Aus dem Otto-Heubner-Centrum für Kinder- und Jugendmedizin Klinik für Pädiatrie mit Schwerpunkt Pneumonologie und Immunologie der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

DISSERTATION

Evaluation von Exon 1 Varianten im *MBL2* Gen als Risikofaktor für eine Sepsis bei Frühgeborenen mit sehr niedrigem Geburtsgewicht

zur Erlangung des akademischen Grades Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

von

Uta Zegenhagen aus Berlin

Gutachter: 1. Priv.-Doz. Dr. med. Renate Nickel

2. Prof. Dr. med. Christoph Bührer

3. Prof. Dr. med. Rolf F. Maier

Datum der Promotion: 07.12.2007

Meinen Eltern

Inhaltsverzeichnis

1.	EINLEITUNG	9
1.1	MBL und Sepsis	10
1.1.1	Funktionen von MBL	10
1.1.2	Die Struktur von MBL	11
1.1.3	MBL Bindungs-Spezifität	13
1.1.4	MBL2 Gen und Varianten	13
1.1.5	Klinische Bedeutung von MBL2 Varianten	16
1.2	Sepsis bei VLBW Frühgeborenen	17
1.2.1	Ätiologie der neonatalen Sepsis	17
1.2.2	Inzidenz der neonatalen Sepsis	18
1.2.3	Klinisches Bild und Verlaufsform einer Sepsis	19
1.2.3.1	Nekrotisierende Enterokolitis (NEC)	20
1.2.4	Diagnose einer Sepsis	21
1.2.5	Pathophysiologie der Sepsis	23
1.3	Das Immunsystem VLBW Frühgeborener	25
1.3.1	Angeborenes und erworbenes Immunsystem	25
1.3.2	Das Komplementsystem	28
1.3.2.1	MBL und seine Bedeutung für das Komplementsystem	29
1.4	Genetik der Sepsis	31
2.	ZIELSETZUNG	32
3.	MATERIAL UND METHODEN	33
3.1	Patientenpopulationen	33
3.1.1	VLBW Frühgeborene	33
3.1.2	Datenanalyse	36
3.1.2.1	KISS	36
3.1.2.2	NEO-KISS	37
3.2	Materialien	41
3.2.1	Geräte	41
3.2.2	Verbrauchsmaterialien	41
3.2.3	Reagenzien und Chemikalien	42
3.2.4	Enzyme und Pufferlösungen	42
3.2.5	Primer und Sonden	42

3.3	Methoden	42
3.3.1	Gewinnung der DNA	42
3.3.2	DNA Extraktion	43
3.3.3	Polymerase Kettenreaktion	43
3.3.4	Schmelzkurvenanalyse (LightCycler-Technik)	44
3.3.4.1	Schmelzkurvenanalyse für MBL2	46
3.3.5	Statistische Auswertung	48
4.	ERGEBNISSE	49
4.1	Sepsis	49
4.1.1	Prävalenz einer Sepsis	49
4.1.2	Risikofaktoren für eine Sepsis bei VLBW Frühgeborenen	49
4.1.2.1	Sepsis und Geschlecht	49
4.1.2.2	Sepsis und Gestationsalter	50
4.1.2.3	Sepsis und Geburtsgewicht	52
4.1.2.4	Device-assoziierte Sepsitiden	53
4.1.3	Schwere Formen der Sepsis	53
4.1.3.1	NEC	53
4.1.3.2	Sepsis mit letalem Ausgang	54
4.2	Pneumonie	54
4.3	MBL2 Exon 1	54
4.3.1	MBL2 Exon 1 Genotypverteilung bei VLBWs mit und ohne Sepsis	56
4.3.2	MBL2 Exon 1 Genotypverteilung bei verstorbenen VLBWs	57
5.	DISKUSSION	58
5.1	MBL Plasmakonzentrationen und genetische Studien bei	58
	Frühgeborenen	
5.1.1	MBL2 Genotypfrequenzen bei Frühgeborenen	61
5.1.2	MBL2 Allel- und Genotypfrequenzen in der vorliegenden Arbeit	62
5.1.2.1	Allgemeine Verteilung der MBL2 Allele und Genotypen	62
5.1.2.2	MBL2 Genotypen bei Sepsis	63
5.2	Nosokomiale Infektionen bei VLBW Frühgeborenen	64
5.2.1	Risikofaktoren für eine Sepsis bei VLBW Frühgeborenen	65
5.2.2	Bedeutung genetischer Faktoren bei einer Sepsis	67
5.3	Sepsisdiagnostik und NEO-KISS	68

5.5	Bedeutung des MBL2 Genotyps bei der Entwicklung einer Sepsis	72
5.6	MBL und Immunsuppression	73
5.7	Sepsis - eine multifaktorielle Genese	74
5.8	Problematik genetischer Studien	74
5.8.1	Gen-Umwelt-Interaktionen	74
5.8.2	Gen-Gen-Interaktionen	74
5.8.3	Phänotypdefinition	75
5.8.4	Ethnizität	75
5.9	Schlussfolgerung	76
6.	ZUSAMMENFASSUNG	78
7.	LITERATUR	79
8.	DANKSAGUNG	87

Abkürzungen

ALT Alanin-Aminotransferase
AST Aspartat-Aminotransferase
C1-9 Komplementfaktor 1-9
CCM Charité, Campus Mitte
CD Cluster of Differentiation

CDC Center for Disease Control and Prevention

CPAP Continuous Positive Airway Pressure

CrP C-reaktives Protein

CVK Charité, Campus Virchow Klinikum

DNA Desoxyribonukleinsäure

E. coli Escherichia coli

EONS Early-onset-neonatal Sepsis

FG Frühgeborene

FRET Fluorescence Resonance Energy Transfer

GA Gestationsalter
GG Geburtsgewicht

GMCSF Granulozyten-Makrophagen Kolonie-stimulierender Faktor

HIV Humanes Immundefizienz-Virus

Ig Immunglobulin
INF Interferon
IL Interleukin

I/T-Ratio Immature/Total (neutrophile Granulozyten)

KISS Krankenhaus-Infektions-Surveillance-System

KNS Koagulase-negative Staphylokokken

LONS Late-onset-neonatal Sepsis

LPS Lipopolysaccharide

MASPs MBL-associated Serine Proteases

MBL Mannose-bindendes Lektin
NEC Nekrotisierende Enterokolitis

NEO-KISS Neonatales-Krankenhaus-Infektions-Surveillance-System

NICU Neonatal Intensive Care Unit (neonatalogische Intensivstation)

NNIS National Nosocomial Infections Surveillance

NRZ Nationales Referenzzentrum

PAMPs Pathogen-associated Molecular Patterns

PCR Polymerase Chain Reaction (Polymerse Kettenreaktion)

PRR Pattern Recognition Receptor
PVK Peripherer Venenkatheter

SIRS Systemic Inflammatory Response Syndrom

SNP Single Nucleotide Polymorphism

SP Surfactant Protein

SSW Schwangerschaftswochen

TLR Toll-Like Receptor
TNF Tumornekrosefaktor

VLBW Very Low Birth Weight (Neugeborene < 1500 g Geburtsgewicht)

VLONS Very-late-onset-neonatal Sepsis

ZNS Zentrales Nervensystem
ZVK Zentral Venenkatheter
ZVD Zentraler Venendruck

Kursiv gedruckte Abkürzungen bezeichnen jeweils das kodierende Gen des Moleküls.

Abbildungsverzeichnis

Abb. 1: MBL Proteinstruktur

Abb. 2: Untereinheit von MBL mit Struktureinheit

Abb. 3: Variante MBL2 Allele mit Ausbildung funktionsloser Oligomere

Abb. 4: Struktur des MBL2 Gens - Promoterregion und Exon 1

Abb. 5: Reihenfolge systemischer Infektionen bei VLBW Frühgeborenen

Abb. 6: Sepsis Kaskade Abb. 7: Sepsispyramide

Abb. 8: Interaktion von unspezifischen und spezifischen Abwehrmechanismen

Abb. 9: Entwicklung einzelner Komponenten des Immunsystems bei Feten

Abb. 10: Die drei Wege der Komplementaktivierung

Abb. 11: MBL und MASPs

Abb. 12: Komplexbildung MBL und MASP-2

Abb. 13: Gestationsalter der VLBW Frühgeborenen

Abb. 14: Geburtsgewicht der VLBW Frühgeborenen

Abb. 15: Infektionsrate bei Neugeborenen, insbesondere bei VLBW Frühgeborenen

Abb. 16: Guthrie-Kärtchen

Abb. 17: Prinzip des FRET

Abb. 18: Prinzip der Mutationsanalyse

Abb. 19: Kurvenbeispiel einer Schmelzkurvenanalyse

Abb. 20a,b: Geschlechterverteilung bei VLBW Frühgeborenen mit und ohne Sepsis

Abb. 21a,b: Gestationsalter bei VLBW Frühgeborenen mit und ohne Sepsis/bei Sepsis

Abb. 22a,b: Geburtsgewicht bei VLBW Frühgeborenen mit und ohne Sepsis/bei Sepsis

Abb. 23: Verteilung der MBL2 Genotypen

Abb. 24: Vergleich von *MBL2* Genotypfrequenzen zwischen deutschen und türkischen VLBW Frühgeborenen im CVK

Abb. 25a,b: Verteilung der MBL2 Genotypen bei VLBW Frühgeborenen mit und ohne Sepsis

2. Zielsetzung der Arbeit

Ziel dieser Arbeit ist es, SNPs im *MBL2* Gen in Hinblick auf eine Sepsis bei VLBW Frühgeborenen zu evaluieren. Dazu wurden zwei Populationen von insgesamt 522 VLBWs für *MBL2* Varianten untersucht. Die dargelegten Untersuchungen sollen zeigen, ob Kinder die eine Variante im *MBL2* Exon 1 aufweisen, häufiger an einer Sepsis erkranken als VLBW Frühgeborene mit normalem *MBL2* Genotyp.

Risikofaktoren einer Sepsis bei VLBW Frühgeborenen sind zwar bekannt, erklären jedoch nicht die große Variabilität bezüglich der Häufigkeit oder des Schweregrads der Erkrankung. Genetische Faktoren könnten hier von maßgeblicher Bedeutung sein.

6. Zusammenfassung

Als Sepsis bezeichnet man eine schwere systemische Infektion komplexer und multifaktorieller Genese. Genetische Faktoren prädisponieren wahrscheinlich zur Entwicklung schwerer Infektionen. Als wichtiger Bestandteil der angeborenen Immunität übernimmt das Mannose-bindende Protein eine entscheidende Rolle bei der körpereigenen Abwehr. SNPs im Exon 1 des *MBL2* Gens in Kodon 52, 54 und 57 resultieren in niedrigen MBL Serumspiegeln und stehen in engem Zusammenhang mit einer erhöhten Suszeptibilität für Infektionen bei Erwachsenen und Kindern, vor allem unter Immunsuppression.

Frühgeborene sind in vielerlei Hinsicht immunsuppremiert. Ihre körpereigene Abwehr ist entscheidend von einem intakten angeborenen Immunsystem abhängig. Diese Arbeit untersuchte den Einfluss von funktionellen Varianten im Exon 1 des Kandidatengens *MBL2* (R52C, G54D, G57E) in zwei gut charakterisierten Patientenpopulationen von insgesamt 522 Frühgeborenen mit einem Geburtsgewicht < 1500 g (VLBW FG) der Charité (CVK und CCM) auf einen Zusammenhang mit der Entwicklung einer nosokomialen Sepsis. Das gesamte Patientenkollektiv wurde für die drei *MBL2* Exon 1 Varianten genotypisiert und heterozygote sowie homozygote/compound heterozygote Träger mit dem Wildtyp in Bezug auf die Häufigkeit einer Sepsis verglichen. Deutsche und türkische Patienten wurden im CVK getrennt voneinander betrachtet, um mögliche ethnische Unterschiede zu berücksichtigen.

Es konnte weder in der Gesamtpopulation (CVK und CCM) noch in einer der beiden ethnischen Gruppen des CVK eine signifikante Assoziation zwischen *MBL2* Genotypen und dem Auftreten einer Sepsis gefunden werden. Niedriges Gestationsalter, niedriges Geburtsgewicht und männliches Geschlecht stellten in dieser Arbeit Risikofaktoren für die Entwicklung einer Sepsis dar.

Um relevante genetische Risikofaktoren bei der Entstehung einer Sepsis bei VLBW Frühgeborenen zu finden, bedarf es weiterer Untersuchungen, vorzugsweise von Kandidatengenen, welche für Proteine der angeborenen Immunität kodieren.

8. Danksagung

Mein herzlichster Dank gilt meiner Doktormutter Priv.-Doz. Dr. Renate Nickel. Ich danke ihr für die Möglichkeit, diese Arbeit zu schreiben, ihre intensive Betreuung, das mir entgegengebrachte Vertrauen und die vielen wertvollen Ratschläge, die mich stets motiviert haben, meine Arbeit voranzubringen.

Mein Dank gilt außerdem Prof. Michael Obladen, der meine Dissertation durch Kooperation mit der Klinik für Neonatologie erst ermöglicht hat.

Anja Kubinski danke ich für die wunderbare Einarbeitung in die Labortätigkeit, für ihre Hilfe beim Aufreinigen der DNA sowie die vielen fachlichen und freundschaftlichen Tipps zum wissenschaftlichen Arbeiten. Dr. Monika Berns danke ich herzlich für die intensive und freundliche Unterstützung meiner Dissertation und ihre Hilfe bei vielen der dazugehörigen Schwierigkeiten.

Prof. Wauer danke ich für die Teilnahme von Patienten aus der Neonatologie im Campus Mitte. Mein weiterer Dank gilt PD Dr. Heiko Witt sowie Claudia Güldner und Markus Braun, die mir im Labor hilfreich zur Seite standen. Boris Metze danke ich für seinen statistischen Beistand, seine stets offene Tür und dafür, dass er mir immer ein guter Ratgeber war. Für die Unterstützung bei der Datenanalyse mit Hilfe von NEO-KISS danke ich Frank Schwab vom Institut für Hygiene und Umweltmedizin. Andrea Ernert vom Institut für Biometrie und klinische Epidemiologie danke ich für ihre Hilfe bei der statistischen Auswertung.

Ein großes Dankeschön geht auch an meine Familie und Freunde. Durch ihr Interesse und stetes Nachfragen haben sie mir viel Kraft gegeben. Besonders bedanken möchte ich mich bei meinen Eltern Gerda und Wolfgang Zegenhagen für ihren unterstützenden Rückhalt während meines Studiums und meiner Promotion, bei meinem Freund Nils Stolzenberg dafür, dass er mir den Rücken gestärkt hat und immer für mich da ist und bei meiner Freundin Julia Püschel, die mich immer wieder aufs Neue angesport und ermutigt hat.

Zu guter Letzt wird eine Arbeit erst dann gut, wenn sie fehlerfrei geschrieben ist. Für das Korrekturlesen danke ich herzlich Harald Stolzenberg und Julia Püschel.

<u>Lebenslauf</u>

Mein Lebenslauf wird aus Datenschutzgründen in der elektronischen Version meiner Arbeit nicht mit veröffentlicht.

Erklärung an Eides Statt

hiermit erkläre ich, dass die Dissertation von mir selbst und ohne die unzulässige Hilfe Dritter verfasst wurde, auch in Teilen keine Kopie anderer Arbeiten darstellt und die benutzten Hilfsmittel sowie die Literatur vollständig angegeben sind. Es handelt sich bei dieser Arbeit um meinen ersten Promotionsversuch.

Uta Zegenhagen

Anhang 1-3: <u>NEO-KISS Formulare</u>

Krankenhaus .																								
Patienten ID								D.		n N	ID.													_
							-	ВС	ge	n iv	IK:	_												_
Aufnahmedatum .		/	-/-			_																		
Monat .																								_
11121314	5 6 1	7 . 8 . 9	10	11,1	2,13	3,14	4,15	116	5, 17	7,18	119	9,20	0, 21	12	2 , 2	3,2	4,2	5,2	6,2	7,2	8,29	9,30),31	Σ
Patient							_	_	_	_	_			_			_			_				_
auf Station , , , ,																								
							_	_	_	_	_		_	_		_	_		_	_		_	_	_
ZVK I I I I								ı						ı	,		ı	,		ı				
PVK L L L		1.1			_			ı			ı			ı			ı	_		ı				
Tubus		1.1					ı	ı	ı	ı	ı	_		ı		ı	_			_		ı	ı	
CPAP L L L								L			L			L			ı			ı				
Anti-																								
biotika							ı			ı			ı											1 1
Am Ende des Mona														die	e Si	urv	eill	and	e b	ee	nde	t w	ird	
(Gewicht des Kinde			w. Er	tlas	sun	g b	ZW.	То	d),	wi	rd (die	Su	mr	ne	der	M	lon	ats	um	me	n a	uf	
den Patientenboger	n übertr	agen.																						
Bemerkungen:																								

Anhang 2: Patientenbogen zur Surveillance – NEO-KISS

Krankenhaus	Patienten-ID			
Geburtsdatum	Mehrlingsgeburt	CRIB-Score	Nosokomiale Infektioner	n
falls nicht Geburtdatum Aufnahmedatum Geburtsgewicht Gestationsalter Wochen, Tage	□ nein □ Zwillinge □ Drillinge □ mehr als Drillinge	Ende der Surveillance Datum Grund 1800 g erreicht	Sepsis	Anzahl
Patienten- und Device-Tage Patien auf Station Tag		□ Verlegung o. ä. □ gestorben BUS- CPAP- Antibiotika- age Tage Tage	Pneumonie	Anzahl
			NEC ☐ ja ☐ nein	Anzahl
Bemerkungen			Weitere	

Anhang 3: Infektionsbogen Sepsis – NEO-KISS

Krankenhaus	Patienten-ID		J					
Sepsis auf Station	Klinische Sepsis		durch Labor bestätigte Seps	ais				
Datum Sepsisbeginn	alle folgenden Kriterien ▶ Betreuender Arzt beginnt geeignete antimikrobielle	1:	Emeger aus Blut oder Liquor isoliert und kein KNS (Keim istrmit Infektion an anderer Stelle nicht verwandt) ja nein					
PVK assoziiert ☐ ja ☐ neir	Therapie für Sepsis für mindestens J 5 Tage	□ja □ nein	ODER KNS zur Bluth daur oder					
ZVK assoziiert	► Kein Keimwachstum in der Blutkultur		KNS aus Blutkultur oder intravasalem Katheter isoliert UND eines der folgenden	□ ja □ nein				
Erreger 1	oder nicht getestet] ► Keine offensichtliche	□ ja □ nein	▶ CRP> 2,0 mg/dl	□ ja □ nein				
Erreger 2	Infektion on anderes		▶ I/T-Ratio der neutrophilen Blutzellen > 0,2	□ja □ nein				
Erreger 3	ı		➤ Leukozytopenie < 5/nl	□ ja □ nein				
			➤ Thrombozytopenie < 100/nl	□ ja □ nein				
UND								
zwei der folgenden klinischen Zeio	n und Symptome:							
► Fieber (> 38 °C) oder Temperaturinstabilität oder Hypothermie (< 36,5 °C) ☐ ja	▶ neu oder verme □ nein Apnoe(en) (⊳ 2		anderes Sepsiszeichen*	□ja □ nein				
➤ Tachykardie (> 200/min) oder neu/vermehrte Bradykadien (< 80/min) ☐ ja	➤ unerklärte metabolische A □ nein (BE < – 10 mwa		welche(s)					
➤ Rekapillarisierungszeit > 2 s	➤ neu aufgetreter Hyperglykämie □ nein (> 140 mg/dl)		* u.a. Hautkolorit, erhöhr I (Intubation), instabiler					