
Improving the Quality of Indicator Systems by MoSi –
Methodology and Evaluation

Inaugural-Dissertation
zur Erlangung des akademischen Grades eines

Doktors der Wirtschaftswissenschaft
des Fachbereichs Wirtschaftswissenschaft der

Freien Universität Berlin

vorgelegt von

Dipl.-Volkswirt Veit Köppen
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Abstract

Long term business success highly depends to how fast a company reacts on
changes in the market situation. Those who want to be successful need rele-
vant, up-to-date, and accurate information. Business or economic decisions rely
on indicators. One facet of data quality is the integrity of data. Most of the
main business and economic indicators suffer from statistical discrepancies. These
indicators are based on non-linear equation systems and are normally not crisp,
but random due to measurement errors. Consequently, computation of the corre-
sponding probability distributions is usually not trivial.

Handling uncertainty within indicator systems is a major challenge for im-
proved decision making. Different approaches exist for dealing with uncertainty,
e. g., Fuzzy set theory and the probabilistic method. The shortcomings of both
approaches can be reduced by the use of simulation.

As the Gaussian distribution is not closed under all four arithmetic operations,
there is the need for Markov Chain Monte Carlo (MCMC) simulation to deter-
mine the probability distributions. A combination of data, generated by MCMC
simulation, which is based on prior knowledge about a fully specified non-linear,
stochastic balance equation system with noisy measurements, is proposed for han-
dling uncertainty within indicator systems. The Metropolis Hastings algorithm
enables the use of any computable target probability function. SamPro is the
algorithm that implements the MCMC simulation approach for indicator systems.

The estimation of unobservable quantities of such models is improved by Sam-
Pro and data inconsistencies to the equation system are revealed. MoSi is proposed
as a software tool for the modelling of indicator systems as well as their simulation.
The implementation of the SamPro algorithm is consequently included in MoSi,
as well. MoSi can be used efficiently in the processes of planning, decision making,
and controlling.
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[
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]
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Chapter 1

Introduction

“You can’t control what you can’t measure.“ (DeMarco 1982, p. 3) This frequently
cited statement has been widely used in project management but is also valid
in almost every management context. Quantitative methods are very powerful
in sciences and the evolution of computer techniques has enhanced the usage of
Business Intelligence in almost every area of decision making and control.

Although the usage of business indicators as quantitative elements for the
description of a firm’s state has had a great impact in the last decades, there is
also a part that is indeterminate. McDonough (1963, p. 108) defines this decision
gap “as a conceptual distance between the point where we stop further formal
analysis of a particular phase of a problem, take our best view of what we see,
and leap through or over what still remains unknown to a decision.” In order
to improve the information basis for a decision and reduce the decision gap, the
information degree should be optimised. However, this optimisation is restricted
by the principle of economics (Albach (1961, p. 364);Staehle (1969, p. 35)).

Currently, indicator systems in controlling, decision making, or planning use
crisp data. Excel spreadsheets as well as special software are important com-
panions of managers. In case of different possible values for a specific indicator,
a decision has still to be taken for further investigations. Thus, an important
question is, how to deal with uncertainty of indicators?

Aitchison (1986) introduced the theory of compositional data, where econo-
metric methods are useful only if all variables are linear related and sum up to a
unity. Nevertheless, the linear hypothesis is rarely valid. Therefore the relaxation
of this assumption is a fundamental objective of this thesis.

Kraemer (1991) deals with the problem of uncertainty by introducing classes
of tolerance. The implementation as a control centre that handles such differences
is discussed in Kraemer (1993). An open question of this decision tool is how to
choose the classes, its bounds, and avoid model inconsistencies.

1
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1.1 Problem Statement

Several kinds of uncertainty can occur when using indicator systems. In the fol-
lowing, a short description of some selected factors and application areas is given
that are causes for stochastic information.

• Uncertainty. Uncertainty occurs if only limited knowledge for a state is
available. Predictions of the future, physical measurements or unaccountable
features for a formal model create for instance uncertainty.

• Measurement. Errors measuring is always connected with errors. This
may result from physical processes of the event that has to be measured or
from the measurement instrument.

• Fraud. Fraud and fraud detection are application fields in business control.
Typically, frauds are not considered in common business models. A decision
tool might be helpful to assist fraud detection in a company.

• Forecasting. In order to make decisions based on future outcomes, it is
often necessary to predict future values.

In order support decisions, the usage of all available information is necessary.
This includes stochastic or imprecise information. The following very simplified
example should illustrate the problem.

In a company two major cost factors C1 and C2 exist. For the next period
the sales amount is estimated with 100 million e. This value has an error of 10%.
The overall cost are estimated with 80 million e. C1 will be approximately 45
million e and C2 40 million e. The sum of both cost is not equivalent to the
overall cost of 80 million e.

Therefore two problem solution tasks arise for the management: on the one
hand uncertainty within indicators should be reduced and inconsistency should be
revealed. On the other hand unknown values have to be computed. So the question
arises: how to handle data with uncertainty given a fully specified model?

Addressing and solving such problems is the subject of this thesis.

1.2 Contribution

The main objective of this work is the analysis and the usage of indicator equation
systems with imprecise data. Mathematically necessary restrictions should be
relaxed as far as possible.

A widely known and used methodology dealing with complex stochastic sys-
tems is the Markov Chain Monte Carlo (MCMC). MCMC algorithms have been
extensively described, c.f. Tanner (1993), Chib and Greenberg (1995), Gilks et
al. (1996b), Liu (2001), Robert and Casella (2003), Gamerman and Lopez (2006).
All authors use their own notations, descriptions, and examples of their specific
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domains. A consistent notation of our own is used in this thesis. Examples from
the business area are given and the pseudo code for the most important algorithms
is presented. Furthermore, a brief introduction of the methodology is given.

The major contribution of this thesis is the introduction of the Sampling and
Projection (SamPro) algorithm. As an intermediate result of the simulation pro-
cess several estimates for a single variable are available. SamPro merges this
information and generates an improved estimate. The main properties and as-
pects of this MCMC algorithm are discussed in detail as well. It is important to
underline though, that SamPro is not restricted to MCMC methods. Any other
random number generator can be used as well.

The second contribution of this thesis is Modelling and Simulation (MoSi), a
software prototype for stochastic simulation. Two aspects were essential during
software development. On the one hand, the resulting tool should be easy to use
but not restricted to specific classes of distributions. On the other hand, the tool
should have an acceptable performance while generating precise results. Therefore,
a prototype with a graphical user interface written in Java was developed. The
simulation process is implemented using the statistical programming language R.

A further objective of this thesis is the comparison of the developed method
with other available tools that deal with the topic of decision making using indica-
tor systems. The developed approach is compared to two other software packages.
The comparison presents an analysis and outlines the achieved optimisation of the
MCMC algorithm.

1.3 Thesis Overview

The remaining part of the document is structured as follows.
Chapter 2 introduces business indicator as well as economic indicator systems.

In the literature these systems are presented in different and sometimes contra-
dictory ways. Hence the main indicator systems are described. The developed
method for handling uncertainty in indicator systems can deal with all described
systems and many more.

Firstly, Chapter 2 delivers a brief introduction of the area of modelling. Then,
classical business indicator systems are described. Moreover, this chapter discusses
Balanced Scorecards, introduced by Norton and Kaplan in the early 90s. Their
indicator system not only considers financial indicators, but also non financial
indicators.

The developed methods are not restricted to business indicator systems. Eco-
nomic indicator systems can also be used with methods for handling uncertainty.
Therefore, economic indicator systems are included in Chapter 2.

Modelling of indicator systems raises the question how uncertainty is handled.
Chapter 3 describes several related methodologies. Firstly, Fuzzy set theory and
its application to equation systems are introduced. Secondly, FuzzyCalcr, an
Excel Plug-In is briefly described, which is based on this theory.
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Stochastic models can be utilised for univariate or multivariate functional de-
scription. Some selected cases are given as well as the basic model for errors in
the variables. Furthermore, an approximation approach is presented.

In order to relax the assumptions made in the stochastic (general least squares)
approach, simulation is an appropriate choice. The basic concepts and defiances of
Monte Carlo simulation are presented in Chapter 3. This includes Markov Chain
Monte Carlo techniques that facilitate more generalised algorithms for random
number generation.

In the context of indicator systems it is necessary to deal with more than one
estimate for a given variable. An algorithm merging several estimates per variable
is presented.

The presented Metropolis Hastings algorithm is very powerful if it is applied
in its frame of discernment. Robustness of the developed MCMC technique is a
mandatory requirement in order to reduce misinterpretations. This leads to an
algorithm for stochastic indicator system simulation called SamPro.

A comparison of three different approaches is presented in Chapter 4. In
the first study the Fuzzy set, GLS approximation, and simulation approach are
evaluated. Another comparative study deals with different effects of stochastic
properties: (1) skewness, (2) dependency, and (3) non-linearity. The chapter is
closed with an example of a stochastic Balanced Scorecard implemented with the
SamPro algorithm.

Chapter 5 addresses the issue of software design and implementation. A short
description of the tool MoSi is given. For this purpose Unified Modeling Lan-
guage (UML) 2.0 notation is used, and a software demonstration is given. The
implementation itself is done in the programming languages Java and R.

Finally, Chapter 6 concludes the thesis. The main contributions are sum-
marised and additionally a discussion on further issues is given.



Chapter 2

Business and Economic
Indicator Systems

This chapter discusses several business and economic indicator systems. Most of
them are widely used or adapted to the needs of companies or countries. However,
none of the described indicator systems is able to capture the uncertainty of the
indicators. This is partly due to the fact that they just represent the past and
no measurement errors are made explicit. However, if immediate reaction on
variations or differences of current values is required, then the introduction of
probability or possibility is inevitable. A further advantage of using indicators
with uncertainty is the projection into the future. In this way the vision of a
company or the goals of a country or organisation can be adjusted more precisely.
Nevertheless, indicator systems with uncertainty will not prevent that indicators
cannot be matched with an underlying indicator system. If the uncertainty is too
large, new or more precise information will not be delivered.

Data might violate an underlying equation system. That means the data is
in conflict with the rules that generate this data. Two possible error sources are
plausible. The underlying model is not true or the data might be wrong. Definition
or balance equations can be seen as error free and therefore conflicting data has
to be investigated. A major assumption is that the underlying equation system
holds true. For this reason indicator systems are presented that are widely used
and build up from definitions, balance or behaviourial equations. Despite the
usage of business indicator systems economic indicators systems are presented as
well.

In this chapter, the indicators are presented independent of being crisp or ran-
dom indicators. First, general requirements are presented together with the no-
tation and introduction of general indicator systems. After that, several classical
business indicator systems are presented. The Balanced Scorecard as a manage-
ment tool is thoroughly described. In conclusion, a description of a collection of
economic indicator systems is given.

The management of a company is in need of indicators due to the following

5
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facts (Aichele 1997, p. 4),(Schott 1988, pp. 13):

• Separating the relevant from the nonrelevant in the complex and abundance
business environment and obtaining aggregated information from unsorted
data.

• To think of relationships rather than monetary factors and ti mind produc-
tivity instead of production.

• Looking on causal relations (cause and effect) and the interaction of positive
and negative factors.

• To benchmark the company’s competing position and to reject in-time to
market changes.

• To implement a goal oriented management tool for thinking and action.

Business indicators are quotients, ratios and indices that represent business factors,
such as production amount, sales, or capital. Economic indicators are build up
to represent main factors of economies, such as Gross Domestic Product (GDP),
investments, or consumption.
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2.1 Modelling

An indicator system is an abstract, isomorphic model of a part of the real world.
In order to reduce the complexity of information systems, the basic principles of
correct modelling have to be considered. This is also important for the modelling
of indicator systems.

2.1.1 System and Models

The basic principle of correct modelling is founded on accounting. The following
six principles build the frame of the essential model quality criteria: (Rosemann
et al. 2005, p. 48)

• accuracy

• relevance

• economy

• clarity

• comparableness

• methodical layout.

The basic principle of accuracy means that the represented view on the reality
is correct. A qualitative model requires both the structure and the behaviour to
be correct. In other words it has to be semantically sounds. In the case of an
indicator system, the indicators and the connection between them have to be
properly modelled. On the other hand, the syntax can be distinguished from this
point.

The basic principle of relevance says that a model has to map all relevant cir-
cumstances from the user’s perspective. Irrelevant information has to be avoided.
A business indicator model should contain all indicators that are relevant for the
objectives of the managers. An indicator that is directly required for a report
is just as relevant as all indicators that generate information for this particular
indicator like right hand side variables of an equation where the left hand side
variable is the report indicator. Irrelevant indicators do not have any relations to
relevant ones. Nevertheless, an over determined indicator system is not a model
with irrelevant information because an over determined system can reveal model
inconsistencies or reduces uncertainty. A good rule for the relevance of a model is
that there is an information loss of the user if some part of the model is eliminated.

The basic principle of economy tries to balance the cost and the benefit of
a model. In the case of modelling, the amount of work of generating the model
should be reasonable compared to the usage of the indicator system. Already
existing models reduce the cost. Such models are intensively discussed in the
literature. Efficiency determination is a complex task and practically only an



8 2. Indicator Systems

estimation of the benefit is feasible. Another aspect is the time or computational
effort and the additional value of different simulation runs. In order to optimise
simulation runs, indicators and equations that do not add new information to the
user can be omitted. However, indicators that generate additional information
even on an intermediate level might be considered as elements of the model.

The basic principle of clarity states that a model is only useful if the user
of the model is able to understand it. In other words, a clear model should have
a reasonable degree of intuitive readability. Methodical requirements should be
low. In the context of indicator systems mathematical requirements such as the
representation of equation systems can be set as standard. However, the meaning
of the indicators and the units should be given to the user as meta information,
i.e., with comments or definition of the indicator because different user groups
might interpret indicators in different ways. A formal, mathematical description
is usualy self-explanatory.

The basic principle of comparableness brings model comprehensive usage
into account. This might be necessary if a complex model is created in different
teams and the stand alone models have to be integrated. There are two main
options for the creation of comparable models. It is generated either by using a
meta model which does not only describe the elements of a model but also the
requirements, or by following guidelines that describe the steps of the process of
model generation. While in the first approach all objects can be validated, the
second approach commits the model architect to the guidelines.

The basic principle of methodical layout is based on the fact that the com-
plexity of the real world is reduced by models but the model complexity has to
be handled, too. Well defined interfaces are necessary for corresponding models.
Input data of a model that is generated by another model should refer to the data
description part of the exporting model.

These six principles can be implemented in many modelling ways. The high-
est level of specificity is reached in specific modelling techniques or in modelling
conventions. A modelling technique describes how circumstances are represented
in a model. A modelling convention is on the other hand an individual form of
modelling technique.

In the following the basic elements of business indicators and indicator systems
are defined. Indicators appear in every area of business and economy. In produc-
tion output quantity is measured, in marketing client contacts are used and an
investment is evaluated by the generated cash flow. However, in economics indica-
tors such as personal consumption, corporate taxes and Gross Domestic Product
(GDP) are used. For more details on economic indicator see Section 2.4. Business
and economic indicators condense the complex reality. However, it is necessary to
know the structure and the properties of the indicators. Due to the fact that this
work uses indicators and indicator system in the context of simulation, a definition
of indicators and indicator systems is given. Business and economic indicators are
used interchangeably from here on. The terms indicator, ratio, characteristic or
index, measure, parameter, or benchmark will be used synonymously.
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Although business and economic indicators have been used for a very long
time, a generally accepted definition does not exist. There are several opinions as
to what a business indicator is exactly. Antoine (1958), Staehle (1969), Reichmann
(2006), Gladen (2003) all define business indicators in different manners. The main
discrepancy is the use of absolute indicators.

(Staehle 1969, p. 52) defines business indicators as ratios and absolute indica-
tors that refer to numerical ascertainable business facts in a concentrated mode.

Gladen (2003) distinguishes between indicators in the broader sense and in-
dicators in the narrower sense. “Business indicators in the narrower sense are
measurements that are deliberately highly consolidated as absolute or relative val-
ues to report in a concentrated form about a numerical ascertainable circumstance.
[...] Business indicators in the broader sense are quantitative information that are
pre-processed for specific requirements of the analysis and controlling of the com-
pany” (Gladen 2003, transl. p.12). Indicators in the narrow sense are a subset of
indicators in the broader sense.

Pre-processing and consolidation leads to an information loss. Nevertheless
this loss is intended and called an “unloading of information” (Gladen 2003, p.
12).

Indicators can be characterised by different modes. The following three modes
are taken from Meyer (1976). A categorisation of business indicators into business
functions like supply, production or finance can be applied. A structural mode can
have a quantitative aspect, a focus on time structure or reference to topics. Under
the statistical methodical aspect indicators are handled as absolute or relative
numbers with additional information about the error term.

In case indicators are treated with a statistical method, a further differenti-
ation into absolute and relative indicators is necessary. In the English literature
business indicators are often equated with ratios, which is too restrictive. A busi-
ness indicator can have absolute or relative values. Fig. 2.1 gives a taxonomy of
possible business indicators.

indicator

absolute
relative

quotientamount value nondimensional ratio index

10 litre 1000 € 25 ½4 : 7 106

percentage

quotientratio index

50%57% 106%

Figure 2.1: Hierarchy of Indicators

An absolute indicator can represent an amount, i.e., refined barrels of oil,
a value like available cash or a simple fact. Absolute indicators can be stand
alone indicators, means, sums or differences. Although stand alone indicators
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have limited explanatory power, they are the most used indicators in business and
economics. Examples for the absolute indicators are given below:

categorisation example
stand alone indicator number of employees
mean average inventory on hand
difference profit
sum balance sheet total

Relative indicators can be distinguished into indicators of quotients, ratios and
indices. Quotients show structural dependencies and are often used in benchmarks.
They can be represented as

quotient =
indicatorsubset

indicatortotal quantity
.

Ratios are used for the comparison of characteristics that are similar but have
different dimensions. A formal definition of a ratio is:

ratio =
quantity type 1
quantity type 2

.

Indices are useful to compare conditions to another time point or to total volume.
An index in time t can be written as

indext =
quantityt

quantity0

· 100.

Quantity0 is the basis indicator.
Examples of relative indicators within a business area are given below:

categorisation example
quotient fraction of equity to total capital
ratio ROI
index price index

Definition 2.1.1 (Business Indicator). Let G be the set of all goods and k : G→
R a measurable mapping. k is called business indicator for every subset of goods
q ⊂ G with q 7→ k(q).

In this work, a business indicator is a statistic on business that allows analysis
of business performance and predictions of future performance.

A single business indicator might be of relevance for executing a planning or
controlling function. However, most business cases can be adequately managed
if several indicators are employed (Müller 1990, p. 56). Moreover, heavily con-
densed business indicators tend to diverge from reality, thus necessitating further
indicators. Such a group and partial ordering of indicators constitutes an indicator
system with a decreasing degree of compression (Gladen 2003, p. 12).
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Due to the fact that indicators are interrelated, the relationships should also
be qualified. Cause-and-effect relations, correlations or equations can model these
relationships between indicators. Figures and their relations provide information
in their totality (Horváth 1994, p. 555).

An indicator system should be clear and easy to use. The clarity of the model
is another restriction for the use of further indicators, and the basic principles
of correct modelling play an important role. In the case of an indicator system
with a decreasing degree of aggregation, subordinated indicators are only used if
required.

Definition 2.1.2 (Indicator System). (K, r) is called indicator system where K
is the set of indicators and ∀k ∈ K are indicators as defined in Def. 2.1.1. r :
Kn → Km with n, m ∈ N+. r is a relation between a certain number of indicators
k ∈ K.

Def. 2.1.2 formalises indicator systems. In the following a more concrete rep-
resentation, necessary for the simulation of indicator systems, is given.

A fundamental assumption of this work is that all necessary indicators are
quantified, i.e. have a metric scale. It is not necessary that all indicators of an
indicator system are characterised by a stochastic distribution function. Due to
the fact that the indicators are connected within a system, as stated in Def. 2.1.2,
further stochastic elements occur due to error propagation.

Simulation of indicator systems requires an extension of Def. 2.1.1 and Def. 2.1.2.
A business or economic indicator can be part of the measurement process or the
result of using the indicator system.

An indicator system consists of m business indicators. The true but unobserv-
able state variables for these business indicators are given by the m-dimensional
vector ξ = (ξ1, . . . , ξm). The relations between the variables are defined with a
(n, m) matrix H where rank(H) = n and n ≤ m. ζ = Hξ are balance equations
and ξ as well as ζ are only observable with additive errors that are latent:

x = ξ + v (2.1.1)
z = Hξ + w. (2.1.2)

The errors u =
[

v
w

]
∼ F (·) are distributed according to a distribution function

F . Further assumptions are, that v ⊥ w, E[u] = 0, H is measurable. This means
that the system H of relations between ξ, ζ is error free. The only errors that
occur are given by u. A possible distribution function F might be a Gaussian
distribution N(0,

∑
uu). Note, that the matrix H can be generalised to a function,

ζ = H(ξ), as described in Lenz and Rödel (1991).

2.1.2 Visualisation

In this section, a graphical style for showing and using business indicator systems
is introduced and discussed. The equation graph is explained, which is a useful
model for deriving the steps of solving the business model.
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Model Graph

In this section, graph representation is used to describe equation systems. Using
restriction on the operators allows resolving the equation system with algorithms
from graph theory. Two kinds of nodes exist in an equation graph. One node rep-
resents variables and the other operators. A restriction of mathematical operators
is, that they are separable. This means for such an operator the equation can be
uniquely solved for all variables of the equation.

An arc connects an operator node with a variable node. The direction of
an arc states whether a variable is a Left Hand Side (LHS) or Right Hand Side
(RHS) variable. An arc pointing to the operator node denotes an input variable or
RHS variable. An arc with direction to the variable node implies a LHS variable.
Furthermore, the arcs are numbered to obtain the structure of the equation. The
arcs directed to an operator are numbered starting by 1 and the outgoing arcs are
also numbered starting by 1 if more than one arc exists.

The following example illustrates an equation graph.

Example 2.1.1 (Equation Graph). The equation graph for the following equation
is given in Fig. 2.2:

A = (B + C) ∗D − E/F.

A

x

+ E

CB

D F

-

/
1 2

2

1 2

1

2

1

Figure 2.2: Equation Graph (Parser Tree) for Equation A = (B + C) ∗D − E/F

The division operator takes as input E and F where arc number 1 determines
the dividend and arc number 2 constitutes the divisor. Division has only one result
(quotient), which is the subtrahend for the subtraction operation. Addition of B
and C is also numbered here but is due to commutative property of addition not
really necessary. The sum of B and C is one factor of multiplication whereas D is
the other. The product is minuend and the difference is A.
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In the case of commutative operators, the preorder traversal can be omitted in
order to reduce the complexity of this graphical representation and to obtain a
more user friendly representation. A further, simplifying assumption is that each
equation consists of only one operator. In the case of an equation with more than
one operator, this assumption can be achieved if the equation is split into several
equations and intermediate or dummy results are introduced.

A

x

+

E

CB

D F

+

x

Dummy 3Dummy 2

Dummy 2

Figure 2.3: Another Equation Graph for Equation A = (B + C) ∗D − E/F

In Fig. 2.3, the same equation as in the example described above is used. Sub-
stitution and introduction of three dummy variables guarantee that each equation
consists of one operator. Division and subtraction are exchanged by rearrangement
so that only commutative operations occur.

The advantage of one operator per equation and the usage of commutative op-
erators lies within the reduction of graphical interpretation. This even simplifies
the algorithm structure to solve the equation system. However, this is connected
with the introduction of further (dummy) variables and the operator node restric-
tion. Consequently, the original equation system might not be obvious anymore.

A fundamental advantage of the graphical representation is that the relational
structure is more obvious. Disjoint graph elements suggest that there is no rela-
tionship between these parts of the model.
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2.2 Classical Business Indicator Systems

Business indicator systems have been traditionally used in order to understand,
evaluate and rate the current or future state of a business. The evaluation of
companies or even countries has become more important than ever. Reasons for
that are, that knowing the current state is the basis for improvements. Internal
decisions and decision making processes for a business’ future rely upon evalua-
tions.

The evaluation of a company depends upon the view of the analyst. Financial
indicators are often used for business analyses for both internal and external users.
There is no restriction to a single company or business sector. Even countries have
to evaluate their current states, for instance to prove credit status or report past
activities.

Due to the multitude of activities and events within a single company it is
necessary to abstract from details. This is achieved by indicators that represent
meaningful aggregates.

This section elaborates on classical business indicator systems. Subsequently,
a new indicator system is described.

2.2.1 DuPont System of Financial Control

The chemical company E.I. DuPont de Nemours developed a key indicator system
for financial aggregation in 1919. (Schwarz 2002) The top key indicator in this
system is the Return on Investment (ROI)(Staehle 1969, p. 69). This indicator
stands for the periodical success of the company. It is the quotient of the profit and
the capital that was used in the same specific time period. Another interpretation
of the return on investment can be drawn if the complete profit of an investment is
used. However, this interpretation is in most cases not applicable for the DuPont
system. The reason is that the DuPont system is used for periods (i.e., quarterly
or annual reports) and most investments will be applied to overlapping periods.
ROI can be computed by the following formulas:

• ROI = profit
sales ·

sales
equity

• ROI = profit margin · capital turnover

• ROI = profit
equity

The DuPont measurement system is a financial indicator system. The original
Model developed by DuPont is shown in Fig. 2.4. The top business indicator
is ROI, which can be computed as a product of capital turnover and sales prof-
itability. The business indicator capital turnover is a quotient of sales and capital,
which is divided in current assets and capital assets.

The DuPont measurement system is still used. However, definitions of some
business indicators were changed and several new business indicators were added
because businesses grow more complex and the measurement has to be done on
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Return on Investment

Capital Turnover Sales Profitability

Earnings
Capital

Profit Margin

Sales Sales

Debt Capital / Interest

Cost of Production Sales Cost Administration CostsStorage Costs

Current Assets Capital Assets

Stock CashReceivables

Figure 2.4: The Original DuPont Measurement System
adapted and translated from Aichele (1997, p.93)

a lower level, cf. Fig. 2.5. For instance, the ROI was modified over time and

Return on Investment

Capital Turnover Sales Profitability

Earnings
Capital

Profit Margin

Sales Sales

Interest of Debt CapitalDebt Capital Equity

Stock Cash

Receivables

Profit

Fixed Costs (FC)

Sales

Running Costs

Specific FC

Common FC

Current Assets Capital Assets

Fixed Assets

Financial Assets

Figure 2.5: The Extended DuPont Measurement System
adapted and translated from from Staehle (1969, p.69)

key indicators like Economic Value Added (EVA) or Return on Capital Employed
(ROCE) are also used nowadays.

In this work the simplified DuPont system is used due to the fact that all
necessary operations exist but the complexity of the indicator system is manage-
able. The simplified DuPont system is shown in Fig. 2.6. This simplified business
indicator system consists of seven business indicators that are related as follows:

transaction volume = profit + cost
capital turnover = transaction volume÷ capital

profit margin = profit÷ transaction volume
return on investment = profit÷ capital

Note, that all indicators are separable. Further equations like
capital = transaction volume/capital turnover can be used for computing the variables.
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Return on Investment

Capital Turnover Profit Margin

ProfitCapital

Costs

Transaction Volume Transaction Volume

Transaction Volume

Figure 2.6: The Simplified DuPont Measurement System
adapted and translated from Müller and Lenz (2003)

Another representation for the simplified DuPont Systems is given in Fig. 2.7.
Here the notation is used as described in Section 2.1.2. The operators in the
DuPont Equation Graph are restricted to addition and multiplication. However,
due to the fact that these indicators are separable, all other equations can be
resolved.

Transaction
Volume

Profit

Capital

Costs

Capital 
Turnover

Profit Margin

Return On 
Investment

+

x

x

x

Figure 2.7: The Equation Graph of the simplified DuPont Measurement System
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Advantages of the DuPont system

• it can be used for a whole com-
pany or only for a fraction or de-
partment.

• it has a control and allocating
function.

Disadvantages of the DuPont system

• the system can only be used for
companies where a profit can be
acquired.

• the system is orientated in the
short run only. Long term po-
tentials will not be considered.

• due to the usage of mean values
it might be aspiring to reach only
the average.

2.2.2 ZVEI - indicator system

The German Electrical and Electronic Manufacturer’s Association extended the
DuPont system in the 70s. The actual version of their business indicator sys-
tem was released in 1989. The system consists of 128 business (Zentralverband
Elektrotechnik- und Elektronikindustrie e.V. ZVEI 1989, pp. 185–207) and 121
auxiliary indicators (Zentralverband Elektrotechnik- und Elektronikindustrie e.V.
ZVEI 1989, pp. 209–220). All main business indicators are part of balance sheet
or profit and loss account. The system is independent from industries but allows a
detailed business analysis. Both growth and structure of a company can be eval-
uated. While growth is analysed with comparing absolute indicators, structure
analysis uses and compares absolute and relative indicators. The top indicator
of interest in the German Electrical and Electronic Manufacturer’s Association
(ZVEI) system is Return On Equity (ROE).

Fig. 2.8 summarises the main focusses in the ZVEI system. The upper part
represents the growth analysis where periods or different time points of the com-
pany are evaluated. The lower part in the indicator depicts the structural analysis.
Here the return on equity is the top indicator. Further indicators can also be in-
corporated into the ZVEI business indicator system.

In the growth analysis business volume, employees and business success are
evaluated. The Business indicators are all part of annual accounts. The nine key
indicators of the growth analysis are:

• business backlog,

• sales,

• added value,

• personnel cost,

• employee,

• earnings before interest, taxes, depreciation and amortisation (EBITDA),
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Figure 2.8: The ZVEI Business Indicator System
translated from Zentralverband Elektrotechnik- und Elektronikindustrie e.V.

ZVEI (1989)

• profit or loss on ordinary activities,

• profit for the year, and

• cash flow.

In the structural analysis the current indicators and the respective indicators
from the previous period are investigated. The business indicators are related via a
mathematical equation system and ordered in a hierarchical way like in the DuPont
system. Nevertheless the top indicator of interest is return on equity. Analogues to
the DuPont system business indicators are segmented into elements that describe
the indicators. Thus, the cause-and-effect relation can be investigated. Due to
the fact that the ZVEI system consists of more indicators, a better differentiation
and a more precise cause-and-effect analysis can be done. The main focus is set
on the following indicators and corresponding formulas:

• investment in per cent of equity/assets

• constitution in per cent of assets/current assets

• liquidity on sales in per cent current assets/current liability

• liquidity on collection in per cent (cash + receivable)/current liability

• absolute liquidity ratio in per cent cash/current liability

• finance in per cent equity/bonded capital
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Figure 2.9: Structural Analysis of the ZVEI Business Indicator System
translated from Zentralverband Elektrotechnik- und Elektronikindustrie e.V.

ZVEI (1989, p. 118)

Restrictions of the ZVEI system are large number of auxiliary indicators that
are required in a formal way but do not have a business background, the compila-
tion of indicators is arbitrary and the system is mostly used for internal purposes.
(März 1983, pp. 75)

2.2.3 RL business indicator system

The RL system was developed by Reichmann and Lachnit (1976). It focuses on
profitability and liquidity. This system aims to assist the management control
of the corporation. The key indicators in this system are profit and liquidity.
The system is divided into a common and a special part. The common part
is permanently used within the management for planning and controlling. The
special part is used for completion depending on the company. Fig. 2.10 simplifies
the RL business indicator system (Aichele 1997, p. 103). The characteristics of
the RL system are:

• The system is useful for controlling liquidity and profit.

• Only a few fiscal business indicators are involved.

• The system is not designed for making a connection to business processes.

• Most of the indicators are evaluated once a year or quarterly.
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Common Part

Special Part

Profit

ROE Return on Assets ROI Capital Turnover Cash FlowSales Profitability Working Capital

Liquid Assets

LiquidityOperating Result

Share of TurnoverProduct ProfitFixed Costs Profit Margin Interval of BudgetingVariable Costs

Figure 2.10: The Simplified RL Business Indicator System
translated from Aichele (1997, p. 103)

The common part refers to the whole corporation, whereas the special part is
divided into a product specific and a division specific business management. The
system aims to control profit and finance at the same time.

In the common part business indicators are used as management information
that is independent from the type of business (Lachnit and Müller 2006, p. 269).
It is not sufficient to manage a company just by looking at profitability like ROI.
This is only one view on the investment profitability. Further indicators such as
Return on Equity (ROE) and return on assets on the complete annual profit and
loss (Lachnit and Müller 2006, p. 270) have to be involved in the evaluation of a
company. The key indicators within the common part are ordinary operating result
and capital employed (Lachnit 1998, p. 37). A company can only survive if the
ability to meet financial obligations is given at anytime. This ability is determined
by revenues and expenditure dependent on time, where flow and stock indicators
are used to summarise this information (Lachnit 1998). The top business indicator
in the liquidity part is the stock of liquid assets.

The special part is used to supplement the controlling system with specific
company needs and concrete implementation of the RL system (Lachnit 1998, p.
32). This extension can be based on the industry sector, the structure of the
company or size of the business. Under these characteristics it is reasonable to
divide the special part into RL of products and of organisational units (Lachnit and
Müller 2006, p. 280). The key indicators within the product specific part have to
go more into detail and ordinary operating result and capital employed should be
decomposed dependent on individual products, product groups or organisational
framework. The business indicator cash flow profit margin makes the effect of
payment for products and product groups clear. This underlines the liquidity in
the product specific part. The organisational specific part divides the profit and
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finance components into the organisational framework (Lachnit and Müller 2006,
p. 280). This might be departments, burden centre, position or profit centres.
Unexpected and exceptional circumstances can be reported in a case based special
part. In this part all changes are specified that are not element of the other parts.
Problem oriented modules have to be developed for the particular abnormality
(Lachnit 1998, p. 40).

2.2.4 Further Classical Business Indicator Systems

The Ratio au Tableau de Bord is a business indicator system developed in
1959 by Lauzel and Cibert (1973). It gives more in-depth information than the
DuPont system and includes a comprehensive analysis of balance sheet and P&L.
(Aichele 1997, p. 98) This system is aligned to management of business. It is

Return Profitability

Sales Profitability Capital Turnover

Analysis of Cost of Sales

Analysis of Costs

Analysis of Cost Units

Analysis of Cost Centres

Analysis of Capital Structure

Analysis of Asset and 
Liabilitie Structure

Policy of 
Capital Spendings
and Amortisation

Stockkeeping Analysis of Liquidity

Figure 2.11: Ratio au Tableau de Bord
adapted and translated from (Lauzel and Cibert 1973, p. 26)

useful for internal controlling and for delegating decisions. Fig 2.11 summarises
the system. The business indicators of this system are elements of a matrix that
relates factors of production with reasons of changes.

The Managerial Control Concept is the result of a heuristic case study
where 200 US-American businesses were involved (Tucker 1961). This system is
divided into the following functional areas: production, sales and finance. Different
management levels and therefore different indicators for analysing are assigned to
each area. The indicators are differentiated into elementary indicators, optimised
indicators and aggregated indicators. While elementary indicators establish simple
relations between operational measures (Tucker 1961, p. 29), optimised indicators
connect specific operational circumstances to obtain a deeper insight into a certain
area (Tucker 1961, p. 51). Aggregated indicators are obtained by combining
elementary and optimised indicators. They are used in the management process
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as a decision basis. Fig. 2.12 summarises the Managerial Control Concept from
Tucker.
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Figure 2.12: Managerial Control Concept

The Pyramid Structure of Ratios was developed by Ingham and Harring-
ton in 1958 (Ingham and Harrington 1962). This system divides the indicators
into primary, supporting and descriptive indicators. The system is very similar to
the DuPont system but uses only relative indicators. It was developed assuming
that the indicators would build the basis for permanent international comparison.
The primary ratio is comparable to the ROI in the DuPont system or the ROE
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Figure 2.13: Pyramid Structure of Ratios
adapted from (Ingham and Harrington 1962, p. 467)

in the ZVEI system. It represents the top indicator for decision making. This
indicator, also called Operating Profit Assets Employed, is directly derived by two
other ratios, which are called supporting ratios. Indicators from the supporting
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ratio level might be compounded by other indicators that grant a deeper insight
into business work. Here two levels are differentiated, the general explanatory
ratio level and indicators from the specific explanatory level. Fig. 2.13 represents
a specification of the Pyramid Structure of Ratios (Ingham and Harrington 1962,
p. 467).
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2.3 Balanced Scorecard

2.3.1 Background

“If you can’t measure it, you can’t manage it.” (Kaplan and Norton 1996, p.
21) With this sentence the Balanced Scorecard (BSC) inventors Robert S. Kaplan
and David P. Norton made a statement that describes a common problem in the
industry: you cannot manage a company if you do not have the performance
indicators to manage and control your company. So what about indicators like
the mental satisfaction or the motivation of your staff. Can those be measured?
With the BSC, Kaplan and Norton represent a management tool for bringing the
current state of the business and the strategy of the company together. It is a
result of previous indicator systems such as the DuPont system. All these systems
use key indicators to represent a company’s business. However, a BSC is more
than a business indicator system (Friedag and Schmidt 2002). Kaplan and Norton
(2004) emphasise this in their further development of Strategy Maps. Fig. 2.14
shows an overall involvement in a company’s strategy by managing the company
with a BSC.

Figure 2.14: BSC Strategy Approach

The Balanced Scorecard as a management method is a top down process, where
the company’s vision is formulated in the upper level. Two strategic management
levels build up the strategies to reach the vision. The company’s vision describes
where the company will go, whereas the company’s strategy characterises the
way how the vision is reached. In the strategic controlling process the company
strategies are worked out and are transported into the company. The foundation
on which the strategies are built is measurement. Due to the complex structure
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of businesses, measures are depicted to describe the current state of the company
in dependence of perspectives. The strategy is translated into target values for
the measurements. On the other hand, aggregation from measures to business is
used to reduce the convoluted numbers of measurements. The strategic planning
process evaluates the strategies and set targets to fulfil the strategies. Here it
is defined which measures are used and collected. Target values that should be
reachable by a given period of time are set. Aggregation with business indicator
systems are done and a selection of indicators that fit best to the strategies is
conducted in order to have a breakdown of the company. Fig 2.14 illustrates the
BSC managing structure.

Kaplan and Norton (1996) introduced in the early 90s their concept of eval-
uating business with the Balanced Scorecard method. This method is used to
integrate all relevant aspects into the business success. The Balanced Scorecard
is a measurement system that is built up not only by financial business indicators
but also by all indicators from key aspects of the company. Kaplan and Norton
see this system also for communicating the business strategy into the business
processes or units. The relevant aspect in the Balanced Scorecard approach is the
linkage between business indicators and the business strategy. A company’s strat-
egy is not explained in a single value. Kaplan and Norton suggest the combination
of key indicators from different perspectives. In their book (Kaplan and Norton
1992, p. 72), the perspectives Finance, Customers, Internal Business, and Inno-
vation and Learning are pointed out as the most relevant. Friedag and Schmidt
(2002) states that a Balanced Scorecard should not be restricted to these four
perspectives. Instead, the most relevant company perspectives should be taken.
Other perspectives for a company’s Balanced Scorecard are Supplier, Creditor,
Public sector, Communications, Organisation and Implementation. However, the
business indicators have to integrate the whole business. Furthermore, a balancing
of the scorecard indicators is necessary.

However, before a decision is made which indicators are used to build up the
BSC and the corresponding perspectives, the importance of the indicators has to
be examined. Kaplan and Norton divide indicators into hard and soft objectives
(depending on the measurability of objectives, e. g., net gain versus a social status
of an employee) and short and long-term objectives (which gives the management
the possibilities to predict the company’s future, e. g., employee fluctuation or
customer satisfaction). Kaplan and Norton also consider cause and effect. The
three main aspects are:

1. all indicators that do not make sense do not have to be included in the BSC,

2. while building a BSC, a company should be differentiated between perfor-
mance and result indicators, and

3. all non-monetary values should influence monetary values.

Based on these indicators, a complete system of indicators which turns into
or influences each other can be created. Reichmann (2006) describes this mea-
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Figure 2.15: Translating a Strategy into Operation
adapted from Kaplan and Norton (1996, p. 9)

surement as an essay of bringing different performance indicators together in a
sensible way, so that indicators complete their information and result in a com-
mon goal. E. g., all indicators of the well known Du-Pont-Schema result into the
common goal of return of investment. One of the disadvantages of traditional
indicator systems (e. g., the Du-Pont-Schema) is that a company’s management
concentrates on short-term periodical gains, without regarding the financial future
of their company. Additionally, non-monetary indicators like customer satisfaction
are excluded. Omitting these values stands for losing qualified information that
can help the management to drive a company’s strategy better. Tackling these
disadvantages Kaplan and Norton published the BSC, a milestone of modern per-
formance measurement.

The BSC considers the following four perspectives:

• Financial Perspective to reflect the financial performance like the return on
investment

• Customer Perspective to sum all indicators of the customer/company rela-
tionships

• Business Process Perspective to give an overview about key business pro-
cesses

• Learning and Growth Perspective which measures the company’s learning
curve
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By splitting a company into four different views, the management of a company
gets the chance to have a quick overview over the main perspectives of their com-
pany and divide these into usable and unnecessary layers. The management can
focus on its strategic goal. It is able to connect qualitative performance indicators
with one or all business indicators.
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2.4 Economic Indicator Systems

The National accounting system is one of the most well-known economic indicator
systems. Countries all over the world use this system to report their financial
status to organisations such as the United Nations (UN). The system of national
accounts was developed in the 1940s. Both the Measures of National Income and
Output and the United Nations System of National Accounts are derived from
that system.

The Measures of National Income and Output are used to describe an economy
in a past period. These measures are often used in order to control the goals
that were originally set by policy. United Nations System of National Accounts
(SNA) is an international standard. In the next sections, both systems are briefly
described. This is followed by a discussion of relevant challenges.

2.4.1 Measures of National Income and Output

The Measures of National Income and Output are part of macroeconomics. They
show an ex post quantitative overview of the economic development of an economy.

The main indicator of the system is GDP (Kuznets 1971). It was developed
in the 1940s by Simon S. Kuznets for the Bureau of Economic Analysis, United
States Department of Commerce (2000). Other important indicators are Gross
National Product (GNP), National Income and Disposable Income (DI). The GDP
evaluates all produced goods and services. It can be computed in three possible
ways. From a methodological point of view they are equivalent:

• Origination Account by all sectors of the economy,

• Application Account of all produced goods and services and

• Distribution Account of all components of income.

In Germany the GDP is computed only with the Origination Account and
the Application Account. The Distribution Account is not applicable since the
information on profits of companies is not sufficiently available (Statistisches Bun-
desamt 2006). In the United States the Origination Account is not used for the
computation of the GDP.

Another way to represent the measures of national income and output is given
in Fig. 2.16, where a graph is used. This is analogous to the depiction of the
DuPont model as in Section 2.1.2 and 2.2.1. Here the operators are only of type
addition. The variables are the indicators of the economic system. It can be easily
seen, that he GDP can be resolved on different ways. Chapter 3 explains how the
information on more than one equation can be exploited.

The ways in which the GDP can be computed are explained in the following.
Usually, available data determines the methods used for computation of GDP. If
it is possible to compute the GDP in at least two ways, the values of GDP have
to be made consistent with each other.
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Figure 2.16: Model Graph of “Measures of National Income and Output”

All indicators are evaluated at fair market values because they reflect the
relative value of goods. In a good running economy the fair market values reflect
the relative satisfaction that the consumers gain from the goods. The fair market
value is the result of fair market prices times the sold quantity of products.
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Origination Account

In the Origination Account the GDP resolves from the output value minus the
payments in advance. This intermediate result is called gross value added. The
GDP is the result of adding taxes on goods (indirect taxes) and substraction of
subventions. The origination account can be depicted as follows:

+ output value
- payments in advance
= gross value added
+ indirect taxes
- subventions
= gross domestic product

Application Account

This approach is also called flow of goods approach. The application account
uses private consumption, business investments in capital in the economy, govern-
ment expenditures on final goods and services as well as imports and exports
of the economy. This account is often used in defining the GDP. Symbols for
the variable names like private consumption (C), private investment (I), public
spending (G) and net exports (NX) are common. Private consumption can easily
be calculated because it is restricted to the end products that the consumers buy
or consume. However, private investments are the spending of households that
are used for company assets, bonds or other capital investments. Public spending
are the expenditures that the government expend. This can be subventions or
transfers but also public investments. The net exports are the difference between
the exports (X) into and the imports (M) from other countries.

+ consumption C
+ investment I
+ public spending G
+ exports X
- imports M
= gross domestic product Y

Distribution Account

The Distribution account is also called flow of income and cost approach. Here
the cost of business activities are used. The cost can be salaries and wages, eco-
nomic rent and capital profit. Starting point in this account is national income
which is generated by production of goods and services by the citizens. The na-
tional income is the sum of fee of employees and the capital income. In order
to obtain the net national income from the national income, taxes on manufac-
turing goods and taxes on imports have to be added and subventions have to be
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subtracted. Adding depreciation as the consumption of fixed assets delivers the
GDP.

+ employee fee
+ income on investments and businesses
= national income
+ taxes on imports and manufacturing
- subventions
= net national income
+ consumption of fixed capital
= gross domestic product

The GDP reflects all produced goods and services in a country in a fixed
time period. Usually, this time period is a year. However, the GDP is not the
only indicator of interest. In Fig. 2.16, further important indicators like GNP =
GDP + NR are given.

The Gross National Product (GNP) represents the total value of all end prod-
ucts and services produced by the factors of production within the country. Only
sold elements are included. Other indicators are Gross National Income (GNI),
National Income (NI) and Net National Product (NNP). The GDP was developed
in the 1940s to check if the American economy can be sustained during World
War II. Criticism on the system of Measures of National Income and Output can
be found in Jesinghaus (2000).

2.4.2 United Nations System of National Accounts

The United Nations System of National Accounts (SNA) (another abbreviation
is UNSNA) was initially established in 1953. It was revised in 1968 and 1993
and will be revised once again in 2008. The system “is a conceptual framework
that sets the international statistical standard for the measurement of the market
economy“ (UN Statistics Division 1993).

Carson and Honsa (1990) describe the system and emphasise that it creates a
comprehensive, integrated picture of the economy. The system integrates financial
and nonfinancial stock and flow accounts of an economy. A comparison between
other countries or economies that use this system is more feasible and therefore
an improvement for all users of the system. The main accounts of the SNA are
the following:

• The production account inherits components of the gross output of an econ-
omy.

• Incomes generated by production are consolidated in the primary distribu-
tion of income account.

• Transfers including the social spending are combined in a separate account.
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• The expenditures of households build another account.

• The capital account records the values of the non-financial assets and shows
the change in net worth due to saving and capital transfers.

• The Financial transactions account involves all financial assets and liabilities.

• Changes in the asset values account are concerned about results of flows that
are not transactions.

• The Balance Sheet provides an overview of assets and liabilities at a certain
time.

• The external transactions account captures transactions between resident
institutional sectors of the total economy and transactions with non-resident
units in the rest of the world.

Two main aims are connected with the SNA system. On the one hand, it
facilitates comparisons between countries. On the other hand, it is a guide for
countries in developing their own economic accounting systems.

Transactors and transactions are grouped to enable analysis, forecasting and
policy. Transactors are governments, enterprises, and households. Further trans-
actors are either treated separately or combined with others. Production, income
and outlay, capital accumulation and finance build up transactions in the SNA
accounts. The SNA is more fully integrated and more comprehensive in coverage
compared to the U.S. economic accounts, cf. Carson and Honsa (1990).

2.4.3 Petroleum Economic Indicators

This section presents an economic indicator system that is used in the field of oil
or gas exploration. The system is used by a Petro-Canada company. It can be
built up on annual, quarterly or monthly data and be used for decision support
like what-if analysis. The considered model of main petroleum indicators consists
of 12 attributes that are connected with 8 equations. Related models can be found
in Kemp and Kasim (2003), Moroney and Berg (1999).

The model graph is shown in Fig. 2.17. For example, Profit depends upon
Revenue and Royalty.

Variables in Fig. 2.17 are of two types. If data for variables is available these
variables have a darker colour. The equation system consists of balance, behaviour,
as well as definition equations. Information about variables upon which no prior
knowledge is available can be computed. These variables are light-coloured in
Fig. 2.17.
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Figure 2.17: EcoOil Model
adapted from Kemp and Kasim (2003) and Moroney and Berg (1999)

Capital Expenditures = Total Exploration Cost + Total Development Cost

Operating Expenditures = Fixed Operating Cost + Well Repairs + Administrative

Operating Expenditures + other Operating Expenditures

Revenue = 0.4 · Production · (Oil Price − Tax)

Royalty = 0.125 · Revenue

Operating Cash F low = 0.725 · (Revenue − Royalty) − 0.4 · (Capital Expenditures

+Operating Expenditures) − Contractor Tariff

Cash F low Post = 0.725 · (Revenue − Royalty) − 0.4 · (Capital

Expenditures + Operating Expenditures)

Profit = 0.275 · (Revenue − Royalty)

Net Present V alue = 0.91 · Operating Cash F low

In this model no longitudinal interactions of the variables are assumed and
therefore it is sufficient to view only one period at a time. With the help of this
indicator system a realistic decision upon oil and gas explorations and production
can be easily achieved.
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2.5 Challenges for Indicator Systems

Two different effects occur by using equation systems and data. On the one hand,
new information can be generated, e. g., aggregated information for controlling.
On the other hand, it can be checked whether the data fits to the model or not.
If the equation system consists of definitions or balance equations, the model can
be assumed as valid. In this case, a validation of a data set is possible.

Data quality validation plays an important role. When data is collected, mea-
surement errors may happen. Moreover, the aggregated data has due to error
propagation a stochastic character as well. Therefore, the corresponding variables
can be considered stochastic.

Using crisp data instead of stochastic data generates two major problems. For
one, it is necessary to enforce that the collected crisp numbers reflect the indicator
states as good as possible. Second, the underlying model should not be violated by
the data. In the ideal case both problems do not occur. However, measurement
intervals instead of real values, imprecise instead of precise data, or even fraud
instead of honesty reflect reality better. For that reason aggregations of complex
systems should be used as uncertain indicators.

Uncertainty can be expressed in several ways and uncertainty about numbers
is, for instance, possible by a description as random variables or by the use of
Fuzzy sets or numbers. By using such representations the validation checks become
more complex. Therefore new methods or algorithms have to be used for handling
imprecise data within indicator systems. Another goal besides data validation
should be the reduction of uncertainty of variables.

In the context of a full information the problem of inconsistent data does not
occur. However, in reality only partial information is available. The more complex
the indicator system is the more likely the information is stud. Partial information
may lead to different estimates or computation for the same indicator. This results
in inconsistencies. Therefore a method for merging the partial information and to
resolve inconsistent data is required.

Methods will only be used in practice if the usage is user-friendly: the method
should be implemented in tools that facilitate its usage and results must be deliv-
ered “in-time”.



Chapter 3

Methodology of Handling
Imprecise Data

This chapter presents the methodology for handling imprecise data. Both, the
probabilistic and the possibilistic approach are considered. The probabilistic ap-
proach uses a statistical model. An analytical solution for statistical models is
presented. Due to restrictions of the approach with respect to the probability
distribution family involved, simulation is as an alternative for solving equation
systems with error in the variables. The special characteristics of simulation are
explored. Fuzzy set theory is another methodology to deal with imprecise data
and is considered, too.

35
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3.1 The Possibilistic Approach

This section presents the possibilistic approach. Fuzzy set theory is used to de-
scribe imprecise data. Zadeh’s extension principle is the basis for operations with
Fuzzy sets (Zadeh 1965, 1975a,b,c).

Objects and elements can be grouped in sets. Same property values of interest
group elements together in one set, different property values partition elements
into different groups. In classical set theory an element can be a member of a
group or not. This can be expressed by the characteristic function µ.

Definition 3.1.1 (Characteristic Function). A characteristic function µA of a set
A ⊆ X maps all elements of a basic set X as follows:

µA(x) =

{
1 if x ∈ A

0 else.
(3.1.1)

3.1.1 Fuzzy sets

Fuzzy set theory goes back to Zadeh (1965). In contrast to classical set theory the
codomain is not restricted to {0; 1}, but to the interval [0, 1]. The characteristic
function is called membership function.

Definition 3.1.2 (Membership Function). A Fuzzy set A on X is defined by the
pair (x, µA(x)) and

A = {(x, µA(x))|x ∈ X, µA(x) ∈ R ∧ µA(x) ∈ [0, 1]}. (3.1.2)

The properties of a membership function µA(x) are:

• µA(x) ≥ 0 ∀ x ∈ X.

• The range of µA(x) should be normalised so that supx∈X [µA(x)] = 1.

The support supp(A) of a Fuzzy set A is a set of all elements x where µA(x) > 0.
It is essential that

supp(A) = {x ∈ X|µA(x) > 0} and supp(A) ⊆ X. (3.1.3)

If supp(A) consists of exactly one element x1 with µA(x1) = 1 x1 is called a crisp
value or a singleton. In Fig. 3.1 a Fuzzy set A with a triangular membership
function is shown. Other forms of membership function are possible. A crisp data
set B is also given in the figure.

The empty set ∅ can be defined ∀x ∈ X : µ∅(x) = 0. The identity of two
Fuzzy sets A and B with the same basic set X is given iff ∀x ∈ XµA(x) = µB(x).

The α-cut of a Fuzzy set Aα is defined as:

Aα = {x ∈ X|µA(x) > α} with 0 ≤ α ≤ 1. (3.1.4)
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1

0

µ(x)

x

membership function µA(x)

supp (A)

crisp set B 

Figure 3.1: A Fuzzy Set A with Triangular Membership Function and a crisp set
B

1

0

μ(x)

x
A
α

α

Figure 3.2: An α-cut Fuzzy Set

It delivers all elements that have a membership function value greater than α.
Fig. 3.2 shows the α-cut Aα of a Fuzzy set. Here the α-cut consists of two

intervals.
A Fuzzy set A is a subset of a Fuzzy set B (A ⊆ B) if for all x ∈ X µA(x) ≤

µB(x). A is called a proper subset of B (A ⊂ B) if for all x ∈ X µA(x) < µB(x).
It is essential that (Rommelfanger 1994, Zimmermann 1991):

A ⊆ A

A ⊆ B ∧B ⊆ A⇔ A = B

A ⊆ B ∧B ⊆ C ⇔ A ⊆ C

A ⊆ B ⇒ supp(A) ⊆ supp(B)
A ⊆ B ⇒ Aα ⊆ Bα

Definition 3.1.3 (Convex Fuzzy Set). A Fuzzy set A with a membership function
µA(x) is called convex if

µA(c) ≥ min{µA(a), µA(b)} ∀a, b, c ∈ X and a ≤ c ≤ b.
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A Fuzzy set is convex iff all α cuts are connected (Bothe 1995, p:35). Fig. 3.1
shows a convex Fuzzy set, whereas in Fig. 3.2 a non-convex Fuzzy set is depicted.

Definition 3.1.4 (Cardinality of Fuzzy Set). The cardinality of a Fuzzy set A is
analogous defined to cardinality of a set:

|A| =
∑
x∈X

µA(x) with X finite.

3.1.2 Operations on Fuzzy Sets

In the previous section Fuzzy sets were introduced. In this section operations
on Fuzzy sets are presented. First, logical operations like negation, union and
intersection are defined. This is followed by Zadeh’s Extension principle. The last
part of this section deals with Fuzzy arithmetic.

Operations on Fuzzy Sets

The most important logical operators are not, and and or. They are used to con-
nect information. An adaption of these operators to Fuzzy sets with complement,
union and intersection is possible (Bothe 1995, p. 25).

The creation of complement means a negation of the statement corresponding
to a set. The complement of the statement “the apple is green” is “the apple is
not green”.

Definition 3.1.5 (Complement of a Fuzzy Set). The complement AC of a Fuzzy
set A on the basic set X with the corresponding membership functions µAC and
µA is defined as:

µAC (x) = 1− µA(x) ∀x ∈ X.

Fig. 3.3 shows a Fuzzy set A and its complement AC .
The following statements can be drawn from Def. 3.1.5:

[AC ]C = A

A ⊆ B ⇔ BC ⊆ AC .

Whereas for the union and for the intersection of sets different but equivalent
functional descriptions are available, Fuzzy set theory according to Zadeh (1965)
uses min-criterion for union and a max-criterion for the intersection.

Definition 3.1.6 (Union of Fuzzy Sets). Given two Fuzzy sets A and B with
their corresponding membership functions µA and µB the union A∪B is given by:

µA∪B(x) = min{µa(x), µB(x)} ∀x ∈ X.

The union of a Fuzzy set A and B is given in Fig. 3.4.
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Definition 3.1.7 (Intersection of Fuzzy Sets). For two Fuzzy sets A and B with
their corresponding membership functions µA and µB the intersection A ∩ B is
defined as:

µA∩B(x) = max{µa(x), µB(x)} ∀x ∈ X.

The intersection of a Fuzzy set A and B is given in Fig. 3.6.

1

0

μ(x)

x

A AC

Figure 3.3: A Fuzzy Set A with Com-
plement AC

1

0

μ(x)

x

A B

A n B

Figure 3.4: Union of Fuzzy Set A and
B

1

0

μ(x)

x

A AC

A n AC

A    ACn

A    ACn

A    ACn

A    ACn
Figure 3.5: Union and Intersection of
Fuzzy Set A and Complement AC

1

0

μ(x)

x

A B

A     B

n

A     B

n

Figure 3.6: Union of Fuzzy Set A and
B

For union and intersection of Fuzzy sets the following laws exist (Rommelfanger
1994, p. 20):

commutative law A ∩B = B ∩A
A ∪B = B ∪A

associative law (A ∩B) ∩ C = A ∩ (B ∩ C)
(A ∪B) ∪ C = A ∪ (B ∪ C)

distributive law A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

absorption law A ∩ (B ∪A) = A
A ∪ (B ∩A) = A

De Morgan’s theorem [A ∩B]C = AC ∪BC

[A ∪B]C = AC ∩BC

The law of complements does not hold for union and intersection of of Fuzzy
sets. This can be seen in Fig. 3.5. This means that the following statements hold:

A ∩AC 6= ∅
A ∪AC 6= basic set X.
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Extension Principle

Before Zadeh’s extension principle is explained, it is necessary to define Fuzzy
numbers.

Definition 3.1.8 (Fuzzy Number). A convex Fuzzy set A is called Fuzzy number
if (Bothe 1995, p. 58):

• basic set X = R

• ∃x ∈ X : µA(x) = 1 and

• µA(x) is piecewise continuous.

If there exists exactly one a ∈ X so that µA(a) = 1 then a is called mean value
of the Fuzzy number. A nonempty Fuzzy number is called positive if:
∀ x < 0 : µA(x) = 0. In an analogous way a negative Fuzzy number can be
defined by ∀x > 0 : µA(x) = 0.

In order to obtain calculation rules for Fuzzy numbers, the Extension principle
(Zadeh 1965, 1975a,b,c) is used.

Definition 3.1.9 (Extension Principle). Let f be a function f : X → Y with
basic sets X, Y and A is a Fuzzy set defined on X. The extension of f is Fuzzy
set B with B = f(A) where:

µB(y) =

{
sup{µA(x); y = f(x), x ∈ X}
0 if @x ∈ X with f(x) = y.

(3.1.5)

Mathematical concepts of crisp numbers are transferred to Fuzzy numbers.
The foundations of Fuzzy set by set theory enables the definition of functions on
Fuzzy numbers. In the beginning, the cartesian product of Fuzzy sets is defined.

Definition 3.1.10 (Cartesian Product of Fuzzy Sets). Let be A1, . . . , An Fuzzy
sets with the basic sets X1, . . . , Xn. The cartesian product A1× . . .×An is a Fuzzy
set with membership function µc(x1, . . . , xn) on the basic set Xc = X1 × . . .×Xn

where
µc(x1, . . . , xn) = min{µAi(xi)| xi ∈ Xi; i = 1, . . . , n}.

With Def. 3.1.10 and help of the extension principle (Def. 3.1.9) the following
calculation rules can be derived:

Suppose there are:

• n Fuzzy sets Ai with basic sets X1, . . . , Xn and membership functions
µ1(x), . . . , µn(x),

• a mapping function f : X1 × . . . × Xn → Y where y = f(A1, . . . , An) and
y ∈ Y .
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The Fuzzy set Z is then given by the mapping function f(x1, . . . , xn) on Y by:

Z = {(y;µZ(y)) | y = f(x1, . . . , xn), (x1, . . . , xn) ∈ X1 × . . .×Xn}

whereas the corresponding membership function evaluates as:

µZ(y) =

 sup
y=f(x1,...,xn)

[min{µ1(x1), . . . , µn(xn)}] ∀ y ∈ Y

0 otherwise.

According to the case of adding two Fuzzy numbers subtraction, multiplication
and division of Fuzzy numbers can be calculated.

Fuzzy Basic Arithmetic Operations

In Kruse et al. (1995), it is shown that the basic arithmetic operations ⊕,	,�,
and � can be realised by combining the intervals of α-cuts. Thus, the operations
can be reduced to interval arithmetic.

The following interval operations are applicable (Kruse et al. 1995, pp. 38):

∀a, b, c, d ∈ R :
[a, b] + [c, d] = [a + c, b + d]
[a, b]− [c, d] = [a− d, b− c]

[a, b] · [c, d] =


[ac, bd] a ≥ 0 ∧ c ≥ 0
[bd, ac] b < 0 ∧ d < 0
[min{ad, bc},max{ad, bc}] ab ≥ 0 ∧ cd ≥ 0 ∧ ac < 0
[min{ad, bc},max{ac, bd}] ab < 0 ∨ cd < 0

1
[a, b]

=


[1b ,

1
a ] 0 /∈ [a, b]

[1b ,∞)
⋃

(−∞, 1
a ] a < 0 ∧ b > 0

[1b ,∞) a = 0 ∧ b > 0
(−∞, 1

a ] a < 0 ∧ b = 0

3.1.3 FuzzyCalc

The FuzzyCalc algorithm was developed as an Excel Plug-In (Müller (1999), Lenz
and Müller (2000) and Müller et al. (2003)). The main idea is the analysis of Fuzzy
data related to an equation system. In case of conflicting data two scenarios are
possible:

• strong model inconsistency of the data, or

• weak model inconsistency, where an adjustment of data is possible to solve
the conflict.
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Fuzzy set theory is used to solve an algebraic equation system given expert
knowledge about data described by Fuzzy numbers. The FuzzyCalcr algorithm
is used to solve a Fuzzy equation system. Algorithm 1 shows how the FuzzyCalc
algorithm works.

Algorithm 1 Fuzzy Calc Algorithm
Input: one observation per Fuzzy variable (number),

equation system,
fully specified membership functions (missing values allowed)

Output: adjusted Fuzzy sets (variables)
1: repeat
2: for all equations do
3: for all variables in current equation do
4: Resolve (separation step) equation for each variable
5: Compute Fuzzy set of variable using Zadeh’s extension principle
6: end for
7: end for
8: for all variables do
9: Compute the intersection of Fuzzy sets of variable for all related equa-

tions
10: if intersection is empty then
11: notify user: “M-inconsistent!”
12: else
13: re-normalise the corresponding membership function
14: end if
15: end for
16: until (M-inconsistency notification) or (no corrections of any Fuzzy sets occur)

The algorithm works as follows: In the first part, the equation system is sep-
arated for each variable and alternative values are calculated. For the calculation
of alternatives Fuzzy arithmetic is used. In the second part of the algorithm, the
intersection between all alternative values for each variable and the prior value
(Fuzzy number of the related variable) is calculated. If this intersection is empty,
the algorithm stops. Otherwise the value of the intersection is re-normalised and
a new iteration begins. The looping stops if no further changes in any variable
occur.

Interpreting a membership function with more than one peak is not trivial.
Therefore only convex membership functions are considered as input. FuzzyCalc
has a number of useful properties. Several of these properties are identical with
properties of the general-least-squares estimation under a Gaussian regime. These
properties are:

• supports have a monotone contraction, when Fuzzy variables are arithmeti-
cally combined,
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• the peaks of adjusted Fuzzy variables fulfill the equation system,

• invariance of adjusted data,

• shift of peak positions (values) depend on length of support, and

• shift depends on support.
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3.2 The Probabilistic Approach

In the probabilistic approach data are described by density or distribution func-
tions.

In the next sections a selection of distributions are described. Finite param-
eter distributions are described by their probability distribution function (pdf).
Moreover, several classes of probability (continuous) distributions are given.

3.2.1 Single-PeakDistributions

One-peak distributions have a single maximum of their density function.
The following distributions f are representatives of the class of single-peak

distributions. They might also be member of the other classes as explained below.

Gaussian Distribution

The Gaussian distribution is also called normal distribution. Due to the Cen-
tral Limit Theorem the sum of identically and independently distributed random
variables tends to be normal distributed. In reality errors of real-valued obser-
vations are often Gaussian distributed. The standard Gaussian distribution has
mean µ = 0 and standard deviation (sd) σ = 1.

pdf: 1
σ
√

2π
e(−

1
2
(x−µ

σ
)2) x ∈ R

Parameters: µ - location
σ - scale

Moments: Mean = Median = µ
V ariance = σ2

Skewness = Kurtosis = 0

µ = 0, σ = 1

µ = 2, σ = 0.6

µ = − 1, σ = 1.5

Figure 3.7: Gaussian Distribution

Bivariate Gaussian Distribution

The Bivariate Gaussian distribution is a special case of the multivariate Gaus-
sian distribution. It can be seen as a generalisation of the Gaussian distribution.
To stress that X is bivariate distributed, the notation X ∼ N2(µ,Σ) is used.
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pdf: 1
2π|Σ|1/2 e(−

1
2
(x−µ)T Σ−1(x−µ)) x ∈ R2

Parameters: µ = (µ1, µ2) – location
Σ = E

[
(x− µ)(x− µ)T

]
–

Covariance matrix
Moments: Mean = Median = µ

V ariances = σ2
1, σ

2
2

Skewness = Kurtosis = 0

Figure 3.8: Bivariate Gaussian Dis-
tribution

Triangular Distribution

The Triangular distribution can also be interpreted as the convolution of two
uniform distributions. If X1 ∼ U(a, b) and X2 ∼ U(c, d) and (b − a) = (d − c)
then (X1 + X2) is triangular distributed. This distribution has a finite support
on a bounded interval. In the case of b = (a + c)/2, this distribution is symmet-
ric. The Triangular distribution is often used, if only small information about the
distribution of data are available, i.e., upper and lower bound.

pdf:


2(x−a)

(c−a)(b−a) if 0 < x < b
2(c−x)

(c−a)(c−b) if b ≤ x < c

0 otherwise
Parameters: a - lower bound

b - mode
c - upper bound

Moments: Mean = a+b+c
3

V ariance = a2+b2+c2−ab−ac−bc
18

Skewness =
√

2
5

2(a3+b3+c3)−3(a2b+ab2+a2c+ac2+b2c+bc2)+12abc√
(a2+b2+c2−ab−ac−bc)3

Kurtosis = −3
5

a = − 1, b = 0, b = 1

a = −2.5, b = − 1.5, b = 2

a = − 0.5, b = 1.5, b = 2.5

Figure 3.9: Triangular Distribution
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3.2.2 Symmetrical Distributions

The class of symmetrical distributions has the property that the mean and the
median have the same value. Three symmetric distributions are described.

Uniform Distribution

The Uniform distribution is also called rectangular distribution. Pseudorandom
Number Generators (PRNG) generally return random numbers standard uni-
formly distributed values as a primary output. The standard Uniform distribution
has a = 0 and b = 1.

pdf: 1
b−a x ∈ R[a,b]

Parameters: a - lower bound
b - upper bound

Moments: Mean = Median = a+b
2

V ariance = 1
12(b− a)2

Skewness = 0
Kurtosis = −6

5

a = 0, b = 1

a = − 4.5, b = 4.5

a = 0, b = 3

Figure 3.10: Uniform Distribution

Laplace Distribution

The Laplace distribution is often called double exponential distribution and also
known as bilateral exponential distribution.

pdf: 1
2be

(
− |x−a|

b

)
x ∈ R

Parameters: a - location
b - scale

Moments: Mean = Median = a
V ariance = 2b2

Skewness = 0
Kurtosis = 3

µ = 0, b = 1

µ = 2, b = 2

µ = − 4, b = 4

Figure 3.11: Laplace Distribution
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Student’s t Distribution

The Student’s t distribution is also simply referred as t-distribution. It is a special-
isation of the generalised hyperbolic distribution (Müller 1975). For large values
(≥ 100) of degrees of freedom t-distribution approaches the Gaussian distribution.
The k moment exists only if c > k.

pdf: Γ( c+1
2

)

b
√

πcΓ(C
2

)

[
1 + (x−a

b
)2

c

]− c+1
2

x ∈ R

Parameters: a - location
b - scale
c - degrees of freedom

Moments: Mean = Median = a
V ariance = ( c

c−2)b2

Skewness = 0

Kurtosis = 3
[

(c−2)2Γ( c
2
−2)

4Γ( c
2
) − 1

]

df = 0

df = 4

df = 10, ncp = 5

Figure 3.12: Student’s T Distri-
bution

3.2.3 Heavy Tail Distributions

A distribution is said to be heavy tailed (Crovella and Bestavros 1997) if:

Pr[X > x] ∼ x−α as x→∞ and 0 < α < 2.

A density function with a hyperbolic shape is distribution with heavy tails. A
characteristic of heavy tail distributions is that the log-log plot is approximately
linear.

In the following the Pareto and the Cauchy distribution are briefly described
as members of the class of heavy tail distributions.

Pareto Distribution

The Pareto distribution is right-skewed. It is defined on the interval [a,∞) where
a > 0. This distribution is used to describe income, where a random income ex-
ceeds a minimum, a, is Pareto distributed. The moment k exists if b > k.
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pdf: bab

xb+1 x ∈ R[a,∞)

Parameters: a - location
b - shape

Moments: Mean = ab
b−1

Median = a b
√

2
V ariance = a2b

(b−2)(b−1)2

Skewness = 2(b+1)
√

b−2

(b−3)
√

b

Kurtosis = 6(b3+b2−6b−2)
b(b2−7b+12)

a = 1, b = 1

a = 2, b = 0.8

a = 6, b = 0.7

Figure 3.13: Pareto Distribution

Cauchy Distribution

The Cauchy distribution is also known as Lorentz distribution.
The Cauchy distribution has no finite moments due to the fact that the corre-

sponding integrals do not exist. Given X1 and X2 as standard Gaussian distributed
random numbers the X1/X2 is standard Cauchy distributed. The Cauchy distri-
bution is equal to the Student’s t distribution with one degree of freedom.

The standard Cauchy distribution has location 0 and scale 1.

pdf: 1
πs[1+(x−l

s
)2] x ∈ R

Parameters: l - location
s - scale

Moments: Median = a

l = -1, s = 1.5

l = 0, s = 1

l = 2, s = 0.6

Figure 3.14: Cauchy Distribution

3.2.4 Skewed Distributions

Skewness is a measure of the asymmetry of a probability function. It is the third
moment divided by the cubic standard deviation. In contrast to symmetric distri-
butions, where a centre exists, the mode, mean and median values are different.

A right skewed or positive skewed distribution has a longer tail on the right
side of the maximum or the mass of the distribution is concentrated on the left
side. In the case of a left skewed distribution it is the other way around. In the
following some typical skewed distributions are briefly explained.
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Exponential Distribution

The Exponential distribution is sometimes called Negative Exponential distribu-
tion. It is the continuous version of the Geometric distribution. The support
of this distribution is [0,∞). The Exponential distribution has the memoryless
property which means that:

Pr(X > t + s|X > s) = Pr(X > t) ∀ s, t.

pdf: λe−λx x ∈ R+

Parameters: λ - rate
Moments: Mean = λ

Median = λlog(2)
V ariance = λ2

Skewness = 2
Kurtosis = 6

λ = 2

λ = 1

λ = 0.5

Figure 3.15: Exponential Distribution

Gamma Distribution

The Gamma distribution is a right-skewed distribution. The function is defined
on the interval [0,∞). It approaches the Normal distribution if c goes to infinity.
In the case that shape parameter c is an integer, the distribution is also called
Erlang distribution. With c = 1 it is the above described Exponential distribu-
tion. Gamma distribution with parameters a = 0, b = 2, c = d/2 is the Chi-square
distribution with d degrees of freedom.

pdf: 1
bΓ(c)(

x−a
b )c−1e

a−x
b x ∈ R+

Parameters: a - location
b - scale
c - shape

Moments: Mean = a + bc
V ariance = b2c
Skewness = 2√

c

Kurtosis = 6
c

a = 1, b = 1

a = 2, b = 1

a = 2, b = 2

Figure 3.16: Gamma Distribution
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Beta Distribution

The Beta distribution is a skewed distribution if parameters α 6= β. The sup-
port of the Beta distribution is restricted to the interval [0, 1]. An application
area is the modelling of events that take place in the interval [α, β]. In the case of
α = β = 1, this is the standard uniform distribution. A generalisation of the Beta
distribution is the Dirichlet distribution with more than two parameters.

pdf: 1
B(α,β)x

α−1(1− x)β−1

x ∈ R[0,1]

Parameters: α - shape
β - shape

Moments: Mean = α
α+β

V ariance = αβ
(α+β)2(α+β+1)

Skewness = 2(β−α)
√

α+β+1

(α+β+2)
√

αβ

Kurtosis = 6α3−α2(2β−1)+β2(β+1)−2αβ(β+2)
αβ(α+β+2)(α+β+3)

a = 12, b = 12

a = 2, b = 2

a = 2, b = 6

Figure 3.17: Beta Distribution

Inverse Gaussian Distribution

The Inverse Gaussian Distribution is also called Wald distribution. It is defined
on the interval [0,∞). If λ goes to infinity, the distribution approaches the Gaus-
sian distribution. While the Gaussian distribution corresponds to the distances
at a fixed time in Brownian motion the Inverse Gaussian describes the time of
Brownian motion to reach a fixed level.

pdf:
√

λ
2πx3 e

− λ
2x

(x−µ
µ

)2
x ∈ R

Parameters: µ - location
λ - scale

Moments: Mean = µ

V ariance = µ3

λ

Skewness = 3
√

µ
λ

Kurtosis = 15µ
λ

µ = 0, σ = 1

µ = 2, σ = 0.5

µ = 10, σ = 1.5

Figure 3.18: Inverse Gaussian Distribu-
tion
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Multivariate Skew Normal Distribution

The Multivariate Skew Normal (MSN) distribution was developed by Azzalini
and Dalla Valle (1996) and extended by Azzalini and Capitanio (1999). It is de-
fined on Rd. It is described by three parameters for location, scale and shape. If
the shape parameter α is zero, then the distribution is a multivariate Normal dis-
tribution. A property of MSN distribution is that all marginal components have a
skew-normal distribution. An obvious application area of this distribution is the
case of empirical distributions that have a shape close to the Gaussian but lack
symmetry.

pdf: 2
Ω
√

2π
· e

(
−

(
(x−ξ)

Ω

)2
/2

)
(x−ξ)/Ω∫
−∞

e(− (x−ξ)2

2
)dt

x ∈ Rd

Parameters: ξ - location
Ω - scale
α - shape

Moments: Mean = ξ + Ω
√

2/π α√
1+α2

V ariance = Ω2(1− 2 α2

(1−α2)π
)

Skewness = 4−π
2

(2/π)3/2· α3

(1+α2)3/2

(1−2 α2

(1+α2)π
)3/2

Kurtosis = 2(π − 3)
(2/π)2· α4

(1+α2)2

(1−2 α2

(1+α2)π
)2

Figure 3.19: Multivariate Skew
Normal Distribution

3.2.5 Contaminated Distributions

Contaminated distributions are probability functions with several modes.Such a
contaminated function can be built up by a mixture of different probability func-
tions.The first example shows a contaminated bivariate Gaussian distribution.
Two other examples follow in this section.

Contaminated Bivariate Gaussian Distribution

The Contaminated Bivariate Gaussian Distribution is built up from several Bi-
variate Gaussian distributions. Each of these density functions effect the contam-
inated distribution with 0 < pi ≤ 1 where

∑
pi = 1.
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pdf:
∑
i

pi
1

2π|Σi|1/2 e(−
1
2
(x−µi)

T Σ−1
i (x−µi))

x ∈ R2

Parameters: µi - location parameter vector
of distribution i
Σi - Covariance matrix vector
of distribution i

Moments: Mean = Median =
∑
i

piµi

V ariance =
∑
i

p2
i Σi = Σ

Figure 3.20: Contaminated Bivari-
ate Gaussian Distribution

Double Gamma Distribution

The Double Gamma distribution is a bimodal distribution. It can be interpreted
as a version of the Gamma distribution.

pdf: 1
2bΓ(c) |

x−a
b |

c−1e−|
x−a

b
|

x ∈ R
Parameters: a - location

b - scale
c - shape

Moments: Mean = Median = a
V ariance = c(c + 1)b2

Skewness = 0

a = 0, b = 1, b = 3

Figure 3.21: Double Gamma Distribu-
tion

Double Weibull Distribution

The Double Weibull distribution is a bimodal distribution. It can be interpreted
as the signed version of the Weibull distribution.
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pdf: c
2b |

x−a
b |

c−1e−|x−a
b |

c x ∈ R
Parameters: a - location

b - scale
c - shape

Moments: Mean = Median = a
V ariance = Γ( c+2

c )b2

Skewness = 0

a = 0, b = 1, b = 3

Figure 3.22: Double Weibull Distribu-
tion

3.2.6 Models with Errors in the Variables

In the following a model of structural relationships between variables is presented.
Here the relationships are described by a linear model. This makes it feasible to
estimate the latent variables as described by Schmid (1979) and Lenz and Rödel
(1991).

The observable state variables are stated as x = (x1, . . . , xp); z = (z1, . . . , zq)
and the structural relationships are described with the (q × p) matrix H, which
has rank(H) = q. The true but unobservable vector is given by ξ, ζ. The noise is
given by v, w, where the expectations of noise are zero. Equation 3.2.1 represents
the model with error in the variables and Fig. 3.23 gives a short overview of the
dependencies.

x

ξ ζ z

v w

H

latent variable

latent parameter

observable variable

Figure 3.23: Model Graph of GLS Model

x = ξ + v

z = ζ + w where ζ = Hξ (3.2.1)

E

((
v
w

))
=

(
0
0

)
Cov

((
v
w

))
=

(
P 0
0 R

)
Rank(P ) = p Rank(R) = q
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In Fig. 3.23, the observable variables are plotted with a rectangle. The unob-
servable (true) values are visualised by circles. Errors are indicated by a diamond.
The unobservable variables can be estimated by a General Least Squares (GLS)-
estimators as stated in Lenz and Rödel (1991):

ξ̂ = x+PH ′(HPH ′+R)−1(z−Hx) with Σξ̂ξ̂ = P −PH ′(HPH ′+R)HP (3.2.2)

and

ζ̂ = Hξ̂ with Σζ̂ζ̂ = HΣξ̂ξ̂H
′. (3.2.3)

The restrictions within this class of models lie in the linearity and Gaussian as-
sumption. Indicator systems, as described in Chapter 2, usually include nonlinear
relations and therefore this method is not exact.

Another approach is given in Spremann and Bamberg (1984) which deals with
business analysis of information challenges. Three categories are differentiated
there: (1) Retrieval and processing of information for documentation and coordi-
nation; (2) Decision based evaluation of information systems with uncertainty or
risk; (3) simplification of complex data sets for better operability purposes. But
again this approach is restricted to linear systems which is not satisfactory.

3.2.7 Quantor

An implementation of the probabilistic approach is the package PRTI as developed
by Schmid (1988). The software tool QR, which was developed by Schmid and
Müller, is an implementation of this approach. In this thesis QR version 2.03 from
1993 is used. QR is an abbreviation for Quantitative Reasoning. An introduction
to the software abilities is given in Müller (1991).

The input mask is comparable to a Microsoft Excel spreadsheet. Accordingly,
each variable is placed in a cell. Fig. 3.24 shows the DuPont model in QR.

Figure 3.24: DuPont Model in QR

The variables are shown with their names (line one), their prior knowledge
with a number (line two) or a question mark if unknown and the computed values
in bold (line three). If all prior knowledge is Gaussian distributed, the computed
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values can be interpreted as mean and standard deviation of a corresponding Gaus-
sian distribution. Mostly, only the first two moments of unknown distributions are
given and correlation is ignored.

Fig. 3.25 shows the dialog for a variable in a cell. In this case profit, P, is
visualised. The relation between profit, transaction volume and cost is expressed
with the relation TV − Co. The value of Profit is apriori unknown and thus a
question mark is stated as input. After the computation, the estimated values for
profit are mean = 20 and deviation = 12.8.

Figure 3.25: Profit within QR

In order to successfully implement a model in QR, it is helpful to visualise
the model in a graph before. Three elements can be used: a basis variable which
is either countable or measurable, a quotient and a linear combination element.
Restrictions upon the connections of these elements are the following:

• a quotient can only be connected to exactly two basis variables,

• a linear combination has at least two basis variables as input and exactly
one basis variable as output,

• other connections are not allowed.

These restrictions ensure that the implemented model follows the assumptions
of the theory. In Fig. 3.26, the DuPont model is visualised.

The basis variables are depicted in a rectangular with rounded edges, a quotient
in a rectangular and linear combination in a circle. With help of the model graphs,
the restrictions of underlying theory may become more obvious. Large indicator
systems, such as the ZVEI indicator system, are difficult or maybe even impossible
to implement.
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Figure 3.26: Graph of DuPont Model in QR
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3.3 Simulation

3.3.1 Monte Carlo Simulation

Monte Carlo (MC) methods are a class of computational algorithms for simulating
the behaviour of real systems (Metropolis and Ulam 1949). The name for this
method was chosen due to the use of random numbers at the time random numbers
were obtained by playing roulette. Stanislaw Ulam suggested the name because
his uncle gambled the family’s assets away (Metropolis 1987, p. 127).

The objective of the Monte Carlo method is to solve the following problems
with the help of target function Π(x):

I Generate a sample {x(r)}Rr=1 corresponding to the target function Π(x).

II Evaluate the integral

Φ =
∫

φ(x)Π(x)dnx (3.3.1)

with
n - dimension of the distribution
x - (x1, . . . , xn)
φ(x) - function of interest that is not fully specified and known.

Indicator systems as described in Chapter 2 are one possible area of application
for these methods. Monte Carlo techniques are useful in studying systems with
a large number of coupled variables or for modelling phenomena with significant
uncertainty in inputs. Risk calculation in business is a further application area.

Randomness occurs in almost all real situations and describes the fact that
there exists a lack of predictability. By repeating a random process, the results are
not ensuing a deterministic pattern. The sequence of outcomes can be represented
by a probability distribution. Wolfram (2002) describes three mechanisms that are
accountable for randomness:

• Randomness from the environment, i.e., the Brownian motion

• Randomness from initial conditions, i.e., convergence of heuristic search

• Randomness from system intrinsics, i.e., Cellular automaton

For randomness in science all three mechanisms can be used. Randomness from
the environment can be achieved with hardware random number generator is used.
In this case, a physical process generates the random numbers. One drawback of
using such generators are that they are expensive. Another downside is the fact
that the produced sequence has to be checked whether or not the numbers fulfil the
desired probability distribution. The second mechanism can be used to generate
a random number sequence, e. g., by rolling a dice. Galton (1890) described how
to generate randomness by dice rolls. This method is particularly time consuming
because the sequence has to be entered manually. The third mechanism is cheaper
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than the first mechanism and much faster in generating random numbers than the
second mechanism. This mechanism is also called pseudo randomness. “Any one
who considers arithmetical methods of producing random digits is, of course, in a
state of sin.”(Neumann 1951, p. 36). Due to the better properties of generating
random sequences, pseudo random numbers are widely used.

Pseudo random numbers are a sequence of numbers that appear to be random
at least in a short sequence. However, they are generated by a deterministic
algorithm, so called PRNG. With the same initial value of the PRNG the same
sequence of numbers is generated. The randomness is interpreted via the statistical
properties of the sequence like uniformly distributed or statistical independence.
The problem of generating a sequence of pseudo random numbers can be split into
two parts. First a uniformly distributed pseudo random number in the interval
(0, 1] is generated. Second, this random number is transformed so that the number
follows the desired distribution.

3.3.2 Particle Filters

Particle filter is a method used for solving Monte Carlo problems. It uses a func-
tion to filter candidates. There are two possible approaches to select a filtering
function: a rejection function and a weighting function. The rejection function
discards some elements, whereas the weighting function boosts elements. The re-
jection techniques was first used by Neumann (1951), (see also Liu (2001, p. 24).
The Metropolis algorithm and the extension by Hastings as well as the Gibbs
Sampler use a rejection technique. Importance sampling, sequential importance
sampling and bootstrap filters use weighting techniques. All methods have in
common the fact that the sample {xt} with t = 1, . . . , T evolves over t. While
importance sampling and bootstrapping are Monte Carlo techniques, Gibbs Sam-
pler and Metropolis Hastings Algorithm use Markov Chains. Here P (x0) is called
starting distribution and the transition kernel of the Markov chain is PM (xt, xt−1).

Figure 3.27: Particles and Filtering Function
rejects particles with dotted arc, accepts others

Fig. 3.27 shows the basic concept. The random numbers in the sample are
called particles. The generated sample {x(r)}Rr=1 with R number of particles is
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evaluated by the filter function Q(x(r)). The filtering function is also known as
proposal function.

In the case of a rejection function, the samples with the dotted line in Fig. 3.27
are eliminated from the sample. With Q being a weighting function the particles
with the solid lines are weighted stronger than the dotted line particles.

Importance Sampling

Importance sampling estimates the expectation of the target function π(x). No
samples are generated by this method. It is rather used to reduce the computa-
tional effort (Marshall 1956). The idea behind importance sampling is to eliminate
elements from the sample {x(r)}Rr=1 that are over-represented by sampling from
the proposal function q(x) and to add elements to the sample that are under-
represented (MacKay 2003, p. 362). This is done by introducing weights on the
elements of the sample that is generated by q(x). These weights can be represented
by the weighting function:

ωr(x) ≡ π(x(r))
q(x(r))

. (3.3.2)

Figure 3.28: Generating Function q and Proposal Function π

Fig. 3.28 shows an example for functions q and π. Here x1 is over-represented
by q and x2 is under-represented. By applying the weighting function as given in
Equation 3.3.2, the sample is adjusted.
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The estimator of the target function Π results into:

Π̃(x) ≡
∑

r ωr(x)π(x(r))∑
r ωr(x)

.

A major drawback of importance sampling is the estimation of reliability of
Π̃ (Doucet et al. 2001, pp. 8). The variance is dependent on the integral over
x including function π(x). Nevertheless, the strong law of large numbers holds
asymptotically and Π̃ a.s.−−−−→

R→∞
π.

A further problem is the estimation of the weights. For each estimation step
these weights have to be computed. In case of a high-dimensional function π(x),
this is computationally expensive (Doucet et al. 2001, p. 9), see also (MacKay
2003, pp. 363).

The idea of the importance sampling algorithm as given in (Liu 2001, p. 33)
can be seen in Algorithm 3.3.2. The estimation of the integral function Π of π is

Algorithm 2 Importance Sampling Algorithm
Input: π() – target function

q (x) – trial function
Output: Π̃ – estimator for Π
1: for i := 1 to R do
2: Generate x(i) ∼ q( )
3: end for
4: for i := 1 to R do
5: Compute ωi(x) := π(x(i))

q(x(i))

6: end for
7: Estimate Π̃ :=

∑
r ωr(x)π(x(r))∑

r ωr(x)

done by adjusting a sample x that is drawn by the trial function q. The adjustment
is achieved by weighting the samples. Drawbacks of the method are:

• q should produce samples that are in the proxi set of Π. If q is a good
approximation of Π this is achieved more easily.

• The weights might vary by large factors. Again a good approximation will
reduce this problem.

Concluding, the importance sampling method is only useful if a function q is
available from which samples can be drawn and which is a near-perfect approxi-
mation of function Π. In a high-dimensional space it is a non-trivial task to find
such a function q (Liu 2001, p. 46).

Sequential Importance Sampling

Sequential Importance Sampling is a further development of Importance Sampling.
Here the estimation of Π is achieved by a recursive algorithm. A recursive Bayesian
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filter is constructed. The required posterior pdf is represented as a set of random
samples with respective weights. With a large number of samples it is an equivalent
representation of the functional description of the pdf (cf. Arulampalam et al.
(2002)).

In this method the trial function is built up sequentially. A decomposition of
the sample x into (x1, . . . , xd) constructs the trial function q as follows:

qn(x) = q1(x1) · q2(x2|x1) · q3(x3|x1, x2) · . . . · qd(xd|x1, . . . , xd−1)

= q1(x1)
d∏

i=2

qi(xi|x1, . . . , xi−1)

= qk(x1, . . . , xk)
d∏

i=k+1

qi(xi|x1, . . . , xi−1).

(3.3.3)

The great advantage of this approach is the reduction of the original problem to
d “simpler” problems.

The target density function π can be rewritten corresponding to the decom-
position of x as:

π(x) = π(x1)
d∏

i=2

π(xi|x1, . . . , xi−1). (3.3.4)

The weights for sequential importance sampling can be constructed according
to Equation 3.3.2:

ω(x) =
π(x)
q(x)

=
π(x1)

d∏
i=2

π(xi|x1, . . . , xi−1)

q(x1)
d∏

i=2
q(xi|x1, . . . , xi−1)

. (3.3.5)

The formula 3.3.5 suggests a recursive way of computing and monitoring the
weights as a function at time t with t ∈ [2, d]. The weight ωt is the product of
weight ωt−1 and the quotient of target function and trial function at time t:

ωt(x) = ωt−1(x)
π(xt|x1, . . . , xt−1)
q(xt|x1, . . . , xt−1)

(3.3.6)

The function ωd(x) is equal ω(x) as given in Equation 3.3.5.
The algorithm for a sequential importance sampling is given in Algorithm 3.
An improvement of this method corresponding to importance sampling is that

if there are no changes in the weights, the generation of new samples can be
stopped. The marginal density function π(xt) could be used to generate the sample
x(d). Nevertheless, in most cases it is impossible to compute the integral:

Π(xt) =
∫

π(x)dx
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Algorithm 3 An easy Sequential Importance Sampling Algorithm
Input: π() – target function

qi (x) – i = 1, . . . , d trial functions
Output: Π̃ – estimator for Π
1: Sample X1 ∼ q1(·)
2: ω1 := π(X1)

q1(X1)
3: for i := 2 to d do
4: Generate Xi ∼ qi(·|X1, . . . , Xi−1)
5: ωi(X1, . . . , Xi) := ωi−1(X1, . . . , Xi−1)

π(Xi|X1,...,Xi−1)
qi(Xi|X1,...,Xi−1)

6: end for

since x is a high-dimensional vector.
Although the Algorithm 3 is quite simple, typically it cannot be implemented.

This is due to the fact that π(xd|x1 . . . , xd−1) is unknown. In order to solve this
problem, a modification of the algorithm is implemented. Now the target function
π(·) can be represented by a sequence of intermediate target functions πi(xi). It
is assumed that:

π(x) = πd(x) = πd(x1, . . . , xd). (3.3.7)

The intermediate target functions build a sequence
π1(x1), π2(x1, x2), π3(x1, x2, x3), . . . , πd−1(x1, . . . , xd−1) that moves smoothly to-
wards πd(x1, . . . , xd). At each time t an importance sampling approximation of
πt(x1, . . . , xt) is done.

The importance function is the same as given in Equation 3.3.3, but now
qt(xt|x1, . . . , xt−1) corresponds to πt(xt|x1, . . . , xt−1).

Algorithm 4 Sequential Importance Sampling Algorithm
Input: πi() i = 1, . . . , d a sequence that build target function π

qi (x) i = 1, . . . , d trial functions
Output: Π̃ – estimator for Π
1: Sample X1 ∼ q1(·)
2: ω1 := π(X1)

q1(X1)
3: for i := 2 to d do
4: Generate Xi ∼ qi(·|X1, . . . , Xi−1)
5: ωi(X1, . . . , Xi) := ωi−1(X1, . . . , Xi−1)

πi(X1,...,Xi)
πi−1(X1,...,Xi−1)·qi(Xi|X1,...,Xi−1)

6: end for

Algorithm 4 produces an approximation of πt(x1, . . . , xt) at each time t:

• at time t = 1:

ω1(x1) =
π(x1)
q1(x1)

.
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• at all other times:

ωt(x1, . . . , xt) =
π1(x1)
q1(x1)

t∏
i=2

π(x1, . . . , xi)
πi−1(x1, . . . , xi−1)qi(xi|x1, . . . , xi−1)

=
πt(x1, . . . , xt)

q1(x1)q2(x2|x1) · · · qt(xt|x1, . . . , xt−1)

=
πt(x1, . . . , xt)
qt(x1, . . . , xt)

.

Different approaches exist for multitude of applications. Arulampalam et al.
(2002) describes particle filters and the Sequential Importance Sampling (SIS) in
a appropriate way. An overview of SIS in Bayesian filtering is given in Doucet et
al. (2000). Applications of sequential Filtering are given in Doucet et al. (2001).

A major problem remains: how to select πt(x1, . . . , xt)? A further problem is
stated in the following example.

Example 3.3.1 (Weights in SIS). In this example the target function π is the ex-
ponential function with λ = 1. Standard Gaussian distribution serves as sampling
function. In this case, the dimensionality is one. In Fig. 3.29, the histograms of
weights at time t = 0 and t = 1 can be seen. Obviously, most of the weights are
equal to zero. With increasing t this becomes more extreme. After a few steps
only the minority has a weight different from zero.

More critics on SIS can be found in (Doucet et al. 2001, pp. 10).

Bootstrapping

Bootstrapping tries to overcome the problems of Importance Sampling and SIS by
resampling. The most popular algorithm was proposed in Gordon et al. (1993),
but goes back to suggestions of Efron (1982) and Smith and Gelfand (1992). This
method is often also called particle filter. It makes use of the idea of sampling
importance resampling Rubin (1987).

The basic idea behind the approach is that samples with a very low weight ω
are disregarded. Instead, samples with a high weight are included in the sample
several times. Fig. 3.30 illustrates the basic idea.

First, the particles x(1), . . . , x(8) are generated by the proposal function. In the
next step, the weights ω(1), . . . , ω(8) corresponding to the particles are computed.
Particles with small weight reduce the sampling size effectively. While in SIS this
problem cannot be eliminated, bootstrapping extends in a further step the SIS
procedure. Here the weights are considered. In Fig. 3.30, x(1) has a small weight
ω(1). That is the reason why x(1) is eliminated from the sample. On the contrary,
the weight ω(3) is quite large. Therefore, an insertion of a multitude of the value
x(3) is necessary to ensure the same sampling size. This is also called resampling
step.
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Figure 3.29: Weights in Sequential Importance Sampling at t = 0 and t = 1

The resampling step ensures that the sampling size does not converge to a
single value (see Arulampalam et al. (2002)). The filter generates a sample x
corresponding to the target function π. Thus, it is also possible to estimate the
integral Π. The sampling procedure is an extension of the SIS procedure, where
the weights are computed. On the other hand according to Eq. 3.3.5. Π can be
estimated at time t as:

Π̃t =
d∑

i=1

ω̇
(i)
t · πt(x

(i)
t ) where ω̇

(i)
t =

ω
(i)
t∑d

j=1 ω
(j)
t

. (3.3.8)

where ω̇
(i)
t are the normalised weights according to Doucet et al. (2001, p. 8).

In order to obtain a constant sampling size at each iteration t, weights have to
be normalised and must be integer values (c.f. Doucet et al. (2001, p. 8)).

On the one hand it is essential that the weights ω are displaced by integer
values. On the other hand it holds that

d∑
i=1

w
(i)
t = d.

These normalised weights are computed by the following equation:

ẇ
(i)
t =

w
(i)
t∑d

j=1 w
(j)
t

=
1
d
· w(i)

t . (3.3.9)
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Figure 3.30: Idea Behind the Particle Filter Bootstrap

For each πt the weights are corrected in such a way that the following relation
holds:

d∑
i=1

w
(i)
t · πt(x

(i)
t ) ≈

d∑
i=1

ẇ
(i)
t · πt(x

(i)
t ) (3.3.10)

Eq. 3.3.10 ensures that particles with a weight w = 0 are eliminated from
the sample and that particles with a weight w > 1 are multiple inserted into the
sample. This guarantees that the sampling size at each step is d. The procedure
of resampling is described in Arulampalam et al. (2002). A detailed description
of the adaptation of the weights and the sample set can be found in Smith and
Gelfand (1992).

The Bootstrap algorithm has the following positive properties:

• it is easily implemented,

• it is quite modular because only the expressions of importance distribution
and weights have to be recoded for different problems,

• parallel implementation is possible,

• the resampling step only requires one dimensional quantities.

Example 3.3.2 (Bootstrapping AR-1 Process). The following example illustrates
the bootstrap algorithm for a special autoregressive process of first order (AR-1):

xt = xt−1 + ut where ut ≈ U(−1, 1)

yt = 1√
2πσ

e

(
− (xt−µ)2

2σ2

)
where µ = 80, σ = 4.
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Figure 3.31: Bootstrapping AR-1 Process Starting with Uniform Distribution

In Fig. 3.31, the density estimates of function π(x(t)|yt) are shown at the
times t = 1, 10, 50, and 100. The Bootstrap is used with 1000 particles and 100
iterations. The initialisation was implemented with a Uniform distribution in the
interval [70, 90]. It can be seen that the convergence to the Gaussian distribution
is slow and dependents on the initial values.

In Fig. 3.32, all simulation parameters are the same as above but the initial
values x(0) are distributed corresponding to a Gaussian distribution with mean
µ = 80 and sd σ = 2. Here the convergence is much faster than in the example
shown in Fig. 3.31.

Another problem of the Bootstrap algorithm is the possible overestimation of
the mean value. Although the convergence in Fig. 3.32 is quite fast the mean value
could have a too strong weight.

In Fig. 3.31, a drawback of the bootstrap method can be illustrated: If the
distribution of the initial sample differs strongly from the target density many
iterations are necessary to reach the target function, i.e., t > 100. Otherwise, the
convergence is fast, cf. t = 10 in Fig. 3.32. Overestimation is another drawback.
The efficiency may decrease due to excessive use of resampling (Liu 2001, p. 66).

3.3.3 Markov Chain Monte Carlo Simulation

In this section, MCMC techniques are discussed. These techniques are used in
order to generate samples from complex density functions where the samples are
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Figure 3.32: Bootstrapping AR-1 Process Starting with Gaussian Distribution

produced by evolving a Markov chain Liu (2001, p.4), see also Gilks et al. (1996a),
Gamerman and Lopez (2006).

Definition 3.3.1 (Markov Chain Monte Carlo). Markov Chain Monte Carlo
(MCMC) techniques are used for simulation of a distribution function f . They
produce an ergodic Markov chain Xt that has a stationary distribution according
to f .

Before elaborating on Markov Chain Monte Carlo (MCMC) algorithms, a short
introduction to Markov chains is provided. Thereafter the most common MCMC
techniques are described. They are the cornerstone for the simulation of indicator
systems, which is the topic of Chapter 4.

Markov Chains

Definition 3.3.2 (Markov-Chain). A sequence of random variables Xt with state
space R = {1, . . . , n} is called Markov chain of (t-m+1)th order, iff a (n× n)

matrix P with pij ≥ 0 ∀i, j ∈ {1, . . . , n} and
n∑

j=1
pij = 1 ∀i ∈ {1, . . . , n} exists, so

that

Pr(Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, . . . , X0 = x0) =
Pr(Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, . . . , Xm = xm) = pxmxt+1 . (3.3.11)
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Usually first order Markov chains are used. Therefore, the Markov crite-
rion 3.3.11 simplifies to:

Pr(Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, . . . , X0 = x0)
= Pr(Xt+1 = xt+1|Xt = xt) = pxtxt+1 . (3.3.12)

Discrete Markov chains describe finite states at discrete events. In the follow-
ing, the term Markov chain is used for first order Markov chains. X = (Xt) is
discrete in t and S = {s0, s1, · · · , sm} represents a finite state space.

A probability vector ν with νi = Pr (X0 = si) is called initial distribution.
Transition probabilities are given by

pij (t) = Pr (Xt+1 = sj |Xt = si) .

The transition probabilities can be pooled in the transition matrix PM :

(pij (t)) = PM (t) =

 p11 (t) . . . p1m (t)
...

. . .
...

pm1 (t) . . . pmm (t)

 .

If a transition probability is not defined, a zero is placed in the matrix M . If all
transition probabilities are independent of t, the Markov chain is homogeneous.
Otherwise the chain is called inhomogeneous. In the homogeneous case the change
from state si to state sj in n steps can be computed as follows:

pn
ij = PM

n (i, j) .

This results in the unique determination of the distribution of Xn with M and ν:

Pr (Xn = i) = (PM
n · ν) (i) .

A distribution ν∗ is called stationary distribution iff

ν∗ = PM × ν∗.

It might occur, that more than one stationary distribution exists. In the case
that M is the identity matrix, all initial distributions are stationary and thus all
possible distributions are stationary in this degenerated extreme case. Several
classes of Markov chains exhibit only one stationary distribution.

Lemma 3.3.3 (Stationary Distribution). If a homogeneous Markov chain is irre-
ducible and aperiodic, there exists exactly one stationary distribution ν∗.

Because these Markov chains play an important role in the MCMC algorithms,
a more intensive analysis of these sequences is necessary, c.f. Gilks et al. (1996a),
Liu (2001), Gamerman (2002), Robert and Casella (2003).

A state sj in a Markov chain (Xt) is accessible from state si, if starting in state
si the state sj is reached after a finite number of transitions with a probability
greater than zero. This is denoted with i→ j. A state si is said to communicate
with state sj if both states are accessible from the other.
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Definition 3.3.4 (Irreducibility). A Markov chain is irreducible iff all states in
the state space are accessible from the others.

Definition 3.3.4 indicates that the probability to get from state si to state sj

for all si, sj ∈ S is positive.

Definition 3.3.5 (Aperiodicity). A state si has the period k with

k = greatest common divisor {n : Pr (Xn = i|X0 = i) > 0} .

A state si is aperiodic if its period k = 1. An irreducible Markov chain is aperi-
odic if all of its states are aperiodic.

Definition 3.3.6 (Recurrence). The time Ti is the next return time to state si

defined as
Ti = min {n : Xn = si|X0 = si} .

The state si is transient if Ti is not finite with some probability:

Pr (Ti <∞) < 1.

A state is recurrent if it is not transient. If the expected return means time is
positive, the state is positive recurrent. Definition 3.3.6 can also be formulated so

that a state is recurrent if and only if
∞∑

n=0
p
(n)
ij =∞.

Definition 3.3.7 (Ergodicity). If a state si is positive recurrent and aperiodic
than the state is said to be ergodic. A Markov chain with only ergodic states is
said to be ergodic.

Based on these definitions it can be checked whether a given Markov chain has
a steady state or not. These definitions are the basis for the presented algorithms
in the following sections.

3.3.4 Metropolis Algorithm

In 1953 Metropolis, Rosenbluth & Rosenbluth and Teller & Teller developed an
algorithm to draw random numbers from a general (multivariate) distribution.
They describe a general algorithm nowadays known as the Metropolis algorithm.
An introduction to this method can be found in (Hammersley and Handscomb
1964, p. 117). Algorithm 3.3.4 presents the Metropolis algorithm. The transition
kernel q has to be symmetrical and suggests a possible move. This move is accepted
or rejected by the α rule. The Metropolis method is a rejection method that
generates a sample and can be used to estimate an integral.

The idea of rejection was developed by Neumann (1951). The main idea is
that a generated value called candidate is rejected with a certain probability. The
function π(x) is a complex function where the normalising constant might be
unknown. The proposal distribution q(x) is a function from which samples can be
drawn and M ∈ R≥0 is a “covering constant” (Liu 2001, p. 24) so that:

M · q(x) ≥ π(x) ∀x ∈ Rd. (3.3.13)
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The rejection sampling algorithm that was suggested by von Neumann is de-
scribed in (Liu 2001, p. 24). Fig. 3.33 illustrates the relation of the involved
functions.

Figure 3.33: Target (π) and Enveloping (M · q) Function in Rejection Sampling
adapted from (MacKay 2003, p. 364)

A candidate is drawn with the help of the proposal function q. This candidate
is rejected iff it is in the area of M · q(x) but not in the area of π(x). In Fig. 3.33
two candidates from the proposal function are shown. Point (x1, y1) is rejected
and point (x2, y2) is accepted because (x2, y2) lies below the target function π(x).

Obviously, the rejection method works well if the proposal function is similar
to the target function. The acceptance rate can be expressed as:

α(x) =
∫

π(x)
M ·

∫
q(x)

.

The Metropolis algorithm picks up the idea of rejection techniques. However,
the acceptance rate α is independent of the proposal distribution. The basic idea
is the creation of a Markov chain with a stationary density equal to the target
function π(x).

A candidate yt at time t only depends on the generated sample xt−1 at time
t− 1. The proposal distribution is now q(yt, xt−1). The basic assumption is that
q is a symmetrical function (Metropolis et al. 1953), which means:

q(yt, xt−1) = q(xt−1, yt).
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The acceptance rate α is given as:

α(yt, xt−1) =
π(yt)

π(xt−1)
. (3.3.14)

Algorithm 3.3.4 describes the procedure. The target function π, the function
from which a sample is desired, and the symmetrical transition kernel q constitute
the required input. The algorithm produces a sample x.

Algorithm 5 Metropolis Algorithm
Input: π() – target function

q (·, ·) – proposal distribution, transition kernel
U(0, 1) – uniform distribution in [0, 1]
t – iteration index
T – number of iterations

Output: x = {x1, . . . , xT } – sample
1: t = 0
2: initialise xt

3: repeat
4: increment t
5: generate y ∼ q (xt−1, ·)
6: generate u ∼ U (0, 1)
7: calculate α (xt−1, y)← min

{
1, π(y)

π(xt−1)

}
8: if α (xt−1, y) ≥ u then
9: xt ← y

10: else
11: xt ← xt−1

12: end if
13: until t = T

A candidate y at time t is accepted if its target value π(y) is greater than
π(xt−1). Otherwise, a uniformly distributed random number u is drawn and the
candidate y is accepted only if α(yt, xt−1) ≥ u. Otherwise, the candidate is rejected
and the last accepted value is inserted in the sample.

The Metropolis method is a cornerstone in MCMC techniques and is particu-
larly used in statistical physics (Liu 2001, p. 107). Its efficiency mainly depends
on the initial value x0. Although the values can be arbitrarily chosen, they should
be close to the target function. Otherwise, the algorithm needs some iterations to
guarantee that the sample follows the target function. This is called the Burn-In
phase. If the initial values are not in the area of the target function, the total
iteration number should be increased and the first part of the sample should be
eliminated from further computations.

A basic assumption of the initial values is that π(x0) > 0. The acceptance
ratio cannot be equal to one due to the fact that in this case direct sampling from
the target function is necessary (Gamerman 2002, p. 175).
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Figure 3.34: Histograms of Metropolis Iterations at t = 10, 100, 1000

Example 3.3.3 (Metropolis Algorithm and Burn-In). The Burn-In problem is
visualised in the following example. The target function π is equal to the standard
Gaussian density. The number of particles used at time t to estimate the density
is set to N = 1000. The total iteration number of the algorithm is 5000. An
AR1 process is used as a proposal function q(y, xt−1), where y = xt−1 + u and
u ∼ U(−1, 1).

If the initial values x0 are close to the target function, eliminating the Burn-In
is not necessary. If the initial values are significantly different, the first iterations
of the sampling sequence have to be eliminated. In the following the initial values
are uniformly distributed in the interval [−10, 10].

The histograms of generated samples at time points t = 10, 100, and 1000 are
given in Fig. 3.34. Moreover, the target function is plotted. At iteration t = 10,
the initial values still have a high impact. At t = 100, the sample is obviously
already following the target function. This state is stable as can be seen at time
t = 1000. The Burn-In is thoroughly discussed in Section 3.4.3.

The following example illustrates the problem of choosing a non-symmetrical
proposal function.

Example 3.3.4 (Metropolis Algorithm and non-Symmetry). The simulation op-
erations are the same as in example 3.3.3. The only change involves the proposal
function, where the added noise now has an exponential distribution with λ = 1/2
and a shift of minus two.

In Fig. 3.35, it can be seen that again at iteration t = 10 the initial values
dominate. At t = 100, the values are closer to the target function but shifted to
the left. This state is also stable as it can be seen at time t = 1000.

If the proposal function is not symmetrical, the Metropolis algorithm fails.
It also fails if the target function is non-symmetrical (Metropolis et al. 1953).
This is a severe drawback. The generalisation of Metropolis’ method by Hastings
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Figure 3.35: Histograms of Metropolis Iterations at t = 10, 100, 1000 with Non-
Symmetrical Proposal Function

is presented in the following section. This generalisation manages to solve the
conflict of non-symmetry in both cases.

3.3.5 Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH)-algorithm (Hastings 1970) is a further development
of the Metropolis algorithm. Hastings combined the rejection method used in
Metropolis et al. (1953) with a weighting component. This is realised by changing
the acceptance ratio by a factor that considers the impact of sampled candidates.
The acceptance rule α changes to:

α(y, xt−1) =
π(y) · q(xt−1, y)

π(xt−1) · q(y, xt−1)
. (3.3.15)

In the case of a symmetrical proposal function (q(y, xt−1) = q(xt−1, y)), the
ratio is equal to Metropolis acceptance ratio (see Eq. 3.3.14).

While the Metropolis algorithm is restricted to symmetrically density func-
tions, the MH algorithm can be used for any density function π(). The restriction
on the proposal function to the symmetrical case is neutralised. The only restric-
tion in Hastings generalisation is that the transition kernel q(x, y) > 0 if and only
if q(y, x) > 0 (Liu 2001, p. 111). For regularity conditions of the transition ker-
nel see Roberts (1996). The second important restriction for the MH algorithm is
identical to the restriction of initial values in the Metropolis algorithm (π(x0) > 0).

The MH algorithm is described for instance in Hastings (1970), Chib and
Greenberg (1995), Gilks et al. (1996a) and Liu (2001). Implementation deviations
arise due to different dealings of the above restrictions. Chib (2004) for instance,
changes the ratio α in the way that α = 1 for π(xt−1) · q(xt−1, y) <= 0. (Liu 2001,
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Algorithm 6 Metropolis-Hastings Algorithm
Input: π() – target function

q (·, ·) – proposal distribution, transition kernel
U(0, 1) – uniform distribution in [0, 1]
t – iteration index
T – number of iterations

Output: x = {x1, . . . , xT } – sample
1: t = 0
2: initialise xt

3: repeat
4: increment t
5: generate y ∼ q (xt−1, ·)
6: generate u ∼ U (0, 1)
7: calculate α (xt−1, y)← min

{
1, π(y)

π(xt−1)
q(xt−1,y)
q(y,xt−1)

}
8: if α (xt−1, y) ≥ u then
9: xt ← y

10: else
11: xt ← xt−1

12: end if
13: until t = T

p. 112) suggests a different acceptance ratio:

α(xt−1, y) =
δ(xt−1, y)

π(xt−1) · q(xt−1, y)

where δ(xt−1, y) is any symmetric function chosen so that α(xt−1, y) ≤ 1 ∀ xt−1, y.

In Algorithm 6, the MH method is presented. This algorithm is analogous
to the Metropolis algorithm (Alg. 3.3.4). Let us prove that the MH-algorithm
generates a Markov chain with a stationary distribution equal to π. The Transition
kernel TMH of the sequence proposed by the MH algorithm is:

TMH (xt+1, xt) = q (xt+1, xt) α (xt+1, xt)

+ δ (xt+1 − xt)
∫

q (s, xt) (1− α (s, xt)) ds

where α (z, x) = min

{
1,

p (z) q (x, z)
p (x) q (z, x)

}
.

(3.3.16)

Stationarity of the MH-Algorithm. π is the stationary density of the Markov chain,
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because∫
TMH (st+1, st) π (st) dst =

∫
q (st+1, st) α (st+1, st) π (st) dst

+
∫

δ (st+1 − st)
∫

q (s, st) (1− α (s, st)) dsdst

=
∫

min {π (st) q (st+1, st) , π (st+1) q (st, st+1)} dst

+
∫

q (s, st+1) (1− α (s, st+1))π (st+1) ds

=
∫

min {π (st) q (st+1, st) , π (st+1) q (st, st+1)} dst

+
∫

π (st+1) q (s, st+1) ds

−
∫

π (st+1) α (s, st+1) q (s, st+1) ds

=
∫

min {π (st) q (st+1, st) , π (st+1) q (st, st+1)} dst

+ π (st+1)

−
∫

min {π (st) q (st+1, st) , π (st+1) q (st, st+1)} dst

= π (st+1)

The following example underlines the fact that the MH algorithm works also
in the case of a non-symmetric proposal function.

Example 3.3.5 (Metropolis Hastings Algorithm and non-Symmetry). In this
example the same simulation data as in example 3.3.4 is used. By running the
simulation with the MH algorithm it can be seen that the generated sample is
close to the desired target function.

In Fig. 3.36, again three different time steps are visualised with the histogram
plots of the generated sample xt. It can be seen that at t = 10 the sample is closer
to the initial uniform distribution compared to Example 3.3.4. Yet at t = 100, the
target function is well approximated. This status again is stable.

Comparing Fig. 3.35 and Fig. 3.36, a further effect can be seen. The sample
in MH algorithm converges much faster to the target function.

Despite the computational overhead compared to Metropolis algorithm, the
MH algorithm is much more efficient (MacKay 2003, p. 365). This is due to
the fact that the candidates are chosen better. Challenges of the MH method
are described in more detail in Section 3.4, where the issues of choosing proposal
function, Burn-In and other relevant simulation environment parameters are dis-
cussed.
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Figure 3.36: Histograms of Metropolis-Hastings Iterations at t = 10, 100, 1000
with Non-Symmetrical Proposal Function

The Gibbs Sampler, described in the following section, is a special case of the
MH algorithm.

3.3.6 Gibbs-Sampler

The Gibbs-Sampler was proposed by Geman and Geman (1984). This method was
proposed in the field of image processing and is also quite popular in statistics.
The method works in the area of missing data as well (Tanner and Wong 1987).
The Gibbs Sampler is the most widely used MCMC method (Gilks et al. 1996a,
p. 12). Although the name is misleading since the method is not restricted to
Gibbs distributions, the Gibbs Sampler is more common than earlier publications
in physics, such as Glauber (1963), Huang (1973) and Creutz (1980).

The main idea is the decomposition of a multivariate distribution (d dimen-
sions). A sample consists of T values (iterations). The decomposition is easy to be
implemented because a sequence of conditional distributions is simpler to obtain
than to compute the marginal of the joint distribution by integration.

It is essential that:

x = (x1, . . . , xc) with c = 1, . . . , C (3.3.17)

where C is the number of components of sample x. This number can represent
the dimensions of the sample as suggested by Liu (2001, p. 130). However, it is
not necessary that C = d. Some dimensions might be merged if it is useful in the
implementation of the Gibbs Sampler. Due to the decomposition of the sample,
the Gibbs method might be interesting in cases where multivariate sampling is
quite complex.

Two Gibbs Sampler methods can be distinguished: A systematic approach and
a random-scan Gibbs Sampler (Liu 2001, pp. 129). At time t + 1, a value for x(c)
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is generated with the proposal distribution q. This is done according to MacKay
(2003, p. 371):

x
(c)
t+1 = q(x(c)|x(1)

t+1, x
(2)
t+1, . . . , x

(c−1)
t+1 , x

(c+1)
t , . . . , x

(C)
t )

A candidate generated in this way is always accepted (Gilks et al. 1996a, pp.
10-12). The authors describe the combination of Metropolis-Hastings and Gibbs
Sampler as well.

The following algorithm (Alg. 7) is taken from Gamerman and Lopez (2006,
pp. 142–143) and describes the Gibbs Sampler.

Algorithm 7 Gibbs Sampler
Input: π() – target function

πi

(
xi|x(−i)

)
– full conditional distribution, from which samples are drawn

U(0, 1) – uniform distribution in [0, 1]
t – iteration index
T – number of iterations

Output: x = {x1, . . . , xT } – sample
1: t = 0
2: initialise xt = (x1

0, x
2
0, . . . , x

c
0)

3: repeat
4: increment t
5: for c := 1 TO C do
6: generate xc

t ∼ π
(
xc

t |x1
t , x

2
t , . . . , x

c−1
t , xc+1

t−1 , . . . , xC
t−1, ·

)
7: end for
8: until t = T

The following example shows that this algorithm is indeed a MH algorithm
(Gamerman and Lopez 2006, p. 211). Setting the proposal distribution q in the
MH Algorithm 6 with qi = πi, the candidate is drawn from the full conditional
distribution and is accepted with α = 1.

Obviously, the computational effort of the Gibbs Sampler compared to the MH
algorithm is lower. This is justified by the fact that the ratio given in Eq. 3.3.15
does not have to be computed.

The following example should emphasise the fact that MH outperforms Gibbs
sampling.

Example 3.3.6 (Gibbs sampling vs. MH). This example is taken from Carlin
et al. (1992) and (Gamerman and Lopez 2006, p. 211–213). A sample x =
(x1, . . . , xn) should be generated from a Poisson distribution with a change point
at m. This means: xi|λ1 ∼ Poi(λ1), i = 1, . . . ,m and xj |λ2 ∼ Poi(λ2), j =
m + 1, . . . , n. The independent prior distributions for λ are λ1 ∼ G(a, b), λ2 ∼
G(c, d). The change point m is uniformly distributed over all possible sample
states (m ∼ U(1, n)).
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The posterior density is:

π(λ1, λ2,m) ∝ λ
a+(

∑m
i=1 xi)−1

1 e−(b+m)λ1λ
c+(

∑n
i=m+1 xi)−1

2 e−(d+n−m)λ2

The full conditional densities are easily obtained:

πλ1(λ1) = G(a +
m∑

i=1

xi, b + m)

πλ2(λ2) = G(c +
n∑

i=m+1

xi, d + n−m)

πm(m) =
λ

a+(
∑m

i=1 xi)−1
1 e−(b+m)λ1λ

c+(
∑n

i=m+1 xi)−1

2 e−(d+n−m)λ2∑n
j=1 λ

a+(
∑j

i=1 xi)−1
1 e−(b+j)λ1λ

c+(
∑n

i=j+1 xi)−1

2 e−(d+n−j)λ2

(3.3.18)

The analytical marginal posterior distributions can be found in Gamerman
and Lopez (2006, p. 144).

The above-mentioned model can be applied to n = 112 observations of counts
of coal mining disasters in Great Britain by the years 1851 to 1962 as collected
by Maguire et al. (1952) and corrected by Jarrett (1979). Tab. 3.1 shows the
observations.

In Fig. 3.37 a times series plot of the data is given, where the assumed change
point is marked (year = 1891).
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Counts of coal mining disasters in Great Britain

years

Mean before 1891 = 3.098

Mean after 1891  = 0.901

Figure 3.37: Time Series Plot of Coal-Mining Disasters in Great Britain

The simulation is done with the following parameters:
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Table 3.1: Coal-Mining Disaster data in Great Britain by years 1851-1962
(taken from Carlin et al. (1992))

Year Count Year Count Year Count Year Count Year Count
1851 4 1874 4 1897 0 1920 0 1943 0
1852 5 1875 4 1898 0 1921 0 1944 0
1853 4 1876 1 1899 1 1922 2 1945 0
1854 1 1877 5 1900 0 1923 1 1946 1
1855 0 1878 5 1901 1 1924 0 1947 4
1856 4 1879 3 1902 1 1925 0 1948 0
1857 3 1880 4 1903 0 1926 0 1949 0
1858 4 1881 2 1904 0 1927 1 1950 0
1859 0 1882 5 1905 3 1928 1 1951 1
1860 6 1883 2 1906 1 1929 0 1952 0
1861 3 1884 2 1907 0 1930 2 1953 0
1862 3 1885 3 1908 3 1931 3 1954 0
1863 4 1886 4 1909 2 1932 3 1955 0
1864 0 1887 2 1910 2 1933 1 1956 0
1865 2 1888 1 1911 0 1934 1 1957 1
1866 6 1889 3 1912 1 1935 2 1958 0
1867 3 1890 2 1913 1 1936 1 1959 0
1868 3 1891 2 1914 1 1937 1 1960 1
1869 5 1892 1 1915 0 1938 1 1961 0
1870 4 1893 1 1916 1 1939 1 1962 1
1871 5 1894 1 1917 0 1940 2
1872 3 1895 1 1918 1 1941 4
1873 1 1896 3 1919 0 1942 2
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• number of iterations n = 2500

• initial value m0 = 1891

• system parameters a = b = c = d = 0.0001.

The results can be seen in Fig. 3.38 and Fig. 3.39. Both figures give the
marginal posterior distribution (MPD), the true value and the histogram approx-
imation.
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Figure 3.38: True and Approximated
MPD for λ1 and λ2
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Figure 3.39: True and Approximated
MPD for m

Evidently, the Poisson rates are distinct (Fig. 3.38). The change point is with
a probability 25% in the year 1891, which is deduced from Fig. 3.39.

This simulation can also be done with MH algorithm. Instead of sampling m′

from its full conditional density function πm(m), a sampling can be done using
proposal function q(m,m′). MH shows a better performance than Gibbs Sampler
since Eq. 3.3.18 does not have to be evaluated at all possible values.

In the simulation study the sample m′ is generated with a proposal function
q(m,m′) ∝ e−τ ·|m−m′|. The tuning parameter τ ∈ [0.05; 0.95] and all other
simulation parameters are equal to the values in the Gibbs simulation study.

The computational effort in this simulation is approximately 40% of Gibbs
sampler. In Fig. 3.40, the impact of tuning parameter τ on the acceptance rate
can be seen. The average acceptance rates for different tuning parameters τ are
plotted.

The Gibbs Sampler is not further considered in the rest of this document,
because the MH algorithm is a generalisation of the Gibbs Sampler. Although
the Gibbs Sampler is more efficient than the MH method, because it accepts every
move, it is also possible to find an MH algorithm that outperforms Gibbs Sampler.
This certainly requires a more “intelligent” and complex simulation environment
for the outperforming MH as can be seen in Example 3.3.6.
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Figure 3.40: Acceptance Rates Corresponding to Tuning Parameter τ

3.3.7 Missing Values

This section addresses the issue of missing values. Values might be missing due to
several reasons. They can severely affect results. If missing data are ignored or it
is assumed that excluding missing data is sufficient, the risk of obtaining invalid
results is not negligible.

In the case of equation systems with stochastic variables, it is possible to
impute missing values with the help of an equation system. There are three
relevant cases for missing data of an equation system based on:

1. prior information of LHS variables,

2. LHS variables, which can be computed according to case 1, and

3. LHS variables, which cannot be computed.

In order to illustrate all three cases recall the simplified DuPont system from
Section 2.2.1. Prior information is at hand only for cost and transaction volume.
Profit can be directly computed by the equation system (case 1). Profit Margin
can be computed if profit is already available (case 2). Information about capital
turnover cannot be computed (case 3).

In the following, imputation is explained and resulting defiances are addressed.
Prior information can be used in order to generate unknown data with the given
equation system. There are two possible cases. Either one or more (than one)
estimates are generated for a variable. In the first case, new data can be directly
used to obtain further estimates for variables with help of the equation system. In
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the second case, a combined estimate as described in Eq. 3.3.20 is useful. Never-
theless, if estimates for a variable are M-inconsistent an imputation is not feasible
and the complete procedure stops.

In order to obtain an algorithm for imputation, the maximum iteration of the
procedure is equal to the number of equations involved in the equation system.
The following algorithm describes the imputation steps.

Algorithm 8 Imputation of Missing Values
Input: Equation System, Prior information
Output: combined estimates for variables with missing values
1: Set of Variables with known values (Setknown) := Prior information
2: Set of missing values (SetMissing) := Set of all Variables - Setknown

3: iteration counter (ic) := number of equations - —Setknown—
4: for ic to number of equations do
5: for all equations do
6: if LHS in Setknown then
7: Resolve RHS
8: if RHS variable in Setmissing then
9: add RHS to Setknown

10: remove RHS variable from Setmissing

11: else
12: combine estimates of RHS variable according to Eq. 3.3.20
13: end if
14: end if
15: end for
16: if |Setknown| > (ic + 1) then
17: ic := |Setknown| - 1
18: end if
19: end for

Algorithm 8 returns improved estimates for all state variables of the equation
system. Due to the fact that most business indicator systems are ordered in a
hierarchical structure, it might be necessary to resolve the equation system with
loops.

Example 3.3.7 (Missing Value Imputation). Given the equation system M with
two equations and indicators A,B, C, D, E:

1. A = B + C

2. D = A * E

and prior information B,C, and E, then in the first step A has to be estimated.
The values of A, D can be resolved.

A further option in order to impute missing values is to resolve desired equa-
tions and substitute missing values by equations. However, this procedure ends
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with equations that have more than one operator and the data structure for this
equation solver is much more complex. Therefore, this approach is not pursued.

3.3.8 M-Consistency Check

This section deals with the problem of competing estimators. When using prior
information and a system of equations, different estimates per variable might be
gained for all equations where this variable shows up. Yet which information
should used?

When using crisp data, different estimates will certainly lead to model incon-
sistency (M-inconsistent). In the case of M-inconsistency, there can be only one
choice. All prior information has to be checked and revised. This includes not
only variables where M-inconsistency is detected but also all variables that were
used for generation of estimates for such a variable.

The M-consistent case occurs if the prior information and all estimates are
equal per variable. There are two possible states of M-inconsistency: strong M-
inconsistency and weak M-inconsistency. These are defined in the following.

Definition 3.3.8 (M-Inconsistent Data). Given equation system M , let k > 1
be samples for a variable x ∈ X and α ∈ R[0,1]. For each sample the quantiles
qα

2
and q1−α

2
are computed. Let qmax be the maximum of all qα

2
and qmin be the

minimum of all q1−α
2
. The interval Iqmaxqmin is defined as [qmax, qmin].

The system of equations and the prior information is called strong M-inconsistent
iff there exists a variable x ∈ X where

Iqmaxqmin = ∅. (3.3.19)

Figure 3.41: M-Inconsistent and M-Consistent Densities

A stochastic variable is M-consistent within an equation system if it is not
M-inconsistent. Strong M-consistency is only present iff all estimates of a variable
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are equal. Due to sampling and estimation errors, this is almost never the case in
simulation experiments. In such cases the state is called weak M-consistent.

Identification of M-Inconsistent Indicators

M-Inconsistency of an indicator systems causes a problem for application. It is
not reasonable to further work with such data. Therefore it is very important
to detect (location) the variables that generate the M-inconsistency. The next
section tries to illustrate this.

In the first step, all M-inconsistent variables have to be detected. For these
variables either prior information is given or estimates are computed by the equa-
tion system as RHS variables. In the second case, the variables that are used in
the equation system to generate an estimate (LHS variables) have to be evaluated
as well. This means that for variables marked as M-inconsistent, all generating
information (prior or LHS variables) have to be marked for further investigation.
These variables build a M-inconsistency set.

If only one variable causes M-inconsistency, all marked variables have to be
checked and prior information of these variables have to be adjusted before another
simulation can be conducted.

If more than one variable is detected as M-inconsistent, it might be useful to
first focus the effort of auditing to those variables, that occur in more than one
M-inconsistent set.

The identification of M-inconsistency is explained in detail in Alg. 9.
All variables marked M-inconsistent are used as input for the detection. This

set of variables is determined by the corresponding interval Iqmaxqmin as given in
Eq. 3.3.19. Although the prior information of these variables might be a cause
for M-inconsistency, the prior information that generates further estimates is also
a possible origin of M-inconsistency. Therefore, all involved variables (RHS and
LHS) of M-inconsistent variables have to be checked.

Solution Set of M-Consistent Indicator Systems

If the indicator system is M-consistent, different estimates for one variable should
be combined to only one estimate. This is described in the following part.

If all variables are M-consistent, the solution set can be computed. In the first
step, all estimates of a variable have to be merged into a new estimate. This is
done with the help of joint distribution of all samples of a variable. This joint
distribution can be seen as a function on the product space. In Fig. 3.42, such a
joint distribution function for a variable is shown. In this case, it is a bivariate
function, and thus yields two estimates. The combined estimator is then a function
of all single estimates where all values are equal. Fig. 3.43 shows this case. Note,
that a renormalisation has to be applied such that the new improved estimate for
the considered variable fulfills the prerequisites of a density function.
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Algorithm 9 Detection of M-Inconsistent Indicators
Input: all detected M-inconsistent variables
Output: set of variables for auditing
1: initialise set of all marked variables
2: for all M-inconsistent variables do
3: initialise set with current M-inconsistent variable
4: add current variable to set of all marked variables
5: end for
6: for all equations do
7: for all M-inconsistent variables do
8: if RHS(current equation) = current M-inconsistent variable then
9: add to set of current M-inconsistent variable LHS(current equation)

10: add LHS(current equation) to set of all marked variables
11: end if
12: end for
13: end for
14: for v in set of marked variables do
15: counter := 0
16: for all sets of M-inconsistent variables do
17: if v in current set then
18: Increment(counter)
19: end if
20: end for
21: set priority to check for selected variable to counter
22: end for

The combined estimate for a M-consistent variable X with more than one
estimator (X̂1, . . . , X̂n) is:

f̂X(x) = c · f(X̂1,...,X̂n)(y) ∀yi = yj with i, j ∈ [1, . . . , n], c ∈ R+. (3.3.20)

The function f(X̂1,...,X̂n) is the joint distribution of all single estimates for the
same variable. y is a vector in the interval Iqmaxqmin . Properties of Eq. 3.3.20 are
that the combined estimate has a variance lower or equal to the lowest estimate.
This is due to the fact that the new estimate has only values greater 0 in the
interval Iqmaxqmin . Therefore, the mean of the improved estimate also lies in this
interval. Factor c is the renormalising constant and has to evaluated, for instance
with numerical integration methods.

In order to ensure that the joint distribution exists, the corresponding functions
have to fulfil the Lesbesgue requirement.

Definition 3.3.9 (L1-norm). A function f with f : Rn → Rm where n, m ∈ N+
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Figure 3.42: Joint Distribution of
two Estimates for the Same Variable

Figure 3.43: Corrected Estimator

has L1-norm:

‖f‖L1 =

+∞∫
−∞

|f(x)|dx. (3.3.21)

A function for which the L1-norm exists is a density function.

Definition 3.3.10 (Lk-norm). A function f with f : Rn → Rm where n, m ∈ N+

has Lk-norm:

‖f‖Lk = k

√√√√√ +∞∫
−∞

|f(x)|kdx. (3.3.22)

If k estimates exist for a variable, then it is sufficient for the existence of the
joint distribution that all functions have Lk-norm. This is in respect to the fact
that the kth product space is used for the joint distribution and a missing Lk-norm
implies that there is no definite number c.

The following example illustrates a density function that does not fulfil the
L2-norm.

Example 3.3.8 (Lesbesgue). The function

f(x) =

{
1√
x
− 1 0 < x < 1

0 else
(3.3.23)
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is a density function that does not have L2-norm. This function cannot be used if
a second estimate exists and has to be combined in the consistency step. Fig. 3.44
visualises the function.

Figure 3.44: A Function, that has no L2-Norm

SamPro

The above described functionalities and algorithms are combined in SamPro,
(Alg. 10). This algorithm uses the model and prior information to impute missing
values and to improve estimates for all involved variables.

Algorithm 10 SamPro Algorithm
Input: stochastic equation system M

one observation per variable (missing values allowed)
Output: estimates for all variables, i.e., marginal densities, means and standard

deviations
1: resolve (set LHS ≡ RHS) for all variables in all equations
2: sample from the joint density function of all RHS variables for LHS
3: estimate all LHS variables
4: estimate α/2, 1− α/2 - quantiles qmax, qmin for each variable.
5: if qmax > qmin then
6: M-inconsistency found
7: else
8: compute the distribution fxz restricted to the subspace x− z = 0
9: end if

Two different approaches are possible for the computation of the distribution
fxz under the restriction x−z = 0 (x ≡ RHS and z ≡LHS). If samples from a com-
mon distribution of all involved estimates of a variable exist, these can be used to
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obtain the improved estimate. Due to the fact that condition x− z = 0 is not nu-
merically fulfilled exactly by these samples, a margin should be applied in almost
all cases. This corridor spans a hype cylinder with the central line x = z. The
radius of the corridor cylinder specifies both accuracy and computational effort.
All values outside the corridor are eliminated from the sample and the remaining
samples are used for density estimation. Before this can be done, the multidi-
mensional sample is projected onto the central line of the cylinder. This mapping
constitutes the improved estimate and can be used, for example, to generate a
histogram, cf. Fig. 3.45. Three different estimates span the sample space.

Projection

f1

f2
f3

Figure 3.45: Projection for a Common Sampling Distribution

The dashed lines represent the boundary of the cylinder. All points outside
(plotted with squares) are excluded from the combined estimate. The projection of
the points, plotted with a circle onto the solid line, contributes to the distribution
of the combined estimator.

All estimates are exclusively assumed to be either independent or dependent.
The independence assumption seems to be consistent with the application of
business indicator systems because most equations are definition, balance or be-
havioural equations and a dependency structure between variables of these equa-
tions might not be obvious. An intensive study on the effect of the independence
assumption including robust analysis is given in Chapter 4.

For example, in the case of independence of x and z, the joint distribution is
defined as fxz = fx · fz. After the computation of the joint function, it has to be
renormalised to obtain a distribution function, as shown in Fig. 3.43.
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Outliers are discussed in Section 3.4. Robustification of simulation samples
can be applied in two kinds: one robustification is applied for an estimate (x̂) and
one is applied for the interval Iqmaxqmin . Explanations of robustification are given
in the following section.
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3.4 Robustifying the Metropolis Hastings Algorithm

In this paragraph, the most common challenges of using the MCMC algorithm
are discussed. This addresses not only a general problem that occurs when using
this MCMC technique, but also problems that caused by the equation systems
considered here.

3.4.1 Noise

In real world business and economic indicator systems effects of noise in the indi-
cators are almost never investigated. Crisp data are used instead. Data may be
erroneous. This is a result from estimation, measuring or forecasting. If part of
the data has some added noise, error propagation exuberates the problem.

Two aspects of noise are of interest. One is that noise has no impact on the
mean value of the indicator. The other that it influences the mean value of the
data. In the case of an indicator system, only noise with a mean value of zero of
the indicators is of interest to obtain M-consistent data. If the added noise has
a mean value significantly different from 0, data may become M-inconsistent as
described in Def. 3.3.8.

Error distributions can be of several forms. It can be symmetrical or skewed,
it can have a small or large variance. Both, heavy tails or bounded domains are
possible. Examples of distribution functions and their characteristics are already
given in Sections 3.2.1–3.2.5.

SamPro achieves a noise reduction in almost all cases. This is due to the fact
that the interval Iqmaxqmin shrinks the data space. This is also the reason why
an increase in the noise is not possible. If two concurring estimates for a variable
exist and both have the same first moment but differ in the second moment, then
the smaller of both variances results in the new improved estimator. If the first
moment of both estimates is different but the interval Iqmaxqmin is non-empty, the
resulting estimate has a standardised first moment that is bounded by the first
moments of both input estimates. If an estimate of IndicatorA has a higher second
moment than the estimate of IndicatorB, then the combined estimate has a first
moment closer to the first moment of IndicatorB than to that of IndicatorA.

3.4.2 Transition Kernels

The Metropolis-Hastings algorithm does not specify the transition kernel. The
only restriction of the transition kernel is that q(x, y) > 0 if and only if q(y, x) >
0. In the literature several transition kernels have been proposed. The most
important kernels are presented in the following sections.

All kernels should have some common properties. An acceptance rate of 25
- 35 % should be reached, which was determined by Gelman et al. (1996), see
also Liu (2001, p. 115). This might vary from one transition kernel to another
but gives a lower bound for the acceptance rate. Other authors suggest to find
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transition kernels that reach acceptance rates from 20 - 50 %, see for example
Besag et al. (1995), Bennett et al. (1996).

Random Walk

The random walk transition kernel q generates the candidate values as a random
walk with y ∼ xt + ε, where all ε are independent and identically distributed from
a sampling function Q(). The function Q() should be a spherically symmetric
distribution (Liu 2001, 114). This generates candidates following a random walk
of the accepted values xt. This also simplifies the acceptance rule for the values
xt+1:

xt+1 =

{
y u ≤ π(y)

π(xt)

xt otherwise
(3.4.1)

In a random walk chain the proposal values are the previous values plus a
disturbance. A symmetrical disturbance with zero mean implies a symmetric
chain, as in the Metropolis algorithm. Gaussian or Student’s t distribution centred
around zero are often used (Gamerman and Lopez 2006, p. 198). Tierney (1994)
suggests that the covariance matrix is set to cS where c is a tuning parameter and
S is the approximation of the posterior variance covariance matrix. The value of
c should lie between 0.5 and 3.

Example 3.4.1 (Random Walk Metropolis Hastings). In this example the target
function is a Bivariate Gaussian mixture:

π(x) = 0.6·f2

(
x,

(
4
5

)
,

(
1 0.8

0.8 1

))
+0.4·f2

(
x,

(
0.3
3

)
,

(
1 −0.5
−0.5 1

))
where f2 is bivariate normal density. Fig. 3.46 plots the function and shows the
bimodal aspect.

The random walk proposal function is set to q(x, y) = f2(y, x, I2). In Fig. 3.47,
different initial values and different lengths of the chain are visualised. The accep-
tance rate suggests that the chain is mixing efficiently. This is independent of the
initial values and the length of the chain. Due to the fact that the initial values
are in the domain of the true density function and the proposal q covers the target
space quite well this chain works adequate. A contour plot of the true function is
added in each part of Fig. 3.47.

Comments on the selection of space range for the proposal and the associated
acceptance rates can be found in a similar example in Gamerman and Lopez (2006,
p. 199).

Independence Chain

The independence chain is the simplest possible transition kernel to use. There is
no dependency of xt−1 on the candidate yt, i.e. q(y, x) = q(y). The candidates are
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Figure 3.46: A Bivariate Gaussian Mixture

drawn from a proposal distribution Q. This also simplifies the acceptance ratio α
to

α (y, xt)← min

{
1,

π (y) · q (xt)
π (xt) · q (y)

}
. (3.4.2)

The efficiency of the independence chain is closely connected to the differences of
the shapes between target function π and proposal distribution q. Obtaining good
performance results requires that q covers the domain of interest. Thus, a heavy
tail distribution such as the long tailed t-distribution is a good choice. In order to
obtain a good performance of the independence chain, the shape of the transition
kernel should be quite similar to the target function but the variance should be
higher.

The independence chain has a kernel where the new candidate is drawn in-
dependently from the last accepted value. This may imply that the generated
chain is not a Markov chain. However, the combination of candidate generation
and acceptance of proposed values create a Markov chain (Gamerman and Lopez
2006, pp. 199).

The proposal should be close to the density function (Liu 2001, p. 115). If
the proposal distribution is equal to the target distribution, the acceptance ratio
is equal to 1. In such a case, the Metropolis-Hastings (MH) algorithm should
not be used because it only slows down the simulation. In order to generate
candidates that are in the domain of the target’s distribution tails, the proposal
distribution should cover a wider domain. This is illustrated in Fig. 3.48. It shows
the results for the simulation of a standard Gaussian distribution. The simula-
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Figure 3.47: Random Walk for Bivariate Mixture with Initial Parameters and
Chain Length Effects

(solid lines represent true density function)

tion is performed with different proposal distributions that generate independence
chains. Each proposal distribution is a Gaussian distribution with zero mean and
a standard deviation varying from 0.5 to 2.5. Rejection rate and minimum square
deviation from the target distribution are plotted. It can be seen that the rejection
rate is zero in the case that the proposal distribution is equal to the target distri-
bution. By increasing the variance of the proposal distribution, the convergence
rate of the chain increases, too.

Fig. 3.49 and 3.50 illustrate the fact that the shape of the proposal distribution
should be close to the target function.

The target function in Fig. 3.49 is again a standard Gaussian distribution.
Three different proposal distributions are used. In the first simulation, the pro-
posal distribution is a Gaussian with zero mean and standard deviation of 1.1. The
second simulation uses a Cauchy distribution with location set to 0 and scale set
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Figure 3.48: Different Proposal Functions (Deviation of σproposal from σtarget)

to 1. The third simulation involves a Laplace distribution with location parameter
0 and scaling parameter 1. The MH algorithm generates 1000 samples. The shape
of the Gaussian proposal fits the target function best and the generated samples
fit the target function well. By increasing the number of samples, the results of
all proposal kernels are getting equal. This is due to the fact that the proposals
fulfil the criteria for independence proposals.

In Fig. 3.50, a standard Cauchy distribution is the target function. In the first
simulation experiment, a standard Gaussian is used as proposal distribution. The
second proposal distribution is a Cauchy distribution located at 0 with a scale
equal to 1.1. The Laplace distribution with the same parameters as before is used
in the last simulation experiment. It seems that a Cauchy proposal is not a good
candidate generator. However, a Kolmogorov Smirnov test on this data states that
it fits best to this kernel. The second best fit is reached with a Laplace proposal.
Gaussian proposal is also accepted. However, the Gaussian distribution is not a
good candidate because there are not adequate samples in the generated tails.

Gamerman (2002) states that a general rule for independence chains is the
avoidance of large variations which can be obtained by using proposal distributions
that make ratio π/q as constant as possible. Tierney (1994) remarks that density
functions with thin tails should be avoided for independence proposals. Mengersen
and Tweedie (1996) describes properties for convergence (see also Robert and
Casella (2003, pp. 276)).

Example 3.4.2 (Independent Metropolis Hastings). This example uses the same
Bivariate Gaussian mixture target function as Example 3.4.1.
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Figure 3.49: Different Shapes of Proposal Functions for Gaussian Target
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The proposal function changes to q(x, y) = f2

(
y,

(
2.52
4.2

)
,

(
5 0
0 5

))
.

Here the proposal is a Bivariate Gaussian with the mean of the target function
and a covariance matrix that covers the desired sampling space.

In Fig. 3.51, independent simulations with different length and initial values
are plotted. A comparison with Fig. 3.47 reveals that the acceptance rate with
independence MH is lower, because the proposal generates more values that will
be rejected, compared to the random walk algorithm.
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Figure 3.51: Independent MH for Bivariate Mixture with Initial Parameters and
Chain Length Effects

Tuning parameters of the independence Chain algorithm can be found in
Gamerman and Lopez (2006, pp. 202).
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Simulated Annealing

A defiance of the above chains is that they can end up in a local extremum. In that
case, the problem might be that the real target function will not be represented
by the samples from the Metropolis Hastings algorithm. Although the generated
chain has the stationary distribution π, the samples might stay in a local optimum
due to the fact that the generation process has finished. To escape local optima
simulated annealing is used, which is abutted to the metallurgic process of cooling.
In physics annealing tries to minimise the energy, while temperature is the control
factor.

The idea of the simulated annealing algorithm was introduced by Metropolis
et al. (1953). The aim of the algorithm is to minimise the criterion function
on a finite set. It is also applicable to optimisation and simulation (Robert and
Casella 2003, p. 163). The change of scale (often called temperature) ensures that
faster moves on the surface are possible. A positive feature of simulated annealing
is that candidates may be accepted which have a lower probability without the
temperature effect. This additional randomisation effect makes escapes from local
minima possible.

The standard implementation of simulated annealing algorithm modifies tem-
perature at each iteration. Algorithm 11 (Kirkpatrick et al. 1983) provides more
insight.

Algorithm 11 Simulating Annealing Algorithm
Input: Temperature T1 (reasonable large)

h(x) function that has to be minimised
n - Simulation runs m - Length of Simulation chain qi() - transition kernel

1: Initialise x0

2: for i in 1 to n do
3: for j in 1 to m do
4: Generate candidate according to qi(·)
5: Accept candidate with probability α and target function πi(x) ∝ e−h(x)/Ti .
6: end for
7: Ti+1 := Decrease(Ti) but ensure Ti+1 > 0
8: end for

The sequence of temperature T should fulfil two assumptions: First, it has
to be a monotone decreasing and second, T1 should be reasonably large whereas
limi→∞Ti = 0. For convergence diagnostics see Geman and Geman (1984) and
Liu (2001, p. 210).

During the first iterations of simulated annealing the particles can move rel-
atively freely over the domain. This automates and improves the search for an
adequate starting model. By cooling down, the particles become more restricted
and for temperatures close to zero, good samples for π() are obtained for suffi-
ciently large numbers, n, of iterations. The decrease of temperature should be of
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order O(log(m·n)−1) in order to reach the global minimum of h(x) with probability
1 (Geman and Geman 1984, Holley et al. 1989).

A typical cooling process can be stated as (Walsh 2004):

Ti = max

{
T1

(
Tk

T1

)i/n

, Tk

}
. (3.4.3)

The process generates n temperatures, the last temperature is Tk.
Another technique related to simulated annealing is simulated tempering (Mari-

nari and Parisi (1992), see also Geyer and Thompson (1995)). The main idea
behind this technique is the creation of a family of target functions π that vary
only in their temperatures. The initial target function corresponds to the function
with the lowest temperature.

There exists a wide range of specialised algorithms such as Parallel Temper-
ing (Geyer 1991), Ensemble Simulation (Berg and Neuhaus 1992, Hesselbo and
Stinchcombe 1995), and Tempering with dynamic Weighting (Liu 2001, pp. 219–
224). All of these algorithms have to be carefully adjusted. However, they prove
more efficient than more general methods in their application domain.

In the following sections, the common problems of all presented MCMC algo-
rithms are described. Furthermore, solutions for specific defiances are given.

3.4.3 Burn-In Problem

The first samples generated by the Metropolis Hastings algorithm might not rep-
resent the desired target function. This occurs if the initial values are not in
the domain of the target function. These first iterations have to be discarded to
ensure that the generated chain has converged to the invariant distribution. The
first sequence is called Burn-In. The theoretical calculation of the Burn-In is not a
trivial task (Chib 2004). Computational performance issues require minimisation
of the Burn-In. Therefore, the following assumptions on the proposal distribution
are taken into account:

• the shape of the proposal distribution should be similar to the target func-
tion,

• the moves of the proposal distribution should make large moves on the sup-
port of the target function, and

• high numbers of rejected candidates should be avoided.

This results into requirements of the acceptance rate as well as the initial
value. The initial value does not play any role in the case of the independence
chain. This is due to the fact that after the first iteration, a value with a higher
proposal function value is accepted. The only desired condition in such a case is
that the initial target value is greater than zero.
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In other Metropolis Hastings algorithms the first 1000 - 5000 iterations are
typically thrown out of the sample. Different convergence tests exist to assess
whether or not the chain has reached stationarity. A chain is said to be poorly
mixing if no candidate is accepted at a large number of iterations. In contrast, a
well mixing chain has a much higher acceptance rate.

A first hint of a well mixing chain that reached stationarity can be found in a
time series plot of the samples over the iterations. In Fig. 3.52, four time series
plots for different Random walk proposals are given. All chains have a Gaussian
function with µ = 10 and σ = 1 as a target function. The initial value is set to
zero. Furthermore, the proposal functions are also Gaussian functions but with
standard deviation ranging from 10 to 0.01.
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Figure 3.52: Time Series Plots of Random Walk MH
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The upper left time series plot is generated by a random walk with σproposal =
10. This ensures that the Burn-In is reduced compared to all other presented
random walk chains. Moreover, this chain is not well mixing. This can be seen
from jumps and local steady states in the time series plot. The acceptance rate of
m = 10000 generated candidates is only 12.25%. The second Random walk chain
uses a proposal with variance equal to 1. The first iterations move from the initial
value to the domain of the target function. After less than 50 iterations, the chain
has reached stationarity. The acceptance rate is about 69.5% and therefore this
is a well mixing chain. The lower left time series plot represents a chain with a
standard deviation of 0.1. Here it is not sure that the Burn-In is finished after
the first 1000 iterations. The acceptance rate of the chain is 95.8% and the chain
is very well mixing. The best mixing chain is the lower right with an acceptance
rate of 96.9%. Nevertheless, this chain is not reaching the stationary distribution
after 10,000 iterations. This can be concluded by the fact that the time series plot
slowly moves away from the initial point.

Other graphs that are helpful for estimating the Burn-In period use auto-
correlation between the generated samples (Walsh 2004), where AR-1 and AR-k
processes are observed. Plotting partial autocorrelation function might also be
helpful in investigating the Markov Chain Monte Carlo sampler in more detail.

There also exist formal tests for stationarity (i.e. Geyer (1992), Gelman and
Rubin (1992), Raftery and Lewis (1992b), Robert (1995)). In the following, two
formal tests are presented. The first is easily implemented, whereas the second
test is a more informative approach.

Geweke (1992) suggests a modified z-test on two samples of the generated
chain, for instance the first 5% and the last 20%. If the Burn-In is already finished,
both samples should have the same mean. The resulting score of the modified Z-
test is referred to as Geweke Z-score. If the absolute value is greater than two,
this is an indicator for drift of the mean, which means that the chain has not
reached stationarity. This test procedure is also called Geweke test. In the random
walks shown in Fig. 3.52 the first 1000 elements where identified as the Burn-In
period. On the remaining 9000 elements the Geweke Z-score was computed (see
Tab. 3.2). The standard score (Z-score) is dimensionless and it represents the
distance between the raw score and the population mean in units of the standard
deviation.

Table 3.2: Geweke Z-Scores on Random Walk Scenarios
Case Fractions: 0.1 and 0.5 Fractions: 0.05 and 0.2

1 (σ = 10) 2.398 2.477
2 (σ = 1) -0.3091 0.08316
3 (σ = 0.1) -2.277 4.007
4 (σ = 0.01) -24.96 -81.98
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Raftery and Lewis (1992a) propose a further formal test. It is based on the
estimation of the quantiles. The parameters of the Raftery-Lewis test are the
quantiles of interest, the error margin of the estimate and the probability of ob-
taining an estimate in the error interval. For computational issues a precision is
required as well. The test procedure works in such a way that a (0,1) sequence
is generated — 1 if θt < q and zero otherwise. This generated sequence is used
to estimate the transition probabilities. The estimated transition kernel makes it
possible to compute estimates on the Burn-In, thinning ratio and total number of
chain elements need to reach stationarity. Again the above described MH random
walk chains are tested with this scenario. The quantile of interest is set to 2.5%.
The accuracy is set to 0.5% with 95% power of the test. Precision is fixed at 0.001.
The estimated results are presented in Tab. 3.3. Note, that a dependence factor is
estimated as well. This factor influences the sampling size due to autocorrelation.
With this parametrisation the tested chain has to consist of at least 3746 values,
see Raftery and Lewis (1992a).

Table 3.3: Raftery-Lewis Test Results of Random Walk Scenarios
Case Estimated Burn-In Estimated Total Sampling Size Dependence Factor
1 37 40397 10.8
2 21 22253 5.94
3 342 309586 82.6
4 851 476726 127

3.4.4 Number of Particles

The number of particles plays a significant role for the quality of the function
representation. Nevertheless, there is a trade-off between accuracy and computa-
tional effort. The larger the number of particles the more computational effort is
necessary but there is also an increase in accuracy.

In Fig. 3.53, six different Independence chains are drawn, all of them generated
from a standard Gaussian as the proposal distribution and the standard uniform
distribution as the target function. The initial value is set to zero and the Burn-In
is set to 1000. Evidently, the smaller the number of particles, the less the target
function can be identified.

Fig. 3.54 shows the Uniform distribution with different numbers of samples. A
comparison between the Uniform distribution and the Independence chain shows
that if only a few samples in the Independence chain are used they differ too much
from the desired function of interest. Anyhow, in the case that the number of
particles is high enough the samples describe the target function very well.

With increasing number of dimensions it is necessary to increase the number
of elements as well. By a rule of thumb there is an exponential dependence of the
sample size on the dimension.
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Figure 3.53: Independence Chain with Different Number of Particles

A further issue regarding the number of particles is whether one long or mul-
tiple smaller chains should be generated. A long chain has a higher probability to
reach the steady state. In contrast, smaller chains can be started from different
initial values. In the literature both approaches are discussed (c.f. Geyer (1992),
Raftery and Lewis (1992b)) for long chains and Gelman and Rubin (1992) for
several smaller chains).

If parallel processing machines are available, running several chains is much
more efficient than generating one long chain. If long burning-in periods are
required or the dependency structure of the chain is highly correlated, smaller
chains might not reach the steady state. With the help of the above discussed
testing procedures it might be possible to decide which approach is most useful.

3.4.5 Achieving Equation Fulfilment using SamPro

If data do not fulfil an equation system, a SamPro iteration might also not fin-
ish with estimates that fulfil the equation system. Although, the gap between
estimates and computed values is decreased, it might still be unacceptable.

A short example illustrates the complexity of the problem. This example is
presented in more detail in Section 4.3.2.

In order to simplify the notation x ∼ N(µ, σ2) is used instead of x = µ + u
with u ∼ N(0, σ2). For instance, cost ∼ N(80, 82).
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Figure 3.54: Uniform Distribution with Different Numbers of Samples

Example 3.4.3 (Equation Fulfilment). Given the following equation system:

Transaction V olume = Profit + Cost

ROI = Profit/Capital

and full prior information:

Profit ∼ N(30, 32)
Cost ∼ N(80, 82)

Capital ∼ N(60, 62)
Sales ∼ N(100, 102)
ROI ∼ N(0.333, 0.3332).

Profit can be computed from both equations and, furthermore, is as prior
information at hand. The three estimates for the mean of variable profit are:

Profit = 30 (3.4.4)
Sales− Cost = 20 (3.4.5)

Capital ·ROI = 19.98 (3.4.6)

After a first iteration of SamPro the new estimated (adjusted) means of profit
are:

Profit = 24.92 (3.4.7)
Sales− Cost = 29.48 (3.4.8)

Capital ·ROI = 25.01 (3.4.9)
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This reveals a convergence tendency of all three estimates of profit, cf. Fig. 3.55.
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Figure 3.55: Trajectory of Profit using Prior Information and Equation System

Fig. 3.56 shows the trajectories of the estimated means for the DuPont indi-
cators. After only three iterations a stable state is reached.

3.4.6 Outliers

An outlier is an extreme value relative to model and data. Estimates based on
data sets with outliers might be misleading. Outliers can result from a different
population than all other data. Hawkins (1980) defines outliers in the following
way: “The intuitive definition of an outlier would be an observation which deviates
so much from other observations as to arouse suspicions that it was generated by a
different mechanism”. Büning (1991) states the following two reasons for outliers:
data are generated by a distribution with heavy tails or the data originated by two
distributions, where one creates “good” and the other creates “bad” observations.

Outliers play an important role in the case of division of variables of an equation
system. This refers to the first reason stated by Büning because division might
result in heavy tail distributions. The following simple example illustrates some
difficulties with outliers in the context of equation systems.

Example 3.4.4 (Outliers generated by an Equation System). The simple DuPont
system as described in section 2.2.1 is used with the following data:

• Transaction Volume ∼ N(100, 502)

• Cost ∼ N(80, 402)
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Figure 3.56: Estimate of Mean by SamPro

• Capital ∼ N(80, 402).

From the equation system Profit (P), Capital Turnover (CT), Profit Margin
(PM) and ROI can be computed. The results are presented in Fig. 3.57. Some
outliers are marked in the figure with crosses. These outliers result into a large
variance and also influence the mean value estimation. For instance, the variance
of PM is estimated by 15305. Although the median of CT is 1.2 the estimated
mean is 2.3 which is 90% higher.

The treatment of outliers is part of robust methods.

Robust Methods in the Univariate Case

Robust methods can be divided into two areas: one is the detection of outliers
and the second their elimination. In this section, only univariate data sets are
considered. Due to their order structure multivariate data sets are more complex.
They will be discussed in the next section.

In the univariate case, a sample X of size n can be seen as a vector. The vector
has length n. The most common robust method is γ-trimming. γ% of lower values
and γ% of upper values are eliminated from the set. In the first step, the sample
X has to be ordered (X[ ]). The trimmed data set Xγ = (X[γ·n+1], . . . , X[(1−γ)·n])
consists of (100− 2 · γ)% of elements from original data set X.

The estimator of the mean is now defined as:

µ̂γ =
1

(1− 2γ) · n

n−γ·n∑
r=γ·n+1

x[r]. (3.4.10)
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P: Mean= 19.897  Var= 4103.581
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Figure 3.57: Estimated Distributions for P, CT, PM and ROI (no trimming)

The trimmed estimator for the variance is:

σ̂2
γ =

1
(1− 2γ) · n

n−γ·n∑
r=γ·n+1

x[r] − µγ . (3.4.11)

Considering each variable to be pairwise independent might be the easiest way
to make a robust estimation and this way univariate robustification is possible.
The underlying dependency structure is not regarded in this case. This might
result in in-appropriate estimates. If the γ values are very low or only one variable
is of interest, then univariate trimming is easy to implement. In the case of
equation systems described in Chapter 2, the dependency structure has to be taken
into account in order to reduce errors of estimation. Therefore robust methods in
a multivariate case are the appropriate choice, as explained in the next section.

Robust Methods in the Multivariate Case

The main problem of implementing robust methods on multivariate data is the
order structure of these data.

Although Barnett (1976) states: “One cannot really order multivariate data”,
he differentiates between following multivariate orderings:

• marginal ordering,
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• reduced or aggregate ordering,

• partial ordering, and

• conditional or sequential ordering.

These four orderings and their respective robust approach are given in the
following. The data are given as a p× n data matrix:

X = (Xij) =


x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
. . .

...
xp1 xp2 . . . xpn

 .

It is a necessary requirement that there are the same number of observations
n for all p dimensions.

Marginal ordering treats the multivariate data as in the independent univariate
case. All dimensions are considered separately. The ordering of each dimension
gives:

xi[1] ≤ xi[2] ≤ . . . ≤ xi[n] for i = 1, . . . , p

This is a single value oriented ordering.
For each dimension the data are trimmed as in the univariate case. Estimated

means are derived from Eq. 3.4.10 as:

µ̂iγ =
1

(1− 2γ) · n

n−γ·n∑
r=γ·n+1

xi[r] for i = 1, . . . , p.

The marginal ordering estimate for the multivariate data is:

µ̂γ = (µ̂1γ , µ̂2γ , . . . , µ̂pγ).

Using marginal ordering in example 3.4.4 creates different estimates. Using for
instance γ = 0.05 results in Fig.3.58. Variance and mean estimates are adjusted.
For example, with marginal ordering the estimate of Capital Turnover (CT) is
1.43. The variance of Profit Margin (PM) is reduced from 15305 to 0.36.

Marginal ordering can be easily computed but at the cost of the loss of the de-
pendency structure. Each dimension is handled separately and this might produce
wrong results. In order to use the dependency structure of the given multivariate
data other orderings have to be considered.

Reduced ordering is based on distance functions. Several distance measures
might be useful and the choice also depends on the data. For instance, the Maha-
lanobis distance might be a useful distance measure. If the moments are unknown
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Figure 3.58: Estimated Distributions for P, CT, PM and ROI with Marginal
Ordering and Trimming (γ = 5%)

they have to be estimated. This results in an estimated Mahalanobis distance:

µ̆ =
1
n

n∑
i=1

xi

Σ̆ =
1

n− 1

n∑
i=1

(xi − µ̆)(xi − µ̆)′

dM (x, µ̆) = (xi − µ̆)′Σ̆−1(xi − µ̆) (3.4.12)

The d-dimensional elements are ordered corresponding to their distance mea-
sures, that means, iff

di(xi, µ̆) ≤ dj(xj , µ̆) =⇒ xi ≤M xj

The order structure of the distance orientated approach is the given as:

d[1] ≤ d[2] ≤ . . . ≤ d[n]

| | |
x[1] ≤M x[2] ≤M . . . ≤M x[n].
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Which distance measure is used depends on the implementation and the struc-
ture of variables, which is not further investigated here.

Applying the Mahalanobis distance function the corresponding estimates for
Example 3.4.4 are given below. The centroid is estimated by:

Profit = 19.900
Capital Turnover = 2.277

Profit Margin = 0.213
ROI = 0.604

Trimming 5% with the highest distance measure of the multivariate data results
in an histogram estimate as given in Fig. 3.59. In comparison to Fig. 3.57, the
variance of PM is reduced to 15.14 and the estimated mean of CT is 1.65. With
respect to the dependency structure of all involved variables, this reduction is
significantly smaller than in the case of marginal ordering.
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Figure 3.59: Estimated distributions for P, CT, PM and ROI with Reduced Or-
dering and Trimming (γ = 5%)

Fig. 3.60 shows the function of estimated mean and variance with respect to
the trimming level γ. It can be seen that a large variance reduction is achieved.
High potential outliers are eliminated. However, not all variables lead to the same
reduction of the estimated variance. CT for instance has the most influenced
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outliers according to the Mahalanobis distance and the variance is reduced much
more than the variance of Profit.
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Figure 3.60: Mean and Variance as a Function of γ for P, CT, PM and ROI with
Reduced Ordering

In contrast, the estimated means do not behave similarly. While CT is increas-
ing, PM and ROI are decreasing. Profit is more fluctuating. However, the range
of all estimated means of the variables lies in a small interval.

Another ordering that takes account of dependency structure uses a geometric
principle. This ordering is called partial ordering. The concept of convex envelopes
is used.

Definition 3.4.1 (Convex Envelope). A convex envelope is the minimum convex
set that encloses all data points.

All elements of the same group have the same order. Fig. 3.61 shows the convex
envelope of Profit and CT for 20 data points. The outer convex envelope is called
H0, the second outer envelope is H1 and so on.

This ordering inherits two main problems. First, it is not possible to fix the
amount of outliers as done in the above orderings. For instance, if all data points
are on a circle, these data are all outliers or none. Adding one new data point
outside the circle, some of the old data points are element of H1 and some are in
the set H0, which contains the new data point, too.
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Figure 3.61: Convex Hull for Some Points of CT and P

The second problem is the complexity of algorithms that implement partial
ordering. Preparata and Hong (1977) shows convex hull sets for two and three
dimensional data. For data with more than three dimensions the complexity of
the algorithms is high.

For these two reasons partial ordering is not considered in the rest of this study.
The last ordering in multivariate dimensionality considered here is called con-

ditional ordering. Here, one dimension is selected as the order criteria. However,
this method is inapplicable for outlier detection and useless for trimming, as stated
in Büning (1991). Therefore, conditional ordering is not examined in detail.

Summing up the challenges of outlier detection and robust estimation, marginal
ordering and the corresponding elimination do not account for the dependency
structure and should be discarded. Partial ordering is not preferred because its
implementation is very complex. Conditional ordering cannot be used for outlier
detection. Reduced ordering uses distance measures as order structure and delivers
acceptable results when using Mahalanobis distance. However, there are also other
possible distance measures.
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Chapter 4

Comparison of MCMC
Simulation, Probabilistic and
Possibilistic Approach

This chapter presents comparative studies and aims to evaluate the approaches
described in Chapter 3: GLS approach, Fuzzy set approach and SamPro. For each
approach the corresponding software is used. In the case of the GLS estimation
approach the software package QR is used. QR is based on the work of Schmid
(1979) and Müller (1988). The Fuzzy set approach is evaluated with the Excel
Plug-In “FuzzyCalc” which is described in Müller and Lenz (2003). SamPro is
implemented in MoSi which is presented in Chapter 5. The evaluation of the
three approaches includes a comparison of the underlying methods.

There are a number of criteria that can be used to evaluate software tools. For
the purpose of this thesis, five criteria are selected for tool evaluation. These are:
(1) ease of (graphical) modelling, (2) quality of information on errors, (3) graphic
visualisation of results, (4) existing restrictions in models, and (5) performance.
The criteria are explained in detail here below. A synopsis is given at the end of
this chapter.

Graphical Modelling

Modelling indicator systems is essential for understanding and identifying relations
between indicators of an equation system. These equations represent balance or
behavioural equations, as well as equations simply given by definitions. In such
cases, there are no uncertainties in the model and conflicts only occur due to errors
in the variables. Consequently, it can be expected that the graphic representa-
tion of a model is easy to generate. The advantage of combining mathematical
formulation and graphic visualisation is that it simplifies usage.

113
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Information on errors

Type and amount of errors in the variables depend on underlying model assump-
tions. In fact, limited prior knowledge restricts the area of application and poten-
tially results in inappropriate conclusions.

Result Presentation

It should be a primary goal to ensure easy use, easy interpretation and to provide
useful insight as well as accurate values. This is best realised through curves
or histograms, as well as graphic presentations of meaningful estimates, such as
median or confidence intervals. Whether or not an analysis is possible depends on
the structure of the indicator model and given prior knowledge. Furthermore, the
user should be assisted by the application rather than assist the application.

Restriction of Models

Real world indicator systems can be very large and complex. An example is the
ZVEI business indicator system in Section 2.2.

Arithmetic operations are the basis of all approaches, including indicator sys-
tems. For example, behavioural, balance or definition equations are based in
almost all cases on +,−, ·, or /.

Performance

In real time decision making, performance is a crucial factor. How fast compu-
tation and estimation techniques are completed and results are obtained depends
on the complexity of the model (structural equations) and prior knowledge. The
smaller the computational effort, the higher the number of analyses and what-if
scenarios that can be run. Consequently, the quality of a decision support tool is
determined by both required time and accuracy level.
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4.1 Phases

Simulation can be divided into three main phases: planning, execution, and anal-
ysis. These three phases are described in detail in the following sections.

4.1.1 Simulation Planning

Simulation planning regards all information required for the simulation execution.
First, a simulation model is created. It is then necessary to mark all indicators
of interest. The indicators will be analysed in the third phase. Additional indica-
tors, called intermediate indicators, might be included in the model as well, and
information about these indicators is then also part of the simulation.

These intermediate indicators occur for instance as measurements that aggre-
gate an indicator of interest or intermediate result that will be used for computing
indicators of interest.

The simulation planning phase consists of the following steps:

1. indicator model creation,

2. indicator prior knowledge description,

3. simulation method selection, and

4. experimental environment parameters setting.

Indicator Model

An indicator model represents a priori relationships between the indicators. Such
relationships can be balance equations, definitions or behavioural equations. A
fundamental assumption of the simulation is that the relationships between indi-
cators as well as the complete model are correct. Potentially incorrect relationships
should not be taken into account.

Relationships between indicators are expressed by mathematical operations.
An equation system is such a model. A further crucial assumption for reliable
simulations is that all operators that connect indicators are separable, i.e. each
equation can uniquely be solved for each indicator existing in the operation. Ex-
amples for operators are operations such as addition, subtraction, multiplication,
or division. These are the most frequent operators in an indicator system.

Such an equation system can be expressed with mathematical formulae. Yet,
with increasing equation complexity and with an increasing number of indicators,
it becomes more and more complicated. It is extremely difficult to keep track
of indicators that have multiple definitions, e. g. the indicator Profit within the
DuPont system.

As stated in section 2.1.2, the model graph is a useful graphic representation.
Furthermore, it is necessary for simulation and computation to establish start
nodes for the computation of equations. Every node has equal rights and the
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computation hierarchy is only dependent on the available information. In the
next section it will be discussed how available information affects computation.

Input Data

There are three kinds of available information on indicators:

• Relationships between indicators,

• Expert knowledge about distribution of indicators, and

• Data.

Relationships between indicators are modelled in the indicator model. Mathe-
matical formulations of equation graphs should be used in this case. An alternative
solution is to use a dependency structure between indicators. Combining such a
structure with expert knowledge about indicators allows generating multivariate
density functions. For instance, using Bayes’ theorem, full conditional distribu-
tions can be derived, c.f. Gamerman and Lopez (2006, pp. 41).

However, a univariate distribution of an indicator is needed for indicator sys-
tem simulation. If the prior knowledge contains contradicting information about
an indicator, the M-consistency check, as explained in Section 3.3.8 should be ap-
plied. If the result of the check is “not M-inconsistent”, it should be used as prior
knowledge.

Density estimations should be considered for obtaining density functions if
expert knowledge is not available but sufficient data for the indicators exists. For
an introduction to multivariate density estimation, see Scott (1992, 2004).

Simulation can generate the best results if the prior information is completely
entered into the model. Furthermore missing values are allowed. Dependence
structures related to multivariate distributions are to be considered if the genera-
tion of random numbers according to the density function is possible. This is also
connected to the choice of simulation method which will be discussed in the next
section.

Simulation Method

For some simulation cases there exist several different random number generation
methods and an appropriate method is to be selected. As described in chapter 3,
the random number generator has a significant impact on simulation time. More
general methods require an increased computational effort and the generated total
set of random is only partially used (Robert and Casella 2003, p. 295). There is no
general method that both minimises the computational effort and is applicable to
all selected density functions. This explains why a selection of simulation methods
is required. However, an automatisation of this selection can be used for standard
density functions.
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Whenever there are algorithms available for frequently used distributions, ran-
dom number generation should be performed with these algorithms. Mersenne
twister, for instance, should be choosen as the PRNG for uniformly distributed
values. Other common distributions require different PRNGs.

If there is no algorithm available, the Metropolis Hastings method can be
applied. Gibbs Sampler, SIS or acceptance rejection methods can be used if their
performance is better than the one of the general method of MH.

If the Metropolis Hastings method is chosen, a kernel selection is required. A
kernel selection is another factor that affects the performance of random number
generation.

The three most common kernels were be discussed in the Section 3.4. They
are: Independence Chain, Random Walk, and Simulated Annealing. With regard
to a number of scenarios, all three kernels outperform other existing kernels. The
choice of a kernel does also have an impact on the quality of the proposal distribu-
tion. The acceptance rate of the MH-method is one possible criterion to measure
performance. However, one should keep in mind that a high acceptance rate may
correspond to a slower convergence (Robert and Casella 2003, p. 295).

Experimental Parameters

Experimental parameters specify the environmental procedure. The main point
of interest are the simulation effort and the possibility of experiment repetition.
In addition, precision measures are derived from these parameters as well.

Due to the fact that pseudo random sequences are deterministic and repro-
ducible, it is necessary to set the initial seed an algorithm given. This seed deter-
mines the pseudo random numbers and is therefore an experimental parameter.
The role of the seed is discussed in section 3.3.1.

Another crucial parameter for simulation is the number of generated random
values. Increasing the number of values leads to both a higher precision of the sta-
tistical statements and an increased computational effort. For instance, a higher
number of random numbers implies a higher memory usage for computing medi-
ans, leading to a longer simulation time due to more repetitions. The number of
generated random values needs to be reduced the more variables are used in the
simulation.

In the case of the MH algorithm, another parameter is of interest for the simu-
lation: the Burn-In parameter as described in section 3.4.3.The Burn-In parameter
increases at the same time the number of random numbers increases because the
initial values will be dropped. In order to obtain the desired number of random
values, more numbers have to be generated. The Burn-In parameter only increases
the simulation time because all initial random numbers will be removed.
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4.1.2 Simulation Experiments

Simulation experiments depend on the given model, the corresponding data, and
the experimental setup. Experimental parameters define the performance of the
simulation. Initialising the simulation requires to fix the random number seeds as
well as the number of (desired) random numbers.

In a first step, all variables with existing prior information are generated. How
the process is performed depends on the distribution and the selected simulation
method. In the case of Metropolis Hastings simulation, the generated random
numbers have a length of the desired random numbers plus Burn-In. After this
initial simulation step, the first elements are taken out of consideration.

The next step within the simulation procedure is the separation of all equations
within the model. Equations are eliminated where no prior information for LHS
are given. RHS variables can then be computed with the help of the equation
system.

This second step is performed by selecting the variables with more than one
sample. In such a case a M-consistency check as suggested in section 3.3.8 is
required in order to obtain a combined estimate per variable. A M-consistency
check can either result in a merged sample with an enhanced estimate or in the
discovery of a M-inconsistency issue. In case of M-inconsistency problems, the
entire simulation stops and the user is notified. Otherwise, one sample is available
for each variable upon which an analysis can be performed.

4.1.3 Simulation Analysis

The simulation can be started from two different results of experiments. In case
that the simulation experiments show M-inconsistencies it has to be located, which
part of the input data lead to this problem.

Statistic Indicators

Most decision tools based on stochastic elements use two estimators, mean and
standard deviation (or variance). Both indicators can be easily computed but
they inherit assumptions upon the underlying distribution of samples. In the
case that the sampling distribution is a Gaussian both estimators are intuitive
and correspond to the parameters of the distribution. Mean estimator of skewed
distributions over or under estimated the central point. In contrast heavy tailed
distributions do not have a standard deviation. For these reasons more robust
estimators have to be used for reasonable interpretation. The location parameter
of a univariate distribution is estimated by the median as a robust estimator.
Confidence interval estimate give a cover of the range of the population parameter.
The confidence level is often called 1−α and defines how likely the interval covers
the parameter.

In Fig. 4.1 the Gaussian distribution is plotted with mean µ, standard devi-
ation σ, and quantiles of α = 2.5% and α = 97.5%. Note, that for a Gaussian
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distribution the median is equal to mean and the quantile interval is equal to
[−1.96, 1.96] · σ with 1− α = 95%.

Figure 4.1: Gaussian Distribution (µ and σ2 given)

In contrast in Fig. 4.2 a Cauchy distribution is plotted. Estimates are ob-
tained from a sample of 10 million elements. Another sample produces different
estimates in mean (µ̂) and standard deviation (sd) (σ̂) but median and confidence
intervals are quite stable. The interval [−σ̂, +σ̂] spans more than hundred times
the confidence interval.

In the case of multivariate distributions, median and confidence intervals can-
not be unambiguously obtained. This is due to the fact of ordering in multivariate
dimensions.

Graphical Visualisation

To get a general idea of the resulting distribution, a graphical visualisation is
helpful. A histogram is a graphical representation of a sample. It shows the
relative frequencies of specified categories, also called bins. These categories are
non-overlapping intervals. Further graphics are Pareto chart, check sheet, control
chart, cause-and-effect diagram, flowchart, and scatter diagram.

Definition 4.1.1 (Histogram). A histogram is the graphical representation of a
mapping M that counts the observations that are elements of disjoint bins. For
continuous data, a true density histogram is defined over a grid on the real line.
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Figure 4.2: Statistical Estimators for Cauchy Distribution

The i-th bin is denoted as Bi = [bi; bi+1). The density estimate is given by

f̂(x) =
c(x)

n(bi+1 − bi)
∀x ∈ Bi. (4.1.1)

with c(x) as the number of samples that are element of bin Bi and n is the number
of all samples.

Def. 4.1.1 corresponds to definition given by Scott and Sain (2005). Note, that
the histogram itself is a density estimator.

There exists not a “best” partition of bins. It should be adjusted depending on
the shape of the underlying distribution width and the number of bins. There ex-
ists a trade off between bandwidth and variance, cf. kernel estimation techniques,
Silverman (1986).

A histogram is depicted in Fig. 4.3 of the Gaussian distribution with a sample
size of 10000 elements.

Another approach is kernel density estimation. The estimated density can be
plotted. There exist several methods for density estimation. A good overview of
univariate density estimation is given in Silverman (1986). Multivariate density
estimation is explained in Scott (1992).

Other approaches to present multivariate distributions with dependencies are
correlation matrices, scatter plots, or three dimensional plots. Partial correlation
graphs are a further possibility to obtain a first view on the dependency structure
of the evaluated variables.
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Figure 4.3: Histogram of 10000 Samples from a Gaussian Distribution

To get an overview on the fulfilment of target values for a given number of
indicators Kiviat diagrams are useful. Those diagrams have a central point and
each indicator hast its own axis. The axes can be scaled according to their pa-
rameter values. Another possible scaling is the ratio between actual and target
value. Concentric circles make the chart easy to read. To further improve the
readability of such a chart, it is reasonable for indicators where a higher value
denotes a worse result, this ratio can be inversed. In Section 4.4.1 Fig. 4.29 shows
a Kiviat Diagram of a Balanced Scorecard.
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4.2 Comparing FuzzyCalc, Quantor and SamPro

In this section a comparative study from Köppen and Lenz (2006) is presented.
Three different approaches to analyse imprecise data are used. On the one hand
Fuzzy arithmetic which has been detailed on in Section 3.1.3. The Microsoft Excel
Plug-In “FuzzyCalc” serves as the tool for the computation. On the other hand
the GLS approach as described in Section 3.2.6 and the MCMC algorithm SamPro
(Algorithm 10) are used.

The comparative study is based on the DuPont system as described in Sec-
tion 2.2.1. 15 different test cases are designed, see Tab. 4.1. These test cases were
developed in corporation with an automobile company as a benchmark.

Table 4.1: Prior Information of 15 DuPont Test Scenarios
Case TV Co Ca P PM ROI

1 100 ± 5 80 ± 4 80 ± 4
2 100 ± 10 80 ± 8 80 ± 8
3 100 ± 50 80 ± 40 80 ± 40
4 80 ± 4 80 ± 4 20 ± 1
5 80 ± 8 80 ± 8 20 ± 2
6 80 ± 40 80 ± 40 20 ± 10
7 100 ± 10 80 ± 8 80 ± 8 20 ± 2
8 100 ± 10 80 ± 8 80 ± 8 30 ± 3
9 100 ± 10 80 ± 8 80 ± 8 40 ± 4
10 100 ± 10 80 ± 8 80 ± 8 0.25 ± 0.025
11 100 ± 10 80 ± 8 80 ± 8 0.4 ± 0.04
12 100 ± 10 80 ± 8 80 ± 8 0.5 ± 0.05
13 100 ± 5 80 ± 4 80 ± 4 30 ± 1.5 0.2 ± 0.01 0.4 ± 0.02
14 100 ± 10 80 ± 8 80 ± 8 30 ± 3 0.2 ± 0.02 0.4 ± 0.04
15 100 ± 50 80 ± 40 80 ± 40 30 ± 15 0.2 ± 0.1 0.4 ± 0.2

The 15 test scenarios are divided into the following categories:

• missing values (cases 1 – 6);

• missing values and over determination for one equation (cases 7 – 12);

• complete information.

In the first six test cases imputation of missing values is needed. The effects of
deviation can be studied. In scenario 7 – 12 missing values can be computed and
adjustment of data is achieved, which combines a reduction of deviation on the
one hand and fitting values to obtain M-consistency with the equation system on
the other hand. The cases 13 – 15 are designed to study M-inconsistency. All test
cases assume Gaussian distributed data for the GLS approach and the simulation.
For the Fuzzy set approach the data from Tab. 4.1 is interpreted as triangular
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Fuzzy membership functions with a given peak value equal to the observation.
The lower and upper bounds are derived by subtracting or adding the second
values. The resulting membership functions are all symmetrical.

These 15 test cases are performed in FuzzyCalc, Quantor, and with SamPro
algorithm.

Transaction volume in test case 1, for instance, is represented with the trian-
gular function where the lower bound is set to 90, upper bound is 110 and the
peak value is equal to 100.

The results obtained by FuzzyCalc are given in Tab. 4.2.
They have the following properties:

• all peak values fulfil the equation system,

• a reduction of the uncertainty intervals (uncertainty decreases), and

• M-inconsistent data are pointed out.

The results can be interpreted again as Fuzzy membership functions. These
functions are not necessary symmetric, see, for instance, case 8. FuzzyCalc imputes
unknown values using the equation system. This can be easily seen in case 1.
Comparing cases 13 to 15 the domain of uncertainty is not large enough in the
first two cases to derive a M-consistent Fuzzy interval for each involved variable.
Increasing the area of uncertainty, as done in case 15, enlarges the domain for
M-consistent data and FuzzyCalc delivers an improved solution set.

In the following these results will be compared with the results computed by
Quantor. In Tab. 4.3 the results from Quantor are given. An extract of the
comparison between Quantor and FuzzyCalc is also shown in Lenz et al. (2006).

Quantor assumes Gaussian distributions with no correlation. The GLS ap-
proach has the following properties:

• mean values fulfil the equation system,

• symmetric confidence intervals with reduced intervals, and

• no M-inconsistency is revealed due to infinite interval.

The GLS approach does not reveal M-inconsistencies. This is caused by the fact
that the underlying prior information is not restricted to a domain and therefore
a solution exists always. It is possible to specify M-inconsistency at this point by
testing prior information (uncertainty intervals) for a variable against its estimate,
cf. Lenz and Rödel (1991). In case the overlap of the intervals is very small the
variable should be marked as M-inconsistent.

Note, that the intervals contract and that all balance equations are fulfilled.
While the probabilistic approach produces symmetric confidence intervals, the
corresponding intervals using the possibilistic approach are asymmetric.
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The assumptions and interpretation of both approaches are rather different.
While the probabilistic approach needs a Gaussian regime for mathematical con-
venience of testing, the possibilistic approach considers membership functions and
ignores any assumption about dependencies between variables. Due to a theo-
rem of Dubois and Prade (2006), the benchmark study illustrates, that possibility
measures are an upper bound of probability measures. The question arises which
effects are caused by the basic assumption of Gaussian distributions. This is in-
vestigated by a comparative study in Section 4.3.

Next, the model computed by the SamPro algorithm will be presented. These
results will be compared to the two other result sets.

In Tab. 4.4 the results of the first iteration of SamPro algorithm are given.
These are the estimated median values and quantiles at α/2 = 2.5% and

1 − α/2 = 97.5%. The median is a more robust estimate and equal to the me-
dian in the case of a symmetric distribution. Therefore, the median corresponds
to the Quantor results of mean and will be compared to it. For non-symmetric
distributions quantile estimates are the better choice than the sd which is suit-
able for symmetrical distributions. If the standard deviation given by Quantor is
multiplied by 1.96 this results in quantile estimates at level α = 5%.

Note, that compared to FuzzyCalc the cases 12 and 13 are also stated as M-
inconsistent. Due to the fact that probability mass is very small in the area result
obtained by Quantor, a sample is not obtained in this domain and so the system
is stated as M-inconsistent. In the first view, another distressing result is that the
estimated medians using SamPro do not always fulfil the equation system. This
is further discussed in Section 3.4.5.

Several iterations of the SamPro algorithm ensure equation fulfilment but at
the same time increase the computational effort. Due to the definition of M-
inconsistency for the SamPro algorithm it can be ensured that M-inconsistency is
revealed after the first iteration. That means that higher computational effort is
only spent for M-consistent cases to obtain equation fulfilment.

Case 11 illustrates that after the first iteration, the gap between estimated
profit and the equation system, using transaction volume− cost, profit margin ·
transaction volume and roi · capital, is about 50%. After the second iteration
this gap is reduced to 8%. The result of iteration 10 of case 11 has a gap of less
than 1h.

Comparing the SamPro results with the FuzzyCalc results, the estimates cover
a smaller interval. This corresponds to the results of Dubois and Prade (1992),
Dubois et al. (2004), Dubois and Prade (2006). To compare both approaches in a
fair way the prior information used in SamPro is the same triangular function as
used by FuzzyCalc. These results can be also found in Hausmann (2004).

In the following the results are compared in more detail.
For results on imputation case two is selected. The results of Quantor com-

pared to SamPro for linear equation are equal, see Profit as an example. Fuzzy-
Calc computes the same central point but the uncertainty interval is larger, for
Profit FuzzyCalc computes ±18 compared to ±12.8. For a non-linear equation
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the results of PM are selected. SamPro estimates a skewed distribution which can
be seen at the difference of the quantile distance. This SamPro result coincides
with the FuzzyCalc result which also states non-symmetry.

For results on imputation and correction case 8 is selected. For a linear equa-
tion Profit is selected again. SamPro estimates the same median as the Quantor
result for mean. The skewness is negligible. FuzzyCalc computes quite different
values due to the different approach. For the non-linear case PM is selected again.
All three approaches compute or estimate different central values. Because of the
fact that the distribution is skewed the median estimated by SamPro is better
than the mean value computed by Quantor. The difference of peak computed by
FuzzyCalc and median is smaller.

Summing up both cases SamPro results are comparable to the Quantor results
in the linear case. Non-linear equation lead to skewed or heavy-tail distributions
which require robust estimates.
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4.3 Effects of Nonlinearity, Skewness, and Correlation

In this section the effects of skewness and prior information on dependency struc-
tures are investigated. Due to the fact that the calculus of Fuzzy set theory cannot
handle dependency structures this section only focuses on comparison of Quantor
and SamPro.

In first first part of this section effects of correlation for an addition equation
and a multiplication equation are separately investigated. This is followed by a
comparison study of Quantor and SamPro.

Exact estimates as proposed in Lenz and Rödel (1991) can be compared with
simulation in the case of linear equations. As an example take:

Transaction V olume = Cost + Profit (4.3.1)

Prior information is given for all three indicators as:

Transaction V olume ∼ N(100, 102)
Cost ∼ N(80, 82)

Profit ∼ N(30, 32)

Note, that the given prior knowledge does not fulfill the balance equation (4.3.1).
Using model information and prior knowledge leads to the following matrices as
stated in Section 3.2.6:

H = [1 1] PP Co =
[

64 CovP Co

CovP Co 9

]
RTV = [100]. (4.3.2)

CovP Co is functional dependent upon the correlation parameter. The com-
parison of the estimated real values ξ and ζ as computed by Equation 3.2.2 and
Equation 3.2.3 is done with simulation results using 1000000 particles per indica-
tor.

In Fig. 4.4 the estimated values for Profit against the correlation between Profit
and Cost are shown. Increasing correlation between Profit and Cost reduces the
estimated value for Profit. The simulation results are very close to the computed
real values. Increasing the number of samples reduces the deviation further.

As a first conclusion from this comparison it can be assumed that SamPro
algorithm achieves same results as the theoretical approach for linear equations.

In the next comparison the equation operator is changed to multiplication. As
an example a DuPont equation is taken again:

Profit = ROI · Capital (4.3.3)

Prior information is given for all three indicators as:

Profit ∼ N(30, 32)
ROI ∼ N(0.4, 0.042)

Capital ∼ N(80, 82)
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Figure 4.4: Exact and Simulated Estimates for Profit

Note, that the given prior knowledge does not fulfill the balance equation (4.3.3).
As multiplication is a nonlinear operation, the relation ROI ·Capital must be

approximated with a first order Taylor series. The following specification is used:

H = [80 0.4] PROI,Ca =
[

0.042 CovROI Ca

CovROI Ca 64

]
RP = [9]. (4.3.4)

The comparison of the estimated real values ξ and ζ as computed by Equa-
tion 3.2.2 and Equation 3.2.3 is done with SamPro simulation results using 1000000
particles per indicator as before.

In Fig. 4.5 the estimated values for Profit depend upon the correlation between
Profit and Cost are shown. Increasing correlation between Profit and Cost reduces
the estimated value of Profit. The simulation results lie below the computed
estimates. This can be interpreted as a result of the Taylor approximation, i.e., the
computed values are overestimated and can be justified by the fact that the Taylor

approximation is taken at point
(

ROI
Capital

)
=

(
0.4
80

)
although the computed

estimates for both are smaller. Achieving a better outcome of computed values for
profit requires an adjustment at the point where the Taylor approximation takes
place. However this changes the method and will not be further discussed here.

As a further conclusion from this comparison it can be assumed that Sam-
Pro algorithm achieves better results than the GLS approach due to the Taylor
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Figure 4.5: Estimates for Profit

approximation.
In the following several experiments are performed. The first two scenarios use

the following equation system M :

Transaction V olume = Profit + Cost

ROI = Profit/Capital (4.3.5)

Evidently, there are two endogenous and three exogenous random variables.
The first equation represents a linear and the second a non-linear equation. The
reduction to two equations makes it easier to study effects of correlation and skew-
ness. To study the effects of correlation and skewness in more complex systems,
experimental group C uses the DuPont system with four equations and seven
variables.

In order to simplify the notation x ∼ N(µ, σ2) is used instead of x = µ + u
with u ∼ N(0, σ2). For instance, cost ∼ N(80, 82). The mean is either estimated
from the observations or is known. The variance is also assumed to be a-priori
known. The distributions considered include the Normal (Gaussian), Exponential,
Gamma and the Dirichlet distribution. MSN as described by Azzalini and Dalla
Valle (1996) is also used in some experiments. The absolute values of correlation
coefficients between pairs of variables can vary from 0.7, 0.6, 0.4 to 0.0.

Scenarios are given the two-equation model M , i.e., sales = profit + cost
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as a linear equation and ROI = profit/cost as a nonlinear relation. In all of
our experiments with up to 2.5 million replications each, it is assumed that a
realisation of the random variables profit, cost and capital is at hand.

Moreover, the types of distributions are varied. This implies that at least the
mean of the various distributions can be determined. Furthermore, prior infor-
mation is available about the standard deviation or variance of the measurement
errors. The other two variables, i.e., sales and ROI, are handled in experimental
group A as variables with missing values (null values) and later in group B as
(correctly or noisy) observed values. If missing values of variables exist, they must
be estimated, i.e., imputed.

In experimental group A the first three experiments analyse the effect of skewed
distributions compared with Gaussian distributions if all variables are not cor-
related. The next two experiments separately investigate the effects of cross-
correlation. Finally, the interaction between non-normality and correlation is of
concern.

In experimental group B the data set is complete and Gaussian distributions
are assumed, that means no missing values exist. The effects of negative, zero and
positive correlation are studied for two cases: The measurement of the variables
fulfill (“M-inconsistent variables”) or do not fulfill the balance equation system.

4.3.1 Experimental Group A

Effects of non-normality or correlation in the case of missing values are studied in
this group.

Scenario 1: Normality; no correlation

Specification of the distributions:

Profit ∼ N(20, 22)
Cost ∼ N(80, 82)

Capital ∼ N(60, 62)

Missing values: Sales, ROI
Result:
The MCMC simulation and the GLS estimation result for sales as part of a

linear relation are compatible with respect to mean and sd. The same is true
for the imputation of ROI as a nonlinear relationship. Note, that the Gaussian
hypothesis is valid about the distribution of all variables.

In Fig. 4.6 the results for the imputed data are given. The histogram repre-
sents the simulation result whereas the solid line shows the result obtained using
Quantor.
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Figure 4.6: Normal Distributed Variables with no Correlation

Scenario 2: Effect of Skewness; no correlation

Specification of the distributions:

Profit ∼ Exp(1/20) vs. N(20, 202) [Simulation vs. GLS approach]
Cost ∼ Gamma(8, 0.1) vs. N(80, 282)

Capital ∼ Gamma(15, 0.25) vs. N(60, 8.62)

Missing values: Sales, ROI
Result:
In Fig. 4.7 the results for the imputed data are given. In the linear case the

mean and the standard deviation are similar as the experiments for the variable
sales show. In the nonlinear case the mean and the standard deviation (sd) are
overestimated by about 15%.This overestimation increases with the increase of
skewness in the prior information.

Scenario 3: Normality; negative cross-correlation

Specification of the distributions:

Profit ∼ N(20, 22)
Cost ∼ N(80, 82)

Capital ∼ N(60, 62)

Correlation used for simulation:

ρ(Profit, Cost) = −0.7
ρ(Profit, Capital) = −0.7
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Figure 4.7: Effect of Skewed Distributions of all (Observed) Variables, no Corre-
lation

Missing values: Sales, ROI
Result:
In Fig. 4.8 the results for the imputed data are shown. While the means

are nearly equal the standard deviations differ between +18% and -16%. Quantor
overestimates sd in the linear case and underestimates sd in the nonlinear equation.

Scenario 4: Normality; positive cross-correlation

Specification of the distributions:

Profit ∼ N(20, 22)
Cost ∼ N(80, 82)

Capital ∼ N(60, 62)

Correlation used for simulation:

ρ(Profit, Cost) = 0.7
ρ(Profit, Capital) = 0.7

Missing values: Sales, ROI
Result:
Although the positive sign of the correlation coefficients is contra intuitive from

a manager’s point of view, it is used here more formally as an opposite case to
negative correlation in scenario 3. In Fig. 4.9 the results for the imputed data
are shown. While the means are nearly about the same values, the percentage
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Figure 4.8: Normality and Negative Correlation (ρ = −0.7)

of differences changes sign: -19% for sales vs. +16% for ROI. Compared to sce-
nario 3 the divergent estimation of sd is underestimated in the linear case and
overestimated in the nonlinear case. This is quite intuitive because of

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X, Y )
= σ2(X) + σ2(Y ) + 2ρ(X, Y )σ(X)σ(Y )

and the fact that the GLS approach does not make use of correlation.

Scenario 5: Skewness; negative cross-correlation

Specification of the distributions:

(Profit, Cost, Capital) ∼ Dir(30, 40, 8) vs.

Profit ∼ N(20, 2.82)
Cost ∼ N(80, 8.82)

Capital ∼ N(60, 202)

Correlation used for simulation: This correlation is imposed by the Dirich-
let (Dir) distribution with the above given parameters.

ρ(Profit, Cost) = −0.8
ρ(Profit, Capital) = −0.3

Missing values: Sales, ROI
Result:
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Figure 4.9: Normality and Positive Correlation (ρ = 0.7)

In Fig. 4.10 the results for the imputed data are shown. While the means
of variable ’sales’ are identical this is not true for ROI. The GLS approach over-
estimated the simulated (exact) values about 12%. Quite opposite, the standard
deviation of sales is over-estimated by GLS by about 65% while sd of ROI is about
the same.

Scenario 6: Skewness; positive cross-correlation

Specification of the distributions:

(Profit, Cost, Capital)

∼ MSN

(2,8,6),


1 0.6 0.7

0.6 1 0.2

0.7 0.2 1

,(2500,80,300)

 vs.

Profit ∼ N(20, 4.32)
Cost ∼ N(80, 8.32)

Capital ∼ N(60, 7.32)

Correlation used for simulation: This correlation is imposed by the Multi-
variate Skew Normal (MSN) distribution with the above given parameters. Note,
that the parameterisation is adopted from Azzalini and Capitanio (1999).

ρ(Profit, Cost) = 0.4
ρ(Profit, Capital) = 0.5



4.3 Effects of Nonlinearity, Skewness, and Correlation 137

Histogram of sales

sales

D
en

si
ty

70 80 90 100 110 120 130

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Simulation
 mean: 100 
 sd: 6.666

Quantor
 mean: 100 

 sd: 11

Histogram of roi

roi

D
en

si
ty

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Simulation
 mean: 0.381 

 sd: 0.173

Quantor
 mean: 0.333 

 sd: 0.175

Figure 4.10: Skewness and Negative Correlation
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Figure 4.11: Skewness and Negative Correlation
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Missing values: Sales, ROI
Result:
In Fig. 4.11 the results for the imputed data are shown. While the means are

nearly about the same for both variables this is not true for the sd. For sales
simulation results sd = 10.87 and sd′ = 9.4 is the result under the Gaussian
assumption. The corresponding values for ROI are sd = 0.063 vs. sd′ = 0.069.

4.3.2 Experimental Group B

In this group two scenarios are studied given full prior information. A Gaussian
regime with correlation is assumed.

Scenario 1: M-consistent prior information

Specification of the distributions:

Profit ∼ N(20, 22)
Cost ∼ N(80, 82)

Capital ∼ N(60, 62)
Sales ∼ N(100, 102)
ROI ∼ N(0.333, 0.3332)

Note, that as above the distribution of profit is threefold determined by the
prior N(20, 22), by equation Profit = Sales − Cost and by equation Profit =
ROI · Capital.

Missing values: no
Correlation Matrix is specified as: ρ ∈ {−0.4, 0.0, 0.4}. In order to parsi-

moniously specify the correlation matrix R, it depends upon only one parameter,
ρ.This expert knowledge might vary from company or business sector and repre-
sents in this example only one possible specification out of many. The lower and
upper bounds are necessary to ensure a positive definite correlation matrix R.

Rρ =



Profit Cost Capital Sales ROI
Profit 1 ρ 0 −ρ −ρ
Cost ρ 1 0 −ρ ρ

Capital 0 −ρ 1 0 ρ
Sales −ρ −ρ 0 1 −ρ
ROI −ρ ρ ρ −ρ 1


Results:
The variance of cost, capital, sales and ROI is proportional to ρ. The variance

of the estimated profit is non monotonic in ρ and has its maximum at ρ = 0.2.
The means of all variables are more or less constant.

Scenario 1 is closed by presenting three three-dimensional scatter plots showing
the simulated values of the variable profit determined from the prior distribution
and the two RHS of the model equations for ρ ∈ {−0.4, 0.0, 0.4}.
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Table 4.5: Means and Standard Deviations of all observed and simulated variables,
Gaussian distributions, no correlation, no missing values, M-consistent observa-
tions.

Prior Posterior
Variable Mean Sd Mean Sd

Profit 20 2 19.87 1.58
Cost 80 8 79.95 6.29

capital 60 6 59.81 4.89
sales 100 10 99.96 6.37
ROI 0.33 0.33 0.33 0.03
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Figure 4.12: Scatter Plot of Simulated
Profit Values for ρ = −0.4
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Figure 4.13: Scatter Plot of Simulated
Profit Values for ρ = 0
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Figure 4.14: Scatter Plot of Simulated
Profit Values for ρ = 0.4
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Table 4.6: Simulation Results after 5 SamPro iterations with M-consistency (ρ =
0)

Prior Posterior
Variable Mean Sd Mean Sd

profit 30 3 24.93 0.85
cost 80 8 78.51 1.84

capital 60 6 67.03 2.33
sales 100 10 103.46 1.84
ROI 0.333 0.333 0.372 0.013

Scenario 2: M-Inconsistent prior information

Specification of the distributions:

Profit ∼ N(30, 32)
Cost ∼ N(80, 82)

Capital ∼ N(60, 62)
Sales ∼ N(100, 102)
ROI ∼ N(0.333, 0.3332)

Note, as in scenario 1 the distribution of profit is threefold determined by the
prior N(30, 32), and by the equations profit = sales − cost and profit = ROI ∗
capital. The mean and standard deviation of profit are increased from N(20, 22)
to N(30, 32). This implies M-inconsistency of the observed values (means) of
profit = sales− cost and profit = ROI · capital.

Missing values: no
Correlation Matrix as specified with ρ ∈ {−0.4, 0.0, 0.4}.
Results:
The variance of cost, capital, sales and ROI is proportional to ρ. The variance

of profit is non monotonic and has a maximum at ρ = 0.2. The mean of profit is
monotonically increasing; the means of the remaining variables are more or less
constant. The case ρ = 0.4 leads to incoherency of profit, cf. Fig. 4.17, thus
implying the incoherency of the whole equation system with the data set. Note,
that the observed value of each variable is equal to its corresponding (estimated)
mean. To ensure that the first moments fulfil the equation system in a case of weak
M-consistency it might be necessary to iterate SamPro algorithm. Nevertheless
this is achieved after a few iterations. In Tab. 4.6 the results of the 5th iteration
are given for the case ρ = 0. The first moments fulfil the equation system up to a
small error.

Finally, three scatter plots are presented in Fig. 4.15, 4.16 and 4.17 for the
variable profit with ρ ∈ {−0.4.0.0, 0.4}. Note, the outlier effect, i.e. a “too large”
mean of profit, i.e., N(30, 32), on the overlap of the point cloud and the (linear)
subspace spanned by simulated values of profit, profit1 and profit2.
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Figure 4.15: Scatter Plot of Simulated
Profit Values for ρ = −0.4 (Weak M-
Consistent)

Common Distribution of Profit

10 15 20 25 30

20
25

30
35

40

-40

-20

  0

 20

 40

 60

 80

Profit1

P
ro

fit
2

P
ro

fit
3

Figure 4.16: Scatter Plot of Simulated
Profit Values for ρ = 0 (Weak M-
Consistent)
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Figure 4.17: Scatter Plot of Simu-
lated Profit Values for ρ = 0.4 (M-
Inconsistent)
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4.3.3 Experimental Group C

In this experimental group the equation model is extended to the DuPont system
as described in Section 2.2.1. As prior knowledge a contaminated multivariate
Gaussian distribution is used. Capital turnover is unknown, whereas for all other
indicators prior knowledge is given as follows:

µprior = E





Sales
Cost

Capital
Profit

ProfitMargin
ROI



 =



100
80
60
20
0.2

0.333



sd2
Prior = V ar





Sales
Cost

Capital
Profit

ProfitMargin
ROI



 =



100
64
36
9

0.0004
0.001109



corPrior = Cor



Sales
Cost

Capital
Profit

ProfitMargin
ROI

 =



1 ρ 0 ρ −ρ ρ
ρ 1 0 −ρ 0 −ρ
0 0 1 0 0 −ρ
ρ −ρ 0 1 ρ ρ
−ρ 0 0 ρ 1 0
ρ −ρ −ρ ρ 0 1


The mixture of two multivariate Gaussian distributions for this experimental

group is defined as:

0.9·N6(µPrior, sdPrior·corPrior·sdPrior)+0.1·N6(µPrior+3·sdPrior, 0.25·sdPrior·corPrior·sdPrior).

N6 is the six-dimensional Gaussian distribution.
Correlation ρ varies in the interval [−0.5, 0.5] to analyse the influence of cor-

relation. Two simulation scenarios are presented in the following. In the first
scenario, prior knowledge is M-consistent with the equation model. In scenario
two, the expected mean of profit is changed to 30 and therefore the prior knowledge
becomes M-inconsistent with the DuPont system.

Scenario 1: M-Consistent Prior Knowledge

The marginal prior distributions are shown in Fig. 4.18 to 4.20 for ρ = −0.4, ρ = 0,
and ρ = 0.4.

Using SamPro new estimates for all indicators of the DuPont system are gen-
erated. The density estimates for each indicator are presented in Fig. 4.21 to 4.23
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Figure 4.18: Prior Distri-
butions ρ = −0.4 (Weak
M-Consistent)
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Figure 4.19: Prior Distri-
butions ρ = 0 (Weak M-
Consistent)
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Figure 4.20: Prior Distri-
butions ρ = 0.4 (Weak
M-Consistent)
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Table 4.7: Estimates for ρ = 0.4
Quantiles

Indicator α = 2.5% α = 50% α = 97.5% mean sd
Sales 89.09 99.88 110.67 99.88 5.51
Cost 70.20 81.64 89.95 81.32 5.45

Capital 49.64 59.80 70.22 59.83 5.25
Profit 16.87 19.88 23.08 19.91 1.59

Profit Margin 0.165 0.199 0.235 0.199 0.018
ROI 0.275 0.332 0.390 0.332 0.029

Capital Turnover 1.266 1.654 2.194 1.678 0.232

with respect to the correlation parameter ρ. Density plots for cost reveal the
perpetuation of a bimodal distribution function. Furthermore, the density plots
for capital turnover show a non-Gaussian estimate. This is due to the division
operation for capital turnover. As a result a Cauchy distribution is obtained by
simulation.

Comparing the new estimates with the prior information it can be seen that
a reduction in the uncertainty is achieved. Tab. 4.7 shows the results for ρ =
0.4. This simulation is representative to the other simulation experiments. The
reduction of uncertainty can be easily seen.
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Figure 4.21: Result Dis-
tributions ρ = −0.4
(Weak M-Consistent)

Figure 4.22: Result Dis-
tributions ρ = 0 (Weak
M-Consistent)

Figure 4.23: Result Dis-
tributions ρ = 0.4 (Weak
M-Consistent)
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Scenario 2: M-Inconsistent Prior Knowledge

In the next scenario the prior knowledge is slightly changed. The expected mean
of profit is set to 30 instead of 20. This implies M-inconsistency of prior knowledge
or, in other words, the data do not coincide with the equation model.

The simulation study is again performed for different values of ρ. The influence
of correlation is studied as in experimental group B.

Due to the fact that the prior knowledge only differs in the expected value of
profit, it is not given here again.

Performing the simulation with the SamPro-algorithm for ρ = −0.4 and ρ = 0
new estimates can be obtained. Running the simulation experiment with ρ = 0.4
the system is stated as M-inconsistent. The reason is that the different estimates
of profit cannot be combined. In Fig. 4.24 a scatter plot for all profit estimates
is given. Merging profit and the result of equation sales · profit margin reveals
that both estimates do not map to the same subspace (no points on the line).
Therefore the system is marked as M-inconsistent.

The influence of correlation can be easily seen in Fig. 4.25, 4.26, and 4.27. In
the last three dimensional scatter plot (ρ = 0.4) points or samples do not exist on
the desired subspace. That is the reason why in this simulation experiment the
system is stated as M-inconsistent.
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Figure 4.24: Scatter Plots of Profit for rho = 0.4
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Common Distribution of Profit
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Figure 4.25: 3D Scatter Plot of Simu-
lated Profit Values for ρ = −0.4 (Weak
M-Consistent)
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Figure 4.26: 3D Scatter Plot of Sim-
ulated Profit Values for ρ = 0 (Weak
M-Consistent)
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Figure 4.27: 3D Scatter Plot of Sim-
ulated Profit Values for ρ = 0.4 (M-
Inconsistent)
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4.3.4 Results

A summary on the above described experiments can be given as follows:
In the uncorrelated case (the means of) the simulated indicators are about the

same as the GLS estimates.
Skewness of distributions mostly has only a small effect on the estimates.
Cross-correlations of the variables can lead to severe problems: The equation

system may become M-inconsistent with respect to a given data set, i.e., the
overlap of the sets of simulated values of at least one variable, determined from
all equations where it is part of, may become empty. Under a Gaussian regime
with infinite domains and under the independence assumption, this effect cannot
happen.

Using a GLS approach is compared to MCMC simulation computational cost-
effective. However, skewness and correlation may lead to quite different estimates
and the introduction of robust estimators, like median, improves all estimates
even more. In the case of M-inconsistency it might be necessary to iterate the
simulation algorithm several times to satisfy a given balance equation system. Of
course, any iteration will increase the computational effort. Furthermore, note
that if a given data set is contradictive to the corresponding equation system,
M-inconsistency is revealed by our MCMC simulation algorithm, which is quite in
contrast to the GLS approach used by Quantor.
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4.4 Balanced Scorecard Example

In this section a BSC example is illustrated. This is taken from Köppen et al.
(2007). Here the software Balanced Scorecard Simulator is used which is presented
in Allgeier (2006).

4.4.1 Model

The MCMC simulation is based on a stochastic model of the selected BSC indi-
cators, cf. Fig. 4.28.

The model is characterised by the following three features:

• 24 indicators (variables) and three system constants are assigned to the
four BSC perspectives (employee and innovation, internal business process,
customer and financial perspective).

• All variables of the model are connected to each other by the four basic
arithmetical operations;

• 15 equations with up to three variables exist. Obviously, each equation can
be uniquely solved for each existing variable.

4.4.2 Input Data

In our simulation example full prior information is provided for all 24 character-
istics, cf. Tab. 4.8 columns 2 and 3. Fully specified prior distributions for the
current state are shown in column 2. Column 3 shows given target values for each
indicator.

The simulation is primarily used to identify M-inconsistencies of the BSC data.
Additionally, a new indicator is established, namely “cost“ related to the financial
perspective, which is defined as cost = turnover− profit. The indicator turnover
of regular customers of the previous period is constant and set to 1900.

4.4.3 Simulation and Results

The CPU operating time of a test run with a number of iterations T = 100.000 is
approx. 5 min. The data set does not contradict the given model. The columns
µ̂, σ̂ and adjusted target values in Tab. 4.8 show the result of the simulation.
An analysis of the computed expected values and standard deviations for every
indicator, provides evidence that the imprecision (error intervals) of the simulated
indicators are reduced. The observed values are adjusted in the way, that a shift
is proportional to the prior variance of a variable.

The Balanced Scorecard Simulator computes model consistent target values as
described by Allgeier (2006, p. 61) and prior information for the current state is
used with the SamPro algorithm. The results of the simulation lead to estimates
µ̂ and σ̂.
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Table 4.8: Prior Information of the BSC Characteristic Indicators

BSC indicator prior given adjusted
distribution target µ̂ σ̂ target

value value

Number of innovative ideas N(18, 22) 18 18.00 1.86 20.00
Employee loyalty U(0.97, 0.99) 0.99 0.99 0.0004 0.99
Number of notices U(1, 3) 2 2.06 0.24 2.05
Number of staffers N(205, 52) 205 201.14 3.76 203.70
Labour turnover rate N(0.01, 0.0012) 0.01 0.01 0.0006 0.01
Labour productivity N(20, 22) 20 19.94 0.42 20.00
Number of new kinds of
product

U(3, 5) 4.5 4.47 0.86 5.00

Sale set of a new kind of
product

U(45, 50) 50 47.49 1.43 50.00

Returns quantity N(89, 52) 90 89.75 4.40 100.00
Return rate N(0.19, 0.022) 0.2 0.17 0.01 0.20
Quantity supplied N(550, 102) 556 548.73 9.30 625.00
Mean amount of sales N(440, 102) 445 439.45 9.41 500.00
Quota of identified cus-
tomer wishes

N(0.8, 0.012) 0.8 0.80 0.01 0.80

Customer loyalty N(2, 0.012) 2 2.00 0.01 2.04
Customer satisfaction U(0.6, 0.7) 0.6 0.65 0.03 0.60
Customer acquisition N(0.05, 0.012) 0.05 0.05 0.0003 0.05
Turnover of new products U(1990, 2010) 2000 1999.40 5.67 2037.04
Sales price N(8, 22) 9 8.50 0.57 8.15
Share of turnover of new
products

N(0.45, 0.0012) 0.5 0.45 0.00 0.50

Turnover regular customers N(3800, 502) 3800 3795.20 44.36 3874.07
Turnover of new customers N(199, 102) 200 198.78 6.09 200.00
Turnover N(4000, 252) 4000 3994.38 20.54 4074.07
Operating margin N(0.25, 0.022) 0.27 0.25 0.01 0.27
Profit N(1000, 252) 1100 999.25 22.09 1100
Cost unknown unknown 3013.77 129.07 2974.07
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Figure 4.29: Simulation Results of BSC Characteristic Indicators (Kiviat Diagram)

In Tab. 4.8 the results of the Balanced Scorecard Simulator are presented. The
given target value of indicator ReturnsQuantity was in conflict to the equation
system given by Fig. 4.28. An adjustment of the target value from 90 to 100
was achieved for this indicator which does not conflict with the BSC model. The
current state of indicator Returnrate was adjusted from 0.19 to 0.17 by using
the SamPro algorithm. Other indicators like Quantitysupplied or Turnover were
adjusted in the current as well as target values.

The simulation results are visualised in a Kiviat diagram, cf. Fig. 4.29. This
chart type is suitable for the representation of multiple indicators. If a system of
equations is classified as M-inconsistent, only the number and the names of the
incorrect indicators are reported by a result notification. This makes it easier for
the user to identify the causes for an M-inconsistency within the data.

4.4.4 Results of BSC example

The adaptation and modelling of key indicators as random variables in a BSC
enhances the information content and brings the BSC closer to reality, cf. Müller et
al. (2003). Randomness happens due to a kind of ’natural’ longitudinal derivation
of indicators, errors in observations and measurements of actual data of BSC
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indicators, or evaluation tolerance in target data.
The software Balanced Scorecard Simulator is a management tool for planning,

decision making, and controlling, i.e., it allows the computation of M-consistent
target values, produces coherent, analytical data, and supports the controller to
detect incoherencies in the values of the BSC, c.f. Köppen et al. (2007), Allgeier
(2006).

Additionally, it reduces uncertainty within the prior information on the current
state for each indicator by the usage of the SamPro algorithm.

The Balanced Scorecard Simulator is useful in the context of stochastic indi-
cators where quantitative relationships are known. A basic strength of the BSC
is the fact that it also applicable for qualitative factors. However, a quantitative
representation of these soft facts has to be taken into account and therefore the
tool is an improvement of the current state. In the case that the relations of the
soft facts of a BSC are unknown the tool cannot be used in an appropriate way.
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4.5 Tool Evaluation

In this section a brief evaluation of the software tools is given. This evaluation
focuses on the criteria described at the beginning of this chapter. The results of
the comparison can be summarised as given in Tab. 4.9 and will be explained in
more detail for each software tool in the following.

Table 4.9: Evaluation of Tools for Indicator Systems with Errors in the Variables
FuzzyCalc Quantor MoSi

Graphical Modelling + 0 ++
Information on errors 0 0 ++
Result presentation + 0 ++

Restriction of Models + 0 +
Performance ++ ++ - -

Symbols used for the evaluation are given in Tab. 4.10.

Table 4.10: Evaluation symbols
Value Symbol

Excellent ++
Good +

N/a or medium 0
Poor -

Very poor - -

4.5.1 FuzzyCalc

Graphical Modelling

FuzzyCalc states the equations clearly arranged in a mathematical form. These
equations are represented as a block. The relations between variables in a complex
system are difficult to identify and the number of involved equations per variable
is hard to discover at first.

Information on errors

FuzzyCalc supports for triangular and trapezoid membership functions. These
are the most common membership functions. The interpretation of a multi peak
membership function might be quite difficult. Dependency structures between
variables cannot be modelled. Multivariate membership functions would be useful,
but are unfortunately not implemented in the tool.
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Result Presentation

Results of the Fuzzy set approach are Fuzzy membership functions themselves.
FuzzyCalc handles these functions by the use of a graphical and table view. More-
over prior knowledge is visualised in the same view as the new and improved
values. In the case that a strong M-inconsistency is detected a dialog box appears
to inform the user.

Restriction of Models

Restrictions on the model are caused by two reasons. One is that only basic
arithmetic operators are handled and each equation consists of exactly one of
these four operators. The other limitation is due to the software tool MS-Excel
limited abilities, which in turn limit the models complexity.

Performance

FuzzyCalc solves the models in matter of a few seconds, which is relatively short
and acceptable amount of time. The visualisation of the results is also performed
very quickly.

To sum up the above components, FuzzyCalc is a software tool for Fuzzy indi-
cator systems, which is not only useful in decision making but also easily accessible
for the user. Accuracy is defined with the 100 α-cuts that are implemented in the
software.

4.5.2 Quantor

Graphical Modelling

Quantor hides the information of relations in dialog boxes. This makes it difficult
for the user to see equations, but a structure can be organised using the cell grid
provided by Quantor. The tool has no graphical elements for modelling uncertainty
and uses a tabular environment with dialog boxes.

Information on errors

Information on errors is restricted to Gaussian distributions. This simplifies the
user interaction. Mean and standard deviation of a Gaussian distribution are used
as prior knowledge. Estimates of mean and standard deviation are computed, if
all means fulfill the equation system and standard deviation is reduced as far as
possible.

Result Presentation

Quantor only gives estimates on the first and second moments. These should
be treated quite carefully and interpreted in cases of violation of the Gaussian
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regime, i.e., quotients of two Gaussian variables. Due to the unlimited domain
of a Gaussian distribution, M-inconsistency cannot occur. Results very far from
prior values, should carefully be checked if the corresponding estimated variance
is small.

Restriction of Models

The four arithmetic operations +,−, ·, and / are allowed. Quantor works with
another restriction that division cannot be applied on quotients, due to the as-
sumption of Gaussian approach. This clearly restricts the model class. Another
drawback is that for each indicator used, only one equation is allowed. Rearrange-
ments and introduction of intermediates have to be used if several equations per
variable exist.

Performance

Quantor solves models the fastest compared to the other two applications. The
results are often computed within a few seconds. Accuracy is limited to the CPU
number precision.

4.5.3 MoSi

The developed prototype MoSi is evaluated in the following paragraphs. A de-
scription of design and implementation of MoSi is given in Chapter 5.

Graphical Modelling

Mathematical formulation and graphical visualisation are both used in MoSi. It
is possible to formulate the model with mathematical equations where in each
equation a basic arithmetic operator is used. These equations are visualised in a
graph mode, where only the commutative operators + and · appear. Relations
induced by the equation system can easily be seen by the user in the graphical
visualisation. A feature that is currently in demand is an equation parser that
relaxes the assumption of only one operator per equation.

Information on errors

MoSi can handle every type of density function by the use of a general MCMC
method. Several improved PRNG are implemented and can be used. It is fur-
thermore possible to enrich the prior knowledge by own functions that have to be
written in R. Another restriction is overcome by using the MH algorithm. The
target function does not need to be normalised but the integral should be finite.
Multivariate distributions are also possible and new algorithms implemented in R
packages can be easily used.
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Result Presentation

MoSi provides statistical analysis of the results including moment estimates and
graphical visualisation by using histogram plots. To supply the user with a more
detailed analysis of the obtained results they are saved to a R file.

Restriction of Models

Restrictions on models are only dependent upon the main memory of the computer
MoSi is running on. In the actual version the four basic arithmetic operations are
implemented. This restriction can be relaxed and further operators can be imple-
mented. The necessary condition for admitting a new operator is the principle of
separation. It is not necessary that the operator is dyadic.

Performance

Simulation generally needs more of a computational effort. However, the perfor-
mance depends to a significant extent on the random number generator and the
dimensions within the model. These dimensions are build up from the number of
variables and equations as well as the number of equations per variable. Whereas
FuzzyCalc and Quantor compute a DuPont model within seconds, MoSi can take
from several minutes or hours up to even days. To increase accuracy, more com-
putational effort is necessary which directly translates into an increase of running
time.



Chapter 5

Software Design and
Implementation

This chapter deals with the aspects of the design and implementation of the Soft-
ware tool MoSi. MoSi stands for Modelling and Simulation and MoSi enables he
user to model indicator systems as described in chapter 2. The simulation envi-
ronment can be used to obtain improved stochastic estimates. Due to the fact
that different existing packages are included into the project, each of them will be
briefly explained.

It was one of the design goals to make the software almost entirely independent
from the operating system. Thus, the Programming language Java was an obvious
candidate. However, simulation requires a high computational effort and the per-
formance losses due to the Java VM Technology are not within acceptable limits.
This obvious disadvantage led to the decision to use the statistical programming
language R for the simulations.

Licensing issues play another role in this decision but will not be further dis-
cussed here. For the design UML 2.0 is used to craft the Java architecture of the
software. The description of R algorithms is realised with pseudo code.

159
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5.1 Design

There are two major requirements for an indicator systems simulation software:
user friendliness and performance.

This is the reason why two different programming languages are used. With
the Java Graphical User Interface (GUI)s can be easily produced, but the per-
formance of Java applications when it comes to random number generation and
simulation is unfortunately unsatisfactory. GNU R is a fast environment for sta-
tistical computing, and simulation tasks are quickly done.

Using Java as the technology for GUI makes it possible to use the software on
every system where the Java Virtual Machine in version 1.5 or higher is installed.
Due to the fact that the other involved software is also available for different
platforms the complete MoSi software can be used on a wide selection of operating
systems. The architecture of MoSi is presented if Fig. 5.1.

Java rJava R

Figure 5.1: Architecture of MoSi

Indicator system should be modelled keeping two aspects in mind. One being
that the input of equations should be possible and the other, that a graph visu-
alisation of the indicator system is also of interest. The graph representation has
the advantage that connections between variables are discovered more easily.

The design concept of model view controller will be used. The use of this
pattern isolates the business logic (simulation) or model from user interface con-
siderations the controller and view. Therefore, modification either on the visual
appearance or the underlying business rules are easier implemented and, if neces-
sary, changed. The class diagram of the main business logic and graphic classes is
presented in Fig. 5.2.

Since the simulation of such equation graph systems is done in two different
language environments, an interface is necessary for the communication between
both languages. Additionally, it should be possible to redo the simulation at an-
other time by obtaining the same results. That is the reason why for the simulation
purpose files are also stored. The generation of simulation files is done from the
equation graph within the Java environment, whereas the execution of these script
files is performed within R. The results from the simulation process are transferred
to Java and visualised. Fig. 5.3 reflects the simulation flow in an activity diagram.

The activity diagram is from the view of the Java language. Three main
activities can be distinguished: simulation preparation, simulation execution, and
simulation analysis.

In the preparation phase the necessary parameters are obtained from the user
and the R simulation script files are generated from the equation graph model.
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Figure 5.2: Class Diagram for MoSi-Modelling
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Figure 5.3: Activity Diagram for MoSi-Simulation
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This graph model serves on the one hand as a business indicator model and on
the other hand as a source from which prior information for variables can be
extracted. This helps in creating the simulator which is written into a text file.
Prior information is used here to create samples for unknown variables as well as to
generate multiple estimates with equations extracted from the business indicator
model.

Simulation takes place in R and the generated file as well as simulation parame-
ters, like seed and sample length, are used within R. After Sampling LHS variables
and generating RHS variables multiple estimates per variable are merged according
to Alg. 10. Simulation results are stored in one vector of samples per variable.

In the simulation analysis phase, a variable selection is performed which in-
cludes a complete communication of the corresponding vector from R to Java.
This vector is used to generate an interactive histogram plot where the user has
the possibility to set the number of breaks. Furthermore statistical measures like
estimated mean, median and standard deviation are computed and displayed.

The structure of simulation process is presented in a class diagram as given in
Fig. 5.4. Two main parts can be distinguished here. Model representation is given
in the upper part and classes for the simulation are placed in the lower part of
the figure. The equation system is build up on equations. These equations consist
of variables and operators. If prior knowledge is available it is connected to the
variable as a distribution. In Fig. 5.4 only two distribution classes as representa-
tives are visualised. All distributions classes are derived from a super class called
Distribution. A connection between the logical model and the simulation model
is implemented by two associations. On the one hand, for each Variable in the
logic view, a complementary RVariable is generated. The RVariable objects also
contain the simulation result vector. On the other hand RSimulation is associated
to the EquationSystem class. These two classes build and run the simulation. The
communication between Java and R is implemented in the class RCommunication
which uses an interface of the JRI package (Urbanek 2007). The simulation results
are prepared for the graphical presentation in the class RSimulationResult. This
class also creates the histogram.
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Simulation

Equation

getInverse(newLHS) isComputable()

Operator

operator:Type
dimension:int

isCommutative()
getInverse(newLHS)

Variable

name:String

Distribution
{abstract}

parameters: Vector

getRFunction()

EquationSystem

equations:Vector

getComputableEquations()
generateRScriptFile()

RSimulation

seed:int
samples:int
restriction:int

-runSimulation()

RVariable

name:String
simValues:Vector

Histogram

data:double[]

setNumberOfIntervals()

UniformDistribution GaussianDistribution

1..* 1..*

RHS

RSimulationResult

-createView()
show()

RCommunication

Rengine

1..* 1

LHS

Figure 5.4: Class Diagram for MoSi-Simulation
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5.2 Implementation

In this section the implementation of MoSi is presented. MoSi consists of a two
programming environments. The user interacts with a GUI that is developed using
Java. As a template the UML-editor “Violet” (C. Horstmann) is used. Here the
main aspects of the graph editor framework, which is explained in Horstmann
(2005), is of interest.

The implementation of the GUI is done with Java 1.5 and uses Swing libraries.
To obtain a persistent layout independent from the operating system a common
look and feel is used.

As described in Chapter 3, simulation needs a lot of computational power.
To increase performance for the simulation, R (R Development Core Team 2007)
is used. “R is a system for statistical computation and graphics. It consists
of a language plus a run-time environment with graphics, a debugger, access to
certain system functions, and the ability to run programs stored in script files”
(Hornik 2007). From the available technical possibilities, running script files is of
main interest. Communication between Java and R is implemented by using JRI
package (Urbanek 2007).

An overview of the project structure is given in the package diagram in Fig. 5.5.
The package “editor” includes all GUI relevant classes. The sub-packages

“framework” and “common” are adopted from the editor “Violet” by Horstmann
(2005). The sub-package “equation” includes the corresponding GUI classes for
the equation models. The communication interface between Java and R is placed
in the package “JRI”.

The “logic” package contains all relevant classes for simulation of indicator
systems. This includes the preparation of simulation which is organised in the sub-
package “equation”. The actual simulation as well as the statistical evaluation take
place in the sub-package “simulation”. In the sub-package “fuzzy” the FuzzyCalc
algorithm is implemented.

A list of Java classes is given in Fig. 5.6.
While in Java the GUI and model creation are implemented, the simulation is

done in R. For communication between both languages, script execution as well
as interface communications are used. The option for using the script file facility
for a simulation rerun is left open. On the other hand experiment results are not
saved into files due to possibility of simulation reruns that yield the same results.
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pkg MoSi

logic

editor

JRI

framework common

equation

equation fuzzy

simulation

rJava

statistics

histogram

distribution

Figure 5.5: Package Diagram for MoSi
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Figure 5.6: MoSi Project Files
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Listing 5.1: R-Simulation Script

# Simulat ion Parameter I n i t i a l i s a t i o n #

n <− 100000
set . seed (12345)
source ( ”Funct ions .R” )

# I n i t i a l i s i n g Var iab l e s #

va r i ab l e 1 <− rnorm(n , 0 , 1)
va r i ab l e 2 <− mh(n , den s i t yva r i ab l e 2 , type = ” independence ” )
va r i ab l e 3 <− r t r i a n gu l a r (n , −1, 0 , 1)

# Computing new Values #

var i ab l e4 equa t i on1 <− va r i ab l e 1 + va r i ab l e 2
va r i ab l e4 equa t i on2 <− va r i ab l e 2 / va r i ab l e 3

# Folding new Values #

va r i ab l e 4 <− merging (matrix (c ( var i ab l e4equat ion1 , va r i ab l e4 equa t i on2 ) , ncol=2)
rm(c ( var i ab l e4equat ion1 , va r i ab l e4 equa t i on2 ) )

In Listing 5.1 an equation graph, consisting of four variables (variable1 to vari-
able4) and two operators, represents the underlying model. The sum of variable1
and variable2 is variable4. The product of variable4 and variable3 is variable2.
As prior information variable1, variable2 and variable3 are given. At first, the
initialisation is done. This is followed by LHS sampling using prior information.
For these samples all possible RHS variables are computed in a third step. In case
more than one estimate exists per variable these estimates are folded. This is the
last step of the simulation within R. As a result, one vector of samples exists for
each variable. If a vector is empty, M-inconsistency is the result of the simulation
experiment.

The script file Functions.R which is used in the simulation script loads sev-
eral functions and R packages that are necessary for the simulation experiment.
At this point the implementation of the MH algorithm for prior knowledge can
also be done. A good introduction on implementing MH algorithm is given by
Chib and Greenberg (1995). Due to the fact that R is a functional programming
language only target functions for the MH algorithm have to be implemented in
the Functions.R script and sampling can be used as depicted for variable2 in
listing 5.1. densityvariable2 stands for the function from which samples should
be drawn. In this example a independence chain is used. Furthermore, parame-
ters of the mh function are used as standard values. Two samples for variable4
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have to be merged. The algorithms is described in Section 3.3.8. In the case of
M-inconsistency the result of function merging is 0. Otherwise a vector of the
merged values is returned.

As a result for each involved indicator, a vector of SamPro results is transferred
to Java. Here again the graphical representation of the simulation is given. A
histogram which is adjustable to the number of uniformly breaks is used for each
indicator. Statistical indicators such as mean, median and standard deviation are
also given. In the case of indicator M-inconsistency, the user is informed by a
dialog box.

In the following section a short software demonstration for the DuPont system
is given.
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5.3 Software Demonstration

In this section a short demonstration of MoSi is given. To ensure that MoSi runs,
R should be installed and the requirements, such as installed R packages and
environmental variables, should be fulfilled. A Java Virtual Machine (JVM) with
at least version 1.5 is also required to run the software.

After starting MoSi it is possible to create a new equation graph, or to load
MoSi specific Extensible Markup Language (XML) files. The equation graph is
the model used within MoSi for simulation of equation systems. Fig. 5.7 contains
such an equation graph for the DuPont model. It shows all standard elements

Figure 5.7: Screenshot of DuPont Model within MoSi

of the equation graph. In the menu bar, File dialog can be used for loading and
saving models. The creation of new models is also possible via this menu item.

In an internal frame the equation graph is given. This frame consists of a
button bar and the modelling area. The button bar consists of two parts. In the
left part four standard actions can be easily started by pressing the corresponding
button. A click on the “Save” button saves the model in a XML file. The “Simu-
lation” button starts the process of simulation as described in Section 5.1. “Table
View” button transfers the graph representation in a mathematical formulation.

In Fig. 5.8 the table view of the DuPont model is presented. By adding new
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Figure 5.8: Screenshot of Table View of the DuPont Model

equation operators +, -, ·, and / are possible. Transformation from or into the
equation graph only uses the commutative operators. In the table view dialog the
deletion and addition of equations in mathematical formulae is possible.

In the second part of the button bar five buttons for the graphical modelling
of the equation graph are placed. The first button enables the selection of existing
elements. The second button adds new variables into the equation graph. Button
three represents the multiply operator node and button four the addition operator
node. To insert a directed relation between an operator and a variable node the
last button can be used.

To model an equation in the graphical environment three variables and one
operator are necessary. Two variables link into the operator. These are the input
or LHS variables. A third relation is directed from the operator to another variable.
This is the RHS or output variable. In Fig. 5.7 for instance the equation

Capital Turnover · Capital = Transaction V olume

is visualised on the left side.
Each variable node has properties that are available via double click on the

graphical element. In the property dialog the name of a variable can be changed.
It should be noted that equal names refer to equal variables in the simulation.
Although two rectangles in the modelling graph are used in the simulation phase
these are constituted as one variable.

In Fig. 5.9 a property view is shown. Three tabs exist here. In the common tab
the name of a variable can be given. In the second tab the simulation properties
are specified. In a drop down menu the selection of distribution for the variable
is possible. Corresponding to the selected distribution function, the necessary
parameters are also editable in this tab. The third tab deals with the Fuzzy
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Figure 5.9: Variable Property Dialog

representation of the variable and is of no further interest at this point.
Starting the simulation will open a small simulation dialog box, cf. Fig. 5.10.

Figure 5.10: Simulation Start Dialog

Three parameters of the simulation are adjustable within this dialog. On the
first entry the number of generated samples per variable is set. Increasing this
number not only increases simulation run time but also memory usage. On the
other hand the accuracy depends upon this parameter. To reproduce a simulation
run the initial seed can be set in the second parameter of the simulation dialog.
The third parameter will only be used in the graphical report. This restriction
defines the number of samples which is used for the histogram plot. Setting this
parameter to zero means no restriction and all generated simulation elements will
be used.

The analysis of the simulation can be done in the Java environment. A his-
togram and some statistical estimates will be given here. Fig. 5.11 and 5.12 show
two histogram views of the same simulation result.

In Fig. 5.11 the estimated values of mean, median and sd as well as the number
of samples used for the histogram are shown. The histogram itself can be adjusted
by setting the number of uniquely distributed breaks. In Fig. 5.12 this number is
increased. Here it can be also seen, that for each computable variable a selection
via a drop down menu is possible.
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Figure 5.11: Simulation Results (a)

Figure 5.12: Simulation Results (b)
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Chapter 6

Conclusion

This chapter summarises the results of this thesis and provides an outlook on
future work in the area of stochastic indicator systems.

6.1 Overview

Controlling needs a quantitative basis to guarantee that decisions are made ac-
cording to the states of the examined area. Allowing errors in the variables leads to
more realistic results, which consequently enhances decisions. Read (1898) stated:
“It is better to be vaguely right than exactly wrong.“1

The research field of control and management with uncertainty encompasses
different approaches and methodologies. The choice of the indicator’s error rep-
resentation depends on the available information and the underlying objectives of
the system.

Fuzzy set theory is useful in the context of linguistic statements of the indica-
tors or errors that occur in gathering necessary information. When measurements
are possible or the constitutive generating errors can be estimated, it is beneficial
to use stochastic representation. This is justified by the fact that Fuzzy descrip-
tions build up an upper bound.

Using stochastic information complicates the process of evaluating indicator
systems due to error propagation. Non-linearity causes even higher complexity.
Complex dependency structures should be evaluated and used to enhance results
for decision making.

Although approximation of non-linear stochastic equation systems is feasible,
it increases the possibility of misinterpretation, e. g., inappropriate estimates, such
as mean values where no moment exists, or divergences in the estimated values
from the real ones.

This thesis shows that simulation is the tool of choice to overcome these prob-
lems. Complex dependency structures between variables of the equation system

1John Maynard Keynes stated it equivalent with: “It is better to be vaguely right rather than
precisely wrong.”
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can be handled. However, there is an inevitable trade-off. Using simulation instead
of approximation increases data accuracy but at the cost of an increased computa-
tion effort. Depending on the complexity structure of the model and the number
of involved variables, as well as on the stochastic nature of prior knowledge, a
decision between accuracy and computation time has to be made.

6.2 Comparison of Methods

One focus of this work is a comparative study of existing methods for errors in
the variables models with the new developed simulation approach. The existing
selected techniques are Fuzzy set theory and a GLS approximation. Tools exist for
both methods. The comparison is made against the developed Software Prototype
of MoSi, which is based on the simulation algorithm SamPro. In the following a
brief overview of the criteria and their characteristics within the tools is given.
This evaluation is a summary as stated in Chapter 4.

Graphical Modelling

Modelling of indicator systems is essential for a good overview of a indicator
system. Mathematical formulation and graphical visualisation are a useful com-
bination. Only MoSi provides both model representations. FuzzyCalc states the
equations clearly arranged in mathematical formulation, whereas Quantor hides
the information of relations in dialog boxes.

Information on errors

Information on errors in the variables depend on the underlying model assump-
tions. Fuzzy set uses membership functions, whereas GLS and the simulation
approach use stochastic information. Approximation with the Kalman filtering
technique restricts statistical distribution to a Gaussian regime. FuzzyCalc bounds
the domain of membership functions to the most common. MoSi can handle every
type of density function by the use of a general MCMC method.

Result Presentation

Results of the approach should warrant an easy access for the user. Fuzzy sets
are closed under arithmetic operations. FuzzyCalc handles these functions in a
graphical and tabular view. The results generated by Quantor only give estimates
on the first and second moments. In case that the Gaussian regime is violated,
i.e., quotients of two Gaussian variables, they have to be treated and interpreted
very carefully. MoSi provides statistical analysis of the results including moment
estimation and graphical interpretation by using histogram plots.
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Restriction of Models

Real world indicator systems can be very huge and complex. Model assumptions
restrict the usage of approaches. The four basic arithmetic operators are the
essential basis for all indicator systems. This implies nonlinearity on the one hand
but a separation of equations on the other. All three approaches apply basic
arithmetic operations. However, Quantor works with a further restriction that
division cannot be applied on quotients. FuzzyCalc and MoSi handle indicator
systems similar. A further restriction is the available memory (RAM).

Performance

Performance is a crucial factor in real time decision making. FuzzyCalc and Quan-
tor solve models within a relatively short time. Quantor slightly outperforms
FuzzyCalc. Simulation takes a much larger computational effort. Moreover, the
performance of MoSi depends on the random number generator as well as the
dimensions within the model. Increasing precision is equivalent with an increase
of sample size and therefore with the computational effort.

In this thesis a simulation approach for handling indicator systems with un-
certainty has been presented. It is not only an appropriate method but also
outperforms existing methods whereas it relaxes made assumptions. The SamPro
method represents reality in a better way. A higher accuracy for decision makers
is therefore possible. A disadvantage of the simulation method is the computation
effort. A reduction of the computation effort might be a future research area. The
simulation approach should be applied for long term planning and strategy as well
as for critical application scenarios where precision plays an important role.

MoSi is a user friendly modelling and simulation tool for indicator systems.
It’s core is the SamPro algorithm and it enables easily prior knowledge integration
and comprehensive result presentation. In short, managers obtain a suitable tool
for controlling and decision making.

6.3 Contribution

In this section the main contributions of the thesis are presented.

State of the Art of Indicator Systems

Controlling companies or economies is based on indicators. Due to the increasing
complexity managers are in the need for decision support systems. Presently, these
indicators are treated as crisp values, although they inherent uncertainty due to
measurement or prediction errors. To relax this unrealistic view, indicator systems
with uncertainty are investigated in this thesis.

A further topic in indicator systems usage is data validation where discrepan-
cies within the data and the indicator system are revealed and corrected.
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Approaches for handling indicator systems with uncertainty are proposed.
(Müller and Lenz 2003) implemented a Fuzzy set approach in the Excel-Plugin
FuzzyCalc. Schmid (1979) developed a GLS approach which is implemented in
Quantor (Müller 1991). Both approaches make assumptions that are relaxed in
the simulation approach SamPro which is developed in this thesis. The relaxation
leads to an improved mapping of reality.

SamPro: Simulation Algorithm

In this thesis a method for simulation of indicator systems with uncertainty is
developed based on Markov Chain Monte Carlo (MCMC) simulation.

MCMC simulation is a field where complex distributions can be investigated.
Hastings (1970) developed an algorithm (MH algorithm) that generates samples for
multivariate, complex distributions. This algorithm is used and embedded in the
context of indicator systems. Challenges of the MH algorithm, like kernel selection
and burn-in are discussed and the SamPro algorithm is developed. SamPro enables
the use of indicator system with uncertainty. Correlation between indicators, non-
normality of distributions, and non-linear equations within the indicator system
are considered.

The properties of SamPro are:

• Revelation of inconsistencies between indicator system and given data.

• Estimation of consistent indicators.

• Imputation of missing values of indicators.

• Reduction of uncertainty for indicators.

Robustification

The simulation of nonlinear equation systems might generate distributions where
robust methods have to be applied. Robust methods for the SamPro algorithm are
discussed. Two major robustification approaches can be applied in the algorithm.
On the one hand for each indicator an outlier elimination can be done. On the
other hand, to maintain the structure within the indicator system, a multivariate
outlier elimination can be perfromed.

Outlier elimination reduces the uncertainty intervals and estimation based on
the indicators becomes more stable.

Comparision Study

Chapter 4 presents a comparative study between the new developed SamPro algo-
rithm and two other approaches for handling indicator systems with uncertainty.

The results of this study are:
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• SamPro achieves a more effective reduction of uncertainty intervals than the
Fuzzy set approach which is due to the results given by Dubois and Prade
(2006).

• SamPro achieves better estimates in the context of indicator systems with
nonlinear equations.

• SamPro identifies inconsistencies between the indicator model and data in
contrast to the GLS approach.

• SamPro represents reality better than the two other approaches due to the
use of manifold classes of distributions.

• SamPro considers correlations between indicators, which is not possible with
the other two approaches.

Software Tool MoSi

In order to achieve acceptance and usage of the developed MCMC simulation
method in practice it is necessary to implement the SamPro algorithm in an easy
to use software tool.

For this reason MoSi is developed. The user interface (GUI) is based on Java,
the simulation algorithm is implemented in R. This combination enables platform
independence and yet fast simulation processing. The simulation results can be
easily visualised with the Java based interface.

Indicator systems with uncertainty become applicable in practice by the use
of MoSi. The decision maker is enabled to use consistent indicators or to reveal
inconsistencies. A reduction of uncertainty is also achieved and decisions can be
put on a firm footing.

6.4 Future Work

In this section, hints on further development in the area of stochastic indicator
systems are provided.

One particularly interesting domain of further research is simulation efficiency
and algorithmic improvements. Using general methods, such as the Metropolis
Hastings algorithm, makes the use of more simulation information as prior knowl-
edge possible, but increases the simulation’s running time. The implementation
of more efficient algorithms for specific, but frequently used density functions can
reduce the simulation time, while maintaining the quality of the simulation results.
Another area of improvement is the implementation of multi threading random
number generators. This can further reduce computation time and improve sim-
ulation in contrast to other approaches.

The equation model assumption for simulation is the separation principle.
Therefore, further operations might be investigated. In addition to that, im-
plementation of the domain restriction for variables might be useful. This not
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only improves interpretation and validity checking but also expands the domain of
application. Introducing for instance monotone transformations like the logarithm
or the exponential function broadens the area of indicator models.

Another hot topic is prior or expert knowledge. This is split into two areas.
On the one hand, available data of indicators can be used for multivariate density
estimation. On the other hand, knowledge is encapsulated in the structure of an
equation system. Using existing business or economic data leads to new relations
and equations of indicators. This abolishes the assumption of the validity of the
model, which is a basic assumption of this work, but might reveal other relations
between indicators that are not yet clearly visible.

In conclusion it can be said that a sign hanging in Albert Einstein’s office at
Princeton sums up the core thesis of this work most aptly: “Not everything that
counts can be counted, and not everything that can be counted counts”.
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orientierten Betriebswirtschaft. Betriebswirtschaftlicher Verlag Dr. Th. Gabler,
Wiesbaden.

Aitchison, J.: 1986. The Statistical Analysis of Compositional Data. Chapman and
Hall. London.

Albach, H.: 1961. Entscheidungsprozeß und Informationsfluß in der Unternehmen-
sorganisation. in Schnaufer and Agthe (1961). pp. 335–402.

Allgeier, M.: 2006. MCMC Simulation der Balanced Scorecard-Kenngrößen. Mas-
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Gentle, J. E., Härdle, W. and Mori, Y. (eds): 2004. Handbook of Computational
Statistics - Concepts and Methods. Springer, Heidelberg, Berlin, New York.

Geweke, J.: 1992. Evaluating the accuracy of sampling based approaches to the
calculation of posterior moments. in J. O. Berger, J. Bernardo, A. Dawid and
A. Smith (eds), Bayesian Statistics 4. Oxford University Press. Oxford. pp. 169–
194.



184 Bibliography

Geyer, C. J.: 1991. Markov chain monte carlo maximum likelihood.. in E. Kerami-
gas (ed.), Computing Science and Statistics: Proceedings of 23rd Symposium on
the Interface. Interface Foundation. Fairfax. pp. 156–163.

Geyer, C. J. 1992. Practical markov chain monte carlo. Statistical Science
7(4), 473–483.

Geyer, C. J. and Thompson, E. A. 1995. Annealing markov chain monte carlo
with applications to ancestral inference. Journal of the American Statistical
Association 90(431), 909–920.

Gilks, W. R., Richardson, S. and Spiegelhalter, D. J.: 1996a. Introducing Markov
Chain Monte Carlo. in . chapter Introducing Markov Chain Monte Carlo, pp. 1–
19.

Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (eds): 1996b. Markov Chain
Monte Carlo in Practice. Chapman & Hall, London.

Gladen, W.: 2003. Kennzahlen- und Berichtssysteme. Grundlagen zum Perfor-
mance Measurement. 2nd edn. Gabler Verlag, Wiesbaden.

Glauber, R. J. 1963. Time-dependent statistics of the Ising model. Journal of
Mathematical Physics 4(2), 294–307.

Gordon, N. J., Salmond, D. J. and Smith, A. F. M. 1993. Novel approach to
nonlinear/non-gaussian bayesian state estimation. IEE Proceedings-F (Radar
and Signal Processing) 140(2), 107–113.

Hammersley, J. M. and Handscomb, D. C.: 1964. Monte Carlo Methods. Methuen,
London.

Hastings, W. K. 1970. Monte carlo sampling methods using markov chains and
their applications. Biometrika 57, 97–109.

Hausmann, A.: 2004. Kennzahlensysteme in der BWL: Simulation mittels Particle
Filter in Anwendung. Master’s thesis. Freie Universität Berlin. Berlin.

Hawkins, D. M.: 1980. Identification of Outliers. Monographs on Statistics and
Applied Probability. Chapman and Hall. London ; New York.

Hesselbo, B. and Stinchcombe, R. B. 1995. Monte carlo simulation and global
optimization without parameters. Physical Review Letters 74(12), 2151–2155.

Holley, R. A., Kusuoka, S. and Stroock, D. W. 1989. Asymptotics of the spectral
gap with applications to the theory of simulated annealing. Journal of Func-
tional Analysis 83(Issue 2), 333–347.

Hornik, K.: 2007. The R FAQ. ISBN 3-900051-08-9.



Bibliography 185

Horstmann, C.: 2005. Object Oriented Design and Patterns. 2nd edn. Wiley &
Sons. New York.

Horváth, P.: 1994. Controlling. Verlag Vahlen, München.

Huang, H. W. 1973. Time-dependent statistics of the ising model in a magnetic
field. Physical Review A8(5), 2553.

Ingham, H. and Harrington, L. T.: 1962. Interfirm Comparison for Management.
2nd edn. Millbrook Prress.

Jarrett, R. G. 1979. A note on the intervals between coal-mining disasters.
Biometrika 66(1), 191–193.

Jesinghaus, J.: 2000. On the art of aggregating apples & oranges. EVE Workshop.

Kaplan, R. S. and Norton, D. P. 1992. The balanced scorecard - measures that
drive performance. Harvard Business Review 1, 71–79.

Kaplan, R. S. and Norton, D. P.: 1996. The Balanced Scorecard. Translating Strat-
egy Into Action. Harvard Business School Press.

Kaplan, R. S. and Norton, D. P.: 2004. Strategy Maps: Converting Intangible
Assets Into Tangible Outcomes. Harvard Business School Press.

Kemp, A. and Kasim, S. 2003. An econometric model of oil and gas exploration
development and production in the uk continental shelf: a systems approach.
The Energy Journal 24(2), 113–141.

Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. 1983. Optimization by simulated
annealing. Science 220(4598), 671–680.
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und -interpretation durch den Controlling-Leitstand. Gabler. Wiesbaden.



186 Bibliography

Kruse, R., Gebhardt, J. and Klawonn, F.: 1995. Fuzzy-Systeme. 2nd edn. Teubner,
Stuttgart.

Kuznets, S. S.: 1971. Economic Growth of Nations: Total Output and Production
Structure. Harvard University Press.

Lachnit, L.: 1998. Zukunftsfähiges Controlling. Vahlen Verlag, München. chap-
ter Das Rentabilitäts-Liquiditäts-(R/L) Kennzahlensystem als Basis control-
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Appendix A

Mersenne Twister

Mersenne Twister (Matsumoto and Nishimura 1998) is a fast pseudo random
number generator with a period of 2199937 − 1. The name is derived from the
Mersenne prime which has the form 2n − 1. It is a twisted generalised feedback
shift register (Matsumoto and Kurita 1992). Two different implementations, one
for 32 bit and one for 64 bit word length are available and generate different
sequences. Generated sequences have a negligible serial correlation between suc-
cessors. Algorithm 12 depicts the algorithm for 32 bit length.

This algorithm is very efficient and fast. Mersenne Twister is the fastest gen-
erator compared to all other PRNGs with adequate statistical properties. The
numbers of the pseudo random sequence are uniformly distributed. Due to these
facts the MT19937 will be used in the former simulation for generating uniformly
distributed numbers although the sequence can be determined if at least 624 but
maximal 1247 numbers in a row are known. The most important fact for the
usage of the Mersenne Twister is that the algorithm generates random numbers
that pass the Diehard tests (Marsaglia and Zaman 1993) but also other tests for
statistical randomness.
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Algorithm 12 Mersenne Twister - MT19937
Input: seed – starting seed

n – number of random numbers
Output: x = {x1, . . . , xn} – sample
1: set MT[ ] := int[0..623]
2: t := 1
3: set MT [0] := seed
4: for i := 1 to 623 do
5: MT[i] := last 32 bit of (69069 ·MT [i− 1]) + 1
6: end for
7: repeat
8: if t ≡624 0 then
9: for i := 0 to 622 do

10: y := 32nd bit of MT[i] + last 31 bits of M[i+1]
11: if y ≡2 0 then
12: MT[i] := MT[(i+397) % 624] XOR right shift y
13: else
14: MT[i] := MT[(i+397) % 624] XOR right shift y XOR 2567483615
15: end if
16: end for
17: y := 32nd bit of MT[623] + last 31 bits of M[0]
18: if y ≡2 0 then
19: MT[623] := MT[396] XOR right shift y
20: else
21: MT[623] := MT[396] XOR right shift y XOR 2567483615
22: end if
23: end if
24: y := MT[t % 624]
25: y := y XOR right shift by 11 bits of y
26: y := y XOR (left shift by 7 bits of y AND 2636928640)
27: y := y XOR (left shift by 15 bits of y AND 4022730752)
28: y := y XOR right shift by 18 bits of y
29: xt := y
30: increment t
31: until t = n



Appendix B

German Summary

Ausgangslage und Zielsetzung

Die Steuerung von Unternehmen erfolgt heutzutage auf Basis von Kennzahlen. Die
Komplexität von Unternehmen ist dabei soweit angewachsen, dass ein Überblick
über die Gesamtheit des Unternehmens einem einzelnen Manager nicht möglich
ist. Entscheidungsunterstützende Systeme bereiten die operativen Daten eines
Unternehmens nicht nur in aggregierter tabellarischer Form auf, sondern sind
immer häufiger in mobilen Umgebungen platziert und nutzen grafische Darstel-
lungsweisen. Doch die beste Visualisierung nutzt nichts, wenn die berechneten
Kennzahlen widersprüchlich bzw. fehlerhaft sind. Zwei mögliche Quellen für
fehlerhafte Kennzahlen sind die Manipulation der zugrunde liegenden Daten oder
die Nichtberücksichtigung der in den Daten inheränten Unsicherheit. Dies sind
die beiden Problemfelder, mit denen sich die vorliegende Arbeit beschäftigt.

Ob Daten manipuliert wurden, lässt sich durch eine Datenvalidierung ermit-
teln. Bei der Zusammenführung von Modell und Daten kann es zu einem Konflikt
kommen, wenn die Daten nicht mit den Regeln, die durch das Modell festgelegt
sind, übereinstimmen. In solch einem Fall können entweder die Daten manip-
uliert worden sein oder aber das Modell genügt nicht in ausreichender Weise der
Abbildung der Realität. Da Kennzahlensysteme Aggregationen in wohldefinierten
Funktionsräumen darstellen, ist von der Glaubwürdigkeit der Modelle auszugehen.
Dies ist auch eine elementare Annahme für die vorliegende Arbeit. D.h. in dieser
Arbeit wird davon ausgegangen, dass nicht valide Kennzahlen durch fehlerhafte
Daten verursacht werden.

Herausforderungen bei der Steuerung mittels Kennzahlensystemen bereiten
jedoch nicht nur manpulierte Daten, sondern auch Daten unter Unsicherheit.
Kennzahlensysteme zur Unternehmensführung oder im Vergleich zwischen Volk-
swirtschaften berücksichtigen zumeist nicht die Tatsache, dass die vorliegenden
Werte mit Unsicherheit belastet sind. Die Ausgangsdaten unterliegen Unsicher-
heiten, wie zum Beispiel Mess- und Prognosefehlern, Risiko oder Ungewissheit. Die
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aggregierten Daten werden zur Erleichterung der Entscheidungsprozesse durch eine
Zahl repräsentiert, obwohl eigentlich Zahlenbereiche vorliegen. Die Verwendung
exakter Werte vermittelt fälschlicher Weise den Eindruck einer hohen Genauigkeit,
jedoch wird ein Informationsverlust erzielt. Die Erstellung von Berichtskennzahlen
läuft nach wohldefinierten Regeln ab. Dies können Bilanzgleichungen, Definition-
sgleichungen oder Verhaltensgleichungen sein. Durch Fehlerfortpflanzung unter-
liegen aber auch die aggregierten Kenngrößen dieser Unsicherheit. Auf der einen
Seite liegt das Problem also in der nicht ausreichenden Abbildung der Realität
durch einzelne Zahlen und auf der anderen Seite im Einfluss von Unsicherheit.
Für die Darstellung von numerischer Unsicherheit gibt es bereits verschiedene
Modellansätze.

Die von Zadeh (1965) begründete Fuzzy Set Theorie ist eine Möglichkeit zur
Darstellung unscharfer Zahlen. Die in Müller (1999) entwickelte Software-Lösung
nutzt diesen Ansatz und erreicht neben der Behandlung possibilistischer Kenn-
zahlendarstellungen auch eine Identifikation von Inkonsistenzen zwischen den Daten
und den Systemgleichungen.

Ein probabilistischer Ansatz für die Behandlung von Kennzahlensystemen unter
Unsicherheit ist entwickelt worden in Schmid (1979). Unter der Normalverteilungs-
annahme werden hierbei ebenfalls Reduktionen der Unsicherheitsbereiche durch
die Verwendung der durch das Gleichungssystem gegebenen Informationen in den
Daten erreicht. Dieser Ansatz ist durch ein General-Least-Squares (GLS) Ver-
fahren in Lenz und Rödel (1991) dargestellt.

Während der possibilitische Ansatz nur eine obere Schranke für die vorliegen-
den Unsicherheiten darstellt (Dubois und Prade 2006), ist die Beschränkung auf
die Normalverteilung im zweiten Ansatz sehr restriktiv. Dadurch können Abhängig-
keitsstrukturen in den Daten nicht näher berücksichtigt werden. Mehrgipfelige und
hochdimensionale Unsicherheitsbereiche werden in den beiden Ansätzen ebenfalls
ausser Acht gelassen.

In der vorliegenden Arbeit wird ein Ansatz zur Bewältigung der dargestellten
Probleme entwickelt. Dabei sollen die Beschränkungen der bereits bestehenden
Ansätze überwunden werden. Aufgrund der Komplexität von linearen und nicht-
linearen Funktionen in Kennzahlensystemen und dem Einsatz hochdimensionaler
Verteilungen wird hierbei Simulation eingesetzt.

Im operativen Geschäft fallen Daten nicht unabhängig voneinander an. Viel-
mehr bestehen Zusammenhänge zwischen den Messwerten. Aus diesem Grund
ist eine Einschränkung der stochastischen Eingangsgrößen für die Kennzahlen-
ermittlung nicht adäquat. Deshalb müssen für die Simulation ebenfalls multi-
variate Verteilungen genutzt werden. Dies erhöht unweigerlich die Komplexität
bei der Erzeugung der für die Simulation notwendigen Zufallszahlen. Neben
den Monte Carlo Verfahren zur Generierung einfacher Zufallszahlen haben sich
Markov-Chain-Monte-Carlo (MCMC) Verfahren für komplexe Verteilungen be-
währt. Ein allgemeines Verfahren für die Erzeugung von Zufallszahlen aus be-
liebigen und komplexen Verteilungsfunktionen wurde durch Hastings (1970) en-
twickelt. Der Metropolis Hastings Algorithmus stellt einen zentralen Bestandteil
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der Kennzahlensimulation dar.
Der Metropolis Hastings Algorithmus ist eine allgemeine MCMC-Methode.

Aufgrund dieser Allgemeinheit treten die folgenden Herausforderungen auf:

• Die Wahl der Startwerte spielt eine entscheidende Rolle im Laufzeitverhal-
ten des MCMC-Verfahrens. Dies hängt mit dem Ereichen der stationären
Verteilung zusammen.

• Die Wahl der kandidatengenerierenden Funktion (Vorschlagsfunktion) hat
einen bedeutenden Einfluss auf die Güte der erzeugten Zufallszahlen. Multi-
modale Verteilungen erfordern beispielweise komplexere Vorschlagsfunktio-
nen.

• Die Bestimmung der Einschwingphase ist für hochdimensionale Verteilungen
nicht trivial. Zufallszahlen innerhalb der Einschwingphase dürfen nicht für
die Kennzahlensimulation verwendet werden, da diese nicht der eigentlichen
Verteilung folgen.

Die Anwendung der Methode hat den Vorteil, dass Zufallszahlenfolgen beliebiger
Verteilungsfunktionen unabhängig von ihrer Komplexität erzeugt werden können.
Um zufriedenstellende Resultate zu erhalten, ist es nicht ausreichend nur die Güte
der einzelnen Simulationsergebnisse zu beachten, sondern auch den Simulation-
saufwand effizient zu gestalten. Die Wahl der Länge der Simulationsläufe spielt
hierbei eine wichtige Rolle. Unter Beachtung der Herausforderungen der MCMC-
Methode erzielt man hinreichend gute Simulationsmittel.

Die Anwendung der Modellinformationen, wie zum Beispiel nichtlineare Trans-
formationen, erfordert jedoch zusätzliches Augenmerk während der Simulation. So
sind beispielweise die Zwischenergebnisse auf Ausreißer zu untersuchen und diese
aus den Simulationsexperimenten zu entfernen. Während der Simulation müssen
mithilfe weiterer Plausibilitätsprüfungen ebenfalls fehlerhafte Werte entfernt wer-
den.

Kennzahlensysteme beschränken sich nicht nur auf eine Darstellungsform für
jede Kennzahl. Vielmehr ist durch das Einsetzen von Zwischenergebnissen und
Umstellen der Gleichungen eine Kennzahl auf vielfältige Weise berechenbar. Da-
durch kann es jedoch bei unterschiedlichen Ausgangsdaten zu divergierenden Ergeb-
nissen kommen. Hierbei ist dann zu entscheiden, ob die Ausgangsdaten im Wider-
spruch zum Kennzahlensystem stehen oder ob ein gemeinsamer Ergebnisraum ex-
istiert.

Der Simulationsansatz soll daher zwei Herausforderungen bewältigen. Auf der
einen Seite sollen Widersprüche in den Daten zum Modell aufgezeigt werden. An
dieser Stelle kann dann keine weitere Aussage zu den Kennzahlen erfolgen, son-
dern eine Überprüfung der Ausgangsdaten ist zwingend erforderlich. Andererseits
sollen stochastische Kennzahlen geliefert werden, die nicht nur den Regeln des
Kennzahlenmodells genügen, sondern auch eine geringere Unsicherheit aufweisen
sollen.
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Kennzahlensimulation

Im Folgenden wird dargestellt, auf welche Weise die Simulation von Kennzahlen-
systemen erfolgt. Ausgangspunkt ist hierbei ein Kennzahlensystem mit linearen
und nichtlinearen Operatoren. In der Praxis treten hierbei fast ausschließlich die
Operationen Addition, Subtraktion, Multiplikation und Division auf. Aus diesem
Grund erfolgt eine Beschränkung auf diese vier Grundrechenarten. Die Kenn-
zahlensimulation erfordert eigentlich nur Operationen die separierbar sind, d.h.
Gleichungen die nach all ihren auftretenden Variablen umgeformt werden können.
Somit wären auch weitere Operationen wie Hyperbelfunktionen möglich.

Das Kennzahlensystem stellt ein Wissenssystem dar. Durch die Notwendigkeit
der Verwendung von Computern zur Simulation ist die digitale Darstellung der
Kennzahlensysteme unabdingbar. Die Verwendung von Topic Maps als Standard
der Wissensrepräsentation ermöglicht nicht nur die digitale Darstellung und Nav-
igation durch Kennzahlensysteme, sondern ist auch für komplexere Systeme wie
Balanced Scorecards geeignet (Arndt et al. 2007).

Häufig wird in der Literatur der Kennzahlenbaum als Darstellungsform für
Kennzahlensysteme gewählt. Hierbei tritt jedoch das Problem auf, dass die gleiche
Kennzahl mehrfach dargestellt wird. Um in der Simulation jeder Kennzahl einen
konsistenten Wert zuweisen zu können, wird demgegenüber die Datenstruktur des
Graphen genutzt.

SamPro

Der Algorithmus zur Simulation von Kennzahlensystemen besteht im Wesentlichen
aus zwei Teilen. Zuerst werden Zufallszahlen gemäß den Vorinformationen und des
Regelwerks erzeugt. Hierbei werden alle Informationen verwendet, die neues Wis-
sen erzeugen. Somit ist mit dem Regelwerk und den vorhandenen Daten eine
Imputation für unbekannte Kennzahlen möglich. Dieser erste Teil der Simulation
wird als Sampling-Phase bezeichnet. Darauf schließt sich die Phase der Informa-
tionszusammenführung an. Liegen für eine Kennzahl mehrere stochastische Infor-
mationen vor, so müssen diese zusammengeführt werden. Hierzu wird der Raum
einer jeden Kennzahl über jede ihrer stochastischen Schätzräume aufgespannt. Der
Projektionsraum stellt den Bereich dar, in welchem die einzelnen Schätzungen gle-
ich sind. Da im stetigen Intervall die Wahrscheinlichkeit Null beträgt, dass zwei
Werte gleich sind, muss ein Toleranzbereich gewählt werden, in dem die Werte der
unterschiedlichen Schätzungen als gleich betrachtet werden können. Dieser zweite
Schritt wird als Projektionsschritt bezeichnet.

In Abbildung B.1 ist die Projektion von drei Schätzungen f1, f2 und f3 abge-
bildet. Die durchgezogene Gerade stellt die Gleichheit der einzelnen Schätzer
dar (f1 = f2 = f3). Der Korridor ist durch die gestrichelten Linien angedeutet.
Alle Werte innerhalb des Bereiches werden für den zusammengeführten Schätzer
akzeptiert und auf die durchgezogene Gerade projiziert. Die Werte außerhalb des
Bereiches werden für das weitere Vorgehen außer Acht gelassen. Für den Fall, dass
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f1

f2
f3

Abbildung B.1: Projektion von drei
Schätzungen Abbildung B.2: Korrigierte Schätzung

kein Wert im Bereich liegt wird das gesamte Modell als M-inkonsistent gekennze-
ichnet.

Abbildung B.2 zeigt das Ergebnis der Projektion für zwei Schätzer einer Kenn-
zahl. Die Projektion kann hierbei auch als Projektion auf den Unterraum mit
x = y angesehen werden, wobei x die Vorinformationen einer Kennzahl repräsen-
tiert und y die Informationen, die anhand anderer Vorinformationen und des Gle-
ichungssystems gewonnen werden. Es ist dabei zu beachten, dass der zusam-
mengeführte Schätzer normalisiert werden muss.

Für den Fall, dass eine Kennzahl während des Projektionsschrittes als M-
inkonsistent ermittelt wurde, muss das Gesamtsystem als M-inkonsistent betra-
chtet und die Simulation beendet werden. Eine Identifikation der beteiligten
Kennzahlen, die zur Inkonsistenz geführt haben, vereinfacht die Analyse der In-
formationen.

Nachdem die Projektion verschiedener Schätzer für jede Variable verbesserte
Schätzer ermittelt hat, kann es sein, dass eine Robustifizierung der Daten notwendig
ist. Dies kann dann für jede Variable einzeln erfolgen, wodurch jedoch die Abhän-
gigkeitsstruktur zwischen allen Kennzahlen verloren geht. Eine Ausreißerelim-
inierung im multivariaten Fall stellt sich hingegen aufgrund der Ordungsstruktur
komplizierter dar. Die Verwendung geeigneter Abstände, wie die Mahalanobis
Distanz ist für die Robustifizierung im multivariaten Fall notwendig.

Als Resultat des SamPro Algorithmus erhält man somit entweder die Identi-
fizierung einer Inkonsistenz zwischen den Vorinformationen und dem Kennzahlen-
system oder für jede aus den Daten berechenbare Kennzahl wird ein zum Kenn-
zahlenmodell konsistenter Schätzer ermittelt.

Die Eigenschaften des SamPro Algorithmus können wie folgt zusammengefasst
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werden:

• Verschiebung der Mittelwerte zur Erfüllung des Kennzahlensystems,

• Verschiebung ist abhängig von der Varianz der einzelnen Kennzahlen,

• Verringerung der Unsicherheitsbereiche und

• Invarianzeigenschaft bei Kennzahlen mit Varianz von Null.

Das Softwaretool MoSi

Zur Unterstützung von Entscheidungen mittels Kennzahlensystemen ist die Ver-
wendung von Softwaretools ein wichtiges Mittel. Aus diesem Grund wurde für
die Simulation von Kennzahlensystemen das Softwaretool MoSi entwickelt. MoSi
steht hierbei für Modellierung und Simulation. Die Erstellung und Anpassung von
Kennzahlensystemen wird ebenso unterstützt wie die Eingabe von Vorinformatio-
nen für Kennzahlen. Die Simulation läuft dabei automatisch ab. Visuelle Darstel-
lungen wie z.B. Histogramme und Berechnungen wichtiger statistischer Schätzer
ermöglichen einen leichteren Zugang zu den Simulationsergebnissn.

Da Nutzerfreundlichkeit ein wichtiges Kriterium für erfolgreiche Software ist,
wurde die grafische Benutzerschnittstelle in Java implementiert. Dies ermöglicht
die Unabhängigkeit der Software vom Betriebssystem. Die Simulationskompo-
nente ist hingegen in der statistischen Programmiersprache R entwickelt. Der
Hauptgrund für die Verwendung ist die hohe Zahlenverarbeitung während der Sim-
ulation. Zusätzlich können bereits in R implementierte Zufallszahlengeneratoren
verwendet werden, was den Simulationsprozess weiter beschleunigt. Die Kommu-
nikation zwischen den beiden Programmiersprachen erfolgt über die Schnittstelle
JRI (Urbanek 2007).

Vergleich der Simulation mit bestehenden Verfahren

In diesem Abschnitt wird der SamPro Algorithmus mit bereits existierenden Ver-
fahren verglichen.

Müller et al. (2003) haben zum Umgang von Unsicherheit in Kennzahlen-
systemen die Fuzzy Set Theorie verwendet. Als Ergebnis entstand das Excel-
Plug-In FuzzyCalc. Gleichungssysteme werden wie auch die Fuzzy Set Variablen
im Excel-Tabellenblatt abgelegt. Das Resultat der FuzzyCalc Implementierung
können dann entweder eine Inkonsistenzmeldung oder aber verbesserte Fuzzy Set
Variablen sein, deren Gipfelpunkte das Gleichungssystem erfüllen und einen meist
verringerten Unsicherheitsbereich aufweisen.

Ein zweiter, von Schmid (1979) entwickelter Ansatz nimmt normalverteilte
Kennzahlen als Grundlage. Mittels Kalman Filter werden verbesserte Schätzer
auf Grundlage des Gleichungssystems ermittelt. Nichtlineare Gleichungen werden
hierbei jedoch durch Approximation dargestellt.
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Alle drei Ansätze ermöglichen die Imputation von Kennzahlen. Die Aufdeck-
ung von Dateninkonsistenzen zum Kennzahlensystem wird durch den possibilis-
tischen Ansatz und die Simulation gewährleistet.

Der SamPro Algorithmus hebt die Beschränkungen dieser beiden Methodiken
auf. Anhand des DuPont Kennziffernsystems erfolgt in Köppen und Lenz (2006)
ein Vergleich der unterschiedlichen Methodiken. Es zeigt sich, dass die Simula-
tion unter gleichen Verteilungsannahmen ähnliche Ergebnisse wie der GLS-Ansatz
liefert. Die Resultate des possibilistischen Ansatzes stellen wie in Dubois und
Prade (2006) dargestellt, eine obere Schranke dar. Damit sind die dort erzielten
Unsicherheitsbereiche größer als im probabilistischen Ansatz bzw. der Simulation.
Somit kann mit der Simulation eine höhere Genauigkeit erreicht werden.

Unter Aufgabe der Normalverteilungsannahme ergibt sich im Vergleich zum
GLS-Ansatz das Bild, dass die Nichtlinearität durch die Approximation zu einer
Unterschätzung der eigentlichen Mittelwerte bei der GLS-Schätzung führt. Korre-
lation kann dabei einen entscheidenden Einfluss auf die Modellkonsistenz haben.

In Abbildung B.3 ist der GLS-Schätzer in Abhängigkeit der Korrelation als
durchgezogene Linie dargestellt. Die Simulationsergebnisse für das gleiche Modell
sind als Kreise in der Abbildung ebenfalls eingezeichnet. Die beständige Über-
schätzung durch den GLS-Schätzer ist deutlich zu sehen.

Der Einfluss der Korrelation auf die Kennzahlensimulation ist in Abbildung B.4
ersichtlich. Die Gerade stellt den Unterraum für die drei Schätzer einer Kennzahl
dar. Durch die Korrelation erreicht kein Element der Simulationsstichprobe den
konsistenten Korridor. Dies führt zur Inkonsistenz des Kennzahlen.

Die Kennzahlensimulation kann aber ebenso zur Unternehmenssteuerung durch
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Balanced Scorecard Systeme eingesetzt werden. Die Verwendung stochastischer
Kennzahlen in der Balanced Scorecard ermöglicht eine bessere Planung und Steue-
rung, da dadurch Daten realitätsnäher abgebildet werden. Köppen et al. (2007)
stellen hierzu ein in Excel entwickeltes Softwaretool vor. Mittels der Simulation
können dann zum Modell konsistente Daten in den Berichten verwendet werden.

Zusammenfassung

Die Verwendung von Unsicherheit in Kennzahlensystemen stellt nicht nur ein
geeignetes Mittel für die Prognose dar, sondern hilft auch bei kurzfristig zu tr-
effenden Entscheidungen. Das entscheidungsunterstützende System muss dabei in
der Lage sein, inkonsistente Daten aufzudecken sowie eine Verringerung der Un-
sicherheit innerhalb der Informationen zu erreichen. Die Imputation zusätzlich
relevanter Kennzahlen zum Beispiel für das Berichtwesen ist ein weiterer Aspekt,
den das System leisten soll.

Der entwickelte SamPro Algorithmus zur Simulation von Kennzahlensystemen
imputiert fehlende Daten, deckt Modell-Inkonsistenzen von Daten auf und ermit-
telt verbesserte Kennzahlenschätzungen. Diese Kennzahlenschätzungen erfüllen
das Kennzahlensystem und weisen eine verringerte Unsicherheit auf. Mit MoSi
steht nun dem Anwender ein benutzerfreundliches System zur Modellierung und
Simulation von Kennzahlensystemen zur Verfügung. Durch den Einsatz des Tools
werden die durch SamPro möglichen Kennzahlen visuell aufbereitet und dem Be-
nutzer leicht zugänglich gemacht.

Der vorgestellte Simulationsansatz zum Umgang mit Unsicherheiten in Kenn-
zahlensystemen stellt ein geeignetes Vorgehen dar. Der Simulationsansatz kann
hierbei existierende Methoden übertreffen, da einschränkende Annahmen nicht
vorausgesetzt werden müssen. Es ist gelungen, eine bessere Abbildung der Re-
aliltät und somit größere Genauigkeiten in den stochastischen Kennzahlensyste-
men zu erreichen. Ein Nachteil der Simulation besteht jedoch im Rechenaufwand.
Für langfristige Planungen und in kritischen Anwendunsszenarien, in denen die
Genauigkeit eine entscheidende Rolle spielt, sollte auf den Simulationsansatz zu-
rückgegriffen werden.
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