Stability, Composition and Function of Palladium Surfaces in Oxidizing Environments:

A First-Principles Statistical Mechanics Approach

von Diplom-Chemikerin Jutta Rogal

im Fachbereich Physik der Freien Universität Berlin eingereichte Dissertation zur Erlangung des akademischen Grades

DOCTOR RERUM NATURALIUM

Berlin 2006

Diese Arbeit wurde in der Zeit von Juli 2002 bis Mai 2006 unter der Aufsicht von Herrn PD Dr. K. Reuter am Fritz-Haber-Institut der Max-Planck-Gesellschaft durchgeführt.

Erstgutachter: PD Dr. K. Reuter Zweitgutachter: Prof. E.K.U. Gross Disputationstermin: 19. Juli 2006

Abstract

The catalytic oxidation using transition metals (TM) as the active material is an important technological process, which is still not fully understood. Recently, there has been an increasing awareness that the surface of the TM catalysts employed might be oxidized under the oxygen-rich conditions of the catalytic reaction (ambient pressures of O_2 and other reactant gases). The resulting changes in the composition and structure of the surface can then also strongly influence the catalytic activity of the material.

In the present work the catalytic CO oxidation over the Pd(100) surface is studied as a model system. Recent experimental results for this system suggest that the Pd(100)surface might actually be oxidized under conditions as applied in industrial oxidation catalysis. However, it is still being discussed, if the observed oxidic phase is already a thick, bulk-like oxide film or a nanometer thin surface oxide layer, and if the actual active state of the catalyst under reaction conditions is then mainly dominated by a metallic or an oxidic phase.

To address this topic from a theoretical point of view a multiscale modeling approach has been employed in this work. To describe the system quantitatively on an atomic (microscopic) level density-functional theory (DFT) has been used. The results of the DFT calculations have then been combined with concepts from thermodynamics and statistical mechanics to transfer the information obtained in the microscopic regime to meso- and macroscopic length and time scales.

In a first step the atomistic thermodynamics approach is used to obtain a large scale picture about the thermodynamic stability of different phases in a constrained thermodynamic equilibrium with an O₂ and CO gas phase (i.e. the formation of CO₂ is not considered). Focussing on temperature and pressure conditions representative of technological oxidation catalysis it is found that a thin surface oxide structure or a CO covered metal surface are the relevant system states under these conditions. In a second refining step the stability of the surface oxide structure under steady-state conditions is then investigated using kinetic Monte Carlo (kMC) simulations, now explicitly taking into account the on-going CO₂ formation. The result is that despite the catalytic CO oxidation reaction the surface oxide on Pd(100) is still stable under stoichiometric p_{O_2}/p_{CO} ratios in the gas phase at elevated temperatures. This indicates the importance of this surface oxide and calls for detailed studies evaluating its contribution to the overall catalytic activity.

Contents

1	Intr	oduction	1
Ι	Th	neoretical Background	5
2	Den	sity-Functional Theory	7
	2.1	The Many-Body Problem	7
	2.2	The Thomas-Fermi Model	9
	2.3	The Hohenberg-Kohn Theorems	10
	2.4	The Kohn-Sham Equations	11
	2.5	Exchange-Correlation Functionals	12
3	The	e (L)APW+lo Method	15
	3.1	Choosing A Basis Set	15
	3.2	The APW Method	16
	3.3	The LAPW Method	18
		3.3.1 Semi-Core States	18
	3.4	The APW+lo Method	19
		3.4.1 Semi-Core States	20
	3.5	Mixed Augmentation	20
	3.6	The Full Potential (L)APW+lo Method	20
	3.7	Application To Solids And Surfaces	21
		3.7.1 Integration Over The Brillouin Zone	21
		3.7.2 The Supercell Approach	22
		3.7.3 Surface Core-Level Shifts	22
	3.8	The WIEN2k Code	24
4	DF	Γ And Thermodynamics	27
-	4.1	Ab Initio Atomistic Thermodynamics	28
	4.2	Surface Free Energy	$\frac{10}{29}$
	4.3	The Gibbs Free Energy Of Adsorption	<u>-</u>)
	1.0	4.3.1 One-Component Gas Phase	36
		4.3.2 Two-Component Gas Phases	39

	4.4	Gas Phase Chemical Potential	. 41
	4.5	Summary	. 42
5	DF	Γ And Statistical Mechanics	45
	5.1	Monte Carlo Simulations	. 45
		5.1.1 Kinetic Monte Carlo	. 46
		5.1.2 Lattice Gas Hamiltonian	. 49
	5.2	Determining The Process Rates	. 50
		5.2.1 Transition State Theory	. 51
		5.2.2 Adsorption	. 52
		5.2.3 Desorption \ldots	. 53
		5.2.4 Diffusion \ldots	. 56
		5.2.5 Reaction \ldots	. 56
	5.3	Summary	. 57
II	\mathbf{C}	O Oxidation At Pd(100)	59
6	Pall	adium In A Pure Oxygen Gas Phase	61
	6.1	Oxidation Stages Of $Pd(100)$. 61
	6.2	Thermodynamic Stability	. 65
	6.3	PdO Low-Index Surfaces	. 73
		6.3.1 Structure And Stability	. 73
		6.3.2 Wulff Construction	. 81
		6.3.3 Stability vs. Polarity	. 83
	6.4	Conclusions	. 86
7	Pall	adium In An Oxygen And CO Gas Phase	89
	7.1	CO Adsorption On Pd(100)	. 89
	7.2	Co-Adsorption Of Oxygen And CO	. 91
	7.3	Phase Diagram For $Pd(100)$ In An O_2 And CO Gas Phase \ldots	. 99
	7.4	Conclusions	. 105
8	The	Onset Of Surface Oxide Decomposition	107
	8.1	The Model	. 108
	8.2	The Rates	. 113
		8.2.1 Adsorption	. 113
		8.2.2 Desorption \ldots	. 115
		8.2.5 Diffusion	. 118
		0.2.4 neaction	. 119

9 Summary	And	Outlook
-----------	-----	---------

131

Π	I Appendix	135
\mathbf{A}	Convergence Tests	137
	A.1 PdO Surfaces	138
	A.2 Adsorption On Pd(100) And $(\sqrt{5} \times \sqrt{5})R27^{\circ} \dots \dots \dots \dots$	142
	A.3 Molecular Binding Energies	144
в	Adsorption Structures Involving The $(\sqrt{5} \times \sqrt{5})R27^{\circ}$	149
	B.1 O And CO In A $(\sqrt{5} \times \sqrt{5})R27^{\circ}$ Surface Unit Cell	149
	B.2 O And CO In Larger $(\sqrt{5} \times \sqrt{5})R27^{\circ}$ Surface Unit Cells	162
С	Lattice Gas Hamiltonian	165
Bi	Bibliography	

List of Figures

3	.1	The muffin-tin potential approximation	17
3	.2		19
3	.3		23
4 4 4 4 4	.1 .2 .3 .4 .5 .6	Multiscale Modeling	27 30 32 36 38 42
5	.1	Flowchart for a kinetic Monte Carlo simulation	48
5	.2		54
6 6 6 6 6 6 6 6 6 6 6	.1 .2 .3 .4 .5 .6 .7 .8 .9 .10 .11 .12 .13	The Pd(100) surface	62 63 64 65 68 70 72 74 77 78 79 82 84
7	.1	CO adlayers on Pd(100)	90
7	.2		92
7	.3		94
7	.4		°
		structure	98

LIST OF FIGURES

7.5	ΔG^{ads} for Pd(100) vs. $\Delta \mu_{O}$ and $\Delta \mu_{CO}$ - PBE
7.6	Phase diagram for $Pd(100)$ in an O_2 and CO environment - PBE 102
7.7	Phase diagram for $Pd(100)$ in an O_2 and CO environment - RPBE and
	LDA
8.1	Schematic illustration of the kMC model
8.2	Gas phase conditions of the kMC simulations
8.3	First nearest neighbor interactions in the $(\sqrt{5} \times \sqrt{5})R27^{\circ}$ surface unit
	cell
8.4	Diffusion barriers
8.5	TS search for the reaction of $O+CO\rightarrow CO_2$ on the surface oxide 120
8.6	PES for the reaction of O+CO \rightarrow CO ₂ on the surface oxide $\dots \dots \dots$
A.1	Planewave cutoff test for the PdO low-index surfaces
A.2	K -point test for the PdO low-index surfaces
A.3	Slab-thickness test for the PdO low-index surfaces
A.4	Surface phase diagram for $E_{\text{max}}^{\text{wf}} = 20 \text{ Ry}$ and 24 Ry
A.5	O_2 binding energy vs. E_{\max}^{wf}
A.6	CO binding energy vs. $E_{\text{max}}^{\text{wf}}$

List of Tables

6.1	Lattice constant of Palladium	62
6.2	Lattice constants of Palladium oxide	65
6.3	$\widetilde{E}^{\text{bind}}$ and ΔG^{ads} for adlayers and the surface oxide on Pd(100)	68
6.4	Phase boundaries of oxidation stages of $Pd(100)$	69
6.5	Monkhorst-Pack grids for the low-index PdO surfaces	76
6.6	Surface free energy of all low-index PdO (1×1) terminations	80
6.7	Required lowering of the surface free energy to change the Wulff con-	
	struction	83
6.8	Work function of all low-index PdO surfaces	85
6.9	Binding energies of the topmost oxygen atoms of the low-index PdO	
	surfaces	86
71	Binding energies of CO on $Pd(100)$	01
7.2	Binding energies of O and CO on $Pd(100)$	02
7.2	Binding energies of CO on $(\sqrt{5} \times \sqrt{5}) R27^{\circ}$	94
7.0	Pd-3d SCLSs of $(\sqrt{5} \times \sqrt{5})R27^\circ$ and $(\sqrt{5} \times \sqrt{5})R27^\circ + CO$	97 97
7.5	C-1s SCLSs of $(2\sqrt{2} \times \sqrt{2})R45^\circ$ and $(\sqrt{5} \times \sqrt{5})R27^\circ + CO$	98
7.6	Binding energies of O_2 CO and CO_2	103
7.7	$\Delta G^{ads}(0,0)$ of all relevant structures of Pd(100) in an O ₂ and CO gas	200
	phase	104
8.1	Lattice gas hamiltonian parameters	117
8.2	Diffusion barriers	119
A.1	Monkhorst-Pack grids applied in the cutoff test of the low-index PdO	
	surfaces	139
A.2	Monkhorst-Pack grids for the low-index PdO surfaces	141
A.3	Number of Pd layers in the $(\sqrt{5} \times \sqrt{5})R27^{\circ}$ structure	143
A.4	O_2 binding energy and bond length \ldots \ldots \ldots \ldots \ldots	145
A.5	CO binding energy and bond length	146
A.6	CO_2 binding energy and bond length \ldots	147