
Chapter 5

DFT And Statistical Mechanics

In the previous Chapter the combination of density-functional theory with concepts
from thermodynamics has been discussed. Despite the very useful insight that can be
obtained about the stability of different phases in a wide range of temperatures and
pressures, this approach has two main limitations. First, the explicit time evolution
of the system can not be treated and second, in the first-principles atomistic thermo-
dynamics approach as it has been discussed here the sampling of the configurational
space is rather limited.

In this Chapter the combination of DFT and statistical mechanics is described,
which provides a more general concept to bridge the time and length scales between
the electronic, meso- and macroscopic regimes as aspired by the multiscale model-
ing approach (cf. Fig. 4.1). Equilibrium Monte Carlo simulations can e.g. be used
to identify again the thermodynamically most stable structure under different envi-
ronmental conditions, but allows a wider sampling of configurational space. Using
kinetic Monte Carlo simulations it is possible to explicitly treat the involved kinetics
and therefore to also describe non-equilibrium situations. DFT will provide the basis
to obtain the parameters needed as input to the simulations.

5.1 Monte Carlo Simulations

Computer simulations are a widespread tool to explicitly follow the trajectory of a
system involving up to 104 degrees of freedom. A statistical analysis of the trajectory
might then be used to predict properties of the simulated assembly of particles. Two
general classes of simulations are molecular dynamics (MD) and Monte Carlo (MC)
simulations.

In a molecular dynamics simulation atoms and molecules are viewed in a clas-
sical dynamical picture. Using forces extracted from the corresponding potential
energy surface the trajectory can be formed by integrating Newton’s equation of mo-
tion [85, 86]. If the forces are obtained from first-principles without any empirical or
fitted parameters, the simulations are referred to as ab initio molecular dynamics.
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A typical time scale that can be reached with such an ab initio molecular dynamics
simulations [87] is of the order of picoseconds.

In a Monte Carlo method [86, 88], on the other hand, the configurational space is
sampled in a stochastic manner to evaluate the partition function of the system. With
such an equilibrium MC simulation one can obtain thermal averages of many particle
systems, but the sequence of generated configurations does not reflect the real time
evolution of the system. Thus the time connected to the simulation (so-called MC
time) is not directly related to the real time.

In kinetic MC (kMC) simulations a proper relationship between MC time and real
time is formed and a description of the dynamical evolution of the system becomes pos-
sible again. In contrast to a MD simulation only state-to-state transitions are treated
rather than following the full microscopic trajectory. The resulting macroscopic tra-
jectory, though, should be indistinguishable from the results of a MD simulation. As
a consequence much larger time scales are accessible in a kMC simulation compared
to a MD simulation.

Since in this work the simulations are used to investigate a system in a steady state
of heterogenous catalysis, kinetic Monte Carlo is the most suitable choice. The rest
of this Chapter will therefore be focussed on kMC.

5.1.1 Kinetic Monte Carlo

As already mentioned above a kinetic Monte Carlo step describes the transition from
one system state into the next, while appropriately averaging over the whole micro-
scopic motion of the atoms around their equilibrium position. The process of moving
from one state to the next is also called a rare event, since on the time scale of atomic
vibrations such a transition occurs only very seldom. Considering such a rare event it
is assumed, that because the system stays relatively long in one state (compared to a
vibrational period), there is no memory of how it got into this state. The probability
to move from the present state Si into the next state Sj is thus independent of what-
ever state preceded state Si. The sequence of states generated for such a system is
called a Markov chain, which as a result is a basic concept in Monte Carlo simulations.
The probability for the transition from state Si to state Sj, Wij, can be expressed by
the conditional probability, that the system is in state Sj at a time step tn, if it has
been in state Si at the previous time step tn−1

Wij = W (Si → Sj) = P (Xtn = Sj|Xtn−1 = Si) , (5.1)

where Xt is the state of the system at time t. The total probability of the system
being in a state Sj at a time tn is then given by

P (Xtn = Sj) = P (Xtn = Sj|Xtn−1 = Si)P (Xtn−1 = Si)

= WijP (Xtn−1 = Si) .
(5.2)
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The time dependence of this probability is described by a master equation (transform-
ing time from a discrete to a continuous variable and setting P (Xtn = Sj) = P (Sj, t))

dP (Sj, t)

dt
= −

∑
i

WjiP (Sj, t) +
∑

i

WijP (Si, t) . (5.3)

A numerical solution of this master equation is provided by kinetic Monte Carlo
simulations [89–93], i.e. with a kMC simulation it is possible to describe the time
evolution of a system, that is characterized by Eq. (5.3). To ensure, that the system
will attain thermal equilibrium the detailed balance criterion has to be fulfilled

W (Sj → Si)Peq(Sj) = W (Si → Sj)Peq(Si) , (5.4)

where Peq denotes the equilibrium probability. If a system is in thermal equilibrium
and the detailed balance criterion is satisfied, then the average number of processes
from state Sj → Si will be the same as for the reverse process Si → Sj, i.e. every
process is balanced to its reverse one. Thus the probability of any given system state
will be constant and the system remains in equilibrium.

A classical example for a rare event is the diffusion of a particle from a lattice site
st to a neighboring site st′. Here, the particle adsorbed on site st vibrates around
its equilibrium position typically once every picosecond, whereas the diffusion of this
particle to any neighboring site st′ would happen on a time scale of microseconds.
In a MD simulation the particle would correspondingly vibrate for roughly 109 time
steps before a diffusion event would happen. If the diffusion event is the actually
interesting part, it would just be computational unfeasible to do this in a MD simu-
lation. In contrast, a kinetic Monte Carlo simulation would concentrate only on the
diffusion event, the rare event in this example. Thus, the time scale reached in a kMC
simulation is much larger than in a MD simulation and can be even in the order of
seconds.

To practically perform a kMC simulation in a first step the investigated system
is mapped onto a lattice. This is done to keep the number of included processes in
a manageable range. There are also lattice free kMC simulations (cf. Section 5.3),
which are computational much more demanding and will not be discussed here. In a
second step a list of all relevant processes p on the lattice has to be set up and a rate
has to be assigned to each process. The rate rp then characterizes the probability to
escape from the present system state by the process p. The simulation starts in some
initial configuration of the system. A total rate R is defined as the sum over rates of
all possible processes in the current configuration, R =

∑
p rp. A certain process k is

then randomly chosen by
k−1∑
p=0

rp ≤ ρ1R ≤
k∑

p=0

rp , (5.5)

with ρ1 ∈ ]0, 1[ being a random number. The probability of selecting a process k is
weighted by its rate rk, i.e. a process with a large rate has a higher probability to be
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Figure 5.1: General flow chart for a kinetic Monte Carlo simulation. For each kinetic Monte Carlo
step two random numbers are needed. Starting from some initial configuration the total rate is
calculated as the sum over the rates of all possible processes. One process is selected by the first
random number, it is then executed, the system configuration is updated and the time is advanced
using the second random number.

chosen than a process with a very small rate. The selected process is executed and the
configuration is updated. Since the kMC algorithm simulates a Poisson process, an
explicit relationship between the MC time and the real time can be established [93].
After each kMC step the simulation time is updated according to

t → t− ln(ρ2)

R
, (5.6)

where ρ2 ∈ ]0, 1[ is a second random number. For the new configuration again a
new total rate R is determined, a process is selected and executed and the time is
updated (cf. Fig. 5.1). Thus, the kMC simulation generates a sequence of system
configurations on a realistic time scale.

Although the kMC algorithm is rather simple, there are several aspects, that have
to be carefully considered. The identification of all possibly relevant processes and
the determination of the corresponding process rates are crucial for the simulation.
But the mapping onto a lattice and the identification of the relevant processes might
not be obvious, which is one of the main problems in kMC simulations. If it is not
desired or even possible to map the system onto a suitable lattice, so that a lattice
free kMC simulation has to be performed, the setting up of a list of relevant processes
and their corresponding rates is much more involved, still requiring further concep-
tional developments in this field. Additionally, such lattice free kMC simulations are
computational very costly.

In the past the process rates were often obtained by fitting the results of the sim-

48



Chapter 5. DFT And Statistical Mechanics

ulation to experimental data. Although this might lead to quite good results for the
specific system, the rates have been fitted to, the transferability to other systems or
other system conditions is highly questionable. An alternative way to calculate the
process rates is given by using DFT or other electronic structure methods. If the
rates are obtained without relying on experimental data, the method is referred to
as ab initio kMC (for one of the first ab initio kMC simulations cf. Ref. [94]). The
biggest advantage of a kMC simulation is, that for a system, where the considered
rare events are well described by a Markov chain and where all possible processes and
their rates are known, the kMC trajectory will be statistically indistinguishable from
a MD trajectory, but on a much longer time scale.

5.1.2 Lattice Gas Hamiltonian

To calculate the process rates based on DFT it is necessary to evaluate the potential
energy surface (PES) of the system in any possible configuration. Regarding the size
of the simulated system and the number of possible configurations a direct calculation
of the PES for each configuration with DFT is often computationally unfeasible.

If the investigated system can be mapped onto a lattice reflecting the different
sites for the different species in the system, a lattice gas Hamiltonian (LGH) can be
developed (analogous to an Ising type model [95] or a cluster expansion [96, 97]; the
first ab initio LGH for surfaces has been published by Stampfl et al. [98]). Any system
configuration can then be defined by the occupation of sites on the lattice, and the
total energy can be expanded into a sum over the on-site energies F 0

i (i.e. the energy
of an isolated species on a lattice site i) and the interactions V between the different
lattice sites .

H =
∑

i

niF
0

i +
∑
ij

Vijninj +
∑
ijk

Vijkninjnk + . . . (5.7)

The sums run over all lattice sites. Vij is the interaction between two particles on
lattice sites i and j (also called pair-interaction) and resp. Vijk is the interaction pa-
rameter involving three particles on sites i, j and k (trio-interaction). The interaction
parameters must be symmetric, i.e. Vij = Vji. nl are the occupation numbers, i.e.
nl = 0 denotes, that site l is empty, and nl = 1, that site l is occupied. If one could
sum over all possible interactions, one should in principle obtain the correct energy.
In practise the sum has to be truncated somewhere, which is a decisive task in con-
structing a LGH. Eq. (5.7) describes the lattice gas Hamiltonian for a system with
only one particle species. Multiple sites are already included, but it should be noted
that for an increasing number of site types, the number of non-equivalent interaction
parameters increases rapidly. Also the description of a multicomponent, multisite sys-
tem is straightforward by suitably expanding Eq. (5.7), with a resulting huge number
of interaction parameters.

The on-site energies F 0
i as well as the interaction parameters V contain a total en-

ergy as well as vibrational energy part. If the vibrational contribution of an adsorbate
turns out to be rather independent of the surrounding atoms, the vibrational part of
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the interaction parameter V can be neglected, which would be expected for the here
discussed systems. To include the vibrational contribution in the on-site energies it
is often sufficient to consider only the ZPE, since in the here discussed temperature
range the vibrational contribution shows only a weak temperature dependence.

The evaluation of such a LGH is extremely fast, since just a simple sum has to
be computed. The challenge in this approach is to determine the correct interaction
parameters. Using DFT to calculate the parameters from first principles is the most
reliable, but also the most demanding approach. A number of structures (at least as
many as the number of interaction parameters) is calculated and the corresponding
lattice gas Hamiltonian for every structure is set up, exploiting the periodic boundary
conditions (i.e. also the interactions between the particle in the unit cell and its
periodic images have to be considered). The obtained set of linear equations can
be solved in several ways. If the number of equations is equal to the number of
interactions, the interaction parameters can simply be calculated by direct inversion.
If the number of calculated structures exceeds the number of interactions, the simplest
approach would be a least square fit. Since the results obtained by direct inversion
are usually not very accurate, the number of calculated structures should always be
larger than the number of interaction parameters.

Another, more difficult task, is to decide, which interaction parameters have to
be included in Eq. (5.7) and which can be set to zero. Since there is no automatized
scheme for the truncation of the LGH, this is not obvious at all. Often the constructed
LGH relies on intuition. One possibility to test the convergence of the LGH is its
ability to predict the energy of computed configurations, that have not been included
into the fitting procedure.

In this work the LGH approach has been used to determine the binding energies
Ebind of different adsorbed species, that are needed to calculate the rates for the
kinetic Monte Carlo simulation (cf. Section 5.2). Using Eq. (5.7) the binding energy
of a particle on site i is given by

Ebind
i = H(ni = 1)−H(ni = 0)

= F 0
i + 2

∑
j

Vijnj + 3
∑
jk

Vijknjnk + . . . (5.8)

By evaluating Eq. (5.8) any binding energy of a particle on any lattice site in any
configuration can be obtained by a simple summation over the interaction parameters.

5.2 Determining The Process Rates

If the possible pathways for the transition from a state i to a state j are known, the
rates for these processes needed in the kMC simulation can be calculated by transition
state theory (TST). In this Section a derivation of the rates of the four main types
of processes (adsorption, desorption, diffusion and reaction) included in the kMC

50



Chapter 5. DFT And Statistical Mechanics

simulation of heterogeneous catalysis is presented (following the derivation given in
Ref. [99]).

5.2.1 Transition State Theory

In the following discussion, transition state theory (TST) is only considered in its
harmonic approximation, also often referred to as Vineyard theory [100]. In the
harmonic TST the pathway connecting the initial and final state is characterized by
a saddle point, the transition state (TS). The vibrational modes in the initial state
and the vibrational modes perpendicular to the reaction coordinate at the transition
state are assumed to be harmonic. The transition rate rTST can then be expressed
as [101]

rTST =

N∏
i=0

ν init
i

N−1∏
i=0

νTS
i

exp

(
−∆E TS

kBT

)
, (5.9)

where ν init
i and νTS

i are the vibrational modes in the initial and transition state,
respectively. N is the number of vibrational degrees of freedom and ∆E TS is the
energy difference between the transition state and the initial state. Since the harmonic
approximation for the vibrational modes is used, which is valid for hν � kBT , the
vibrational partition function for the initial Z init

vib and transition state Z TS
vib can simply

be expressed by

Z init
vib =

N∏
i=0

kBT

hν init
i

, Z TS
vib =

N−1∏
i=0

kBT

hν TS
i

. (5.10)

Eq. (5.9) can then be reformulated to give an expression often seen in TST

rTST =
kBT

h

Z TS
vib

Z init
vib

exp

(
−∆E TS

kBT

)
. (5.11)

In addition to the prerequisite of having a saddle point another basic assumption in
TST is that there is no recrossing of the TS, i.e. once the saddle point is reached the
process will in any case follow the trajectory into the final state. However, if in reality
recrossing of the TS takes place, the TST rate constant overestimates the exact rate,
because some reactive events use up more than a single outgoing crossing. Although
there are quite some approximations involved in deriving the process rates from TST,
the obtained results are usually quite good at solid surface, where the potential energy
surface is rather smooth. For such a simple system the dynamical bottleneck for
transitions most often coincides with the saddle points on the PES. Especially for
determining the rates of diffusion of ad-atoms on a surface this approximation has
been proven very useful.
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5.2.2 Adsorption

The rate of the adsorption of a gas molecule on a surface depends on the impingement
rate and the sticking coefficient. The impingement rate can be calculated using kinetic
gas theory, so that the rate of the adsorption of a gas phase species i on a surface site
of type st can be written as

rads
i,st(T, pi) = S̃i,st(T )

piA√
2πmikBT

. (5.12)

Here, A is the size of the surface unit cell and S̃i,st is the local sticking coefficient, which
gives the fraction of impinging particles, that actually stick to the surface. Since the
impinging gas phase particles have randomly distributed lateral positions as well as
a random distribution over their internal degrees of freedom and Maxwell-Boltzmann
distributed velocities, S̃i,st provides a statistical average over these degrees of freedom.
The local sticking coefficient will become equal to the more commonly investigated
initial sticking coefficient Si,0 [87, 102], if there is only one site within the surface unit
cell. For a kMC simulation, though, a specific rate of the adsorption for each site has
to be considered, therefore Si,0 can not be used for systems with more than one site
type, since it does not contain site specific information.

To consider the influence of the lateral position of the impinging particles over
the unit cell the concept of an active area inspired by the so-called hole model for
adsorption [103] is applied. Here, it is assumed, that only particles of species i with
an initial lateral position within a certain area Ai,st around the adsorption site st of
the total area A can actually stick to this site. The index i indicates that the active
area can vary for different gas phase species. The local sticking coefficient will then
be reduced by a factor

Ai,st

A
≤ 1 . (5.13)

Inserting this expression into Eq. (5.12) it becomes obvious, that this factor effectively
reduces the impingement rate. Only particles impinging within the active area Ai,st

can contribute to the site specific adsorption rate rads
i,st. The adsorption rate is thus

independent of the choice of a specific surface unit cell, but only depends on the active
area for the respective site type and particle species. The sum over all active areas in
a surface unit cell can not be larger than the unit cell area itself, i.e.∑

st

Ai,st ≤ A , (5.14)

because otherwise the number of considered sticking particles would exceed the orig-
inal overall impingement rate.

In a classical picture an average over the internal degrees of freedom and the ve-
locities would be described by the ability to overcome an energy barrier ∆Eads

i,st along
the pathway to the surface. If all particles within the same active area would see the
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same adsorption barrier, the local sticking coefficient would be given by

S̃i,st(T ) =

(
Ai,st

A

)
exp

(
−

∆Eads
i,st

kBT

)
. (5.15)

In the more general case of a high dimensional potential energy surface (PES) ∆Eads
i,st

would correspond to the highest barrier along the minimum energy pathway (MEP),
cf. Fig. 5.2. It can be expected, that on a more complicated PES not all the particles
having a sufficiently high kinetic energy to overcome ∆Eads

i,st actually follow the MEP.
Some of the particles will travel along pathways exhibiting higher energy barriers, at
which they can be reflected. This will further decrease the sticking probability by a
factor f ads

i,st ≤ 1, so that Eq. (5.15) can be written in a more general form as

S̃i,st(T ) = f ads
i,st (T )

(
Ai,st

A

)
exp

(
−

∆Eads
i,st

kBT

)
. (5.16)

Whether a particle is steered along the MEP or not, depends on its initial state, i.e. the
initial lateral position inside the surface unit cell A and the internal degrees of freedom.
The calculation of f ads

i,st would require dynamical simulations of trajectories of particles
impinging on the surface. Since quite a number of such trajectories are needed to
obtain a statistically meaningful average and each trajectory requires information
about a large part of the PES [87], the computation of f ads

i,st is rather demanding.
An alternative way to determine f ads

i,st is TST. As explained in Section 5.2.1 the
application of TST requires a saddle point, i.e. the adsorption process needs to be
activated. Since f ads

i,st quantifies the dependance of the sticking probability on the
lateral position and internal degrees of freedom of the initial state, it can then be
approximated by the ratio of all accessible states at the TS and in the initial gas
phase state

f ads
i,st ≈ f ads,TST

i,st =
zvib

i,st,TS

zi,gas

. (5.17)

In the harmonic approximation all degrees of freedom in the TS are vibrational, so
that only the vibrational partition function zvib

TS,i,st is needed. To calculate the partition
function at the TS and in the gas phase comparably less information about the PES
are needed than for the dynamical simulations mentioned above. Nevertheless the
identification of the TS is essential to this approach. Several methods have been
developed to find the minimum energy pathway and in particular the corresponding
saddle point. Depending on the complexity of the investigated PES identifying the
TS can easily become the computational bottleneck in determining the rates. For an
overview about transition state search algorithms see e.g. Ref. [104].

5.2.3 Desorption

Since the desorption process is the reverse process to the adsorption, the detailed
balance criterion (Eq. (5.4)) has to be fulfilled. The probabilities for going from the
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Figure 5.2: Schematic figure of a 1D reaction coordinate of a adsorption/desorption process. “st”
refers to the adsorbed state of the particle on site st, “gas” to the gas phase state and “TS” to the
transition state. If the transition state is clearly defined, the adsorption (∆Eads) and desorption
barrier (∆Edes) are determined as shown in the figure.

adsorbed into the desorbed state and vice versa (W (Sads → Sdes) and W (Sdes → Sads))
are characterized by the desorption resp. adsorption rate. The ratio of the equilibrium
occupation of the adsorbed and the desorbed state is given by the Boltzmann factor.
The desorption and adsorption rates are then related by

rads
i,st

rdes
i,st

= exp

(
∆Gi,st(T, pi)

kBT

)
. (5.18)

∆Gi,st is the change in the Gibbs free energy between the particle in the gas phase
and in the adsorbed state. If the pV term in the adsorbed state is neglected (i.e.
G ≈ F ) the change in the Gibbs free energy can be expressed as

∆Gi,st(T, pi) ≈ µi,gas(T, pi)− Fi,st(T ) , (5.19)

where µi,gas is the chemical potential of the gas phase and Fi,st the free energy of
the particle in the adsorbed state. The gas phase chemical potential can be further
separated into a total energy part Etot

i,gas and a part ∆µi,gas (cf. Eq. (4.38)) containing
the translational and internal (i.e. rotational and vibrational) degrees of freedom

µi,gas(T, pi) = Etot
i,gas + ∆µi,gas(T, pi) . (5.20)

The free energy of the particle in the adsorbed state can also be divided into a total
energy part and a vibrational contribution

Fi,st(T ) = Etot
i,st + F vib

i,st (T ) = Etot
i,st − kBT ln(zvib

i,st) . (5.21)
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Combining Eq. (5.18) to (5.21) the ratio between adsorption and desorption rate can
be rewritten as

rads
i,st

rdes
i,st

= exp

(
(Etot

i,gas + ∆µi,gas(T, pi))− (Etot
i,st − kBT ln(zvib

i,st))

kBT

)

=zvib
i,st exp

(
∆µi,gas(T, pi)− Ebind

i,st

kBT

)
,

(5.22)

where Ebind
i,st is the binding energy of a particle i at site st with respect to the gas phase

as shown in Fig. 5.2, i.e. Ebind
i,st = Etot

i,st − Etot
i,gas . Thus in addition to the adsorption

rate only the binding energy Ebind
i,st as well as the vibrational partition function zvib

i,st in
the adsorbed state have to be known to calculate the desorption rate.

Also for the desorption rate an expression based on TST can be derived. Starting
from Eq. (5.22) the explicit expression for the adsorption rate obtained from TST is
inserted

rdes
i,st =rads

i,st

1

zvib
i,st

exp

(
−

∆µi,gas(T, pi)− Ebind
i,st

kBT

)

=
zvib

i,st,TS

zi,gas

(
Ai,st

A

)
exp

(
−

∆Eads
i,st

kBT

)
piA√

2πmikBT

· 1

zvib
i,st

exp

(
−

∆µi,gas(T, pi)− Ebind
i,st

kBT

) (5.23)

This expression can be much simplified by the following considerations. The partition
function zgas,i for a particle in the initial state of an adsorption process (cf. Eq. (5.17))
can be divided into a translational part and the internal degrees of freedom, i.e.

zi,gas = ztrans,2D
i,gas zint

i,gas = A
2πmikBT

h2
zint

i,gas . (5.24)

Also the translational and internal contribution to the chemical potential of the gas
phase can be separated, giving

∆µi,gas(T, pi) = −kBT ln

[(
2πmikBT

h2

)3/2
kBT

pi

]
− kBT ln(zint

i,gas) (5.25)

Substituting zi,gas and ∆µi,gas(T, pi) in Eq. (5.23) by the expressions given in Eq. (5.24)
and (5.25) will then yield the again rather simple expression for a desorption rate

rdes
i,st =

(
Ai,st

A

)(
zvib

i,st,TS

zvib
i,st

)(
kBT

h

)
exp

(
−

∆Edes
i,st

kBT

)
, (5.26)
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with

∆Edes
i,st = ∆Eads

i,st − Ebind
i,st = Etot

i,st→gas,TS − Etot
i,st (5.27)

being the desorption energy as shown in Fig 5.2. Thus for the calculation of the des-
orption rate based on TST again only knowledge of the transition state and the initial
state, in this case the adsorbed state, is needed. By applying TST in the harmonic
approximation the prefactor for the rate can be estimated without involving compu-
tationally demanding dynamical simulations. If the accuracy of this approximation is
sufficient, depends on the investigated problem. Also, if there is no defined TS for a
specific process, the application of harmonic TST is in any case invalid.

5.2.4 Diffusion

In a diffusion process the particle i moves from a site st to a site st′. If an appropriate
saddle point along the diffusion pathway can be identified, analogous to the previous
considerations harmonic TST can be applied to obtain the corresponding rate of
diffusion. Similarly to Eq. (5.26) the diffusion rate is given by

rdiff
i,st→st′(T ) = fdiff,TST

i,st→st′ (T )

(
kBT

h

)
exp

(
−

∆Ediff
i,st→st′

kBT

)
(5.28)

with

fdiff,TST
i,st→st′ (T ) =

zvib
i,st→st′,TS

zvib
i,st

(5.29)

and

∆Ediff
i,st→st′ = Etot

i,st→st′,TS − Etot
i,st . (5.30)

Just as the adsorption and desorption barriers (cf. Eq. (5.16) and (5.26)) the diffusion
barrier denotes the maximum barrier along the minimum energy pathway of the dif-
fusion process. The reverse process for the diffusion st → st′ is simply the backward
diffusion st′ → st. Thus, in determining the process rates for these two events the
detailed balance criterion (Eq. (5.4)) must be considered to assure the attainment of
thermal equilibrium.

5.2.5 Reaction

Following the above outlined derivation for the different rates, also a reaction process
can be treated equivalently. If a reaction coordinate containing a saddle point can be
established, the reaction rate can be determined using TST. The general form of the
reaction rate is then given by

rreac
i→f (T ) = f reac,TST

i→f (T )

(
kBT

h

)
exp

(
−

∆Ereac
i→f

kBT

)
, (5.31)

56



Chapter 5. DFT And Statistical Mechanics

with now i denoting simply the initial state and f the final state of the reaction
process. ∆Ereac

i→f is the reaction barrier determined by the difference in energy between
the initial and the transition state

∆Ereac
i→f = Etot

i→f,TS − Etot
i (5.32)

The prefactor f reac,TST
i→f can again be obtained from the ratio of the partition functions

in the transition and initial state. With this, a rate of every possible reaction process
can in principle be calculated. The most difficult task here is finding an appropriate
reaction coordinate and transition state. If the rates are used in a kMC simulation
it is also important to consider detailed balance (cf. Section 5.1.1). Thus the reverse
reaction process has to be defined and an appropriate rate has to be taken into account.

In the kMC simulations presented in this work the considered reaction processes
can in general be described by two particles A and B adsorbed on lattice sites st and
st′ reacting to form the product C, which then readily desorbs into the gas phase, i.e.

Ast + Bst′ → Cgas . (5.33)

Such a reaction can equivalently be described as an associative desorption process,
where the desorption barrier is given by the corresponding reaction barrier. The
reverse process is then the dissociative adsorption of C onto the lattice sites st and
st′. The adsorption barrier for this process is given by the sum of the reaction barrier
and the binding energy of the reacting particles A and B on the surface (cf. Eq. (5.27)).

5.3 Summary

The combination of density functional theory and statistical mechanics provides a
possibility to transfer information gained in the microscopic regime into the meso- and
macroscopic one. Using kinetic Monte Carlo simulations the actual time evolution of
the system can be followed over an extended time up to even seconds. This is achieved
by only considering so called rare events, while appropriately coarse graining over
the original microscopic motions of the system. The decisive parameters of a kMC
simulation are then the lattice representing the system, the processes describing the
evolution of the system and the corresponding process rates. A connection between
kMC and DFT is established in the determination of the process rates. The rates can
be derived using transition state theory and the for this needed information about the
potential energy surface is provided by DFT.

The clear advantage of this approach is the independence of the simulation parame-
ters from experimental results. Thus the results of the simulations can be analyzed on
the basis of the included processes. By comparison with experimental data the qual-
ity of the kMC model (lattice and processes) can be checked and possibly improved.
If the rates are not obtained from electronic structure calculations but by fitting to
experimental results, the quality of the model is much more difficult to verify. Pro-
cesses, which have been overlooked in the modeling, might be summarized in some
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effective (unphysical) parameter with an effective rate obtained within the fitting pro-
cedure. Usually such fitted parameters exhibit a very small or no transferability to
other systems or environmental conditions.

The most difficult and unsystematic part in a kMC simulation to date is the iden-
tification of relevant processes. Although some processes might be rather obvious,
others might be overlooked or be completely unexpected. If a relevant process is
missing from the beginning, of course also the results of a kMC simulation will miss
the true physical behavior of the real system.

To overcome this limitation, some alternative approaches have been developed
within recent years. One possibility is on-the-fly kMC [105], where the relevant pro-
cesses are identified during the simulation by finding (all) possible pathways for the
escape from the current state and the corresponding saddle points using the dimer-
method [106]. Another possibility is accelerated molecular dynamics [107, 108]. Here,
the classical trajectory is retained, but stimulated to find an appropriate escape path-
way faster then a classical MD simulation. It should be noted though, that on the one
hand such methods do not depend on the setup of a complete rate catalog, but on the
other hand also here there is no guarantee for finding all possibly relevant processes.
In addition these methods are usually computationally much more demanding. If a
system is well described within a kMC approach as discussed in this Chapter, the kMC
simulation provides a much more efficient way to follow the trajectory of a system
over a mesoscopic time scale.
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