correspond to CDW, SDW, and singlet superconducting
phases. As can be seen from the results shown in Fig. 2.2, only for the CDW phase we
observe characteristic "zigzag" structure, which indicates alternating order of the electron
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Figure 2.2: Density–density correlation function versus lattice distance j calculated for various
phases of the extended Hubbard model. The calculations are done exemplary in
the ground state of singlet superconducting phase with the interaction parameters
U = −3, V = −0.5 (blue solid line), CDW with U = 10, V = 5.5 (red solid line),
and SDW with U = 10, V = 4.5 (yellow solid line).
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density with mostly double occupied and empty sites. In contrast, the correlation function
C(j) in the SDW and singlet superconducting phases shows for j > 0 an approximately
constant behavior. In addition, we find that the self–correlations at j = 0 are stronger in
the superconducting phase than in SDW due to existing electron pairs.

2.3.2. On–site correlation function
To characterize the states of the strongly correlated system with the dominant singlet

superconducting correlations, we introduce an on–site correlation function P1(j) of the
following form:

P1(j) = 1
L

L−1∑
l=0

〈
GS

∣∣∣ĉ†l+j↓ĉ†l+j↑ĉl↑ĉl↓∣∣∣GS〉 (2.8)

with j being the lattice distance. This function gives an information about the on–site pair-
ing correlations between electron pairs on lattice. Moreover, the self–correlation with j = 0
represents the double occupation function for a single lattice site. In order to illustrate the
behavior of the on–site correlation function we calculate it for the same parameter values
of the lattice model, as discussed in section 2.3.1. The results are presented in Fig. 2.3.
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Figure 2.3: On–site correlation function versus lattice distance j calculated for various phases of
the extended Hubbard model. The calculations are done with the same parameter
values as discussed in connection with Fig. 2.2.

In our simulations we observe that the on–site correlation function P1(j) takes the finite
values for each lattice distance j only in the singlet superconducting state. This indicates
appearance of the superconducting correlations. Moreover, the on–site correlation function
shows in this case slow algebraic decay with the lattice distance j. Physically this means
that the electron pairs are homogeneously distributed over the one–dimensional lattice. It
should be noted that since in a CDW state the number of electron pairs can be the same as
in a singlet SC state, the double occupancy P1(0) show in this case for both phases similar
result. Thus, P1(0) only is not enough to distinguish between CDW and SC phases.
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2.3.3. Maxwell construction
It is well–known [101,104] that in the region with negative U and V the superconductivity

exist in the proximity to a phase separation area (see Fig. 2.1 (a))). A phase separation
state is also characterized by paired electrons, which occupy, however, only one part of the
lattice (build a cluster, which is schematically shown in Fig. 2.1 (b)) and leave the other
part unoccupied. This structure is also reflected in the behavior of the on–site correlation
function P1(j). For demonstration we show in Fig. 2.4 the result of calculation of P1(j),
where we choose following values for the interaction parameters of the system: U = −3
and V = −1. As one can see, the on–site correlation function show first strong decrease
with increasing lattice distance j indicating absence of the superconducting correlation
and then after j = 3 (corresponds to a midpoint of the lattice) it increases again. In other
words, the superconducting correlations are observed only on one half of the lattice.
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Figure 2.4: On–site correlation function versus lattice distance j calculated for the extended
Hubbard model of 10 sites and parameters U = −3, V = −1.

Since in this thesis we are interested in the "pure" singlet superconducting correlations,
we need to distinguish between a phase separation and a singlet superconducting state.
In this sense we should precisely determine a phase boundary between both phases. For
this purpose we use in addition to calculations of P1(j) the so–called Maxwell construction
method [104]. This method implies the calculations of the ground state energy per site
as a function of the electron density. By fixing the values of U and changing the values
of V we are able to scan the phase diagram in the broad parameter region. The result of
calculations for a 14 sites lattice 3 are shown in Figs. 2.5 (a) and (b), where we variate V
and fix on–site interaction parameter values at U = −4 and U = −2, respectively. As one
can see in the figures, the behavior of energy as function of electron density n changes from
the convex to concave by crossing the phase separation boundary. This can be explained
as follows: In the phase separated region, where one has a phase with low electron density
on one part of the lattice and a phase with high electron density on the other, the energy

3here we choose 14 instead of 10–site model in order to obtain the transition boundary more precisely.
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function should exhibit a linear behavior in the thermodynamic limit, i.e. an additional
adding of an electron pair changes only the size of these two phases. Hence, the boundary
between phase separation area and superconducting phase can be exactly obtained.
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Figure 2.5: Maxwell constructions. Energy per lattice site as a function of electron density n
calculated for the extended Hubbard model with fixed (a) U = −4 and (b) U = −2.
The calculations at different parameter values V are give by color code. Here, we
choose a lattice with 14 sites.

Now, in Fig. 2.6 we plot the results of Maxwell constructions for a wide parameter region
with attractive U < 0 and V < 0. Here, the phase boundary between phase separation
area and superconducting phase is shown by purple dashed line. In addition, we perform
calculations of P1(j) according to section 2.3.2 for different combinations of U and V . The
states with pronounced singlet superconducting correlations we indicate in Fig. 2.6 by blue
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Figure 2.6: Phase diagram for negative U and V . From results of calculation of P1(j) func-
tion we identify phases with pronounced singlet superconducting (SC) correlations
(shown with blue "x") and phase separation (PS) states (shown with red "*"). The
results, where P1(j) drops to zero, are shown with green open circles. The phase
boundary between superconducting phase and phase separation region is obtained
from Maxwell constructions and indicated in the figure by the dashed purple line.
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"x". The cases, where P1(j) drops to zero, we mark in this phase diagram by green open
circles. Finally, the states with phase separation behavior are shown in Fig. 2.6 by red "*".
It is important to note that the qualitative comparison of our numerically obtained results
with the predictions from previous theoretical studies (which are schematically shown in
Fig. 2.1) reveals a very good agreement.



Chapter 3
Generalization of the extended
Hubbard model to nonequilibrium

Strong perturbation of an electron system on the ultrafast time scale may lead to the
transient phase transitions. This can be realized in a special type of the time–resolved
experiments, so–called optical control: By using an intense pump pulse the system is
driven far away from equilibrium, where a crossover to a new phase may occur. This
nonequilibrium state is then studied by applying a probe pulse with tunable time delay.
In this chapter we present a method for numerical simulation the nonequlibrium dy-

namics in an extended Hubbard model with strongly correlated electrons. The first part is
devoted to a generalization of the Hamiltonian from section 2.1 to the case with the time–
dependence. In particular, we focus on two types of the pump excitation in the model:
interaction quench and quench by pulse. The second part deals with the computation of
nonequlibrium correlation and response functions. Particular emphasis is on the time–
dependent optical conductivity calculated after probing excitation. All functions will be
used for analysis of the numerical data in Chap. 4.

3.1. Non–Equilibrium scenarios for EHM

Starting from the ground state of the equilibrium extended Hubbard Hamiltonian ĤEHM,
which properties we have discussed in the previous chapter, we then perform a perturbation
of the system at some moment in time t = t0 by the pump excitation and drive it out of
equilibrium in two different ways: (i) by interaction quench and (ii) by pulse quench.
Hence, the corresponding nonequilibrium Hamiltonian Ĥ(t) is time dependent and takes
the following form:

Ĥ(t) = ĤEHM + Θ(t− t0)Ĥ ′(t) (3.1)

with Ĥ ′ being the perturbation term, which describes the interaction between the pump
excitation and the electrons in the system.
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24 3.1. Non–Equilibrium scenarios for EHM

3.1.1. Interaction quench
Let us first discuss the case of interaction quench, where one deals with a quite simple and

popular type [105] of a quantum quench protocol: One abruptly changes the interaction
parameters of the extended Hubbard Hamiltonian in Eq. (2.1) at a fix moment in time, i.e.

Uquench(t) =

 U for t ≤ t0

U ′ for t > t0
and/or Vquench(t) =

 V for t ≤ t0

V ′ for t > t0
(3.2)

Thus, the perturbation term in Eq. (3.1) takes in this case the following form:

Ĥ ′ = (U ′ − U)
∑
i

n̂i↑n̂i↓ + (V ′ − V )
∑
〈i,j〉

n̂in̂j (3.3)

All in all, the strongly correlated electron system evolves for t > 0 under perturbed Hamil-
tonian Ĥ(t) with the changed interaction part. That way the system is driven out far from
equilibrium. This type of quenching was recently realized in experiments on 1D organic
molecules [67].

3.1.2. Pulse quench by means of Peierls substitution
Another situation can be realized by considering excitation of an electron system with

a strong pump pulse. Here, we describe the pump pulse by a spatially uniform, but time–
dependent vector potential A(t) of the following form:

A(t) = A0e
−t2/2τ2 cos (ωpumpt) (3.4)

where A0 is the amplitude of the field, which takes its maximum value at t = 0, ωpump
gives the frequency of the pulse, and τ denotes the full width at half maximum (FWHM )
of the pulse. The vector potential A(t) is considered in a temporal or Wayl gauge, where

Figure 3.1: Illustration of a single pump pulse. The corresponding vector potential A(t) has
parameters: A0 = 0.5, τ = 2.5, and ωpump = 4.1
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the scalar potential Φ(t) is chosen to be zero. For illustration we show in Fig. 3.1 the form
of A(t) for arbitrary parameter values. It should also be mentioned, that due to the finite
broadening τ the pulse shows a Gaussian–like shape.
Now, to include pump pulse into the extended Hubbard model, we use an attempt based

on the Peierls substitution. In this case the light field is incorporated into the kinetic part
of the Hamiltonian (2.1) and the hopping constant gets the so–called Peierls phase, i.e.

th,pulse(t) =

 th for t ≤ t0

the
iA(t) for t > t0

(3.5)

Hence, the perturbation part in Eq. (3.1) reads:

Ĥ ′(t) = −(theiA(t) − th)
∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ +H.c.

)
(3.6)

3.2. Time–dependent exact diagonalization
Generally speaking, the temporal evolution of the interacting electron system can be

described by the Schrödinger equation:

i
∂

∂t
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 (3.7)

with the time–dependent Hamiltonian Ĥ(t) defined in the previous section. In order to
solve this equation we apply the time–dependent exact diagonalization. This technique
is based on the idea of the stepwise approximation of the wave function |ψ(t)〉 by using
Lanczos algorithm (shown in section 2.2.2) in time intervals δt. At each time step t + δt
the Lanczos method generates a tridiagonal matrix with the eigenvectors |φl〉 and corre-
sponding eigenvalues εl. These results are subsequently used for the approximation of the
time–dependent wave function, which finally takes the following form:

|ψ(t+ δt)〉 ≈ e−iĤ(t)δt |ψ(t)〉 ≈
M∑
l=1

e−iεlδt |φl〉 〈φl | ψ(t)〉 (3.8)

A general structure of this algorithm is shown in Fig. 3.2. Thus, by knowing the wave
function at each time step we can calculate the temporal evolution of both correlation
and response functions. The most promising sensitive probes for studying nonequilibrium
dynamics in the strong interacting electron systems are momentum distribution function
together with its jump at the Fermi surface, time–dependent correlation function, and
optical conductivity. For all our numerical calculations we employ periodic boundary
conditions and use M = 40 iterations for the Lanczos method. The time interval is set to
δt = 0.01. Further, we set the hopping constant th = 1 and measure energy and time in
units th and t−1

h , respectively.
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Figure 3.2: Workflow for the time–dependent Lanczos algorithm

3.3. Nonequlibrium momentum distribution function
Beside the correlation functions1, a sensitive quantity for studying the dynamics of an

electronic system represents the momentum distribution function nk(t), as discussed in
Ref. [106]. In the momentum space of a 1D system this observable can be defined, as
follows:

nk(t) =
∑
σ

〈
ψ(t)

∣∣∣ĉ†kσ ĉkσ∣∣∣ψ(t)
〉

(3.9)

with k = |k| = 2πn/N, n = {1 . . . N} being the momentum in one dimension and N
denoting the total number of sites in the lattice. However, for the numerical calculations
it is useful to transform operators ĉ(†)

kσ into the real space. Thus, we make a Fourier
transformation [107]

ĉ†kσ = 1√
N

N∑
j=1

eikj ĉ†jσ ; ĉkσ = 1√
N

N∑
j=1

e−ikj ĉjσ ,

which leads to the following form of the momentum distribution function:

nk(t) = 1
N

∑
j,l,σ

〈
ψ(t)

∣∣∣eik(l−j)ĉ†lσ ĉjσ
∣∣∣ψ(t)

〉
(3.10)

1which were introduced in section 2.3
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This function is quite sensitive to the changes in interaction part of the strongly correlated
electron model. This is illustrated in Fig. 3.3.
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Figure 3.3: Illustration of the momentum distribution function in equilibrium (T=0) for non–
(orange solid line) and interacting (red solid line) electron system.

In the noninteracting system one finds, as expected, stepwise momentum distribution
for the electrons. However, due to the finite size effects, one observes large transition
region around kF. With increased interaction part the form of the momentum distribution
function is changed and the jump ∆nk at the Fermi surface is reduced. Thus, ∆nk can be
also used for probing the dynamics in the electron system. Therefore, we define the jump
in the momentum distribution function for different time values t, as follows:

∆nk(t) = lim
k→k−F

nk(t)− lim
k→k+

F

nk(t) (3.11)

3.4. Time–dependent optical conductivity
Now, we discuss the response of an interacting electron system on an external pertur-

bation. Especially, we focus on the optical experiments with measurements of the optical
conductivity. In this type of experiment the electromagnetic field induces changes in the
system at some point in time t′ and the response of the system is measured later at t > t′.

3.4.1. Linear response approximation. Kubo–formalism
Let us restrict our consideration for a moment to the linear response, where we assume

that the response signal of the system is directly proportional to the intensity of the external
electromagnetic distortion. In this case the optical conductivity σ(t) plays the role of the
response function and connects the applied time–dependent electric field E(t) with the
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induced electric current density ∆j(t) in the system in the following way:

∆j(t) =
∞∫
∞

dt′σ(t− t′)E(t′) (3.12)

In general, optical conductivity is a complex function σ(t) = σ1(t) + iσ2(t), where we
introduce the notation Reσ(t) ≡ σ1(t) and Imσ(t) ≡ σ2(t). For calculation σ(t) we use a
method, which is based on a well–known Kubo formula [108,109]. We start with the initial
unperturbed system at t→ −∞, which is described by the Hamiltonian:

ĤEHM =
∑
n

εn |ψn〉 〈ψn| (3.13)

with the eigenvectors |ψn〉 and energy eigenvalues εn. Its initial steady state is given by
the density operator

ρ0 =
∑
n

pn |ψn〉 〈ψn| (3.14)

with pn being the probabilities. Now, we perturb the system by the electromagnetic field.
For this purpose, we include into the Hamiltonian (3.13) an additional term H ′, which
represents the interaction of the system with the field. It is convenient to consider the time
development of the system in the interaction representation, where H ′ is treated as a small
perturbation. Thus, the temporal evolution of the system is given by the density operator
of the following form:

ρ = S(t,−∞)ρ0S
†(t,−∞) (3.15)

with the time–ordered propagator

S(t,−∞) = T exp
−i t∫

−∞

dt′H ′(t′)
 . (3.16)

Here, we use the time ordering operator T and the definition

H ′(t′) = eiHEHMt
′
H ′e−iHEHMt

′
. (3.17)

The current density ∆j(t) induced in the system after perturbation is then given by dif-
ference between expectation values of the operator j(t) at time t and in the initial state:

∆j(t) = tr[j(t)ρ]− tr[j(−∞)ρ0] (3.18)

It should be noted that we use here the interaction representation of the current density
operator ĵ, which reads:

j(t) = eiHEHMt ĵ e−iHEHMt (3.19)
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with
ĵ = ith

∑
j,σ

(
ĉ†j+1,σ ĉj,σ −H.c.

)
. (3.20)

Since there is no current in the initial steady state, we can neglect the second term in
Eq. (3.18). Further, the first term can be divided in two parts j(t) = j(1)(t) + j(2)(t). The
expectation value

〈
j(1)(t)

〉
= tr

(
j(1)(t)ρ

)
gives the diamagnetic part of the current density

〈
j(1)(t)

〉
= −ne

2

mc
A(t) = ine2

mω
E(t) (3.21)

and leads to delta peak in the optical conductivity of superconductors. The second part
can be calculated as follows:〈

j(2)(t)
〉

= tr
[
j(2)(t)ρ

]
= tr

[
S†(t,−∞)j(2)(t)S(t,−∞)ρ0

]
(3.22)

Now, we can make use of the linear response approximation and insert in Eq. (3.22) the
time–ordered propagator from Eq. (3.16) in the first order of H ′(t). After some algebra we
arrive at: 〈

j(2)(t)
〉

= −i
t∫

−∞

dt′tr
([
j(2)(t), H ′(t′)

]
ρ0
)

(3.23)

Finally, with the exact form of the perturbation Hamiltonian H ′ we get the Kubo–formula
for the current density:

〈
j(2)(t)

〉
= 1
ω

t∫
−∞

dt′tr
([
j(2)(t), j(2)(t′)

]
ρ0
)
E(t′) (3.24)

The combination of Eqs. (3.24) and (3.21) leads to the result

∆j(t) = ine2

mω
E(t) + 1

ω

∞∫
−∞

dt′tr
(
θ(t− t′)

[
j(2)(t− t′), j(2)(0)

]
ρ0
)
E(t′) , (3.25)

where we have used a substitution t− t′ → t in the integral. The comparison of Eq. (3.25)
with Eq (3.12) gives the expression for the optical conductivity σ(t). However, in the
experiments one measures optical conductivity as a function of frequency. Therefore, it is
convenient to consider its Fourier transformed form:

σ(ω) = ine2

mω
δ(ω) + 1

ω

∞∫
−∞

dt′eiω(t−t′)tr
(
θ(t− t′)

[
j(2)(t− t′), j(2)(0)

]
ρ0
)

(3.26)

Let us now discuss the expression (3.26) in some details. First, it is important to note that
it has the time translational invariant form. In other words, it depends only on the time
difference t − t′. Further, the formula (3.26) for optical conductivity can be rewritten in
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terms of the current–current correlation function χjj:

σ(ω) = i

ω

[
ne2

m
δ(ω) + χjj(ω)

]
(3.27)

with

χjj(ω) = −i
∞∫
−∞

dseiωstr
(
θ(s)

[
j(2)(s), j(2)(0)

]
ρ0
)
. (3.28)

The imaginary part of χjj(ω) is connected with the real part of the optical conductivity
σ1(ω) by

σ1(ω) = − 1
ω

lim
η→0+

Imχjj(ω + iη) (3.29)

and gives the spectral representation of the current density operator

− Imχjj(ω) = 1
L

∑
n

|
〈
n|ĵ|0

〉
|2δ (ω − (εn − ε0) /~) (3.30)

with |n〉 being the n-th state with the energy εn. Here, we have introduced an artificial
Lorentzian broadening η. According to symmetry arguments the spectral function Imχjj(ω)
captures only odd–parity excited states of the system. The even–parity states can be found
from the spectral representation of the stress tensor operator τ̂ :

− Imχττ (ω) = 1
L

∑
n

| 〈n|τ̂ |0〉 |2δ (ω − (εn − ε0) /~) (3.31)

with
τ̂ = th

∑
j,σ

(
ĉ†j+1,σ ĉj,σ +H.c.

)
. (3.32)

The stress tensor operator τ̂ is equivalent to the kinetic part of the Hamiltonian ĤEHM.

The spectral representation of both correlation functions χjj(ω) and χττ (ω) can be com-
puted numerically by using Lanczos method, which was discussed in section 2.2.2. For this
purpose we prepare instead of an arbitrary initial vector a vector of the form:

|u1〉 = Ô |GS〉 /
√
C (3.33)

with an operator Ô under consideration, i.e.Ô = ĵ or τ̂ . The quantity C =
〈
GS|Ô†Ô|GS

〉
represents a normalization constant. After applying the Lanczos algorithm and the subse-
quent diagonalization of the M ×M tridiagonal matrix T we can obtain the low–energy
spectral representation of the corresponding correlation function, which is approximately
given by:

I(ω) ≈ C
1
L

M−1∑
n=0
| 〈xn|u1〉 |2δ (ω − (ε̃n − ε0) /~) (3.34)
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Due to the discrete energy states of the finite–size system, we introduce an artificial Lorent–
zian broadening with a width η = 0.1 into the delta function. For illustration of the low
energy excitation spectra for electron system of 10–sites we present in Fig. 3.4 the calculated
spectral representations of the stress tensor (yellow solid line) and current (blue solid line)
operator. Here, we chose the parameters for the interaction part of the Hamiltonian to be
U = −4, V = 0.25. The electron configuration on the lattice corresponds to the CDW
phase.
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Figure 3.4: The calculated excitation spectrum for the finite–size system with interaction pa-
rameter values U = −4, V = 0.25 corresponding to CDW phase configuration. The
spectral representation of the current–current and stress tensor correlation functions
are shown by the blue and yellow solid lines, respectively.

3.4.2. Pump–probe conductivity
Inspired by the recent optical control experiments [80,92], we want now to calculate the

optical pump–probe conductivity. In this type of experiment the system is driven out far
from equilibrium by the first (pump) excitation and the optical properties are measured
with the second (probing) excitation. Here, we assume the probe excitation to be very
short in time and much weaker, than the pump perturbation. Thus, it should be possible
to use previously discussed linear response approximation with respect to the probing field
in calculations of the optical conductivity. It is important to note that the time translation
symmetry does not preserved generally in nonequilibrium, since the initial nonequilibrium
state is time–dependent. Therefore, one needs to calculate a two–time optical pump–probe
conductivity σ(∆t, t), which now additionally depends on the time difference ∆t between
the pump and probe excitation of the interacting electron system.
One opportunity is to use a generalization [110] of the Kubo formula from Eq. (3.27) to

the nonequilbirium case:

σ1(∆t, ω) = 1
ωL

Im
tm∫
0

ds
(
iei(ω+iη)s

〈
ψ(∆t) |

[
jI(∆t+ s), jI(∆t)

]
|ψ(∆t)

〉)
(3.35)
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where σ1(∆t, ω) is the real part of the Fourier transformed optical conductivity with respect
to time t:

σ(∆t, ω) =
tm∫
0

dsσ(∆t, s+ ∆t)ei(ω+iη)s (3.36)

Here, tm is the window width for the Fourier transformation. The current density operator
jI(t) in Eq. (3.35) is given in the interaction representation

jI(t) = U †(t, t′)ĵU †(t, t′) (3.37)

with U(t, t′) being the time evolution operator without probing excitation.
We will use, however, another approach, which was proposed in Refs. [76, 111] and can

be easier implemented numerically. For this purpose we use the time–dependent Lanczos
algorithm in order to find the temporal evolution of the wave function, which describes the
interacting electron system in nonequilibrium. Based on its knowledge, we obtain first the
time–dependent current density after only pump excitation:

jp(t) =
〈
ψ(t)|ĵ|ψ(t)

〉
(3.38)

with the current density operator ĵ defined in Eq. (3.20). Then, we repeat this procedure
one more time and calculate the total current density jtot(∆t, t) after an additional probing
excitation. The difference in both results gives the current density jpr(∆t, t) induced by
the probe excitation, i.e. jpr(∆t, t) = jtot(∆t, t) − jp(t). Finally, the pump–probe opti-
cal conductivity is calculated from the Fourier transformation of jpr(∆t, t) and the probe
excitation Apr(∆t, t) with respect to t:

σ(∆t, ω) = jpr(∆t, ω)
i(ω + iη)LApr(∆t, ω) (3.39)

with η being a small positive number. The parameter η is artificially added to σ(∆t, ω)
and determines the broadening of the spectral lines, which is necessary for obtaining the
spectral weight of the energy peaks.



Chapter 4
Results of simulations for EHM in
nonequilibrium

In this chapter we discuss the results of the time–resolved simulations for an extended
Hubbard model in nonequilibrium. The numerical computations are based on the time–
dependent exact diagonalization algorithm from section 3.2. The first part of this chapter is
devoted to the nonequilibrium processes initiated by an interaction quench. In particular,
we consider quenches within CDW phase and from CDW into a singlet superconducting
state, which are schematically shown by path (1) and (2) in Fig. 4.1, respectively. In the
later case the buildup of the superconducting correlations is studied in view of several
correlation functions. Also the behavior of the time–dependent optical conductivity is
discussed. The second part of this chapter deals with a quench by pulse (path (3) in
Fig. 4.1). Particular emphasis is on the possibility to induce superconductivity in this
case, which is analyzed by using different correlation and response functions.

Figure 4.1: Schematic illustration of different quantum quench protocols on the phase diagram
for EHM. The arrows (1) and (2) indicate interaction quenches within CDW phase
and from CDW into a singlet superconducting phase, respectively. A pump pulse
excitation is illustrated by the curve (3).
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4.1. Interaction quench within a single phase
In the presented section we discuss an interaction quench, which is indicated by path

(1) in Fig. 4.1. In this case, the initial U , V and the final U ′, V ′ values of the interaction
parameters in the Hamiltonian are located within the same phase. For simplicity we prepare
the strongly correlated electronic system at the initial time t0 = 0 in the equilibrium ground
state of the CDW phase. In this case the electrons on the lattice build an alternating order
of double occupied and empty sites. The qualitative results, however, do not depend on
the particular phase under consideration. The initial interaction parameters are chosen
to be U = −3, V = 2. Further, immediately after t = 0 we change the nearest neighbor
interaction part to V ′ = 5 and the system develops for t > 0 with the new Hamiltonian.
Using the time–dependent Lanczos method discussed in section 3.2 we obtain the tem-

poral evolution of the wave function |ψ(t)〉. Based on this knowledge, we calculate all
characteristic functions of interest. Let us start with the discussion of the density–density
correlation function C(j, t). The results of calculations are presented in Fig. 4.2, from
which we can draw some important conclusions. First, we find that immediately after the
interaction quench the correlation function C(j, t) at each lattice site j start to oscillate
with time (see Fig. 4.2(a)). Moreover, the frequency of these oscillations1 is independent
of j, which in turn means that the interaction quench affect the whole electron system
and leads to its coherent oscillations. Now, by plotting the correlation function C(j, t)
versus j for different moments in time (see Fig. 4.2(b)) we recognize the characteristic for
CDW phase "zigzag" structure, which qualitative form remains unaffected by the interac-
tion quench. However, the intensity of this structure changes with time. Similar behavior
was also observed by quenching from different initial states within the CDW phase.
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Figure 4.2: Density–density correlation function C(j, t) calculated for an interaction quench
within the CDW phase (path (1) in Fig. 4.1). The initial and final interaction
parameters of the Hamiltonian are chosen to be U = −3, V = 2 and U ′ = −3,
V ′ = 5, respectively. (a) Temporal evolution of C(j, t) obtained for each lattice site
j. (b) "Snapshots" of C(j, t) at different moments in time shown as a function of j.

1the corresponding Fourier spectrum is discussed in connection with Fig. 4.3(b)
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Finally, we find that the oscillations of the density–density correlation function C(j, t)
manifest itself in the dynamics of the momentum distribution function nk. For illustration
we plot the difference of nk at the Fermi level as a function of time. The result for ∆nk(t)
is shown in Fig. 4.3(a). Thus, it is reasonable to assume that the wave function, describing
the strongly correlated electron system in nonequilibrium, is not an eigenstate of the initial
system in equilibrium. For further investigations we perform the Fourier transformation
of the oscillations in ∆nk. The result is presented in Fig. 4.3(b) by the black solid line.
We find that the oscillations correspond to a pronounced single peak at around ω = 17 in
the Fourier spectrum. Further, we calculate the low excitation states of the unperturbed
electron system for both initial U = −3, V = 2 and final U ′ = −3, V ′ = 5 parameter values
of the interaction part. The corresponding excitation spectra are shown in Fig. 4.3(b) by
the green and red regions, respectively. The comparison of these spectra with the Fourier
transformation of the nonequilibrium oscillations in ∆nk reveals that the single peak at
ω = 17 from the Fourier spectrum corresponds to the excited state of the CDW phase with
the interaction parameter values U ′ = −3, V ′ = 5.
All in all, we can conclude that the interaction quench changes strongly the low energy

states of the initial system and leads to the nonadiabatical temporal evolution of the wave
function |ψ(t)〉. In other words, |ψ(t)〉 is not a "pure" eigenstate of the perturbed system
(also do not appear as its ground state) and show oscillation between its excited states.
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Figure 4.3: (a) Jump of the momentum distribution function ∆nk calculated after interaction
quench. Here, we use same parameters, as in Fig. 4.2. (b) Fourier transformation
of ∆nk from (a) shown by the black solid line. The green and red region correspond
to the excitation spectrum of the electronic system with initial U = −3, V = 2 and
final U ′ = −3, V ′ = 5 parameter values of the interaction part, respectively.
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4.2. Induced singlet superconducting correlations by an
interaction quench

Now, we examine the possibility to induce phase transition by an interaction quench.
Especially, we are interested in the transitions into a superconducting state with singlet
pairing correlations. For our investigations we use similar approach as discussed before
(see section 4.1). First, we prepare the system at t = 0 in equilibrium ground state of the
CDW phase with U = −4, V = 0.25. Then, immediately after t = 0 the nearest neighbor
interaction parameter V is switched into the superconducting region with V ′ = −0.25
(see path (2) in Fig. 4.1). Finally, using time–dependent Lanczos method we evaluate the
dynamics of the electron system and construct its corresponding wave function |ψ(t)〉.

4.2.1. Enhancement of the superconducting correlations
Using |ψ(t)〉 we calculate first the density–density correlation function C(j, t) and sin-

glet superconducting correlation function P1(j, t) in order to investigate the nonequlibrium
dynamics of CDW and superconducting correlations resulted after interaction quench, re-
spectively. In Fig. 4.4 we present the corresponding results obtained for different moments
in time. Let us focus on the behavior of the density–density correlation function C(j, t)
shown in Fig. 4.4(a). While in the initial CDW state this correlation function exhibits
characteristic for this phase "zigzag" structure, after quenching one observes a strong sup-
pression of the charge density wave order. In fact, the value of C(j, t) in nonequilibrium
for j > 1 remains approximately constant. At the same time, the singlet superconducting
correlation function P1(j, t) shows an enhancement of the superconducting correlations af-

●

●

●

●

●

●

■

■

■
■ ■ ■

◆

◆
◆ ◆ ◆ ◆

(a)

t=0
CDW

0 1 2 3 4 5

0.5

1.0

1.5

2.0

j

C
(j
,t)

●

●

● ●
● ●

■

■

■ ■ ■ ■

◆

◆

◆
◆ ◆ ◆

induced SC correlations
(b) ⇑ ⇑t=0

CDW

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

j

P
1(
j,t
)

t = 2.5
t = 9.0
Equilibrium SC phase

Figure 4.4: (a) Density–density C(j, t) and (b) singlet superconducting P1(j, t) correlation func-
tions versus lattice site j calculated for an interaction quench at several moments in
time t. The initial and final interaction parameters of the Hamiltonian are chosen
to be U = −4, V = 0.25 and U ′ = −4, V ′ = −0.25, respectively. For comparison,
the corresponding correlation functions calculated for equilibrium singlet supercon-
ducting state with U ′ = −4, V ′ = −0.25 are shown with blue dashed lines.
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ter interaction quench. This is demonstrated in Fig. 4.4(b). A direct comparison of the
nonequilibrium results for P1(j, t) with its equilibrium counterpart in ground state of the
singlet superconducting phase (U ′ = −4, V ′ = −0.25) reveals a good agreement in their be-
havior. Thus, we can argue that we observe the fingerprints of the induced superconducting
state with the singlet pairing correlations.
Next reasonable questions would be how fast the superconducting correlations can be

build after an interaction quench and how long the system can stay in this state. Also it
is interesting to know, whether the initial CDW state is completely destroyed in nonequi-
librium. In order to answer these questions we plot in Fig. 4.5 the temporal evolution
of the numerically obtained singlet superconducting correlation function P1(j, t) for each
lattice distance j. We found that immediately after the interaction quench the correlation
function P1(j, t) for fixed values of j starts to oscillate. Interestingly, the magnitude of
these oscillations depends strongly on the lattice distance j. For instance, the correlation
function P1(j, t) at j = 0, which reflects the behavior of the double occupancy function (see
section 2.3.2), shows oscillations around the initial value with a small magnitude. Phys-
ically this behavior might be interpreted as a redistribution of the electron pairs on the
lattice initially prepared in the CDW phase, which was initiated by the interaction quench.
Further, in the correlation function P1(j, t) with j > 1, which describe the buildup of the
superconducting correlations, we found slow oscillations with almost similar strong magni-
tude. Therefore, the strong coherent enhancement of P1(j, t) with j > 1 appears in quite
broad regions of time.
For deeper understanding of the nonequilibrium processes after quenching we need to

perform Fourier transformation of the oscillation in the singlet pairing correlation function
P1(j, t). However, we consider first momentum distribution function, which should give a
complementary information about the interaction changes in the system. This is described
in the next section.
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Figure 4.5: Temporal evolution of the singlet superconducting correlation function P1(j, t) cal-
culated for an interaction quench as a function of lattice distance j. Here, we use
same parameters, as in Fig. 4.4. The dynamics of double occupancy function is given
by P1(j, t) at j = 0. The dashed lines indicate "snapshots" shown in Fig. 4.4(b).
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4.2.2. Nonequilibrium correlation dynamics
In Fig. 4.6 we present the results of time–dependent calculations for the momentum

distribution function nk defined in Eq. (3.10). First, we plot nk versus momentum k at
different moments in time t (see Fig. 4.6 (a)). Due to the finite size of our lattice model
the calculations of the momentum distribution function are restricted to discrete values
of k. Nevertheless, the dynamical evolution of the system is still clearly visible. In fact,
for the fixed value of k we find oscillating behavior of nk with time. These oscillations
manifest itself in the jump of the momentum distribution function ∆nk at the Fermi level.
The temporal evolution of ∆nk is displayed in Fig. 4.6(b). Similar to the behavior of the
previously discussed correlation functions (see section 4.2.1) the jump of the momentum
distribution function ∆nk starts immediately to oscillate after the interaction quench.
These observations implies that the electron system in nonequilibrium do not appear as a
"pure" eigenstate neither of the initial CDW phase nor of the equilibrium superconducting
phase described by Hamiltonian with final interaction parameters U ′ = −4, V ′ = −0.25.

● ●

●

●

● ●

■
■

■

■

■
■

◆
◆

◆

◆

◆
◆

▲ ▲
▲

▲
▲ ▲

▼
▼

▼

▼

▼
▼

(a)

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

k [π /5]

n
k

t=0
t=3
t=5
t=7
t=9

(b)

0 1 2 3 4 5 6 7 8 9 10

0.3

0.4

0.5

0.6

t [th
-1]

Δ
n k

Figure 4.6: (a) Momentum distribution function nk calculated after interaction quench for vari-
ous moments in time t. Here, we use same parameters, as in Fig. 4.4. (b) Temporal
evolution of the jump ∆nk at the Fermi level. Oscillating behavior is illustrated.

Further, we perform a Fourier transformation of the oscillations in ∆nk. The resulting
spectrum is displayed in Fig. 4.7 by the black solid line and shows a few distinct low–energy
peaks. In addition, we calculate the spectral representation of the stress tensor Imχττ for
low energies and for both phases with initial parameters of Hamiltonian U = −4, V = 0.25
describing CDW phase and for corresponding final equilibrium superconducting phase with
parameters U ′ = −4, V ′ = −0.25. The resulting excitation spectra we plot together with
Fourier transformation of ∆nk(t) in Fig. 4.7 are indicate them by red and blue peaks,
respectively. A comparison of all these spectra leads to some important conclusions. First
of all, there are no peaks in the Fourier spectrum of ∆nk(t), which can be assigned to the
low energy excitation of the CDW phase. This observation together with the discussion
from section 4.2.1 implies that the initial CDW correlations are strongly suppressed after
the interaction quench. Moreover, the most intensive peaks in the Fourier spectrum can be
identified as the low energy states for the singlet superconducting phase with parameters
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U ′ = −4, V ′ = −0.25. Hence, we can conclude that the system driven out of equilibrium
by interaction quench undergo a direct transition into a superconducting phase and shows
oscillations between its different low–energy excited states.

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

ω [th]

no
rm
.
In
te
ns
ity

Equilibrium CDW phase
Equilibrium SC phase
After quenching

Figure 4.7: Fourier transformation of the jump ∆nk(t) (black solid line) from Fig. 4.6(b). Blue
peaks correspond to the excitation spectrum for the equilibrium SC state, whereas
the read ones represent the excitation spectrum for the initial CDW state.

4.2.3. Time–dependent optical conductivity
The correlation functions discussed previously give an important information about the

nonequilibrium dynamics of the electron system initiated by an interaction quench. How-
ever, these functions can not be measured directly in an experiment. Therefore, we include
in our simulations an additional probing excitation of smaller intensity with the variable
time delay ∆t and calculate the time–dependent pump–probe optical conductivity. The
strategy of calculations is described in section 3.4.2.
First, we present in Fig. 4.8 the real part of the optical conductivity σ1(∆t, ω) obtained

for different time delays ∆t. The result of equilibrium calculation for the ground state
of the initial CDW phase (performed at ∆t = 0) is indicated by the red solid line. In
this case the function σ1(∆t = 0, ω) reveals an absorption peak at frequency ω ≈ 1.9. In
addition, due to the finite–size effects and small interaction parameter values of the initial
Hamiltonian we observe a second peak around ω ≈ 0 in conductivity spectrum2. After
quenching the CDW absorption peak at ω ≈ 1.9 disappears completely and we observe
strong enhancement of the peak magnitude at ω = 0. Indeed, the calculations of σ1(∆t, ω)
at ∆t = 3 and ∆t = 9, which are respectively shown by orange and green lines in Fig. 4.8,
reveal a shift of the spectral weight from absorption peak at ω ≈ 1.9 to peak at ω = 0.
Physically, this behavior indicates increase in the conductivity of the electron system.
Further, a direct comparison of the results in nonequilibrium for σ1(∆t, ω) with the optical
conductivity calculated for the ground state of the equilibrium singlet superconducting
phase with parameters U ′ = −4, V ′ = −0.25 (blue dashed line in Fig. 4.8) shows a good

2instead of an optical gap indicating the initial CDW phase
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Figure 4.8: Real part of the optical conductivity σ1(∆t, ω) calculated for an interaction quench
at several time delays ∆t. Here, we use same parameters, as in Fig. 4.4. Equilibrium
result for singlet SC phase is shown for comparison by the blue dashed line.

agreement in their behaviors. It should be noted that the width of the peak at ω ≈ 0 in
the equilibrium spectrum is caused by the finite–size effects of our lattice model.
Interestingly, the peak magnitude σ1(∆t, ω = 0) at frequency ω ≈ 0 shows strong de-

pendence on the time delay ∆t between the pump–probe excitations, which is illustrated
in Fig. 4.9. Here, we observe strong enhancement of σ1(∆t, ω = 0) immediately after the
interaction quench with the subsequent oscillations around its new average value. The
frequencies of these oscillations reflects the dynamics of the correlation functions discussed
in sections 4.2.2 and 4.2.1. For illustration, we perform Fourier transformation of these
oscillations in σ1(∆t, ω = 0) with respect to ∆t. The resulting Fourier spectrum is pre-
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Figure 4.9: Magnitude of the low–energy peak (ω = 0) in the σ1(∆t, ω) spectrum as a function of
time delay ∆t obtained for an interaction quench. Here, we use same parameters, as
in Fig. 4.4. The corresponding Fourier transformation of the oscillation is presented
in the inset. The Fourier spectrum of the time–dependent correlation function from
Fig. 4.7 is shown for comparison by the dashed line.



Results of simulations for EHM in nonequilibrium 41

sented by a black solid line in the inset of Fig. 4.9 and shows a few distinct peaks. Due
to the probing of the electron system with a short pulse of a small energy and fluency, we
find that the most intensive peak in spectrum corresponds to the excitation at low energy.
A comparison of the Fourier spectrum for σ1(∆t, ω = 0) with corresponding spectrum for
the correlation function3, which is shown in the inset of Fig. 4.9 by the black dashed line,
reveals that the position of the peaks in both cases shows a quite good match. However,
the peaks differ in the intensity. This can be traced back to the differences in the energy
and fluency of the pump and probe excitations.
Finally, let us discuss the corresponding imaginary part of the optical conductivity

σ2(∆t, ω). The results of the time–dependent computations for σ2(∆t, ω) is presented
in Fig. 4.10. Since the real and imaginary parts of the optical conductivity are connected
through Kramers–Kronig relation, we observe in equilibrium σ2(∆t, ω) at ∆t = 0 (red
solid line in Fig. 4.10) response at frequency ω ≈ 1.9 corresponding to absorption peak
in CDW phase and a finite background, which is an artifact of the lattice model. After
pumping we find that the signature of absorption at ω ≈ 1.9 disappears and the inductive
response is enhanced with 1/ω–like behavior. This can be clearly seen for σ2(∆t, ω) at
∆t = 3 and ∆t = 9, which are shown in Fig. 4.10 by orange and green line, respectively.
Physically, this behavior corresponds to the enhancement of the superconducting correla-
tions. Moreover, a comparison between these results for σ2(∆t, ω) in nonequilibrium with
its counterpart obtained for the ground state of the equilibrium singlet superconducting
phase (blue dashed line in Fig. 4.10) reveals a quite good agreement in their behaviors.
All in all, in calculations of the time–dependent real σ1(∆t, ω) and imaginary σ2(∆t, ω)

part of the optical conductivity we observe appearance of the transient Meissner effect,
which is a fingerprint of the induced superconductivity [112]. This effect manifests itself in
the increase of the spectral weight in σ1(∆t, ω) at ω = 0 and enhancement of the inductive
response in σ2(∆t, ω) with 1/ω–like behavior.

t=0
CDW

0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

ω

σ
2(
Δ
t,
ω
)

Δt = 3.0
Δt = 9.0
Equilibrium SC phase

Figure 4.10: Imaginary part of the optical conductivity σ2(∆t, ω) calculated for an interaction
quench at several time delays ∆t. Here, we use same parameters, as in Fig. 4.4.
Equilibrium result for singlet SC phase is shown by the blue dashed line.

3 see also Fig. 4.7
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4.3. Induced singlet superconducting correlations
resulting after quench by pulse

This section is devoted to the temporal evolution of the extended Hubbard model after
a short pump pulse excitation (see path (3) in Fig. 4.1). Particular emphasis is on the
superconducting phase transitions far from equilibrium. We prepare the system again
in the ground state of the CDW phase and close to the transition boundary with the
singlet superconducting phase. The initial interaction parameters of the Hamiltonian are
U = −3, V = 0.5. Then, we apply the pump pulse of the Gaussian form, which reaches its
maximum at t = 0. The central frequency of the pulse is chosen to match the lowest optical
absorption peak energy of the unperturbed system to guarantee an effective transfer of the
pulse energy to electrons and to avoid excessive pumping of the system. The duration time
of the pump pulse we set to τ = 0.05 in order to reach simultaneously different excited
states of the system. Finally, the temporal evolution of the electron system together with
its corresponding wave function is obtained by using the time–dependent Lanczos method.

4.3.1. Nonequilibrium dynamics after the pump pulse excitation
Based on the knowledge of the time–dependent wave function we calculate the relevant

correlation functions. First, let us discuss the temporal evolution of the density–density
correlation function C(j, t). The results of computations are displayed in Fig. 4.11(a) and
(b). Before pumping the electron system is prepared in the ground state of the CDW
phase and C(j, t) function shows characteristic for this phase "zigzag" structure (see red
line in Fig. 4.11(b)). The excitation of the system with the pump pulse leads to the
effective partial suppression of the charge density wave correlations with the subsequent
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Figure 4.11: Results for the density–density correlation function C(j, t) calculated after the
pump pulse excitation of a Gaussian shape with parameters ω = 2.379, τ = 0.05,
A0 = 5. In (a) the temporal evolution of C(j, t) for each lattice site j is presented,
where the pulse is indicated by the gray region around t = 0. The "snapshots" of
the correlation function at different moments in time are shown in (b).
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oscillations. In fact, as shown in Fig. 4.11 (a) the density–density correlation function for
a fixed lattice site value j starts to oscillate after pumping. In addition, we find that the
frequency of these oscillations is independent of the lattice distance j (the Fourier analysis
is given below). Thus, we can conclude that the pump pulse acts on the whole electron
system and leads to its coherent excitation. Moreover, by plotting the correlation function
C(j, t) versus j at different moments in time (see Fig. 4.11 (b)) we observe an effective
reduction in the magnitude of the CDW "zigzag" structure.
Now, we focus on the behavior of the singlet superconducting correlation function P1(j, t)

after pumping. Since P1(j, t) at j = 0 corresponds to the double occupancy function (see
section 2.3.2) and P1(j, t) with j > 0 gives information about the singlet superconducting
correlations, it is convenient to discuss their temporal evolution separately. The results
of the time–dependent computations for P1(j = 0, t) and for P1(j > 0, t) are presented in
Fig. 4.12 (a) and (b), respectively. First of all, after pumping we find in the behavior of
the double occupancy function P1(j = 0, t) an effective decrease with strong oscillations
around a new reduced value (see Fig. 4.12 (a)). Physically, it means that the excitation of
the electron system by a pump pulse leads to a dynamical breaking and creation of electron
pairs on a lattice. Moreover, at some moments in time (e.g. at t ≈ 3, t ≈ 4 etc.) one can
observe a recovery of the double occupation function P1(j = 0, t) to its initial value. Since
the charge density wave correlations are partially suppressed after pumping, this behavior
of P1(j = 0, t) indicates a transient redistribution of the electron pairs on the lattice.
Further, we find strong oscillations in the temporal evolution of singlet superconducting
correlation function P1(j, t) for j > 0, which are displayed in Fig. 4.12 (b). Importantly,
after the pump pulse has gone the function P1(j > 0, t) demonstrates a transient coherent
increase for all j > 0, which appears at around t ≈ 3 in a quite narrow time frame and
indicates the buildup of superconducting correlations. In order to get deeper understanding
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Figure 4.12: Results of the time–dependent computations for the singlet superconducting corre-
lation function P1(j, t) after pump pulse. The pulse is indicated by the gray region
around t = 0 and has the same parameters as in Fig. 4.11. In (a) the dynamics
of the double occupancy function represented by P1(j, t) at j = 0 is shown. The
results of calculations for P1(j, t) for each lattice site j > 0 describing the singlet
superconducting correlations are presented in (b).
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of the nonequilibrium processes induced after pump pulse excitation we need to perform
Fourier transformation of the obtained oscillations in the correlation functions.
The result of Fourier transformation for double occupancy function P1(j = 0, t) 4 is

displayed in Fig. 4.13 by the black solid line. As shown in this figure, the resulting Fourier
spectrum contains several distinct peaks. In order to identify these peaks in the spectrum
we calculate using Eq. (3.34) the low–energy spectral representation of the stress tensor
operator Imχττ for both initial CDW state with parameters U = −3, V = 0.5 and equi-
librium superconducting state with parameters U = −3, V = −0.5. The corresponding
excitation spectrum for CDW with several distinct peaks and for superconducting phase
characterized by two low–energy peaks (at ω < 2) are indicated in Fig. 4.13 by red and
blue peaks, respectively. A direct comparison of all results reveals that the most intensive
peaks in the Fourier spectrum correspond to the excited states of the initial CDW phase.
In particular, low energy peaks at ω ≈ 1.5, 2.5, 3.5 and 5.5 match perfectly with excitation
spectrum for CDW phase. It is remarkable that a peak at ω ≈ 1.5 might also represent
an excited state of the superconducting phase, since one of the most intensive peaks in the
optical spectrum of the superconducting state appears at the same frequency. In addition,
a peak at ω ≈ 1 in the Fourier spectrum can be assigned to the second intensive peak in
the spectrum of the superconducting phase. At this point it is reasonable to ask a question
whether these observations are an indication of a transient superconducting state. In order
to give a clear answer to this question we need an additional information about the system
in nonequilibrium, which can be extracted from the time–dependent optical conductivity
spectrum. This is discussed in the next section.
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Figure 4.13: Fourier transformation of the oscillations in P1(0, t) from Fig. 4.12(a). The corre-
sponding Fourier spectrum is shown by the black solid line. Blue peaks illustrate
the excitations spectrum for the equilibrium SC state, whereas the red ones rep-
resent the excitation spectrum for the initial CDW state.

4It should be noted that similar Fourier spectra can be obtained from Fourier transformation for other
correlation functions. The results differ slightly in intensity of peaks, but not in peak positions.
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4.3.2. Time–dependent optical conductivity
Now, by using an additional probing pulse with a variable time delay ∆t we simulate

according to section 3.4.2 an important for the experiment time–dependent optical con-
ductivity. The results of computations are displayed in Fig. 4.14.
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Figure 4.14: Time–dependent optical conductivity calculated after the pump pulse excitation
for several time delays ∆t. Here, we use same parameters as in Fig. 4.11. The real
part of the spectrum is shown in (a), whereas the corresponding imaginary part
is illustrated in (b). In addition, optical conductivity calculated for equilibrium
singlet superconducting phase with parameters U = −3, V = −0.5 is shown in
both figures by the blue dashed line for comparison.

Let us focus first on the real part of the optical conductivity σ1(∆t, ω), which was
computed for several time delays ∆t and is presented in Fig. 4.14 (a). The result of
calculation for the ground state of the CDW phase before pumping is indicated in the
figure by the red solid line. In this case the function σ1(∆t, ω) reveals an absorption peak
at the frequency ω ≈ 2.4 and an additional peak at ω = 0, which is an artifact of the
lattice model as discussed previously in section 4.2.3. After pumping with time delay
∆t = 2 (green solid line in Fig. 4.14 (a)) we find a partial decrease in the spectral weight
of the CDW peak at ω ≈ 2.4. In addition, we observe appearance of a new low–energy
peak at ω ≈ 0.7. The physical origin of this in–gap state can be explained as follows:
Since the electron system is initially prepared in the ground state of the CDW phase, it
reveals before pumping an alternating order of the double occupied and empty sites. A
subsequent excitation of the system by an optical pump pulse leads to an initial breaking
of the electron pairs5 and to a corresponding creation of the photo–carriers. However, the
photo–carriers remain localized on the lattice through the still existing alternating order
with double occupied sites. As a result they are limited in movability. Further, we find from
calculation of σ1(∆t, ω) at ∆t = 3 (shown by orange line in Fig. 4.14 (a)) disappearance
of both peaks at ω ≈ 2.4 and at ω ≈ 0.7 and increase in the peak magnitude at ω = 0.
This behavior indicates a collective motion of the electrons on a lattice and consequently

5see also results of calculations of the correlation functions in Figs. 4.11 and 4.12
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increase in the conductivity of the electron system. This is an important observation,
since the CDW correlations are not fully suppressed by the pulse excitation according to
our simulations of the correlations functions (see section 4.3.1) and might be interpreted
as depinning of CDW. Moreover, the peak at ω = 0 might also indicate superconducting
state, since the finite size–effects of the lattice model lead to a finite width of this peak
and, as a result, it is difficult to distinguish from our calculations between Drude and
superconducting δ–peak.
Therefore, we consider now imaginary part of the optical conductivity σ2(∆t, ω), which

is displayed in Fig. 4.14 (b). From equilibrium calculations (red solid line in Fig. 4.14 (b))
we find response of the system at frequency ω ≈ 2.4 corresponding to the absorption peak
in σ1(∆t, ω) for the initial CDW phase with a finite background, which can be traced back
to the size–effects of the lattice model. After pumping with time delay ∆t = 2 (green solid
line in Fig. 4.14 (b)) we observe an additional response at ω ≈ 0.7, which indicates the
in–gap state discussed previously. Interestingly, both signatures of the optical absorption
at ω ≈ 0.7 and ω ≈ 2.5 disappear completely at ∆t = 3, as shown in Fig. 4.14 (b) by
the orange line. Moreover, we observe increase in the inductive response with a 1/ω–
like behavior, which corresponds to the buildup of the superconducting correlations. In
addition, a direct comparison of the results for σ1(∆t, ω) and σ2(∆t, ω) in a nonequilibrium
state at ∆t = 3 with the corresponding counterpart calculated for the ground state of the
equilibrium singlet superconducting phase with parameters U = −3, V = −0.5 (blue
dashed line in Fig. 4.14 (a) and (b)) shows a quite good agreement in their behaviors.
Hence, we can conclude, that we find fingerprints of the induced superconductivity in the

computations of the real part σ1(∆t, ω) and the imaginary part σ2(∆t, ω) of the optical
conductivity for an electron system excited by a short optical pulse. These signatures
emerges in the calculations in form of the transient Meissner effect. In other words, we
observe in a quite narrow time frame a transient enhancement of the peak magnitude at ω =
0 in σ1(∆t, ω) and corresponding transient increase of the inductive response in σ2(∆t, ω)
with 1/ω–like behavior. Moreover, since the CDW order is not fully suppressed by the
optical excitation, an additional observation of the superconducting fingerprints indicates
the dynamical coexistence of the SC and CDW correlations far from equilibrium. This
is in contrast to previously discussed situation with interaction quench (see section 4.2),
where a full suppression of CDW and enhancement of superconductivity was observed.

4.4. Summary and discussion of results from optical
control simulations

In this chapter we have numerically simulated ultrafast nonequilibrium dynamics for an
one–dimensional Hubbard model with strongly correlated electrons on a lattice of 10 sites.
For this system we have chosen periodic boundary conditions. In particular, we have inves-
tigated the possibility to induce singlet superconducting correlations far from equilibrium.
For this purpose, the system was driven out of equilibrium in two different ways: (i) by in-



Results of simulations for EHM in nonequilibrium 47

Figure 4.15: Schematic illustration of transient superconducting phase transitions in the ex-
tended Hubbard model induced by (a) interaction quench and (b) by quench by
pulse. In both cases the system is initially prepared in the ground state of the
charge density wave (CDW) phase. (a) An interaction quench leads to a direct
transition into the superconducting phase (SC). Hereby, the system appears in a
nonequilibrium state E∗, which is not a "pure" eigenstate neither of equilibrium
CDW nor of singlet SC phase. Oscillations between nonequlibrium E∗ and excited
states of the superconducting phase occur. Quenching inside CDW phase leads
to nonequilibrium excitation within the same phase. (b) In case of the quench
by pulse the system can be excited to a joint quantum state of CDW phase with
superconducting phase. As a result, fingerprints of the singlet SC phase can be
observed after pumping. In addition, dominant oscillations between excited states
in the CDW phase occur.

teraction quench and (ii) by quench by pulse. By using time–dependent Lanczos algorithm
introduced in section 3.2 we were able to construct for both cases quite exactly6 the time–
dependent wave function describing the electron system in nonequilibrium. Based on its
knowledge we have investigated the buildup of the superconducting correlations by means
of several time–dependent correlation and response functions. A schematic illustration of
transient superconducting phase transitions in the extended Hubbard model for the case of
interaction quench and quench by pulse is presented in Fig. 4.15 (a) and (b), respectively.
First, we have focused on a situation with interaction quenches. Prepared the system in

an equilibrium ground state of the CDW phase, we have switched interaction parameters
of its Hamiltonian into the superconducting region. In this case a direct transition into the
superconducting state was observed7. Indeed, the calculations of the density–density corre-

6within the framework of the exact diagonalization technique
7It should be noted that quenching inside CDW phase, also close to the transition boundary with su-
perconducting phase, leads only to nonequilibrium excitation of the electron system within the same
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lation function C(j, t) reveal a strong suppression of the charge density wave correlations.
Also, the behavior of the double occupancy function with small oscillations around the
initial equilibrium value indicates a redistribution of the electron pairs on the lattice after
quenching. Moreover, the singlet superconducting correlation function P1(j, t) shows an
enhancement of the superconducting correlations in nonequilibrium. In addition, a direct
comparison of the nonequilibrium results of P1(j, t) at several moments in time with its
counterpart calculated for equilibrium superconducting ground state reveals quite perfect
agreement. However, due to the fact that the interaction quench is a nonadiabatic process,
the system does not follow the changes induced by the quench. In other words, the system
do not appear in the ground state of the singlet superconducting phase after quenching,
but in some nonequilibrium state (marked by E∗ in Fig.4.15 (a)), which is not a "pure"
eigenstate neither of equilibrium CDW nor of equilibrium singlet superconducting phase.
As a result, oscillations between nonequlibrium state E∗ and the low–energy eigenstates
of the superconducting phase occur (see Fig. 4.15 (a)). This behavior manifests itself in
the slow oscillations of the singlet superconducting correlation function P1(j, t) and of the
jump of the momentum distribution function at the Fermi level ∆nk. More importantly,
the results of Fourier transformation of these oscillations supports the interpretation of the
nonequilibrium state E∗ and reveal that the most intensive peaks of the Fourier spectra
correspond to the low–energy eigenstates of the superconducting phase. There are no peaks
in spectrum, which could correspond to the CDW phase. Finally, we have calculated the
time–depended real σ1(∆t, ω) and imaginary σ2(∆t, ω) part of optical conductivity, which
can be measured in an experiment, and observed appearance of a transient Meissner effect,
which is a fingerprint of the induced superconductivity. In fact, the indications of the
increased conductivity was found in the temporal evolution of σ1(∆t, ω). In particular,
the spectral weight of low energy peak corresponding to the equilibrium CDW state is
shifted after quenching to a peak at frequency ω = 0. As a result, the magnitude of this
peak is immediately increased and showed some oscillations around a higher value. In ad-
dition, the Fourier transformation of these oscillations reveals a good agreement with the
Fourier spectrum obtained from the correlation functions. Furthermore, the calculations of
σ2(∆t, ω) showed increase of the inductive response after pumping with 1/ω–like behavior,
which indicates the enhancement of the superconducting correlations.
Second part of this chapter was devoted to the situation with a quench by a short optical

pump pulse. The electron system was again prepared in an equilibrium ground state of the
CDW phase, but close to the transition boundary with the singlet superconducting phase.
By adjusting the amplitude of the pump pulse and tuning its frequency to the first low–
energy absorption peak of the unperturbed CDW state a transient crossover from CDW
phase into a singlet superconducting phase was observed (see Fig. 4.15 (b)). In fact, the
computation of the time–dependent density–density correlation function C(j, t) indicates
after pumping an effective partial suppression of the charge density wave correlations with
the subsequent oscillations. An additional calculation of the double occupancy function
reveals similar behavior with oscillation of, however, quite large magnitude. Furthermore,

phase, as illustrated in Fig. 4.15 (a).



Results of simulations for EHM in nonequilibrium 49

the oscillations are observed in the temporal evolution of the singlet superconducting cor-
relation function P1(j, t). Importantly, after the pump pulse has gone the function P1(j, t)
shows in a quite narrow time frame transient enhancement of the superconducting cor-
relations. Hence, in contrast to the situation with the interaction quench, in case of the
pump pulse quenching a dynamical coexistence of the CDW and singlet superconducting
correlations is possible. Performing a Fourier transformation of the oscillations in the cor-
relation functions we have found that most peaks in the Fourier spectrum correspond to
the low–energy eigenstates of the CDW phase. However, some peaks can be identified with
the eigenstates of the singlet superconducting phase. In other words, due to the low–energy
excitation of the system with a short pump pulse its several eigenstates can be addressed
simultaneously and oscillations between these states may occur. Also a joint quantum
state of CDW phase with superconducting phase can be reached. It should be noted that
in case of the pulses with higher excitation frequency the buildup of the superconducting
correlations is suppressed due to the pumping of too much energy into the system. Finally,
we have investigated the time–dependent real σ1(∆t, ω) and imaginary σ2(∆t, ω) part of
the optical conductivity. From calculations of σ1(∆t, ω) we have observed after pumping
a transient shift of the spectral weight from low energy peak, corresponding to a CDW
state, into peak at ω = 0. As a result, the magnitude of this peak is enhanced, which in
turn means increase in the conductivity. At the same time, the computations of σ2(∆t, ω)
reveals a transient increase in the inductive response with 1/ω–like behavior, which cor-
responds to enhancement of the superconducting correlations. Both properties indicate a
transient Meissner effect.
To summarize the results of our simulation, we should go back to the question, which was

raised in the introduction. Since the indications of the transient superconducting phase
transitions were observed [78,80,88–91] in layered cuprates by addressing some vibrational
mode with ultrashort optical pulses, most previous theoretical studies were focused on the
interpretation of this phenomenon in application to these particular materials. Some mod-
els suggested increase in the interlayered coupling through non–linear interaction with the
laser field [81,89] or by melting of the competing order [84,86], others explained enhance-
ment of superconducting correlations by periodic modulation of a phonon mode [82–85,87].
However, the important question about the possibility to induced superconductivity in gen-
eral for different types of materials was so far disregarded. With our studies we wished
to fill up this gap in understanding of this transient phenomenon and demonstrated a
buildup of the singlet superconducting correlations in nonequilibrium for a lattice model
with strongly correlated electrons. Hereby, we have considered two nonequilibrum scenar-
ios with interaction quench and quench by pulse. In the later case, the build up of the
singlet superconducting correlations appear even when the pulse has gone.
Similar question was raised in an experimental work, which was published few weeks

ago [92]. In this work optical response of a conventional s–wave superconductor K3C60 was
investigated in equilibrium and after photo–excitation. The results of measurements are
shown in Fig. 4.16. Experimental data obtained in equilibrium above critical temperature
Tc reveals a metallic state with a narrow Drude peak and a polaronic band at 55meV
(see Fig. 4.16(a) and (b)). A cooling below Tc leads to appearance of an optical gap
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in the real part σ1(ω) and divergent 1/ω–like behavior in imaginary part σ2(ω) of the
optical conductivity. The measurements of the transient optical response of K3C60 after
photo–excitation with time delay ∆t = 1ps, which was initially prepared in the metallic
state at temperatures up to 100K (see Fig. 4.16(c)-(e)), reveal changes in the optical
conductivity similar to the equilibrium cooling below Tc. Thus, a transient Meissner effect
was observed in nonequilibrium experiment on an s–wave superconductor, indicating a
transient transition from a metallic state into a superconducting phase.
All in all, since our simulations predict qualitatively similar results to those observed

in recent measurements, one can conclude that our studies may open new way to induce
superconductivity out of equilibrium in an experiment.

Figure 4.16: Equilibrium and transient optical response of K3C60. (a) and (b) display measur-
ing results of real σ1(ω) and imaginary σ2(ω) part of the optical conductivity in
equilibrium, respectively. Results above Tc are shown by the red line and indicate
metallic state with a narrow Drude peak. Measured data below Tc is represented
by the blue line, which shows appearance of an optical gap in σ1(ω) and diver-
gent behavior in σ2(ω). In column (c), (d) the corresponding measured data at
T = 25K> Tc in equilibrium (red line) and after photo–excitation with time delay
∆t = 1ps (blue line) are shown. Changes induced by photo–excitation are similar
to the equilibrium cooling below Tc (column (a) and (b)). Similar results observed
for equilibrium (red line) and transient (blue line) measurements at T = 100K,
which are shown in column (e), (f). Fit to the data is shown by dashed lines.
Figures are adapted from Ref. [92].
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Chapter 5
Two–band superconductors in
equilibrium

The recently discovered superconductivity in several multiband compounds [113–115]
opens a completely new field for both theoretical and experimental studies. Due to the
overlap of different bands in this type of superconductors, the Cooper pairs can be built not
only within one band, but also the electron tunneling between the bands is allowed. This
gives rise to different order parameters on different Fermi surfaces and also leads to the
intrinsic Josephson effect. As a consequence, many new physical phenomena associated
with different amplitudes and relative phases of the gaps are expected. For instance,
it is well known [2, 3, 6] that the breaking of a continuous symmetry is associated with
the appearance of a collective excitation. In a single–band superconductor with a two–
component order parameter this leads to amplitude (Higgs mode) and phase (gauge mode)
fluctuations of a superconducting gap. In contrast, for the two–band case an additional
phase mode is expected [116], which corresponds to a relative phase oscillation of the
superconducting condensates.
This part of the thesis is devoted to excitation of collective modes in superconductors

out of equilibrium. Here, we consider two important classes of multiband superconductors.
The first one describes the ordinary two–band superconductors with spin singlet pairing.
The relevant examples are pnictides and MgB2. The second one deals with the some exotic
type of the superconducting systems, the crystal structure of which lacks an inversion
center. In this case a lifting of the spin– and related to it band degeneracy is possible.
More importantly, due to the spin–orbit coupling caused by the absence of the inversion
center, for the first time in the history of superconductivity a superposition of both triplet
and singlet contributions to the superconducting gaps can be observed. By using different
theoretical approaches we investigate possibilities of excitation different collective modes in
the described above classes of two–band superconductors. Especially, we will focus on the
optical pump–probe excitations, where the light pulses are considered in the low intensity
limit.
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5.1. Two–band superconductivity with spin–singlet pairing

5.1.1. BCS–Leggett–Hamiltonian

Let us start with a description of a two–band superconducting system with spin–singlet
pairing correlation in equilibrium. The reduced Hamiltonian of a two–band superconductor
takes the following form in the mean–field approximation [117,118]:

ĤBCS = Ĥ0 +
2∑
l=1

∑
k∈W

[
∆klĉ

†
k↑lĉ

†
−k↓l + ∆∗klĉ−k↓lĉk↑l

]
(5.1)

with ĉ†kσl (ĉkσl) being creation (annihilation) of an electron on a band l = {1, 2} with the
momentum k and spin σ =↑, ↓. The first part in Eq. (5.1)

Ĥ0 =
2∑
l=1

∑
kσ
ξkσlĉ

†
kσlĉkσl (5.2)

denotes the normal state with the band energy ξkσl measured from the chemical potential
in the l–th band, whereas the Cooper pairing is described by the second part with the
superconducting gaps ∆kl:

∆kl =
2∑
j=1

∑
k′∈W

V lj
kk′
〈
ĉ−k′↓j ĉk′↑j

〉
(5.3)

The attractive electronic interaction V lj
kk′ between the bands l, j ∈ {1, 2} appears in the

energy region |ξkσl| ≤ ~ωD with ωD being the Debye cut–off frequency and with a corre-
sponding set W of the momentum vectors k,k′. Here, V lj

kk′ is considered in the weak cou-
pling limit. Importantly, in contrast to the one–band superconductors, where the Cooper
pairing is determined by the intraband coupling l = j, in two–band superconductors there
exists an additional interband coupling between the different bands l 6= j. This leads to
the occurrence of the intrinsic Josephson effect.
An additional side remark deserve the gap equation (5.3). For the case of s–wave su-

perconductors with attractive momentum–independent pairing interactions V l,j
kk′ ≡ Vlj,

l, j = 1, 2 and ∆kl ≡ ∆l this equation can be represented in matrix form [118]:

0 =

−λ−1 +

 Ξ1 0
0 Ξ2


 ·

 ∆1

∆2

 (5.4)

with the band–selected function

Ξl = 〈θkl〉FS ; θkl = 1
2Ekl

tanh Ekl

2kBT
(5.5)
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and an interaction matrix λ

λ =

 λ11 λ12

λ12 λ22

 ; λlj = VljNFl . (5.6)

Here, NFl is the density of states (DoS) at the Fermi level for each band l. The form of
Eq. (5.4) will be important for the discussions in section 5.2.3.
Further, in order to simplify the description of a two–band system in a superconducting

state we choose a convenient and well established way, which consists in introducing an
energy matrix in a particle–hole space1. In this case we combine for each band l the
creation and annihilation operators to spinors:

Ĉkl =

 ĉk↑l

ĉ†−k↓l

 ; Ĉ
†
kl =

(
ĉ†k↑l ĉ−k↓l

)
(5.7)

and energy contributions from Eq. (5.1) to the energy matrix

ξkl =

 ξkl ∆kl

∆∗kl −ξ−kl

 . (5.8)

Thus, the Hamiltonian (5.1) takes the following compact form

ĤBCS =
2∑
l=1

∑
k
Ĉ
†
kl · ξkl · Ĉkl , (5.9)

which reflects the structure of the normal state.

5.1.2. Bogoliubov–Valatin–Transformation
Now, it is convenient to separate the description of a two–band superconductor into the

parts describing condensate and quasiparticles, respectively. This can be achieved by a
straightforward diagonalization of the Hamiltonian (5.9). For this purpose we perform the
Bogoliubov–Valatin transformation [4, 119], which is readily generalized to the two–band
case [118]. This operation is equivalent to the rotation in the Nambu space for each band
l. Physically, it represents a transformation from the electronic picture into the fermionic
quasiparticle excitation basis α̂kl:

α̂kl = U †kl · Ĉkl ; α̂kl =

 α̂k↑l

α̂†−k↓l

 (5.10)

1which is also known, as the Nambu space [5]
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The unitary Bogoliubov–Valatin transformation matrix Ukl takes the following form

Ukl =

 ukl −vkl

v∗kl ukl

 ; U †kl =

 ukl vkl

−v∗kl ukl

 . (5.11)

with the BCS–coherence factors ukl and vkl. Due to the free choice for the sign of ukl and
vkl, we use the following convention:

ukl =

√√√√1
2

(
1 + ξkl

Ekl

)
; vkl =

√√√√1
2

(
1− ξkl

Ekl

)
(5.12)

with Ekl =
√
ξ2

kl + |∆kl|2. Thus, the BCS–Leggett–Hamiltonian (5.9) after this transfor-
mation takes the following form

ĤBCS = UBCS(0)︸ ︷︷ ︸
T=0

+
2∑
l=1

∑
kσ
Eklα̂

†
kσlα̂kσl︸ ︷︷ ︸

T>0

(5.13)

As one can see, the Bogoliubov–Valatin transformation has a clear physical meaning: While
the first term in the Hamiltonian (5.13) describes the ground state energy at T = 0
and corresponds to a superconducting condensate, the operators α̂kσl and αkσl can be
interpreted as ones to create and annihilate a fermionic quasiparticle in a quantum state
|k, σ, l〉 with the energy Ekl. The statistical physics of the quasiparticle excitations can be
described by the Fermi–Dirac distribution:

νkl =
〈
α̂†kσlα̂kσl

〉
= 1

exp
(
Ekl
kBT

)
+ 1

(5.14)

Further, it is convenient to construct the energy density matrix, which in analogy to the
energy matrix ξkl takes the following form:

nkl =

 nkl −∆klθkl

−∆∗klθkl 1− n−kl

 (5.15)

This density matrix can be also diagonalized by performing Bogoliubov–Valatin transfor-
mation. With the unitary matrix Ukl one finds:

U †kl · nkl · Ukl =

 νkl 0
0 1− ν−kl

 (5.16)
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5.2. Noncentrosymmetric superconductors
Next, we discuss a new class of the superconducting system, the crystal structure of which

lacks an inversion center. These superconductors without inversion symmetry are called
noncentrosymmetric (NCS) and are characterized by the appearance of a strong Rashba
type spin–orbit coupling (SOC). As a result, one observes in NCS (i) lifting of the band
degeneracy associated with a splitting into a two–band structure and, more importantly,
for the first time in the history of superconductivity (ii) the mixture of both singlet and
triplet contributions to the superconducting gaps is possible [16–18,120].

5.2.1. Strong Rashba–type SOC
Let us start with the properties of the antisymmetric spin–orbit coupling (ASOC) in a

noncentrosymmetric crystal and discuss them in some details. First, the appearance of
ASOC modifies the effective Hamiltonian for noninteracting electrons in the normal state
in the following way [121]:

Ĥ0 =
∑
kσσ′

ĉ†kσ [ξkδσσ′ + γk · τ σσ′ ] ĉkσ′ (5.17)

with ξk being the band energy measured from the Fermi level, σ, σ′ =↑ , ↓ and τ correspond-
ing to the vector of the Pauli matrices τ = {τx, τ y, τ z}. The new term in Hamiltonian2
describes an antisymmetric spin–orbit coupling [120] through the vector γk of the form:

γk = ~
4mc2

1
V

∫
V

d3r∇U(r)× vk(r) (5.18)

with vk(r) being the effective group velocity and U(r) denoting the lattice potential. It
should be noted that in cases of an inversion symmetry with U(−r) = U(r) the vector γk
vanishes, as expected, by performing a spatial integration over the volume V. Moreover,
due to the dependence on the lattice potential, the antisymmetric spin–orbit coupling
reflects the underlying symmetry of the crystal. In other words, the vector γk has the
property gγg−1k = γk with g being the symmetry operation of the crystallographic point
group G. Furthermore, the antisymmetric spin–orbit coupling can be associated with an
effective internal (k–dependent) magnetic field bk

γk = −γ−k = −γ~2 bk , (5.19)

which, as we will show in the next section 5.2.2, lifts the band degeneracy. Here, the
quantity γ = 2gµB/~ represents the gyromagnetic ratio. In order to have two distinct bands
we assume a strong coupling limit for the antisymmetric spin–orbit coupling γk and use a
parametrization γk = αsofk with αso being the strength of the coupling and fk representing

2which marked with red color in Eq. (5.17)
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the normalized vector function, which describes the anisotropy of the interaction:

fk = γk√
〈‖γk‖2〉FS

(5.20)

with the norm fk = ‖γk‖/
√
〈‖γk‖2〉FS . Here, we introduce the Fermi surface (FS) average

〈. . .〉FS, which for a given k–dependent function z(k) is defined:

〈z(k)〉FS =
2π∫
0

dφ

π∫
0

dθ sin θz(k) (5.21)

with azimuthal φ and polar θ angles.
In order to illustrate the k–dependence of antisymmetric spin–orbit coupling let us con-

sider two important examples. For the tetragonal point group symmetry G = C4v, which
is applicable for CePt3Si [15], the ASOC reads:

γk = γ⊥(k̂× êz) + γ‖k̂xk̂yk̂z(k̂2
x − k̂2

y)êz (5.22)

It should be mentioned that for γ‖ = 0 one can recognize the case of the Rashba inter-
action in two–dimensional systems [122, 123]. An illustration of the ASOC for C4v point
group3 in the leading order is shown in Fig. 5.1. In this case one finds anysotropic in-
teraction along the z–axes. For the cubic point group G = O(432), which is relevant for
Li2PdxPt3−xB [124], γk takes the following form:

γk = γ1k̂− γ3[k̂x(k̂2
y + k̂2

z)êx + k̂y(k̂2
z + k̂2

x)êy + k̂z(k̂2
x + k̂2

y)êz] (5.23)

Here, the first term with γ1 describes the isotropic spin–orbit coupling, whereas the anisotro–
py of interaction is given by the term with γ3. Thus, the case with the isotropic two–band
splitting can be realized by considering only the term with γ1.

Figure 5.1: Representation of the ASOC γk for C4v point group described by Eq. (5.22) in
momentum space. Strong anisotropy along the kz–axis is illustrated.

3will be important for discussions in Chap. 6



Two–band superconductors in equilibrium 59

5.2.2. Superconducting state
What are the consequences of the ASOC for the superconducting state? In order to

answer this question we construct, first, in analogy to the two–band case (see sec. 5.1),
an energy matrix ξ0

k of a noncentrosymmetric superconductor, which takes in the spin
representation the following form:

ξ0
k =

 ξk1 + γk · τ ∆k

∆†k −[ξ−k1 + γ−k · τ ]T

 (5.24)

This 4 × 4 matrix represents an extension of the Hamiltonian from Eq. (5.17) by terms
characterizing the off–diagonal long range order and described by the energy gap matrix
∆k. Now, due to the presence of the ASOC the classification of the superconducting
order parameter with respect to spin singlet (even parity) and spin triplet (odd parity)
is no longer valid. Thus, the mixture of both is possible. Sigrist and co-workers have
demonstrated [17, 18] that the ASOC is not destructive for the triplet pairing, if one
assumes dk ‖ γk. This implies that we can make the following ansatz for the energy
gap matrix:

∆k = (∆s(T )1 + dk(T ) · τ ) iτ y , (5.25)

with ∆s(T ) and dk(T ) reflecting the singlet and triplet part of the pair potential, respec-
tively. Also quantity τ represents here the vector of Pauli spin matrices. The energy
matrix ξ0

k can be block–diagonalized by performing an unitary transformation, which is
described by the matrix Uk in the form of a SU(2) rotation:

Uk = e−i
θγ
2 n̂γ ·τ ; cos θγ = γ̂k · ẑ ; nγ = γk × ẑ

‖γk × ẑ‖
(5.26)

This transformation 4 corresponds to a rotation in a spin space into the ẑ–direction about
the polar angle θγ between γk and ẑ. Physically, this describes a switch from the spin
into the helicity–band basis or simply band basis, which is convenient in the limit of large
spin–orbit coupling. In this case one can use the two–band description for NCS. A straight-
forward extension of this unitary transformation into Nambu space reads [125]:

ξ(band)
k ≡ U †kξ

0
kUk =



ξk+ 0 0 ∆k+

0 ξk− −∆k− 0
0 −∆∗k− −ξk− 0

∆∗k+ 0 0 −ξk+

 ; Uk =

 Uk 0
0 U∗k

 (5.27)

with the energy values ξkµ = ξk +µ||γk|| and the gap functions ∆kµ = ∆s(T )+µ∆tr(T )fk.
Here, the quantities ∆s(T ) and ∆tr(T ) describe the singlet and triplet contribution to

4similar to the Bogoliubov–Valatin transformation for the two–band superconductors (see section 5.1.2)
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Figure 5.2: Illustration of the band splitting in the momentum space due to an ASOC γk. On
the left the cross–section of the Fermi surface in the kx–ky plane for a free electron
gas is presented. Owing to the ASOC the Fermi surface is then splitted into two
bands with corresponding spin polarized (↑ or ↓) electrons, as shown on the right.

the pair potential, respectively. Introducing a band–index µ = ±1, one may write the
equilibrium energy matrix in the band basis in the compact form:

ξ0
kµ =

 ξkµ µ∆kµ

µ∆∗kµ −ξ−kµ

 (5.28)

In analogy, one can find for the equilibrium density matrix:

n0
kµ =

 1
2 − ξkµθkµ −µ∆kµθkµ

−µ∆∗kµθkµ
1
2 + ξkµθkµ

 (5.29)

with the band–selected function

θkµ = 1
2Ekµ

tanh Ekµ

2kBT

and Ekµ = [ξ2
kµ + ∆2

kµ]1/2.
It is worth mentioning that this type of the spin–orbit coupling (SOC) leads to two

important properties of the noncentrosymmetric superconductors: First, one observes lift-
ing of the spin and band degeneracy (see Fig. 5.2) associated with the splitting into a
two–band structure 5. Second, for the first time in a history of a superconductivity the
mixture of the superconducting order parameter with respect to spin singlet (even parity)
and spin triplet (odd parity) is possible. In other words, the parity for noncentrosymmetric
superconductors is no longer a good quantum number.

5 compare the form of the energy ξ0
kµ and density n0

kµ matrices for NCS with their counterparts for a
two–band superconductor from Eqs. (5.8) and (5.15), respectively
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5.2.3. Energy gap equation
Now, let us focus on the energy gap equation for a noncentrosymmetric superconductor

in the helicity band basis (with µ = ±1). Its self–consistent form is given by 6:

∆kµ = −
∑
ν=±1

∑
p
V µν

kp θpν∆pν (5.30)

with V µν
kp being the phenomenological pairing interaction and the function θpν defined

in previous section. In accordance to Refs. [126, 127] we choose for V µν
kp the generalized

two–gap weak–coupling ansatz of the following form:

V µν
kp = − [Vs + µνVtrfkfp + Vm (µfk + νfp)] Θ (ε0 − |ξkµ|) Θ (ε0 − |ξpν |) (5.31)

with µ, ν = ±1. Here, we assume that the pairing interaction appears in the small region 2ε0
around the Fermi energy of both bands. Furthermore, due to the different behaviors under
parity one can distinguish between three different contributions to the pairing interaction.
First, there is singlet pairing channel (Vs), which has the even parity with respect to
k → −k. Then, we take into account the term with the odd parity k → −k, which
corresponds to triplet pairing channel (Vtr). Finally, there is a contribution with a mixed
parity (Vm), which originates from the Dzyaloshinskii–Moriya (DM) interaction [127–129].
Now, let us define the dimensionless pairing interaction constants

λα = N(0)Vα with α = s, tr,m (5.32)

with N(0) being the density of states (DoS) on the Fermi surface for one spin projection.
As a result, by using the definitions (5.31) and (5.32) we can rewrite the energy gap
equation (5.30) into the matrix form:−λ−1 +

 Ξ0 Ξ1

Ξ1 Ξ2


 ·

 ∆s

∆tr

 =

 0
0

 (5.33)

with the interaction matrix λ

λ =

 λs λm

λm λtr

 ; λ−1 = 1
|λ|

 λtr −λm
−λm λs

 , (5.34)

where |λ| ≡ λsλtr − λ2
m is the determinant of the matrix λ, and with the quantity

Ξn = ∑
µ 〈(µfk)nθkµ〉 , n = 0, 1, 2. (5.35)

It should be noted that the form of energy gap equation (5.33) for noncentrosymmetric
6the description is similar to that for the ordinary two–band superconductors (see Eq: (5.3))
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superconductor is reminiscent of gap equation (5.4) formulated for s–wave two–band su-
perconducting system. However, in case of NCS one deals with more general situation due
to the complex structure of the pairing interactions.
The energy gap equation (5.33) can be solved analytically for different temperature

regimes (see Appendix A). However, for this thesis the low temperature limit is important.
In this limit (T → 0) the integrals Ξn defined in Eq. (5.35) take the following form:

Ξn =
∑
µ

〈
(µfk)n ln

(
2ε0
∆kµ

)〉
=
∑
µ

〈
(µfk)n ln

(
2ε0

∆s (1 + µfkt)

)〉
, (5.36)

where we have defined a triplet-to-singlet ratio t = ∆tr/∆s. For the small values of t we
can perform a Taylor expansion for the integrals Ξn, which leads to:

Ξn = ln
(2ε0

∆s

)∑
µ

〈(µfk)n〉 −
∑
µ

〈
(µfk)n

∞∑
m=1

(−1)m+1 (µfkt)m

m

〉
(5.37)

This result can now be used for solving the energy gap equation (5.33). Substituting
Eq. (5.37) into Eq. (5.33) yields:

2 ln
(2ε0

∆s

)
= λtr
λsλtr − λ2

m

+
[
2t− λm

λsλtr − λ2
m

]
t

2 ln
(2ε0

∆s

)
= λs
λsλtr − λ2

m

+
[
2t− λm

λsλtr − λ2
m

]
1
t

(5.38)

From these equations one can obtain the triplet to singlet ratio t:

t = λm
λs − λtr + 2|λ| (5.39)

with the determinant of matrix λ from Eq. (5.34).

5.3. Collective excitations
A fundamental property of all types of superconductors is the appearance of a collective

excitation, which is a result of breaking the continuous U(1) symmetry. This is the state-
ment of the general Goldstone theorem, which was formulated in 1962 [2]. For instance,
in neutral superfluids with a two–component order parameter one can excite a so–called
Anderson–Bogoliubov or gauge mode [4–6], which corresponds to the angular excitation in
the Mexican hat potential of the free energy F (see Fig. 1.1). The existence of this phase
mode is necessary to restore the particle conservation law. On the other hand, in charged
systems, like single band superconductors, this collective excitation is shifted to the plasma
mode according to the Anderson–Higgs mechanism [6,8] and appears in most cases in the
quasiparticle continuum. This is the result of the long–range Coulomb interaction. More-
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over, one–band superconductors exhibit, in addition, amplitude fluctuations of the order
parameter. Due to the approximate particle–hole symmetry of the superconducting exci-
tations and similarities to the Lorentz invariant theory [130], these radial excitation in the
Mexican hat potential of the free energy F (see Fig. 1.1) corresponds to the Higgs mode
from the high energy physics.
The s–wave two–band superconductors exhibit beside the amplitude (Higgs) and the

phase (gauge) mode also a new collective excitation [116], which occurs due to the Joseph-
son coupling between the bands and corresponds to the fluctuations in the relative phase
of the two coupled order parameters. In other words, this mode represents out–of–phase
oscillations of the superconducting condensates. In close to equilibrium case, where the
linearized response can be expected, the phase (Leggett) and the amplitude (Higgs) modes
are decoupled and correspond to mutually orthogonal fluctuation. An illustration for both
modes in two–band superconductors is shown in Fig. 5.3.

Figure 5.3: Illustration of the effective free–energy landscape F for a two–band superconductor
with the red and the blue Mexican hat potential, representing the upper and the
lower band, respectively. The amplitude (Higgs) mode and the phase (Leggett)
mode are shown with the gray and the red/green arrows, respectively.

What can we learn from the collective modes? First of all, these are the characteristic
features for all types of superconductors and reflects the properties of the superconducting
condensates. In fact, the frequency of the Higgs oscillation in a superconductor corresponds
to the twice of the value of the order parameter amplitude [50, 53]. Further, from the
phase (Leggett) mode one can get the information about the interband coupling between
the bands. Indeed, in the long wavelength limit (|q| → 0) the frequency of the Leggett
mode takes for s–wave two–band superconductors the following form:

ω2
L(q→ 0) = 4V12∆1∆2

1
V11V22 − V 2

12

( 1
NF1

+ 1
NF2

)
(5.40)

with NFl being the density of states at the Fermi level for each band l. This can be
important for studying the novel type of the superconducting systems without inversion
symmetry, where a complex mixing of singlet and triplet superconductivity occurs. For
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these superconductors it is not a priori clear, whether there is a coupling between the
condensates and, as a result, if the Leggett mode may appear. Finally, from the theoretical
point of view the collective modes are necessary to restore the particle conservation law,
which is broken together with the U(1) symmetry.
In general, to excite collective modes in a superconducting system, one needs to apply

external perturbation, which shakes the superconducting condensate. This is, however,
a quite challenging task, since both Higgs and Leggett modes have neither charge nor
momentum. While the Leggett mode is though infrared active [131] and was so far observed
in Raman experiment on an s–wave two–band superconductor MgB2 [132], Higgs mode
has negligibly small coupling to the possible response functions due to the approximate
particle–hole symmetry and is not directly detectable (see discussion in the introduction).
The theoretical investigations of the possibility to direct excite these collective modes in
different types of two–band superconductors is the subject of our further considerations.



Chapter 6
Dynamical response of
noncentrosymmetric superconductors

One way to study the dynamical properties of a superconductor consists in using the
framework of the matrix kinetic theory (MKT). Here, the central role is playing the matrix
kinetic equation, which corresponds to the Landau–Boltzmann equation [133, 134] for the
normal Fermi liquids. Its first formulation was done in 1969 for the single band super-
conductors [49]. Since that time the theory was extended to the two–band case [118] and
used to discus the Raman response properties of the noncentrosymmetric superconduc-
tors [120]. However, the matrix kinetic approach is limited to the quasiklassical regime
with the transferred momentum |q| � kF and the energy ~ω � EF. While the amplitude
fluctuations of the order parameter show in this case only negligible small coupling to the
response functions, the phase fluctuations can be still observable.
In this chapter we recapitulate the most important principles of the kinetic theory and

extend it to the case of the noncentrosymmetric superconductors. In particular, we calcu-
late all collective excitations corresponding to the condensate phase dynamics of NCS and
investigate their properties.

6.1. Matrix Kinetic Theory
The external perturbation δζ of a superconducting system leads to the modification of

its equilibrium density matrix n0
kµ. Within the framework of the matrix kinetic theory

we focus on the linear response of the noncentrosymmetric superconductors to a scalar
electromagnetic potential φ(q, ω). The external field is assumed to vary with the frequency
ω and momentum q, so that it takes the form∝ exp(iq·r−iωt). In addition, there also exist
molecular potentials, which consist of the short–range Fermi–liquid interactions. However,
these potentials lead to a renormalization of the electron mass and, therefore, will not
be taken into further discussions. Moreover, due to the long–range Coulomb interaction
Vq = 4πe2/q2 in a charged system, one also needs to take into account a charge fluctuation

65
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term, which can be incorporated into the considerations by means of the random phase
approximation (RPA), i.e.

χ = χ(0)

[1− Vqχ(0)] , (6.1)

where χ is a generalized response function and χ(0) its unrenormalized counterpart.

Now, the response to the effective perturbation δζ ≡ eφ(q, ω) + Vqδn(q, ω), with δn
being the total density response of the system, is described by a modified density matrix
for each band µ [49, 120]

nµpp′ =


〈
ĉ†pĉp′

〉
µ

〈
ĉ†pĉ
†
−p′
〉
µ

〈ĉ−pĉp′〉µ
〈
ĉ−pĉ

†
−p′
〉
µ

 , (6.2)

which is a 2 × 2–matrix in Nambu–space with p = ~ (k + q/2), p′ = ~ (k− q/2). The
Fourier transformation of nµpp′ describes the evolution of the system in space and time after
perturbation δζ. More importantly, the perturbation δζ induces fluctuations of the pairing
amplitude gkµ = −θkµ∆kµ and, in addition, phase fluctuations of the superconducting
order parameter, which are associated with the collective phase modes in NCS.

The evolution of the density matrix nµpp′ in momentum space is given by the von Neu-
mann equation

~ω nµpp′ +
∑
p′′

[nµpp′′ , ξ
µ
p′′p′ ] = 0 , (6.3)

which describes the quantum dynamic of the system in the clean limit. The 2× 2 energy
matrix ξµp′′p′ plays here the role of the Hamiltonian of the system. This Eq (6.3) is valid for
the whole quasiklassical regime (|q| � kF, ~ω � EF) and can be solved by linearization
density matrix nµpp′ , as well as, energy matrix ξµpp′ . Therefore, we make the following
ansatz:

nµpp′ ≡ nkµ(q, ω) = n0
kµδq,0 + δnkµ(q, ω)

ξµpp′ ≡ ξkµ(q, ω) = ξ0
kµδq,0 + δξkµ(q, ω)

(6.4)

with the equilibrium quasiparticle energy ξ0
kµ and the distribution function n0

kµ defined in
Eqs. (5.28) and (5.29), respectively. The momentum and frequency–dependent deviation
from equilibrium can be defined in the appropriate way as 2 × 2 matrices in the Nambu
space:

δnkµ =

 δnkµ µδgkµ

µδg∗kµ −δn−kµ

 and δξkµ =

 δξkµ µδ∆kµ

µδ∆∗kµ −δξ−kµ

 (6.5)

with δξkµ = δξ−kµ = δζ. Thus, for each band µ = ±1 the matrix equation (6.3) takes the
following linear form:

~ωδnkµ + δnkµξ
0
k−q

2 µ
− ξ0

k+ q
2 µ
δnkµ = δξkµn

0
k−q

2 µ
− n0

k+ q
2 µ
δξkµ (6.6)
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Therefore, we have to solve in total a set of eight equations. Further, it is convenient to
decompose the diagonal elements of the energy and density deviation matrices according
to their parity with respect to k→ −k:

δn
(s)
kµ = 1

2 (δnkµ + sδn−kµ)

δξ
(s)
kµ = 1

2 (δξkµ + sδξ−kµ)
(6.7)

with the labeling s = ±1. On the same way, we separate the off–diagonal components into
their real and imaginary parts:

δg
(s)
kµ = 1

2

(
δgkµ

∆∗kµ
|∆kµ|

+ s
∆kµ

|∆kµ|
δg∗−kµ

)

δ∆(s)
kµ = 1

2

(
δ∆kµ

∆∗kµ
|∆kµ|

+ s
∆kµ

|∆kµ|
δ∆∗−kµ

) (6.8)

This decomposition has an advantage that the real part δ∆(+)
kµ describes exclusively the

amplitude fluctuations and the imaginary part ∆(−)
kµ represents the "pure" phase fluctuations

of the superconducting order parameter. By using the matrix inversion method described
in details in Ref. [118,135] together with the defined in Eqs. (6.7) and (6.8) specifications,
we obtain from the off–diagonal components of Eq. (6.3) the important relation between
fluctuations of the pairing amplitude gkµ and phase fluctuations of the order parameter:

2∆kµ[δg(−)
kµ + θkµδ∆(−)

kµ ] = ωλkµδζ − [ω2 − (q · vkµ)2]λkµ
δ∆(−)

kµ

2∆kµ
(6.9)

Here, we have identified the condensate response or the generalized Tsuneto function [136],
which in the NCS case takes the following form:

λkµ = 4∆2
kµ

θkµ[ω2 − (q · vkµ)2] + Φkµ(q · vkµ)2

(q · vkµ)2[ω2 − 4ξ2
kµ]− ω2[ω2 − 4E2

kµ] (6.10)

where vkµ = ∂ξkµ/∂~k and Φkµ = −∂nkµ/∂ξkµ with momentum distribution function nkµ.
Importantly, this function generates the condensate density through the sum rule∑pµ λpµ =
N(0)∑µ 〈λp̂µ〉FS ≡ N(0)λ, where N(0) is the DoS at the Fermi level for one spin projection.
Further, from the diagonal components of Eq. (6.3) we find a relation, which describes the

coupling between the phase fluctuations of the order parameter and the density response
function for noncentrosymmetric superconductors:

δnkµ =
(

(q · vkµ)2 ϕkµ

ω2 − (q · vkµ)2 − λkµ

)
δζ + ωλkµ

δ∆(−)
kµ

2∆kµ
(6.11)

with ϕkµ = Φkµ − λkµ being the quasiparticle response. Since we are only interested in
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the condensate response of a superconductor, we may safely ignore these quasiparticle
contributions ∝ ϕkµ in Eq. (6.11). Thus, we find for the density response function δnkµ
the simplified expression:

δnkµ = −λkµδζ + ωλkµδ∆(−)
kµ /2∆kµ (6.12)

Here, it is also important to mention that due to the particle–hole symmetry the amplitude
fluctuations of the order parameter show in the linear response approximation negligible
small coupling to the response functions. Therefore, they can be neglected.
Finally, we can calculate the condensate density response, as follows:

δns =
∑
kµ
δnkµ , (6.13)

which is exclusively determined by the condensate response λkµ and contains according to
Eq. (6.12) the whole information on the relevant order parameter collective phase modes
in NCS. Now, combining Eq. (6.9) for each band µ = ±1 with both the superconducting
gap equation (5.30) and its straightforward variation

δ∆(−)
kµ =

∑
pν
V µν

kp δg
(−)
pν (6.14)

where δg(−)
pν = −θpµδ∆(−)

pµ and V µν
kp is the pairing interaction defined in Eq. (5.31), we

obtain the main result of our analysis:

δns(q, ω) = ω2
G(q)[ω2 − ω′2L (q)]N(0)λ

ω4 − [ω2
P(q̂) + ω2

G(q) + ω2
L(q)]ω2 + [ω2

P(q̂) + ω2
G(q)]ω′2L (q)eφ(q, ω) (6.15)

This will be discussed in details in the next sections.

6.2. New collective modes

Let us now take a closer look on the denominator of Eq. (6.15). Its zeros correspond
to the strong fluctuations of the condensate density response and, consequently, represent
the collective excitations in a noncentrosymmetric system. Thus, in order to obtain the
collective modes in NCS we need to solve the quadratic equation with respect to ω2:

ω4 −
[
ω2

P(q̂) + ω2
G(q) + ω2

L(q)
]
ω2 +

[
ω2

P(q̂) + ω2
G(q)

]
ω′2L (q) = 0 (6.16)

with q̂ = q/|q|. Here, we identify the characteristic gauge mode frequency ωG(q) with
ω2

G(q) = ∑
µ 〈λp̂µ(q · vpµ)2〉FS /λ together with the condensate plasma mode frequency

ωP(q̂) with ω2
P(q̂) = 4πne2∑

µ 3 〈λp̂µ(q̂ · p̂)2〉FS /m of NCS. Also, as we will show later,
the frequencies ω′L(q) and ωL(q) correspond to the new Leggett mode frequencies in non-
centrosymmetric superconductors. A straightforward solution of Eq. (6.16) leads to the
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following results:

ω2
1,2 = 1

2
(
ω2

P(q̂) + ω2
G(q) + ω2

L(q)
) 1±

√√√√1− 4 [ω2
P(q̂) + ω2

G(q)]ω′2L (q)
(ω2

P(q̂) + ω2
G(q) + ω2

L(q))2

 (6.17)

This expression can be further simplified by using a Taylor expansion of the square root,
where by considering terms up to second order in |q| one gets

ω2
1,2 =

(
ω2

P(q̂) + ω2
G(q) + ω2

L(q)
) [1± 1]

2 ∓ [ω2
P(q̂) + ω2

G(q)]ω′2L (q)
ω2

P(q̂) + ω2
G(q) + ω2

L(q) . (6.18)

Now, let us first discuss the case of the neutral system, where in the absence of the
long–range Coulomb interaction the plasma frequency disappears ω2

P(q̂) = 0. Thus, one
finds from Eq. (6.18) two collective modes with the frequencies:

ω2
1 = ω2

G(q) +O
(
ω4

G(q)
ω2

L(q)

)
Gauge mode

ω2
2 = ω2

L(q) +O
(
ω4

G(q)
ω2

L(q)

)
Leggett mode

(6.19)

The first solution ω1 corresponds to the characteristic gauge mode of NCS, which is seen
in the first order to emerge as sum of the band–selected gauge modes. Moreover, in the
low temperature limit one finds that the gauge mode is independent on the point group
symmetry and takes similar form to the two–band superconductors [116,137]:

ω2
G(q) =

∑
µ 〈λp̂µ(q · vpµ)2〉FS

λ
→ 1

6
∑
µ

v2
Fµ|q|2 (6.20)

with vFµ being the Fermi velocity on the band µ = ±1. The second excitation can be
identified as a new Leggett’s collective mode in NCS, which corresponds to the out–of–
phase oscillations in the relative phase of the superconducting condensates. The properties
of this mode will be discussed in details in the following sections.
Next, we discover the Anderson–Higgs mechanism in NCS. By including the Coulomb

interaction 1 with the correspondingly nonzero plasma mode frequency ωP(q̂) we obtain
from Eq. (6.18) the following result:

ω2
1 = ω2

P(q̂) + ω2
G(q) + ω2

L(q)− ω′2L (q) +O
(
ω2

L(q)
ω2

P(q̂)

)
Plasma mode

ω2
2 = ω′2L (q) +O

(
ω2

L(q)
ω2

P(q̂)

)
Leggett mode

(6.21)

Here, we can draw an important conclusion that the gauge mode is now shifted to the

1Here, we use the Coulomb renormalization within RPA according to Eq. (6.1)
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plasma mode, i.e. ω2
P(q) = ω2

P(q̂) + ω2
G(q). In other words, this means that this collective

excitation becomes a mass. The Leggett mode frequency is also changed to ω′L(q).
Finally, it is important to note that the full condensate density response δns as described

by Eq. (6.15) is also manifested in the condensate dielectric function ε ≡ 1 − Vqδn
(0)
s /eφ,

with δn(0)
s ≡ δns(ωP(q̂)→ 0).

6.2.1. Conservation law
An important advantage of the matrix kinetic theory is the straightforward physical

interpretation of its results. Especially, the gauge invariance of the whole theory can
be demonstrated easily by taking into account all phase fluctuation modes of the order
parameter. Let us illustrate this issue in the details. As one can see from Eq. (6.12) the
density response functions δnkµ are directly connected with the phase fluctuations of the
order parameter δ∆(−)

kµ . The integration of this result over the momentum space k yields
together with the density current response j = ∑

kµ vkµδnkµ to the continuity equation

ωδn− q · j =
∑
kµ
λkµ

[ω2 − (q · vkµ)2
] δ∆(−)

kµ

2∆kµ
− ωδζ

 , (6.22)

which at first glance displays a non–vanishing right-hand side. However, by using Eq. (6.9)
and the variation of the energy gap equation (6.14) one finds after a straightforward, but
lengthy calculation:

ωδn− q · j = 0 (6.23)

As a result, within the framework of the matrix kinetic theory one is able to satisfy the
particle conservation law and, associated with it, the gauge invariance of the theory.

6.3. Leggett mode
This section is devoted to the properties of the Leggett mode in noncentrosymmetric su-

perconductors. This mode was first predicted for ordinary two–band superconductors [116]
and corresponds to the out–of–phase oscillations in the relative phase of the superconduct-
ing condensates. Therefore, its frequency scales with the interband coupling and has,
consequently, finite mass in the long wavelength limit (|q| → 0) [118].
For the neutral noncentrosymmetric system we find in Eq (6.19) the following result:

ω2
L(q) = Λ2

0 +
α0α2

(
ω2

q0 + ω2
q2

)
− 2α2

1ω
2
q1

(α0α2 − α2
1) − ω2

G(q) (6.24)

where we define the quantities αn

αn = ∆s∆tr

∑
µ

〈
λk̂µ

∆2
kµ

(µfk)n
〉

FS
(6.25)
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together with the abbreviation

ω2
qn = ∆s∆tr

αn

∑
µ

〈
λk̂µ

∆2
kµ

(q · vkµ)2 (µfk)n
〉

FS
. (6.26)

The long wavelength part (Λ0 ≡ ωL(q → 0)) in Eq. (6.24) represents the mass of the
Leggett mode in NCS and the rest describes its dispersion. Let us discuss them one by
one.

6.3.1. Long wavelength limit
From Eq. (6.24) in the long wavelength limit (q → 0), we find the mass of the Leggett

mode
Λ2

0 ≡ ω2
L(q→ 0) = 4γncs∆s∆tr

λ

α0α2 − α2
1
, (6.27)

the form of which is reminiscent of the Leggett mode frequency predicted for the two–band
superconductors with the spin–singlet pairing and given in Eq. (5.40). In NCS, however,
the mass of the Leggett mode is proportional to the singlet ∆s and triplet ∆tr contributions
to the superconducting gaps and scales with the coupling strength γncs, which depends on
the mixing term, as follows:

γncs = λm
|λ|

+ Ξ1 (6.28)

with the integral Ξ1 = ∑
µ 〈(µfk)θkµ〉 and |λ| = λsλtr − λ2

m being the determinant of the
interaction matrix in Eq. (5.34). Importantly, this Leggett mode in noncentrosymmet-
ric superconductors shows a clear dependence 2 on the symmetry of the antisymmetric
spin–orbit coupling fk and on the point group symmetry of the crystal structure under
consideration associated with it. In the limit of small triplet to singlet ratio t the defi-
nition (6.27) can be further simplified. In this case one can perform Taylor expansion of
1/∆2

kµ in the integrals αn. Thus, one obtains in the second order of t the following result:

αn/t =
∑
µ

〈
(µfk)n

(
1− 2t(µfk) + 3t2(µfk)2

)〉
+O

(
t3
)

(6.29)

Further, the coupling strength of the Leggett mode γncs from Eq. (6.28) takes in the same
limit according to Eq. (5.39) and together with the integral

Ξ1 = −2t = − 2λm
λs − λtr + 2|λ| (6.30)

the following form:
γncs = λs − λtr

|λ|
t (6.31)

2the ASOC fk appears in the definition (6.25) of quantities αn, as well as, in integral Ξ1. Therefore, it
manifests itself in the Leggett mode frequency defined in Eq. (6.27)
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Finally, inserting this result together with the calculated integrals αn from Eq. (6.29) into
the definition (6.27) of the Leggett mode, we obtain:

Λ2
0 = 2∆2

s

λs − λtr
|λ|

[
1−

(
3
〈
f 4

k

〉
FS
− 1

)
t2
]

(6.32)

In general, for given set of coupling parameters λs, λtr, λm, and for a particular point
group symmetry G the mass of Leggett mode Λ0 can be determined from Eq. (6.27). For
illustration we plot in Fig. 6.1 the numerically calculated Leggett mode mass Λ0 for the
important C4v point group symmetry with fixed λs = 0.1 as a function of λm. The values
of λtr are treated as parameters in our calculations. Interestingly, one observes different
behaviors for Λ0 depending on the relation of the pairing constants λs, λtr, and λm. For a
small triplet contribution, which is indicated in Fig. 6.1 by the blue upper solid line, we find
a monotonic increase of Λ0. Further, this behavior is changed at around λtr = 1/2λs to a
nonmonotonic one, which is shown with the red middle solid line. Finally, for λs ≈ λtr we
obtain the important case that Λ0 can become zero in contrast to the ordinary two–band
situation. Corresponding situation is displayed in Fig. 6.1 by the black lower solid line.
This can be explained by zeros in the gap functions ∆kµ = ∆s + µ∆trfk. The analytical
solution for small triplet to singlet ratio t, which is given in Eq. (6.32), is displayed in
Fig. 6.1 by the dashed lines.
In summary, we can conclude that the mass of the Leggett mode in noncentrosymmetric

superconductors can appear undamped below the quasiparticle continuum for particular
parameters of the pairing interactions. Hence, it might help experimentalists to estimate
in which materials the new Leggett modes are most easiest observable.
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Figure 6.1: Normalized mass of the Leggett mode for NCS systems with C4v point group symme-
try for fixed λs = 0.1 as a function of the mixing term and various λtr: λtr = 0.025
(upper solid line), λtr = 0.05 (middle solid line) and λtr = 0.075 (lower solid line).
The dashed lines correspond to Eq. (6.32) which is an analytical solution in the
limit of small t.
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6.3.2. Dispersion
Now, let us discuss the dispersion of the Leggett mode (ω2

L(q)− Λ2
0) given in Eq. (6.24).

First, we find, as expected, for all considered point groups the quadratic behavior of the
dispersion with |q|, i.e.(ω2

L(q)− Λ2
0) ∝ |q|2. Next, in analogy to the mass Λ0, the slope

of the Leggett mode shows clearly the dependence on both the triplet to singlet ratio
t = ∆tr/∆s and the point group symmetry fk. For illustration we show in Fig. 6.2 the
numerically calculated slope of the Leggett mode for the tetragonal point group C4v. In
Fig. 6.2(a) the slope is plotted along the q̂x– and q̂y–direction. The calculated upward
parabola corresponds to t = 0.5, while the downward parabola represents the case with
t = 1.5. In addition, we find in case of the identical contributions from singlet and triplet
t = 1 a constant slope of 1/3, which is independent of q̂x and q̂y.
In Fig. 6.2(b) the slope is now plotted along the q̂z–direction for various triplet to singlet

ratios t, which reveals a non–monotonic behavior for fixed q̂z. In contrast, for the cubic
point group O(432) we find in all directions ω2

L(q)−Λ2
0 = 1

3v
2
F|q|2 independent of t, since the

underlying ASOC is isotropic to leading order. It should be mentioned that this situation
with fk = 1 corresponds to the ordinary two–band case with the isotropic gaps.
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Figure 6.2: Slope of the dispersion of the Leggett mode for NCS systems with C4v point group
symmetry as a function of the unit vectors q̂x, q̂y, q̂z. (a) Comparison of the slope
for t = 0.5 (upward parabola) and t = 1.5 (downward parabola), (b) slope along the
q̂z–direction for various t = ∆tr/∆s.
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6.3.3. Anderson–Higgs mechanism

Now, we turn to the discussion of the role of the Anderson–Higgs mechanism for the
new Leggett modes in noncentrosymmetric superconductors. From Eq. (6.21) we find a
Coulomb renormalized Leggett mode of the following form:

ω′2L (q) = Λ2
0 +

α0α2ω
2
q0ω

2
q2 − α2

1ω
4
q1

(α0α2 − α2
1)ω2

G(q) (6.33)

Here, we can draw some important conclusions: First, the Leggett mass Λ0 remains un-
changed, since the r.h.s. of Eq. (6.27) does not depend on ωG. Physically, this corresponds
to the fact that the Meissner effect in the presence of a new Leggett mode is unchanged.
Second, the dispersion of the Leggett mode is only slightly changed. Since ωG(q→ 0)→ 0
and ωP � ωL, the higher order corrections nearly vanish. Thus, we need to consider only
the difference between the Coulomb–renormalized Leggett mode ω′L defined in Eq. (6.33)
and its unrenormalized counterpart ωL defined in Eq. (6.24):

ω2
L(q)− ω′2L (q) =

α0α2
(
ω2

q0 + ω2
q2

)
− 2α2

1ω
2
q1

(α0α2 − α2
1) − ω2

G(q)−
α0α2ω

2
q0ω

2
q2 − α2

1ω
4
q1

(α0α2 − α2
1)ω2

G(q) (6.34)

For simplicity we study isotropic spin–orbit coupling fk = 1, which corresponds to the
leading order of fk for the cubic point group O(432). Thus, Eq. (6.34) can be simplified to

ω2
L(q)− ω′2L (q) =

2α2
0ω

2
q0 − 2α2

1ω
2
q1

(α2
0 − α2

1) − ω2
G(q)−

α2
0ω

4
q0 − α2

1ω
4
q1

(α2
0 − α2

1)ω2
G(q) (6.35)

with ω2
G = 1

6
∑
µ v

2
Fµ|q|2 and vFµ being the Fermi velocity on the band µ = ±1. Further,

by using definitions (6.25) and (6.26) we find a more compact form:

ω2
L(q)− ω′2L (q) = ω2

G(q)−

〈
(q · vk+)2

〉
FS

〈
(q · vk−)2

〉
FS

ω2
G(q) (6.36)

Finally, assuming the same DoS on both bands, i.e. Nµ(0) = N(0), and almost similar
Fermi velocities, i.e. (vF+ − vF−) � vF with vF = maxµ vFµ, one obtains after performing
the integration:

ω2
L(q)− ω′2L (q)
v2

F|q|2
≈ 1

6

(
v2

F+ − v2
F−

)
v2

F+ + v2
F−

(
v2

F+ − v2
F−

)
v2

F
� 1 (6.37)

Therefore, we can conclude that the dispersion of the Leggett mode and the results
shown in Fig. 6.2 are nearly unchanged due to the Anderson–Higgs mechanism 3.

3 A similar result has been found for the case of ordinary two–band superconductors [116,118,137].



Dynamical response of noncentrosymmetric superconductors 75

6.4. Conclusion
Within the framework of the (Nambu) matrix kinetic theory in the clean limit we have

demonstrated the existence of two phase collective modes in noncentrosymmetric supercon-
ductors, the dispersion of which is illustrated in Fig. 6.3. The first mode ω2

G(q) corresponds
to the characteristic gauge mode in NCS and is common for all superconducting systems.
We have found that this mode is shifted to the plasma mode ω2

P(q) according to the
Anderson–Higgs mechanism, i.e. ω2

P(q) = ω2
P(q̂) + ω2

G(q). The second collective phase
excitation, which beside the gauge mode is necessary to guarantee the charge conserva-
tion law, represents the new Leggett modes in NCS. For both modes we have derived an
analytical expression describing their characteristic mass and dispersion for various crys-
tal symmetries. These properties reflect the underlying spin–orbit coupling and depend
strongly on the triplet to singlet ratio t = ∆tr/∆s. Moreover, we have found from the
numerical calculations performed exemplary for C4v point group that (i) in contrast to the
ordinary two-band superconductors, where the Leggett mode always appears as a massive
collective excitation, its counterpart in NCS systems can be massless under certain condi-
tions, (ii) it survives in the limit of vanishing triplet to singlet ratio t = ∆tr/∆s, and (iii)
its slope depends strongly on the ratio t = ∆tr/∆s. Finally, we showed that the mass of the
Leggett mode remains unaffected by the Anderson–Higgs mechanism, but its dispersion is
changed. In the limiting case of small q the dispersion modification is however negligible.
All in all, our new results for the collective modes generalize the known solutions for

ordinary two–band superconductors which can be obtained in the limit fk ≡ 1 [118,137].

|q|

ω(q)

Λ0

t < 1t = 1t > 1

Higgs mechanism

pair-breaking continuum

ωG

ωP

Figure 6.3: Illustration of various calculated collective modes (T=0) common to all NCS. The
Anderson–Higgs mechanism shifts the gauge mode ωG (dashed line) to the plasma
mode ωP usually lying in the pair–breaking continuum. The new Leggett modes
(solid green lines) unique to NCS are only slightly changed by this process (not
visible) and the mass Λ0 remains unchanged. Importantly, in some cases Λ0 → 0 is
possible. The slope of the Leggett modes depends strongly on the ratio t = ∆tr/∆s.





Chapter 7
Results of calculations of ultrafast
dynamics in singlet superconductors

Now let us investigate the possibility to excite collective modes out of equilibrium in the
sense of a pump–probe experiment. This type of measurements is based on the idea of
applying two ultrafast pulses. The first relative strong one (pump pulse) drives the super-
conducting system out of equilibrium without destroying completely the superconducting
correlations. Then, the second weaker one (probe pulse), which appears with some tun-
able time delay after the pump pulse, makes a "snapshot" of the superconducting state in
nonequilibrium.
In this chapter we present a semi–numerical method to simulate the pump–probe exper-

iment in application for two–band superconductors with the singlet pairing correlations.
The theoretical description is based on the two–band BCS theory discussed in section 5.1.
In order to study the temporal evolution of the superconducting system we go beyond the
linear response theory (MKT) presented in previous chapter and use instead the frame-
work of the density matrix formalism. The time dependence of the single–particle density
matrices is then calculated from the Heisenberg’s differential equation of motion.

7.1. Pump pulse excitation

7.1.1. Non–linear interaction with an electromagnetic field
Let us start the discussion by considering the first optical pulse, which is called pump

pulse, and its effect on the dynamics in a two–band superconductor with singlet pairing
correlations. For this purpose we prepare the superconducting system in equilibrium in
some initial state, which is described by Hamiltonian ĤBCS from Eq. (5.1). Then, the
superconductor gets exposed to the action of a short Gaussian–like pulse (see an illustration
in Fig. 7.1). In this case, the electromagnetic field excites Bogoliubov quisiparticles above
the superconducting gaps, which leads to corresponding changes in the superconducting

77
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order parameters. Thus, the superconducting system in nonequilibrium is described by a
time–dependent BCS–Hamiltonian ĤBCS(t), which corresponding nonequilibrium energy
matrix ξkl(t) takes the following form:

ξkl(t) =

 ξkl ∆kl(t)
∆∗kl(t) −ξ−kl

 (7.1)

It is important to note that the superconducting gaps ∆kl(t) are time–dependent in
nonequilibrium and obey the following relation:

∆kl(t) =
2∑
j=1

∑
k′∈W

V lj
kk′ 〈ĉ−k′↓j ĉk′↑j〉 (t) (7.2)

with the time–dependent expectation value 〈ĉ−k′↓j ĉk′↑j〉 (t) and pairing interaction strength
V lj

kk′ , which are assumed to remain constant during the whole nonequilibrium process.

Now, in order to simulate collective excitation of the superconducting system, we need
to go beyond the linear response approximation and take into account nonlinear coupling
of the superconducting condensates to the electromagnetic field. In addition, we assume
that the pump pulse acts quite gently in order to break some Cooper pairs in the super-
conducting condensates without suppressing superconductivity in the system completely.
In other words, we model pulses in a so–called low–fluency regime (in contrast to optical
control experiments with very intense pulses, as discussed in the first part of this thesis).
The coupling of the pump pulse to a two–band superconductor is then given by:

Ĥem(t) = Ĥ(1)
em (t) + Ĥ(2)

em (t) (7.3)

with the terms Ĥ(1)
em (t) and Ĥ(2)

em (t)

Ĥ(1)
em (t) = e~

∑
kqσl

(2k + q) ·Aq(t)
2ml

ĉ†k+qσlĉkσl

Ĥ(2)
em (t) = e2 ∑

kqσl

(∑
q′Aq−q′(t) ·Aq′(t)

)
2ml

ĉ†k+qσlĉkσl ,

(7.4)

which describe one- and two–photon absorption, respectively. Here, we introduced the
effective electron mass ml for each band l and a transverse vector potential Aq(t) with the
momentum q dependence. The vector potential Aq(t) is considered in the Coulomb gauge
and assumed to take the following form:

Aq(t) = A0 exp
(
−
(
2t
√

ln 2/τ
)2
) [
δq,q0e

−iω0t + δq,−q0e
+iω0t

]
(7.5)

with the following parameters: A0 = A0êy denotes the pulse amplitude, which is polarized
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along the y axis, q0 = q0êx represents the wave vector in the propagation direction along
the x axis, ω0 is a central frequency of the pulse, and τ is the full width at half maximum
(FWHM ) of the pulse. In all our calculations we adjust the pulse in a way that it reaches
its maximum at t = 0ps. In addition, at a thousandth of its maximum we make a cut off
for the pulse. An illustration of a single pump pulse is shown in Fig. 7.1.

A0 τ

Figure 7.1: Illustration of a single pump pulse. The corresponding vector potential Aq(t) has
parameters: A0 = 1a.u., τ = 0.4ps, ~ω0 = 8meV. Its imaginary and real parts are
shown by yellow and blue solid lines, respectively. The envelope of the pulse is
illustrated by the black dashed line.

Finally, the total Hamiltonian of the superconducting system with the coupling to the
electromagnetic field is modeled by Ĥtot(t) = ĤBCS(t) + Ĥem(t). In analogy to the equilib-
rium case (see section 5.1) it is convenient to describe superconducting condensate and
quasiparticles separately. Therefore, we perform a transformation of the Hamiltonian
Ĥtot(t) by using the Bogoliubov–Valatin transformation at each time t.

7.1.2. Bogoliubov–Valatin transformation for nonequilibrium
There are two equivalent ways of performing Bogoliubov–Valatin transformation in order

to modify the time–dependent Hamiltonian. The first method consists in diagonalizing of
Ĥtot(t) in each moments in time t by using the time–dependent quisiparticle basis, which
leads to some additional terms in the equation of motion [23,47]. Here, we will use, however,
another approach and take the time–independent unitary matrix Ukl defined in Eq. (5.11)
with the BCS–coherence factors ukl and vkl:

ukl =

√√√√1
2

(
1 + ξkl

Ekl

)
; vkl =

√√√√1
2

(
1− ξkl

Ekl

)
(7.6)

where Ekl =
√
ε2kl + |∆kl|2 is excitation energy of the quasiparticles in equilibrium for each

band l. In this case the fermionic quasiparticle operators α̂kσl remain time–independent.
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In order to make our description more compact, we introduced the following notation:

α̂kl ≡ α̂k↑l ; β̂kl ≡ α̂−k↓l (7.7)

After this type of Bogoliubov–Valatin transformation the time–dependent Hamiltonian
ĤBCS is no more diagonal. Its corresponding energy matrix takes the following form:

ξkl(t) =

 Rkl(t) Ckl(t)
C∗kl(t) −R−kl(t)

 (7.8)

with

Rkl(t) = u2
klξkl − |vkl|2 ξ−kl + uklvkl∆∗kl(t) + uklv

∗
kl∆kl(t)

Ckl(t) = u2
kl∆kl(t)− v2

kl∆∗kl(t)− vkluklξkl − vkluklξ−kl
(7.9)

Thus, we find for the Hamiltonian ĤBCS
1 the following result:

ĤBCS(t) =
2∑
l=1

∑
k

{
Rkl(t)α̂†klα̂kl +R−kl(t)β̂†klβ̂kl + C∗kl(t)β̂klα̂kl + Ckl(t)α̂†klβ̂

†
kl

}
(7.10)

In addition, the time–dependent energy gap equation (7.2) can be rewritten in terms of
the quasiparticle densities:

∆kl(t) =
∑
k′,j

V lj
k,k′

(
vk′juk′j

[
−α†k′jαk′j − β†k′jβk′j + 1

]
+ u2

k′jβk′jαk′j − v2
k′jα

†
k′jβ

†
k′j

)
(7.11)

Here, we have used the definitions
〈
α̂†klα̂kl

〉
(t) = α†klαkl, etc. in order to keep our notation

compact. In analogy, the part of the Hamiltonian Ĥtot(t), which describes coupling of the
condensate to the electromagnetic field, is found to take the following form:

Ĥ(1)
em = e~ ∑

k,q,l

1
2ml

(2k + q) ·Aq
{
L

(+)
k,q,lα̂

†
k+qlα̂kl −M (−)∗

k,q,l α̂
†
k+qlβ̂

†
kl

+M (−)
k,q,lβ̂k+qlα̂kl − L(+)∗

k,q,lβ̂
†
klβ̂k+ql

}
Ĥ(2)

em = ∑
k,q,l

e2

2ml

(∑
q′
Aq−q′ ·Aq′

) {
L

(−)
k,q,lα̂

†
k+qlα̂kl + L

(−)∗
k,q,lβ̂

†
klβ̂k+ql

−M (+)∗
k,q,l α̂k+qlβ̂kl −M (+)

k,q,lβ̂k+qlα̂kl
}

(7.12)

with the new BCS–coherence factors:

L
(s)
k,q,l = ukluk+ql + sv∗klvk+ql M

(s)
k,q,l = v∗kluk+ql + suklv

∗
k+ql

L
(s)∗
k,q,l = ukluk+ql + svklv

∗
k+ql M

(s)∗
k,q,l = vkluk+ql + suklvk+ql

1It is easy to prove, that this BCS–Leggett–Hamiltonian in equilibrium assumes the diagonal form.
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7.1.3. Equations of motion

Now, since all necessary preparations are done, we can formulate the equations of mo-
tion based on the density matrix formalism, which describe the nonequilibrium dynamics
in a superconducting system. In this sense, we focus on the following time–dependent
expectation values for each band l = 1, 2:

α†klαpl , β†klβpl , α†klβ
†
pl , αplβkl , (7.13)

which determines all quantities of particular interest (e.g., energy gaps from Eq. (7.11)).
Here, the terms α†klαpl, β†klβpl correspond to the quasiparticle excitations and anomalous
expectation values α†klβ

†
pl, αplβkl can be viewed as contribution from the superconducting

condensate. The time evolution of each quasiparticle expectation value can be generally
obtained from the Heisenberg’s equation of motion:

d

dt
α†klα

†
pl = i

~
〈[
Ĥtot(t), α̂†klα̂

†
pl

]〉
; etc. (7.14)

with the time–dependent Hamiltonian given in section 7.1.2

Ĥtot(t) = ĤBCS(t) + Ĥ(1)
em (t) + Ĥ(2)

em (t) (7.15)

So, in order to get a differential equation for a quasiparticle expectation value, we need to
calculate a commutator of the underlying operator and the Hamiltonian. It is important to
note that since the laser field couples indices k, k+nq with an integer n (see Eq. (7.12)), the
equations of motion for the expectation values with only these indices should be obtained.
Also considering only the small values of Aq we may ignore contributions with n > 4.
The calculations of commutator relations are quite lengthy, but straightforward. Thus, we
show here only the result for the quasiparticle expectation value α†klαk+ql:

i~
d

dt
α†klαk+ql =

〈[
α̂†klα̂k+ql, ĤBCS + Ĥ(1)

em + Ĥ(2)
em

]〉
(7.16)

where the right hand side of this equation takes the following form:〈[
α̂†klα̂k+ql, ĤBCS

]〉
= (Rk+ql −Rkl)α†klαk+ql + Ck+qlα

†
klβ
†
k+ql + C∗klαk+qlβkl〈[

α̂†klα̂k+ql, Ĥ
(1)
em

]〉
= e~

2ml

∑
q′=±q

Aq′ ·
{

(2k + q′)
(
M

(−)
k,q′,lαk+qlβk+q′l − L(+)

k,q′,lα
†
k+q′lαk+ql

)
+ (2k + 2q− q′)

(
L

(+)∗
k+q,−q′,lα

†
klαk+q−q′l +M

(−)∗
k+q,−q′,lα

†
klβ
†
k+q−q′l

)}
〈[
α̂†klα̂k+ql, Ĥ

(2)
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(7.17)
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Importantly, since we start from the equilibrium BCS ground state with the confined
set of possible momenta k ∈ W for each band l (see Fig. 7.2), the interactions with the
electromagnetic field is considered to take place only in this region. Therefore, we should
restrict our calculation to k,k+ q ∈ W . Equations of motion for other expectation values
are presented in Appendix B.1. It is worth mentioning that all the expectation values with
different momenta k and p can be combined into a form of the density matrix. This is
useful for the numerical implementation.

7.1.4. Numerical implementation
In order to solve the differential equations of motion (7.14) numerically we perform a

standard 4-th order Runge–Kutta algorithm [138]. This is implemented in C++ by using
the boost library with the subsequent parallelization of the program code with OpenMP.
To model the two–band superconducting system we use two simple parabolic bands,

which are illustrated in Fig. 7.2 (a). As discussed in the previous section, we are inter-
ested in the regions with k ∈ W for both bands l = 1, 2, where the attractive electronic
interaction takes place. Since the calculations of quasiparticle expectation values require
integration over two bands, the numerical computations are quite time consuming. In or-
der to reduce numerical effort we perform our calculations only along one k–direction in a
two–dimensional momentum space (see Fig. 7.2(b)). This simplification does not lead to
any significant physical differences in the results, as it was also indicated in the previous
studies for a one–band superconductor [47]. Hence, we choose a line in momentum space
at fixed value of ky and parallel to kx. This choice is justified due to the definition (7.5)
of the vector potential Aq(t). Finally, according to discussion in the previous section we
perform a discretisation of possible k values by dividing the set W on q = |q| for each
band l (indicated by red rectangles in Fig. 7.2 (b)).

Figure 7.2: (a) Illustration of the energy dispersion in 1D for a two–band superconductor with
electron–like excitations (full dots). (b) Two–dimensional momentum space with
a cut at the Fermi level (E(k) = EF in (a)). Discretisation mesh for numerical
calculation is shown by the red rectangles. The solid lines represent k = kFi, i =
{1, 2}. The integration is performed at the fixed ky level.
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7.2. Response to the probe pulse

Now, let us discuss the second pulse, which is used to probe the system. The laser
field is described again by the vector potential of the Gaussian–like form, which is given
by Eq. (7.5). For the parameters of the probe pulse we use the amplitude Apr

0 , width
τpr and frequency ωpr

0 . In accordance with the experimental setup [33–35, 38] we choose
the probe pulse to be very short in time. Thus we are able to analyze the dynamics of
the superconducting system in a very broad frequency range. Also, since the probe pulse
should not additionally destroy the superconducting condensates, we assume its energy to
be below the excitation energy of the smallest gap, i.e. ~ωpr

0 < 2|∆2|. In addition, we
assume that the probe pulse intensity is weaker than the intensity of the pump pulse. In
this case, we can neglect nonlinear therms of the second order in A (see Eq. (7.3)) and
consider only the linear coupling of the probe pulse to the superconducting system. It is
important to mention that we apply the probe pulse after the pump pulse with a variable
time delay ∆t. Moreover, we assume that there is no overlap between both pulses. This
is possible due to the cut–off in the vector potential A and for ∆t > τ + τpr. This way, we
probe the properties of the superconducting system at different moments in time. In order
to illustrate the pump–probe process we plot in Fig. 7.3 both pulses with a time delay ∆t.

�
pump

�
probe

Figure 7.3: Illustration of the temporal evolution for the pump (blue solid line) and probe (red
solid line) pulses. The time interval between the pulses is ∆t = 2ps. The parameters
of the pump vector potential are: A0 = 1 a.u, τ = 0.4ps, ~ω0 = 8meV and of the
probe vector potential: Apr

0 = 0.3 a.u, τpr = 0.15ps, ~ωpr
0 = 5.5meV.

Now, let us focus on the calculation of the optical pump–probe conductivity σ(∆t, ω).
Here, we choose the same strategy, as discussed previously in section 3.4.2 with optical
control simulations. For a numerical implementation we need to perform, however, some
additional preparing calculations. First, we should calculate the time–dependent current
density jqpr

(∆t, t) induced by a probing excitation, which depends on the time delay ∆t
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between the pump and probe pulses. According to Ref. [47] the current density is given by

jqpr
(∆t, t) = j(1)

qpr
(∆t, t) + j(2)

qpr
(∆t, t) (7.18)

with

j(1)
qpr

(∆t, t) = −
2∑
l=1

∑
k,σ

e~
2mlV

(
2k + qpr

) 〈
ĉ†k,σ,lĉk+qpr,σ,l

〉
(∆t, t)

j(2)
qpr

(∆t, t) = −
2∑
l=1

∑
k,q,σ

e2

mlV
Aqpr−q

〈
ĉ†k,σ,lĉk+q,σ,l

〉
(∆t, t)

(7.19)

and qpr being the wave vector of the probe pulse. Due to the fact that j(2)
qpr

(∆t, t) induces
only constant offset in the imaginary part of the spectrum, we neglect its contributions in
our calculations. A straightforward Bogoliubov–Valatin transformation of the remaining
term leads to the result:

j(1)
qpr

(∆t, t) = −
2∑
l=1

e~
2mlV

∑
k

(
2k + qpr

) [
L

(+)
k,qpr,l

(
α†klαk+qpr,l − β

†
k+qpr,l

βkl
)

+M (−)
k,qpr,l

(
α†klβ

†
k+qpr,l

+ αk+qpr,lβkl
)] (7.20)

Here, we used the same notation 2 , as in section 7.1.2. Now, the time evolution of the
current density jqpr

(∆t, t) = j(1)
qpr

(∆t, t) is fully determined by the quasiparticle densities,
which can be numerically obtained again by using the density matrix formalism (see sec-
tion 7.1.3). However, some additional numerical approximations should be done. Due to
the different wave vectors q 6= qpr of the pump and probe pulses one should introduce a
new momentum grid for the quasiparticle densities of the probe pulse. However, the dif-
ference of q− qpr is quite small in comparison with the momentum k so that one can still
use the same discretization mesh. In addition, we make an approximation for the diagonal
elements:

α†k+qpr,l
β†k+qpr,l

≈ α†k+qp,l
β†k+qp,l

, etc. (7.21)

For the off–diagonal terms, i.e. α†k+mqpr,l
β†k+nqpr,l

etc., we choose the matrix element to be
zero whenever |m− n| > 1. Due to the linear coupling of the probe we need to perform our
calculations only in the first order of Aqpr . Therefore, in the linear response approximation
the differential equations for each band l for the probe pulse are given by:

i~
d

dt
α†k,lαk+qpr,l =

(
Rk+qpr,l −Rk,l

)
α†k,lαk+qpr,l + Ck+qpr,lα

†
k,lβ

†
k+qpr,l

+ C∗k,lαk+qpr,lβk,l

+ e~
2m2k ·Aqpr

{
L

(+)
k,qpr,l

(
α†k,lαk,l − α†pp,l

αpp,l

)
+M

(−)
k,qpr,l

(
αpp,lβpp,l − α

†
k,lβ

†
k,l

)}
(7.22)

2i.e.
〈
α̂†klα̂k+qpr,l

〉
(∆t, t) = α†klαk+qpr,l, etc.
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with shortcut pp = k + qp. The differential equations for the remaining quasiparticle
densities are shown in Appendix B.2. Finally, the conductivity can be calculated from:

σ(∆t, ω) = j(∆t, ω)
iωA(∆t, ω) (7.23)

with the Fourier transformed component of the vector potential along the y–axis with
respect to time t:

A(∆t, ω) =
∞∫
−∞

dtêy ·Aqpr(∆t, t)e
iωt (7.24)

and of the current density:

j(∆t, ω) =
∞∫
−∞

dtêy · jqpr
(∆t, t)eiωt , (7.25)

respectively.





Chapter 8
Results of simulations of Higgs
modes in superconductors in
nonequilibrium

Based on the framework of the density–matrix theory, which is introduced in chapter 7,
we present here the results of our time–resolved simulations for a two–band superconductor.
We start with the discussion of two decoupled bands, where the interband coupling V12 is
set to zero. In this case both superconducting gaps ∆l, l = 1, 2 evolves independently with
time. Therefore, the qualitative comparison of the results with the previous theoretical
studies for a one–band superconductor is possible [47,56].
The second part of this chapter is devoted to the role of the final interband coupling

in two–band superconductors with the singlet pairing correlations, which are driven out
of equilibrium. In particular, we study the effects of the laser pulse excitation on the
dynamics of the coupled superconducting gaps by variation of the pump pulse width and
intensity.

8.1. Numerical parameters
Let us introduce the parameters, which we use for our numerical simulations. First, we

prepare our two–band system in the BCS ground state at zero temperature. In order to
keep things on the simplest nontrivial level, we consider attractive momentum–independent
pairing interactions with V lj

kk′ = Vlj, l, j = 1, 2. Moreover, the interband coupling V11 in the
first band (l = 1) is assumed to be larger, than in the second band with V22. Hence, accord-
ing to Eq. (7.2) it leads to two s–wave order parameters with the distinct superconducting
gaps ∆kl ≡ ∆l. These assumptions are suitable, for example, for MgB2 superconduc-
tor, where the strong electron coupling appears in the σ–bonding boron orbital and the
weaker pairing formation occurs in the π–bonding state [139]. The material parameters
of this superconducting system are well–known from the various experimental and theo-
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retical studies [140], and will be used for our numerical calculations. The numbers are
presented in Table 8.1. For simplicity, we consider a tetragonal crystal structure with the
lattice constant a = 3.5 · 10−10m. Moreover, the electron’s dispersion in momentum space
is described within the tight bounding approximation by two parabolic bands 1. Here, the
Fermi momentum is given by kFl =

√
2mlEFl/~ with the Fermi energy EFl. The curvature

of the bands is described by the effective electron mass ml, which is measured in units of
the free electron mass m0. The electron pairing formation is assumed to take place within
the energy window of 2~ωDebye and the initial superconducting gaps are given by |∆l|.

|∆l| [meV] ml/m0 EFl [meV] kFl · a ~ωDebye [meV]

σ band (l = 1) 7.0 2.74 700.996 2.4850 50.0
π band (l = 2) 3.0 1.01 2863.222 3.0450 50.0

Table 8.1: Material parameter values describing the two–band superconducting system. The
numbers were taken from the experimental and theoretical studies of MgB2 super-
conductor [140].

Now, in order to excite both gaps in nonequilibrium, we adjust the central energy of the
pump pulse in a way, that it lies in between 2|∆1| and 2|∆2|. Thereby, due to the Gaussian
shape of the laser field, which is given in Eq. (7.5), one is able to break Cooper–pairs
in both superconducting condensates and excite quasiparticles above the gaps. For our
numerical calculations it turned out that the pump pulse with the energy ~ω = 8meV gives
sufficiently good results. The pulse width τ and its amplitude A0 are variable parameters
in our simulations.
For probing the superconducting system we use a weaker laser pulse of the similar form.

Its energy ~ωpr
0 = 5.5meV is chosen to be smaller, than the excitation energy of the smallest

energy gap, i.e. ~ωpr
0 < 2 min

l=1,2
|∆l|. In this case the probe pulse does not additionally destroy

the superconducting condensates. Further, we take the width of the pulse τpr = 0.15ps to
be very short in time, in order to probe over a very broad energy region. Finally, for the
amplitude of the probe pulse we choose the value Apr

0 = 10 ·10−8Js/(Cm). The parameters
of both pulses are summarized in Table 8.2.

energy [meV] duration [ps] intensity [Js/(Cm)]

pump pulse ~ω0 = 8.0 τ , variable A0, variable
probe pulse ~ωpr

0 = 5.5 τpr = 0.15 Apr
0 = 10 · 10−8

Table 8.2: Parameter values of the pump and probe laser fields in numerical simulations.

1an illustration of the electron band configuration is shown in Fig. 7.2
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8.2. Two independent bands

8.2.1. Response on the pump pulse
Let us first discuss the case of two decoupled bands with the interband coupling V12 = 0

and accordingly two distinct gaps. An action of the strong ultrafast pump laser pulse
leads to the breaking of Cooper pairs in both superconducting condensates and to the
excitation of Bogoliubov quasiparticles above the gaps ∆l, l ∈ {1, 2}. Consequently, the
amplitudes of the order parameters |∆l| are reduced. In the language of the free energy this
correspond to the shrinking of the Mexican–hat potential with the reduction of its minimum
value. However, depending on the laser pulse width τ one can distinguish between two
nonequilibrium scenarios, which are schematically illustrated in Fig. 8.1.

Figure 8.1: Illustration of the excitation process for a two–band superconductor. (a) Effective
free–energy landscape F for a two–band superconductor with blue and red Mexican
hat potentials, representing the lower and upper band, respectively. The pump pulse
excitation leads to the modification of the free energy landscape F . (b) Temporal
evolution of the Mexican hat potential from (a) for each band l shown in cross–
section. After an action of the pump laser pulse the free energy Fl, l = {1, 2} is
modified and a superconductor can be excited on two different ways: (I) the system
changes adiabatically with Fl due to the broad pulse; (II) a short pulse leads to
the non–adiabatic excitation of a superconducting system resulting in oscillations
of |∆l| around the new minimum of Fl.

The first situation (path (I) in Fig. 8.1(b)) appears, when the superconducting system
reacts on a faster time scale τ∆l

' h/(2|∆|l) � τ than the pump pulse. In this case the
superconductor can adiabatically follow the changes of the free energy Fl and one observes
a monotonic reduction of the order parameter amplitudes |∆l|. This occurs independently
of the pulse fluency A2

0τ . An illustration of this behavior is shown exemplary in Fig. 8.2,
where we plot |∆l| as a function of time for a pump pulse with the width τ = 5ps and
different amplitudes. Since we do not consider any relaxation channels in our model, the
superconducting system does not return to the initial equilibrium state after the light
pulse has gone and the reduced value of the order parameter |∆l| remains approximately
constant. By increasing the pulse intensity we are able to break more Cooper pairs in the
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superconducting system. As a result, we observe a stronger decrease of the superconducting
amplitudes |∆l| with the pulse fluency.
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Figure 8.2: Temporal evolution of order parameters (a) |∆1|(t) and (b) |∆2|(t) after a broad
pump pulse with ~ω0=8meV, τ = 5.0ps and different amplitudes A0. The pump
pulse is indicated in both figures by the gray region around t = 0.

A more interesting case represents an excitation of a two–band superconductor with the
short laser pulse, which now acts on a faster time scale than the superconducting system
can response, i.e. τ∆l

� τ . This non–adiabatic situation corresponds to the rapid changes
in the free energy Fl, which is marked in Fig. 8.1(b) by path (II), and, consequently, to the
non–thermal excitation of the Bogoliubov quasiparticles. The calculated temporal evolu-
tion of the order parameter amplitudes |∆l| for pump pulse with τ = 0.4ps and energy
~ω0 = 8meV is presented in Fig. 8.3. In contrast to the adiabatic case (I) we observe
oscillations of the order parameters after their monotonic decrease. This oscillations do
not disappear even when the pulse has gone and occurs around the asymptotic gap values
|∆∞l | for t → ∞ with the characteristic single frequencies for each band l. The later fact
can be clearly seen after performing the Fourier analysis of the superconducting oscilla-
tions (see Fig. 8.3 (b) and (d)). We obtain one peak for each band in Fourier spectrum
at the energy values ~ωHl = 2|∆∞l |. This leads to the important conclusion that the su-
perconducting order parameters oscillate at frequencies, which reflect the asymptotic gap
values |∆∞l |. However, these oscillations are not simple harmonic and show damping with
the decay factor of 1/

√
t. As already mentioned in the adiabatic case, we study our su-

perconducting model in the collisionless limit without any relaxation channels. Therefore,
these damped oscillations can only come from the decoherence effects between the quasi-
particle densities with different momenta. Similar results were observed for the one–band
superconductors [47, 48, 50, 53, 65]. In case of simple interaction quench [53, 65] one de-
rived an analytical expression for the SC gap oscillations using the Anderson pseudospin
representation:

|∆| = |∆∞|
1 + Γcos (2|∆∞|t/~ + Φ)√

t|∆∞|

 (8.1)

with Γ and Φ denoting amplitude and phase of the oscillations, respectively. A comparison
of this analytical result for each band l (red lines in Fig. 8.3) with our numerical data shows,
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Figure 8.3: Excitation of a superconductor by a short pump pulse with ~ω0=8meV, τ = 0.4ps
and A0 = 10 · 10−8Js/(Cm). (a),(c) Temporal evolution of |∆l| (black line) together
with the analytical fit curve and 1/

√
t envelope (red dashed lines). Here, the pulse

is indicated by the gray region around t = 0. (b),(d) Fourier transformation for
∆1(t) and ∆2(t), respectively. The dashed lines at 2∆∞l serve as guides to the eye.

however, a very good agreement. Finally, we observe that the intensity of oscillations
and, in turn, the intensity of the peaks in the Fourier spectra are different for different
bands. This can be explained by the fact that the pump pulse with the excitation energy
~ω = 8meV, lying in between 2∆1 and 2∆2, breaks more Cooper pairs in the smaller gap
than in the larger one.
What is the physical origin of these oscillations? Due to the Heisenberg’s uncertainty

principle a short pulse in the time domain and, in turn, broad pulse in the energy domain
induces a shaking of the whole superconducting condensates. This collective excitation of
a superconductor leads to the radial oscillations in the Mexican–hat potential of the free
energy Fl (see Fig. 8.1) and, accordingly, to excitation of the amplitude modes. Due to
the approximate particle–hole symmetry of the superconducting excitations and therefore
similar description to the Lorentz invariant theory [130], these amplitude modes correspond
to the Higgs mode from the high energy physics.
The asymptotic gap value of the order parameters |∆∞l | and therefore the frequency of

the Higgs mode in a superconductor are affected by the integrated pump pulse intensity
|A0|2τ . In order to illustrate this statement, we plot |∆∞l | as a function of fluency for
each band l. The result is shown in Fig. 8.4. Here, we find that the increase of the pump
pulse intensity leads to decrease of the asymptotic gap value |∆∞l | of the order parameter
in each band l. This can be explained by the fact that the intense pulses can break
more Cooper pairs in the superconducting condensates. This is an important observation,
because other collective excitations in a superconductor, like phonons, magnons or similar,
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are almost independent from the intensity of the pump pulse. Therefore, the Higgs modes
can be clearly identified in an experiment. A first experimental observation of the Higgs
mode was done in the group of R. Shimano [35] by studying the thin NbN films with the
THz–pump and THz–probe spectroscopy. The resulting time evolution of the transmitted
electrical laser field showed pronounced oscillation for different pump fluency, which are in
a good agreement with Eq. (8.1).
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Figure 8.4: Asymptotic gap values |∆∞l |, l = 1, 2 as functions of the integrated pump pulse
intensity A2

0τ . The pump pulse has parameters: ~ω = 8meV, τ = 0.4ps.

8.2.2. Pump–probe response
Now, let us examine the possibility to excite Higgs oscillations in the pump–probe ex-

periment. For this purpose we consider a pump pulse excitation in a nonadiabatic regime
with pulse parameters: ~ω0 = 8meV, τ = 0.4ps, and A0 = 10 · 10−8Js/(Cm). For probing
the system at different time delays ∆t we apply an additional weak pulse with a short
duration time, which parameters are given in Table 8.2. The strategy of the pump–probe
response calculations is described in section 7.2.
In Figs. 8.5 (a) and (b) we first show the results of computations for real σ1(∆t, ω)

and imaginary σ2(∆t, ω) parts of the optical conductivity versus frequency ω, respectively.
The calculations were performed at time delay ∆t = 5.5ps. As can be clearly seen in
Figs. 8.5 (a) and (b), both σ1(∆t, ω) and σ2(∆t, ω) exhibit only a single sharp edge, which
appears at the Higgs mode frequency ωH2 = 2∆∞2 /~ corresponding to the superconducting
gap oscillations in the lower band l = 2. Interestingly, the Higgs mode at higher frequency,
which results in superconducting order parameter oscillations in the upper band l = 1, do
not appear (or more precisely, can not be clearly identified) in the conductivity spectrum.
The reason is that it is mostly overdamped by the quasiparticle continuum. Therefore, we
will skip discussion of this mode in the following. It should be also mentioned that a dip
at low frequencies in the result of calculation for σ1(∆t, ω) (see Fig. 8.5 (a)) is an artifact
of numerical calculations and caused by numerical discretization discussed in section 7.1.4
and by finite size–effects of the model.
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Figure 8.5: (a) Real σ1(∆t, ω) and (b) imaginary σ2(∆t, ω) parts of the pump–probe response as
a function of frequency calculated at time delay ∆t = 5.5ps. The system is excited by
a pump pulse with parameters ~ω0 = 8meV, τ = 0.4ps, and A0 = 10 · 10−8Js/(Cm).

Next we plot the real part of the optical conductivity σ1(∆t, ω) as a function of delay
time ∆t. The result is illustrated in Fig. 8.6. Here, we can observe that the position of
the sharp edge for Higgs mode ωH2 remains independent with regard to time. However,
we find that the important dynamics of the superconducting gap manifests itself in the
intensity oscillations of the pump–probe signal as a function of ∆t. In addition, it should be
noted that similar behavior can be found in the imaginary part of the optical conductivity,
since σ1(∆t, ω) and σ2(∆t, ω) provide same information about the dynamics in the system
through Krammers–Kronig relation. The changes in the intensity of the pump–probe
response can be clearly observed at the Higgs frequency ωH2, where the conductivity shows
the sharp edge (see Fig. 8.6). Let us discuss this behavior in more detail. For that reason we
plot in Fig. 8.7 (a) the intensity of the pump–probe signal at ωH2 as a function of time delay
∆t. First, we find here fast decaying oscillations with regard to time. Further, a comparison
with the temporal evolution of the superconducting gap ∆2(t) (see Fig. 8.3) reveals a quite
good agreement in their behaviors. Finally, Fourier transforming with respect to ∆t shows
two distinct peaks in spectrum (see Fig. 8.7 (b)). The position of the peaks correspond to
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Figure 8.6: Real part of the pump–probe response σ1(∆t, ω) plotted for various time delays ∆t
with the color–coded intensity of the signal. The parameters of the laser pulses are
the same as in Fig. 8.5. The oscillations are clearly seen at ~ωH2 = 2|∆∞2 |.



94 8.3. Two bands with finite interband coupling

(a)

1 2 3 4

0.4

0.6

0.8

1.0

Δt [ps]

σ
1(
Δ
t,
ω
H
2
)
[a
.u
.]

(b)

2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

ℏω [meV]

FF
T
σ
1(
Δ
t,
ω
H
2
)
[a
.u
.]

Figure 8.7: (a) Time dependent magnitude of a peak in σ1(∆t, ω) at frequency ωH2 = 2∆∞2 /~
(see also Fig. 8.6). Oscillating behavior is illustrated. Black line represents the data
fit by using Eq. (8.1). (b) The Fourier spectrum of the oscillations from (a).

the Higgs mode ωH2 and to its higher harmonics. This observation supports the results of
the previous theoretical studies for the case of single band superconductors [47,56].

8.3. Two bands with finite interband coupling

8.3.1. Nonequilibrium scenarios after the pump pulse excitation
Now, let us study the nonequilibrium excitation of a two–band superconducting system

with an additional nonzero interband coupling V12. In analogy to the discussion in sec-
tion 8.2.1, we distinguish here between two dynamical regimes. First, we focus on the
adiabatic excitations of a superconductor with a broad pump pulse. For the parameter
values of the pulse we choose: ~ω0 = 8meV, τ = 5ps, A0 = 5 · 10−8Js/(Cm). The results
of time–dependent calculations for superconducting gaps |∆l(t)|, l = {1, 2} with different
relative interband coupling v = V12/V11 are shown in Fig. 8.8. Here, we observe indepen-
dently of v a monotonic reduction of the superconducting gaps |∆l| resulted after pumping.
However, since both order parameters are connected via Eq. (7.2), the reduced gap values
depend strongly on coupling between the bands v. This effect seems to be stronger in the
gap |∆2| with lower energy. This can be explained by different values of the intraband
couplings V11 and V22 in bands l = 1 and l = 2, respectively. Similar behavior was also
observed in the previous theoretical studies on two–band superconductors [59].
By pumping with a short pump pulse τ � τ∆l

we has to deal with non–adiabatic
situation. In this case the excitation of the collective modes in a two–band superconducting
system is possible (see discussion in section 8.2.1). Thus, we adjust the duration of the
pump pulse to τ = 0.4ps and perform the time–dependent simulations. In Fig. 8.9 (a)-(c)
we present the result of calculations of the order parameter amplitudes |∆l|, l = {1, 2}
together with the relative phase Φ2 − Φ1 of the superconducting gaps for three different
relative interband couplings v. First of all, we find in the dynamics of both order parameter
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Figure 8.8: Temporal evolution of the order parameters (a) |∆1|(t) and (b) |∆2|(t) for different
values of the relative interband coupling v = V12/V11 after a broad pump pulse
excitation with ~ω0 = 8meV, τ = 5.0ps, A0 = 5 · 10−8Js/(Cm). The pulse is
indicated in both figures by the gray region around t = 0.

amplitudes |∆l| their monotonic reduction due to the excitation of the quasiparticles above
the superconducting gaps with the subsequent oscillations. Further, the magnitude of the
oscillations seems to have no damping in contrast to the situation with two decoupled
bands (see section 8.2.1). This can be explained by appearance of an additional competing
oscillation, which manifests itself also in the dynamics of the relative phase between the
superconducting gaps (see Fig. 8.9 (c)). Finally, the Fourier analysis of all these oscillations,
shown in Fig. 8.9 (d)-(e), reveals occurrence of three different modes at frequencies ωH1,
ωH2, and ωL. Also the higher harmonics of ωL are observable. Let us discuss all modes
one by one. The collective excitations with ωHl = 2|∆∞l |/~ appear only in the amplitude
channel of the order parameter and correspond to the Higgs amplitude modes, which
were discussed in previous section 8.2.1. This frequency dependence of the modes on the
approximate gap value ∆l holds independently of the relative interband coupling v and
also for all laser intensities A0. Due to the interband Cooper pair tunneling, both Higgs
modes are clearly visible in the dynamics of each gap. However, the intensity of the higher
Higgs mode ωH1 in both order parameter oscillations ∆l is damped stronger due to the
location within the Bogoliubov quasiparticle continuum, which is bounded by ∆∞2 .
Besides two Higgs modes we observe appearance of a new collective excitation in the

nonequilibrium spectrum, which is located below the quasiparticle continuum. This third
mode in two–band superconductors shows pronounced oscillations with the single frequency
ωL in the temporal evolution of the relative phases between both gaps (see Fig. 8.9 (c),(f)).
This mode reveals a strong dependance on the relative interband coupling v. While the
frequency ωL increases with the increasing value of v, the intensity of the mode gets re-
duced. Hence, these out of phase oscillations of the superconducting condensates can be
identified as the Leggett phase mode. It should be noted that according to the discus-
sion in section 6.3 the two–band superconductors exhibit two possible characteristic phase
oscillations of the order parameter. However, the second phase mode in superconductors
should appear at plasma frequency far above the quasiparticle continuum and is therefore
strongly overdamped. Therefore, we will skip discussion of this mode in the following.
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Figure 8.9: Excitation of a two–band superconductor with different values of the relative inter-
band coupling v by a short pump pulse. The pulse is indicated by the gray region
around t = 0 and has parameters ~ω0=8meV, τ = 0.4ps and A0 = 10 ·10−8Js/(Cm).
(a), (b) Temporal evolution of order parameter amplitudes |∆l|, l = {1, 2}. (d), (e)
Fourier spectrum of the amplitude oscillations in panels (a) and (b). (c) Time de-
pendence of the relative phase φ2 − φ1 between the gaps. (f) Fourier spectrum of
the oscillations in panel (c). The dashed lines in all Fourier spectra serve as a guide
to the eye.
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8.3.2. Amplitude–phase mode coupling

In this section we would like to address the question whether there are further conse-
quences of the interband coupling for the dynamics of the superconducting gaps in nonequi-
librium. In this sense we consider a perturbation of a two–band superconducting system by
a short pump pulse and for different relative interband couplings v. Here, we choose for the
pump pulse following parameter values: ~ω0 = 8meV, τ = 0.4ps and A0 = 10·10−8Js/(Cm).
Now, let us consider the oscillations in the relative phase of the superconducting con-

densates φ2 − φ1 as a function of v. In Fig. 8.10 we plot the energies of the phase mode
oscillations obtained by performing Fourier transformation versus relative interband cou-
pling v. Here, we find that for small values of v the Leggett mode frequency ωL (shown in
Fig. 8.10 by blue open circles) reveals a square root increase. This behavior is in a good
agreement with the modified Leggett expression (see Eq. (5.40)) for the nonequilibrium
case:

ω
(eq)
L = 2

√
|∆∞1 ||∆∞2 |

v

V22 − V11v2

( 1
NF1

+ 1
NF2

)
(8.2)

with NFl being the density of states on different bands l. Here, we use asymptotic super-
conducting gap values |∆∞l | instead of their equilibrium counterparts |∆l|. Moreover, the
analytic expression in Eq. (8.2) represents a a good parameter–free fit to the numerically
obtained data at low v, as indicated in Fig. 8.10. Here, the analytical fit is shown by the
blue solid line. Most important is, however, the region with larger v, where the Leggett
mode ωL shows deviation from square root behavior of Eq. (8.2). The reason is that as soon

ωH2

ωL

Amplitude-phase mode
coupling

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

2

4

6

8

v

ℏ
ω

[m
eV

]

0

0.2

0.4

0.6

0.8

1.0

Figure 8.10: Fourier spectrum of the phase oscillations in φ2 − φ1 as a function of the rel-
ative interband coupling v for a two–band superconductor. Here, the system
is perturbed by a short pulse with parameters ~ω0 = 8meV, τ = 0.4ps and
A0 = 10 · 10−8Js/(Cm). The intensity of the Fourier signal is given by the color
code. The blue open circles represent the frequency of the calculated Leggett mode
ωL in nonequilibrium. In addition, the blue line indicates the frequency of the equi-
librium Leggett mode obtained from Eq. (8.2) and is shown for comparison. The
gray dashed line corresponds to the Higgs mode at frequency ωH2 = 2|∆∞2 |/~.
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as the Leggett mode approaches the lowest Higgs mode frequency (shown by gray dashed
line in Fig. 8.10), the strong interaction between both modes occurs in nonequlibrium. As
a result of this amplitude–phase mode coupling, the Leggett mode is repelled below the
quasiparticle continuum and remains undamped for a wide parameter range of v. Thus, it
can be expected that the Leggett mode observed in MgB2 [132] with v ≈ 0.2 under close
to equilibrium conditions should be shifted below 2∆2 in nonequilbrium.
The dynamical amplitude–phase mode coupling in nonequilibrium has a far–reaching

consequences. Indeed, the Leggett mode, as a relative phase oscillation of the supercon-
ducting condensates, manifests itself in the dynamics of the gap amplitudes |∆l(t)|. This
can be seen in Figs. 8.11 (a) and (b), where we plot the energy of gap oscillations obtained
by performing Fourier transformation for |∆1(t)| and |∆2(t)| versus v, respectively. Here,
the Leggett mode together with the analytical fit from Eq (8.2) are shown by blue open
circles and a solid line respectively. In addition we can identify two Higgs modes corre-
sponding to amplitude oscillations of order parameters, which are shown by gray open
squares and triangles. As discussed in previous section both amplitude modes show no
dependence on the relative interband coupling v. It is remarkable that we observe a strong
higher harmonic of the Leggett mode 2ωL (green open circles), which can even appear in
the energy region between the gaps. Moreover, as 2ωL approaches the quasiparticle contin-
uum a resonance with the Higgs mode ωH2 occurs, which is indicated by strong intensity
increase in the Fourier spectrum (see Figs. 8.11 (a) and (b)).
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Figure 8.11: Fourier spectrum of the amplitude oscillations in superconducting gaps (a) |∆1| in
the first band and (b) |∆2| in the second band as functions of the relative interband
coupling v for a two–band superconductor. The parameters of the laser pulse are
the same as in Fig. 8.10. The intensity of the Fourier signal is given by the color
code. The open circles correspond to the Leggett mode frequency ωL (blue) and to
its higher harmonic 2ωL (green). The frequencies of the Higgs modes in first and
second band, ωH1 and ωH2, are shown by open squares and triangles, respectively.
In addition, the blue line indicates the frequency of the equilibrium Leggett mode
obtained from Eq. (8.2)and is shown for comparison.
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8.3.3. Fluency dependence
Now, let us consider the fluency dependence of the collective excitations in a two–band

superconductor with the finite relative interband coupling v. For our simulations we chose
the pump pulse with ~ω0 = 8meV, τ = 0.4ps and variable intensity A0. The calculated
temporal evolution of the superconducting gaps |∆1|(t) and |∆2|(t) for a two–band super-
conductor with the relative interband coupling v = 0.12 is presented in Fig. 8.12 (a) and
(b), respectively. Here, we demonstrate the results for three different integrated pump
pulse intensities |A0|2τ .
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Figure 8.12: Fluency dependence of the gap dynamics in (a) |∆1| and (b) |∆2| for a two–band
superconductor with the relative interband coupling v = 0.12. The simulations
were done for integrated pump pulse intensities |A0|2τ = 4.0 (blue solid line),
7.5 (orange solid line) and 11.0 · 10−8Js/(Cm) (green solid line). The pulse is
indicated by the gray region around t = 0.

From our simulations we find a similarity to the results discussed in section 8.2.1 for the
case v = 0. More precisely, we observe that the frequencies of the amplitude Higgs modes
ωHl for each band l can be manipulated by the pump pulse. In fact, with increasing the
fluency of pulse one breaks more and more Cooper pairs in a two–band superconductor.
This leads to the partial suppression of the superconductivity and effectively to the reduc-
tion of the superconducting gap amplitudes. Hence, the connected with it frequencies of
the Higgs modes are also decreased. In addition, we find for strong pump pulse intensity
harmonic oscillations with an algebraic decay in the dynamics of the superconducting gaps,
which are shown in Fig. 8.12 by the green solid lines. This behavior is reminiscent to the
time evolution of the uncoupled superconducting gaps from section 8.2.1
For deeper understanding of the gaps dynamics we calculate the time dependence of

the relative phase φ2 − φ1 between the gaps as a function of the pump pulse fluency and
perform subsequently the Fourier transformation of the results. In Fig. 8.13(a) we plot
the corresponding Fourier spectrum versus the integrated pump pulse intensity |A0|2τ . In
addition, we show in the same figure the frequency of the Higgs mode ωH2 by the gray
dashed line. The temporal evolution of φ2 − φ1 is exemplary shown for several values of
|A0|2τ in Figs. 8.13(b), (c) and (d). While for a small pulse intensity the Leggett and
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Higgs mode appear almost far apart, we find that both modes can be brought into the
resonance by increasing |A0|2τ . This can be also clearly seen in the time dependence of
the relative phase φ2 − φ1, which for weak pulses exhibit undamped harmonic oscillations
(presented in Fig. 8.13(b)) and reveals beating effect for stronger pulse intensities (dis-
played in Fig. 8.13(c)). Further, we observe a strong enhancement in the intensity of the
Fourier signal in the resonance condition. Importantly, this behavior manifests itself in
the time dependent oscillations of the superconducting gaps shown in Fig. 8.12. Finally,
an additional increasing of the pump fluency |A0|2τ leads to the strong reduction of the
Leggett mode intensity. In this case the Leggett oscillation is strongly suppressed by the
pump pulse and one observes its overdamped behavior, which is illustrated in Fig. 8.13(d).
As a result, the Leggett mode does not drive the dynamics of the superconducting gaps
anymore. This explains the algebraic decay in the time evolution of ∆1 and ∆2 shown in
Fig. 8.12 by the green lines.
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Figure 8.13: Fluency dependence of the phase dynamics in a two–band superconductor with
the relative interband coupling v = 0.12. (a) Fourier spectrum of the relative
phase φ2 − φ1 versus integrated pump pulse intensity |A0|2τ . The intensity of the
Fourier signal is given by the color code. The open circles display the Leggett
mode frequency ωL in nonequilibrium, whereas the gray dashed line corresponds
to the frequency of the Higgs mode ωH2. (b), (c) and (d) present the temporal
evolution of φ2 − φ1 for |A0|2τ = 4.0, 7.5 and 11.0 · 10−8Js/(Cm), respectively.
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The Higgs mode can even be tuned into resonance with twice the frequency of the Leggett
mode 2ωL. For demonstration we consider a two–band superconductor with the relative
interband coupling v = 0.0225. In Fig. 8.14 we plot the corresponding Fourier transformed
phase oscillations φ2−φ1 as a function of different integrated pump pulse intensities |A0|2τ .
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Figure 8.14: Fourier spectrum of the relative phase φ2 − φ1 as a function of the pump pulse
fluency |A0|2τ for a two–band superconductor with v = 0.0225. The intensity of
the Fourier signal is given by the color code. The open circles represent the Leggett
mode frequency ωL (blue) and its higher harmonic 2ωL (green) in nonequilibrium,
whereas the gray dashed line displays the Higgs mode frequency ωH2.

The results show an enhancement in the magnitude of the relative phase oscillations φ2−
φ1 with increasing pulse fluency. Especially, the strongest effect appears in the resonance
condition between Higgs and the twice Leggett mode frequency 2ωL. This is also reflected
in the dynamics of the superconducting gaps |∆1| and |∆2|, which we show in in Fig. 8.15
exemplary for |A0|2τ = 4.0 and 7.84 ·10−8Js/(Cm). Finally, for strong pulse intensities the
Leggett mode is slightly shifted to higher frequencies and occurs, however, overdamped.
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Figure 8.15: Fluency dependence of the gap dynamics in (a) |∆1| and (b) |∆2| for a two–band
superconductor with v = 0.0225. The results are shown for integrated pump pulse
intensities |A0|2τ = 4.0 (blue solid line) and 7.84 ·10−8Js/(Cm) (orange solid line).
The pump pulse is indicated by the gray region around t = 0.
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8.3.4. Optical conductivity
Finally, we include an additional probing pulse of smaller intensity with variable time

delay ∆t in our calculation, in order to simulate pump–probe experiment. The strategy
of the calculations is described in section 7.2. Here, we choose the following parameters
for the pump pulse: ~ω0 = 8meV, τ = 0.4ps and A0 = 10 · 10−8Js/(Cm). In order to
probe the system we take a weaker pulse with a short duration time and, in turn, wide
spectral bandwidth. Parameters of the probe pulse are given in Table 8.2. For simplicity, we
consider a two–band superconducting system with the relative interband coupling v = 0.01.
The calculations with other coupling strength reveal qualitatively similar behavior.
In Fig. 8.16 (a) and (b) we present the results of calculations for real σ1(∆t, ω) and

imaginary σ2(∆t, ω) part of the optical conductivity versus frequency ω, respectively. The
computations were done at time delay ∆t = 2.5ps. First, we find in both σ1(∆t, ω) and
σ2(∆t, ω) a clear sharp edge at the Higgs mode frequency ωH2 = 2∆∞2 /~ corresponding to
superconducting gap oscillations in the lower band l = 2. Similar signatures were observed
in case of two uncoupled bands as discussed in section 8.2.2. Further, beside a sharp edge
at frequency ωH2 we can identify an additional peak with a smaller intensity at frequency
ωL of the Leggett mode. Our calculations reveal also a few small spikes in the low frequency
range (ω � ωL), which are artifacts of the numerical calculations. In fact, in this region
the numerical discretization discussed in section 7.1.4 together with finite size–effects of
the model have a stronger influence on the simulations. In addition, it should be also
mentioned that Higgs mode from upper band l = 1 with frequency ωH1 = 2∆∞1 /~ is not
visible in the conductivity spectra in Figs. 8.16 (a) and (b), due to the overdamping in
quasiparticle continuum.
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Figure 8.16: (a) Real and (b) imaginary part of the pump–probe response σ(∆t, ω) as a function
of frequency ω calculated for the time delay ∆t = 2.5ps. The dynamics in the
system is induced by a pump pulse with parameters: ~ω0 = 8meV, τ = 0.4ps and
A0 = 10 · 10−8Js/(Cm).

Now, by plotting the real part of the optical conductivity σ1(∆t, ω) versus time delay
∆t, as shown in Fig. 8.17, we find that the position of the sharp edges for Higgs and
Leggett modes remain unchanged as function of time. However, the important oscillations,
which reflect the dynamics of these collective excitations, can be found in the temporal
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Figure 8.17: Real part of the pump–probe optical conductivity σ1(∆t, ω) plotted as a function
of time delay ∆t for a two–band superconducting system with the relative inter-
band coupling v = 0.01. Intensity of the signal is given by the color code. The
parameters of the laser pulses are the same as in Fig. 8.16. Oscillations are clearly
seen at ~ωL and ~ωH2.

changes of intensity in the pump–probe response. These oscillations are most prominent
at the frequencies, where the conductivity reveals sharp edges. It should be noted that
similar behavior can be found in the temporal evolution of the imaginary part of the
optical conductivity σ2(∆t, ω), since both quantities σ1(∆t, ω) and σ2(∆t, ω) are connected
through Kramers–Kronig relation.
Finally, let us consider the oscillation in the intensity of the pump–probe response

σ1(∆t, ω) shown in Fig. 8.17 in some more detail. For this purpose we plot in Fig. 8.18 (a)
the pump–probe signal at the sharp edge with ωH2 corresponding to the lower Higgs mode 2

2qualitatively similar result can be found at other frequencies.
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Figure 8.18: (a) Time dependent pump–probe signal σ1(∆t, ω) at the lower Higgs mode fre-
quency ωH2 = 2∆∞2 /~ (see also Fig. 8.17 and sharp edge in Fig. 8.16(a)). The
oscillations in the intensity of the pump–probe response are clearly visible. (b)
Corresponding Fourier spectrum of the oscillations from (a).



104 8.4. Conclusion

versus time delay ∆t. Here, we find fast oscillations accompanied with the slow ones. Im-
portantly, the oscillations show no decay in contrast to the case of uncoupled bands (see
section 8.2.2). Physically it means that due to the coupling between amplitude and phase
modes in nonequlibrium the Higgs oscillations are additionally driven by the Leggett mode.
Next, we perform Fourier transformation of the oscillations in σ1(∆t, ω) with respect to ∆t.
The resulting spectrum is shown in Fig. 8.18 (b). Here, we find as expected a few distinct
peaks, which correspond to the lower Higgs mode ωH2 and to the Leggett mode ωL together
with their higher harmonics. Thus, we can conclude that by using time–dependent optical
pump–probe spectroscopy one is able to access collective excitations in a superconductor,
which are associated with oscillations of the order parameter.

8.4. Conclusion
Employing the density–matrix theory we have numerically investigated the nonequlib-

rium dynamics of the superconducting gaps in a two–band superconductor after its former
excitation with an ultrafast pump pulse. We have found that depending on the pulse
duration τ one can distinguish between two different nonequilibrium scenarios. In case
of adiabatic regime with broad pulses τ � τ∆l

we have observed a monotonic reduction
of the superconducting gap amplitudes of the order parameters, which is caused by the
partial suppression of the superconductivity due to the action of the light pulse. On the
other hand, short pulses τ � τ∆l

(nonadiabatic regime) lead to excitation of the collective
modes in two–band superconductors. Here, we have identified for the first time two Higgs
amplitude modes, which are independent of the interband coupling strength between the
bands. However, they can be manipulated by the intensity of the pump pulse. Then, be-
sides the Higgs modes we have detected the Leggett phase mode in nonequilibrium, which
manifests itself in the relative phase oscillations of the superconducting condensates. This
mode depends strongly on the finite interband coupling between the bands. Further, we
have found that this type of nonequilibrium excitation of a two–band superconducting
system leads to a strong coupling between amplitude and phase modes. This is in contrast
to the equilibrium situation, where the Higgs and Leggett mode appear as independent
collective excitations. Moreover, the amplitude–phase mode coupling results in the shift
of the Leggett mode frequency below the Bogoliubov quasiparticle continuum. Therefore,
the Leggett mode remains undamped for a very broad interband coupling region. Further-
more, by adjusting the pump pulse intensity we were able to bring the Higgs and Leggett
mode into the resonance and on this way maximize the oscillatory signal in the dynamics of
the superconducting gaps. Finally, we have found that both Higgs amplitude and Leggett
phase mode can be observed in the time–resolved pump–probe experiments. Both modes
appears as clear oscillations in the signal of optical conductivity.



Chapter 9
Summary

The recent progress in nonequilibrium pump–probe time–domain spectroscopy opened
new perspectives in studying dynamical properties of a superconductor. In fact, the unique
combination of a high time resolution governed by optical laser pulses on the femtosecond
timescale together with the spectral selectivity made it possible to access intrinsic pro-
cesses of this material on a fundamental level. Based on the measuring conditions the
known pump–probe experimental techniques presented in the introduction can be divided
into several different categories, which are schematically illustrated in Fig. 9.1. In the
past, the optical nonequilibrium experiments were performed at almost exclusively near–
infrared or visible frequency range, which enables to study relaxation of hot incoherent
quasiparticles back into the superconducting condensate and Cooper pair formation dy-
namics or to disentangle the electronic and phononic contributions to the superconducting
glue by their ultrafast response. This type of measurements can be generally classified
as non–equilibrium spectroscopy (see Fig. 9.1). With the development of pulsed tech-
nique to terahertz (THz) frequency range, where photon energy is almost of the order of
the superconducting gap, it became possible to investigate qualitatively new properties
of a superconductor. In particular, by using optical excitation of high intensity at THz
frequency one was able to perform controlled transient transitions into a superconducting–
like state. These optical control measurements (see Fig. 9.1) have already built a novel
research frontier of the modern solid state physics.

Inspired by the potential of the pump–probe time–resolved measuring technique at THz
frequency range, we have modeled two corresponding nonequilibrium scenarios in: (i) high–
and (ii) low–fluency regime by combining several analytical and numerical methods. In
particular, we have investigated transient superconducting phase transitions which are
relevant for optical control measurements, and collective excitations of a superconducting
condensate far from equilibrium. In the light of our results we proposed in the latter case a
new type of the nonequilibrium pump–probe studies, which we called Higgs spectroscopy.

105



106 Summary

Figure 9.1: Schematic classification of pump–probe measurements based on the spectral selec-
tivity and intensity of the pulses: (i) non–equilibrium spectroscopy, which deals with
the recovery of a superconducting condensate; (ii) optical control technique, which
was recently used to induce superconductivity; and (iii) Higgs spectroscopy, with
which we propose to investigate the properties of a superconducting gap. The last
two classes were theoretically studied in this thesis. The horizontal bars indicate the
frequency region of the applied technique where the main effects can be observed.
The abbreviation SC stands for superconducting.

Optical control of matter

In the first part of this thesis we simulated a pump–probe experiment in high–fluency
regime and explored in this case the possibility of inducing singlet superconducting cor-
relations far from equilibrium. For this purpose we have chosen a one–dimensional ex-
tended Hubbard model, which was assumed to describe strongly correlated electrons on a
10–site lattice at half–filing with periodic boundary conditions and at zero temperature.
The nonequilibrium dynamics in the electron system was induced in two different ways:
(i) by interaction quench and (ii) by quench by pulse. Within the framework of the time–
dependent exact diagonalization technique we constructed in both cases an accurate time–
dependent wave function reflecting the properties of the electron system in nonequilibrium.
Based on its knowledge we investigated the buildup of the superconducting correlations by
means of several time–dependent correlation and response functions.
First, we considered nonequilibrium dynamics of the electron system after interaction

quench. In this case we prepared the system initially in an equilibrium ground state of
the charge density wave (CDW) phase and switched afterwards the interaction param-
eters of its Hamiltonian into the superconducting region. The time–dependent calcula-
tions of the density–density correlation function C(j, t) revealed a strong suppression of
CDW correlations. At the same time, we obtained slow oscillations in the computed sin-
glet superconducting correlation function P1(j, t), where a strong transient enhancement
of the superconducting correlations in nonequilibrium was observed. Moreover, a direct
comparison of the nonequilibrium results of P1(j, t) at several moments in time with its
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counterpart calculated for equilibrium superconducting ground state revealed quite good
agreement and indicated a transition into the superconducting phase. From the Fourier
transformation of P1(j, t) we found that almost all peaks of the Fourier spectra correspond
to the low–energy eigenstates of the superconducting phase, whereas there were no peaks,
which could be identified with the CDW phase. Hence we can conclude that after quench-
ing the system undergoes a direct transition into a superconducting phase and appears
in some nonequilibrium state, which is not a "pure" eigenstate of the equilibrium CDW
or the equilibrium singlet SC phase. As a result, oscillations between this nonequilibrium
state and the low–energy eigenstates of the SC phase occurred. Finally, we calculated the
important for experiments time–dependent optical conductivity σ(∆t, ω), where the super-
conducting fingerprints emerged as the transient Meissner effect. In other words, we found
an enhancement of the peak amplitude at ω = 0 in the real part of the optical conductivity
and an increase of the inductive response with 1/ω–like behavior in its imaginary part.
Second, we studied the situation with a quench by a short optical pump pulse. We

prepared the system again initially in an equilibrium ground state of the CDW phase,
but close to the transition boundary with the singlet superconducting phase. By adjust-
ing the amplitude of the pump pulse and tuning its frequency to the first low–energy
absorption peak of the unperturbed CDW state we demonstrated a transient transition
from the CDW phase into a singlet superconducting phase. In fact, from computations of
the time–dependent density–density correlation function C(j, t) after pumping we found an
effective partial suppression of the CDW correlations with subsequent oscillations. Concur-
rently, we observed oscillations in the temporal evolution of the singlet superconducting
correlation function P1(j, t) indicating a temporal enhancement of the superconducting
correlations after pumping. Further, we performed a Fourier transformation of these oscil-
lations and found that most peaks in the Fourier spectrum correspond to the low–energy
eigenstates of the CDW phase. However, some peaks can be assigned to the eigenstates of
the singlet superconducting phase. Finally, we observed that the fingerprint of the singlet
superconducting correlations appeared as a transient Meissner effect in calculations of the
time–dependent optical conductivity σ(∆t, ω). Hence, we can conclude that, in contrast to
the situation with interaction quench, in case of the optical pumping a temporal dynamical
coexistence of the CDW and singlet superconducting correlations is possible.
Coming back to the question raised in the introduction, with our simulations we could

successfully demonstrate a transient phase transition into a singlet superconducting state
far from equilibrium. The fingerprints of the induced superconductivity emerge in (i) calcu-
lations of correlation functions, (ii) analysis of the Fourier spectra, and (iii) computation of
the time–dependent optical conductivity. These observations generalize the previous theo-
retical studies [81–87], where investigations of the induced superconductivity in nonequilib-
rium were restricted exclusively to the layered cuprate materials. In this sense, our studies
give a proof of the concept for a buildup of the singlet superconducting correlations and
might open a new way to induce superconductivity far from equilibrium in an experiment.
In fact, a possible light–induced s–wave superconductivity observed experimentally in the
bulk of K3C60 at high temperatures was reported in Ref. [92] a few weeks ago. In this exper-
iment the measurements of the transient optical response of K3C60 after photo–excitation
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with time delay ∆t = 1ps revealed changes in the optical conductivity similar to the equi-
librium cooling below the critical temperature Tc. In particular, one observed transient
Meissner effect in a way qualitatively similar to the prediction of our calculations, which
is reflected in the temporal enhancement of the delta peak in the real part of the optical
conductivity σ1(∆t, ω) and corresponding increase of the inductive response in its imag-
inary part σ2(∆t, ω). Further improvements of our method might concern the inclusion
of the electron–phonon interactions into the Hamiltonian and corresponding extensions to
the Hubbard–Holzstein model in nonequilibrium.

Non–Equilibrium Higgs spectroscopy

The second part of this thesis is devoted to simulations of a pump–probe experiment
in low–fluency regime. In this case, we investigated collective mode excitations in a two–
band superconductor out of equilibrium. First of all, we studied the properties of the
collective modes under the close to equilibrium conditions, where a linearized response can
be expected. Employing (Nambu-) matrix kinetic theory in the clean limit and at zero
temperature we analytically formulated a comprehensive, gauge–invariant description of
the collective modes associated with the phase fluctuations of the superconducting order
parameter for the general case of two–band superconducting systems. In particular, we
applied this approach to the case of recently discovered noncentrosymmetric superconduc-
tors (NCS). As a result, we demonstrated for the first time the existence of two collective
modes in NCS systems: the gauge mode (or Nambu-Goldstone Boson), common to all
superconductors, and the new Leggett mode, which usually occurs in the context of collec-
tive fluctuations of the interband phase difference in ordinary two-band superconductors.
Moreover, we provided a detailed analysis of their mass and dispersion together with the
general role of these collective excitations in NCS systems. In particular, we found that
these collective excitations depend strongly on the point group symmetry of the crystal
structure under consideration and consequently reflect the underlying spin orbit coupling.
Also, we showed that both modes are necessary to guarantee charge conservation law. In
addition, numerical calculations for the most interesting class of NCS systems with C4v
point group symmetry reveal that the Leggett mode may appear, under certain conditions,
as a massless collective excitation in contrast to ordinary two–band superconductors. Fur-
thermore, its slope showed a strong dependence on the triplet–to–singlet ratio t = ∆tr/∆s.
This might help experimentalists to estimate in which materials is the Leggett mode most
easily observable. Finally, we demonstrated that the gauge mode is shifted to the plasma
mode of higher energy according to the Anderson-Higgs mechanism. The mass of the new
Leggett mode remained, however, unaffected by this process, but its dispersion is changed.
Next, we focused on the nonequilibrium dynamics of superconducting gaps in an s–

wave two–band superconductor induced by an ultrafast pump pulse excitation. For this
purpose we formulated a Hamiltonian which describes a nonlinear coupling of the super-
conducting condensates to an optical pulse. Here, the laser field was assumed to depend
on the momentum q and to have a Gaussian envelope. In order to simulate the nonequi-
librium dynamics in this model, we elaborated a semi–numerical method based on the
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density–matrix formalism (DMF), which goes beyond the common studies of relaxation
processes [40–46]. By adjusting a central energy of the pump pulse in the midpoint be-
tween both superconducting gaps and by varying its duration time τ we investigated two
nonequilibrium scenarios. In case of broad pulses, whose duration time was larger than the
reaction time of the superconducting system (τ � τ∆l

), we found a monotonic reduction
of the superconducting gap amplitudes. This is a direct result of the partial suppression
of superconductivity due to the action of the light pulse. On the other hand, by applying
short pulses in the so–called nonadiabatic regime, i.e. pulses with τ � τ∆l

, we obtained
oscillations in the nonequilibrium dynamics of the superconducting gap. Here, we first
identified two Higgs modes at frequencies ωHl = 2|∆∞l |/~ with |∆∞l | being the asymptotic
gap values. These modes represent amplitude oscillations of the corresponding supercon-
ducting gaps and show no dependence on the interband coupling strength between the
bands. Importantly, by varying the intensity of the pump pulse excitation we found that
the frequency of the Higgs modes can be manipulated. It should be noted that in the lim-
iting case of vanishing interband coupling our simulations also reflect results of previous
theoretical studies of the amplitude modes, which were restricted to a single band s–wave
superconductor [47,48,50–58,65]. In addition to the amplitude Higgs modes we identified
the Leggett phase mode in the response of the superconducting gaps, which manifests itself
in the relative phase oscillations of the superconducting condensates and depends strongly
on the finite interband coupling between the bands. In contrast to the situation under
the close to equilibrium conditions, where the amplitude and phase fluctuations of the or-
der parameter appeared as independent collective excitations, we found a strong coupling
between Higgs and Leggett modes in nonequilibrium. As a result, we observed that in
nonequilibrium the Leggett mode is pushed below the Bogoliubov quasiparticle continuum
and remains undamped for a wide parameter range of the interband coupling. Further-
more, by adjusting the pump pulse intensity we were able to bring the Higgs and Leggett
modes into resonance and in this way maximize the oscillatory signal in the dynamics of
the superconducting gaps. Finally, based on the computation of the time–dependent opti-
cal conductivity, we predicted the appearance of both Higgs amplitude and Leggett phase
mode in the time–resolved pump–probe experiments. In other words, both modes should
appear as clear oscillations in the optical conductivity signal.
All in all, by using a semi–numerical method based on DMF we demonstrated that the

Higgs modes can be excited not only in one-, but also in general two–band superconducting
systems. Here, the following nonadiabatic conditions should be fulfilled:

(i) the duration time of the pump pulse is shorter than the reaction time of the super-
conducting system;

(ii) the photon energy is of the order of the superconducting gap (at terahertz frequency
range) to guarantee coherent excitation of the quasiparticles across the gap without
high–energy phononic modes;

(iii) and the intensity of the pump pulse is in low–fluency regime to ensure that the
superconductivity is only partially destroyed.
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Since Higgs mode was observed in experiments so far in certain materials under close to
equilibrium conditions (see in the introduction), our simulations should open a new class
of pump–probe studies, where the Higgs modes can be detected directly in all types of
superconductors. As a result, this nonequilibrium Higgs spectroscopy (see Fig. 9.1) should
open a direct access to the properties of a superconducting order parameter. Recent re-
port [35] on the Higgs mode observation in ultrafast response of the BCS superconductor
(Nb1−xTixN) using THz pump pulses in a nonadiabatic regime supports our predictions.
Moreover, we predicted excitation of the phase Leggett mode beside amplitude Higgs modes
in two–band superconductors, which also manifests itself in the time–resolved pump–probe
conductivity signal. Also, we found the unusual strong coupling of amplitude (Higgs) and
phase (Leggett) modes in nonequilibrium. Thus, it would be interesting to explore the be-
havior of the Higgs mode and other collective excitations in more exotic superconductors,
like noncentrosymmetric superconductors or cuprates. In particular, in case of d–wave su-
perconductors where several Higgs modes reflecting the symmetry of the superconducting
gap can be expected [14], we await interactions between these modes after nonadiabatic
excitation. Here, the pump pulse direction and consequently the dependence on the mo-
mentum q should play an important role. Finally, the observation of Higgs mode in the
time–dependent spectral function and prediction for the tr–ARPES is worth additional
research.
In conclusion, in this thesis we gave a comprehensive study of nonequilibrium dynamics

in a superconductor induced by an ultrafast pulse excitation at terahertz (THz) frequency
range. Using time–dependent exact diagonalization technique we successfully demon-
strated in case of strong THz laser fields a possibility of light controlled transitions into a
transient singlet superconducting state. Our results do not only generalize previous the-
oretical studies [81–87], but give a completely new insight into the phenomenon of the
induced superconductivity. Moreover, the signatures for a buildup of the singlet supercon-
ducting correlation, which we predicted from calculations of the time–dependent optical
conductivity, were recently observed in an optical pump–probe experiment [92]. More
importantly, we formulated a microscopic theory for excitations of collective modes in a
superconductor out of equilibrium by ultrashort THz laser pulses in low–fluency regime.
Here, we specified conditions, under which the amplitude (Higgs) mode can be directly de-
tected. In this sense we proposed a new type of the nonequilibrium pump–probe studies to
determine properties of the superconducting gap. In addition, for the case of two–band su-
perconductors we predicted beside the Higgs mode appearance of the phase (Leggett) mode
in the dynamics of the superconducting order parameters. Furthermore, we found their
strong coupling in nonequilibrium and, as a result, a new unusual interplay between Higgs
and Leggett modes. Finally, we made predictions that both modes can be experimentally
observed with the current pump–probe technique.
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Appendix A
Analytical solution of the energy gap
equation in case of NCS

The energy gap equations for the noncentrosymmetric superconductors given in Eq. (5.33)
can be solved analytically at different temperature (T ) limits. To begin with, let us consider
the quantity from section 5.2.3:

Ξn =
∑
µ

〈(µfk)n θkµ〉 ; n = {0, 1, 2} (A.1)

where the integral kernel is determined by the band–selected function θkµ of the following
form:

θkµ = 1
2Ekµ

tanh Ekµ

2kBT
(A.2)

with Ekµ =
[
ξ2

kµ + ∆2
kµ

]1/2
. Now, it is useful to rewrite the function θkµ in Eq (A.2) in

form of the Matsubara sum by using integration in the complex plain [107, 118]. Thus,
after some algebra we get:

1
2Ekµ

tanh Ekµ

2kBT
= kBT

∑
n

1
~2ω2

n + E2
kµ

(A.3)

with ωn = (2n + 1)πkBT/~ being the Matsubara frequency. Also, it is convenient to
introduce the function:

θ0
kµ = 1

2ξkµ
tanh ξkµ

2kBT
, (A.4)

which corresponds to the case of vanishing gaps (∆kµ ≡ 0) in Eq. (A.2). Further, by using
definitions (A.2) and (A.4) we represent the quantity Ξn from Eq. (A.1) in the following
form:

Ξn =
∑
µ

〈
(µfk)n θ0

kµ

〉
−
∑
µ

〈
(µfk)n

[
θ0

kµ − θkµ
]

︸ ︷︷ ︸
≡Pkµ(x)

〉
(A.5)
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Here, we have defined the function

Pkµ(x) = θ0
kµ − θkµ , (A.6)

which depends on x = ∆s/kBT and triplet to singlet ratio t = ∆tr/∆s. In order to
demonstrate this statement, we put the Matsubara sum representation from Eq. (A.3)
into a definition (A.6) of the Pkµ(x) function. After some lengthy but straightforward
calculations we obtain:

Pkµ(x) = 2
∞∑
n=0

√
(2n+ 1)2 +

(
x

π

)2
(1 + µfkt)2 − (2n+ 1)

(2n+ 1)
√

(2n+ 1)2 +
(
x

π

)2
(1 + µfkt)2

(A.7)

In order to simplify the notation let us introduce:

rnµ ≡
√

(2n+ 1)2 +
(
x

π

)2
(1 + µfkt)2 (A.8)

Now, since we are interested in the form of the function Ξn from Eq. (A.5) let us calculate
the sum and difference of the same function Pkµ(x) for two bands µ = ±1:

Pk+(x) + Pk−(x) = 2
∞∑
n=0

[
2

2n+ 1 −
rn+ + rn−
rn+rn−

]

Pk+(x)− Pk−(x) = 2
∞∑
n=0

[
rn+ − rn−
rn+rn−

] (A.9)

Importantly, in the limit of small triplet-to-singlet ratio t = ∆tr/∆s the results in Eq. (A.9)
take an especially simple form:

Pk+(x) + Pk−(x) = 4
∞∑
n=0

√
(2n+ 1)2 +

(
x

π

)2
− (2n+ 1)

(2n+ 1)
√

(2n+ 1)2 +
(
x

π

)2 ≡ 2P(x)

Pk+(x)− Pk−(x) = 4fkt
∞∑
n=0

(
x

π

)2

[
(2n+ 1)2 +

(
x

π

)2
]3/2 ≡ 2fktλ(x)

(A.10)

where one can identify the Tsuneto function [136]:

λ(x) = πkBT
∑
n

∆2
s

[(~ωn)2 + ∆2
s]

3/2 , (A.11)
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It should be noted that the Tsuneto function λ(x) describes the response of a superconduct-
ing condensate. Its temperature dependence is presented in Figs. A.1 (a) and (b), where
we use a representation of λ(x) as a function of x = ∆s(T )/kBT and of T/Tc, respectively.
As can be seen from the figures, the Tsuneto function takes in low temperature limit the
value of 1, whereas in Ginzburg–Landau (GL) regime with T → Tc this function vanishes.
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Figure A.1: Tsuneto function versus (a) x = ∆s(T )/kBT and (b) T/Tc. In low temperature
(T ) limit the Tsuneto function takes the value of 1. On the other hand, in case of
Ginzburg–Landau (GL) regime this function vanishes.

Now, in the limit of small triplet–to–singlet ratio t, where Eq. (A.10) can be used, we
obtain for the function Ξn from Eq. (A.5) following results:

Ξ0 = 2 ln
( 2γε0
πkBT

)
− 2P(x) +O(t2)

Ξ1 = −2tλ(x) +O(t3)

Ξ2 = 2 ln
( 2γε0
πkBT

)
− 2P(x) +O(t2)

(A.12)

Finally, inserting these results for Ξn into the energy gap equations (5.33) from section 5.2.3
we find:

2P(x) + 2t2λ(x) = 2 ln Tc

T
− λm
λsλtr − λ2

m

(t− tc)

2P(x) + 2λ(x) = 2 ln Tc

T
− λm
λsλtr − λ2

m

(1
t
− 1
tc

)
,

(A.13)

Here, we used a notation tc = −λm/ (λs − λtr). Now, we solve Eq. (A.13) with respect to
the triplet to singlet ratio t. Thus, after some algebra we get:

t = − λm
λs − λtr + 2λ(x) (λsλtr − λ2

m) (A.14)
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It should be noted that the temperature dependence for the triplet–to–singlet ratio is
determined by the Tsuneto function discussed above. Since in this work we are interested
in the low temperature calculations, we take in the last step (see Eq. (A.14)) T → 0
limit and use λ(x) = 1. Hence, in this limit we obtain for the triplet–to–singlet ratio the
following result:

t(T = 0) = − λm
λs − λtr + 2|λ| (A.15)

with
|λ| ≡ λsλtr − λ2

m (A.16)

It is important to mention that the result in Eq. (A.15) can be further used to obtain
the coupling strength of the Leggett mode γNCS from (6.28) in the case of small triplet to
singlet ratio

γNCS = λm
|λ|

+ Ξ1 (A.17)

with
Ξ1 = −2t = 2λm

λs − λtr + 2|λ| (A.18)
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Equations of motion

B.1. Pump pulse excitation
Here, we present the equations of motion for all quasiparticles expectation values, which

were discussed in section 7.1.3. In this case we used a fact that with H(1)
em only excitations

with q′ = ±q arises, whereas with H(2)
em the excitations with q′ = 0,±2q are possible.

(I). Differential equation for α†klβ
†
k+ql

The first differential equation is given by

i~
d

dt
α†klβ

†
k+ql = −

〈[
ĤBCS + Ĥ(1)

em + Ĥ(2)
em , α̂

†
klβ̂
†
k+ql

]〉
(B.1)

The calculation of the commutator on the r.h.s. leads to the results:

−
〈[
ĤBCS, α̂

†
klβ̂
†
k+ql

]〉
=− (Rkl +Rk+ql)α†klβ

†
k+ql + C∗k+qlα

†
klαk+ql + C∗kl

(
β†k+qlβkl − δq,0

)
−
〈[
Ĥ(1)

em , α̂
†
klβ̂
†
k+ql

]〉
= e~

2m
∑

q′=±q
Aq′×

×
{

(2k + q′)
(
−L(+)

k,q′lα
†
k+q′lβ

†
k+ql +M

(−)
k,q′l

(
β†k+qlβk+q′l − δq,q′

))
+ (2k + 2q− q′)

(
L

(+)
k+q,−q′lαklβk+q−q′l −M (−)

k+q,−q′lα
†
klαk+q−q′l

)}
−
〈[
Ĥ(2)

em , α̂
†
klβ̂
†
k+ql

]〉
= e2

2m
∑

q′=0,±2q

 ∑
qi=±q

Aq′−qi ·Aqi

×
×
{
−L(−)

k,q′lα
†
k+q′lβ

†
k+ql − L

(−)
k+q,−q′lα

†
klβ
†
k+q−q′l

−M (+)
k+q,−q′lα

†
klαk+q−q′l −M (+)

k,q′l

(
β†k+qlβk+q′l − δq,q′

)}
(B.2)
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(II). Differential equation for βk+qlαkl

The second differential equation is given by

i~
d

dt
βk+qlαkl = −

〈[
ĤBCS + Ĥ(1)

em + Ĥ(2)
em , β̂k+qlα̂kl

]〉
(B.3)

The calculation of the commutator on the r.h.s. leads to the results:

−
〈[
ĤBCS, β̂k+qlα̂kl

]〉
=− (Rkl +Rk+ql)αklβk+ql − Ck+qlα

†
k+qlαkl − Ckl

(
β†klβk+ql − δq,0

)
−
〈[
Ĥ(1)

em , β̂k+qlα̂kl
]〉

= e~
2m

∑
q′=±q

A−q′ · (2k + q′)
{
L

(+)∗
k,q′lαk+q′lβk+ql − L(+)∗

k+q,−q′lαklβk+q−q′l

−M (−)∗
k+q,−q′lα

†
k+q−q′lαkl +M

(−)∗
k,q′l (βk+q′lβk′l − δq,q′)

}
−
〈[
Ĥ(2)

em , β̂k+qlα̂kl
]〉

= e2

2m
∑

q′=0,±2q

 ∑
qi=±q

Aqi−q′A−qi

×
×
{
L

(−)∗
k,q′lαk+q′lβk+ql + L

(−)∗
k+q,−q′lαklβk+q−q′l

−M (+)∗
k+q,−q′lα

†
k+q−q′lαkl +M

(+)∗
k,q′l (δq,q′ − βk+q′lβk+ql)

}
(B.4)

(III). Differential equation for α†klαk+ql

The third differential equation is given by

i~
d

dt
α†klαk+ql = −

〈[
ĤBCS + Ĥ(1)

em + Ĥ(2)
em , α̂

†
klα̂k+ql

]〉
(B.5)

The r.h.s. of this equation takes the following form:〈[
ĤBCS, α̂

†
klα̂
†
k+ql

]〉
=−

{
(Rk+ql −Rkl)α†klαk+ql + Ck+qlα

†
klβ
†
k+ql + C∗klαk+qlβkl

}
〈[
Ĥ(1)

em , α̂
†
klα̂
†
k+ql

]〉
=− e~

2ml

∑
q′=±q

Aq′ ·
{

(2k + q′)
(
M

(−)
k,q′,lαk+qlβk+q′l − L(+)

k,q′,lα
†
k+q′lα̂k+ql

)
+ (2k + 2q− q′)

(
L

(+)∗
k+q,−q′,lα

†
klαk+q−q′l +M

(−)∗
k+q,−q′,lα

†
klβ
†
k+q−q′l

)}
〈[
Ĥ(2)

em , α̂
†
klα̂
†
k+ql

]〉
=− e2

2ml

∑
q′=0,±2q

 ∑
qi=±q

Aq′−qi ·Aqi

{−L(−)
k,q′,lα

†
k+q′lαk+ql

+L(−)∗
k+q,−q′,lα

†
klαk+q−q′l −M (+)∗

k+q,−q′,lα
†
klβ
†
k+q−q′l −M

(+)
k,q′,lαk+qlβk+q′l

}
(B.6)
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(IV). Differential equation for β†klβk+ql

The fourth differential equation is given by

i~
d

dt
β†klβk+ql = −

〈[
ĤBCS + Ĥ(1)

em + Ĥ(2)
em , β̂

†
klβ̂k+ql

]〉
(B.7)

The r.h.s. of this equation takes the following form:

−
〈[
ĤBCS, β̂

†
klβ̂
†
k+ql

]〉
= (Rk+ql −Rkl) β†klβk+ql + Ck+qlα

†
k+qlβ

†
kl + C∗klαklβk+ql

−
〈[
Ĥ(1)

em , β̂
†
klβ̂
†
k+ql

]〉
= e~

2m
∑

q′=±q
Aq′×

×
{

(2k− q′)
(
−M (−)

k−q′,q′lαk−q′lβk+ql + L
(+)∗
k−q′,q′lβ

†
k−q′lβk+ql

)
− (2k + 2q + q′)

(
M

(−)∗
k+q,q′lα

†
k+q+q′lβ

†
kl + L

(+)∗
k+q,q′lβ

†
klβ
†
k+q+q′l

)}
−
〈[
Ĥ(2)

em , β̂
†
klβ̂
†
k+ql

]〉
= e2

2m
∑

q′=0,±2q

 ∑
qi=±q

Aq′−qi ·Aqi

×
×
{
−M (+)

k−q′,q′lαk−q′lβk+ql − L(−)∗
k−q′,q′lβ

†
k−q′lβk+ql

−M (+)∗
k+q,q′lα

†
k+q+q′lβ

†
kl + L

(−)∗
k+q,q′lβklβk+q+q′l

}
(B.8)

B.2. Probe pulse excitation
Finally, we show equations of motion for all quasiparticles expectation values, which

were discussed in section 7.2.

i~
d

dt
α†klβ

†
k+qprl

=− (Rkl +Rk+qprl)α
†
klβ
†
k+qprl

+ C∗k+qprl
α†klαk+qprl + C∗klβ

†
k+qprl

βkl

+ e~
2m2k ·Aqpr

{
L

(+)
k,qprl

(
α†klβ

†
kl − α

†
pplβ

†
ppl

)
+M

(−)
k,qprl

(
α†klαkl +

[
β†pplβppl − 1

])}
i~
d

dt
αk+qprlβkl =(Rkl +Rk+qprl)αk+qprlβkl + Cklα

†
klαk+qprl + Ck+qprlβ

†
k+qprl

βkl

+ e~
2m2k ·Aqpr

{
L

(+)
k,qprl

(
αklβkl − αpplβppl

)
−M (−)

k,qprl

(
α†pplαppl + [βklβkl − 1]

)}
i~
d

dt
α†klαk+qprl =

(
Rk+qprl −Rkl

)
α†klαk+qprl + Ck+qprlα

†
klβ
†
k+qprl

+ C∗klαk+qprlβkl

+ e~
2m2k ·Aqpr

{
L

(+)
k,qprl

(
α†klαkl − α†pplαppl

)
+M

(−)
k,qprl

(
αpplβppl − α

†
klβ
†
kl

)}
i~
d

dt
β†k+qprl

βkl =
(
Rkl −Rk+qprl

)
β†k+qprl

βkl + Cklα
†
klβ
†
k+qprl

+ C∗k+qprl
αk+qprlβkl

+ e~
2m2k ·Aqpr

{
L

(+)
k,qprl

(
β†klβkl − β†pplβppl

)
+M

(−)
k,qprl

(
αklβkl − α†pplβ

†
ppl

)}
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