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Introduction

The subject of this dissertation lies in the fields of group theory and topology. For
a finitely generated group G, we are interested in the outer automorphism group

Out(G) := Aut(G)/ Inn(G)

where Aut(G) is the group of automorphisms of G and Inn(G) E Aut(G) is the
normal subgroup of inner automorphisms. One seeks to exhibit Out(G) as a group
of symmetries of topological and geometric objects, and we will contribute to the
theory of deformation spaces of G-trees, which provide natural and rich examples
of such.

Motivation

Denote by Fn the free group of rank n ≥ 2. Much progress has been made in the
study of Out(Fn) by considering its action on Culler-Vogtmann’s Outer space PX n
(see [Vog02] for a survey). Outer space is the space of Fn-equivariant isometry
classes of free minimal metric Fn-trees (see below) with covolume 1, and Out(Fn)
acts on PX n by precomposing the Fn-actions on the metric trees.

Outer space with the action of Out(Fn) is an analogue of the Teichmüller space
of a surface S with the action of the mapping class group Mod(S). Much of the
theory developed in the context of Teichmüller space has been imitated in the
setting of Outer space, allowing new insights into the structure of Out(Fn). In
fact, “Outer spaces” can be defined in much greater generality, raising the question
of which analogies extend to automorphism groups of more general groups:

Deformation spaces of G-trees Let G be a finitely generated group. A metric
G-tree is a metric simplicial tree on which G acts by simplicial isometries without
inversions of edges. Starting from a metric graph of groups decomposition of G,
we obtain a metric G-tree by considering the associated Bass-Serre covering tree
(see [Ser80] or [Bas93]). We restrict our attention to G-trees that are minimal, i.e.,
that do not contain a proper G-invariant subtree. To a nontrivial minimal metric
G-tree T we associate its deformation space D consisting of the G-equivariant
isometry classes of all minimal metric G-trees that have the same elliptic subgroups
as T , where a subgroup H ≤ G is an elliptic subgroup of T if it fixes a point in T .
Equivalently, a minimal metric G-tree T ′ lies in D if there exist G-equivariant (not
necessarily simplicial) maps T → T ′ and T ′ → T (Proposition 1.24). If instead
of G-equivariant isometry classes we consider G-equivariant homothety classes of

9



Introduction

metric G-trees, we obtain the projectivized deformation space PD := D/R>0. The
projectivized deformation space can naturally be given the structure of a simplicial
complex with missing faces that carries the weak topology (see Section 1.2).

The subgroup AutD(G) ≤ Aut(G) of automorphisms that leave the set of elliptic
subgroups of T invariant acts on D and PD by precomposing the G-actions on the
metric trees. Under certain assumptions onD we have AutD(G) = Aut(G) (see, for
instance, Proposition 1.34). The inner automorphism group Inn(G) E AutD(G)
acts trivially on D and PD and we obtain an induced action of

OutD(G) := AutD(G)/ Inn(G) ≤ Out(G).

Statement of results

Our discussion of deformation spaces of metric G-trees is organized into 3 chapters.
The central themes and main results in each chapter are the following:

Chapter 1: Topology of deformation spaces of G-trees

After deformation spaces of metric G-trees were introduced by Forester [For02],
Clay [Cla05] and Guirardel-Levitt [GL07a] initiated their systematic study by
showing that they are, like Outer space, contractible. Their argument involves a
technique due to Skora [Sko89] of folding metric G-trees along suitable equivariant
maps. Beyond, Guirardel-Levitt showed that certain fixed point sets under the
action of OutD(G) on D and PD are contractible as well.

Important objects in algebraic topology are classifying spaces for families of
subgroups (see Definition 1.53). These are CW-complexes with a cellular group
action such that all subgroups in a family of subgroups have fixed points, all other
subgroups do not, and all nonempty fixed point sets are contractible. They are
unique up to equivariant homotopy equivalence.

Indeed, contractibility of certain fixed point sets under the action of OutD(G) on
PD follows from the results mentioned above, but the natural simplicial structure
with missing faces on PD is a priori not a genuine CW-structure. After reviewing
preliminary notions and thoroughly defining deformation spaces of metric G-trees
in Sections 1.1 and 1.2, we will proceed in Section 1.3 by showing that the natural
simplicial structure with missing faces on PD can be refined to a genuine simplicial
structure that defines the same weak topology on PD and with respect to which
OutD(G) acts cellularly (Proposition 1.56). We will also give a detailed account of
Clay’s and Guirardel-Levitt’s contractibility results. The main result in Chapter 1
is then the following, where a minimal metric G-tree is irreducible if G contains a
free subgroup of rank 2 acting freely and a group is slender if all of its subgroups
are finitely generated:
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Theorem 1.63. Let PD be a projectivized deformation space of irreducible metric
G-trees, equipped with the weak topology. If OutD(G) acts on PD with slender
point stabilizers then PD is a model for the classifying space of OutD(G) for the
family of subgroups of isotropy groups.

If PD is a model for the classifying space of OutD(G) for a family of subgroups
F , we say that PD is a model for E(OutD(G),F) for short.

We obtain the following examples:

Example 1.66. Let G be a finitely generated virtually nonabelian free group,
i.e., suppose that G contains a finitely generated nonabelian free subgroup of
finite index. Let PD be the projectivized deformation space of minimal metric
G-trees with finite vertex stabilizers (Example 1.30). We have OutD(G) = Out(G)
and PD is a finite-dimensional model for E(Out(G),Fin), where Fin is the family
of finite subgroups.

A generalized Baumslag-Solitar (GBS) group is a finitely generated group that
acts on a simplicial tree with infinite cyclic vertex and edge stabilizers. Among
these groups are the classical Baumslag-Solitar groups

BS(p, q) = 〈x, t | txpt−1 = xq〉

with p, q ∈ Z \ {0}. A GBS group is nonelementary if it is not isomorphic to Z,
BS(1, 1) ∼= Z2, or the Klein bottle group BS(1,−1).

Example 1.67. Let G be a nonelementary GBS group that is not isomorphic to
a solvable Baumslag-Solitar group BS(1, q), q 6= ±1. Let PD be the projectivized
deformation space of minimal metric G-trees with infinite cyclic vertex and edge
stabilizers (Example 1.31). We have OutD(G) = Out(G) and PD is a model
for E(Out(G),F), where F is a family of finitely generated virtually free abelian
subgroups with bounded rank that is closed under taking finite-index supergroups.
If G does not contain a solvable Baumslag-Solitar group BS(1, n) with n ≥ 2 then
PD is finite-dimensional.

Remark. In general, however, it is very complicated to describe the family of
subgroups of isotropy groups algebraically (see, for instance, [BJ96]).

Chapter 2: The Lipschitz metric on deformation spaces of G-trees

In Chapter 2, we study deformation spaces of metric G-trees from a geometric
point of view. The results in this chapter have already been released in [Mei13].

Unlike the topology of deformation spaces, the geometry of deformation spaces
of metric G-trees has previously only been addressed in the special case of Outer
space [FM11]1, which admits a description as a space of finite marked metric

1And recently also in the case of the Outer space of a free product [FM13].
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Introduction

graphs. Here one studies the asymmetric Lipschitz metric, an analogue of the
asymmetric Thurston metric on the Teichmüller space of a surface [Thu98]. Our
main motivation in Chapter 2 is to introduce an asymmetric pseudometric on
projectivized deformation spaces of metric G-trees that generalizes the asymmetric
Lipschitz metric on Outer space. For this, we think of the metric G-trees in PD as
their covolume-1-representatives in the unprojectivized deformation space D and
for T, T ′ ∈ PD we define

dLip(T, T
′) := log

(
inf
f
σ(f)

)
where f ranges over all G-equivariant Lipschitz maps T → T ′ and σ(f) denotes
the Lipschitz constant of f . In general we have dLip(T, T

′) 6= dLip(T
′, T ), and

dLip(T, T
′) = 0 does generally not imply that T and T ′ are G-equivariantly isomet-

ric (see Example 2.4). Nevertheless, the Lipschitz metric turns out to have useful
properties. If PD consists of irreducible metric G-trees then the symmetrized
Lipschitz metric

dsymLip (T, T ′) := dLip(T, T
′) + dLip(T

′, T )

is an actual metric on PD (Proposition 2.5).

An important feature of the Lipschitz metric on Outer space is that the distance
between two marked metric graphs is always realized by a map with minimal Lip-
schitz constant and that the minimum Lipschitz constant equals the maximum
ratio of lengths of immersed loops in the corresponding quotient graphs [FM11,
Proposition 3.15]. This reflects a theorem of Thurston that the Lipschitz distance
between two hyperbolic surfaces in Teichmüller space is always realized by a min-
imal stretch map and that the extremal Lipschitz constant equals the maximum
ratio of lengths of essential simple closed curves [Thu98, Theorem 8.5]. In the
same spirit, we will show the following:

Theorems 2.6 and 2.14. Let PD be a projectivized deformation space of irre-
ducible metric G-trees. For all T, T ′ ∈ PD there exists

(1) a G-equivariant Lipschitz map f : T → T ′ such that dLip(T, T
′) = log (σ(f));

(2) a hyperbolic group element ξ ∈ G such that

dLip(T, T
′) = log

(
lT ′(ξ)

lT (ξ)

)
= log

(
sup
g

lT ′(g)

lT (g)

)
where g ranges over all hyperbolic group elements of G and by lT (g) we
denote the translation length infx∈T d(x, gx) of g in T .

Francaviglia-Martino [FM11] showed, making use of Skora’s folding technique
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[Sko89], that the Lipschitz metric on Outer space is geodesic. We will apply the
folding construction in the general context to show:

Theorem 2.23. If PD is a projectivized deformation space of irreducible metric
G-trees then for all T, T ′ ∈ PD there exists a dLip-geodesic (see Definition 2.21)
γ : [0, 1]→ PD with γ(0) = T and γ(1) = T ′.

An automorphism Φ ∈ OutD(G) is reducible if there exists a metric G-tree
T ∈ D and a G-equivariant map f : T → TΦ that leaves an essential proper
G-invariant subforest of T invariant, where a subforest S ⊂ T is essential if it
contains the hyperbolic axis of some hyperbolic group element. We say that
Φ ∈ OutD(G) is represented by a train track map if there exists a metric G-
tree T ∈ D and an extremal G-equivariant Lipschitz map f : T → TΦ such that,
loosely speaking, every iterate of f maps certain immersed paths in T to immersed
paths (see Definition 2.35). Bestvina [Bes11] classified free group automorphisms
Φ by studying associated displacement functions T 7→ dLip(T, TΦ) on Outer space.
By doing so, he gave an alternative proof of Bestvina-Handel’s celebrated train
track theorem [BH92, Theorem 1.7] that every irreducible automorphism of a free
group is represented by a train track map. Generalizing Bestvina’s approach, we
will study displacement functions on projectivized deformation spaces of metric
G-trees to classify automorphisms of more general groups and show:

Theorem 2.37. Let PD be a projectivized deformation space of irreducible metric
G-trees. If OutD(G) acts on PD with finitely many orbits of simplices then every
irreducible automorphism Φ ∈ OutD(G) is represented by a train track map.

Example 2.38. Let G be a finitely generated virtually nonabelian free group and
D the deformation space of minimal metric G-trees with finite vertex stabilizers.
Every irreducible automorphism Φ ∈ OutD(G) = Out(G) is represented by a train
track map. This generalizes [BH92, Theorem 1.7] to virtually free groups.

Example 2.39. Let G be a nonelementary GBS group that contains no solvable
Baumslag-Solitar group BS(1, n) with n ≥ 2. Let D be the deformation space of
minimal metric G-trees with infinite cyclic vertex and edge stabilizers. Then every
irreducible automorphism Φ ∈ OutD(G) = Out(G) is represented by a train track
map.

Chapter 3: Higher holomorphs

In Chapter 3, we study higher holomorphs of a finitely generated group G, which
we define as the semidirect products

Aut(G, k) := Gk−1 oAut(G), k ∈ N
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Introduction

with multiplication given by

((g2, . . . , gk), φ) · ((h2, . . . , hk), ψ) = ((g2φ(h2), . . . , gkφ(hk)), φ ◦ ψ).

We also define Aut(G, 0) := Out(G). The family of holomorphs Aut(G, k), k ∈ N0

forms a natural continuation of the sequence of groups

Aut(G, 0) = Out(G)

Aut(G, 1) = Aut(G)

Aut(G, 2) = Hol(G)

where Hol(G) is the classical holomorph of G (for a discussion on the holomorph
of a group, see [Rot95, p. 164 and Example 7.9]).

Higher holomorphs of free groups have played an important role in the study
of Out(Fn). As remarked in Example 3.1, they appear in the construction of a
bordification of Outer space [BF00], they were used to prove homological stabil-
ity of Out(Fn) [HV04], and they are building blocks for point stabilizers in the
boundary of the free splitting complex [HM13b]. With regard to this, it seems
worthwhile to study higher holomorphs in a more general context. We will take a
step in this direction by constructing “higher spines” for higher holomorphs:

Let PD be a projectivized deformation space of metric G-trees. Since PD has
the structure of a simplicial complex with missing faces, even if the group OutD(G)
acts on PD with finitely many orbits of simplices, it does not act cocompactly.
However, we will explain in Section 1.2.3 that PD deformation retracts onto its
OutD(G)-invariant spine S(PD) ⊂ PD, which is a genuine simplicial complex. If
the group OutD(G) acts on PD with finitely many orbits of simplices then it acts
on the spine S(PD) cocompactly. Since PD is contractible (Theorem 1.57), the
spine S(PD) is contractible as well.

Following the construction of the spine S(PD), we will construct simplicial
complexes S(PD, k), k ∈ N0 (“higher spines”) such that S(PD, 0) = S(PD) and
for k ∈ N0 the subgroup

AutD(G, k) :=

{
OutD(G) if k = 0

Gk−1 oAutD(G) if k ≥ 1

of Aut(G, k) acts on S(PD, k) by simplicial automorphisms. Concretely, we will
define S(PD, k) as the geometric realization of a poset Col(PD, k) whose elements
are equivalence classes of metric G-trees T ∈ PD with k basepoints x1, . . . , xk ∈ T
and where the partial order is given by a forest collapse relation.

For k ∈ N, the map fk : Col(PD, k) → Col(PD, k − 1) that sends a k-pointed
G-tree (T, x1, . . . , xk) to the (k− 1)-pointed G-tree (T, x1, . . . , xk−1) preserves the

14



partial order and induces a continuous map |fk| : S(PD, k) → S(PD, k − 1) on
geometric realizations. As our main result in Chapter 3, we will show:

Theorem 3.8. For all k ∈ N, the map |fk| : S(PD, k) → S(PD, k − 1) is a
homotopy equivalence.

Since the 0-th spine S(PD, 0) = S(PD) is contractible, we conclude:

Corollary 3.9. For all k ∈ N0, the k-th spine S(PD, k) is contractible.
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Chapter 1

Topology of deformation spaces of G-trees

1.1 G-trees

A simplicial tree is a contractible 1-dimensional simplicial complex T . We denote
by V (T ) the set of vertices and by E(T ) the set of edges of T . It is sometimes
convenient to endow each edge e ∈ E(T ) with an orientation, and we denote by
ι(e) the initial vertex and by τ(e) the terminal vertex of e. A metric simplicial
tree is a simplicial tree together with a positive length assigned to every edge.
Every simplicial tree can be viewed as a metric simplicial tree by assigning length
1 to all of its edges. Every metric simplicial tree T carries a natural path metric
d = dT and we equip T with the metric topology, which is generally coarser (i.e.,
has fewer open sets) than the CW-topology; the two topologies agree if and only
if T is locally finite [Chi01, Lemma 2.2.6]. If T is a metric simplicial tree, any two
points x, y ∈ T are joined by a unique compact geodesic segment [x, y] ⊆ T and
between any two disjoint closed connected subsets A,B ⊂ T there exists a unique
compact connecting segment [a, b] ⊆ T such that A ∩ [a, b] = a and B ∩ [a, b] = b.
In particular, T is a simplicial R-tree (see [Chi01] for an introduction to R-trees)
and, in fact, every simplicial R-tree arises this way [Chi01, Theorem 2.2.10].

Let G be a finitely generated group.

Definition 1.1. A G-tree is a simplicial tree on which G acts by simplicial au-
tomorphisms without inversions of edges. A metric G-tree is a metric simplicial
tree on which G acts by simplicial isometries without inversions of edges.

Every metric G-tree has an underlying G-tree, and every G-tree can be viewed
as a metric G-tree by assigning length 1 to all of its edges. We will sometimes
speak of metric G-trees just as “G-trees” when it is understood that the trees
carry metrics or when the metric is irrelevant. Unless mentioned otherwise, we
will always assume that every G-tree T comes equipped with a natural simplicial
structure that is not a subdivision of a coarser simplicial structure with respect
to which the action of G on T would still be simplicial and without inversions of
edges (i.e., T has no redundant vertices). For a vertex or edge x ∈ V (T ) ∪ E(T ),
we denote by Gx ≤ G its stabilizer.

17



Chapter 1 Topology of deformation spaces of G-trees

Bass-Serre theory gives a correspondence between (metric) G-trees and (metric)
graph of groups decompositions of G; see [Ser80] or [Bas93].

Definition 1.2. Let T be a G-tree. A group element g ∈ G is elliptic in T if it
fixes a point in T and hyperbolic if not. Likewise, a subgroup H ≤ G is elliptic in
T (or an elliptic subgroup of T ) if it fixes a point in T .

The finite-order elements of G are always elliptic [Ser80, Proposition 19]. A
finitely generated subgroup H ≤ G is elliptic in T if and only if every element of
H is elliptic in T [Ser80, Corollary 6.5.3]. For instance, the finite subgroups of G
are elliptic in every G-tree. However, an infinitely generated subgroup of G all of
whose elements are elliptic need not be elliptic; it then fixes a unique end of T
[Tit70, Proposition 3.4].

Translation lengths The following are well-known facts about translation lengths
in metric G-trees; for details see [CM87] or [Pau89].

Definition 1.3. Let (T, d) be a metric G-tree. For a group element g ∈ G, define
the translation length of g in T by

l(g) = lT (g) := inf
x∈T

d(x, gx) ∈ R≥0

and its characteristic set in T by

Cg = CT (g) := {x ∈ T | d(x, gx) = lT (g)} ⊆ T.

Conjugate group elements have the same translation length. The characteristic
set Cg is always nonempty (i.e., metric trees admit no parabolic isometries) and
g-invariant. The translation length function lT : G → R defines a point in RC(G),
where C(G) denotes the set of conjugacy classes of G. If two metric G-trees are G-
equivariantly isometric then their translation length functions agree (for a partial
converse see Proposition 1.6). If T has finitely many G-orbits of edges then its
translation length function has discrete image in R.

A group element g ∈ G is elliptic in T if and only if it has l(g) = 0. Its
characteristic set is then its fixed point set and for all x ∈ T the midpoint of the
segment [x, gx] is fixed by g. A group element g ∈ G is hyperbolic in T if and
only if it has l(g) > 0. Its characteristic set is then isometric to R, the group
element g acts on Cg by translations of length l(g), and for all k ∈ Z \ {0} we
have l(gk) = |k| · l(g) and Cgk = Cg. The characteristic set of a hyperbolic group
element g is the unique g-invariant line in T . We will denote it by Ag instead of
Cg and call it the hyperbolic axis of g.

18



1.1 G-trees

Proposition 1.4 ([CM87, 1.3] and [Pau89, Propositions 1.6 and 1.8]). Let T be
a metric G-tree and g, h ∈ G.

(1) For all x ∈ T we have d(x, gx) = l(g) + 2d(x,Cg).

(2) Suppose that g and h are elliptic. Then l(gh) = 2d(Cg, Ch). In particular,
if the fixed point sets of g and h are disjoint then gh and hg are hyperbolic.

(3) Suppose that g and h are hyperbolic. If Ag ∩Ah = ∅ then

l(gh) = l(hg) = l(g) + l(h) + 2d(Ag, Ah)

and, in particular, gh and hg are hyperbolic. The hyperbolic axes of gh and
hg then both intersect each Ag and Ah.

1.1.1 Minimal G-trees

A G-tree is minimal if it does not contain a proper G-invariant subtree. Minimal
G-trees are cocompact, i.e., their quotient graphs by the action of G are finite
(see [Bas93, Proposition 7.9]), and G-equivariant maps between minimal G-trees
are always surjective; both properties will be used frequently and without further
notice. The covolume of a minimal metric G-tree T , denoted by covol(T ), is the
volume of the finite metric quotient graph G\T . Every G-tree without a global
fixed point contains a unique nontrivial minimal G-invariant subtree, given by the
union of all hyperbolic axes [CM87, Proposition 3.1]. In the following, all minimal
G-trees will be assumed to be nontrivial. In particular, the group G will always
be infinite.

Definition 1.5. There are four types of nontrivial minimal G-trees (we adopt the
naming convention from [GL07a]; see [CM87] for equivalent characterizations):

A nontrivial minimal G-tree T is

• dihedral if it is a line and the action of G does not preserve the orientation.
The quotient graph G\T is then a single edge e with ι(e) 6= τ(e) and the
action factors through an action of the infinite dihedral group Z/2Z ∗Z/2Z.

• linear abelian if it is a line and the action of G is by translations. The
quotient graph G\T is then a single edge e with ι(e) = τ(e) and the action
factors through an action of Z.

• genuine abelian if G fixes an end of T (i.e., an equivalence class of rays in
T , where two rays are equivalent if their intersection is again a ray) and T
is not a line. The quotient graph G\T is then homeomorphic to a circle.

• irreducible if G contains a free subgroup of rank 2 acting freely on T .
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Chapter 1 Topology of deformation spaces of G-trees

If two metric G-trees are G-equivariantly isometric then they have the same
translation length function. As for the converse, we have the following:

Proposition 1.6 ([CM87, Theorem 3.7]). Let T and T ′ be two minimal metric
G-trees that are not genuine abelian. If for all g ∈ G we have lT (g) = lT ′(g) then
T and T ′ are G-equivariantly isometric. If T and T ′ are not linear abelian then
the G-equivariant isometry is unique.

Remark. Genuine abelian minimal metric G-trees, however, are not determined
by their translation length functions. For instance, consider the graph of groups
decompositions Γ and Γ′ of G = BS(1, 6) = 〈x, t | txt−1 = x6〉 shown in Figure 1.1,
where all edge group inclusions are by multiplication as suggested. If we give the
edges of Γ and Γ′ positive lengths such that Γ and Γ′ have the same volume, the
corresponding Bass-Serre trees T and T ′ have the same translation length function.
However, T and T ′ are not homeomorphic and a fortiori not G-equivariantly
isometric, as all vertices of T have valence 7, whereas the vertices of T ′ have
valence 3 and 4.

Z

Z

Z

Z

Z Z
Γ Γ′

1 6 1 3

2 1

Figure 1.1: The Bass-Serre covering trees of Γ and Γ′ have the same translation
length function but are not G-equivariantly isometric.

Maps between minimalG-trees We equip metricG-trees with the metric topology,
but maps between them are sometimes more easily seen to be continuous in the
CW-topology. Because the two topologies agree on finite subtrees, continuity in
the one topology often relates with continuity in the other:

Proposition 1.7. Let T and T ′ be minimal metric G-trees. A G-equivariant map
f : T → T ′ that is continuous in the CW-topologies on T and T ′ is also continuous
in the metric topologies on T and T ′.

Proof. Because f is continuous in the CW-topologies, for every closed edge e of
T the image f(e) ⊆ T ′ lies in a finite subtree of T ′. Thus, the restriction of f to
any closed edge of T is continuous also in the metric topologies. Metric continuity
of the G-equivariant map f at a branch point v ∈ V (T ) follows from this and the
fact that T is minimal and hence the edges adjacent to v fall into finitely many
G-orbits.
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1.1 G-trees

As for the converse, we have the following:

Proposition 1.8. Let T and T ′ be minimal metric G-trees and let f : T → T ′ be
a G-equivariant map that is continuous in the metric topologies on T and T ′. If
for every closed edge e of T the image f(e) ⊆ T ′ meets only finitely many edges
of T ′ then f is also continuous in the CW-topologies on T and T ′.

If f(e) meets infinitely many edges of T ′ then f must have “backtracks”. It is
then G-equivariantly homotopic relative to the vertices of T to a G-equivariant
map f ′ : T → T ′ that is continuous in the CW-topologies on T and T ′.

Proof. The map f is continuous in the CW-topologies if its restriction to every
closed edge is continuous. Since f(e) lies in a finite subtree of T ′, the two topologies
agree on e and its image f(e), and continuity of f in the CW-topologies follows.

Corollary 1.9. If T and T ′ are minimal metric G-trees then a G-equivariant map
f : T → T ′ is a homeomorphism in the metric topologies on T and T ′ if and only
if it is a homeomorphism in the CW-topologies on T and T ′.

Remark. The statement is wrong for general metric simplicial trees. For instance,
let T and T ′ be the metric trees given by the one-point unions T =

∨
n∈N [0, 1]

and T ′ =
∨
n∈N [0, 1

n ], where the basepoint of each interval is 0 and the length of
each interval is its Euclidean length. Then T and T ′ are homeomorphic in the
CW-topologies on T and T ′ but not in the metric topologies.

A G-equivariant homeomorphism between minimal G-trees T → T ′ is simplicial
if it maps each edge to an edge, isometrically with respect to the natural metrics
on T and T ′ that assign to all edges length 1. Every G-equivariant isometry
between minimal metric G-trees that maps each edge to an edge is simplicial.
Every G-equivariant homeomorphism between minimal G-trees T → T ′ that maps
each edge to an edge is G-equivariantly isotopic relative to the vertices of T to a
simplicial homeomorphism. On a dihedral, genuine abelian, or irreducible minimal
G-tree T (which has reflection points and/or branch points), there is a prescribed
simplicial structure coming from the topology of T and the action of G on T . Thus,
a G-equivariant homeomorphism between dihedral, genuine abelian, or irreducible
minimal G-trees with no redundant vertices always maps each edge to an edge.

Proposition 1.10. Let T be a dihedral, genuine abelian, or irreducible minimal
G-tree. If f : T → T is a G-equivariant simplicial automorphism then f = idT .

Equivalently, a G-equivariant simplicial homeomorphism between two minimal
G-trees that are not linear abelian is always unique. The statement is clearly
wrong for linear abelian minimal G-trees, as, for instance, the universal cover of
the circle has many Z-equivariant automorphisms given by translations.
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Chapter 1 Topology of deformation spaces of G-trees

Proof. We will first show that if T is a general minimal G-tree and f : T → T a
G-equivariant simplicial automorphism then f = idT if f has a fixed point. For
this, let x ∈ T be a fixed point of f . By the G-equivariance of f , for all g ∈ G
we have f(gx) = gf(x) = gx. If we let Tx ⊆ T be the subtree spanned by the
G-orbit of x then Tx is G-invariant and f is the identity on Tx, as it fixes all
spanning points gx, g ∈ G. Since T is assumed minimal, we may conclude that
the G-invariant subtree Tx ⊆ T agrees with T , whence f = idT .

In order to prove the claim, it now suffices to show that f has a fixed point.
First assume that T is dihedral. Any group element g ∈ G that acts as reflection
on T fixes a single point p ∈ T , and every G-equivariant automorphism of T must
map p to itself.

Assume now that T is genuine abelian. SinceG fixes an end of T , the intersection
of the axes of any two hyperbolic elements is unbounded [CM87, Theorem 2.2].
By minimality and since T is not a line, there exist two hyperbolic elements
g, h ∈ G whose axes Ag and Ah are not equal and hence intersect in a ray. The
G-equivariant automorphism f leaves both Ag and Ah invariant and restricts to
an automorphism of Ag ∩Ah that leaves the initial point of the ray fixed.

If T is irreducible, there exist two hyperbolic elements g, h ∈ G whose axes
Ag and Ah intersect in a nonempty compact segment [CM87, Theorem 2.7]. The
G-equivariant automorphism f restricts to an automorphism of the finite subtree
Ag ∩Ah and thus has a fixed point by [Ser80, Corollary to Proposition 10].

Corollary 1.11. Let T be a minimal G-tree. Two metric G-trees (T, d1) and
(T, d2) with underlying G-tree T are G-equivariantly isometric if and only if we
have d1 = d2.

Proof. If T is a minimal G-tree without redundant vertices that is not linear
abelian then any G-equivariant isometry (T, d1) → (T, d2) is simplicial and the
claim follows from Proposition 1.10. If T is linear abelian, all edges of T have the
same length and the translation length functions of (T, d1) and (T, d2) only agree
if d1 = d2 (this argument also applies in the dihedral case).

1.1.2 Forest collapses

Definition 1.12. If T is a minimal G-tree and A ⊆ T a G-invariant simplicial
subforest, we denote by TA the minimal G-tree obtained from T by collapsing each
connected component of A to a point. We say that TA is obtained from T by a
forest collapse and we let

kA : T → TA

be the natural projection.
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1.1 G-trees

We may always assume that A has no trivial components, as collapsing each
connected component of a G-orbit of vertices has no effect on the G-tree.

If A ⊂ T is a proper G-invariant subforest then TA is nontrivial. Moreover, the
minimal G-trees T and TA then have the same type in the sense of Definition 1.5,
which can be seen as follows: If T is dihedral or linear abelian then T has only
one G-orbit of edges and the only proper G-invariant subforest with no trivial
components is the empty one, whence TA = T . If T is genuine abelian then any
ray representing the fixed end contains infinitely many representatives of each
G-orbit of edges of T and the fixed end remains a fixed end after collapsing A.
At the same time, there exist hyperbolic axes that intersect in a ray before and
after collapsing A, whence TA is not a line. If T is irreducible, this is [GL10,
Lemma 3.18].

Proposition 1.13. Let T be a minimal G-tree and A,B ⊆ T two G-invariant
subforests with no trivial components. The G-trees TA and TB are G-equivariantly
homeomorphic if and only if A = B.

This result generalizes [SV87, Lemma 1.3], [Cla09, Lemma 1.8], and [HM13a,
Lemma 1.3] to arbitrary minimal G-trees.

Proof. The “if” direction is trivial. As for the “only if” direction, a linear abelian
or dihedral minimal G-tree with no redundant vertices has a single G-orbit of edges
and the only G-invariant subforests with no trivial components are the empty one
and the whole G-tree. In the genuine abelian or irreducible case, suppose that
A 6= B and let e ∈ E(T ) be an edge that is contained in, say, A but not in B.
We will show that TA and TB are not G-equivariantly homeomorphic, whence the
claim.

Assume first that T is genuine abelian. Since a nontrivial minimal G-tree is
exhausted by its hyperbolic axes [CM87, Proposition 3.1], the edge e is contained
in the axis of some hyperbolic group element g ∈ G. Both the initial and terminal
vertex of e must have valence at least 3, as T has no redundant vertices and
G fixes an end of T (so that there cannot exist reflection points of valence 2).
There exists a ray R ⊂ T such that for all hyperbolic group elements ξ ∈ G the
intersection Aξ ∩ R contains a subray of R [CM87, Theorem 2.2]. We can thus
find hyperbolic group elements h1, h2 ∈ G such that the hyperbolic axes of h1,
h2, and g intersect as in Figure 1.2. On the one hand, the edge kB(e) ∈ E(TB)
lies in the characteristic sets CTB (g) and CTB (h2) but not in CTB (h1). On the
other hand, the characteristic sets CTA(g) and CTA(h2) do not share an edge that
does not lie in CTA(h1), and we conclude that TA and TB are not G-equivariantly
homeomorphic.

Suppose now that T is irreducible; our arguments will be similar to those in the
proof of [GL10, Lemma 3.18]. Suppose for a moment that the initial vertex of e
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Ah1 Ah2

Ag
e

Figure 1.2: Hyperbolic axis in the genuine abelian case.

has valence 2. Since T has no redundant vertices, the second edge e′ adjacent to
ι(e) must lie in the same G-orbit as e. We denote by S the closure of e ∪ e′ in
T . Both endpoints of S must have valence at least 3, as T would otherwise have
redundant vertices or be a line (this can be most easily seen from the quotient
graph of groups of T ). If the initial and terminal vertex of e both have valence
at least 3, we let S be the closure of e in T . In either case, the segment S is
collapsed in TA but not in TB. In an irreducible minimal G-tree, every compact
segment is contained in the axis of a hyperbolic group element [Pau89, Lemma 4.3].
Therefore, we can find hyperbolic group elements g1, g2 ∈ G whose hyperbolic axes
lie as in Figure 1.3. Observe that the characteristic sets CTB (g1) and CTB (g2) in TB

Ag1

Ag2

e

e′ ∈ Ge

S

Figure 1.3: Hyperbolic axes in the irreducible case when ι(e) has valence 2.

are disjoint, whereas the characteristic sets CTA(g1) and CTA(g2) in TA intersect.
Hence, TA and TB are not G-equivariantly homeomorphic.

Elementary collapses If T is a minimal G-tree and A ⊆ T a G-invariant subforest
then the elliptic subgroups of T are also elliptic in TA. Conversely:
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1.2 The universe of metric G-trees

Definition 1.14. We say that a G-invariant subforest A ⊂ T is collapsible and
that the corresponding forest collapse kA : T → TA is elementary if T and TA have
in fact the same elliptic subgroups.

If T is nontrivial then a collapsible G-invariant subforest A ⊂ T is necessarily a
proper subforest. Consequently, if T is a dihedral or linear abelian minimal G-tree
then the only collapsible G-invariant subforest with no trivial components is the
empty one.

The G-orbit of a single edge e ∈ E(T ) is collapsible if and only if ι(e) and τ(e) lie
in distinct G-orbits and either Ge = Gι(e) or Ge = Gτ(e). If T is a genuine abelian
minimal G-tree with at least two G-orbits of edges then it is easily seen from the
quotient graph of groups of T that every G-orbit of edges of T is collapsible.

Collapsing each connected component of a collapsible G-orbit of edges is called
an elementary collapse for short. A G-tree is reduced if it admits no elementary
collapses. Every minimal G-tree can be made reduced by performing finitely many
elementary collapses. An elementary expansion is the reverse of an elementary col-
lapse. A finite sequence of elementary collapses and expansions is an elementary
deformation. Two minimal G-trees T and T ′ are related by an elementary defor-
mation if T ′ is G-equivariantly homeomorphic to a G-tree that is obtained from
T by an elementary deformation.

Theorem 1.15 ([For02, Theorem 4.2]). Two minimal G-trees T and T ′ are related
by an elementary deformation if and only if they have the same elliptic subgroups.

1.2 The universe of metric G-trees

Let T = T (G) be the set of G-equivariant isometry classes of nontrivial minimal
metric G-trees. Whenever we speak of a “metric G-tree” T ∈ T , we mean its
G-equivariant isometry class. We call T the universe of metric G-trees and, as in
[GL07a, Section 5], we consider three topologies on T :

Axes topology The axes topology is the coarsest topology on T that makes the
assignment of translation length functions T → RC(G), T 7→ lT continuous.

A sequence of metric G-trees (Tk)k∈N in T converges to T ∈ T in the axes
topology if and only if for all g ∈ G we have limk→∞ lTk(g) = lT (g) (pointwise
convergence of translation length functions).

If we denote by Tirr ⊂ T the subset of irreducible metric G-trees, the assignment
of length functions l : Tirr → RC(G), T 7→ lT is injective by [CM87, Theorem 3.7]
and the axes topology on Tirr ⊂ T agrees with the subspace topology defined by
this inclusion.
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Chapter 1 Topology of deformation spaces of G-trees

Gromov topology Let T ∈ T . A neighborhood basis for T in the Gromov topology
is given by subsets VT (X,A, ε) ⊂ T defined as follows: Let X ⊂ T and A ⊂ G be
finite subsets and ε > 0. A metric G-tree T ′ ∈ T lies in VT (X,A, ε) if there exists
a map X → T ′, x 7→ x̃ such that

(1) if x, y ∈ X satisfy y = gx for some g ∈ A then ỹ = gx̃;

(2) for all x, y ∈ X and g ∈ A ∪ {1} we have |d(x, gy)− d′(x̃, gỹ)| < ε.

By [Pau89], the Gromov topology and the axes topology agree on the subset of
irreducible metric G-trees Tirr ⊂ T .

Weak topology The weak topology describes T as a union of open cones:

Definition 1.16. The open cone C(T ) ⊆ T spanned by a metric G-tree T ∈ T
is the set of metric G-trees T ′ ∈ T that are G-equivariantly homeomorphic to T .
Equivalently, a metric G-tree T ′ ∈ T lies in C(T ) if it is represented by a metric
G-tree with underlying G-tree T . If such a representative exists, it is unique by
Corollary 1.11. The closed cone C(T ) ⊆ T spanned by T is the union of open
cones

⋃
A⊂T C(TA), where A ranges over all proper G-invariant subforests of T and

TA denotes the metric G-tree obtained from T by collapsing A (see Section 1.1.2).

Since minimal G-trees are cocompact, T has only finitely many G-orbits of
edges, say {[e1], . . . , [ek]}. A metric G-tree structure (T, d) on T is determined by
the finitely many edge lengths length(T,d)(ei) > 0, i = 1, . . . , k. If we allow that
length(T,d)(e) = 0 for all edges in some proper G-invariant subforest A ⊂ T , we
can naturally view the pseudometric d on T as a metric on TA.

Let
C
k
E = {(l1, . . . , lk) | li ≥ 0, i = 1, . . . , k} \ {0, . . . , 0}

be the punctured first orthant in Rk. Given a k-tuple of nonnegative edge lengths

(l1, . . . , lk) ∈ C
k
E, we denote by d(l1, . . . , lk) the pseudometric on T that assigns to

the G-orbit of edges [ei] length li, where i = 1, . . . , k. The following result is often
used tacitly in the literature:

Proposition 1.17. The natural surjection

h : C
k
E → C(T ) ⊆ T

(l1, . . . , lk) 7→ (T, d(l1, . . . , lk))

is injective.

Proof. It follows from Proposition 1.13 that if two points in C
k
E lie in different

open faces then their images under h lie in different open cones and hence are
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1.2 The universe of metric G-trees

distinct. Points in the same open face of C
k
E get mapped to metric G-trees with

the same underlying G-tree, in which case we may deduce injectivity of h from
Corollary 1.11.

We push the subspace topology on C
k
E ⊂ Rk along this bijection to topologize

C(T ). Note that the coordinate map h itself depends on the choice of represen-
tative of the G-equivariant homeomorphism class of T and on the order of its
G-orbits of edges {[e1], . . . , [ek]}; however, the topology on C(T ) does not depend
on either of these choices:

Proposition 1.18. The coordinates on C(T ) are well-defined up to permutation.

Proof. Let T, T ′ ∈ T be G-equivariantly homeomorphic G-trees with G-orbits
of edges {[e1], . . . , [ek]} and {[e′1], . . . , [e′k]} respectively. Given a G-equivariant
homeomorphism f : T → T ′ (which we may choose to be simplicial), for some per-
mutation π ∈ Sk we have f([ei]) = [e′π(i)], i = 1, . . . , k. Consider the permutation
of coordinates

π : C
k
E → C

k
E, (l1, . . . , lk) 7→ (lπ(1), . . . , lπ(k))

and the change of representatives

C(T )
id−→ C(T ′), (T, d) 7→ (T ′, df )

where df is the unique metric on T ′ such that the G-equivariant homeomorphism
f : (T, d)→ (T ′, df ) becomes an isometry, i.e., we define

length(T ′,df )([e
′
i]) := length(T,d)([f

−1(e′i)]) = length(T,d)([eπ−1(i)]).

With these definitions, the following diagram commutes:

C
k
E

hT // C(T )

id
��

C
k
E

π

OO

hT ′
// C(T ′)

Finally, we define a subset of T to be closed in the weak topology if its inter-
section with every closed cone is closed.

Proposition 1.19. The weak topology on T is finer than the Gromov topology,
which is finer than the axes topology.

Thus, a weakly converging sequence in T also converges in the Gromov topology
and a fortiori in the axes topology.
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Proof. The Gromov topology on T is finer than the axes topology by [Pau89,
Theorem 4.2] (although the theorem is stated only for the subset of irreducible
metric G-trees, the proof does not make use of this assumption; the converse
[Pau89, Theorem 4.4], however, is only valid under the irreducibility assumption).

In order to prove that the weak topology on T is finer than the Gromov topology,
it suffices to show that every sequence (Tk)k∈N in T that converges in the weak
topology, say to T ∈ T , also converges in the Gromov topology (because the
weak topology is first-countable and therefore sequential). For this, fix an open
neighborhood VT (X,A, ε) of T in the Gromov topology. We will show that for
large k ∈ N we have Tk ∈ VT (X,A, ε).

Since the sequence (Tk)k∈N converges in the weak topology, it meets only finitely
many open simplices of T and we may in fact assume that it meets each of the
finitely many open simplices infinitely often. After decomposing the sequence into
subsequences (for each of which we will obtain the same result), we may assume
that the metric G-trees (Tk)k∈N are in fact all G-equivariantly homeomorphic, or
even equal as nonmetric G-trees. The underlying G-tree Tk is then for all k ∈ N
either equal to T or obtained from T by a fixed sequence of elementary expansions,
and the condition that (Tk)k∈N converges to T in the weak topology is equivalent
to the condition that for all e ∈ E(Tk) we have

lim
k→∞

lengthTk(e) =

{
0 if e is collapsed in T

lengthT (e) if e is not collapsed in T .

For k ∈ N, define a (noncontinuous) map T → Tk, x 7→ x̃ as follows: For
each oriented edge e ∈ E(T ), there exists a unique oriented edge ẽk ∈ E(Tk) that
maps to e under the forest collapse Tk → T . If x ∈ T lies in the interior of an
edge e ∈ E(T ), define x̃ ∈ Tk as the point in the interior of ẽk with the same
linear parameter that x has in e (i.e., let x̃ = h(x) under the unique orientation-
preserving homothety h : e→ ẽk). Likewise, for each vertex v ∈ V (T ) there exists
a unique (possibly degenerate) subtree (Sv)k ⊂ Tk that collapses to v under the
forest collapse Tk → T . If x ∈ T is a vertex, define x̃ ∈ Tk as any point in (Sx)k
and make this choice G-equivariantly such that the assignment T → Tk, x 7→ x̃
becomes G-equivariant.

With this construction, for all x, y ∈ T we have limk→∞ dTk(x̃, ỹ) = dT (x, y) (as
suggested in Figure 1.4) and we conclude that for all x, y ∈ X ⊂ T and g ∈ A ⊂ G
we have

lim
k→∞

dTk(x̃, gỹ) = lim
k→∞

dTk(x̃, g̃y) = dT (x, gy).

Since X ⊂ T and A ⊂ G are finite subsets, there exists a uniform threshold K ∈ N
such that for all x, y ∈ X and g ∈ A ∪ {1} we have |dT (x, gy) − dTk(x̃, gỹ)| < ε
whenever k ≥ K, which proves the claim.
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x̃ ỹ

(Sv)k (dashed)

x̃ ỹ

(Sv)k′ (dashed)

x y

v

Figure 1.4: Local picture of a weakly convergent sequence of metric G-trees in T
(from left to right). As the edge lengths of Sv approach 0 as k tends
to ∞, the distances dk(x̃, ỹ) converge to d(x, y).

The projectivized universe of metric G-trees

Definition 1.20. The multiplicative group of positive real numbers R>0 acts on
T by scaling the metrics on the G-trees. The projectivized universe of metric
G-trees is the quotient

PT := T /R>0

of T by this action, endowed with the quotient topology.

Whenever we speak of a “metric G-tree” T ∈ PT , we mean its G-equivariant
homothety class. Every metric G-tree in PT has a unique representative in T
that has covolume 1 and, as a set, we will think of PT as the covolume-1-section
in T . In fact, if we endow T with the weak topology then the covolume function

T → (0,∞), T 7→ covol(T )

is continuous and the natural projection of the covolume-1-section in T to the
quotient PT is a homeomorphism (but the covolume function generally fails to be
continuous in the Gromov or axes topology, as was shown in [MM96, Section 8.3]).
Thus, if we equip T with the weak topology then the quotient PT inherits the
structure of a simplicial complex coming from the natural simplicial structure on
the covolume-1-section in T .

A sequence (Tk)k∈N of metric G-trees in PT converges to T ∈ PT in the projec-
tivized axes topology if and only if there exists a sequence of positive real numbers
(Ck)k∈N such that for all g ∈ G we have limk→∞Ck · lTk(g) = lT (g) (pointwise
convergence of projectivized translation length functions).
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Chapter 1 Topology of deformation spaces of G-trees

1.2.1 Action of the automorphism group

The automorphism group Aut(G) acts on T from the right by precomposing the
G-actions on the metric trees. Explicitly:

Definition 1.21. For T ∈ T with isometric G-action ρ : G → Isom(T ) and an
automorphism Φ ∈ Aut(G), we define TΦ ∈ T as the metric G-tree with under-
lying metric simplicial tree T and isometric G-action ρ ◦ Φ: G → Isom(T ). For
a point x ∈ T and a group element g ∈ G, we will sometimes write g r

T x and
g r
TΦ x = Φ(g) r

T x for the translate in T and TΦ respectively.

The normal subgroup of inner automorphisms Inn(G) E Aut(G) acts trivially
on T , as for all conjugation automorphisms cg ∈ Inn(G) the metric G-trees T and
Tcg are G-equivariantly isometric via

T → Tcg, x 7→ g r
Tcg x = g r

T x.

Thus, the action of Aut(G) on T induces an action of the outer automorphism
group Out(G) = Aut(G)/ Inn(G) on T .

Proposition 1.22.

(1) The group Out(G) acts on T by mapping open (resp. closed) cones to open
(resp. closed) cones of the same dimension, while preserving the covolume
of each metric G-tree.

(2) If we choose coordinates on a closed cone and its image (as in Section 1.2),
the action preserves these coordinates up to permutation. In particular, the
action is linear with respect to the coordinates on a cone and its image.

(3) The action of Out(G) on T commutes with the action of R>0 on T and thus
descends to an action on PT .

(4) For every metric G-tree T ∈ T , only finitely many metric G-trees in the
Out(G)-orbit of T lie in the open cone spanned by T .

Proof. Let T, T ′ ∈ T and φ ∈ Out(G). If T and T ′ are G-equivariantly homeomor-
phic then Tφ and T ′φ are G-equivariantly homeomorphic as well, whence Out(G)
acts on T by mapping open cones to open cones. If A ⊂ T is a proper G-invariant
subforest then we have (TA)φ = (Tφ)A and thus the closed cone spanned by T
maps to the closed cone spanned by Tφ. Since T and Tφ have the same underlying
metric simplicial tree, their cones have the same dimension and T and Tφ have
the same covolume. In order to show (2), observe that if we choose the same order
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for the G-orbits of edges of T and Tφ then the diagram

C(T )

(T, d)

7→

(Tφ, d)

��

C
k
E

hT

<<

hTφ ""
C(Tφ)

commutes and the map (T, d) 7→ (Tφ, d) preserves coordinates. Since these are
well-defined up to permutation by Proposition 1.18, assertion (2) follows.

The fact that T and Tφ have the same underlying metric simplicial tree also
implies (3). In order to prove (4), suppose that T and Tφ lie in the same open cone,
i.e., are G-equivariantly homeomorphic. Then Tφ is G-equivariantly isometric to
(T, d) for some metric d on T obtained by permuting the lengths of the G-orbits
of edges, of which there are only finitely many.

1.2.2 Deformation spaces

The universe of metric G-trees T decomposes into subspaces of metric G-trees
similar to each other, in the following sense:

Definition 1.23. The deformation space associated to a metric G-tree T ∈ T
is the subspace D = D(T ) ⊆ T of metric G-trees that have the same elliptic
subgroups as T . We endow D with the subspace topology coming from T .

If two metric G-trees T, T ′ ∈ T lie in the same deformation space then the
translation length functions lT and lT ′ vanish on the same elements of G.

Proposition 1.24. Two metric G-trees T, T ′ ∈ T lie in the same deformation
space if and only if there exist G-equivariant maps T → T ′ and T ′ → T .

Proof. For the “if” direction, suppose that H ≤ G is an elliptic subgroup of T .
Any G-equivariant map T → T ′ maps H-fixed points to H-fixed points, whence
the claim. For the “only if” direction, suppose that T and T ′ have the same
elliptic subgroups and let {v1, . . . , vk} be a choice of one representative from each
G-orbit of vertices of T . Since T and T ′ have the same elliptic subgroups, for
each i = 1, . . . , k the vertex stabilizer Gvi also fixes a point in T ′. We define a
map f : V (T ) → T ′ by mapping each vi into the fixed point set of Gvi in T ′ and
extending it G-equivariantly to all of V (T ). Finally, we extend f linearly to the
edges of T and we obtain a G-equivariant map f : T → T ′.

31



Chapter 1 Topology of deformation spaces of G-trees

By Theorem 1.15, two metric G-trees T, T ′ ∈ T have the same elliptic subgroups
if and only if their underlying G-trees are related by an elementary deformation
(which is why D is called a “deformation space”). It follows from this and the
remarks made in Section 1.1.2 that all G-trees in a deformation space D have the
same type in the sense of Definition 1.5, and we say that D is dihedral, linear
abelian, genuine abelian, or irreducible respectively.

If D is dihedral or linear abelian then all G-trees in D are G-equivariantly
homeomorphic, which is clear by the fact that they are all related by elementary
deformations but have only one G-orbit of edges. Therefore, the only interesting
deformation spaces of metric G-trees are the genuine abelian and irreducible ones.

If we endow T with the weak topology, the deformation space D inherits a
description as a union of open cones. However, beware that if the deformation
space is irreducible then closed cones in D might have missing open cones (and
not be closed in the ambient space T ), corresponding to nonelementary forest
collapses (see for instance Figure 1.5). Namely, for a metric G-tree T ∈ D, the
intersection of the closed cone C(T ) =

⋃
A⊂T C(TA) ⊂ T with the deformation

space D(T ) is the union of only those open cones C(TA) for which the proper
G-invariant subforest A ⊂ T is collapsible. The following observation implies that
closed cones in D will in fact have missing closed cones (or missing faces for short),
which will be crucial in the proof of Proposition 1.56:

Proposition 1.25. Let D be deformation space of metric G-trees and T ∈ D. If
for a proper G-invariant subforest A ⊂ T the open cone C(TA) ⊂ T does not lie
in D then for all proper G-invariant subforests B ⊂ T with A ⊂ B ⊂ T the open
cone C(TB) does also not lie in D.

Proof. The open cone C(TA) does not lie in D if and only if the forest collapse
kA : T → TA creates new elliptic subgroups. These new elliptic subgroups are
also elliptic in TB, as the forest collapse kB : T → TB induces a G-invariant map
TA → TB.

Proposition 1.26 ([GL07a, Proposition 5.2]). Let D be deformation space of
metric G-trees. The Gromov topology and the weak topology agree on any finite
union of open cones of D.

Projectivized deformation spaces The action of the multiplicative group of posi-
tive real numbers R>0 on T by scaling the metrics on the G-trees restricts to an
action on any deformation space of metric G-trees D ⊂ T .

Definition 1.27. The projectivized deformation space is the quotient

PD := D/R>0
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of D by this action, endowed with the quotient topology. Equivalently, it is the
image of D ⊂ T under the natural projection T → PT .

If D is dihedral or linear abelian then all metric G-trees in D are G-equivariantly
homeomorphic and have only one G-orbit of edges, whence PD is a point.

As a set, we will think of PD as the covolume-1-section in D. If we equip D
with the weak topology, the natural projection of the covolume-1-section in D to
the quotient PD is a homeomorphism and the projectivized deformation space
PD inherits the structure of a simplicial complex with missing faces.

Local finiteness Let D be a deformation space of metric G-trees. If some G-tree
in D is locally finite then all G-trees in D are locally finite, as they are all related
by elementary deformations. We then say that D is locally finite, and all vertex
and edge stabilizers of all G-trees in D are then commensurable as subgroups of G.
If D is locally finite then the projectivized deformation space PD endowed with
the weak topology is a locally finite complex: As observed in [Lev07, Section 5],
“closed simplices containing [a given metric G-tree] T [in PD] consist of simplicial
trees obtained from T by expansion moves. Performing such moves on T amounts
to blowing up each vertex v of T into a subtree. Since v has finite valence, there
are only finitely many ways of expanding (not taking the metric into account).”

Proposition 1.28 ([GL07a, Proposition 5.4]). Let D be a deformation space of
locally finite metric G-trees with finitely generated vertex stabilizers. The Gromov
topology and the weak topology agree on D.

Examples

Example 1.29. Let Fn be the free group of rank n ≥ 2. The deformation space Xn
of minimal metric Fn-trees that are acted on freely is locally finite and irreducible,
and the three topologies on Xn agree. The projectivized deformation space PX n
is better known as Culler-Vogtmann’s Outer space [CV86].

〈a〉

b

a

b

a

〈b〉

Figure 1.5: The Bass-Serre tree of the middle graph of groups decomposition of
F2 = 〈a, b〉 spans an open 1-simplex in Outer space PX 2 whose 0-faces
do not lie in PX 2 (they correspond to nonfree F2-trees).
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Example 1.30. More generally, let G be a finitely generated virtually nonabelian
free group, i.e., G contains a finitely generated nonabelian free subgroup of finite
index. It is a standard result that G admits a minimal action on a simplicial tree
T such that all vertex and edge stabilizers are finite (see [SW79, Theorem 7.3]).
The finite subgroups of G are elliptic in every G-tree and hence all minimal metric
G-trees with finite vertex stabilizers lie in the same deformation space D. Since
the finite-index nonabelian free subgroup of G acts freely on T , the deformation
space D is irreducible. It is locally finite and the three topologies on D agree.

Example 1.31. Let G be a nonelementary GBS group (as defined in the intro-
duction). By [For02, Corollary 6.10] and [For03, Lemma 2.6], all minimal metric
G-trees with infinite cyclic vertex and edge stabilizers lie in the same deformation
space D, which is always locally finite. If G is a solvable Baumslag-Solitar group
BS(1, q) with q 6= ±1 then the deformation space is genuine abelian. In all other
cases, it is irreducible and the three topologies on D agree.

Action of the automorphism group

If an automorphism Φ ∈ Aut(G) leaves the set of elliptic subgroups of a metric
G-tree T ∈ T invariant then TΦ ∈ T lies in the same deformation space as T . In
general, however, the metric G-tree TΦ might lie in a different deformation space.

Definition 1.32. For a metric G-tree T ∈ T with associated deformation space
D ⊂ T , we denote by AutD(G) ≤ Aut(G) the subgroup of automorphisms that
leave the set of elliptic subgroups of T invariant. The inner automorphism group
Inn(G) is a normal subgroup of AutD(G) and we define

OutD(G) := AutD(G)/ Inn(G) ≤ Out(G).

The action of Out(G) on T restricts to an action of OutD(G) on D that descends
to an action on PD.

The modular homomorphism If D is a deformation space of locally finite metric
G-trees then all vertex and edge stabilizers of all G-trees in D are commensurable
as subgroups of G. As in [For02, Remark 3.14], we then define the modular
homomorphism µ = µ(D) : G→ (Q>0,×) by

µ(g) :=
[H : (H ∩ gHg−1)]

[gHg−1 : (H ∩ gHg−1)]

where H is any subgroup of G commensurable with a vertex or edge stabilizer of
a G-tree in D. Indeed, µ does not depend on the choice of H. We say that D has
no nontrivial integral modulus if im(µ) ∩ Z = {1}.
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Lemma 1.33 ([Lev07, Lemma 2.4]). Let G be a nonelementary GBS group. The
deformation space D of minimal metric G-trees with infinite cyclic vertex and edge
stabilizers has no nontrivial integral modulus if and only if G contains no solvable
Baumslag-Solitar group BS(1, n) with n ≥ 2.

Remark. The group BS(1,−n) contains a subgroup isomorphic to BS(1, n2).
Hence, if G contains no solvable Baumslag-Solitar group BS(1, n) with n ≥ 2
then it contains no solvable Baumslag-Solitar group BS(1, q) with q 6= ±1 and, in
particular, the deformation space D is irreducible.

A subgroup H ≤ G is small in G (as in [GL07a, Section 8]) if there does not exist
a G-tree in which the axes of any two hyperbolic group elements of H intersect in
a compact set. Being small in G is a commensurability invariant and stable under
taking subgroups.

Proposition 1.34 ([GL07a, Proposition 8.6]). Let D be a deformation space of
locally finite irreducible metric G-trees whose vertex and edge stabilizers are all
commensurable with a finitely generated subgroup H ≤ G.

(1) If H is small in G then OutD(G) = Out(G).

(2) If every subgroup of G commensurable with H has finite outer automorphism
group and D has no nontrivial integral modulus then OutD(G) acts on D with
finitely many orbits of open cones (and on the projectivized deformation space
PD with finitely many orbits of open simplices).

If OutD(G) acts on PD with finitely many orbits of simplices then, in particular,
PD is finite-dimensional.

Example 1.35. The unprojectivized Outer space Xn (Example 1.29) is locally
finite and irreducible, and all vertex and edge stabilizers of the Fn-trees in Xn are
trivial. We clearly have OutXn(Fn) = Out(Fn), and Out(Fn) acts on Outer space
PX n with finitely many orbits of simplices.

Example 1.36. More generally, let G be a finitely generated virtually nonabelian
free group. The deformation space D of minimal metric G-trees with finite vertex
stabilizers is locally finite and irreducible (Example 1.30). Since the elliptic sub-
groups of D are precisely the finite subgroups of G, we have OutD(G) = Out(G).
Choosing H = {1}, we see that µ(D) ≡ 1 and Out(G) acts on the projectivized
deformation space PD with finitely many orbits of simplices.

Example 1.37. Let G be a nonelementary GBS group that contains no solvable
Baumslag-Solitar group BS(1, n) with n ≥ 2. The deformation space D of minimal
metric G-trees with infinite cyclic vertex and edge stabilizers is locally finite and
irreducible (see Example 1.31 and the remark made after Lemma 1.33). Let H
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be any vertex or edge stabilizer of any G-tree in D. If G acts on a tree such that
H is not elliptic then all nontrivial elements of H have the same hyperbolic axis
(because H is infinite cyclic), whence H is small in G and OutD(G) = Out(G).
Every subgroup ofG commensurable withH, being virtually cyclic, has finite outer
automorphism group. By Lemma 1.33, the deformation space D has no nontrivial
integral modulus and we conclude that Out(G) acts on PD with finitely many
orbits of simplices.

Remark. Let G be a nonelementary GBS group and D the deformation space
of metric G-trees with infinite cyclic vertex and edge stabilizers. By the above
arguments, if G contains no solvable Baumslag-Solitar group BS(1, n) with n ≥ 2
then the projectivized deformation space PD is finite-dimensional. However, it
need not be finite-dimensional in general (see, for instance, [Cla09, Example 2.2]).

1.2.3 Simplicial completion and spine

Let D be a deformation space of metric G-trees, endowed with the weak topology.
Because of its missing faces, the projectivized deformation space PD with its
natural decomposition into open simplices fails to be a genuine simplicial complex,
and even if the group OutD(G) acts on PD with finitely many orbits of open
simplices, it does not act cocompactly. In this section, we will associate to PD two
genuine simplicial complexes to which the action of OutD(G) extends respectively
restricts. If OutD(G) acts on PD with finitely many orbits of open simplices then
the action on both complexes will be cocompact.

Simplicial completion

Recall that the projectivized universe of metric G-trees PT endowed with the
weak topology is a genuine simplicial complex.

Definition 1.38. Define the simplicial completion PD∗ of PD as its closure in
PT in the weak topology. It is the smallest simplicial subcomplex of PT that
contains PD.

The simplicial complex PD∗ is obtained from PD by adding those (missing)
faces obtained by collapsing a G-invariant proper subforest that is noncollapsible
(see Definition 1.14). It is easily seen that the action of OutD(G) on PD extends
to a simplicial action on the simplicial completion PD∗: If T ′ ∈ T is obtained from
T ∈ T by a (possibly nonelementary) forest collapse then for all φ ∈ OutD(G) the
metric G-tree T ′φ is obtained from Tφ by collapsing the same subforest.

If OutD(G) acts on PD with finitely many orbits of open simplices then it acts on
PD∗ with finitely many orbits of closed simplices and the quotient PD∗/OutD(G)
is compact.
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Example 1.39. The simplicial completion of Outer space PX n is better known
as the free splitting complex [HM13a] or Hatcher’s sphere complex [Hat95].

With regard to Example 1.39, we ask the following question:

Question 1.40. If the projectivized deformation space PD is finite-dimensional
(for example, if OutD(G) acts on PD with finitely many orbits of open simplices
such as in Examples 1.36 and 1.37) then by [BH99, Theorem I.7.19] the simplicial
completion PD∗ carries a natural complete geodesic metric, the simplicial metric.
The simplicial metric on the simplicial completion of Outer space is known to be
Gromov-hyperbolic [HM13a], and the following question arises naturally: Under
which assumptions on PD is the simplicial metric on PD∗ Gromov-hyperbolic?

Spine

Denote by PD∗1 the first barycentric subdivision of the simplicial completion PD∗.

Definition 1.41. Define the spine S(PD) of PD as the maximal subcomplex of
PD∗1 that is contained in PD.

The spine S(PD) can naturally be viewed as the geometric realization of the
poset Col(PD) that is defined as follows:

• The elements of Col(PD) are the open simplices of PD in the weak topology,
where for two open simplices σ1 and σ2 of PD we have σ1 ≤ σ2 if σ1 is
contained in the closure of σ2 (see Figure 1.6).

• Equivalently, the elements of Col(PD) are G-equivariant homeomorphism
classes of the G-trees in PD, where for T1, T2 ∈ Col(PD) we have T1 ≤ T2 if
T1 is obtained from T2 by an elementary forest collapse.

closed simplex in PD closed simplex in PD∗ simplices in S(PD)

Figure 1.6: A closed simplex in PD and in the simplicial completion PD∗, and the
corresponding simplices in the spine S(PD).

The action of OutD(G) on PD induces an order-preserving action on Col(PD)
and restricts to an action on the spine S(PD) ⊂ PD. If OutD(G) acts on PD
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with finitely many orbits of open simplices then the elements of Col(PD) fall into
finitely many OutD(G)-orbits and the action of OutD(G) on S(PD) is cocompact.

Proposition 1.42. The projectivized deformation space PD equipped with the
weak topology OutD(G)-equivariantly deformation retracts onto its spine S(PD).

Proof. In the language of [MM96, §8], the projectivized deformation space PD is
an ideal simplicial complex, which deformation retracts onto its barycentric spine
S(PD) by [MM96, Proposition 8.1]. In particular, there exists a deformation
retraction that commutes with all automorphisms of PD that are linear with
respect to the barycentric coordinates of open simplices and their images, and
hence is OutD(G)-equivariant by Proposition 1.22.

Surviving spine In general, the projectivized deformation space PD and its spine
S(PD) need not be finite-dimensional, but it was shown in [GL07a, Section 7] and
[Cla09, Section 1] that S(PD) deformation retracts onto an OutD(G)-invariant
simplicial subcomplex that is finite-dimensional in certain cases where the spine
itself is infinite-dimensional. We will briefly review their construction, for we
will describe a generalization of it in Section 3.2.3. For this, we think of the
spine S(PD) as the geometric realization of the poset Col(PD) of G-equivariant
homeomorphism classes of G-trees in PD.

Definition 1.43. Given a G-tree T ∈ Col(PD), an edge e ∈ E(T ) is surviving if it
is noncollapsible (see Definition 1.14) or may be made noncollapsible by collapsing
other collapsible edges of T . Equivalently, e is surviving if T can be made reduced
without collapsing e. The union of all nonsurviving edges of T forms a collapsible
G-invariant subforest that we will always denote by W . The G-tree TW obtained
from T by collapsing W has the same elliptic subgroups as T and the set

ColW (PD) := {TW | T ∈ Col(PD)}

is a subposet of Col(PD). Its geometric realization SW (PD) := |ColW (PD)| is a
subcomplex of the spine S(PD) that we call the surviving spine of PD.

Example 1.44. In the case of Outer space PX n, the subcomplex SW (PX n) of
S(PX n) is the spine of reduced Outer space PXRn ⊂ PX n, the subspace of marked
metric metric graphs with no separating edges (see [CV86]).

One readily sees that the subset ColW (PD) ⊆ Col(PD) is OutD(G)-invariant.
The action of OutD(G) on the spine S(PD) thus restricts to an action on the
surviving spine SW (PD) ⊆ S(PD). In fact, we have the following:

Proposition 1.45 ([Cla09, Section 1.2]). The spine S(PD) deformation retracts
OutD(G)-equivariantly onto the surviving spine SW (PD) ⊆ S(PD).
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Proof. The natural projection f : Col(PD) → ColW (PD) ⊆ Col(PD), T 7→ TW
is OutD(G)-equivariant and order-preserving, and for all T ∈ Col(PD) we have
f(T ) ≤ T . It follows from the homotopy property of poset maps described in
[Qui78, 1.3] that the induced OutD(G)-equivariant map on geometric realizations
|f | : S(PD)→ SW (PD) ⊆ S(PD) is homotopic to the identity on S(PD), and the
suggested homotopy is easily seen to be OutD(G)-equivariant and the identity on
the subcomplex SW (PD) ⊆ S(PD).

Definition 1.46. A deformation space of metric G-trees D is nonascending if it
is irreducible and for all metric G-trees T ∈ D the following condition is satisfied:
For e ∈ E(T ), if the initial vertex ι(e) and the terminal vertex τ(e) lie in the same
G-orbit then the inclusions Ge ↪→ Gι(e) and Ge ↪→ Gτ(e) are either both proper
inclusions or both isomorphisms. On the level of quotient graph of groups, this
means that for no G-tree T ∈ D the quotient graph of groups G\T contains a
strict ascending loop, i.e., an edge e with ι(e) = τ(e) such that exactly one of the
two inclusions Ge ↪→ Gι(e) and Ge ↪→ Gτ(e) is an isomorphism.

Definition 1.47. For a deformation space of metric G-trees D, let b1(D) ∈ N0

be the first Betti number of the quotient graph G\T , where T is any G-tree in
D. The number b1(D) does not depend on the choice of T , as all G-trees in D are
related by elementary deformations.

Theorem 1.48 ([GL07a, Theorem 7.6] and [Cla09, Theorem 1.18]). Let D be an
irreducible deformation space of metric G-trees. If either

• D is nonascending; or

• D is locally finite and has b1(D) ≤ 1

then the surviving spine SW (PD) ⊆ S(PD) is finite-dimensional.

Example 1.49. Let G = BS(2, 4) and PD be the projectivized deformation space
of minimal metric G-trees with infinite cyclic vertex and edge stabilizers (Exam-
ple 1.31), which is irreducible and locally finite. By [Cla09, Example 2.1] we have
b1(PD) = 1 and hence the surviving spine SW (PD) is finite-dimensional, though
the spine S(PD) itself is infinite-dimensional.

1.3 Classifying spaces for families of subgroups

Let G be a discrete (not necessarily finitely generated) group.

Definition 1.50. A G-CW-complex is a G-space X together with a G-invariant
filtration ∅ = X−1 ⊆ X0 ⊆ X1 ⊆ . . . ⊆

⋃
n≥0Xn = X such that

• X carries the colimit topology with respect to this filtration;
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• for each n ≥ 0 the spaceXn is obtained fromXn−1 by attaching n-dimensional
G-equivariant cells, i.e., there exists a G-pushout

qi∈In
(
(G/Hi)× Sn−1

)
//

��

Xn−1

��
qi∈In ((G/Hi)×Dn) // Xn.

Definition 1.51. An action of G on a CW-complex X is cellular if for each
g ∈ G and each open cell E of X the translate gE is again an open cell of X and
if gE = E implies that the induced map E → E, x 7→ gx is the identity. (This
definition also makes sense if X is a simplicial complex with missing faces.)

For instance, if a group G acts on a simplicial complex X simplicially then it
acts on the first barycentric subdivision of X cellularly (the easy argument given
in the proof of Lemma 1.55 applies in general).

Proposition 1.52 ([tD87, Proposition II.1.15]). Let X be a CW-complex with a
cellular G-action. Then X is a G-CW-complex with n-skeleton Xn.

A family of subgroups of G is a collection of subgroups of G that is closed under
conjugation and taking subgroups. Examples of families of subgroups are

• All, the family of all subgroups;

• VCyc, the family of virtually cyclic subgroups;

• Fin, the family of finite subgroups;

• {1}, the family that consists of only the trivial subgroup.

Definition 1.53. Let F be a family of subgroups of G. A model for the classifying
space of G for the family F (or a model for E(G,F) for short) is a G-CW-complex
X such that all isotropy groups belong to F and for all H ∈ F the H-fixed point
set XH is contractible (and in particular nonempty).

There exists a model for the classifying space of G for any family F and it is
unique up to G-equivariant homotopy equivalence (see [Lüc05]). Classifying spaces
for families of subgroups are important objects in algebraic topology that play a
central role in ongoing research. For instance, classifying spaces for the family
VCyc appear in the statement of the Farrell-Jones conjecture in algebraic K- and
L-theory (see [BLR08] for a survey). The conjecture predicts that for any ring R
the algebraic K- and L-theory of the group ring R[G] can be computed in terms of
group homology of G and the K- and L-theory of group rings R[V ], where V ranges
over the virtually cyclic subgroups of G. Because of the transitivity principle
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[BL07, Theorem 1.5], one is also interested in classifying spaces for other families of
subgroups. We will show that for a finitely generated group G certain projectivized
deformation spaces of metric G-trees PD are models for the classifying spaces of
OutD(G) for a family of subgroups (Theorem 1.63). We will proceed by

(1) showing that PD can be given the structure of an OutD(G)-CW-complex
(Proposition 1.56);

(2) reviewing Clay’s [Cla05] and Guirardel-Levitt’s [GL07a] geometric proof that
PD is contractible (Theorem 1.57);

(3) discussing Guirardel-Levitt’s argument that certain fixed point sets under
the action of OutD(G) on PD are contractible as well (Theorem 1.59).

1.3.1 An OutD(G)-CW-structure on PD

Let G be a finitely generated group and PD a projectivized deformation space of
metric G-trees. The group OutD(G) acts on PD by mapping open simplices to
open simplices (Proposition 1.22), but the action is generally not cellular, as the
following example demonstrates:

Example 1.54. The Bass-Serre trees of the metric graph of groups decomposi-
tions of F2 = 〈a, b〉 shown in Figure 1.7 lie in the same open simplex of Outer space
PX 2. The latter is the image of the first under the automorphism a 7→ b, b 7→ a,
but the two metric F2-trees are not F2-equivariantly isometric.

a

1
3

b

2
3

a

2
3

b

1
3

Figure 1.7: The Bass-Serre trees of the graph of groups shown above lie in the
same Out(F2)-orbit and in the same open simplex of PX 2.

Recall from Section 1.2.3 that the action of OutD(G) on PD extends to an action
on the simplicial completion PD∗. Clearly, as OutD(G) does not act cellularly on
PD, the action on PD∗ fails to be cellular as well. Denote by PD∗1 the first
barycentric subdivision of PD∗. Since the action of OutD(G) on the simplicial
completion PD∗ is linear with respect to the barycentric coordinates of an open
simplex and its image (Proposition 1.22), the group OutD(G) acts on PD∗1 again
by mapping open simplices to open simplices. In fact, we have the following:

Lemma 1.55. The action of OutD(G) on PD∗1 is cellular.
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Hence, the simplicial complex PD∗1 is an OutD(G)-CW-complex.

Proof. We need to show that if an automorphism φ ∈ OutD(G) leaves an open
simplex of PD∗1 invariant then it fixes it pointwise. Recall that (in the notation
of Section 1.2) the open simplex spanned by a metric G-tree T in PD∗ consists of
the metric G-trees (T, d(l1, . . . , lk)) with li > 0 for all i = 1, . . . , k and

∑k
i=1 li = 1.

The metric G-trees in the open simplex spanned by T in PD∗1 additionally satisfy

(1.1) l1 ≤ . . . ≤ lk

up to some fixed permutation of the indices, where each “≤” is either a strict
inequality or an equality. If φ ∈ OutD(G) leaves an open simplex of PD∗1 invariant
then by Proposition 1.22 it permutes its barycentric coordinates, and (1.1) is only
preserved if φ fixes the open simplex pointwise.

Proposition 1.56. The natural simplicial structure with missing faces on PD can
be refined to a genuine simplicial structure that defines the same weak topology on
PD and with respect to which OutD(G) acts cellularly.

Proof. Since OutD(G) acts on PD∗1 cellularly, it suffices to refine the induced
simplicial structure with missing faces on PD ⊂ PD∗1 OutD(G)-equivariantly to a
genuine simplicial structure that defines the same topology.

Let X1 be the maximal genuine simplicial subcomplex of PD∗1 that is contained
in PD. For k ∈ N, we inductively define

(1) PD∗k+1 as the first barycentric subdivision of PD∗k holding Xk fixed (as de-
fined in [Mun84, §16]);

(2) Xk+1 ⊂ PD∗k+1 as the maximal genuine simplicial subcomplex that is con-
tained in PD (see Figure 1.8).

Figure 1.8: A closed simplex with missing faces in PD after the first, second, and
third subdivision step. The genuine simplicial subcomplexes X1, X2,
and X3 are colored gray.
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Since the group OutD(G) acts on PD∗ linearly with respect to the barycentric
coordinates of a simplex and its image (Proposition 1.22), the subdivision process
is OutD(G)-equivariant.

We claim that the subspaces Xk ⊂ PD, k ∈ N fully exhaust PD, i.e., that for
all x ∈ PD there exists k ∈ N such that x ∈ Xk. Since each Xk is a simplicial
subcomplex of Xl for all l ≥ k, we then obtain a genuine simplicial structure on
PD =

⋃
k∈NXk that, as we will show in the second step, defines the same weak

topology on PD as the natural simplicial structure with missing faces.
If x ∈ PD is contained in a closed simplex of PD∗ all of whose faces lie in PD

then x will lie in X1 and we are done. If, instead, the closed simplex σ(x) ⊂
PD∗ spanned by x has faces that do not belong to PD, we will call these faces
missing faces and we argue as follows: Since PD has missing closed simplices
(Proposition 1.25), the point x does not lie in the boundary of a missing open
simplex (cf. Figure 1.9). Hence, under the natural identification of σ(x) with a
Euclidean simplex as in Section 1.2, the point x has positive Euclidean distance
d > 0 to the missing boundary of σ(x) . For k ∈ N, the intersection Xk ∩ σ(x) is

x

σ

σm

Figure 1.9: The above situation, in which a point in PD lies in the boundary of a
missing open simplex σm, cannot occur.

the complement in σ(x) of the open simplices of PD∗k∩σ(x) that have a face in the
missing boundary of σ(x). For large k, the diameter of these simplices is smaller
than d and we conclude that x ∈ Xk. As a set, we thus have PD =

⋃
k∈NXk.

Denote by PD∞ the projectivized deformation space PD equipped with the
weak topology defined by the genuine simplicial structure

⋃
k∈NXk. In order to

prove that the weak topology on PD agrees with the weak topology on its simplicial
refinement PD∞, it suffices to show that every convergent sequence (xn)n∈N in
PD, say with limn→∞ xn = x ∈ PD, also converges in PD∞. Suppose to the
contrary that (xn)n∈N does not converge in PD∞. Since the topology on any
finite union of simplices of PD∞ agrees with the subspace topology coming from
PD, the sequence (xn)n∈N must meet infinitely many open simplices of PD∞. On
the other hand, convergence in PD implies that the sequence meets only finite
many open simplices of PD. After passing to a subsequence, we may assume that
the sequence stays within a single open simplex σ ⊂ PD and that the sequence
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members lie in pairwise distinct open simplices of PD∞. The limit point x ∈ PD
(which lies in the closure of σ in PD) has again positive Euclidean distance to the
missing boundary of σ and, by the arguments given above, for large k we have
x ∈ Xk. In fact, we can choose k large enough such that x lies in the interior of Xk

and the sequence (xn)n∈N eventually lies in Xk as well. However, the intersection
Xk ∩ σ consists of only finitely many simplices of PD∞, which contradicts our
assumption that the sequence (xn)n∈N does not converge in PD∞.

1.3.2 Contractibility of deformation space of G-trees

Theorem 1.57 ([Cla05, Theorem 6.7] and [GL07a, Theorem 6.1]). Let D be a
deformation space of metric G-trees.

• D is contractible in the weak topology.

• If D contains a metric G-tree with finitely generated vertex stabilizers then
the deformation space is also contractible in the Gromov topology.

The same results hold for the projectivized deformation space PD.

Recall from Section 1.2.2 that every dihedral or linear abelian deformation space
D is homeomorphic to R>0 and that PD is then a single point. Therefore, we are
only interested in the genuine abelian and the irreducible case.

Culler-Vogtmann’s original proof [CV86] of the contractibility of Outer space
PX n (Example 1.29) was combinatorial and formulated in the language of marked
metric graphs. An alternative, geometric proof was given by Skora [Sko89] in the
language of metric Fn-trees. The proof of Theorem 1.57, of which we will now
review an outline, is a generalization of Skora’s arguments and relies on the idea
of folding metric G-trees along suitable G-equivariant maps:

Definition 1.58. Let D be a deformation space of metric G-trees and T, T ′ ∈ D.
AG-equivariant map f : T → T ′ is simplicial if it maps each edge of T isometrically
to an edge of T ′. A G-equivariant map f : T → T ′ is a morphism if it is an
isometry on edges or, equivalently, if the simplicial structures on T and T ′ may
be subdivided (allowing redundant vertices) such that f becomes simplicial.

Given a morphism f : T → T ′, we may “fold T along f” to obtain a 1-parameter
family of metric G-trees (Tt)t∈[0,∞] in D together with morphisms φt : T → Tt and
ψt : Tt → T ′ such that

(1) T0 = T and T∞ = T ′;

(2) φ0 = idT , φ∞ = ψ0 = f , and ψ∞ = idT ′ ;
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1.3 Classifying spaces for families of subgroups

(3) for all t ∈ [0,∞] the following diagram commutes:

T
f //

φt ��

T ′

Tt

ψt

>>

For this, for t ∈ [0,∞] we let ∼t be the G-equivariant equivalence relation on T
defined by

x ∼t y if f(x) = f(y) and f([x, y]) ⊆ Dt(f(x))

where Dt(f(x)) denotes the closed ball of radius t around f(x) ∈ T ′. The quotient
T/∼t is then a simplicial tree [GL07b, Proposition 3.6] that carries an induced
G-action. We define

• Tt as the unique minimal G-invariant subtree of T/∼t (the quotient itself
need not be minimal);

• φt : T → Tt as the G-equivariant quotient map T → T/∼t composed with
the G-equivariant projection of T/∼t onto its G-invariant subtree Tt;

• ψt : Tt → T ′ as the restriction of the induced G-equivariant map T/∼t → T ′

to the minimal G-invariant subtree Tt ⊂ T/∼t.
• Finally, we equip Tt with the maximal metric making φt 1-Lipschitz. Both
φt and ψt are then morphisms [GL07b, Lemma 3.3].

The minimal metric G-tree Tt lies in D, for there exist G-equivariant maps
T → Tt and Tt → T ′. The folding path [0,∞] → D, t → Tt is continuous in
the Gromov topology (see [GL07b, Section 3.2]) and therefore also in the axes
topology. The metric G-trees (Tt)t∈[0,∞] are contained in a finite union of open
cones [GL07a, Lemma 6.5] because of which the folding path is also continuous in
the weak topology (see Proposition 1.26).

Note that the construction is equivariant with respect to the action of R>0 on
D. That is, if we scale the metrics on T and T ′ by a positive factor λ > 0 then
f : λT → λT ′ remains a morphism and we have (λT )t = λ(Tt) for all t ∈ [0,∞].

Outline of the proof of Theorem 1.57. We will describe a deformation retraction
r : D × [0,∞] → D of the deformation space D onto the open cone spanned by
a suitable metric G-tree T0 ∈ D. As open cones are contractible both in the
weak topology and the Gromov topology (see Proposition 1.26), this then proves
the claim. The deformation retraction will be equivariant with respect to the
action of R>0 on D and we thus obtain an induced deformation retraction of the
projectivized deformation space PD onto the open simplex spanned by T0 ∈ PD,
proving contractibility of PD.
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Chapter 1 Topology of deformation spaces of G-trees

Choose a metric G-tree T0 ∈ D that is reduced (i.e., admits no elementary
collapses) and, when proving the second assertion, has finitely generated vertex
stabilizers. Denote by C(T0) ⊂ D the open cone spanned by T0 and assume for
a moment that the metric G-trees in D have distinguished basepoints. To every
T ∈ D with distinguished basepoint P ∈ T we will associate a metric G-tree T0(T )
inside the open cone C(T0) and a morphism fT : T0(T ) → T . If we then traverse
the folding path defined by fT in the opposite direction, we obtain a continuous
path γT : [0,∞] → D with γT (0) = T and γT (∞) ∈ C(T0). In order to construct
fT , fix a representative vi ∈ V (T0) in each G-orbit of vertices of T0 and define
fT (vi) ∈ T as the projection of the distinguished basepoint P ∈ T to the fixed
point set of Gvi in T . Then extend fT G-equivariantly to the vertices and linearly
to the edges of T0 to obtain a G-equivariant map fT : T0 → T . Since T0 was chosen
reduced, no edge of T0 is collapsed under fT and there is a unique metric dT on
T0 such that fT : (T0, dT )→ T is a morphism (i.e., an isometry on edges). Finally,
we let T0(T ) = (T0, dT ).

We now choose for every metric G-tree T ∈ D a distinguished basepoint P ∈ T ,
and we proceed as follows: IfD is irreducible, there exist hyperbolic group elements
g, h ∈ G whose commutator [g, h] ∈ G is hyperbolic as well [CM87, Theorem 2.7].
In every G-tree T ∈ D the hyperbolic axes Ag and Ah then intersect in a (possibly
empty) compact segment [GL07a, Proposition 5.6]. As in [GL07a, Section 6], “if
Ag and Ah meet, we order Ag so that the action of g is by a positive translation
and we let P be the largest element of the segment Ag ∩ Ah. If Ag and Ah are
disjoint, we define P as the point of Ag closest to Ah.” If D is genuine abelian,
we choose hyperbolic group elements g, h ∈ G with distinct axes in some and
therefore in every G-tree in the deformation space1, and for T ∈ D we define the
basepoint P ∈ T as the initial point of the ray Ag ∩Ah.

It is shown in [GL07a, Section 6] that, with this particular choice of basepoints,
the assignment

r : D × [0,∞]→ D
(T, t) 7→ γT (t)

is continuous (the assumption that T0 has finitely generated vertex stabilizers is
used in the proof of continuity in the Gromov topology). Since for all T ∈ D we
have r(T, 0) = T and r(T,∞) ∈ C(T0), this proves the theorem.

1As explained in the proof of [GL07a, Proposition 5.7], “the fact that two hyperbolic elements
g, h have the same axis depends only on D (it is characterized by ellipticity of the group
generated by the elements [gn, h], n ∈ Z).”
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1.3 Classifying spaces for families of subgroups

1.3.3 Contractibility of fixed point sets

Besides contractibility of D (Theorem 1.57), in the irreducible case certain fixed
point sets under the action of OutD(G) on D are contractible as well:

Theorem 1.59 ([GL07a, Theorem 8.3]). Let D be an irreducible deformation
space of metric G-trees.

• If a finitely generated subgroup H ≤ OutD(G) fixes a metric G-tree in D
then the H-fixed point set DH ⊆ D is contractible in the weak topology.

• If H fixes a metric G-tree with finitely generated vertex stabilizers then DH
is also contractible in the Gromov topology.

The same results hold for the action of OutD(G) on the projectivized deformation
space PD.

The proof of Theorem 1.59, which we now review, proceeds by showing that
the H-fixed point set DH ⊆ D is a deformation space of metric Ĥ-trees, where Ĥ
is the (finitely generated) preimage of H under the natural projection of Aut(G)
onto Out(G). If a metric G-tree in DH has finitely generated vertex stabilizers,
the corresponding Ĥ-tree will have finitely generated vertex stabilizers as well.
Contractibility of DH then follows from Theorem 1.57.

Remark. Using Skora’s folding construction directly, it was previously shown by
White [Whi93] that all nonempty fixed point sets under the action of Out(Fn) on
Outer space PX n are contractible.

The proof of Theorem 1.59 is based on operations of restricting and extending
group actions on trees to normal subgroups and certain supergroups respectively:

Restriction Let Ĝ be a finitely generated group and G E Ĝ a finitely generated
normal subgroup. Every Ĝ-tree T naturally gives rise to a G-tree TG by restricting
the action. One readily sees that if TG is minimal and irreducible then so is T . In
fact, conversely, if T is an irreducible minimal Ĝ-tree and G is not elliptic in T
then the G-tree TG is also minimal and irreducible [GL07a, Lemma 8.1].

The elliptic G-subgroups of TG are the elliptic Ĝ-subgroups of T intersected
with G. Thus, if two metric Ĝ-trees T and T ′ lie in the same deformation space
D
Ĝ

then TG and T ′G lie in the same deformation space of metric G-trees DG.

Lemma 1.60 ([GL07a, Lemma 8.2]). If D
Ĝ

is an irreducible deformation space

of metric Ĝ-trees in which G is not elliptic then the restriction map

res : D
Ĝ
→ DG, T 7→ TG
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Chapter 1 Topology of deformation spaces of G-trees

is a homeomorphism onto its image, both in the weak topology and the Gromov
topology. Every irreducible deformation space of metric G-trees DG contains the
image of at most one deformation space of metric Ĝ-trees.

Extension Let G be a finitely generated group. We observe the following:

Proposition 1.61. If T is a minimal G-tree that is not linear abelian then the
center Z(G) of G acts trivially on T .

Proof. This immediately follows from Proposition 1.10, as for any g ∈ Z(G) the
map T → T, x 7→ gx is a G-equivariant simplicial automorphism.

The quotient G/Z(G) is canonically isomorphic to the inner automorphism
group Inn(G). Every irreducible minimal G-tree T can thus naturally be viewed
as an Inn(G)-tree with action

Inn(G)× T → T, (cg, x) 7→ gx

where cg ∈ Inn(G) denotes conjugation with g ∈ G.

For a subgroup H ≤ Out(G), we denote by Ĥ the preimage of H under the
natural projection Aut(G) → Out(G). We remark that H and Ĥ fit into the
following commutative diagram of groups, whose rows are short exact sequences:

1 // Inn(G) // Aut(G) // Out(G) // 1

1 // Inn(G) // Ĥ //

≤

OO

H //

≤

OO

1

If H is finitely generated then Ĥ is finitely generated as well.

Lemma 1.62. Let D be an irreducible deformation space of metric G-trees and
H ≤ OutD(G) a finitely generated subgroup. A metric G-tree T ∈ D is fixed by
H if and only if the action of Inn(G) on T given by (cg, x) 7→ gx extends to an

isometric action of Ĥ on T .

Proof. This observation is hinted at in the proof of [GL07a, Theorem 8.3]. We
take the opportunity to give an easy argument:

If T is fixed by H then, by definition, for all φ ∈ Ĥ there exists a G-equivariant
isometry fφ : T → Tφ, which is unique by Proposition 1.10. The group Ĥ then

acts on T via Ĥ × T → T, (φ, x) 7→ fφ(x), where for cg ∈ Inn(G) ≤ Ĥ the
unique G-equivariant isometry fcg : T → Tcg is given by x 7→ g r

Tcg x = g r
T x. We

conclude that the action of Ĥ on T extends the action of Inn(G).
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Conversely, assume that the action of Inn(G) on T extends to an isometric
action Ĥ × T → T, (φ, x) 7→ φ • x. By assumption, for all cg ∈ Inn(G) we have

cg • x = gx. Given φ ∈ Ĥ, consider the (nonequivariant) isometry fφ : T → T
given by fφ(x) := φ • x. For all g ∈ G and x ∈ X we have

fφ(gx) = φ • gx = φ • cg • x = (φ ◦ cg) • x
= (cφ(g) ◦ φ) • x = cφ(g) • φ • x = φ(g) (φ • x) = φ(g)fφ(x)

and thus fφ is G-equivariant as an isometry from T to Tφ, whence the metric
G-tree T is fixed by H.

Proof of Theorem 1.59. Suppose that a finitely generated subgroup H ≤ OutD(G)
fixes a metric G-tree T ∈ D. By Lemma 1.62, the action of Inn(G) on T extends
to an isometric action of Ĥ on T and we denote the corresponding irreducible
minimal metric Ĥ-tree by T

Ĥ
. In order to prove Theorem 1.59, we will argue that

the H-fixed point set DH ⊆ D is homeomorphic to the deformation space D
Ĥ

of

metric Ĥ-trees associated to T
Ĥ

. The claim then follows from Theorem 1.57.
As the Inn(G)-tree T is irreducible, so is D

Ĥ
. The group Inn(G) does not have a

fixed point in T and thus is not elliptic in D
Ĥ

. By Lemma 1.60, the restriction map
res : D

Ĥ
→ D, X 7→ XInn(G) is a homeomorphism onto its image, both in the weak

topology and the Gromov topology, and all metric Ĥ-trees whose restriction to
Inn(G) ≤ Ĥ lies in D lie in the same deformation space D

Ĥ
. Therefore, res(D

Ĥ
) ⊂

D is precisely the subspace of all metric G-trees whose Inn(G)-action extends to
an isometric action of Ĥ, i.e., the H-fixed point set. Finally, if the G-tree T
has finitely generated vertex stabilizers then so does the Ĥ-tree T

Ĥ
, as Ĥ is an

extension of Inn(G) by a finitely generated group. Contractibility of DH now
follows from Theorem 1.57.

1.3.4 A model for E(OutD(G),F)

Let G be a finitely generated group. The discussion in Sections 1.3.1 through
1.3.3 proves the following, where a group is slender (or Noetherian) if all of its
subgroups are finitely generated:

Theorem 1.63. Let PD be a projectivized deformation space of irreducible metric
G-trees, equipped with the weak topology. If OutD(G) acts on PD with slender
point stabilizers then PD is a model for the classifying space of OutD(G) for the
family of subgroups of isotropy groups.

Below, we will give examples in which the family of subgroups of isotropy groups
can be described algebraically. In general, however, this is very complicated (see,
for instance, [BJ96]).
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Chapter 1 Topology of deformation spaces of G-trees

Proof. The projectivized deformation space PD can be given the structure of a
genuine OutD(G)-CW-complex by Proposition 1.56. Contractibility of fixed points
sets follows from Theorem 1.59, as all subgroups of point stabilizers are assumed
finitely generated.

Examples

Recall that a group G is polycyclic if it admits a finite subnormal series

{1} = G0 E G1 E . . . E Gn = G

such that for each i = 0, . . . , n − 1 the quotient Gi+1/Gi is cyclic. Polycyclic
groups are slender. The Hirsch length of a polycyclic group G is the number
of infinite cyclic quotients in the above filtration and it is an invariant of G. A
group is virtually polycyclic if it contains a finite-index subgroup that is polycyclic.
For n ∈ N0, let GVP(n) be the class of finitely generated groups G for which
there exists a locally finite irreducible minimal G-tree T whose edge stabilizers
are virtually polycyclic of Hirsch length n. (Since T is locally finite, its vertex
stabilizers are then also virtually polycyclic of Hirsch length n.)

It follows from [Cla07, Lemma 2.1] that if G belongs to GVP(n) for some n ∈ N0

then all locally finite irreducible minimal metric G-trees whose edge stabilizers are
virtually polycyclic of Hirsch length n lie in the same deformation space DG and
we have OutDG(G) = Out(G).

Example 1.64.

(1) The class GVP(0) is the class of finitely generated virtually nonabelian free
groups. If G is such a group then DG is the deformation space of minimal
metric G-trees with finite vertex stabilizers from Example 1.30.

(2) The torsion-free groups in GVP(1) are the nonelementary GBS groups that
are not isomorphic to a solvable Baumslag-Solitar group BS(1, q), q 6= ±1.
If G is such a group then DG is the deformation space of minimal metric
G-trees with infinite cyclic vertex and edge stabilizers from Example 1.31.

Theorem 1.65 ([Cla07]). Let G ∈ GVP(n) for some n ∈ N0. If K ≤ Out(G) is
a polycyclic subgroup that fixes a point in DG then every subgroup H ≤ Out(G)
commensurable with K also fixes a point in DG.

We may deduce from this the following applications of Theorem 1.63, where all
deformation spaces are equipped with the weak topology:

Example 1.66. Let G be a finitely generated virtually nonabelian free group.
The projectivized deformation space PD of minimal metric G-trees with finite
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vertex stabilizers is a finite-dimensional model for E(Out(G),Fin), where Fin is
the family of finite subgroups.

Proof. Every finite subgroup of Out(G) is commensurable with the trivial group
and hence fixes a point in PD by Theorem 1.65. At the same time, it follows from
[GL07a, Proposition 8.6] that Out(G) acts on PD with finite point stabilizers.
Since Out(G) acts on PD with finitely many orbits of simplices (Example 1.36),
the projectivized deformation space is finite-dimensional.

Example 1.67. Let G be a nonelementary GBS group that is not isomorphic to a
solvable Baumslag-Solitar group BS(1, q), q 6= ±1. The projectivized deformation
space PD of minimal metric G-trees with infinite cyclic vertex and edge stabilizers
is a model for E(Out(G),F), where F is a family of finitely generated virtually
free abelian subgroups with bounded rank that is closed under taking finite-index
supergroups. If G does not contain a solvable Baumslag-Solitar group BS(1, n)
with n ≥ 2 then PD is finite-dimensional.

Proof. By [Lev07, Theorem 3.10], the group Out(G) acts on PD with point stabi-
lizers virtually isomorphic to Zk, where k = b1(D) or b1(D)−1 (see Definition 1.47)
depending on G. Theorem 1.65 implies that the family of subgroups of isotropy
groups is closed under taking finite-index supergroups.

If G does not contain a solvable Baumslag-Solitar group BS(1, n) with n ≥ 2
then Out(G) acts on PD with finitely many orbits of simplices (Example 1.37)
and the projectivized deformation space is finite-dimensional.
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Chapter 2

The Lipschitz metric on deformation
spaces of G-trees

The results in this chapter have already been released in [Mei13].

2.1 The Lipschitz metric

Let D be a deformation space of metric G-trees and T, T ′ ∈ D. By Proposi-
tion 1.24, there exists a G-equivariant map f : T → T ′, which we may choose to
be Lipschitz continuous. We denote by σ(f) its Lipschitz constant.

Every G-equivariant Lipschitz map f : T → T ′ is G-equivariantly homotopic
relative to the vertices of T to a G-equivariant Lipschitz map f ′ : T → T ′ that is
linear (i.e., either constant or an immersion with constant slope) on edges. The
Lipschitz constant σ(f ′) is then given by the maximal slope of f ′ on the finitely
many G-orbits of edges of T and we have σ(f ′) ≤ σ(f). We may therefore always
assume everyG-equivariant Lipschitz map f : T → T ′ to be linear on edges without
increasing its Lipschitz constant.

Definition 2.1. Define σ(T, T ′) := inff σ(f), where f ranges over allG-equivariant
Lipschitz maps from T to T ′.

Recall that, as a set, we think of the projectivized deformation space PD as
the covolume-1-section in D. With this convention, we can assign to each pair of
projectivized metric G-trees (T, T ′) ∈ PD × PD the well-defined value σ(T, T ′).

Proposition 2.2. The function

dLip : PD × PD → R, (T, T ′) 7→ log
(
σ(T, T ′)

)
is an asymmetric pseudometric on PD. That is, for all T, T ′, T ′′ ∈ PD we have

(1) dLip(T, T
′) ≥ 0;

(2) if T and T ′ are G-equivariantly isometric then dLip(T, T
′) = 0;

(3) dLip(T, T
′′) ≤ dLip(T, T ′) + dLip(T

′, T ′′).

We call dLip the Lipschitz metric.
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Proof. To prove (1), let f : T → T ′ be aG-equivariant Lipschitz map. We will show
that σ(f) is bounded below by 1. Since the metric G-trees T and T ′ are minimal,
both f and the induced map on metric quotient graphs G\f : G\T → G\T ′ are
surjective. We have σ(G\f) = σ(f) and vol(G\T ) = vol(G\T ′) = 1. If now
σ(f) < 1 then

vol(im(G\f)) ≤ σ(f) · vol(G\T ) < 1

contradicting surjectivity of G\f .
Statement (2) is immediate. In order to show (3), observe that for any sequence

of G-equivariant Lipschitz maps T
f→ T ′

f ′→ T ′′ we have σ(T, T ′′) ≤ σ(f ′ ◦ f) and
σ(f ′ ◦ f) ≤ σ(f) · σ(f ′), whence

log
(
σ(T, T ′′)

)
≤ inf

f,f ′
log
(
σ(f ′ ◦ f)

)
≤ inf

f,f ′
log
(
σ(f) · σ(f ′)

)
= inf

f,f ′

(
log (σ(f)) + log

(
σ(f ′)

))
= inf

f
log (σ(f)) + inf

f ′
log
(
σ(f ′)

)
= log

(
σ(T, T ′)

)
+ log

(
σ(T ′, T ′′)

)
.

Proposition 2.3. The group OutD(G) acts on (PD, dLip) by isometries, i.e., for
all T, T ′ ∈ PD and φ ∈ OutD(G) we have dLip(Tφ, T

′φ) = dLip(T, T
′).

Proof. Every G-equivariant map from T to T ′ is also G-equivariant with respect
to the actions twisted along φ, and vice versa.

The following example demonstrates why we speak of the Lipschitz metric as
an “asymmetric pseudometric”:

Example 2.4. In general we have dLip(T, T
′) 6= dLip(T

′, T ) (see [AKB12] for
examples in the case of Outer space; see also the remark made after Proposi-
tion 2.5). Moreover, dLip(T, T

′) = 0 does generally not imply that T and T ′ are
G-equivariantly isometric (see Proposition 2.16 for an exception in the case of
Outer space; see also Section 2.2.1):

Let G = F2 ∗ (Z/2Z) and consider the metric graph of groups decompositions
Γ and Γ′ of G as in Figure 2.1, where all edge group inclusions are the obvious
ones and all edges have length 1

3 . The corresponding Bass-Serre trees T and T ′

lie in the same deformation space, as they are related by an elementary collapse
followed by an elementary expansion (the intermediate graph of groups is given
by Γint). The vertices of T have valence 3 and 6, whereas the vertices of T ′ all
have valence 5. Consequently, T and T ′ are not homeomorphic and in particular
not G-equivariantly isometric. Still, the natural morphism of graphs of groups (in
the sense of [Bas93]) from Γ to Γ′ lifts to a G-equivariant map from T to T ′ that is
an isometry on edges and thus has Lipschitz constant 1, whence dLip(T, T

′) = 0.
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Γ Γint Γ′

1

1

1

Z/2Z

1

1

Z/2Z

1

1

Z/2Z

Z/2Z

Z/2Z

1

Figure 2.1: The Bass-Serre trees of the above graphs of groups lie in the same
deformation space of metric G-trees. They are irreducible and locally
finite. Since the group G acts on them cocompactly and with finite
point stabilizers, it is virtually free.

The symmetrized Lipschitz metric A standard way to overcome these issues is to
consider the symmetrized Lipschitz metric

dsymLip : PD × PD → R, (T, T ′) 7→ dLip(T, T
′) + dLip(T

′, T )

which turns out to be an actual metric on projectivized deformation spaces of
irreducible metric G-trees (in Section 2.1.3 we discuss its convergent sequences):

Proposition 2.5. If the projectivized deformation space PD is irreducible then for
all T, T ′ ∈ PD we have dsymLip (T, T ′) = 0 if and only if T and T ′ are G-equivariantly
isometric.

Proof. By Proposition 2.2(2) it suffices to show the “only if” direction. Suppose
that we have dsymLip (T, T ′) = 0, equivalently dLip(T, T

′) = 0 and dLip(T
′, T ) = 0.

Then for all ε > 0 there exist G-equivariant (1 + ε)-Lipschitz maps f : T → T ′

and f ′ : T ′ → T . Let g ∈ G be a hyperbolic group element in T and p ∈ Ag ⊂ T
a point in its hyperbolic axis. We have

lT ′(g) ≤ d(f(p), gf(p)) = d(f(p), f(gp))

≤ σ(f) · d(p, gp) = σ(f) · lT (g) ≤ (1 + ε) · lT (g)

and, analogously, lT (g) ≤ (1 + ε) · lT ′(g). As ε was arbitrary, we conclude that
lT = lT ′ and hence, by [CM87, Theorem 3.7], that the irreducible metric G-trees
T and T ′ are G-equivariantly isometric.

Remark. Thus, for T and T ′ as in Example 2.4 we have dLip(T
′, T ) > 0, since

dLip(T, T
′) = 0 but T and T ′ are not G-equivariantly isometric.
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Nevertheless, the arguments in Section 2.2 are specific for the asymmetric pseu-
dometric dLip. Besides, in contrast to dLip, the symmetrization dsymLip fails to be
geodesic, as was shown in [FM11, Section 6] in the special case of Outer space (see
Section 2.1.4 for the existence of dLip-geodesics).

2.1.1 Minimal stretch maps

Theorem 2.6. Let D be a deformation space of irreducible metric G-trees. For
all T, T ′ ∈ D there exists a G-equivariant Lipschitz map f : T → T ′ such that
σ(f) = σ(T, T ′).

The proof of Theorem 2.6 will involve an argument of Horbez [Hor14] that uses
nonprincipal ultrafilters and ultralimits of metric spaces, which are defined as
follows:

Definition 2.7. A nonprincipal ultrafilter ω on an infinite set I is a finitely
additive probability measure with values in {0, 1} such that all subsets S ⊆ I are
ω-measurable and ω(S) = 0 if S is finite.

Existence of nonprincipal ultrafilters follows from the axiom of choice. Given
a nonprincipal ultrafilter ω on the set of natural numbers N, for every bounded
sequence (cn)n∈N ⊂ R there exists a unique point limω cn ∈ R such that for
all open neighborhoods U of limω cn we have ω({n ∈ N | cn ∈ U}) = 1 (see, for
instance, [Kap01, 9.1]). In particular, if the sequence (cn)n∈N converges then we
have limω cn = limn→∞ cn.

Definition 2.8. Let ω be a nonprincipal ultrafilter on N. For a sequence of metric
spaces (Xn, dn)n∈N with basepoints (pn)n∈N let X∞ be the set of all sequences
(xn)n∈N ∈

∏
n∈NXn for which the sequence (dn(xn, pn))n∈N ⊂ R is bounded. Let

∼ be the equivalence relation on X∞ defined by

(xn)n∈N ∼ (yn)n∈N if lim
ω
dn(xn, yn) = 0.

Define the ω-ultralimit Xω of (Xn, dn, pn)n∈N as the quotient X∞/ ∼ endowed
with the metric dω((xn)n∈N, (yn)n∈N) := limω dn(xn, yn).

If each (Xn, dn), n ∈ N is a complete R-tree then (Xω, dω) is again a complete
R-tree [Sta09, Lemma 4.6]. Moreover, if a group G acts on each (Xn, dn) by
isometries and for all g ∈ G the sequence (dn(gpn, pn))n∈N ⊂ R is bounded then
(Xω, dω) carries a natural isometric G-action: For g ∈ G and (xn)n∈N ∈ Xω we
define g(xn)n∈N := (gxn)n∈N. Since for all g ∈ G and n ∈ N we have

dn(gxn, pn) ≤ dn(gxn, gpn) + dn(gpn, pn)
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= dn(xn, pn) + dn(gpn, pn)

and the sequences of real numbers (dn(xn, pn))n∈N and (dn(gpn, pn))n∈N are bounded,
so is the sequence (dn(gxn, pn))n∈N. For all g ∈ G we have

dω(g(xn)n∈N, g(yn)n∈N) = lim
ω
dn(gxn, gyn)

= lim
ω
dn(xn, yn) = dω((xn)n∈N, (yn)n∈N)

and the action of G on (Xω, dω) is by isometries.

Proof of Theorem 2.6. Let T, T ′ ∈ D and C = σ(T, T ′). We wish to construct a
G-equivariant C-Lipschitz map f : T → T ′.

Let ω be a nonprincipal ultrafilter on N and (fn : T → T ′)n∈N a sequence of
G-equivariant Cn-Lipschitz maps with Cn ≤ 2C and limn→∞Cn = C. We will
first choose a distinguished basepoint p ∈ T and show that for all n ∈ N the
image fn(p) lies in a bounded subset of T ′ that does not depend on n. This then
implies that for all g ∈ G the sequence d′(gfn(p), fn(p))n∈N ⊂ R is bounded and
that the ω-ultralimit T ′ω = (T ′, d′, fn(p))ω carries a natural isometric G-action.
(Evidently, Tω = (T, d, p)ω carries a natural isometric G-action as well.) Indeed,
as the action of G on T is irreducible, G contains a free subgroup of rank 2 acting
freely. Suppose that this free subgroup is generated by g, h ∈ G. Since T and
T ′ have the same elliptic subgroups, the free subgroup 〈g, h〉 ≤ G also acts freely
on T ′. If the hyperbolic axes Ag and Ah in T intersect, they must intersect in a
compact segment, as we could otherwise find integers k, l ∈ Z\{0} such that gkh−l

fixes a point in Ag ∩ Ah. For the following arguments we will assume that they
intersect; if they are disjoint, we replace the basis of the free subgroup with {g, hg},
whose associated axes then intersect by Proposition 1.4(3). Let p ∈ Ag ∩ Ah be
a point that lies in both axes and denote the hyperbolic axes of g and h in T ′ by
A′g and A′h respectively. By Proposition 1.4(1), and since fn is G-equivariant and
Cn-Lipschitz with Cn ≤ 2C, for all n ∈ N we have

2C · lT (g) = 2C · d(gp, p) ≥ d′(fn(gp), fn(p))

= d′(gfn(p), fn(p)) = lT ′(g) + 2d′(fn(p), A′g)

and hence d′(fn(p), A′g) ≤ 1
2(2C · lT (g) − lT ′(g)) ≤ C · lT (g). Therefore, fn(p)

lies within a (C, lT (g))-bounded distance from A′g and, analogously, within a
(C, lT (h))-bounded distance from A′h. We thus conclude that fn(p) lies within
a (C, lT (g), lT (h))-bounded distance from the compact segment A′g ∩A′h if the two
axes intersect and from the unique compact connecting segment between them if
they are disjoint. In particular, fn(p) lies in a bounded subset of T ′ that does not
depend on n. As remarked above, this implies that the ultralimits Tω = (T, d, p)ω
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and T ′ω = (T ′, d′, fn(p))ω carry natural isometric G-actions.

The metric G-trees T and T ′ embed G-equivariantly and isometrically into Tω
and T ′ω respectively: Since for all n ∈ N the point fn(p) ∈ T ′ lies in a bounded
subset that does not depend on n, for all x ∈ T ′ the sequence (d′(x, fn(p)))n∈N is
bounded and the constant sequence (x)n∈N defines a point in T ′ω. One easily verifies
that the natural inclusion T ′ ↪→ T ′ω, x 7→ (x)n∈N is indeed G-equivariant and
isometric. We analogously obtain a G-equivariant isometric embedding T ↪→ Tω.

Observe next that if (d(xn, p))n∈N is bounded then (d′(fn(xn), fn(p)))n∈N is
bounded as well, since for all n ∈ N we have d′(fn(xn), fn(p)) ≤ 2C · d(xn, p).
Thus, the maps (fn)n∈N induce a natural map

fω : Tω → T ′ω, (xn)n∈N 7→ (fn(xn))n∈N.

The map fω is easily seen to be G-equivariant, since for all g ∈ G we have

fω(g(xn)n∈N) = fω((gxn)n∈N) = (fn(gxn))n∈N

= (gfn(xn))n∈N = g(fn(xn))n∈N = gfω((xn)n∈N).

Moreover, fω is C-Lipschitz, since for all (xn)n∈N, (yn)n∈N ∈ Tω we have

d′ω(fω((xn)n∈N), fω((yn)n∈N)) = lim
ω
d′(fn(xn), fn(yn))

≤ lim
ω

(Cn · d(xn, yn))

= lim
ω
Cn · lim

ω
d(xn, yn) = C · dω((xn)n∈N, (yn)n∈N).

Finally, T ′ω is a complete R-tree, being the ω-ultralimit of complete R-trees
(namely, metric simplicial trees). In particular, the metric simplicial tree T ′ em-
beds into T ′ω as a closed subspace, as complete subspaces of complete metric spaces
are closed. By the nature of R-trees, there exists a continuous nearest point pro-
jection of T ′ω onto the closed G-invariant subtree T ′, which is easily seen to be
G-equivariant and 1-Lipschitz. We define f : T → T ′ as the composition of the
G-equivariant isometric embedding T ↪→ Tω with fω : Tω → T ′ω and the nearest
point projection T ′ω → T ′, and we obtain a G-equivariant C-Lipschitz map from
T to T ′.

Train tracks and optimal maps

We will be interested in particularly nice G-equivariant Lipschitz maps realizing
σ(T, T ′), so-called optimal maps. In order to define and construct optimal maps,
we involve the concept of train tracks:
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Definition 2.9. Let D be a deformation space of metric G-trees and T ∈ D. A
direction at a point x ∈ T is a germ of isometric embeddings γ : [0, ε)→ T, ε > 0
with γ(0) = x. Given g ∈ G with gx 6= x, we will denote the unique direction at
x pointing towards gx by δx,gx. Denote the set of directions at x by DxT . A train
track structure on T is a collection of equivalence relations, one on DvT for each
vertex v ∈ V (T ), such that two directions δ1, δ2 ∈ DvT are equivalent (denoted
δ1 ∼ δ2) if and only if for all g ∈ G the directions gδ1, gδ2 ∈ DgvT are equivalent
as well. Equivalence classes of directions at a vertex v ∈ V (T ) are called gates
at v. A turn at a vertex v ∈ V (T ) is a pair of directions at v. Given a train
track structure on T , we say that a turn at a vertex is illegal if the two directions
are equivalent, i.e., if they represent the same gate, and legal if not. Whenever
a nondegenerate immersed path γ in T passes through a vertex v of T , we may
locally reparametrize γ to an isometric embedding so that the incoming direction
(with opposite orientation) and the outgoing direction of γ at v define a turn at
v. A nondegenerate immersed path in T is legal if it only makes legal turns and
illegal otherwise.

Definition 2.10. Let D be a deformation space of metric G-trees and T, T ′ ∈ D.
Let f : T → T ′ be a G-equivariant map that is linear on edges. We denote the
union of all (closed) edges of T on which f attains its maximal slope by ∆(f) ⊂ T
and we call it the tension forest of f . The tension forest ∆(f) ⊂ T is a G-invariant
subforest.

Every G-equivariant map f : T → T ′ that is linear on edges defines a natural
train track structure on its tension forest ∆ = ∆(f) ⊂ T as follows: For each
vertex v ∈ V (∆) we have a map Dvf : Dv∆→ Df(v)T

′ that maps the direction of
γ : [0, ε) → ∆ with γ(0) = v to the direction of the unique isometric embedding
in the reparametrization class of f ◦ γ (since f does not collapse any edges in its
tension forest, it has nonzero slope on the image of γ). We define two directions
δ1, δ2 ∈ Dv∆ to be equivalent if Dvf(δ1) = Dvf(δ2). By the G-equivariance of f ,
this collection of equivalence relations is indeed a train track structure on ∆.

The tension forest ∆(f) endowed with the train track structure defined by f
might have vertices of valence 1 and, more generally, there might be vertices with
only one gate.

Definition 2.11. A G-equivariant Lipschitz map f : T → T ′ that realizes σ(T, T ′)
and is linear on edges is an optimal map if its tension forest ∆(f) has at least 2
gates at every vertex.

Optimality of f implies that any legal path in ∆(f) may be extended in both
directions to a longer legal path and, inductively, that there exists a legal line in
∆(f). This will be made use of in the proof of Theorem 2.14.
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Proposition 2.12. Let D be a deformation space of metric G-trees and T, T ′ ∈
D. Every G-equivariant Lipschitz map f : T → T ′ that realizes σ(T, T ′) and is
linear on edges is G-equivariantly homotopic to an optimal map f ′ : T → T ′ with
∆(f ′) ⊆ ∆(f). If f is not optimal to begin with then we have ∆(f ′) 6= ∆(f).

Theorem 2.6 and Proposition 2.12 imply that if D consists of irreducible metric
G-trees then for all T, T ′ ∈ D there exists an optimal map f : T → T ′.

Proof. Let ∆ = ∆(f). If a vertex v ∈ V (∆) has only one gate δ ∈ Dv∆, slightly
move f(v) in the direction of Dvf(δ) ∈ Df(v)T

′ (see Figure 2.2). Perform this

f(v)

Figure 2.2: The image of ∆ under f (dashed) and the direction in which we slightly
move f(v) (arrow).

perturbation G-equivariantly and keep the homotopy fixed on all other G-orbits
of vertices of T . This decreases the slope of f on the G-orbits of all edges of
∆ adjacent to v and we obtain a G-equivariant Lipschitz map f ′ : T → T ′ with
∆(f ′) ⊂ ∆ but ∆(f ′) 6= ∆. Keeping the perturbation small enough ensures that
the (finitely many) G-orbits of the edges of T \ ∆ adjacent to v, on which the
slope is increased, do not become part of the new tension forest. As f is assumed
to have minimal Lipschitz constant among all G-equivariant Lipschitz maps from
T to T ′, we will not have removed all edges of ∆ and started over with a new
tension forest that corresponds to a strictly smaller maximal stretching factor.
This process eventually terminates by the cocompactness of T .

2.1.2 Witnesses

The results in this section will imply that the Lipschitz metric on projectivized
deformation space of irreducible metric G-trees can be computed in terms of hy-
perbolic translation lengths. We begin with an easy observation:

Lemma 2.13. Let D be a deformation space of metric G-trees and T, T ′ ∈ D.
For any G-equivariant Lipschitz map f : T → T ′ and any hyperbolic group element

g ∈ G we have σ(f) ≥ lT ′ (g)
lT (g) . In particular, we have σ(T, T ′) ≥ supg

lT ′ (g)
lT (g) , where

g ranges over all hyperbolic group elements of G.
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Proof. Let p ∈ Ag. We have lT ′(g) ≤ d(gf(p), f(p)) ≤ σ(f) ·d(gp, p) = σ(f) · lT (g),
whence the claim.

Theorem 2.14. Let D be a deformation space of irreducible metric G-trees. For
all T, T ′ ∈ D there exists a hyperbolic group element ξ ∈ G such that

σ(T, T ′) =
lT ′(ξ)

lT (ξ)
= sup

g

lT ′(g)

lT (g)

where g ranges over all hyperbolic group elements of G. In fact, we can always
arrange that some (and hence any) fundamental domain for the action of ξ on its
hyperbolic axis Aξ ⊂ T meets each G-orbit of vertices of T at most 10 times.

We will call a hyperbolic group element ξ ∈ G (or, depending on the context,

its hyperbolic axis Aξ ⊂ T ) satisfying σ(T, T ′) =
lT ′ (ξ)
lT (ξ) a witness for the minimal

stretching factor from T to T ′. A hyperbolic group element g ∈ G such that
some (and hence any) fundamental domain for the action of g on its axis Ag ⊂ T
meets each G-orbit of vertices of T at most 10 times will be called a candidate of
T . Theorem 2.14 asserts that there always exists a witness which is a candidate
(our notion of candidates is nonstandard, as remarked below). We will denote by
cand(T ) ⊂ G the set of candidates of T .

If we choose for each g ∈ cand(T ) a fundamental domain for the action of g on
its axis Ag ⊂ T , these fundamental domains project to only finitely many different
edge loops in the metric quotient graph G\T . In particular, the set of translation
lengths {lT (g) | g ∈ cand(T )} ⊂ R is finite. At the same time, for any T ′ ∈ D
the set {lT ′(g) | g ∈ cand(T )} ⊂ R is finite as well, since the image of lT ′ in R
is discrete and we have lT ′(g) ≤ σ(T, T ′) · lT (g) for all g ∈ G. If T, T ′ ∈ D are
G-equivariantly homeomorphic then cand(T ) = cand(T ′).

Remark. With significantly more effort, one can further show that there always
exists a witness whose hyperbolic axis projects to a loop in G\T with certain
topological properties, as was done in [FM11, Proposition 3.15] for free metric
Fn-trees and in [FM13, Theorem 9.10] in the special case of irreducible metric
G-trees with trivial edge stabilizers. However, the weaker finiteness properties of
candidates discussed above will suffice for all our applications.

In the proof of Theorem 2.14 we will make use of the following characterization
of witnesses:

Lemma 2.15. Let D be a deformation space of metric G-trees and T, T ′ ∈ D. For
an optimal map f : T → T ′ and a hyperbolic group element g ∈ G, the following
are equivalent:

(1) σ(f) =
lT ′ (g)
lT (g) ;
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(2) the hyperbolic axis Ag ⊆ T is contained in the tension forest ∆(f) and it is
legal with respect to the train track structure defined by f ;

(3) the hyperbolic axis Ag ⊆ T is contained in the tension forest ∆(f) and
f(Ag) ⊆ T ′ equals A′g, the hyperbolic axis of g in T ′.

Proof. (2)⇒ (3)⇒ (1) Since f is G-equivariant and Ag is legal, the image f(Ag)
is a g-invariant line and thus equals A′g. Consequently, and since Ag is assumed
to lie in the tension forest ∆(f), for p ∈ Ag we have

lT ′(g) = d(gf(p), f(p)) = d(f(gp), f(p)) = σ(f) · d(gp, p) = σ(f) · lT (g)

and we conclude that σ(f) =
lT ′ (g)
lT (g) .

(1) ⇒ (2) We will argue by contradiction. First, suppose that Ag is not con-
tained in the tension forest ∆(f). Then for any p ∈ Ag the segment [p, gp] is
stretched by strictly less than σ(f) and we have

lT ′(g) ≤ d(gf(p), f(p)) = d(f(gp), f(p))

< σ(f) · d(gp, p) = σ(f) · lT (g)

whence σ(f) >
lT ′ (g)
lT (g) . On the other hand, if Ag is contained in ∆(f) but not legal

with respect to the train track structure defined by f then there exists a vertex
v ∈ V (Ag) at which the two directions of Ag define the same gate. The images
of [g−1v, v] and [v, gv] under f then overlap in a segment of positive length and

lT ′(g) is strictly smaller than σ(f) · lT (g), whence
lT ′ (g)
lT (g) < σ(f).

Proof of Theorem 2.14. Since T and T ′ are irreducible, there exists an optimal
map f : T → T ′ (this is the only step in the proof that uses irreducibility). By
Lemma 2.15, it suffices to find a hyperbolic group element ξ ∈ G whose axisAξ ⊆ T
is contained in ∆ = ∆(f) and legal with respect to the train track structure defined
by f . It will be clear from our construction of ξ that a fundamental domain for
the action of ξ on Aξ meets each G-orbit of vertices of T at most 10 times, i.e., ξ
is a candidate.

Since ∆ has at least 2 gates at every vertex, we can find a legal ray R ⊂ ∆
based at some vertex v0 ∈ V (∆). There always exists a vertex x ∈ V (R) such
that x = gx0 for some x0 ∈ [v0, x) and some hyperbolic group element g ∈ G,
which can be seen as follows: Since T is minimal and therefore cocompact, there
are only finitely many G-orbits of vertices in T . We can thus find pairwise distinct
vertices x0, x1, x2 ∈ V (R) and g1, g2 ∈ G such that x1 = g1x0 and x2 = g2x1. If
either g1 or g2 is hyperbolic, we are done. If both are elliptic, each gi fixes only the
midpoint of the segment [xi−1, xi] and the product g = g2g1 maps x0 to x2. The
fixed point sets of g1 and g2 being disjoint, g is hyperbolic by Proposition 1.4(2).
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We choose x to be the first vertex of R with this property, for which the segment
[x0, x] meets the G-orbit of x0 at most 3 times (there could lie an elliptic translate
of x0 in between x0 and gx0) and each G-orbit of vertices other than that of x0

at most 2 times. The segment [x0, x] ⊂ R is then a closed fundamental domain
for the action of g on Ag and the stretching factor of f on any subsegment of Ag
equals that of f on [x0, x] ⊂ ∆, whence Ag ⊆ ∆. If Ag is legal, we are done. If
not, since all turns of Ag in between x0 and x are legal but Ag is assumed illegal,
the turns at x0 and x must be illegal. We then have Ag ∩ R = [x0, x] and we
continue moving along the legal ray R until we reach the first vertex y ∈ V (R)
with y = hy0 for some y0 ∈ (x, y) and some hyperbolic group element h ∈ G.
Analogously, the segment [y0, y] meets the G-orbit of y0 at most 3 times and each
G-orbit of vertices other than that of y0 at most 2 times. Note that the open
segment (x, y0) meets each G-orbit of vertices of T at most 2 times.

If Ah ⊆ ∆ is legal, we are done. If not, we have Ag∩Ah = ∅ and the product hg
is hyperbolic by Proposition 1.4(3). A closed fundamental domain for the action
of hg on its axis Ahg is given by [x0, hx] = [x0, x] ∪ [x, y0] ∪ [y0, y] ∪ h[y0, x] ⊂ ∆,
since we have hg[x0, hx] ∪ [x0, hx] = {hx} (see Figure 2.3). We conclude that
Ahg ⊆ ∆. In particular, the fundamental domain [x0, hx) meets each G-orbit of
vertices of T at most 3 + 2 + 3 + 2 = 10 times and hg is a candidate of T .

Ag
x0 x = gx0 gx

g−1Ah

Ah
h−1y0

y0

hx hgx

y = hy0

hAg
δhx,y hgδx0,x

Figure 2.3: The segment [x0, hx] (both bold and dashed, where we know that the
bold part lies in R) and the directions hgδx0,x and δhx,y (arrows).

In order to show that Ahg is legal, it suffices to show that [x0, hx] does not make
any illegal turns and that the directions hgδx0,x and δhx,y are not equivalent. By
the legality of R, it is clear that all turns of the subsegment [x0, y] are legal.
The turn of [x0, hx] at y is legal if and only if δy,y0 � δy,hx. This is equivalent to
δy0,h−1y0

� δy0,x but which is true since Ah is assumed illegal (i.e., δy0,h−1y0
∼ δy0,y)
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and δy0,y � δy0,x by the legality of R. Lastly, we need to show that hgδx0,x � δhx,y.
We analogously observe that this is the case if and only if δx,gx � δx,y0 but which
is true as Ag is illegal (i.e., δx,gx ∼ δx,x0) and δx,x0 � δx,y0 by the legality of R.

We give a proof of the following well-known fact in the language of trees:

Proposition 2.16. The Lipschitz metric on Outer space PX n (Example 1.29)
is an asymmetric metric. That is, if two metric Fn-trees T, T ′ ∈ PX n satisfy
dLip(T, T

′) = 0 then they are Fn-equivariantly isometric.

Proof. Let f : T → T ′ be an optimal map with σ(f) = 1. For e ∈ E(T ) we denote
by σe(f) the slope of f on e. Since f is surjective, the induced map on metric
quotient graphs Fn\f : Fn\T → Fn\T ′ is surjective as well and we have

1 = vol(im(Fn\f)) =

 ∑
e∈E(Fn\T )

σe(f) · length(e)

− C
where C ≥ 0 measures overlaps of images of edges. Since T has covolume 1 and
σe(f) ≤ σ(f) = 1 for all e ∈ E(T ), we conclude that 1 ≤ σ(f)−C = 1−C, whence
C = 0. Consequently, we have σe(f) = 1 for all e ∈ E(T ) and hence ∆(f) = T .

The Fn-trees in PX n are irreducible, and in order to prove the claim it suffices
to show that for all hyperbolic (here, nontrivial) group elements g ∈ Fn we have
lT (g) = lT ′(g). On the one hand, if g ∈ Fn is hyperbolic and p ∈ Ag ⊂ T a point
in its hyperbolic axis, we have

lT ′(g) ≤ d(f(p), gf(p)) = d(f(p), f(gp)) ≤ σ(f) · d(p, gp) = lT (g).

On the other hand, suppose that there exists a hyperbolic group element g ∈ Fn
such that lT ′(g) is strictly smaller than lT (g). Since the tension forest of f is all
of T , by Lemma 2.15 the hyperbolic axis Ag ⊂ T cannot be legal with respect to
the train track structure defined by f . Hence, we can find a vertex v ∈ V (Ag) at
which the turn defined by Ag is not legal, i.e., at which the germs of two adjacent
edges are mapped to the same germ under f . Since Fn acts on T freely, the two
germs are not Fn-equivalent and we can find a fundamental domain X ⊂ T for
the action of Fn on T that contains the two germs and has volume 1. Its image
f(X) ⊂ T ′ is a fundamental domain for the action of Fn on T ′ whose volume is
strictly smaller than 1, contradicting the fact that T ′ has covolume 1.

Remark. The proof of Proposition 2.16 is specific for free metric Fn-trees, as the
two germs may otherwise be G-equivalent (their common vertex may be stabilized
by a nontrivial group element that swaps the two adjacent edges). In that case, we
can no longer find a fundamental domain of volume 1 that contains both germs.
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2.1.3 Convergent sequences

In this section we relate topological convergence in projectivized deformation
spaces of metric G-trees with convergence with respect to the (symmetrized) Lip-
schitz metric.

Proposition 2.17. Let PD be a projectivized deformation space of irreducible
metric G-trees and (Tk)k∈N a sequence in PD that converges to T ∈ PD in the
weak topology. Then limk→∞ d

sym
Lip (Tk, T ) = 0.

In the weak topology, PD is homeomorphic to the covolume-1-section in the
unprojectivized deformation space D. Thus, the sequence (Tk)k∈N weakly con-
verges to T also as covolume-1-representatives in D. The weak topology being the
finest of the three topologies, (Tk)k∈N converges to T in all three topologies, where
convergence in the unprojectivized axes topology means that for all g ∈ G we have
limk→∞ lTk(g) = lT (g) (pointwise convergence of translation length functions).

Proof. We will first show that limk→∞ dLip(Tk, T ) = 0. Let (fk : Tk → T )k∈N be a
sequence of optimal maps. By Theorem 2.14, for all k ∈ N there exists a candidate
ξk ∈ cand(Tk) ⊂ G such that

dLip(Tk, T ) = log

(
lT (ξk)

lTk(ξk)

)
.

Since the sequence (Tk)k∈N converges weakly, it meets only finitely many open
simplices of PD and the metric G-trees (Tk)k∈N are of only finitely many G-
equivariant homeomorphism types. After decomposing the sequence into subse-
quences (for each of which we will obtain the same result), we may assume that
the metric G-trees are in fact all G-equivariantly homeomorphic, or even equal
as nonmetric G-trees. The set of candidates cand(Tk) ⊂ G is then independent
of k and (lT (ξk))k∈N takes only finitely many values. After decomposing (Tk)k∈N
into subsequences once more, we may assume that (lT (ξk))k∈N is constant, say
lT (ξk) = C for all k ∈ N.

By the remarks made above, the sequence (Tk)k∈N converges also as covolume-
1-representatives in the unprojectivized axes topology. Thus, for all K ∈ N we
have limk→∞ lTk(ξK) = lT (ξK) = C. Recall that the candidates (ξK)K∈N ⊂ G
give rise to only finitely many different edge loops in the quotient graph G\T1. In
fact, if two candidates ξK1 and ξK2 give rise to the same edge loop in G\T1 then
they give rise to the same edge loop in G\Tk for all k ∈ N (because the metric
G-trees (Tk)k∈N all have the same underlying nonmetric G-tree). Thus, the family
of sequences {(lTk(ξK))k∈N | K ∈ N} is finite and for all ε > 0 there exists N > 0
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such that for all K ∈ N we have

|C − lTk(ξK)| < ε

whenever k ≥ N . In particular, we have |C − lTk(ξk)| < ε whenever k ≥ N and
we conclude that limk→∞ lTk(ξk) = C. Consequently,

lim
k→∞

dLip(Tk, T ) = log

(
lim
k→∞

lT (ξk)

lTk(ξk)

)
= log

(
C

limk→∞ lTk(ξk)

)
= log (1) = 0.

Showing that limk→∞ dLip(T, Tk) = 0 is similar but easier, because it does not
require that the sequence (Tk)k∈N meets only finitely many open simplices of
PD.

As for the converse of Proposition 2.17, we have the following:

Proposition 2.18. Let PD be a projectivized deformation space of irreducible
metric G-trees and (Tk)k∈N a sequence in PD such that for some T ∈ PD we have
limk→∞ d

sym
Lip (Tk, T ) = 0. Then (Tk)k∈N converges to T in the axes topology.

In contrast to convergence in the unprojectivized axes topology, the sequence
(Tk)k∈N converges to T in the projectivized axes topology if there exist positive
real numbers (Ck)k∈N such that for all g ∈ G we have limk→∞Ck · lTk(g) = lT (g)
(pointwise convergence of projectivized translation length functions).

Proof. We will argue as in the proof of [FM11, Theorem 4.11]. For any posi-
tive real-valued function f satisfying sup 1

f(x) < ∞ we have sup 1
f(x) = 1

inf f(x) .
Therefore, since

1
lTk (g)

lT (g)

=
lT (g)

lTk(g)
≤ σ(Tk, T ) <∞

for all hyperbolic group elements g ∈ G, we have

lim
k→∞

dsymLip (Tk, T ) = 0 ⇔ lim
k→∞

supg
lTk (g)

lT (g)

infg
lTk (g)

lT (g)

= 1.

Assuming that limk→∞ d
sym
Lip (Tk, T ) = 0, we conclude that for all ε > 0 there exists

K ∈ N such that for all k ≥ K we have

(2.1) inf
g

lTk(g)

lT (g)
≤ sup

g

lTk(g)

lT (g)
≤ inf

g

lTk(g)

lT (g)
· (1 + ε).
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Clearly, for all hyperbolic group elements ξ ∈ G we have

inf
g

lTk(g)

lT (g)
≤ lTk(ξ)

lT (ξ)
≤ sup

g

lTk(g)

lT (g)
.

Setting Ik = infg
lTk (g)

lT (g) , inequality (2.1) implies that Ik ≤
lTk (ξ)

lT (ξ) ≤ Ik · (1 + ε)
whenever k ≥ K. In particular, the unprojectivized translation length functions
( 1
Ik
lTk)k∈N converge to lT uniformly and a fortiori pointwise. We conclude that

the metric G-trees (Tk)k∈N converge to T in the projectivized axes topology.

Recall from Section 1.2.2 that if PD is a projectivized deformation space of
locally finite irreducible metric G-trees with finitely generated vertex stabilizers
then the Gromov topology, the axes topology, and the weak topology agree.

Corollary 2.19. Let PD be a projectivized deformation space of locally finite irre-
ducible metric G-trees with finitely generated vertex stabilizers. The symmetrized
Lipschitz metric dsymLip induces the standard topology on PD.

Proof. Since the locally finite complex PD is metrizable, it suffices to show that
the two topologies have the same convergent sequences. This immediately follows
from Propositions 2.17 and 2.18 and the fact that the Gromov topology, the axes
topology, and the weak topology agree on PD.

Example 2.20. The symmetrized Lipschitz metric induces the standard topology
on the projectivized deformation spaces discussed in Examples 1.30 and 1.31.

2.1.4 Folding paths and geodesics

Let D be a deformation space of metric G-trees and T, T ′ ∈ D. Recall from
Section 1.3.2 that if we are given a morphism f : T → T ′, we may “fold T along
f” to obtain a 1-parameter family of metric G-trees (Tt)t∈[0,∞] in D together with
morphisms φt : T → Tt and ψt : Tt → T ′ such that

• T0 = T and T∞ = T ′;

• φ0 = idT , φ∞ = ψ0 = f , and ψ∞ = idT ′ ;

• for all t ∈ [0,∞] the following diagram commutes:

T
f //

φt ��

T ′

Tt

ψt

>>
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As remarked in Section 1.3.2, the folding path [0,∞] → D, t → Tt and its
projection to the projectivized deformation space PD are continuous in all three
topologies.

Definition 2.21. Let PD be a projectivized deformation space of metric G-trees.
A path γ : [a, b] → PD, t 7→ γ(t) with a < b ∈ R is dLip-continuous if for all
convergent sequences (xn)n∈N ⊂ [a, b] with limn→∞ xn = x we have

lim
n→∞

dLip(γ(xn), γ(x)) = 0 and lim
n→∞

dLip(γ(x), γ(xn)) = 0.

We say that a dLip-continuous path γ : [a, b]→ PD, t 7→ γ(t) with a < b ∈ R is a
dLip-geodesic if for all x < y < z ∈ [a, b] we have

dLip(γ(x), γ(y)) + dLip(γ(y), γ(z)) = dLip(γ(x), γ(z)).

Remark. In metric spaces, geodesics in the above sense can be reparametrized to
have unit speed. However, since dLip is an asymmetric pseudometric, unit speed
reparametrizations in PD need not always exist.

Lemma 2.22. Let PD be a projectivized deformation space of irreducible metric
G-trees and γ : [a, b] → PD a dLip-continuous path with a < b ∈ R. If for all
x < y < z ∈ [a, b] there exists a hyperbolic group element ξ ∈ G such that

(2.2) σ(γ(x), γ(y)) =
lγ(y)(ξ)

lγ(x)(ξ)
and σ(γ(y), γ(z)) =

lγ(z)(ξ)

lγ(y)(ξ)

then γ is a dLip-geodesic.

Proof. We have

sup
g

lγ(z)(g)

lγ(x)(g)
≥
lγ(z)(ξ)

lγ(x)(ξ)
=
lγ(y)(ξ)

lγ(x)(ξ)
·
lγ(z)(ξ)

lγ(y)(ξ)
= sup

g

(
lγ(y)(g)

lγ(x)(g)

)
· sup

g

(
lγ(z)(g)

lγ(y)(g)

)
and hence, by Theorem 2.14, dLip(γ(x), γ(z)) ≥ dLip(γ(x), γ(y))+dLip(γ(y), γ(z)).
We conclude that dLip(γ(x), γ(z)) = dLip(γ(x), γ(y)) + dLip(γ(y), γ(z)).

By Proposition 2.17, if PD is irreducible then any path in PD that is continuous
in the weak topology – such as the folding path [0,∞] → PD, t → Tt described
above – is dLip-continuous. As in [FM11] in the special case of Outer space, one
can make use of folding paths to construct geodesics in projectivized deformation
spaces of irreducible metric G-trees:

Theorem 2.23. If PD is a projectivized deformation space of irreducible metric
G-trees then for all T, T ′ ∈ PD there exists a dLip-geodesic γ : [0, 1] → PD with
γ(0) = T and γ(1) = T ′.
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2.1 The Lipschitz metric

Proof. Let f : T → T ′ be an optimal map and ξ ∈ G a witness for the distance from
T to T ′. By Lemma 2.22, it suffices to construct a path γ : [0, 1]→ PD from T to
T ′ such that for all x < y < z ∈ [0, 1] we have (2.2). We will construct such a path
in the unprojectivized deformation space D, and since any witness for the minimal
stretching factor between two metric G-trees remains a witness after scaling the
metrics on the trees, the projection of the path to PD will still satisfy (2.2). In
order to do so, we again regard T and T ′ as their covolume-1-representatives in
D. Let

C = exp(dLip(T, T
′)) =

lT ′(ξ)

lT (ξ)

and let T be the metric G-tree obtained from T by G-equivariantly shrinking each
edge of T that is mapped to a point under f to length 0 (collapsing these edges
does not create any new elliptic subgroups, as the G-equivariant map f : T → T ′

factors through the quotient) and G-equivariantly shrinking all other edges so
that they are stretched by the factor C under f . Note that we only shrink edges
in the complement of the tension forest ∆(f). Then, homothete T to CT such
that f : CT → T ′ becomes an isometry on edges, i.e., a morphism. We may now
fold CT along f to obtain a family of metric G-trees (Tt)t∈[0,∞] that interpolate

between CT and T ′ as explained above (see Figure 2.4 for a structural sketch).
This produces a path γ : [0, 1] → D from T to T ′ that is continuous in all three

CT

f

&&

T
f

**T
f // T ′

Figure 2.4: The path from T to T to CT to T ′ in D projects to a geodesic from T
to T ′ in PD.

topologies and also with respect to dLip.

We claim that for every metric G-tree S in between T and CT we have

σ(T, S) =
lS(ξ)

lT (ξ)
and σ(S, T ′) =

lT ′(ξ)

lS(ξ)
.

Analogously, we claim that for every metric G-tree Tt in between CT and T ′ we
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have

σ(T, Tt) =
lTt(ξ)

lT (ξ)
and σ(Tt, T

′) =
lT ′(ξ)

lTt(ξ)
.

As for any a ≤ s ≤ t ≤ b the same construction of a path from γ(s) to γ(t) yields
precisely the restriction of γ to [s, t], this then proves that γ satisfies (2.2).

First, consider a metric G-tree S that lies in between T and T . As S is obtained
from T by shrinking edges of T , we have σ(T, S) ≤ 1. However, as we only shrink
edges outside of ∆(f), the hyperbolic axis Aξ ⊂ ∆(f) is not touched and we have
lS(ξ)
lT (ξ) = 1. We may immediately deduce from this that σ(T, S) = lS(ξ)

lT (ξ) , as for

all hyperbolic group elements g ∈ G we have σ(T, S) ≥ lS(g)
lT (g) (see Lemma 2.13).

Likewise, the map f : S → T ′ still has Lipschitz constant C so that σ(S, T ′) ≤ C.
The axis Aξ ⊂ ∆(f) ⊂ S remains legal and is stretched by the factor C, whence
lT ′ (ξ)
lS(ξ) = C and therefore σ(S, T ′) =

lT ′ (ξ)
lS(ξ) .

Analogously, if S lies in between T and CT , say S = C ′T with C ′ ∈ [1, C],

then σ(T, S) ≤ C ′ and lS(ξ)
lT (ξ) = C ′, whence σ(T, S) = lS(ξ)

lT (ξ) . The map f : S → T ′

has Lipschitz constant C
C′ and the axis Aξ ⊂ ∆(f) ⊂ S is stretched by C

C′ . We

conclude that σ(S, T ′) =
lT ′ (ξ)
lS(ξ) .

Consider now a metric G-tree Tt in between CT and T ′. As the quotient map

φt : CT → Tt is 1-Lipschitz, the composition T
id→ CT

φt→ Tt is C-Lipschitz. The
hyperbolic axis Aξ ⊂ ∆(f) ⊂ T is legal with respect to f and hence does not get

folded in Tt = CT/∼t. We therefore have
lTt (ξ)

lT (ξ) = C, whence σ(T, Tt) =
lTt (ξ)

lT (ξ) .

Analogously, the induced map ψt : Tt → T ′ is 1-Lipschitz and the hyperbolic axis

Aξ ⊂ ∆(ψt) ⊂ Tt is legal with respect to ψt. We conclude that
lT ′ (ξ)
lTt (ξ)

= 1 and

hence that σ(Tt, T
′) =

lT ′ (ξ)
lTt (ξ)

.

2.2 Displacement functions

Let PD be a projectivized deformation space of metric G-trees and Φ ∈ OutD(G).
We equip PD with the Lipschitz metric dLip and define the displacement function
associated to Φ as the function

Φ̃ : PD → R≥0, T 7→ dLip(T, TΦ).

We call Φ elliptic if inf Φ̃ = 0 and the infimum is realized. We say that Φ is
hyperbolic if inf Φ̃ > 0 and the infimum is realized. Lastly, Φ is parabolic if inf Φ̃
is not realized.
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2.2.1 Elliptic automorphisms

If Φ ∈ OutD(G) is elliptic then, by definition, there exists a metric G-tree T ∈ PD
such that dLip(T, TΦ) = 0. One would like to conclude that T lies in the fixed
point set of Φ, but from Example 2.4 we know that the asymmetric pseudometric
dLip fails to be an asymmetric metric, i.e., dLip(T, T

′) = 0 does generally not
imply that T and T ′ are G-equivariantly isometric. The metric G-trees T and
T ′ in the counterexample are not homeomorphic and thus they do not lie in the
same OutD(G)-orbit, for they would otherwise have the same underlying metric
simplicial tree. Therefore, one may still ask whether dLip is an asymmetric metric
on OutD(G)-orbits. As we will see, the general answer is “no” (Example 2.30) but
it is “yes” in certain cases (Proposition 2.24). The arguments in this section arose
out of discussions with Camille Horbez and Gilbert Levitt.

The separation property of dLip on OutD(G)-orbits Let PD be a projectivized
deformation space of metric G-trees. Let T ∈ PD and Φ ∈ OutD(G) such that
dLip(T, TΦ) = 0. If T is irreducible then there exists an optimal map f : T → TΦ
with σ(f) = 1, and one easily shows (as in the proof of Proposition 2.16) that f has
stretching factor 1 on all edges of T . After subdividing the simplicial structures
on T and TΦ (independently of each other) by G-equivariantly adding redundant
vertices, f becomes simplicial (see Definition 1.58). We will denote the subdivided
metric G-trees again by T and TΦ.

If all edge stabilizers of T are finitely generated then by [BF91, Section 2]
the simplicial map f factors as a finite composition of G-equivariant simplicial
quotient maps, so-called folds, which can be classified into types IA-IIIA, IB-IIIB,
and IIIC (we refer the reader to [BF91] for definitions). All folds other than type
IIA and IIB folds irreversibly decrease the metric covolume, so they cannot occur.
After subdividing the simplicial structure on T once more, a type IIB fold is a
composition of two type IIA folds (these subdivisions add only a finite number of
G-orbits of vertices), so we may assume that f factors as a finite composition of
type IIA folds. Explicitly, a type IIA fold is a simplicial quotient map T → T/∼,
where ∼ is a G-equivariant equivalence relation on T that is of the following form:
There are distinct edges e1, e2 ∈ E(T ) with ι(e1) = ι(e2) ∈ V (T ) and a group
element g ∈ Gι(e1) such that ge1 = e2, and ∼ is the equivalence relation generated
by he1 ∼ he2 for all h ∈ G. Intuitively, on the level of quotient graphs of groups,
performing a type IIA fold corresponds to pulling an element of a vertex stabilizer
along an edge (see Figure 2.5).

A type IIA fold always enlarges but never reduces an edge group. We will make
use of this behavior to confirm the separation property of dLip on OutD(G)-orbits
in the following special case:
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G
E

H G
〈E, g〉

〈H, g〉
type IIA fold

g ∈ G, g /∈ E

Figure 2.5: The effect of a type IIA fold on the quotient graph of groups.

Proposition 2.24 (Levitt). Let PD be a projectivized deformation space of locally
finite irreducible metric G-trees with finitely generated edge stabilizers. If PD has
no nontrivial integral modulus (see Section 1.2.2) and if T ∈ PD and Φ ∈ OutD(G)
satisfy dLip(T, TΦ) = 0 then T and TΦ are G-equivariantly isometric.

Before we turn to the proof of Proposition 2.24, we discuss the existence of
maximal elliptic subgroups, i.e., elliptic subgroups that are not properly contained
in any other elliptic subgroup. A maximal elliptic subgroup is always a vertex
stabilizer.

Lemma 2.25. Let PD be a projectivized deformation space of locally finite metric
G-trees. If PD has no nontrivial integral modulus then for any G-tree T ∈ PD and
any edge e ∈ E(T ) the edge group Ge is contained in a maximal elliptic subgroup
of T .

Proof. We first observe that, under these assumptions, for any vertex v ∈ V (T ) the
vertex group Gv ≤ G is not properly contained in a conjugate of itself: Suppose to
the contrary that there exists a vertex v ∈ V (T ) such that Gv is a proper subgroup
of gGvg

−1 for some g ∈ G. We then have

µ(g) =
[Gv : (Gv ∩ gGvg−1)]

[gGvg−1 : (Gv ∩ gGvg−1)]
=

1

[gGvg−1 : Gv]

with [gGvg
−1 : Gv] > 1, in which case µ(g−1) = 1

µ(g) is a nontrivial integral
modulus, contradicting our assumptions. To prove the lemma, we again argue
by contradiction: Suppose that the edge group Ge is not contained in a maximal
elliptic subgroup. Each vertex group adjacent to e is then properly contained
in another vertex group, which is again properly contained in yet another vertex
group. Inductively, we obtain an infinite properly ascending chain of vertex groups
that lie in only finitely many conjugacy classes by the cocompactness of T . We
conclude that there exists a vertex v ∈ V (T ) and a group element g ∈ G such
that Gv is a proper subgroup of gGvg

−1, which contradicts the first part of the
proof.

The following lemma will be used in the proof of Proposition 2.24 as well:
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Lemma 2.26 ([For06, Lemma 8.1]). Let Q ⊂ (Q>0,×) be a finitely generated
subgroup such that Q ∩ Z = {1}. Then for any r ∈ Q the set rQ ∩ Z is finite.

Proof of Proposition 2.24. Since T is irreducible and has finitely generated edge
stabilizers, after subdividing the simplicial structures on T and TΦ there exists a
G-equivariant simplicial map f : T → TΦ that factors as a finite composition of
type IIA folds. We claim that TΦ cannot be obtained from T by nontrivial type
IIA folds, whence T and TΦ are G-equivariantly isometric:

By Lemma 2.25, the stabilizerGe of any edge e ∈ E(T ) is contained in a maximal
elliptic subgroup of T , which is always a vertex stabilizer. Let Mi ≤ G, i ∈ I be
the maximal elliptic subgroups of T that contain Ge. Since T has only finitely
many G-orbits of vertices, the vertex groups Mi, i ∈ I fall into only finitely many
conjugacy classes, and we assume for a moment that they are in fact all conjugate.
Then, for a distinguished maximal elliptic subgroup M containing Ge, the image
of the modular homomorphism µ : G→ (Q>0,×) defined by

µ(g) =
[M : (M ∩ gMg−1)]

[gMg−1 : (M ∩ gMg−1)]

contains the values

[Mi : (M ∩Mi)]

[M : (M ∩Mi)]
=

[Mi : (M ∩Mi)]

[M : (M ∩Mi)]
· [(M ∩Mi) : Ge]

[(M ∩Mi) : Ge]
=

[Mi : Ge]

[M : Ge]
, i ∈ I.

Since PD has no nontrivial integral modulus, Lemma 2.26 implies that the indices
[Mi : Ge], i ∈ I can take only finitely many values. Consequently, there exists
a maximum index I(Ge) of Ge in the maximal elliptic subgroups Mi, i ∈ I. If
the maximal elliptic subgroups containing Ge are not all conjugate, we associate
to each of their finitely many conjugacy classes the maximum index of Ge and
define I(Ge) as the sum of these. One readily sees that for all g ∈ G we have
I(gGeg

−1) = I(Ge) so that we have I(Ge) = I(Ge′) if e and e′ lie in the same
G-orbit of edges of T . Finally, let

I(T ) =
∑
e∈G\T

length(e) · I(Ge)

where e ranges over the finitely many edges in the metric quotient graph of groups
of T . The value I(T ) is insensitive to simplicial subdivisions of T and for all
Φ ∈ OutD(G) we have I(TΦ) = I(T ). On the other hand, after performing
a type IIA fold, for the enlarged edge group 〈E, g〉 we have I(〈E, g〉) < I(E),
whereas all other edge groups are left invariant. Thus, if T ′ ∈ PD is obtained
from T by a nontrivial sequence of type IIA folds then I(T ′) < I(T ), whence the
claim.
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Example 2.27. Let G be a finitely generated virtually nonabelian free group
and PD the projectivized deformation space of minimal metric G-trees with finite
vertex stabilizers (Example 1.30). We know from Example 1.36 that PD has no
nontrivial integral modulus. Hence, if for T ∈ PD and Φ ∈ OutD(G) = Out(G)
we have dLip(T, TΦ) = 0 then T and TΦ are G-equivariantly isometric.

Corollary 2.28. Let G be a finitely generated virtually nonabelian free group and
PD the projectivized deformation space of minimal metric G-trees with finite vertex
stabilizers. An automorphism Φ ∈ OutD(G) = Out(G) is elliptic with respect to
dLip if and only if it has finite order.

Proof. By Example 2.27, an automorphism Φ ∈ Out(G) is elliptic with respect to
dLip if and only if it has a fixed point in PD, and we know from Example 1.66
that Φ has a fixed point in PD if and only if it has finite order.

Example 2.29. Let G be a nonelementary GBS group that contains no solv-
able Baumslag-Solitar group BS(1, n) with n ≥ 2. Let PD be the projectivized
deformation space of minimal metric G-trees with infinite cyclic vertex and edge
stabilizers (Example 1.31). By Lemma 1.33, PD has no nontrivial integral mod-
ulus. Thus, if for T ∈ PD and Φ ∈ OutD(G) = Out(G) we have dLip(T, TΦ) = 0
then T and TΦ are G-equivariantly isometric.

However, the asymmetric Lipschitz pseudometric dLip does not restrict to an
asymmetric metric on OutD(G)-orbits in general:

Example 2.30 (Horbez). Let G = BS(1, 6) ∗ F2 = 〈x, t | txt−1 = x6〉 ∗ F2

and consider the metric graph of groups decompositions Γ and Γ′ of G shown in
Figure 2.6, where all edge group inclusions are the obvious ones and all edges have
length 1

3 . Let T and T ′ be the corresponding metric G-trees. The automorphism

ϕ : BS(1, 6)
∼=−→ BS(1, 6), x 7→ x3, t 7→ t

induces an automorphism Φ = ϕ ∗ idF2 ∈ Aut(G) for which we have T ′ = TΦ.
Similarly as in Example 2.4, the natural morphism of graphs of groups from Γ to
Γ′ lifts to a G-equivariant map from T to TΦ (namely, a type IIA fold) that is
an isometry on edges and thus has Lipschitz constant 1, whence dLip(T, TΦ) = 0.
However, T and TΦ are not G-equivariantly isometric, as the group element x ∈ G
stabilizes an edge in TΦ but not in T (x is not a conjugate of x3).

2.2.2 Nonparabolic automorphisms

Let PD be a projectivized deformation space of irreducible metric G-trees and
Φ ∈ OutD(G) a nonparabolic automorphism, i.e., inf Φ̃ is realized. Let T ∈ PD
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Γ Γ′

1

〈x, t | txt−1 = x6〉

〈x3〉

〈x3〉

1

1

〈x, t | txt−1 = x6〉

〈x〉

〈x〉

1

Figure 2.6: The Bass-Serre trees of the graphs of groups shown above lie in the
same OutD(G)-orbit. They are irreducible but not locally finite.

such that dLip(T, TΦ) = inf Φ̃ and let f : T → TΦ be an optimal map with tension
forest ∆ = ∆(f) ⊂ T . The following observation will be used in the proof of
Theorem 2.37:

Proposition 2.31. After a small perturbation of the metric on T , preserving
the condition that dLip(T, TΦ) = inf Φ̃, the map f : T → TΦ is G-equivariantly
homotopic to an optimal map f ′ : T → TΦ with ∆(f ′) ⊆ ∆ such that

f ′
(
∆(f ′)

)
⊆ ∆(f ′).

Proof. Suppose that f(∆) is not contained in ∆ and let e ∈ E(∆) be an edge
such that f(e) * ∆. Slightly scale up the metric on ∆ and down on T \∆ while
maintaining covolume 1. This lowers the stretching factor on e and produces a
new tension forest, of the original map f made linear on edges, that is properly
contained in the old one. Since dLip(T, TΦ) is minimal among all translation
distances of Φ, we will not have removed all edges of ∆ and started over with a
new tension forest that corresponds to a strictly smaller maximal stretching factor.
In particular, there always exists an edge e′ ∈ E(∆) such that f(e′) ⊆ ∆. The
stretching factor of f on e′ remains unchanged and we preserve the condition that
dLip(T, TΦ) = inf Φ̃. As T has only finitely many G-orbits of edges, after finitely
many repetitions we have f(∆) ⊆ ∆. If at this point ∆ has a vertex with only one
gate, we perturb f to an optimal map f ′ as in the proof of Proposition 2.12.

2.2.3 Parabolic automorphisms

Let PD be a projectivized deformation space of metric G-trees and T ∈ PD. We
say that a G-invariant subforest S ⊆ T is essential if it contains the hyperbolic axis
of some hyperbolic group element. The notion of essential G-invariant subforests
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generalizes the notion of homotopically nontrivial subgraphs of marked metric
graphs in Outer space.

Definition 2.32. An automorphism Φ ∈ OutD(G) is reducible if there exists
a metric G-tree T ∈ PD and a G-equivariant map f : T → TΦ that leaves an
essential proper G-invariant subforest of T invariant. If Φ is not reducible, it is
irreducible.

As we will see, parabolic automorphisms are often reducible (Corollary 2.34).
For this, let Φ ∈ OutD(G) be a parabolic automorphism (i.e., inf Φ̃ is not realized)
and (Tk)k∈N a sequence of metric G-trees in PD such that

lim
k→∞

dLip(Tk, TkΦ) = inf Φ̃.

For Θ > 0 we denote by PD(Θ) the OutD(G)-invariant subspace of PD consisting
of all metric G-trees T ∈ PD that satisfy lT (g) ≥ Θ for all hyperbolic group
elements g ∈ G. We call PD(Θ) the Θ-thick part of PD.

Proposition 2.33. If the projectivized deformation space PD is irreducible and
OutD(G) acts on PD with finitely many orbits of simplices then for only finitely
many k ∈ N we have Tk ∈ PD(Θ).

Proof. We will argue as in the proof of [Meu11, Claim 72]. Suppose that the
proposition is false and that, after passing to a subsequence, we have Tk ∈ PD(Θ)
for all k ∈ N. We will lead this to a contradiction.

Since OutD(G) acts on PD with finitely many orbit of simplices, it acts on the
thick part PD(Θ) cocompactly in all three topologies. In particular, the image of
(Tk)k∈N in the quotient PD(Θ)/OutD(G) has a weakly convergent subsequence.
We can thus find a sequence of outer automorphisms (ψk)k∈N ⊂ OutD(G) such
that, after passing to a subsequence, (Tkψk)k∈N weakly converges in PD(Θ) to
some T ∈ PD(Θ). We have

dLip(Tψ
−1
k , Tψ−1

k Φ) ≤ dLip(Tψ−1
k , Tk) + dLip(Tk, TkΦ) + dLip(TkΦ, Tψ

−1
k Φ)

= dLip(T, Tkψk) + dLip(Tk, TkΦ) + dLip(Tkψk, T )

where limk→∞ dLip(T, Tkψk) = limk→∞ dLip(Tkψk, T ) = 0 by Proposition 2.17.

Hence, limk→∞ dLip(T, Tψ
−1
k Φψk) = limk→∞ dLip(Tk, TkΦ) = inf Φ̃.

By Theorem 2.14, for all k ∈ N there exists a candidate ξk ∈ cand(T ) such that

σ(T, Tψ−1
k Φψk) =

lTψ−1
k Φψk

(ξk)

lT (ξk)
=
lT (ψ−1

k Φψk(ξk))

lT (ξk)
.

The translation length function of T has discrete image in R and hence the nu-
merator takes discrete values. Since the candidates of T have only finitely many
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different translation lengths, the denominator takes only finitely many values and
we conclude that the sequence

(
σ(T, Tψ−1

k Φψk)
)
k∈N is discrete. For large k we

thus have
dLip(Tψ

−1
k , Tψ−1

k Φ) = dLip(T, Tψ
−1
k Φψk) = inf Φ̃

contradicting the assumption that Φ is parabolic.

Corollary 2.34. Under the assumptions of Proposition 2.33, for large k any op-
timal map f : Tk → TkΦ leaves an essential proper G-invariant subforest of Tk
invariant up to G-equivariant homotopy. In particular, every parabolic automor-
phism Φ ∈ OutD(G) is reducible.

If T is a minimal G-tree then a subforest S ⊆ T with no trivial components is
a core subforest if it does not have any vertices of valence 1. Every G-invariant
subforest S ⊆ T with no trivial components contains a unique (possibly empty)
maximal G-invariant core subforest core(S) ⊆ S ⊆ T , obtained by inductively
removing G-orbits of edges whose terminal or initial vertex has valence 1. The
process of removing G-orbits of edges terminates after finitely many steps by the
cocompactness of T .

Proof. For T ∈ PD and ε > 0, let T ε ⊆ T be the union of all subsets of the
form

⋃
k∈Z g

k[x, gx] with g ∈ G hyperbolic and x ∈ T such that d(x, gx) ≤ ε.
In particular, T ε contains the axes of all hyperbolic group elements g ∈ G with
lT (g) ≤ ε. Although T ε ⊆ T is generally not a simplicial subcomplex of T , we
will still speak of T ε as a (nonsimplicial) subforest, as it becomes a subcomplex
after subdividing the simplicial structure on T . In fact, T ε has no trivial compo-
nents and its maximal G-invariant core subforest core(T ε) ⊆ T ε will be a genuine
simplicial subforest of T . Since G acts on T by isometries, if

⋃
k∈Z g

k[x, gx] is
contained in T ε then for all h ∈ G the translate

h(
⋃
k∈Z

gk[x, gx]) =
⋃
k∈Z

(hgh−1)k[hx, hgx]

is contained in T ε as well. Thus, T ε ⊆ T is G-invariant.

Since OutD(G) acts on PD with finitely many orbits of simplices, the complex
PD must be finite-dimensional, say of dimension d ∈ N, and the number of G-
orbits of edges of any T ∈ PD is bounded above by d + 1. Because the metric
G-trees in PD have covolume 1, in any metric G-tree T ∈ PD there exists an orbit
of edges with associated edge length ≥ 1

d+1 . Therefore, for ε < 1
d+1 the subforest

T ε ⊆ T is a proper subforest. Given G-invariant simplicial subforests S′ ⊆ S of
T with no trivial components, the subforest S′ is a proper subforest of S if and
only if G\S − G\S′ consists of at least one edge. Hence, as the G-trees in PD
have at most d + 1 G-orbits of edges, the number d + 1 is a uniform bound for
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the length of any chain of proper G-invariant simplicial subforests with no trivial
components of any G-tree in PD.

Let D = inf Φ̃. Moreover, let ε < 1
d+1 and Θ = ε

e(D+1)(d+1) . By Proposition 2.33,
we can choose k so large that Tk /∈ PD(Θ) and dLip(Tk, TkΦ) < D + 1. For
i = 0, . . . , d+1, define δi = ε

e(D+1)i and consider the chain of G-invariant subforests

T εk = T δ0k ⊇ T
δ1
k ⊇ . . . ⊇ T

δd+1

k = TΘ
k

all of which are proper subforests of Tk. Note that TΘ
k 6= ∅, since Tk /∈ PD(Θ)

and thus there exists a hyperbolic group element g ∈ G with lTk(g) < Θ whose
axis lies in TΘ

k . The associated chain of core subforests is a chain of G-invariant
simplicial subforests of Tk, whose number of proper inclusions is bounded by d by
the arguments given above. Thus, there exists i ∈ {0, . . . , d} for which we have

core(T
δi+1

k ) = core(T δik ). Since dLip(Tk, TkΦ) < D + 1, the Lipschitz constant of
the optimal map f : Tk → TkΦ is smaller than eD+1 and we have

f(core(T
δi+1

k )) ⊆ f(T
δi+1

k ) ⊆ T δik .

The subforest core(T δik ) ⊆ T δik is a G-equivariant deformation retract of T δik ⊆ Tk
and the obvious deformation retraction extends to a G-equivariant self homotopy
equivalence h of Tk (this is easily seen on the level of quotient graphs of groups).
Now f is G-equivariantly homotopic to the G-equivariant map

Tk
f→ TkΦ

h→ TkΦ

that leaves the proper G-invariant subforest core(T
δi+1

k ) = core(T δik ) ⊂ Tk invari-
ant. As remarked above, there exists a hyperbolic group element g ∈ G whose
hyperbolic axis lies in TΘ

k and therefore also in core(T δik ), and we conclude that

core(T δik ) is essential.

2.2.4 Train track representatives

Let PD be a projectivized deformation space of metric G-trees and T ∈ PD, and
let Φ ∈ OutD(G).

Definition 2.35. An optimal map f : T → TΦ is a train track map if it satisfies
the following three conditions:

(i) ∆(f) = T ;

(ii) f maps edges to legal paths (see Definition 2.9);

(iii) If f maps a vertex v ∈ V (T ) to a vertex f(v) ∈ V (TΦ) then it maps
legal turns at v to legal turns at f(v). (If v has 2 gates then f(v) could
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alternatively lie in the interior of an edge. Since f is linear on edges, it then
maps inequivalent directions at v to inequivalent directions at f(v).)

If f is a train track map then for any legal line L ⊂ T and every k ∈ N the image
fk(L) ⊂ TΦk is again a legal line. We say that an automorphism Φ ∈ OutD(G)
is represented by a train track map if there exists a metric G-tree T ∈ PD and an
optimal map f : T → TΦ that is a train track map.

Proposition 2.36. Let PD be a projectivized deformation space of metric G-trees.
If an automorphism Φ ∈ OutD(G) is represented by a train track map f : T → TΦ
then dLip(T, TΦ) = inf Φ̃ and, in particular, Φ is nonparabolic.

Proof. Our argument is a generalization of [Bes11, Remark 8]. Suppose that
f : T → TΦ is an optimal map that is a train track map. By Theorem 2.14 and
Lemma 2.15, there exists a hyperbolic group element ξ ∈ G whose axis Aξ ⊂ T
lies in ∆(f) and is legal with respect to the train track structure defined by f
(once we know that there exists an optimal map f : T → TΦ, Theorem 2.14 no
longer requires T to be irreducible). Since f is a train track map, for all k ∈ N the
image fk(Aξ) ⊂ TΦk is a ξ-invariant line – and thus equals the hyperbolic axis of
ξ in TΦk – that lies in ∆(f) and is legal. We therefore have

σ(T, TΦk) = sup
g

lTΦk(g)

lT (g)
≥ lTΦk(ξ)

lT (ξ)
=
lTΦ(ξ)

lT (ξ)
· · · lTΦk(ξ)

lTΦk−1(ξ)

= σ(T, TΦ) · · ·σ(TΦk−1, TΦk) = σ(T, TΦ)k

from which we conclude that σ(T, TΦk) = σ(T, TΦ)k. In order to show that
dLip(T, TΦ) = inf Φ̃, let T ′ ∈ PD be any other G-tree. We have

k · dLip(T, TΦ) = dLip(T, TΦk)

≤ dLip(T, T ′) + dLip(T
′, T ′Φk) + dLip(T

′Φk, TΦk)

≤ dsymLip (T, T ′) + k · dLip(T ′, T ′Φ)

and hence dLip(T, TΦ) ≤ 1
k · d

sym
Lip (T, T ′) + dLip(T

′, T ′Φ). Letting k go to infinity,
we see that dLip(T, TΦ) ≤ dLip(T ′, T ′Φ).

As for existence of train track representatives, we have the following:

Theorem 2.37. Let PD be a projectivized deformation space of irreducible metric
G-trees. If OutD(G) acts on PD with finitely many orbits of simplices then every
irreducible automorphism (see Definition 2.32) Φ ∈ OutD(G) is represented by a
train track map.
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Proof. Since the automorphism Φ is irreducible, by Corollary 2.34 it is non-
parabolic, i.e., inf Φ̃ is realized. Let T ∈ PD such that dLip(T, TΦ) = inf Φ̃
and let f : T → TΦ be an optimal map, which exists by the irreducibility of PD.
We claim that f already satisfies (i) and (ii) of Definition 2.9:

Assertion (i) immediately follows from Proposition 2.31, as we could otherwise
slightly perturb the metric on T and find an optimal map T → TΦ that leaves
an essential proper G-invariant subforest of T invariant (the tension forest of an
optimal map is always essential by Theorem 2.14 and Lemma 2.15), contradicting
the assumption that Φ is irreducible.

As for (ii), suppose that an edge e ∈ E(T ) is mapped over an illegal turn.
Slightly fold the illegal turn G-equivariantly and scale the metric on T back to
covolume 1. The optimal map f : T → TΦ naturally induces a G-equivariant
map that we make linear on edges relative to the vertices of T . The performed
perturbation lowers the stretching factor of f on the edge induced by e, which
therefore drops out of the tension forest. Each witness Aξ ⊂ ∆(f) = T is legal
with respect to f and does not get folded, whence the stretching factor of f on
Aξ does not increase1. Hence, we preserve the condition that dLip(T, TΦ) = inf Φ̃
and the Lipschitz constant of f remains minimal among all G-equivariant Lipschitz
maps from T to TΦ. After perturbing f to an optimal map as in the proof of
Proposition 2.12, we obtain an optimal map T → TΦ whose tension forest is a
proper subforest of T . By Proposition 2.31, this again contradicts the assumption
that Φ is irreducible.

Finally, we may perturb T and f by an arbitrarily small amount, preserving the
condition that dLip(T, TΦ) = inf Φ̃ and that f : T → TΦ is an optimal map – and
therefore also preserving conditions (i) and (ii) – such that (iii) of Definition 2.9
is satisfied as well: If f maps a legal turn at a vertex v ∈ V (T ) to an illegal
turn, slightly fold the illegal turn G-equivariantly (see Figure 2.7). Again, each
witness Aξ ⊂ T is legal with respect to f and does not get folded so that the
stretching factor of f on Aξ does not increase. Thus, we preserve the property

that dLip(T, TΦ) = inf Φ̃ and that f is a minimal stretch map. The perturbation
makes the legal turn at v illegal, but the induced map f made linear on edges
is still optimal and v has still at least two gates, for f would otherwise give rise
to an optimal map whose tension forest is a proper subforest of T . The folding
decreases the number G(T ) =

∑
w max {0, G(w)− 2}, where w ranges over the

finitely many G-orbits of vertices of T and G(w) denotes the number of gates at
w. After finitely many steps, we obtain an optimal map f : T → TΦ that also
satisfies condition (iii).

1In fact, there also exists a witness Aξ ⊂ T whose f -image AΦ(ξ) ⊂ T does not get folded either,
as the induced map would otherwise have strictly smaller Lipschitz constant, contradicting
the fact that dLip(T, TΦ) is minimal among all translation distances of Φ.
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f f

v

v

Figure 2.7: Legal and illegal (dashed) turns. The upper row shows turns before
folding, the bottom row after folding. The number G(T ) in the upper
row is 3 + 2 + (2 + 1) = 8, whereas in the bottom row it has decreased
to 2 + (2 + 0) + (2 + 1) = 7.

Example 2.38. Let G be a finitely generated virtually nonabelian free group
and PD the projectivized deformation space of minimal metric G-trees with fi-
nite vertex stabilizers (Example 1.30); it is irreducible and OutD(G) = Out(G)
acts on PD with finitely many orbits of simplices (Example 1.36). Consequently,
every irreducible automorphism of G is represented by a train track map. This
generalizes [BH92, Theorem 1.7] to virtually free groups.

Example 2.39. Let G be a nonelementary GBS group that contains no solvable
Baumslag-Solitar group BS(1, n) with n ≥ 2. The projectivized deformation space
PD of minimal metric G-trees with infinite cyclic vertex and edge stabilizers is
irreducible (Example 1.31) and OutD(G) = Out(G) acts on PD with finitely many
orbits of simplices (Example 1.37). Hence, every irreducible automorphism of G
is represented by a train track map.
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Higher holomorphs

Let G be a finitely generated group. Recall from the introduction that for k ∈ N
we define the k-th holomorph of G as the semidirect product

Aut(G, k) := Gk−1 oAut(G)

with multiplication given by

((g2, . . . , gk), φ) · ((h2, . . . , hk), ψ) = ((g2φ(h2), . . . , gkφ(hk)), φ ◦ ψ).

We further define Aut(G, 0) := Out(G). The family of holomorphs continues the
sequence of groups

Aut(G, 0) = Out(G)

Aut(G, 1) = Aut(G)

Aut(G, 2) = Hol(G)

where Hol(G) is the classical holomorph of G (for a discussion on the holomorph
of a group, see [Rot95, p. 164 and Example 7.9]).

Convention. It will be convenient to write the elements of Aut(G, k) in the
opposite order, i.e., to write Aut(G, k) = Aut(G) n Gk−1 with multiplication
given by

(φ, (g2, . . . , gk)) · (ψ, (h2, . . . , hk)) = (φ ◦ ψ, (g2φ(h2), . . . , gkφ(hk)))

and we make the convention to do so.

Example 3.1. Higher holomorphs of free groups have played an important role
in the study of Out(Fn). For instance:

• In [BF00, Section 2.5] Bestvina-Feighn construct a bordification of Outer
space PX n. In their construction, the k-th holomorph Aut(Fn, k) appears
as “Out(n, k)”.

• The k-th holomorph Aut(Fn, k) is isomorphic to the group Gn,k ∼= Γn,k
considered in [HV04], where Hatcher-Vogtmann prove homological stability
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statements for Γn,k and deduce from these homological stability of Out(Fn)
(see also [HVW06]).

• For k ≥ 1, the k-th holomorph Aut(Fn, k) is isomorphic to the group

Autk(Fn) :=
{

(φ1, . . . , φk) ∈ Aut(Fn)k
∣∣∣ [φ1] = . . . = [φk] ∈ Out(Fn)

}
considered in [HM13b, Section 1.5]. The isomorphism is given by

Aut(Fn, k)→ Autk(Fn)

(φ, (g2, . . . , gk)) 7→ (φ, cg2 ◦ φ, . . . , cgk ◦ φ)

where cg ∈ Inn(Fn) denotes conjugation with g ∈ Fn. Recall that Out(Fn)
acts on Outer space PX n with finite point stabilizers (see Example 1.66).
Handel-Mosher show in [HM13b, Lemma 18] that the stabilizer of a point
in the missing boundary of PX n (i.e., in PX ∗n \ PX n, where PX ∗n is the
free splitting complex from Example 1.39) under the action of Out(Fn) is
virtually isomorphic to a direct product of the form

Autk1(Fn1)× . . .×Autks(Fns)

with s ≥ 1 and
∑s

i=1 ni ≤ n.

In the light of Example 3.1, it seems worthwhile to study higher holomorphs
in a more general context. We will take a step in this direction by constructing
“higher spines” for higher holomorphs, as advertised in the introduction.

3.1 k-pointed G-trees

Definition 3.2. For k ∈ N, a k-pointed G-tree (T, x1, . . . , xk) is a G-tree T with
k (not necessarily distinct) basepoints x1, . . . , xk ∈ T . A 0-pointed (or unpointed)
G-tree is just a G-tree. We will always assume that T carries the natural simplicial
structure relative to the distinguished basepoints x1, . . . , xk, i.e., the coarsest G-
invariant simplicial structure such that each xi, i = 1, . . . , k is a vertex of T . We
denote by V (T, x1, . . . , xk) the set of natural vertices and by E(T, x1, . . . , xk) the
set of natural edges of (T, x1, . . . , xk).

Two k-pointed G-trees (T, x1, . . . , xk) and (T ′, x′1, . . . , x
′
k) are G-equivariantly

homeomorphic if there exists a G-equivariant homeomorphism h : T → T ′ such
that h(xi) = x′i for all i = 1, . . . , k. We say that a k-pointed G-tree is minimal
and dihedral, linear abelian, genuine abelian, or irreducible if its underlying G-tree
has these properties. Unlike on dihedral, genuine abelian, or irreducible minimal
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G-trees (which have reflection points and branch points respectively), on a linear
abelian minimalG-tree T there is no prescribed natural simplicial structure coming
from the topology of T or the action of G on T . If for k ≥ 1 a minimal k-pointed
G-tree (T, x1, . . . , xk) is linear abelian, we declare the G-orbit of x1 as the natural
vertex set of the underlying G-tree T (so that (T, x1) has only one G-orbit of
edges). We have the following addition to Proposition 1.10:

Proposition 3.3. For k ≥ 0, a G-equivariant simplicial homeomorphism

f : (T, x1, . . . , xk)→ (T ′, x′1, . . . , x
′
k)

between two minimal k-pointed G-trees that are not linear abelian is always unique.
If T and T ′ are linear abelian, the same is true for k ≥ 1.

Proof. If T and T ′ are not linear abelian, the assertion follows from Proposi-
tion 1.10. In the general case, if we assume that k ≥ 1, any other G-equivariant
simplicial homeomorphism f ′ must map x1 to x′1 as well. Thus, the composition
(f ′)−1 ◦f : T → T has a fixed point and equals the identity by the first part of the
proof of Proposition 1.10.

3.1.1 k-pointed forest collapses

For k ∈ N0, given a k-pointed G-tree (T, x1, . . . , xk) and a G-invariant simpli-
cial subforest A ⊆ (T, x1, . . . , xk), analogously to the classical forest collapses in
Section 1.1.2 we let

kA : (T, x1, . . . , xk)→ (TA, kA(x1), . . . , kA(xk))

be the corresponding k-pointed forest collapse map. We have the following gener-
alization of Proposition 1.13:

Proposition 3.4. For k ∈ N0, let (T, x1, . . . , xk) be a minimal k-pointed G-tree
and A,B ⊆ (T, x1, . . . , xk) two G-invariant subforests with no trivial components.
The k-pointed G-trees (TA, kA(x1), . . . , kA(xk)) and (TB, kB(x1), . . . , kB(xk)) are
G-equivariantly homeomorphic if and only if A = B.

Proof. The statement holds for k = 0 by Proposition 1.13, so we may assume
that k ≥ 1. The “if” direction is trivial. For the “only if” direction, suppose that
A 6= B and let e ∈ E(T, x1, . . . , xk) be an edge that is contained in, say, A but not
in B. We will show that (TA, kA(x1), . . . , kA(xk)) and (TB, kB(x1), . . . , kB(xk))
are not G-equivariantly homeomorphic, and we will consider three cases:

First, if neither ι(e) nor τ(e) lie in the G-orbit of a distinguished basepoint of
(T, x1, . . . , xk) then both vertices are natural vertices of T and we can argue as in
the proof of Proposition 1.13.
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Second, suppose that both ι(e) and τ(e) lie in the G-orbit of a distinguished
basepoint of (T, x1, . . . , xk), say ι(e) = g1xi1 and τ(e) = g2xi2 with g1, g2 ∈ G and
i1, i2 ∈ {1, . . . , k} (and possibly i1 = i2). If T is linear abelian then this is the only
case that can occur. We then have kA(ι(e)) = kA(τ(e)) and therefore kA(xi1) =
g−1

1 g2kA(xi2), whereas kB(ι(e)) 6= kB(τ(e)) and hence kB(xi1) 6= g−1
1 g2kB(xi2).

Thus, there does not exist a G-equivariant homeomorphism TA → TB mapping
kA(xi1) to kB(xi1) and kA(xi2) to kB(xi2).

Third, suppose that ι(e) lies in the G-orbit of a distinguished basepoint of
(T, x1, . . . , xk), say ι(e) = g1x1 with g1 ∈ G, and τ(e) does not. In particular,
the vertex τ(e) is then a natural vertex of T . We only need to treat the dihedral,
genuine abelian, and irreducible case, and our argument is a slight modification
of the proof of Proposition 1.13:

If T is dihedral then there exists a group element g ∈ G that acts on T as
reflection at τ(e). We have kA(ι(e)) = kA(τ(e)) and hence gkA(ι(e)) = kA(ι(e)),
whence g−1

1 gg1kA(x1) = kA(x1). On the other hand, we have kB(ι(e)) 6= kB(τ(e))
and therefore g−1

1 gg1kB(x1) 6= kB(x1). We conclude that there does not exist a
G-equivariant homeomorphism TA → TB that maps kA(x1) to kB(x1).

If T is genuine abelian, we can find hyperbolic group elements g, h ∈ G whose
hyperbolic axes intersect in a ray as in one of the two cases depicted in Figure 3.1.
Since Ag and Ah contain infinitely many G-translates of e, the group elements g

Ah

Ag
ι(e) = g1x1

e

τ(e)

Ah

Ag
ι(e) = g1x1

e

τ(e)

Figure 3.1: Hyperbolic axes in the genuine abelian case. The terminal vertex τ(e)
is a natural vertex of T , the initial vertex ι(e) is not.

and h remain hyperbolic in TB. If TA and TB were G-equivariantly homeomorphic
then g and h would also be hyperbolic in TA. Any G-equivariant homeomorphism
TA → TB would map the initial point pA of the ray ATA(g) ∩ ATA(h) ⊂ TA to
the initial point pB of ATB (g) ∩ ATB (h) ⊂ TB, where ATA(g) is the hyperbolic
axis of g in TA. However, we have g1kA(x1) = kA(ι(e)) = kA(τ(e)) = pA, whereas
g1kB(x1) = kB(ι(e)) 6= kB(τ(e)) = pB. Hence, there does not exist aG-equivariant
homeomorphism TA → TB that maps kA(x1) to kB(x1).

If T is irreducible, we can find a hyperbolic group element g ∈ G whose axis
lies as in Figure 3.2. The point g1kA(x1) = kA(ι(e)) = kA(τ(e)) ∈ TA lies in
the characteristic set CTA(g), whereas g1kB(x1) = kB(ι(e)) ∈ TB does not lie in
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Ag
τ(e)

e

ι(e) = g1x1

Figure 3.2: Hyperbolic axis in the irreducible case. The terminal vertex τ(e) is a
natural vertex of T , the initial vertex ι(e) is not.

CTB (g). Hence, there cannot exist a G-equivariant homeomorphism TA → TB
mapping kA(x1) to kB(x1).

3.2 The k-th spine S(PD, k)
Let PD be a projectivized deformation space of metric G-trees. We will only be
interested in the G-equivariant homeomorphism types of the metric G-trees in PD
and we will therefore speak of the elements of PD just as “G-trees” (and not as
“metric G-trees”).

Definition 3.5. For k ∈ N0, we define Col(PD, k) as the set of G-equivariant
homeomorphism classes of k-pointed G-trees (T, x1, . . . , xk) with T ∈ PD. Given
two k-pointed G-trees (T, x1, . . . , xk), (T

′, x′1, . . . , x
′
k) ∈ Col(PD, k), we write

(T, x1, . . . , xk) ≤ (T ′, x′1, . . . , x
′
k)

if there exists a G-invariant subforest F ⊂ (T ′, x′1, . . . , x
′
k) with no trivial compo-

nents such that the k-pointed G-trees (T, x1, . . . , xk) and (T ′F , kF (x′1), . . . , kF (x′k))
are G-equivariantly homeomorphic, where kF : T ′ → T ′F is the forest collapse map.
By Proposition 3.4, the subforest F is uniquely determined by the G-equivariant
homeomorphism type of (T, x1, . . . , xk).

The relation ≤ defines a partial order on Col(PD, k) and we define

S(PD, k) := |Col(PD, k)|

where |Col(PD, k)| denotes the geometric realization of the poset (Col(PD, k),≤).
We call S(PD, k) the k-th spine of PD.

Recall that the projectivized deformation space PD is acted on by the subgroup
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AutD(G) ≤ Aut(G) of automorphisms that leave the set of elliptic subgroups
of PD invariant. Since the inner automorphism group Inn(G) ≤ AutD(G) acts
trivially on PD, we obtain an induced action of OutD(G) = AutD(G)/ Inn(G) ≤
Out(G) on PD.

Definition 3.6. For k ∈ N0, the subgroup

AutD(G, k) :=

{
OutD(G) if k = 0

AutD(G)nGk−1 if k ≥ 1

of the k-th holomorph Aut(G, k) acts on Col(PD, k) from the right via

(T, x1, x2, . . . , xk) · (φ, g2, . . . , gk) = (Tφ, x1, g
−1
2

r
T x2, . . . , g

−1
k

r
T xk).

The action preserves the partial order on Col(PD, k) and therefore induces a
simplicial action of AutD(G, k) on the k-th spine S(PD, k) = |Col(PD, k)|. By
definition, whenever we have AutD(G) = Aut(G) (as in Examples 1.36 and 1.37)
then we also have AutD(G, k) = Aut(G, k).

Example 3.7. Let G be the free group Fn, n ≥ 2 and PD be Outer space
PX n. We have AutXn(Fn) = Aut(Fn) and therefore AutXn(Fn, k) = Aut(Fn, k).
The k-th spine S(PX n, k) agrees with “the spine of Outer space for Out(n, k)”
constructed in [BF00, Section 2.5] and “the spine of k-pointed autre espace” in
[HM13b, Section 1.5].

3.2.1 Contractibility

Let PD be a projectivized deformation space of metric G-trees. For all k ∈ N, the
projection

fk : Col(PD, k)→ Col(PD, k − 1)

(T, x1, . . . , xk) 7→ (T, x1, . . . , xk−1)

preserves the partial order and thus induces a continuous simplicial map

|fk| : S(PD, k)→ S(PD, k − 1)

on geometric realizations. In this section, we will generalize arguments developed
in [Mei11] in the special case of Outer space to show the following:

Theorem 3.8. For all k ∈ N, the map |fk| : S(PD, k) → S(PD, k − 1) is a
homotopy equivalence.
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3.2 The k-th spine S(PD, k)

We know from Proposition 1.42 that S(PD, 0) = S(PD) is a deformation retract
of the projectivized deformation space PD in the weak topology. Since PD and
hence S(PD, 0) is contractible (Theorem 1.57), Theorem 3.8 implies the following:

Corollary 3.9. For all k ∈ N0, the k-th spine S(PD, k) is contractible.

Remark. As a special case, this gives an alternative proof of [BF00, Theorem 2.21]
that “the spine of Outer space for Out(n, k)” is contractible.

The proof of Theorem 3.8

If the projectivized deformation space PD is linear abelian then it has only one
element (see Section 1.2.2) and all 1-pointed G-trees (T, x) with T ∈ PD are G-
equivariantly homeomorphic, as translations on T are G-equivariant homeomor-
phisms (cf. Proposition 1.10). Hence, the poset Col(PD, 1) has only one element.
The assertion of Theorem 3.8 for the map |f1| : {∗} = S(PD, 1)→ S(PD, 0) = {∗}
is then trivially true and we may rule out the case where PD is linear abelian and
k−1 = 0, which enables us to apply Proposition 3.3 in the proof of Proposition 3.11
without further case distinctions.

For a poset (P,≤) and an element p ∈ P , we let P≥p := {p′ ∈ P | p′ ≥ p} . The
following is an immediate consequence of Quillen’s celebrated “Theorem A” (see
also [Qui78, Proposition 1.6]):

Lemma 3.10 ([Bab93, Lemma 1]). Let P and Q be posets and f : P → Q an
order-preserving map. If

(1) for all q ∈ Q the geometric realization |f−1(q)| is contractible;

(2) for all q ∈ Q and p ∈ P with f(p) ≤ q the geometric realization |P≥p∩f−1(q)|
is contractible

then the induced map on geometric realizations |f | : |P | → |Q| is a homotopy
equivalence.

In the following, we will speak of f−1(q) and its geometric realization |f−1(q)| as
(pointwise) fibers and of P≥p ∩ f−1(q) and its geometric realization |P≥p ∩ f−1(q)|
as Quillen fibers. In order to prove Theorem 3.8, we will show that the order-
preserving map of posets fk : Col(PD, k)→ Col(PD, k− 1) satisfies the conditions
of Lemma 3.10. We will proceed in two steps, first proving condition (1) and then
proving condition (2):

Contractibility of the pointwise fiber Let (T, x1, . . . , xk−1) ∈ Col(PD, k − 1). The
pointwise fiber f−1

k ((T, x1, . . . , xk−1)) ⊂ Col(PD, k) consists of k-pointed G-trees
(T, x1, . . . , xk−1, x), where either
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(1) x is a natural vertex of (T, x1, . . . , xk−1) or

(2) x is not a natural vertex of (T, x1, . . . , xk−1), i.e.,

V (T, x1, . . . , xk−1, x) = V (T, x1, . . . , xk−1)qGx.

We call k-pointed G-trees in the pointwise fiber unextended if they are of the first
type and extended if they are of the second type. If (T, x1, . . . , xk−1, x) is extended
then x lies in the interior of a natural edge of (T, x1, . . . , xk−1).

Proposition 3.11. The geometric realization of the fiber f−1
k ((T, x1, . . . , xk−1))

is simplicially homeomorphic to the first barycentric subdivision of T with respect
to the natural simplicial structure relative to x1, . . . , xk−1.

In particular, the geometric realization of f−1
k ((T, x1, . . . , xk−1)) is contractible.

This verifies (1) of Lemma 3.10 for the map fk : Col(PD, k)→ Col(PD, k − 1).

Proof. The first barycentric subdivision of (T, x1, . . . , xk−1) is simplicially home-
omorphic to the geometric realization of the poset

P = V (T, x1, . . . , xk−1)q E(T, x1, . . . , xk−1)

where x, y ∈ P satisfy x ≤ y if y ∈ E(T, x1, . . . , xk−1) and x = ι(y) or x = τ(y).
In order to prove the claim, it suffices to find a bijective map

h : f−1
k ((T, x1, . . . , xk−1))→ P

such that we have h((T, x1, . . . , xk−1, x)) ≤ h((T, x1, . . . , xk−1, y)) if and only if
(T, x1, . . . , xk−1, x) ≤ (T, x1, . . . , xk−1, y), i.e., an isomorphism of posets. Define

h((T, x1, . . . , xk−1, x)) =

{
x if (T, x1, . . . , xk−1, x) is unextended

ex if (T, x1, . . . , xk−1, x) is extended

where ex denotes the natural edge of (T, x1, . . . , xk−1) in whose interior x lies.
This assignment is well-defined by Proposition 3.3, as the (k−1)-pointed minimal
G-tree (T, x1, . . . , xk−1) has no nontrivial G-equivariant simplicial automorphisms
(remember that we ruled out the case where PD is linear abelian and k = 1).
The map h is clearly bijective (for injectivity, keep in mind that all G-trees are
considered up to G-equivariant homeomorphism) and it remains to show that h is
in fact an isomorphism of posets. For the “if” direction, suppose that

(T, x1, . . . , xk−1, x) ≤ (T, x1, . . . , xk−1, y).

Since an elementary collapse reduces the number of G-orbits of vertices,
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3.2 The k-th spine S(PD, k)

• (T, x1, . . . , xk−1, y) must be extended,

• (T, x1, . . . , xk−1, x) must be unextended, and

• (T, x1, . . . , xk−1, x) is obtained from (T, x1, . . . , xk−1, y) by collapsing a single
G-orbit of edges.

Thus, y lies in the interior of a natural edge ey of (T, x1, . . . , xk−1) whose initial
or terminal vertex is x. In particular, we have

h((T, x1, . . . , xk−1, x)) ≤ h((T, x1, . . . , xk−1, y)).

Conversely, suppose we have h((T, x1, . . . , xk−1, x)) ≤ h((T, x1, . . . , xk−1, y)),
i.e., y lies in the interior of a natural edge ey of (T, x1, . . . , xk−1) whose, say, initial
vertex is x. Denote by (ey)1 and (ey)2 the natural edges of (T, x1, . . . , xk−1, y)
from x = ι(e) to y and from y to τ(e) respectively. The edge (ey)1 is clearly
collapsible and collapsing all edges in its G-orbit is an elementary collapse from
(T, x1, . . . , xk−1, y) to (T, x1, . . . , xk−1, x), whence

(T, x1, . . . , xk−1, x) ≤ (T, x1, . . . , xk−1, y).

Contractibility of the Quillen fiber We will next verify condition (2) of Lemma 3.10
for the order-preserving map fk : Col(PD, k) → Col(PD, k − 1). For this, let
q = (T, x1, . . . , xk−1) ∈ Col(PD, k − 1) and p = (S, y1, . . . , yk) ∈ Col(PD, k) with

fk((S, y1, . . . , yk)) = (S, y1, . . . , yk−1) ≤ (T, x1, . . . , xk−1).

By the definition of the partial order, there then exists a G-invariant subforest
with no trivial components F ⊂ (T, x1, . . . , xk−1) such that

(S, y1, . . . , yk−1) = (TF , kF (x1), . . . , kF (xk−1))

where kF : T → TF is the forest collapse map. We know from Proposition 3.4 that
the subforest F is uniquely determined by the G-equivariant homeomorphism type
of (S, y1, . . . , yk−1).

We are interested in the Quillen fiber Col(PD, k)≥p ∩ f−1
k (q), which consists of

the k-pointed G-trees (T, x1, . . . , xk−1, x) with x ∈ k−1
F (yk) ⊂ T . (A structural

overview over the pointed G-trees under consideration is given in Figure 3.3.)

In order to show that |Col(PD, k)≥p ∩ f−1
k (q)| is contractible, we consider two

cases: First, if yk ∈ TF does not lie in the image of F ⊂ (T, x1, . . . , xk−1) under
the quotient map kF : T → TF then the preimage k−1

F (yk) consists of a single point
and |Col(PD, k)≥p ∩ f−1

k (q)| is trivially contractible. For instance, this is always
the case if yk is not a natural vertex of (TF , kF (x1), . . . , kF (xk−1)). Second, if yk
lies in the image of F under kF then k−1

F (yk) ⊂ T is a connected component of F

91



Chapter 3 Higher holomorphs

(T, x1, . . . , xk−1, x)

kF
��

fk // q = (T, x1, . . . , xk−1)

kF
��

p = (TF , kF (x1), . . . , kF (xk−1), yk)
fk

// (TF , kF (x1), . . . , kF (xk−1))

Figure 3.3: Structural overview over the pointed G-trees under consideration.

and hence a simplicial subtree of (T, x1, . . . , xk−1). We then have the following:

Proposition 3.12. If yk ∈ TF lies in the image of F under the quotient map
kF : T → TF then |Col(PD, k)≥p ∩ f−1

k (q)| is simplicially homeomorphic to the
first barycentric subdivision of the simplicial subtree k−1

F (yk) ⊂ (T, x1, . . . , xk−1).

In particular, |Col(PD, k)≥p ∩ f−1
k (q)| is always contractible, which completes

the proof of Theorem 3.8.

Proof. The first barycentric subdivision of the subtree k−1
F (yk) ⊂ (T, x1, . . . , xk−1)

is simplicially homeomorphic to the geometric realization of the poset

P = V (k−1
F (yk))q E(k−1

F (yk))

where x, y ∈ P satisfy x ≤ y if y ∈ E(k−1
F (yk)) and x = ι(y) or x = τ(y).

Similarly as in the proof of Proposition 3.11, one now easily shows that the map
h : Col(PD, k)≥p ∩ f−1

k (q)→ P given by

(T, x1, . . . , xk−1, x) 7→

{
x if (T, x1, . . . , xk−1, x) is unextended

ex if (T, x1, . . . , xk−1, x) is extended

is an isomorphism of posets, where ex denotes the natural edge of (T, x1, . . . , xk−1)
in whose interior x lies.

3.2.2 Dimension and cocompactness

Let PD be a projectivized deformation space of metric G-trees.

Proposition 3.13. If the spine S(PD) = S(PD, 0) is of dimension ≤ b ∈ N then
for k ∈ N the k-th spine S(PD, k) is of dimension ≤ b+ k.

Proof. The spine S(PD) is of dimension ≤ b if and only if the number of G-orbits
of edges of any collapsible G-invariant subforest of any G-tree in PD is uniformly
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bounded above by b. Suppose this is the case and let (T, x1, . . . , xk) ∈ Col(PD, k).
Let M be a maximal collapsible G-invariant subforest of the unpointed G-tree T .
The first basepoint x1 ∈ T lies as in one of the following cases:

(1) x1 lies in the natural vertex set of T , the simplicial structures on T and
(T, x1) are the same, and the collapsible G-invariant subforest M ⊂ (T, x1)
remains maximal; or

(2) x1 lies in the interior of a natural edge of T that also lies in M , in which
case the collapsible G-invariant subforest M ⊂ (T, x1) remains maximal but
has one extra G-orbits of edges (one of the old ones being subdivided); or

(3) x1 subdivides a natural edge e of T that does not lie in M into e1 and e2, in
which case M ∪Gei is a maximal collapsible G-invariant subforest of (T, x1)
for each i ∈ {1, 2}.

Thus, since a maximal collapsible G-invariant subforest of T has at most b
G-orbits of edges, a maximal collapsible G-invariant subforest of (T, x1) has at
most b+ 1 G-orbits of edges. Inductively, we conclude that a maximal collapsible
G-invariant subforest of any k-pointed G-tree in Col(PD, k) has at most b + k
G-orbits of edges, proving that S(PD, k) is of dimension ≤ b+ k.

Proposition 3.14. If OutD(G) acts on PD with finitely many orbits of simplices
then for all k ∈ N0 the k-holomorph AutD(G, k) acts on the k-th spine S(PD, k)
with finitely many orbits of simplices.

Proof. We must show that the k-pointed G-trees in Col(PD, k) fall into finitely
many AutD(G, k)-orbits. By assumption, this is true for k = 0. That is, there are
finitely many G-trees T1, . . . , Tn ∈ Col(PD) such that for any T ∈ Col(PD) there
exists i ∈ {1, . . . , n} and φ ∈ OutD(G) and for any representative Φ ∈ AutD(G)
of φ a G-equivariant homeomorphism hΦ : T → TiΦ.

Choose for each i ∈ {1, . . . , n} a fundamental domain Fi ⊂ Ti for the action of
G on Ti. Since Ti is minimal and therefore cocompact, Fi contains only finitely
many vertices and edges. We will show that any (T, x1, . . . , xk) ∈ Col(PD, k)
lies in the AutD(G, k)-orbit of a k-pointed G-tree of the form (Ti, y1, . . . , yk) with
i ∈ {1, . . . , n} and y1, . . . , yk ∈ Fi. Since Fi has only finitely many vertices and
edges, the k-pointed G-trees (Ti, y1, . . . , yk) with y1, . . . , yk ∈ Fi are of only finitely
many G-equivariant homeomorphism types, whence the claim.

By assumption, for some i ∈ {1, . . . , n} and some Φ ∈ AutD(G) there exists a
G-equivariant homeomorphism

hΦ : (T, x1, . . . , xk)→ (TiΦ, hΦ(x1), . . . , hΦ(xk))
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and we conclude that (T, x1, . . . , xk) lies in the same AutD(G, k)-orbit as

(Ti, hΦ(x1), . . . , hΦ(xk)).

For each j = 1, . . . , k there exists a group element gj ∈ G such that gj rTi hΦ(xj)
lies in the fundamental domain Fi. The k-pointed G-tree (Ti, hΦ(x1), . . . , hΦ(xk))
lies in the same AutD(G, k)-orbit as (Ticg−1

1
, hΦ(x1), . . . , hΦ(xk)), and we have a

G-equivariant homeomorphism

(Ticg−1
1
, hΦ(x1), . . . , hΦ(xk))→ (Ti, g1

r
Ti hΦ(x1), . . . , g1

r
Ti hΦ(xk))

given by x 7→ g1
r
Ti x. Finally, we have

(Ti, g1hΦ(x1), g1hΦ(x2), . . . , g1hΦ(xk)) · (id, (g1g
−1
2 , . . . , g1g

−1
k ))

= (Ti, g1hΦ(x1), (g1g
−1
2 )−1g1hΦ(x2), . . . , (g1g

−1
k )−1g1hΦ(xk))

= (Ti, g1hΦ(x1), . . . , gkhΦ(xk)).

Altogether, we conclude that (T, x1, . . . , xk) lies in the same AutD(G, k)-orbit as
a k-pointed G-tree (Ti, y1, . . . , yk) with y1, . . . , yk ∈ Fi.

Application to higher holomorphs of virtually free groups

Recall that if G is a finitely generated virtually nonabelian free group then all
minimal metric G-trees with finite vertex stabilizers lie in the same deformation
space D (Example 1.30) and we have AutD(G) = Aut(G) (Example 1.36).

Proposition 3.15. Let G be a finitely generated virtually nonabelian free group
and PD the projectivized deformation space of minimal metric G-trees with finite
vertex stabilizers. For all k ∈ N0, the k-th holomorph Aut(G, k) acts on S(PD, k)
with finite point stabilizers.

Proof. We show that Aut(G, k) acts on the poset Col(PD, k) with finite stabilizers.
Let (T, x1, . . . , xk) ∈ Col(PD, k) and (φ, g2, . . . , gk) ∈ Aut(G, k), and suppose that
(T, x1, . . . , xk) is G-equivariantly homeomorphic to

(T, x1, x2 . . . , xk) · (φ, g2, . . . , gk) = (Tφ, x1, g
−1
2

r
T x2, . . . , g

−1
k

r
T xk).

Then there exists a G-equivariant homeomorphism fφ : T → Tφ such that we have
fφ(x1) = x1 and fφ(xi) = g−1

i
r
T xi for all i = 2, . . . , k. By Proposition 3.3, the

G-equivariant homeomorphism fφ is unique up to G-equivariant isotopy relative
to the natural vertices of (T, x1, . . . , xk), and we may arrange it to be simplicial.

We will first show that there are only finitely many possibilities for φ. It follows
from [GL07a, Proposition 8.6] that Out(G) acts on PD with finite point stabilizers
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and then from Proposition 1.22(4) that the stabilizers under the action of Out(G)
on the poset Col(PD) are finite as well. Therefore, there are only finitely many
possibilities for the outer automorphism class of φ. If φ′ = φ◦cg, where cg denotes
conjugation with g ∈ G, then the unique G-equivariant simplicial homeomorphism
fφ′ : T → Tφ → Tφ′ = Tφcg is given by x 7→ fφ(x) 7→ g r

Tφ fφ(x). Note that
fφ′(x1) = g r

Tφ fφ(x1) = g r
Tφ x1 equals x1 if and only if g lies in the stabilizers of

x1 ∈ Tφ, which is finite. Hence, within each of the finitely many possible outer
automorphism classes [φ], there are only finitely many possible representatives φ.

It remains to show that for fixed φ and each i = 2, . . . , k, there are only finitely
many possibilities for gi. However, this is immediate, as we have fφ(xi) = g−1

i
r
T xi

and the stabilizer of xi ∈ T is finite.

Recall that a group G is of type F∞ if it admits a CW-model for its classifying
space that has finitely many G-orbits of cells in each dimension. Also, we denote
by cdQ(G) the rational cohomological dimension of G.

Corollary 3.16. Let G be a finitely generated virtually nonabelian free group.
For all k ∈ N0, the k-th holomorph Aut(G, k) has finite rational cohomological
dimension and is of type F∞. In fact, if we let PD be the projectivized deformation
space of minimal metric G-trees with finite vertex stabilizers, we have

cdQ(Aut(G, k)) ≤ dim(S(PD)) + k.

Proof. The simplicial complex with missing faces PD and its spine S(PD) are
finite-dimensional, as the group Out(G) acts on PD with finitely many orbits
of simplices (Example 1.36). By Proposition 3.13, the k-th spine S(PD, k) has
dimension dim(S(PD, k)) ≤ dim(S(PD)) + k. The bound on cdQ(Aut(G, k))
follows from [Pet07, Lemma 3.3], since Aut(G, k) acts on the contractible simplicial
complex S(PD, k) with finite point stabilizers.

Moreover, since Out(G) acts on PD with finitely many orbits of simplices,
Aut(G, k) acts on the k-th spine S(PD, k) with finitely many orbits of simplices
(Proposition 3.14). It follows from [Bro87, Corollary 3.3] that Aut(G, k) is of type
F∞ (finitely presented and of type FP∞).

3.2.3 A finite-dimensional deformation retract

Let PD be a projectivized deformation space of metric G-trees. Recall from
Proposition 1.45 that the spine S(PD) = S(PD, 0) = |Col(PD, 0)| deformation
retracts OutD(G)-equivariantly onto the surviving spine SW (PD) ⊂ S(PD). By
Theorem 1.48, if PD is irreducible and

• nonascending; or

• locally finite and has b1(D) ≤ 1
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then SW (PD) is finite-dimensional. Indeed, the surviving spine SW (PD) turns out
to be finite-dimensional in certain cases where the spine S(PD) itself is infinite-
dimensional (see Example 1.49).

Analogously to the unpointed case, we say that for k ∈ N0 an edge of a k-
pointed G-tree (T, x1, . . . , xk) is surviving if it is noncollapsible or may be made
noncollapsible by collapsing other collapsible edges of (T, x1, . . . , xk). Let W ⊆
(T, x1, . . . , xk) be the G-invariant subforest consisting of all nonsurviving edges.
It is collapsible and the set

ColW (PD, k) := {(TW , kW (x1), . . . , kW (xk)) | (T, x1, . . . , xk) ∈ Col(PD, k)}

is a subposet of Col(PD, k), where kW : T → TW is the forest collapse map. The
geometric realization SW (PD, k) := |ColW (PD, k)| is a simplicial subcomplex of
the k-th spine S(PD, k) that we call the k-th surviving spine of PD. We have the
following generalization of Proposition 1.45:

Proposition 3.17. For all k ∈ N0, the k-th spine S(PD, k) deformation retracts
OutD(G)-equivariantly onto the k-th surviving spine SW (PD, k) ⊆ S(PD, k).

Proof. The natural map

f : Col(PD, k)→ ColW (PD, k) ⊆ Col(PD, k)

(T, x1, . . . , xk) 7→ (TW , kW (x1), . . . , kW (xk))

is order-preserving and for all ξ ∈ Col(PD, k) we have f(ξ) ≤ ξ. As explained in
the proof of Proposition 1.45, the claim follows from [Qui78, 1.3].

We conclude with an immediate generalization of Theorem 1.48:

Theorem 3.18. Let D be an irreducible deformation space of metric G-trees. If
either

• D is nonascending; or

• D is locally finite and has b1(D) ≤ 1

then for all k ∈ N0 the k-th surviving spine SW (PD, k) ⊂ S(PD, k) is finite-
dimensional.

Proof. The k-th surviving spine SW (PD, k) ⊂ S(PD, k) is finite-dimensional if
and only if the number of G-orbits of edges of any collapsible G-invariant subforest
of any k-pointed G-tree in ColW (PD, k) is uniformly bounded. By Theorem 1.48,
the assertion holds for k = 0 and hence there exists such a uniform bound b ∈ N
for the unpointed G-trees in ColW (PD). One easily sees that a k-pointed G-tree
with no nonsurviving edges (relative to the finer simplicial structure) is the same
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3.2 The k-th spine S(PD, k)

as a G-tree with no nonsurviving edges together with k basepoints. Thus, every
k-pointed G-tree in ColW (PD, k) is obtained from a G-tree T ∈ ColW (PD) by
adding k basepoints, and we can argue as in the proof of Proposition 3.13.
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Abstract

For a finitely generated group G, we study deformation spaces of metric G-trees,
which are analogues of the Teichmüller spaces of surfaces for group actions on
trees. Deformation spaces of metric G-trees generalize Culler-Vogtmann’s Outer
space, the deformation space of free actions on trees, which has proven to be
immensely useful in the study of Out(Fn), the outer automorphism group of the
free group of rank n ≥ 2.

Let D be a deformation space of metric G-trees. The group of positive real
numbers R>0 acts on D by scaling the metrics on the trees and we define the
projectivized deformation space as the quotient PD = D/R>0. The outer auto-
morphism group Out(G) contains a certain subgroup OutD(G) that acts on D
and PD by precomposing the G-actions on the trees. In Chapter 1, we present a
complete argument that under certain assumptions the projectivized deformation
space PD is a model for the classifying space of OutD(G) for a family of subgroups.
In Chapter 2, we introduce an asymmetric pseudometric on PD that generalizes
the asymmetric Lipschitz metric on Outer space and is an analogue of the Thurston
metric on Teichmüller space. Making use of the Lipschitz metric on PD, we prove
existence of train track representatives for irreducible automorphisms of virtually
free groups and nonelementary generalized Baumslag-Solitar groups that contain
no solvable Baumslag-Solitar group BS(1, n) with n ≥ 2. In Chapter 3, we define
the higher holomorphs Aut(G, k), k ∈ N, which are “higher-pointed” variants of
the automorphism group Aut(G). Following the construction of the spine of Outer
space, we construct a family of simplicial complexes S(PD, k), k ∈ N on which
certain subgroups AutD(G, k) ≤ Aut(G, k) act and we show that these complexes
are always contractible.





Zusammenfassung

Im Rahmen dieser Arbeit studieren wir Deformationsräume metrischer G-Bäume
für endlich erzeugte Gruppen G. Deformationsräume metrischer G-Bäume sind
Analoga zu Teichmüller-Räumen von Flächen für Gruppenwirkungen auf Bäumen.
Sie verallgemeinern Culler-Vogtmann’s Outer space, den Deformationsraum freier
Gruppenwirkungen auf Bäumen, welcher im Studium von Out(Fn), der äußeren
Automorphismengruppe der freien Gruppe vom Rang n ≥ 2, eine zentrale Rolle
spielt.

Sei D ein Deformationsraum metrischer G-Bäume. Die Gruppe der positiven
reellen Zahlen R>0 operiert auf D durch Skalieren der Metriken auf den Bäumen.
Der projektivierte Deformationsraum ist der Quotient PD = D/R>0. Die äußere
Automorphismengruppe Out(G) enthält eine gewisse Untergruppe OutD(G), die
auf D und PD durch Präkomposition der G-Wirkungen auf den Bäumen operiert.
In Kapitel 1 präsentieren wir einen vollständigen Beweis, dass der projektivierte
Deformationsraum PD in bestimmten Fällen ein Modell für den klassifizierenden
Raum von OutD(G) für eine Familie von Untergruppen ist. In Kapitel 2 definieren
wir eine asymmetrische Pseudometrik auf PD, welche die asymmetrische Lipschitz-
Metrik auf Outer space verallgemeinert und ein Analogon zur Thurston-Metrik auf
dem Teichmüller-Raum einer Fläche darstellt. Mit Hilfe dieser zeigen wir, dass
jeder irreduzible Automorphismus einer virtuell freien Gruppe oder einer nicht-
elementaren verallgemeinerten Baumslag-Solitar-Gruppe, welche keine auflösbare
Baumslag-Solitar-Gruppe BS(1, n) mit n ≥ 2 enthält, von einer Train-Track-
Abbildung repräsentiert wird. In Kapitel 3 definieren wir die höheren Holomorphe
Aut(G, k), k ∈ N, welche “höher-punktierte” Varianten der Automorphismen-
gruppe Aut(G) darstellen. Analog zur Konstruktion des Spine of Outer space
konstruieren wir eine Familie von simplizialen Komplexen S(PD, k), k ∈ N, auf
denen gewisse Untergruppen AutD(G, k) ≤ Aut(G, k) operieren, und wir zeigen,
dass diese Komplexe immer kontraktibel sind.
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