
Chapter 2

Density-Functional Theory

2.1 The Many-Body Problem

Since the formulation of the Schrödinger equation in the 1920s the ultimate goal of
quantum mechanics has been to find at least approximate solutions of this equation
for systems containing more then just two mutually interacting particles (like the one-
proton and one-electron structure of the hydrogen atom, for which an exact solution
can be derived). The result would be a powerful tool to understand and predict
material properties without depending on experimental data. The time-independent,
non-relativistic Schrödinger equation can be written as

HΨ(xi,RA) = EΨ(xi,RA) . (2.1)

The equation describes an eigenvalue problem of the Hamilton operator H with the to-
tal energy E of the system as eigenvalue and the many-body wave function Ψ(xi,RA)
as eigenfunction. Any system is then explicitly characterized by the corresponding
wave function Ψ(xi,RA), which depends on the combined spatial and spin coordi-
nates of the electrons xi = (ri, σi) and the spatial coordinates of the nuclei RA (for
an introduction to quantum mechanics see e.g. Refs. [32, 33]). A dependence on the
spin coordinates σi is necessary, since in contrast to a relativistic treatment, where
the electron spin arises naturally, in the non-relativistic approach the electron spin
has to be introduced additionally. In atomic units (i.e. me = ~ = e = 1) the Hamilton
operator for a system containing N electrons and M nuclei is given by
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. (2.2)

Here, the indices i and j run over the N electrons whereas A and B run over the
M nuclei. ∇2

i is the Laplacian operator acting on particle i, mA is the mass of the
nucleus A and ZA its nuclear charge. rij is the distance between particles i and j, i.e.
rij = |ri − rj|, resp. riA = |ri − RA|. The Hamilton operator consists of five parts:
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the kinetic energy operators Te and Tn for the electrons and the nuclei, the Coulomb
interaction between electrons and nuclei Ven and the repulsive interaction between the
electrons Vee resp. between the nuclei Vnn, so that Eq. (2.2) can be shortly written as

H = Te + Tn + Ven + Vee + Vnn . (2.3)

Although the Hamilton operator is known, Eq. (2.1) is far too complex to be solved
due to the large number of variables the wave function Ψ depends on. In a system
containing N electrons and M nuclei there are 4N + 3M degrees of freedom resulting
from the 3N spatial coordinates, {ri}, and N spin coordinates, {σi}, of the electrons
and the 3M spatial coordinates, {RA}, of the nuclei, respectively. A first step in
simplifying Eq. (2.1) is the Born-Oppenheimer approximation [34]. Since the nuclei
are much heavier than the electrons (already a factor of ∼ 1800 for a proton), it is
assumed within the Born-Oppenheimer approximation, that the response of the elec-
trons to an external perturbation is much faster than the response of the nuclei. Thus,
the electrons would be able follow any movement of the nuclei quasi instantaneously
and might then be considered as basically moving in a constant field generated by the
nuclei at fixed positions. The kinetic energy term Tn for the nuclei in Eq. (2.3) is set
to zero and the repulsion term for the nuclei Vnn enters the total energy as a constant.
With this first approximation the electronic Schrödinger equation is given by

HeΨe(xi) = [Te + Ven + Vee]Ψe(xi) = EeΨe(xi) (2.4)

with the electronic Hamilton operator He, the electronic wave function Ψe(xi,RA)
and the electronic energy Ee(RA). The Born-Oppenheimer potential energy surface
can then be obtained by calculating the electronic energy Ee(RA) via Eq. (2.4) and
the interaction term between the nuclei Vnn for any given position {RA} of the nuclei.

Although the Born-Oppenheimer approximation simplifies the original Schrödinger
equation considerably, the electronic part in Eq. (2.4) is still only numerically solv-
able by introducing further approximations. One fundamental approach to solve the
electronic Schrödinger equation is the Hartree-Fock approximation [35, 36]. Here the
many-body problem is transferred into a single particle problem by approximating
the electronic wave function Ψe(xi) by a Slater-determinant of single particle wave
functions, which ensures the antisymmetry of the wave function. In the Hartree-Fock
approach the exchange between electrons as well as the correlated motion of electrons
of like spin due to the Pauli principle is taken into account. The correlation resulting
from the Coulomb repulsion for all electrons of like and unlike spins is missing. Al-
though Hartree-Fock theory therefore contains a part of the correlation, the so-called
Pauli correlation, it is commonly agreed that the term correlation is used for all that
is missing in Hartree-Fock. To improve on the original Hartree-Fock approach more
involved theories have been developed [32, 33]. Among the most popular are sec-
ond/fourth order perturbation theory by Møller and Plesset (MP2/MP4) [37], con-
figuration interaction (CI) [32], multiconfiguration self-consistent field (MCSCF) [38]
and coupled cluster approaches (CC) [39]. These so-called wave function based meth-
ods are mainly used for calculating atoms and molecules (containing up to 50 atoms),
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since on the one hand they can be quite accurate, but on the other they also become
quite demanding with an increasing number of electrons.

An alternative approach is given by density-functional theory (DFT). In DFT the
central quantity is not the wave function Ψe(xi), but the electron density n(r). Orig-
inating mainly from solid state physics DFT has become more and more popular also
in quantum chemistry [40–42].

2.2 The Thomas-Fermi Model

The very first approach to use the electron density n(r) of a system to calculate
its total energy was already formulated by Thomas and Fermi in 1927 [43, 44]. The
electron density determines the probability of finding any of the N electrons in a
volume element dr1, while the other N − 1 electrons have arbitrary positions, and is
given by

n(r1) = N

∫
· · ·

∫
|Ψe(x1,x2, . . . ,xN)|2dσ1dx2 . . . dxN . (2.5)

Compared to the wave function the electron density has the advantage, that it only
depends on 3 instead of 3N spatial coordinates, but still contains all information
needed to determine the Hamiltonian, i.e. the number of electrons N , the positions
of the nuclei RA and the charge of the nuclei ZA. N is simply given by the integral
over n(r) ∫

n(r)dr = N . (2.6)

Furthermore n(r) exhibits cusps only at the positions RA and the properties of each
cusp are clearly related to the nuclear charge ZA. Taking into account these consid-
erations it seems at least plausible that n(r) is sufficient to determine all properties
of a system.

In their model Thomas and Fermi formulated the total energy of a system in terms
of its electron density by using the uniform electron gas as a model for the kinetic
energy and treating the nuclear-electron attraction and electron-electron repulsion
classically

ETF[n(r)] =
3

10
(3π2)2/3

∫
n5/3(r)dr− Z

∫
n(r)

r
dr +

∫ ∫
n(r1)n(r2)

r12

dr1dr2 . (2.7)

The actual results obtained by the Thomas-Fermi model for atoms are not very accu-
rate, since there is neither exchange nor correlation included and the Thomas-Fermi
kinetic energy functional is only a very coarse approximation to the true kinetic energy.
For molecules the description is even worse, since no molecular binding is predicted in
the method, which caused the Thomas-Fermi model to be considered as of only little
importance for giving quantitative results in atomic, molecular or solid state physics.
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Nevertheless Eq. (2.7) is the first example of an expression of the total energy as
a functional of the electronic density n(r) without any information about the wave
function Ψ. The correct density is then calculated by applying the variational principle
to Eq. (2.7) under the constraint of Eq. (2.6). At that time it was just assumed that
the variational principle holds for Eq. (2.7). Mathematical this assumption was not
proven until almost 40 years later by Hohenberg and Kohn [45].

2.3 The Hohenberg-Kohn Theorems

In 1964 Hohenberg and Kohn formulated two theorems, which formally justified the
use of the electron density as basic variable in determining the total energy and which
became the foundation of modern density-functional theory [45]. The first theorem
states that for a non-degenerate ground state of an electron gas in an external potential
Vext, there exists a one-to-one mapping between the external potential Vext, the wave
function Ψe and the electron density n(r). The electron density therefore uniquely
defines the external potential (to within a constant). The electronic energy of a system
E can then be formulated as a functional of the electron density n(r)

E[n(r)] =

∫
n(r)Vextdr + FHK[n(r)] . (2.8)

Here, FHK[n(r)] is the Hohenberg-Kohn functional, which does not depend on the
external potential and is therefore universal. FHK[n(r)] contains the electron-electron
interaction Eee[n] as well as the kinetic energy of the electrons Te[n]

FHK[n] = Te[n] + Eee[n] . (2.9)

If one could find an explicit expression for this functional, Eq. (2.8) would provide an
exact solution to the Schrödinger equation. Unfortunately an explicit form of the two
functionals in Eq. (2.9) is unknown.

The electron-electron interaction can further be divided into the Coulomb repulsion
J [n] and a non-classical part Encl[n]

Eee[n] =
1

2

∫ ∫
n(r1)n(r2)

r12

dr1dr2 + Encl[n] = J [n] + Encl[n] . (2.10)

The non-classical part Encl[n] contains all contributions arising from self-interaction,
exchange and Coulomb correlation. Finding good approximations for Te[n] and Encl[n]
is still one of the main tasks in density-functional theory.

The second theorem of Hohenberg and Kohn proofs that the variational principle
holds for the minimization of the energy with respect to the electron density, i.e. for
any arbitrary, well behaved electron density n(r)

n(r) ≥ 0 and

∫
n(r)dr = N (2.11)
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the lowest energy E0 is only given as a functional of the true ground state density
n0(r)

E0 = E[n0(r)] ≤ E[n(r)] . (2.12)

As mentioned above an exact form of the Hohenberg-Kohn functional FHK[n] is not
known. Concerning the variational principle this means that the ground state energy
obtained with an approximate functional FHK[n] does not necessarily have to be an
upper bound for the energy of the true system ground state. The variational principle
can then only give the ground state energy of the system specified by the approximate
functional. The minimization of the energy is performed under the constraint of a
constant number of electrons N (cf. Eq. (2.11)), which results in the Euler-Lagrange
equation

µ =
δE[n(r)]

δn(r)
= Vext(r) +

δFHK[n(r)]

δn(r)
(2.13)

Here, the Lagrange multiplier µ corresponds to the chemical potential of the electrons.

2.4 The Kohn-Sham Equations

In 1965, about a year after the Hohenberg-Kohn theorems were published, Kohn
and Sham proposed a way to approximate the universal functional FHK[n] [46]. The
basic concept of their approach is to separate the kinetic energy functional Te into
the kinetic energy of a non-interacting reference system Ts and an unknown part Tc,
which contains the corrections due to the interaction between the electrons in the real
system. For a non-interacting system of electrons the kinetic energy can be computed
exactly using one-particle wave functions ϕ,

Ts =
N∑

i=1

〈ϕi| −
1

2
∇2|ϕi〉 . (2.14)

The Hohenberg-Kohn functional can then be expressed as

FHK[n] = Ts[n] + J [n] + Exc[n] (2.15)

with the exchange-correlation energy Exc defined as

Exc[n] ≡ Te[n]− Ts[n] + Eee[n]− J [n] . (2.16)

The exchange-correlation energy contains the difference in the kinetic energy between
the real, interacting system and the non-interacting system as well as the non-classical
part of the electron-electron repulsion, Encl. Following this approach the many-body
problem is again mapped onto an effective single particle problem and all unknown
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terms are merged into the exchange-correlation part. The one-particle wave functions
can now be determined by effective one-particle equations under the constraint to
reproduce the density of the real, interacting system. This yields the so-called Kohn-
Sham (KS) equations

[−1

2
∇2 + Veff(r)]ϕi = εiϕi , (2.17)

with the effective potential Veff(r) containing the external potential Vext(r), the clas-
sical Coulomb potential and the exchange-correlation potential Vxc(r)

Veff(r) = Vext(r) +

∫
n(r′)

|r− r′|
dr′ + Vxc(r) . (2.18)

The density of the real system n(r) can be expressed in terms of the Kohn-Sham
orbitals ϕi

n(r) =
N∑
i

|ϕi(r)|2 , (2.19)

and the exchange-correlation potential is given by the derivative of the exchange-
correlation energy in Eq. (2.16) with respect to the density

Vxc(r) =
δExc[n(r)]

δn(r)
. (2.20)

Since the effective potential Veff already depends on the density itself (cf. Eq. (2.18))
the Kohn-Sham equations have to be solved self-consistently. Once a self-consistent
density is calculated, the functional in Eq. (2.15) can be evaluated and thus also the
electronic energy of the system (Eq. (2.8)). Within the Kohn-Sham formalism the
kinetic energy of the non-interacting system is only described indirectly using N one-
particle wave functions, but still exact. Solely the exchange-correlation functional
Exc[n] remains unknown. Finding good approximations for Exc[n] is still one of the
greatest challenges is modern DFT. Some of the basic ideas of constructing exchange-
correlation functional are outlined in the next Section.

2.5 Exchange-Correlation Functionals

The local-density approximation (LDA) is the simplest, but also most widely used
approximation for the exchange-correlation functional. The LDA is based on the
homogeneous electron gas, which describes a system of electrons in an infinite region of
space with a uniform positive background charge to preserve overall charge neutrality.
For any inhomogeneous system it is then assumed that the exchange-correlation energy
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can be obtained by approximating the density of the inhomogeneous system locally
by the density of the homogeneous electron gas

ELDA
xc [n] =

∫
n(r)εxc(n(r))dr , (2.21)

with εxc(n(r)) being the exchange-correlation energy per particle of the homogeneous
electron gas. εxc(n(r)) can be written as the sum of exchange and correlation contri-
butions

εxc(n(r)) = εx(n(r)) + εc(n(r)) , (2.22)

where the exchange part εx(n(r)) can be expressed explicitly

εx(n(r)) = −3

4

3

√
3 n(r)

π
. (2.23)

For the correlation part εc(n(r)) there is no such explicit expression, but there are
highly accurate quantum Monte Carlo calculations for the homogeneous electron
gas [47], which can then be parameterized to be used in DFT [48, 49]. Although the
LDA appears to be a crude approximation for any realistic system, it has been widely
used (especially in solid state physics) and often gives astonishingly good results.
Results obtained within the LDA usually become worse with increasing inhomogene-
ity of the described system, which is particularly the case for atoms or molecules.
Typically, in the LDA binding energies are overestimated and therefore bond lengths
underestimated. Nevertheless the LDA forms the base of practically all currently used
exchange-correlation functionals.

One of the first extensions to the LDA is the generalized gradient approximation
(GGA), where in addition to the density itself, information about the gradient of the
density are considered

EGGA
xc [n] =

∫
n(r)εxc(n(r),∇n(r))dr . (2.24)

Again the functional is usually divided into an exchange EGGA
x and a correlation part

EGGA
c , which are expanded separately. In the development of new functionals some

known behavior of the exact, but unknown functional is usually considered as well
as empirical parameters. For the description of transition metals, which is the main
focus of this work, the many different GGAs provide in most cases better results than
the LDA, especially with respect to binding energies.

In this work the functional developed by Perdew, Burke and Ernzerhof (PBE) [50]
is used. Since the error introduced by an approximate exchange-correlation functional
can not be quantified, some of the calculations in this work have also been repeated
using the LDA and the GGA-RPBE [51] functionals. Comparing the different results
obtained by using different exchange-correlation functionals is then used to provide a
first estimate of the uncertainty arising from the approximate Exc.
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