
Chapter 3

Geometric and kinetic H/D isotope

effects in porphycene

In this chapter we investigate the geometric and kinetic H/D isotope effects in

porphycene and whether these effects shade some light upon the mechanism of the

double proton transfer. First, the system will be introduced in section 3.1. Further,

a review of the previous work on porphycene, related to the H/D isotope effects,

will be presented in section 3.1. Secondly, the overall properties of the potential

energy surface for different coordinate systems (Cartesian reaction surface and

Cartesian reaction plane) will be discussed in sections 3.1 and 3.2, where the

tunneling splittings for the normal as well as the deuterated porphycene will be

evaluated and compared with the experimental results. Specific features of the

potential energy surface around a specific minimum geometry will be shown in

section 3.3, the expression of the full-dimensional anharmonic potential energy

surface will be derived and it will be shown how to reduce the full dimensionality

by selecting some relevant modes out of the total 3N-6 normal modes. The ground

state nuclear wave functions and their relation to the geometric H/D isotope effect

will be discussed in section 3.4. A comparison of the theoretically calculated

geometric H/D isotope effect with the NMR experimental results will be outlined

in section 3.5. In section 3.6, the kinetic isotope H/D effect as well as the effect

of the barrier height and tunneling rates will be investigated.

3.1 Double hydrogen bonded system ”Porphycene”

In the following, we study the different tautomeric structures of the double

hydrogen-bonded system, porphycene, shown in Fig. 3.1. Porphycene has been



68 Geometric and kinetic H/D isotope effects in porphycene

synthesized by Vogel et al. [150] as a constitutional isomer of porphyrin (Fig.

3.2). Porphycene and most of its derivatives are strongly fluorescent blue pig-

ments exhibiting remarkable photostability. Porphycene is a planar and aromatic

molecule that possesses two internal hydrogen bonds involving the same donors

and acceptors, i.e. nitrogen atoms. Two internal hydrogen atoms undergo an

exchange between these nitrogen atoms giving rise to three different tautomeric

forms, trans, cisa and cisb. In the trans configuration, the two hydrogens are lo-

cated on two opposite nitrogen atoms, see Fig. 3.1.

Figure 3.1: The (B3LYP/6-31+G(d,p)) optimized values of the hydrogen bond

parameters inside the cavity of the trans tautomer of porphycene. Notice that the

N-N distance as well as the N-H-N angle is in fair agreement with the experimen-

tal values of 2.63 Å [150] and 153◦ [151], respectively.

The two hydrogen atoms are located on two adjacent nitrogen atoms (for in-

stance, N1 and N2 or N1 and N3) in the cis tautomers. The arrangement of two

protons on the adjacent nitrogen atoms (N1 and N2), cisa, is energetically much

more favourable than that of the other possible species (where the two hydrogens

are on the adjacent nitrogens N1 and N3), cisb. We shall not consider the latter

because of its high energy compared to the former and from now on we shall call

cisa the cis tautomer.

From the theoretical point of view porphycene is an example for a system

exhibiting a Hartree-Fock instability. This issue was addressed by Hohlneicher

and coworkers who showed that Hartree-Fock theory predicts a ground state of
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Figure 3.2: The trans tautomer of porphyrin.

low symmetry with pronounced bond length alternations. This failure can only be

compensated by accounting for electron correlations, e.g., at the level of density

functional theory [152].

We have investigated the stationary points along the concerted and stepwise

double proton transfer pathways shown in Fig. 3.3 employing density functional

theory (at different levels of theories). In order to reduce the uncertainty in the

barrier heights, we further calculated the stationary points using Møller Ples-

set perturbation theory (MP2). For density functional theory method, we em-

ployed besides the standard B3LYP functional the MPW1K functional, which has

been developed especially for the kinetics of radical hydrogen atom transfer reac-

tions [153]. All quantum chemical calculations have been performed using Gaus-

sian98/03 [154, 155] program packages. The molecular geometry of the station-

ary points of porphycene were fully optimized using the gradient minimization

technique. The global minimum is characterized by having zero gradient norms

and by diagonalizing the matrix of the second derivatives. Figure 3.4 reveals

the optimized geometries of trans and cis tautomers of porphycene and the cor-

responding saddle points (transition states) calculated by DFT(B3LYP) method

combined with a 6-31G(d,p) basis set as implemented in Gaussian03 program

package [155]. The stationary points’ energies calculated with different methods

and levels of theories, are collected in Table 3.1.

All methods predict the barrier for the concerted pathway to be higher than

that along the stepwise pathway (ETS(trans,trans) > ETS(cis,trans)). An interesting

aspect which has been first noted by Koslowski and coworkers [156] concerns the

effect of the ZPE. As can seen from Table 3.1, inclusion of the harmonic ZPE re-

verses the energetics of the two pathways, i.e. for the ZPE-corrected barriers, the

concerted pathway is preferred. Of course, this is not surprising since there is one
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Figure 3.3: Concerted (trans-trans) versus stepwise (trans-cis-trans) double hy-

drogen transfer mechanisms in porphycene.

6-31G(d,p) 6-31+G(d,p)

B3LYP B3LYP/ZPE B3LYP B3LYP/ZPE MPW1K MP2

E(trans) 0.00 0.00 0.00 0.00 0.00 0.00

E(cis) 2.08 1.61 2.30 0.59 1.68 2.65

ETS(cis,trans) 4.15 0.76 4.68 5.54 2.42 3.75

ETS(trans,trans) 6.23 0.62 6.45 3.03 3.41 5.23

Table 3.1: Energetics (in kcal/mol) of the stationary points of porphycene for

different quantum chemical methods and at different levels of theories. The

B3LYP/ZPE energies include the ZPE correction.

more imaginary frequency for TS(trans,trans) than for TS(cis,trans). This conclu-

sion is depicted in Figs. 3.5 and 3.6, where one can see in Fig. 3.5 that the cis

and its transition state are energetically more preferable than the transition state
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(a) (b)

(c) (d)

Figure 3.4: The optimized stationary points of porphycene obtained from

DFT/B3LYP/6-31G(d,p) calculations for (a) trans tautomer, (b) cis tautomer, (c)

transition state of the trans-trans tautomerization and (d) transition state of the

trans-cis tautomerization (Note: this presentation is rotated by 90◦ compared to

Fig. 3.1).

of the trans-trans conversion, therefore, the stepwise pathway wins, while Fig. 3.6

reveals that the transition state of the trans-trans interconversion has lower energy

than the cis and its transition state and hence the concerted pathway dominates.

Notice that, the ambient temperature is about 0.6 kcal/mol which is approximately

equal to the relative value of the energy of TS(trans,trans’), i.e. under thermal

conditions the proton transfer rate will be mainly over-the-barrier (follows TST).

Another conclusion can be seen in Fig. 3.6 that is the cis isomer will be ener-

getically higher than its transition state which means that the cis isomer can be

considered as a saddle point for the trans-trans tautomerization. From this one

could draw the conclusion that the tautomerization reaction in porphycene might
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proceed synchronously, however, this is within the harmonic approximation.

Figure 3.5: Potential energy profile representing the energetics of the stationary

points without the zero point energy calculated at DFT/B3LYP/6-31G(d,p) level

of calculation. In this case the tautomerization reaction prefers the stepwise mech-

anism.

Figure 3.6: Potential energy profile representing the energetics of the station-

ary points with the zero point energy (harmonic approximation) calculated at

DFT/B3LYP/6-31G(d,p) level of calculation. In this case the tautomerization re-

action prefers the concerted mechanism.

Since porphycene is a big molecule, we will consider the moderate level of

theory, i.e. 6-31G(d,p), in the calculation of the potential energy surface in which

we need to calculate a large number of points. In contrast, for the calculation



3.1 Double hydrogen bonded system ”Porphycene” 73

of the stationary points’ potential energy surface using the gradient minimization

technique (geometry optimization), we will use the higher level of theory, i.e.

6-31+G(d,p).

Since we restrict our study in section 3.3 to the vicinity of the minimum of

the potential energy surface (i.e. the barrier heights are considered as not so im-

portant), we will consider the normal modes as the employed coordinate system.

For preparation, we briefly present results on the normal modes (corresponding

to the vibrations describing the motion of the inner protons) obtained from DFT

calculations mentioned above. Inspecting the normal modes of the trans tautomer

(Fig. 3.4a), table 3.2, reveals that NH stretching mode is the most intense band

which has no counterpart in the experimental spectra, see Ref. [157]. Malsch

and Hohlneicher suggested that the absence of the NH stretching vibration is at-

tributed to the band broadening because of a rapid motion of the proton in the

hydrogen bridge and therefore completely disappears. They could not assign the

stable tautomer from the infrared experimental results, so that we will present as

well the normal modes of the cis tautomer, Table 3.3. Furthermore, the modes

with imaginary frequencies of the transition states for the trans-trans and trans-cis

interconversions are given in Table 3.4.

No. Sym. ω̃ (cm−1) Int. (KM/Mole) Ass.

49 Bg 934 0.00 Asym. combination of the N-H out-of-

plane bending

56 Ag 1000 137.03 Sym. combination of the N-H out-of-

plane bending

93 Bu 1631 32.98 Asym. combination of the N-H in-plane

bending

94 Ag 1662 0.00 Sym. combination of the N-H in-plane

bending

95 Ag 2891 5.45 Sym. combination of the N-H stretching

96 Bu 2892 434.94 Asym. combination of the N-H stretching

Table 3.2: The normal modes for the trans tautomer (Fig. 3.4) (associated with

the inner protons’ motion), the corresponding non-scaled wave numbers (in cm−1)

and assignments. The molecular symmetry is C2h. DFT/B3LYP/6-31G(d,p) level

of theory was used as implemented in Gaussian03 [155].

From this normal mode analysis, the transition state of the trans-trans intercon-
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No. Sym. ω̃ (cm−1) Int. (KM/Mole) Ass.

53 A2 976 0.00 Asym. combination of the N-H out-of-

plane bending

58 B1 1051 128.20 Sym. combination of the N-H out-of-

plane bending

88 B2 1561 41.72 Asym. combination of the N-H in-plane

bending

94 A1 1673 27.69 Sym. combination of the N-H in-plane

bending

95 B2 2602 5.47 Asym. combination of the N-H stretching

96 A1 2640 522.54 Sym. combination of the N-H stretching

Table 3.3: The normal modes for the cis tautomer (Fig. 3.4) (associated with the

inner protons’ motion), the corresponding non-scaled wave numbers (in cm−1)

and assignments. The molecular symmetry is C2v. DFT/B3LYP/6-31G(d,p) level

of theory was used as implemented in Gaussian03 [155].

Second order saddle point (trans-trans)

No. Sym. ω̃ (cm−1) Ass.

01 B3g -1205 Sym. combination of the N-H stretching

02 B2u -1067 Asym. combination of the N-H stretching

Transition state (trans-cis)

01 A′ -1213 N-H stretching of the moving proton

Table 3.4: The normal modes (with imaginary frequencies) for the second order

saddle point (Fig. 3.4) of trans-trans tautomerization as well as the transition

state (Fig. 3.4) of the trans-cis interconversion (associated with the inner protons’

motion) and assignments. The molecular symmetries are D2h and Cs for the saddle

point and transition state, respectively. DFT/B3LYP/6-31G(d,p) level of theory

was used as implemented in Gaussian03 [155].

version is a second order saddle point because it has two imaginary frequencies

(stretching vibrations), therefore, one can conclude that the reaction coordinate at

the transition state of the trans-trans tautomerization is definitely dominated by

the stretching vibration (specifically the symmetric one).

Using density functional theory calculations, Wu and coworker predicts that
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porphycene as a free base is more stable than porphyrin [158]. This stability is due

to the rectangular shape of the cavity hosting the hydrogen bonds which leads to a

linear arrangement of N-H· · ·N and a smaller N-N distance (2.63Å in porphycene

[150] compared to 2.90Å in porphyrin [159]). In metal complexes the relative

stabilities of the porphyrin and porphycene are reversed since the larger cavity in

porphyrin facilitate the metal accommodation inside the cavity. The tighter cavity

in porphycene enhances the strength of the hydrogen bonds as compared to that of

porphyrin. The N-N distance value predicted by X-ray (2.63 Å) [150] lies between

those calculated for trans (2.65 Å) and cis (2.61 Å) forms [158] suggesting the

presence of both species in the crystal. Therefore, this kind of traditional hydrogen

bond has medium strength, which is characterized by localized ground state wave

function.

Although the Infrared spectrum could not give clear evidence for the most

stable isomer [157], quantum chemical calculations performed by Kozlowski et

al. [156] who, by using DFT(B3LYP), showed that the trans form (Fig. 3.1) is

about 2.4 kcal/mol more stable than the cis one (in the present calculations, it

is 2.3 kcal/mol in case of B3LYP/6-31+G(d,p)). Localization and transfer of the

N-protons in porphyrin and porphycene have been investigated using variable-

temperature high-resolution 15N NMR spectroscopy [160] (for a review, see also

Ref. [161]). At elevated temperatures, the spectra of porphyrin as well as por-

phycene reveal one signal, i.e. at high temperatures a very fast proton transfer

apparently takes place, see Fig. 3.7. Lowering the temperature from 356 to 192 K

leads to a line broadening in case of porphyrin, i.e. the process becomes frozen un-

til complete separation of the =N- and NH signals. On the other hand, porphycene

does not show line-broadening as the temperature is lowered, i.e. no ”freezing” of

the protons’ motions, but a splitting into four sharp peaks, assigned to two non-

equivalent asymmetric hydrogen transfer systems. The tautomerization in each of

them is extremely rapid even at very low temperature. Two possibilities were pro-

posed that are: a) two non-equivalent porphycene molecules in the crystal, each

contains two proton transfer systems, this case involves trans-trans equilibria; b)

four different tautomeric forms are involved in the crystal, this indicates a pres-

ence of trans and cis tautomeric forms. From these measurements, one cannot

decide whether the tautomerization mechanism is concerted or stepwise.
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Figure 3.7: Solid state 15N NMR chemical shift spectra of porphycene (right) and

porphyrin (left), taken from Ref. [160].

3.2 Tunneling splitting in porphycene

Before studying the geometric and kinetic H/D isotope effects, we will provide

some insight into the overall properties of the potential energy surface. Moreover,

the tunneling splitting of porphycene and its isotopomers will be studied. First,

the experimental technique, fluorescence spectrum, that has been used to measure

the splitting in porphycene will be outlined in section 3.2.1. The Cartesian reac-

tion surface Hamiltonian approach will be discussed in section 3.2.2, where the

potential surface in terms of the reactive coordinates (of the proton motion) will

be constructed and the ground state eigenfunctions and eigenvalues will be calcu-

lated. Further, a comparison between the mean field approximation and the exact

calculation will be shown. The way to find the strongest coupled modes to the pro-

ton motion and how it will be incorporated into the potential energy surface will

be briefly discussed. The five strongest coupled modes will be shown. In section

3.2.3 the Cartesian reaction plane will be studied in comparison with the Cartesian

reaction surface approach. A correlation between the reaction plane coordinates

and the hydrogen bond coordinates q1 and q2 will be discussed in section 3.2.3.
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3.2.1 Fluorescence spectra as an evidence of tunneling splitting

Before going into the details of tunneling splitting in porphycene, we will give an

overview of the experimental work done by Waluk and coworkers for porphycene

using the fluorescence excitation spectroscopy. Waluk et al. [161, 162] have in-

vestigated the tunneling splitting of porphycene using the fluorescence excitation

in an ultracold supersonic jet. They found that the fluorescence excitation spectra

consist of doublets, see Fig. 3.8. The fluorescence spectrum, of non-deuterated

species, shows a doublet separation of 4.4 cm−1 (the tunneling splitting in the

lowest vibrational levels of the electronic ground state). This experimental value

of the splitting will be used later for the comparison with our theoretical value.

Figure 3.8: Fluorescence excitation spectra of porphycene isolated in a supersonic

jet. Inset, the 0-0 transitions observed for undeuterated, singly and doubly deuter-

ated porphycene. The peak marked with an asterisk corresponds to the complex

of porphycene with water [162].

In contrast, porphyrin shows ”normal” single peak spectra corresponding to

particular vibronic transitions [163]. The splitting in porphycene disappears upon

replacing one or two inner protons with deuterons (This means that the splitting
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becomes smaller than 0.1 cm−1 which is too small to be detected experimentally),

this is shown in the upper right corner of Fig. 3.8. The peak marked by asterisk

(Fig. 3.8) reveals a complex formation of water or alcohol with porphycene, i.e.

adding water or alcohol to the sample results in concealing of the doublet struc-

ture. To distinguish the nature of the doublet components A and B depicted in Fig.

3.8, one can compare their relative intensities upon varying the conditions of cool-

ing [162]. As shown in Fig. 3.9, the relative intensity of component B decreases

with increasing the distance between the laser beam and the nozzle. On contrast,

component A is not affected by changing the distance between the laser beam and

the nozzle. Since increasing the distance from the nozzle leads to increasing the

degree of cooling of the sample, the component B was assigned to be the hot band

[162].

Figure 3.9: Relative intensities of the A and B components of the S0 − S1 elec-

tronic transition as a function of the distance between the nozzle and the laser

beam [162].
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Therefore, the hot nature of band B and the lack of doublet structure upon

complexation with water (exempting because of symmetry lowering upon com-

plex formation) provide a conclusive evidence that the splitting has been attributed

to the ground state tunneling of the two inner hydrogen atoms.

In fluorescence spectra, one may observe three situations upon deuteration (as-

suming that the shift in the spectra (if exists) due to single and double deuteration

is the same): a) The potentials (S0 and S1) are of the same shape, this means that

the stabilization of the deuterated species will be the same in both potentials and

no shift will be observed in the spectra; b) The potential S1 is wider than S0, this

leads to a blue shift in the spectra since the stabilization will be larger in S0 than

in S1 potential; c) The potential S0 is broader than S1, this means that the stabi-

lization of the deuterated species will be larger in S1 than in S0 potential. Case

c) leads to a red shift in the fluorescence spectra. In the case of porphycene, a

red shift of the fluorescence excitation spectrum in single and double deuterated

species is observed, see Fig. 3.8. Moreover, the shift is approximately the same

per each substituted proton. This indicates that the stabilization of the deuterated

species is larger in S1 than in S0 potential, i.e. the potential S1 is steeper than

S0. The steepness of the potential S1 indicates a smaller N-H bond length in the

excited state, which implies that the hydrogen bond is weaker in the excited state.

The molecule is most likely to expand upon excitation, and the cavity becomes

larger. Further, the steepness of the S1 potential leads to a higher barrier and in

turn a smaller splitting than S0 potential. This finding and the observation that

all the vibronic peaks reveal the same separation of the doublet components, sug-

gests that the observed value of 4.4 cm−1 can be assigned to ground state tunneling

splitting (Fig. 3.10).

3.2.2 Cartesian reaction surface

A theoretical way to calculate the tunneling splitting is, first of all, to calculate

the ground state potential energy surface of the system, and evaluate the ground

state vibrational eigenvalues from which one can compute the tunneling splitting.

In a first step we localize the stationary points (minima and saddle points) on the

potential energy surface that are associated with the chemical reaction to be in-

vestigated. The stationary points (minima) for the concerted and stepwise double

proton transfer reactions were determined and depicted in Fig. 3.11.

As has been shown in section 3.1, the reaction might proceed concertedly ac-

cording to harmonic approximation. Therefore, for the time being, we intend to
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Figure 3.10: Schematic diagram represents the ground and lowest excited singlet

state potential energy profiles along the tautomerization coordinate in porphycene

[161] (Note: the molecular axis is rotated by 90◦ compared to Fig. 3.1).

study the overall properties of the potential energy surface of the concerted path-

way (assuming the cis tautomer is not important for tunneling) and evaluated the

tunneling splitting for such a reaction. In this respect, we used the Cartesian reac-

tion surface Hamiltonian wherein we need to separate the total set of coordinates

into those of the reactive hydrogen atoms which describe large amplitude con-

certed proton motion and those of the substrate as a harmonic skeleton modes Qs.

The Cartesian system for the trans tautomer is depicted in Fig. 3.12.

Considering the flexible reference method (section 2.3.5), the reactive coordi-

nates (x,y) for the concerted pathway are shown in Fig. 3.13. As shown in Fig.

3.13, the concerted proton transfer occurs in a curved pathway. The two hydrogen

atoms are located closer to the y-axis for the minimum structure (trans) than the
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Figure 3.11: The stationary points (trans and cis isomers) obtained from density

functional theory calculations with B3LYP/6-31G(d,p). The possible tautomer-

ization pathways (stepwise and concerted) are also represented by arrows.

transition state. On going from one trans configuration to the other, the two hy-

drogens depart from the y-axis till having the maximum distance from the y-axis

at the transition state and then get closer again for the other trans.

Since the geometries of the stationary points are planar, there is no force acting

on the reactive hydrogen atoms along z-direction. Therefore we employed the x-

and y-coordinates as reactive coordinates to describe the large amplitude motion

of the hydrogen atoms.

The Cartesian surface Hamiltonian does not have any coupling for the kinetic

energy, i.e. the different coordinates are only coupled via the potential energy
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x

y

Figure 3.12: The Cartesian system of the trans geometry of the trans-porphycene.

z-coordinate is perpendicular to the plane of the paper (Note: this presentation is

rotated by 90◦ compared to Fig. 3.1).

Figure 3.13: Sketch describing the reaction path for the concerted double proton

transfer pathway. What is shown is the inner cavity of the double hydrogen bonds.

Here a combination of x and y describes the simultaneous motion of both protons.

The center of mass coincide with the origin of the coordinate system. Here x(N1)

= - x(N2); x(N3) = - x(N4); y(N1) = - y(N3); and y(N2) = - y(N4). Since we have

two moving protons, mx = 2 H-mass and my = 2 H-mass. (Note: this presentation

is rotated by 90◦ compared to Fig. 3.1).

surface for proton motion, Veff (x, y), the Hessian K(x, y) and the forces �f(x, y).
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The Hamiltonian then reads:

HCRS =
1

2

(p2
x

m
+

p2
y

m

)
+ Veff(x, y)

+
1

2
(P 2

Q + �QK(x, y) �Q) − �f(x, y) �Q, (3.1)

where m is twice the mass of the moving atom (proton or deuteron). The com-

plete expression for the potential energy surface Veff(x, y) is given in Eq. (2.65).

The large mass ratio between the hydrogen atoms and the substrate results in an

insignificant change not only of the center of mass but also of the orientation of

the principle axis of inertia during the proton transfer reaction. Therefore, one

can neglect the coupling to the external motions (translation and rotation). As de-

scribed in section 2.3.5, the full dimensionality of Eq. (3.1) can be simplified by

considering the strongest coupled modes with the proton motion according to the

value of the reorganization energy.

To construct the potential energy surface of this nuclear motion, we fixed the

molecular structure of the trans tautomer in a Cartesian coordinate system where

the center of mass of the molecule coincides with the origin of the Cartesian axes.

The hydrogen motion along the path shown in Fig. 3.13 can be described by an

elongation of NH bonds and a change of NNH angles. Therefore, changing the

coordinates x and y (Fig. 3.13) simultaneously can be equivalent to changing r

and θ coordinates depicted in Fig. 3.14.

N2 N1

N3N4

H

H

x

y

θ r

θr

Figure 3.14: Sketch describing equivalent coordinates to the reactive coordinates

(x,y). Here shown the cavity hosting the hydrogen bonds with the numbering

system presented in Fig. 3.1.

Partial optimization as implemented in Gaussian98 program package [154]

was used to construct the potential energy surface. Here we change r and θ co-

ordinates and leave the rest of the molecular coordinates to relax to their new
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equilibrium positions. We introduce r and θ instead of x and y because internal

coordinates are required for the partial optimization in Gaussian program package.

The calculated potential energy surface was composed of 219 points scattered in

the range 0.8Å to 2.4Å for r and 10.4◦ to 18.5◦ for θ. Another 219 points were

generated by symmetry and the total of 438 points were used in the potential en-

ergy fitting. The resulting potential energy surface was then fitted to a tenth order

polynomial using the least-square fitting algorithm, see Fig. 3.15.

Figure 3.15: Contours plot of the two dimensional potential energy surface for

the reactive coordinates (in atomic units) as defined in Fig. 3.13. The contour

spacing: 0.0 to 0.5 in steps of 0.1 eV. The potential surface is a symmetric double

well potential. The minimum energy path, connecting the two wells together and

passing through the transition state, has a curved shape as represented in Fig. 3.13.

Assuming that the substrate modes adjust themselves adiabatically with the

motion of the protons, i.e. the kinetic coupling is neglected (see section 2.3.5), the

potential energy surface can then be reduced in terms of the reactive coordinates

to the one depicted in Fig. 3.15.

Figure 3.15 shows contours plot of the two dimensional potential energy sur-

face which is a symmetric double well potential, each well represents a certain

trans configuration separated by a transition state which is 6.23 Kcal/mol higher

than each minimum. Having this two dimensional potential we were able to

calculate the two dimensional ground state eigenfunctions for porphycene and
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deuterated porphycene as well as the ground state eigenvalues. Note that the

deuteration has been done only for the inner protons. We used in the calculation

of eigenfunctions and eigenvalues the multiconfiguration time-dependent Hartree

approach [132] together with imaginary time relaxation [164] and diagonalization

techniques. The calculations have been performed using the Heidelberg MCTDH

program package [148]. Fast fourier transform collocation has been used as the

discrete variable representation on grids (in atomic units): x [1.2:2.7] (32 points)

and y [-1.5:1.5] (64 points). Five single particle functions for each coordinate

were used. The effect of the mean-field approximation (only one single particle

function per coordinate) is also investigated and depicted in Figs. 3.16.

(a) (b)

(c) (d)

Figure 3.16: The ground state probability distribution functions for (a) porphycene

and (b) deuterated porphycene (the mean-field approximation); (c) porphycene

and (d) deuterated porphycene (numerical exact calculations). x and y are in

atomic units.

It is obvious from Figs. 3.16 that the mean-field approximation is not a good

approximation in this case because the ground state wave function does not fit



86 Geometric and kinetic H/D isotope effects in porphycene

with the potential coupling yet contains two parallel lobes right above the two

wells. On the other hand, by considering the numerically exact calculations, the

two lobes of the ground state wave function will tilt accordingly to reproduce the

potential coupling. This indicates that the motion of the wave function is most

likely to follow the minimum energy path in case of exact calculations, while it

makes a short cut motion in the mean-field approximation, even though it follows

a higher energy path.

The tunneling splitting and the tunneling time were found to be (for por-

phycene) 1.2 cm−1 and 28 ps with relatively good agreement with the experi-

mental value (4.4 cm−1), see section 3.2.1 [161, 162]. With respect to deuterated

porphycene, the tunneling splitting was 0.03 cm−1 and tunneling time was 1 ns.

This tunneling splitting is a consequence of the overlap, in the barrier region,

between localized wave functions in each well of the symmetric double well po-

tential shown in Fig. 3.15, see section 1.1.2. The tunneling splitting of the normal

species is larger than that of the deuterated ones because the wave function of the

normal species is always higher in energy than that of the deuterated ones, i.e.

wave function of the deuterated species is farther from the top of the barrier than

that of normal ones, as indicated in section 1.1.2. There is no experimental value

available for the splitting in the deuterated porphycene (the doublet structure dis-

appears in the fluorescence spectra) because the calculated value is smaller than

0.1 cm−1 which is the minimum value that can be detected experimentally.

Selection of relevant modes

In proton transfer reactions, the coordinate(s) corresponding to the proton motion

(in the present case x and y) is(are) usually coupled to certain reaction coordinates

(e.g. normal modes), specially those describing the distance between the heavy

atoms. This coupling is expressed also in an empirical q1/q2 model, see section

1.1.3. In the following we shall find the possible promoting or coupling modes,

the terminology will be explained below.

As mentioned in section section 2.3.5 the reorganization energy, Eq. (2.69),

corresponding to a certain mode can be used to identify the modes which couple

strongly to the reaction coordinate of the proton motion. The reorganization en-

ergy, Eq. (2.69), is reflected in the substrate oscillator’s displacement (Q0) from

their equilibrium value taken at the reference geometry. Let Q0
trans be the displace-

ment in the substrate modes on going from the reference structure (in the present

case the transition state of the trans-trans interconversion) to one of the minimum
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structures. The normal mode displacement of the strongest coupled mode is given

in Fig. 3.17 (promoting mode). Mode v11, Fig. 3.17, has the maximum value

of Q0
trans which is 104 ao(a.m.u)1/2. This symmetric mode (Ag) modifies the

NN distance and has the strongest coupling with the proton motion and its wave

number was found to be 301 cm−1.

Figure 3.17: Mode v11 which has the strongest coupling to the reaction coordi-

nates (promoting mode). It is a symmetric mode with wave number of 301 cm−1

and its Q0
trans value is 104 ao(a.m.u)1/2.

The other relevant modes are depicted in Fig. 3.18. Some of them associated

with the NN distance like the promoting modes v18 and v56 whose Q0
transs are

18 and 11 ao(a.m.u)1/2, respectively. Modes v3 and v46 (whose Q0
trans are 34

and 13 ao(a.m.u)1/2, respectively) describe the deformation of the structure as

a result of the electronic reorganization which accompanies the proton motion

(coupling modes). The wave numbers of these modes are as follows (in cm−1): a)

v3 250; b) v18 425; c) v46 910; d) v56 1075 and the corresponding symmetries are,

respectively, B1g, Ag, B1g and Ag. Modes v11, v18 and v56 facilitate the exchange

of protons between nitrogen atoms, where they bring nitrogen atoms closer to one

another and in turn affect the tunneling splitting. On the other hand, modes v3 and

v46 will enhance or suppress tunneling depending on their kind of deformation, i.e.

the mode whose displacement facilitates the changes associated with the proton

tunneling (for instance, electronic rearrangement) will enhance the tunneling and
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vice versa.

(a) v3, B1g (250/34) (b) v18, Ag (425/18)

(c) v46, B1g (910/13) (d) v56, Ag (1075/11)

Figure 3.18: The modes which couple strongly to the reactive coordinates, and

their symmetries. Modes v18 and v56 are promoting modes, while modes v3 and

v46 are coupling modes. In paranthesis are given, respectively, the harmonic wave

numbers and Q0
trans values (in cm−1 and ao(a.m.u)1/2).

In the next section we will see how these coupled modes are covered by the so

called Cartesian reaction plane coordinates.

3.2.3 Cartesian reaction plane

In this section, the collective reaction plane coordinates will be presented and

correlated to the atomic reactive coordinates. Furthermore it will be discussed
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how these Cartesian plane coordinates cover the relevant modes as well as the

mode describing the reaction coordinate of the concerted mechanism. Finally, the

direct relation between q1/q2 and d1/d2 will be discussed.

Let us consider the coordinate system, shown in Fig. 3.12, and see how to

generate XL from XR, assuming that the structure depicted in Fig. 3.12 describes

XR. In order to obtain the geometry of XL from the known geometry XR, one

can do the following: each of the atoms, located above the x-axis, are permutated

with the corresponding ones below the same axis and then the whole molecule is

rotated by 180◦. These two structures are characterized by being unique up to an

arbitrary rotation. In order to remove this arbitrariness, Nakamura [127] suggested

to choose XL and XR such as to minimize |XR - XL|. Similarly, |XC - XTS| should

be minimized. The obtained vectors’ displacements are depicted in Fig. 3.19.

(a) d1 (b) d2

Figure 3.19: Collective atom displacement corresponding to direction (a) d1-

vector (antisymmetric) and (b) d2-vector (symmetric), see Fig. 3.13.

Panel (a) of Fig. 3.19 represents a concerted motion of the two protons which

corresponds to the straight line connecting both minima and the center geometry,

see Fig. 3.13. Panel (b) represents the motion of the two protons in opposite direc-

tions along the x-axis from the saddle point to the center geometry, see Fig. 3.13.

The small displacements for other atoms of the molecule is also considered but not

shown in the figure. One can notice that d2 has some displacements of other atoms

as large as that of the moving protons, these displacements are accompanied with

cavity shrinkage and expansion.

The coordinates, d1 and d2, can be correlated to the reactive coordinates de-
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scribed in the previous section. The d1 describes the motion along y-axis, see Fig.

3.12, this is directly related to the reactive y-coordinates, whereas the d2 coordi-

nate is associated with the proton motion along x-axis as well as motions of other

atoms. The d2 coordinate reflects a collective motion that is essentially the proton

motion along x-direction which is related to the reactive x-coordinate described in

the previous section. Moreover, the collective coordinate d2 describes the motion

of the nitrogen atoms in such a way as to enlarge or shrink the cavity hosting the

two hydrogen bonds which is also accompanied with other motions of atoms in

the rings as well as the outer hydrogens.

Another interesting observation that d1 and d2 correlate not only to the reactive

coordinates, x and y, but also to the strongly coupled modes to these reactive

coordinates. The d2 coordinate covers the strongest coupled mode v11 (Fig. 3.17).

This is reflected in the projection of d2 on v11 ( �Q11 · �d2) which is evaluated to

be 0.85. This is not surprising since d2 has promoting character by symmetry.

Likewise, d1 covers the reaction coordinate, obtained from ab initio calculations,

which has an imaginary frequency in case of concerted mechanism, see Fig. 3.20.

Figure 3.20: The mode with imaginary frequency for the transition state of the

trans-trans interconversion.

So far, we have discussed how the collective reaction plane coordinates (d1

and d2) cover the atomic reactive coordinates (x and y) and the strongest coupled

mode v11. In addition, one may ask whether the reaction plane coordinates, d1

and d2, correlate to the empirical q1 and q2 or not. To answer this question, we

recall the definition of q1 and q2, that are the deviation of the proton from the

center of the hydrogen bond and the distance between the heavy atoms hosting the

hydrogen bond, respectively. In other words q1 can be considered as the tunneling
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coordinate which corresponds to d1 as described above. Regarding the heavy

atoms, d2 describes how much the heavy atoms’ distances expand or shrink on

going from the center geometry to the transition state which in turn reflects the

distance between the heavy atoms, i.e. related to q2.

3.3 Anharmonic potential energy surface

Now comes the study of certain features of the potential energy surface around a

specific structure (trans tautomer). In this section we consider the anharmonicity

of the potential energy surface in the vicinity of the trans geometry (see Fig. 3.1)

to probe the properties of the nuclear ground state wave function. Therefore,

the influence of the tunneling between the trans minima in the potential energy

surface is neglected. Indeed, since the tunneling splitting, as determined from

fluorescence excitation spectra, is relatively small (4.4 cm−1) [162], there should

be only a marginal effect on the shape of the local probability distribution. This

is supported by Fig. 3.16. Since we are dealing with the electronic ground state

(el = 0), we will drop the index el from the potential energy surface.

The resulting set of normal mode coordinates presented in section 3.1, { Qi },

and conjugate momenta, { Pi }, can be used to express the Hamiltonian in Watson

form (neglecting vibration-rotation couplings) [165]:

H =
3N−6∑
i=1

P 2
i

2
+ V (Q1, Q2, ..., Q3N−6), (3.2)

where V (Q1, Q2, ..., Q3N−6) is the full-dimensional potential energy surface. As

discussed in section 2.3, the calculation of the full-dimensional potential energy

surface is only feasible for very small systems such as triatomic molecules. In

contrast, for systems like porphycene it is impossible to get a full-dimensional

potential energy surface without approximations. The importance of the correla-

tion between the normal modes is likely to decrease with increasing the number

of correlated modes, thus, it is reasonable to expand the full-dimensional poten-

tial energy surface V (Q1, Q2, ..., Q3N−6) in terms of correlated and uncorrelated

contributions as [166]

V (Q1, Q2, ..., Q3N−6) =
∑

i

V
(1)
i (Qi) +

∑
i<j

V
(2)
ij (Qi, Qj)

+
∑

i<j<k

V
(3)
ijk (Qi, Qj, Qk) + . . . (3.3)
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The summations run over all normal modes as singles, distinct pairs, triples,

etc. The terms V
(1)
i (Qi), V

(2)
ij (Qi, Qj), V

(3)
ijk (Qi, Qj , Qk) ... are the uncorre-

lated, two-mode correlations, three-mode correlations, ... and so forth. In other

words, V (1)
i (Qi) corresponds to one-dimensional potential energy curve of the dis-

placed equilibrium structure (trans tautomer) along a specific normal mode i while

the other normal modes are frozen at their equilibrium values, the V
(2)
ij (Qi, Qj)

contains the coupling between two modes i and j, V
(3)
ijk (Qi, Qj , Qk) contains

the coupling between three modes i, j and k, etc. The potential V (2)(Qi, Qj)

can be calculated as follows: the equilibrium geometry (trans tautomer) is dis-

placed along two specific modes, and the corresponding potential energy is

then evaluated for the displaced structure using single point calculation tech-

nique implemented in Gaussian03 program package [155]. One has to notice

that the potential V (2)(Qi, Qj) includes the uncorrelated terms V
(1)
i (Qi), where

V (2)(Qi, Qj) = V
(1)
i (Qi) + V

(1)
j (Qj) + V

(2)
ij (Qi, Qj), i.e. when two modes po-

tentials V (2)(Qi, Qj) and V (2)(Qj, Qk) are calculated, the one dimensional poten-

tial energy V
(1)
j (Qj) should be subtracted from one of the two modes potentials.

Calculation of V (3)(Qi, Qj, Qk) or higher order couplings is computationally de-

manding for large systems. Therefore, one may employ some approximation to

deal with large systems as porphycene.

3.3.1 From full-dimensionality to reduced dimensionality

Here we see how to deal with the highly demanding full-dimensionality by in-

troducing some approximations. The coupling between different modes is also

studied and how this coupling is reflected in the anharmonicity of the potential

energy surface. Porphycene has 108 normal modes that make it impossible to

build up the exact full-dimensional potential energy surface. Therefore, a careful

selection of the degrees of freedom, which are relevant for the description of the

primary and secondary geometric isotope effect, is required. The primary geo-

metric isotope effect can be captured by taking into account those modes which

are related to the N-H bond motion, such as the symmetric (QHH/DD
1 ) and anti-

symmetric (QHH/DD
2 ) N-H(D) stretching vibrations whose normal mode displace-

ments are shown in Fig. 3.21. The QHH
1 and QHH

2 are modes number 95 and 96,

respectively, as mentioned in Table 3.2.

In order to identify the modes which are strongly coupled to the stretching vi-

brations we have displaced the minimum trans structure (Fig. 3.1) along Q
HH/DD
1

and Q
HH/DD
2 by ± 5 ao(a.m.u)1/2, and calculated the corresponding Hessian ma-
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(a) Q
HH/DD
1 (2891/2154) (b) Q

HH/DD
2 (2892/2155)

Figure 3.21: The normal mode displacement vectors corresponding to the N-H/N-

D stretching vibrations for the HH and DD cases. (a) symmetric stretch; (b) asym-

metric stretch. In paranthesis the harmonic wave numbers are given (HH/DD in

cm−1).

trix, K(Q
HH/DD
1/2 ), as well as the force, fj(Q

HH/DD
1/2 ), acting on the remaining

modes Qj at this non-equilibrium position. The higher the value of the force is,

the stronger the coupling with the stretching displaced modes. This force leads

to displacement according to Eq. (2.68). The important quantity (Q0) that mea-

sures the coupling to the displaced modes is the displacement of the other modes

from their equilibrium position. Table 3.5/3.6 and 3.7/3.8 shows the modes which

couple to the displaced Q
HH/DD
1 and Q

HH/DD
2 modes and has the highest forces,

respectively, as well as their wave numbers and the displacements of the coupled

modes (Q0) which exceed 0.20 ao(a.m.u)1/2.

Inspecting Tables 3.5 to 3.8 reveals that the strongest coupled mode (largest

displacement) with the stretching modes Q
HH/DD
1 and Q

HH/DD
2 is mode number

7 (QHH/DD
3 ). The displacement of the other modes from their equilibrium posi-

tions as reflected in Q0 values of tables 3.5 to 3.8 is very small as compared to that

of Q
HH/DD
3 . The strongest coupled mode mode, Q

HH/DD
3 , (see Fig. 3.22) is then

incorporated into the potential energy surface, eqn. (3.3). Notice that this mode

(low frequency mode) is associated with the modification of the N-N distance in

the cavity and then causes a symmetric contraction or elongation of the two hy-

drogen bonds, i.e. it is strongly related to the secondary geometric H/D isotope
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No. ω̃ (cm−1) Q0 (ao(a.m.u)1/2) No. ω̃ (cm−1) Q0 (ao(a.m.u)1/2)

7 196 -5.98 55 999 -0.38

16 370 0.30 57 1016 -0.21

20 490 -0.25 72 1310 0.33

23 610 -0.30 83 1474 0.31

29 673 -0.38 87 1524 0.23

40 835 0.40 88 1554 0.22

43 881 -0.26 94 1643 -0.26

Table 3.5: The normal modes coupled to the displaced mode QHH
1 =

5ao(a.m.u)1/2, their wave numbers and their displacement from the equilibrium

position.

No. ω̃ (cm−1) Q0 (ao(a.m.u)1/2)

7 194 6.22

16 370 0.32

20 486 0.40

23 609 0.42

30 664 -0.53

41 830 0.67

45 877 0.39

53 954 -0.65

56 985 -0.29

65 1159 0.21

Table 3.6: The normal modes coupled to the displaced mode QDD
1 =

5ao(a.m.u)1/2, their wave numbers and their displacement from the equilibrium

position.
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No. ω̃ (cm−1) Q0 (ao(a.m.u)1/2) No. ω̃ (cm−1) Q0 (ao(a.m.u)1/2)

7 186 -9.63 57 1016 -0.31

20 491 -0.34 60 1083 -0.22

23 610 -0.49 72 1309 0.47

29 674 -0.48 83 1485 0.36

40 832 0.62 87 1530 0.27

43 877 -0.51 88 1560 0.27

50 947 -0.32 94 1657 -0.30

55 994 -0.61 96 2961 0.47

Table 3.7: The normal modes coupled to the displaced mode QHH
2 =

5ao(a.m.u)1/2, their wave numbers and their displacement from the equilibrium

position.

No. ω̃ (cm−1) Q0 (ao(a.m.u)1/2) No. ω̃ (cm−1) Q0 (ao(a.m.u)1/2)

7 184 9.98 51 918 0.31

15 344 0.54 65 1163 0.21

20 487 0.55 53 954 -0.86

23 608 0.65 56 982 -0.49

30 665 -0.68 57 1011 0.22

41 823 1.02 60 1051 0.44

42 829 0.21 67 1203 0.21

45 870 0.69 70 1239 0.27

46 890 -0.33 83 1455 0.25

Table 3.8: The normal modes coupled to the displaced mode QDD
2 =

5ao(a.m.u)1/2, their wave numbers and their displacement from the equilibrium

position.
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effect1. Since Cartesian reaction plane coordinate d2 (section 3.2.3) represents

the modification motion of the N-N distance as a part of its collective motion,

the mode Q
HH/DD
3 is then covered by d2. The potential energy surface was de-

termined up to two-mode correlation terms [166] (the first two terms of the right

hand side of Eq. (3.3)) by displacing the equilibrium geometry along each two

modes. We used 171 points for each two mode potential.

V (Q
HH/DD
1 , Q

HH/DD
2 ,Q

HH/DD
3 )

=V
(1)
1 (Q

HH/DD
1 ) + V

(1)
2 (Q

HH/DD
2 ) + V

(1)
3 (Q

HH/DD
3 )

+ V
(2)
12 (Q

HH/DD
1 , Q

HH/DD
2 ) + V

(2)
13 (Q

HH/DD
1 , Q

HH/DD
3 )

+ V
(2)
23 (Q

HH/DD
2 , Q

HH/DD
3 ), (3.4)

Notice that Eq. (3.4) might include higher order couplings between each two

modes like, for instance, V (2) ∼ Qn
1Q

m
2 .

In contrast to Cartesian reaction surface Hamiltonian (section 3.2.2), the nor-

mal mode coordinates are mass-weighted and, therefore, this procedure is fol-

lowed for the normal species (HH) and the double H/D isotope substitution case

(DD). The resulting one- and two-dimensional potentials are then fitted to tenth-

order polynomials using the least-square fitting algorithm.

In the following we will discuss how to refine this model in a sense such as to

include more modes that are coupled to the stretching vibrations via calculations

of the third-order force constants, Kijk, which also provide a means for including

higher order correlations. Since we restrict our investigation to small changes of

the nuclear degrees of freedom, the anharmonic force field approach provides a

good approximation to the potential energy surface. The set of coupled modes

(symbolized for the time being as Qc) will contribute their harmonic (Kcc) and

1Gil et al. found that the 180 cm−1 vibration is promoting the tautomerization in bare por-

phycene in the electronic excited state. This has been proved by observing that the activation

energy for the reaction in S1, obtained from the Arrhenius plot, corresponds exactly to this value

(they determined the reaction rate as a function of temperature by stationary and time-resolved flu-

orescence anisotropy measurements [167]). These results have been confirmed by large tunneling

splitting for this mode in S0, larger than those for other vibronic levels (these measurements have

been obtained in jets and nanohelium droplets).
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Q
HH/DD
3 (187/185)

Figure 3.22: The normal mode displacement vector corresponding to the change

in the NN distance for the HH and DD cases. In paranthesis the harmonic wave

numbers are given (HH/DD in cm−1).

the pure/mixed third order force constants to the potential energy surface as

V (Q) =

3∑
i=1

V
(1)
i (Qi) +

3∑
i=1

3∑
i<j

V
(2)
ij (Qi, Qj) +

1

2

3∑
i=1

∑
c

KiicQ
2
i Qc

+
1

2

3∑
i=1

∑
c

KiccQiQ
2
c +

3∑
i=1

3∑
i<j

∑
c

KijcQiQjQc

+
1

2

∑
c

KccQ
2
c +

1

6

∑
cc′c′′

Kcc′c′′QcQc′Qc′′ , (3.5)

where i and j change from 1 to 3 and represent modes Q
HH/DD
1 ,QHH/DD

2 and

Q
HH/DD
3 , see Figs. 3.21 and 3.22. The first two terms of the right hand side of

Eq. (3.5) can be calculated on a numerical grid, as shown in Eq. (3.4).

Now, to calculate the third order force constants, Kijk, one can use the finite

difference approach [168]. This approach requires calculations of the analytical

Hessian for a displaced geometry along a single mode, for instance Q
HH/DD
1 ,

then the third order force constant can be calculated using Eq. (2.59). In the

present case, K+
ij and K−

ij are the second derivatives matrices corresponding to the

displaced geometries along mode Q
HH/DD
1 in the positive and negative directions,

respectively. The modes with the highest Kij1 absolute value will contribute into

the potential energy surface, Eq. (3.5) as Qc.

In order to calculate the K-terms of Eq. (3.5), one has to check the conver-

gence of calculating the third order force constants. If the convergence is attained,
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the results should not depend on the step size [168]. Therefore, to find the optimal

displacement, one has to displace QHH
1 and QHH

2 from the equilibrium geometry,

e.g., by 0.02 and 0.03 (dimensionless) in positive and negative directions (these

are values typically suggested in Ref. [169]). The analytical Hessian for this

displaced structure is then calculated. The corresponding cubic K-terms can be

evaluated from Eq. (2.59). The third order K-terms of the stretching modes and

the low frequency mode are shown in Table 3.9. The difference in the third or-

der force constant of the two displacements (0.02 and 0.03) is about 0.7 h·c·cm−1

and 0.5 h·c·cm−1 for QHH
1 and QHH

2 , respectively. In addition, we displaced

the equilibrium geometry along QHH
3 by 0.03 in positive and negative directions

and calculated the analytical Hessian for the displaced structure. The third or-

der K-terms (with the stretching modes) was then calculated to be K113 = 128.0

h·c·cm−1 and K223 = 124.1 h·c·cm−1. These values differ from the corresponding

cubic K-terms of the displaced stretching modes by only 1.0 and 0.3 h·c·cm−1,

respectively. Table 3.9 and the evaluated cubic K-terms of the displaced QHH
3 re-

veal that 0.03 displacement is a reasonable displacement for the calculation of the

third order force constants.

Displacement K113 (h·c·cm−1) K223 (h·c·cm−1)

0.02 128.3 124.9

0.03 129.0 124.4

Table 3.9: Conversion test for QHH
3 : the third order K-terms for different dis-

placement values of the stretching modes QHH
1 and QHH

2 .

Now, the coupled mode(s), Qc, has to be specified. This was achieved by

displacing the equilibrium geometry along Q
HH/DD
1 by 0.03 and calculating the

third order force constants. Carefull inspection of the third-order force constant

values leads to identification of the coupled modes to the stretching vibrations.

The third-order force constants which contribute in the potential energy surface

are given in Table 3.10.

It turns out that in both cases, HH and DD, there is an important coupled mode

(QHH/DD
4 ) at around 900 h·c·cm−1 of Bu symmetry whose displacement vectors

are shown in Figs. 3.23a (HH) and 3.23b (DD). One can notice that the third order

coupling between the stretching modes and this mode is very large compared to

the two-mode coupling reflected in the oscillator’s displacement upon displace-

ment of each of the stretching modes. As for Q
HH/DD
1 displacement, these modes
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are not included in Tables 3.5 and 3.6 due to their zero oscillator’s displacement.

On the other hand, they have negligible values in case of Q
HH/DD
2 as shown in

Tables 3.7 and 3.8. (mode number 50 (HH) and 51 (DD)). The reason is that dis-

placement along this mode will lower the symmetry and allow for asynchronous

contraction/elongation of the two hydrogen bonds. This lowering in symmetry

might be compensated by considering both stretching modes (of different symme-

tries) in the coupling with Q
HH/DD
4 , in accord with symmetry rules2 as reflected

in Table 3.10. There are no diagonal third-order force constants for these modes,

however, there is a particularly strong three-mode correlation with the stretching

vibrations, KHH
124 = -224.36 h·c·cm−1 and KDD

124 = -196.66 h·c·cm−1 , as well as a

weaker coupling with the asymmetric stretching and the low-frequency vibration,

KHH
234 = -34.58 h·c·cm−1 and KDD

234 = -24.23 h·c·cm−1. All other couplings do

not exceed 10 h·c·cm−1, see Table 3.10. Keeping the harmonic approximation for

mode Q
HH/DD
4 and combining it with the explicit two-mode potential for modes

Q
HH/DD
1 , Q

HH/DD
2 and Q

HH/DD
3 as well as the third-order anharmonic couplings

mentioned before, we arrive at a 4D model for the HH and DD cases. The poten-

tial energy surface will then read

V (Q
HH/DD
1 ,Q

HH/DD
2 , Q

HH/DD
3 , Q

HH/DD
4 )

=V (1)(Q
HH/DD
1 ) + V (1)(Q

HH/DD
2 ) + V (1)(Q

HH/DD
3 )

+ V (2)(Q
HH/DD
1 , Q

HH/DD
2 ) + V (2)(Q

HH/DD
1 , Q

HH/DD
3 )

+ V (2)(Q
HH/DD
2 , Q

HH/DD
3 ) +

1

2
K44Q

HH/DD
4 Q

HH/DD
4

+
1

2
K144Q

HH/DD
1 Q

HH/DD
4 Q

HH/DD
4 +

1

2
K344Q

HH/DD
3 Q

HH/DD
4 Q

HH/DD
4

+ K124Q
HH/DD
1 Q

HH/DD
2 Q

HH/DD
4 + K234Q

HH/DD
2 Q

HH/DD
3 Q

HH/DD
4 ,

(3.6)

where Q
HH/DD
1 , Q

HH/DD
2 , Q

HH/DD
3 and Q

HH/DD
4 are shown in Figs. 3.21, 3.22

and 3.23, respectively.

For the asymmetric substitution case, HD, we followed the same strategy.

First, an explicit two-mode correlation potential has been obtained comprising

the two local stretching vibrations QHD
1 and QHD

2 and the strongly coupled low-

frequency mode QHD
6 , see Fig. 3.24. The oscillators’ displacements coupled to

QHD
1 and QHD

2 which exceed 0.20 ao(a.m.u)1/2 are depicted in Tables 3.11 and

2As a symmetry rule, the Hamiltonian should be totally symmetric. Therefore, the direct prod-

uct of the displacement vectors, considered in the coupling, has to be taken into account to keep

the Hamiltonian symmetric.
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HH DD

ijk Kijk (h·c·cm−1) Kijk (h·c·cm−1)

144 10.39 1.01

344 0.94 2.25

124 -224.36 -196.66

234 -34.58 -24.23

Table 3.10: The values of the third-order force constant which contribute in the

anharmonic potential energy surface for the HH and DD cases, according to the

symmetry rules. The others should not contribute in the potential energy surface

due to symmetry rules and their values do not exceed 1 h·c·cm−1.

(a) QHH
4 (947/Bu) (b) QDD

4 (919/Bu)

Figure 3.23: The strongest coupled normal modes displacement vectors entering

the 4-dimensional model for the HH and DD cases. These modes correspond to

modes number 50 and 51, respectively, which are not shown in Tables 3.5 to 3.8

because they have almost zero two modes’ couplings. In paranthesis the harmonic

wave numbers (HH/DD in cm−1) and the symmetries of the modes are given.

3.12 (mode number 7 is the low frequency mode).

Next, three more modes, QHD
3 , QHD

4 and QHD
5 , had to be added after inspec-

tion of the third-order anharmonic force constants (see table 3.13) leading to 6D

model for the HD case. The strongest coupled normal mode displacement vectors

are shown in Fig. 3.24. The potential energy surface is analogous to that of Eq.

3.6.

As can be seen from Fig. 3.24 these modes involve skeleton rearrangements
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No. ω̃ (cm−1) Q0 (ao(a.m.u)1/2) No. ω̃ (cm−1) Q0 (ao(a.m.u)1/2)

7 195 6.10 44 879 -0.34

16 370 0.31 50 932 0.27

20 489 0.32 55 979 0.37

23 610 0.36 56 991 0.31

28 663 0.36 59 1033 0.23

29 673 -0.30 70 1274 -0.21

40 830 0.52 95 2550 0.61

Table 3.11: The normal modes coupled to the displaced mode QHD
1 (∆QHD

1 =

0.03 ao(a.m.u)1/2), their wave numbers and their displacement from the equilib-

rium position.

No. ω̃ (cm−1) Q0 (ao(a.m.u)1/2) No. ω̃ (cm−1) Q0 (ao(a.m.u)1/2)

7 186 9.75 55 976 0.57

19 470 -0.33 56 987 0.52

20 489 0.45 57 1011 0.23

23 609 0.54 64 1136 -0.22

28 663 0.24 70 1279 -0.33

29 673 -0.52 73 1319 -0.35

40 829 0.66 87 1538 0.25

42 833 0.39 94 1659 0.23

44 876 -0.53 95 2552 0.59

51 949 0.26 96 2365 -1.12

Table 3.12: The normal modes coupled to the displaced mode QHD
2 (∆QHD

2 =

0.03 ao(a.m.u)1/2), their wave numbers and their displacement from the equilib-

rium position.

as well as substantial NH (QHD
3 , QHD

4 ) and ND (QHD
5 ) bending. The coupling

constants exceeding 30 h·c·cm−1 are of two-mode origin, i.e., K113 = -127.38

h·c·cm−1, K223 = 75.53 h·c·cm−1, K224 = 140.45 h·c·cm−1 and K225 = -138.64

h·c·cm−1. The largest three-mode coupling is K136 = -23.30 h·c·cm−1, see Table

3.13.

Exemplary two dimensional cuts of the three multidimensional potential en-

ergy surfaces are shown in Fig. 3.25. These cuts reflect the symmetry with respect
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HD

ijk Kijk (h·c·cm−1) ijk Kijk (h·c·cm−1)

333 -4.44 455 1.32

444 3.71 664 -0.01

555 -1.81 665 -3.69

113 -127.38 114 15.43

223 75.53 115 -10.05

663 2.73 224 140.45

344 8.21 225 -138.64

355 5.26 655 2.38

133 -2.30 123 1.29

233 1.54 163 -23.30

633 0.84 164 8.55

334 1.95 145 -3.07

335 12.85 125 5.98

144 5.78 165 0.31

244 -3.00 263 -17.90

644 4.53 264 -17.77

445 20.85 265 7.70

255 -28.97 365 9.65

Table 3.13: The third-order force constant values which contribute in the anhar-

monic potential energy surface for HD case of porphycene. It was obtained from

a combined calculations of the analytical second order force constants and finite

differences.

to Q
HH/DD
2 = 0 for the cases HH and DD. This symmetry does not exist in the

HD case due to the asymmetry resulting from different masses of hydrogen and

deuterium. Figure 3.25 reveals the anharmonic mode coupling that results in a

distortion of the potential energy surfaces, compared to the harmonic case. The

potential energy surfaces in the negative directions of Q
HH/HD/DD
1 coordinate are

steeper than for the positive directions because the displacement of this mode in

the negative direction brings the hydrogen and nitrogen atoms closer which results

in the steepness of the potential surface. For the same reason the potential is steep

in the negative direction of QHD
2 . Since the normal modes have been chosen, the

minima of the potential energy surfaces will remain at Q = 0 which correspond to
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the equilibrium distances in the classical nuclei limit. The largest distortion in the

potential energy surfaces was observed in the cuts relating the symmetric stretch

with the mode describing the N-N distance (QHH/DD
3 or QHD

6 ). Therefore, these

two modes are strongly coupled which emphasizes what has been discussed in the

introduction section, see Fig. 1.11, and shown experimentally by Gil [167] for the

case of HH.
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(a) QHD
1 (2892) (b) QHD

2 (2155)

(c) QHD
3 (1652) (d) QHD

4 (1322)

(e) QHD
5 (929) (f) QHD

6 (186)

Figure 3.24: The normal mode displacement vectors corresponding to the (a) N-H

and (b) N-D stretching vibrations for the HD case. The strongest coupled normal

mode displacement vectors for the 6-dimensional model potential energy surface

in the HD case (c) - (f). The harmonic wave numbers are given in paranthesis (in

cm−1).
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Figure 3.25: Exemplary two dimensional cuts of the multidimensional potential

energy surfaces of porphycene (HH, HD, DD) together with the respective ground

state vibrational probability distribution functions. The contour spacing for the

potential (in eV): 0.05 to 1.00 in steps of 0.05 (first row), 0.05 to 0.80 in steps of

0.05 (second and third rows).
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3.4 Ground-state nuclear wave functions and geo-

metric H/D isotope effect

The effect of the mode-mode couplings on the wave functions will be discussed.

The quantum correction of the employed normal mode coordinates on the an-

harmonic potential energy surface and its effect on geometries of the different

isotopomers of porphycene will be explored, see section 1.1.3. This correla-

tion will be translated into the so called geometric H/D isotope effects. Having

defined the Hamiltonian, eqn. (3.2), the ground-state wavefunctions were cal-

culated using the multiconfiguration time-dependent Hartree approach [132] to-

gether with imaginary time relaxation technique [164]. The calculations have been

performed using the Heidelberg MCTDH program package [148]. For the har-

monic oscillators, the discrete variable representation has been used on the grids

(in a0(a.m.u.)1/2): Q
HH/HD/DD
1/2 [-0.65:0.65] (64 points), QHH/DD

3 [-6.5:6.5] (128

points), QHD
3 [-1.5:1.5] (64 points), Q

HH/HD/DD
4 [-1.5:1.5] (64 points), QHD

5 [-

1.5:1.5] (64 points) and QHD
6 [-6.5:6.5] (128 points), see Fig. 3.24. Moreover, we

used four single particle functions for the combined modes (QHH/DD
1 /QHH/DD

2 ;

Q
HH/DD
3 /QHH/DD

4 ) to capture strong mode-mode couplings, see Eq. (2.120) (the

inputs are given in Appendix C). The resulting vibrational ground state proba-

bility distributions are shown in Fig. 3.25. Mere visual inspection of Fig. 3.25

reveals that the maxima of these distributions do not coincide with the configu-

ration of the potential energy surfaces minima, that is, they are shifted accord-

ing to the distortion of the potential energy surfaces. For instance, the coupling

V (2)(Q
HH/DD
1 , Q

HH/DD
2/4 ) shifts the maximum of the probability density in case

of HH and DD to positive Q
HH/DD
1 , whereas V (2)(Q

HH/DD
1 , Q

HH/DD
3 ) causes a

shift along positive Q
HH/DD
1 and Q

HH/DD
3 , this is on one hand. On the other

hand, HD case reflects shifts for all coordinates, i.e. the maximum of the prob-

ability density is shifted to positive QHD
1 and QHD

2/5/6 mainly due to the coupling

V (2)(QHD
1 , QHD

2/5/6). In order to quantify this deviation we have calculated the ex-

pectation values of the model coordinates (in units of a0(a.m.u.)1/2). For the HH

case we obtain: 〈QHH
1 〉 = +0.07, 〈QHH

2 〉 = 〈QHH
4 〉 = 0.00 and 〈QHH

3 〉 = -0.48,

whereas for the DD case we have 〈QDD
1 〉 = +0.05, 〈QDD

2 〉 = 〈QDD
4 〉 = 0.00 and

〈QDD
3 〉 = -0.26. For the asymmetric HD case, the expectation values of all coor-

dinates differ from zero; 〈QHD
1 〉 = +0.04, 〈QHD

2 〉 = -0.05, 〈QHD
3 〉 = -0.01, 〈QHD

4 〉
= +0.02, 〈QHD

5 〉 = -0.01 and 〈QHD
6 〉 = -0.34. The different expectation values are

clear indication of the geometric isotope effects. Notice that these values reflects
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the combined effect of anharmonicity and quantum mechanical zero point energy.

In order to translate these expectation values into a geometric change, as ex-

plained in section 1.1.3, to probe the geometric H/D isotope effect, one can dis-

place the equilibrium geometry along the normal mode coordinates according to

these expectation values. From the obtained geometry we have calculated the cor-

responding new hydrogen bond parameters RNH , RNN and RN...H which contain

the quantum correction on the anharmonic potential energy surface.

Table 3.14 summarizes the hydrogen bond parameters, RNH , RNN and RN...H

as well as the NHN angle for the HH, HD and DD cases. Notice that the anhar-

monicity of the potential energy surfaces combined with the quantum nature of

the nuclei causes an NH bond elongation of 0.031 Å for the HH case as compared

to the classical approximation. As a consequence the hydrogen bond contracts,

that is, RNN shortens by 0.027 Å and RN...H by 0.056 Å. In other words, mea-

sured by the two NN distances the hydrogen bond becomes stronger when taking

nuclear quantum effects (the zero-point energy in the anharmonic potential energy

surface) into account. Upon double deuteration the hydrogen bond is weakened.

Compared to the HH case the ND distance is shortened by 0.014 Å (primary ge-

ometric H/D isotope effect) while RNN (secondary geometric H/D isotope effect)

and RN...H increases by 0.014 and 0.027 Å, respectively. Thus we found the order

Rclass
NH < Rquant

NH (DD) < Rquant
NH (HH) (primary geometric H/D isotope effect),

Rclass
N...H > Rquant

N...H(DD) > Rquant
N...H(HH) and Rclass

NN > Rquant
NN (DD) > Rquant

NN (HH)

(secondary geometric H/D isotope effect). This reflects the multidimensionality

of the hydrogen bond which in the present case leads to a bond that is stronger

in the quantum case as compared to the classical one. Double deuteration causes

the quantum effects to diminish, that is, the hydrogen bond becomes weaker. In

essence this is what is behind the so-called Ubbelohde or secondary geometric

H/D isotope effect.

Focusing on the case of single deuteration (HD) we observe that the distance

RNH changes pretty much like in the HH and DD cases upon including quantum

effects. Yet the quantum effect gets smaller in case of deuterated hydrogen bond

relative to the non-deuterated one as expected. Moreover, this effect is moderate

compared to the HH and DD cases. On the other hand, the distances RNN take

values which are about the same for both hydrogen bonds and which are interme-

diate between the HH and DD cases. In other words, single substitution leads to

a weakening of both hydrogen bonds (what we call vicinal effect) as compared to

the HH quantum case. This effect on the RNN reveals that the cavity hosting the
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hydrogen bonds is keeping the molecular symmetry.

Classical HH(4D) HD(6D) DD(4D)

H D

r1 = RNH 1.049 1.080 1.078 1.067 1.066

r2 = RN...H 1.678 1.622 1.630 1642 1.649

RNN 2.655 2.628 2.636 2.637 2.642

∠ NHN 152.8 152.6 152.8 152.8 152.7

Table 3.14: The hydrogen bond parameters (in Å and degrees) as calculated by

the conventional method (classical nuclei) and from the coordinates expectation

value for four- and six-dimensional potential energy surface for HH/DD and HD,

respectively.

It should be emphasized that the choice of the selected normal mode coordi-

nates, of course, limits possible deformation of the structure. Nevertheless, these

stretching modes have been chosen since the antisymmetric and symmetric NH

stretching modes clearly should have a large projection on the reaction path, which

in principle could be either concerted or stepwise, as shown in Cartesian reaction

surface and Cartesian reaction plane Hamiltonian. If one settles with these two

modes, the choice of the other modes is dictated by the anharmonicity of the po-

tential energy surface. Thus the present four- and six-dimensional models should

provide enough flexibility to describe the displacement of the two hydrogen bonds

in porphycene in the vicinity of the trans isomer minimum.

3.5 Comparison between theoretical and NMR ex-

perimental results

A correlation between the NMR chemical shifts and geometric H/D isotope effects

will be reported. Moreover, another correlation between the two hydrogen bond

coordinates q1 and q2 will be presented. The relation between these correlation

and the mechanism of the proton transfer will be discussed. The theoretically cal-

culated geometric H/D isotope effect and NMR experimental results of Limbach

and coworkers [170] will be compared.

In order to compare our theoretical results with experimental ones, we use

NMR as the experimental reference for the determination of the geometric H/D
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isotope effect. As mentioned in section 1.1.3, a direct measurement of the ge-

ometric H/D isotope effects using X-ray diffraction is not precise enough to an-

alyze tiny changes in hydrogen bond geometries upon deuteration. Moreover,

semideuterated samples would give only averaged distances over both N...H-N

and N-D...N hydrogen bonds, what is insufficient for our study. This is why the

NMR results are used for comparison with the quantum geometric H/D isotope

effects.

In this context, the 1H and 2H NMR spectra of partially deuterated porphycene

and its derivatives were recorded by Limbach and coworkers [170], and the chem-

ical shifts of different isotopomers, δHH , δHD, δDH and δDD were measured. Us-

ing Eq. (B.7), the valence bond order model [171, 172, 173, 28], experimen-

tal geometries of porphycene and porphyrin [151] and adapting an experimental

model published recently for the N-H..O hydrogen bond [43] to the N-H...N case

(for more details see Ref. [170]), one can establish a correlation between pro-

ton/deuteron chemical shifts and geometric parameters q1 and q2, For details see

Refs. [22, 174, 42, 43, 175, 176]. Therefore, one can predict the primary and

secondary H/D geometric isotope effects.

From Table 3.14 we recognize that the NHN angle is not much influenced by

quantum effects and deuteration, i.e., we can assume that r1 ≈ RNH and r2 ≈
RN...H . Therefore, q1 can be considered as the deviation from the hydrogen bond

center and q2 is the distance between the heavy atoms involved in the hydrogen

bond, as depicted in Fig. 1.8. The q1 and q2 values obtained from the analysis of

experimental data can be collected and drawn in the so called correlation curve,

see Fig. 3.26.

Figure 3.26 depicts that the q1 value switches sign on going from one isomer

to the other. As q1 decreases (the proton approaches the center of the hydrogen

bond), q2 decreases till a minimum value at the transition state and increases again

when q1 switches sign. The q1 and q2 values of porphycene are collected in Table

3.15 (for more details see Ref. [170]).

In order to compare our theoretically calculated geometries with experimental

ones, we converted r1 and r2 from Table 3.14 to q1 and q2. As mentioned in

section 3.1, the keypoint for the study of the tautomerization mechanism is the

single deuteration case. Upon deuteration of porphycene to a certain extent (for

instance, with a deuteron fraction XD = 0.25), one has a normal, single and double

deuterated species which upon 1H NMR measurement gives two broad peaks, one

for normal species (HH) and the other for single deuteration species (HD), see
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Figure 3.26: Correlation of the hydrogen bond length q2 with the proton

transfer coordinate for porphycene (1), 2,3,6,7,12,13,16,17-octaethylporphycene

(2), 2,7,12,17-tetra-n-porphycene (3) (coinciding with (1)), 2,7,12,17-tetra-(tert-

butyl)-3,6,13,16-dibenzo[cde;mno]porphycene (4) and porphyrin (5). The calcu-

lated solid curve represents equilibrium geometries, the dotted curve includes an

empirical correction for anharmonic ground state vibrations [42]. This figure is

adapted from Ref. [170].

HH HD DD

H D

q1 0.2500 0.2559 0.2656 0.2706

(0.2700) (0.2750) (0.2870) (0.2905)

q2 2.7000 2.7059 2.7147 2.7200

(2.7020) (2.7080) (2.7090) (2.7150)

Table 3.15: The hydrogen bond length q2 = (r1 + r2) and the hydrogen-transfer co-

ordinate q1 = (r1 - r2)/2 obtained from NMR experimental results. In paranthesis

the theoretical values according to Table 3.14 are given.

the upper panel of Fig. 3.27. Moreover, 2H NMR measurement (for the same

deuteron XD = 0.25) gives two broader peaks, one for the single deuteration (DH)

and the other of the double deuteration (DD), see the lower panel of Fig. 3.27.

Comparing experiment and theory in Fig. 3.28 we should take into account

the following points: (i) There are several sources of experimental errors arising

from the deconvolution of the chemical shift data, their correlation to q1 values as

well as the q1 − q2 correlation. (ii) The level of quantum chemistry as well as the
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Figure 3.27: Inner proton (upper) and deuteron (lower) NMR signals of partially

deuterated porphycene dissolved in CD2Cl2. The deuteron fraction XD = 0.25.

This figure is adapted from Ref. [170].

reduced dimensionality model are introducing an error which will be similar for

all isotopomers, although difficult to quantify. Consider the primary geometric

H/D isotope effect, that is, the change of q1 which is shown in the upper panel

of Fig. 3.28. Here, the agreement between theory and experiment is excellent as

far as the relative change is concerned. The absolute theoretical values are almost

uniformly too large by 0.02 Å. For the secondary geometric H/D isotope effect,

that is, the change of q2 between HH and DD is underestimated. For the HD case,

theory predicts a rather concerted expansion of both hydrogen bonds. The ex-

perimental data indicate a similar cooperativity although the expansion is not as

symmetric. Given the expected error limits discussed above the overall agreement

between experiment and theory is satisfactory, thus substantiating the conclusion

that the two intramolecular HBs in porphycene are behaving cooperatively. Re-

turning to our working hypothesis, our findings for porphycene do not yet support

the conclusion that the cooperativeness expressed in the geometrical changes also

leads to a preference for concerted double hydrogen transfer. In order to address

this point and to establish a firm relation between the quantum effects on the ge-

ometry and the kinetics as well as the dynamics of hydrogen bonds further studies

will be necessary like the kinetic H/D isotope effect.
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3.6 Kinetic H/D isotope effect

In this section the mechanism, concerted or stepwise, of tautomerization of por-

phycene will be explored, using as a tool the distinct way in which the rates of

each of these mechanisms is influenced by deuteration. This is a collaboration

work with our Canadian partner, Z. Smedarchina, who evaluated the rates of tau-

tomerization which include the tunneling rate (from instanton approach) and the

over-the-barrier rate (from the transition state theory). The evaluation of the tau-

tomerization rates is based on our quantum chemical calculations of the stationary

points and harmonic frequencies of porphycene (see section 3.1). These tautomer-

ization rates are evaluated using some fitting parameters (calculated from fitting

the theoretical rates to the experimental rates from Limbach [151]).

3.6.1 Tautomerization mechanisms and potential energy sur-

face

In order to understand the dynamics of a chemical system, like the tautomerization

mechanism, one needs to understand all the forces operating within the system,

i.e. calculation of the potential energy surfaces is required. The dynamics of

double-proton transfer reactions in porphycene can be investigated by performing

ab initio calculations of the potential energy surface and the transfer rates can be

calculated afterwards. As mentioned in section 1.1.3, the shape of the potential

energy surface may reflect the mechanism of the double proton transfer. The

stationary points on the potential energy surface have been calculated by means of

density functional theory (B3LYP/6-31+G(d,p)), as implemented in Gaussian03

program package [155], see section 3.1. This potential energy surface is similar to

that predicted for porphyrin [52]. This type of potential energy surface suggests

two tautomerization mechanisms that are the stepwise mechanism, via the cis

intermediate and the corresponding transition state, and the concerted mechanism,

via the transition state connecting the two trans tautomers, whereby the symmetric

N-H stretch is the reaction coordinate.

In general, different pathways corresponding to double proton transfer may

be coupled and the evaluation of the rate constant of tautomerization becomes a

complex task. As proposed in Ref. [177], the two pathways are considered as

uncoupled, i.e. if the symmetric stretching vibrations is considered as the reaction

coordinates for the concerted pathways, one can keep the antisymmetric stretch-

ing vibration frozen. The rate constants of tautomerization for the concerted as
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well as for the stepwise mechanisms, were evaluated by Z. Smedarchina using

the AIM/DOIT program [178]. Calculations of the rate of the concerted mecha-

nism follow the scheme for the carboxylic acid dimers [179]. The calculations of

the rates of the stepwise mechanism follow the scheme applied for porphine [52].

The rate constant for the stepwise mechanism is evaluated as the rate of a two-step

process through the intermediate and the transition state. In the case of stepwise

transfer of the combination AB (A,B = H or D), the corresponding rate constant

is given by the general expression (see Appendix A):

kAB
SM = M

( kA
1 kB

2

kA
−1 + kB

2

+
kB

1 kA
2

kB
−1 + kA

2

)
, (3.7)

where kA
1 , kB

1 are the rate constants of trans-cis transition of the particles A and

B, respectively, and M = 2 is the number of channels. Due to the symmetry of

porphycene the rates for HH and DD transfer reduce to

kHH
SM = MkH

1 & kDD
SM = MkD

1 . (3.8)

The rate constant for the combination of mixed isotopes HD is then given by

kHD
SM = M

(kH
1 kD

2 + kD
1 kH

2

2(kH
2 + kD

2 )

)
. (3.9)

As discussed in section 1.1.4, tunneling can be accounted for by instanton tech-

niques, whereby the rate constant is proportional to exp(−S(T )) [54, 52], where

one does not need an explicit knowledge about the instanton trajectory but rather

the instanton action. The total rate is then a sum of a tunneling (kAIM ) and classi-

cal components (kTST ):

k(T ) = kAIM(T ) + kTST (T ), (3.10)

which reflect the through- and over-barrier pathways. The components kAIM and

kTST in the AIM/DOIT approach are evaluated by the AIM and TST, respectively

[180].

The free-energies at T=298 K, obtained from the energies and force fields of

the stationary configurations (B3LYP/6-31+G(d,p)), are characterized by the fol-

lowing (relative) values: Gtrans = 0, GTS = 1.07 kcal/mol, Gcis = 1.76 kcal/mol,

i.e. the cis configuration becomes a maximum (see also discussion in Section 3.1

and Fig. 3.6). Therefore, the two step process turns into a single step with a

barrier of 1.76 kcal/mol, i.e. the stepwise mechanism is not supported by such

a potential energy surface. This value is very small as compared to the experi-

mental value of the activation energy which is 6 kcal/mol [151]. Nevertheless, the
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cis-trans barrier of the effective potential including the effect of mode-coupling

governing the proton transfer [52, 177] is calculated to be 6 kcal/mol indicating

clearly that a stepwise mechanism is possible. Accordingly, the rate constant has

been calculated by Z. Smedarchina according to Eq. (3.10) for the stepwise as

well as the concerted mechanisms. The calculated rate constants are collected in

Table 3.16. The experimental data of the rate constants in the temperature range

228-335 K (Fig. 3.29) show a value of 5 · 107 s−1 at 300 K which is in poor

agreement with the calculated rate constants. Moreover the experimental value of

the activation energy is also higher than that of the calculated values. Therefore

the actual barrier height will substantially exceed the observed activation energy.

Hence one may conclude that the calculated barriers can be incorrect.

Parameter Concerted Stepwise

mechanism mechanism

k(300), s−1 2×109 3×1010

Ea, kcal/mol 4.3 3.0

Table 3.16: The rate constants of the concerted as well as the stepwise mecha-

nisms for porphycene calculated by Z. Smedarchina at the B3LYP/6-31+G(d,p)

level [177].

In order to reproduce the experimental rate constants, another strategy is

adopted that is the geometries and force fields of the calculated potential energy

surface (B3LYP) are used but the barrier height is fitted. Recalling energetics (in

kcal/mol) of the stationary points of porphycene using B3LYP/6-31+G(d,p), we

get the values given in Table 3.17.

B3LYP/6-31+G(d,p) scaled

E(trans) 0.0 0.0

E(cis) 2.3 4.5

ETS(cis,trans) 4.7 10.9

ETS(trans,trans) 6.5 >10.0

Table 3.17: Energetics (in kcal/mol), without zero point correction, of the sta-

tionary points of porphycene using B3LYP/6-31+G(d,p) level of theory and the

scaled values obtained by fitting the calculated rates with the experimental values

by Limbach, see Fig. 3.29.
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This fitting corresponds to E(cis)=4.5 kcal/mol rather than 2.3 kcal/mol and

ETS(cis,trans) = 10.9 kcal/mol rather than 4.7 kcal/mol. In addition ETS(trans,trans)

needs to be increased to a value of more than 10 kcal/mol. Although the fitting

obtained with these values, illustrated in Fig. 3.29, is satisfactory, it seems un-

likely that the calculated potential energy surface will be in error by these large

amounts. Therefore, an interpretation of the tautomerization dynamics in terms of

stepwise transfer must be ruled out.

The calculated rate constants for concerted mechanism are much closer to the

experimental values than those for stepwise mechanism. Assuming that there is

no stable cis configuration, and adjust ETS(trans,trans) from 6.4 to 6.8 kcal/mol,

the approximate fit to the kinetic data displayed in Fig. 3.30 is obtained. Overall,

the fit is as good as that of Fig. 3.29 but requires much less drastic adjustment

of the calculated potential energy surface. Further, Fig. 3.30 displays calculated

HD and DD rate constants (concerted pathway) for the adjusted potentials and

thus present estimates of the kinetic H/D isotope effect. The concertedness of the

transfer should support our ”working hypothesis”, that is, ”cooperativity” can be

used to reveal the mechanism (cf. section 3.3). However, experimental studies

of HD and DD kinetic isotope effect are required to give further support for the

conclusion.
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cm

Figure 3.28: Comparison of theoretical (open triangles) and experimental (solid

boxes, adapted from Ref. [170]) values of the change of the hydrogen bond param-

eters q1, primary geometric H/D isotope effect, (upper panel) and q2, secondary

geometric H/D isotope effect, (lower panel) with respect to the HH case of por-

phycene HH,HD,DD.



3.6 Kinetic H/D isotope effect 117

Figure 3.29: Rate constants for the stepwise mechanism obtained by the

AIM/DOIT approach for the potential energy surface at the B3LYP/6-31+G(d,p)

level with E(cis), ETS(cis,trans) and ETS(trans,trans) adjusted to yield the best fit to

the points representing the experimental data of Limbach [151]. The calculated

curves represent stepwise transfer for HH, HD and DD.
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Figure 3.30: Same as in Fig. 3.29, for the potential energy surface with alterna-

tive adjustments that render the cis configuration unstable. The calculated curves

represent concerted transfer for HH, HD and DD.


