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In this chapter, we apply our monotone multigrid method to contact problems involving
Coulomb friction. We present two algorithms for solving frictional contact problems.
The first one is based on a fixed point iteration proposed in [Has83|. The second one is
based on a Gauk—Seidel like update of the boundary stresses. Although up to now no
convergence theory for this algorithm is available, our numerical experiments show the
reliability. Moreover, using the Gaufs—Seidel like method, no outer iteration was necessary
at all. Thus, it is possible to solve solve nonlinear frictional contact problems with nearly
the same computational amount as is required for linear problems.

Before describing both methods in detail, let us shortly discuss the difficulties aris-
ing when solving frictional contact problems. The first difficulty is that the functional
associated with Signorini’s problem with Coulomb friction is nonconvex, nonquadratic
and nondifferentiable. Thus, standard existence and uniqueness results from convex anal-
ysis cannot be applied. Nevertheless, for sufficiently small coefficients of friction, the
solution to Signorini’s problem with Coulomb friction has been shown to exists, see
[Eck96, NJH80, NJH80] and the monograph [HHNLS8S]. Unfortunately, the existence
proof given in [NJH80] cannot be used directly to derive a numerical method, since it in-
volves Tychonov’s fixed point theorem. In [Eck96], a penalty approach is used for proving
existence and regularity of the solution. Therefrom, a numerical penalty method can be
derived. Since regularization leads to additional errors of the discrete solution, we do not
follow this approach. Rather, we try to resolve the nondifferentiability directly, which is
possible by using monotone multigrid methods.

For the numerical solution of contact problems with Coulomb friction we follow [Jar83]
and use a fixed point iteration in the normal stresses. Then, in every iteration step we have
to solve a contact problem with so called Tresca friction, i.e., a reduced frictional problem
with prescribed normal stresses. Since this kind of problem turns out to be convex, we
can apply a suitable modification of our monotone multigrid as an inner solver within
the fixed point iteration. The resulting algorithm is an reliable tool for solving contact
problems involving Coulomb friction. To avoid the outer iteration, we also introduce a
Gaufs—Seidel like variant of the fixed point iteration. This variant shows to be as reliable as
the fixed point iteration but is significantly faster. Unfortunately, the resulting algorithm
is based on the minimization of a nonconvex functional and so far no convergence theory
is available.

The remainder of this chapter is structured as follows: In Section 6.2, we give the
weak formulation of Signorini’s problem with Coulomb friction and give an existence
result. In Section 6.2, we present the discrete fixed point iteration. Moreover, we explain
the necessary modifications of the monotone multigrid method for the resulting piecewise
smooth obstacle problem, which are based on [Kor01]. Finally, in Section 6.3, we give
numerical results illustrating the accuracy and efficiency of the resulting method in two
and three space dimensions.

For the case of elastic contact with Coulomb friction, we refer the reader to Section 7.
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Figure 6.1: Simple onedimensional frictional device

6.1 Weak Formulation

In this section, we present the variational formulation of Signorini’s problem with friction.
We give a motivation for Coulomb’s law of friction and give the weak formulation of
Signorini’s problem with friction. The resulting weak formulation is exploited in Section
6.3, when we derive our monotone multigrid method for frictional problems.

To motivate the ideas, let us start with a simple onedimensional frictional device as
depicted in Figure 6.1. From experiments, the following behavior of this simple device is
known:

1. The absolute value of the frictional stress ¢ in the device cannot be greater than
some maximal stress opax-

2. If the absolute value of the frictional stress reaches the maximal stress opax, then
sliding opposite to o occurs. That is, the device tries to compensate the frictional
stress by a displacement in opposite direction.

In other words, defining the set [—0ax, Omax] Of admissible stresses, we have seen that
0 € [—Omaxs Omax|- Moreover, if |0| = omax, then the frictional device responses by a
displacement u opposite to o, i.e., u = —Ao for some A > 0. Now, we assume additionally
that the critical stress oax is proportional to the normal stress o,,. Then, we have derived
Coulomb’s law of friction

ur =0, |or(u)| < Flon(u)]

ur = —Aor(u), |or(u)| = Flo(u)l, (6.1)

with A > 0. Here, we have u € R? and | - | stands for the Euclidian vector norm in R?
or RI=1. F > 0 is the coefficient of friction. Clearly, Coulomb’s law of friction is a local
friction law. The frictional response at a point = depends only on the stresses developed
at z. From (6.1) we also see, that we can divide all points at the contact boundary into
sticking points and sliding points. A point x is called sticky, if no tangential displacement
occurs, i.e., if up(z) = 0. It is called sliding, if up(x) # 0. Figure 6.2 illustrates the
relation between tangential stress and normal stress for a sliding and a sticky point. For
existence results concerning different nonlinear friction laws, see. e.g., [MO87, RMOCS6|
and the references cited therein.

Remark 6.1 Equations (6.1) can also be written in the form

lor(u)] < Flow(u)l, (Flon(w)] — |or(w)]) ur =0,
lor(u)] < Flon(u)l, o1 - ur + Flon(u)|[ur| =0
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Figure 6.2: Sticky node (left) and sliding node (right)

Let us now combine Coulomb’s law of friction with Signorini’s problem in linear elas-
ticity. By simply merging (6.1) and (2.1), we get the following boundary value problem
in linear elasticity

—oij(u); = fi, in 4,
u = 0, onI'p,
oij(u)-n; = p;, on g,
op(u)=0and or(u) = 0, ifu, <gonlg, (6.2)
on(u) < 0, ifu,=¢gonTlg,
ur = 0, if [op(u)| < Flon(u)],
ur = —Xor(u), if|or(u)|=Flox(u)|, A>0

The stress tensor o is given by (2.10). Problem (6.2) is called Signorini’s problem with
Coulomb friction. In addition to the assumptions on the data g, f and p made in Section
2.2, we assume for the coefficient of Friction F € L*(I'g) and F > Fy > 0 almost
everywhere on I'g.

We now derive a variational formulation of Problem (6.2). To this end, we introduce
the nonlinear functional w: H x H — R by

w(u,v) = /ﬂan(u)\ oz da. (6.3)
s
The functional w characterizes the virtual work of the frictional forces. By means of the
functional w, we can rewrite Problem (6.2) as a variational inequality: Find u € K
a(u,v — u) +w(u,v) —w(u,u) > flv—u), veK. (6.4)
This is done by integrating by parts and by exploiting the boundary conditions, see,

e.g., the monographs [KO88, HHNL88|. The following theorem can be found in [DL72,
HHNLSS, KOSS).

Theorem 6.2 Any solution of (6.4) is a solution of (6.2). If uw is a sufficiently smooth
solution of (6.2), then also (6.4) holds.
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Unfortunately, the functional w is nonconvex, nonquadratic and nondifferentiable. Thus,
standard results from convex analysis cannot be applied to gain a solution of the varia-
tional inequality (6.4). For the case of an infinite strip in R?, the existence of the solution
has been shown in [NJH80]. Here, also estimates of the solution with respect to the
boundary data are given. In [Jar83], existence results are shown for more general do-
mains. Using a penalty approach for the analysis, Eck showed in [Eck96], see also [EJ98],
existence and regularity of the solution to both, the static and the dynamic problem of
elastic contact with Coulomb friction. He also derived upper bounds Bg_?) and Bg’) given
by

2 —2v
BY — J1-1(=2)2 g=2
3)
BY = fl-qiy.  d=3,

for the coefficient of friction F for two and threedimensional problems, respectively. For
F < Bg), i = 1,2, he was able to proof the existence of the solution to problem (6.2). In
Figure 6.3, the bounds B(;) and Bg’) are depicted.
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Figure 6.3: Bounds for the Friction coefficient F versus Poisson number v

Remark 6.3 Let us emphasize a remarkable feature of Signorini’s problem with Coulomb
friction. Although Problem (6.2) is considered as a "static” problem, it’s solution is in
general not the limit of a dynamic contact problem with friction. Rather, it should be
interpreted as an incremental time step of a discretization of the dynamic problems using
backward Euler scheme. For details, we refer the reader to [Eck96], Section (1.4).

6.2 Fixed Point lteration

In this section, we introduce the fixed point iteration used for solving problem (6.2). By
means of this fixed point iteration, the nonconvex minimization problem (6.4) is trans-
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formed into a sequence of convex minimization problems, i.e., a sequence of contact prob-
lems with Tresca friction. These convex minimization problems can be solved numerically
using a suitable modification of our monotone multigrid method. Moreover, we present a
new Gauf—Seidel like algorithm for solving contact problems involving Coulomb friction.
In all of our numerical experiments, this algorithm converges faster than the fixed point
iteration. Unfortunately, so far no convergence theory for this Gauf—Seidel like algorithm
is available.

The fixed point iteration used to solve frictional contact problems has been introduced
and analyzed in [Has83], see also the monograph [HHNLS8|. To fix ideas, let us assume
for the moment that the normal stress o,, € H~/ 2(I's) at the contact boundary is known.
From the boundary conditions on I'g in (6.2) we know that o, < 0. To be more precise, we
have —o,, € H ;1/ 2(F s), where H ;1/ 2 (T's) is the convex cone of all nonnegative functionals
over the Sobolev space HY/?(T's). For o, = o,(u), we can rewrite the functional of
frictional work (6.3) in terms of the duality pairing (-,-) on H=Y/2(I's) x H'/?(I's) as

w(u,v) = (Flonl, lvr]).

Following [Has83], we now consider for any fixed 7 € H;l/ *(T's) the following problem:
Find w = u(7) € K such that

a(u,v —u) + (F|7|, lvr| = [ur|) = flo—u), wveK. (6.5)
This gives motivation to define the following mapping
U: H7VA(Tg) — H7YATs), 70 U(r) = —oa(u(r), (6.6)

where u is a solution of the problem (6.5) with reduced friction. Thus, a function w is
said to be a weak solution of the Signorini problem with Coulomb friction, if it’s negative
boundary stress —o,(u) is a fixed point of the mapping W. The existence of a fixed
point of w can be shown using Tychonov’s fixed point theorem, provided the coefficient of
Friction F is sufficiently small. For details, we refer to [NJH80, Jar83, HHNLS88|. Here,
let us only mention the following regularity result for problem (6.5):

Theorem 6.4 ([Has83]) For any o € (0,1/4) and 7 € H;1/2+Q(F5), the corresponding
on(u(r)) € H:1/2+Q(FS), or, equivalently, ¥ maps H;1/2+Q(Fs) into itself and
(D) g-1240g) < llTllg-12eamg) + el flli2 )

where ¢ is an absolute constant and c; > 0 depends on o« and F in such a way that
c1 — 0+ whenever maxry F — 0+.

In what follows, for notational convenience we assume the coefficient of friction F to
be constant. Before defining our discrete fixed point iteration, let us study the reduced
frictional problem (6.5). Since the normal stress 7 are assumed to be known, the functional
of frictional work w: H x H — R reduces to a functional

w: H— R, w(v) = /FT\vT|da.
s
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6.2 Fixed Point Iteration

If necessary, we write w, instead of w. In consequence, the variational inequality (6.2)
reduces to: Find uw € K

a(u,v —u) +w-(v) —w(u) > flv—u), veKk. (6.7)

The function w, is continuous on H, convex and nondifferentiable. In particular, w; is
l.s.c. on H and thus subdifferentiable. Following [KO88, Theorem 10.2|, there exist a
unique solution of the variational inequality (6.7). This solution is characterized as the
unique minimizer of the energy functional J defined by

~

J(u) = J(u) + w(u) (6.8)

on K. We note that the uniqueness of the solution is a consequence of the strict convexity
of J. There is also a strong formulation of the reduced variational inequality (6.7), see,
e.g., [KO88, HHNLS8|. For given 7 > 0, we have

_UZj(u),J = fia in%a

u = 0, onlp,
Oij (U) ‘n; = pi, on g,
Flon(uw)] = 7 onTlg,
lor(uw)] < 7  then up =0,
lor(w)] = 7  then there exists ,A >0 on I'g,

such that uw; = Ao .

Now, in order to derive a discrete variant of the fixed point iteration (6.6), we need to
define suitable discrete normal stresses u, and a corresponding discrete space of boundary
stresses, the Lagrange multiplier space. Our starting point is the definition of the discrete
boundary stresses on the basis of Green’s theorem, i.e., up € M)

(p,v) = a(u,v) — (f,v), ve SV,

This definition requires a suitable discrete Lagrange multiplier space M (). Here, we define
the space M) in terms of the dual Lagrange multiplier spaces introduced in [Woh00].
Let us remark, that these dual Lagrange multiplier spaces have been developed within the
context of so called mortar methods. For structural properties as, e.g., the Ladyshenskaya
Babuska Brezzi condition and discretization error estimates, see also [Woh01].

Let us now define the dual Lagrange multiplier space. Let )\1(,] ) be the scalar nodal
basis function associated with p € N'¥) N 'g. Following [Woh00, Woh01], we denote by
w((f ), pe NUNTg, a set of locally defined piecewise linear or bilinear biorthonormal basis
functions, i.e.,

/¢éj))\§)j) dr = 0y, p,qEN(j)ﬁFS . (6.9)
T's

Moreover, we assume that Py(T's) C span {1, |¢ € NU) NTg} = M. We set

MY = (M), (6.10)
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6 Frictional Contact Problems

We note that in contrast to a standard mortar approach with crosspoints, no modification
of the dual basis functions in the neighborhood of the endpoints of I'g is necessary. The
discrete boundary stresses pu € M (@) are uniquely defined by

/u vda = a(uw,v) — f(v), veSU .

I's
In particular, we have 7 = pu - n, which is the desired discrete normal stress. Now, the
continuous fixed point iteration (6.6) gives rise to the discrete fized point iteration

v MY MY s W(r) = o, (ul(r)), (6.11)
where w/ is the unique solution of the variational inequality (6.7) and MY = {r|7 =

u-n,ueM (j)}. For the special choice of linear finite elements, the convergence of
the discrete fixed point iteration (6.11) is shown in [LPR91]. The proof given relies on
the positiveness of the shape functions for linear elements. For a detailed analysis of
the discrete fixed point iteration (6.11) in case of a Lagrange multiplier space with the
same structural properties as M) we refer to [Jar83]. We remark, that the results from
[Jar83, LPRI1] are restricted to the case d = 2.

What remains is to construct a suitable modification of our monotone multigrid
method for the contact problem with Tresca friction, i.e., for problem (6.7). Let us recall,
that for the problem of minimizing the quadratic energy functional 7 the corresponding
variational equation gives a zero of the Gateaux—derivative of J. Here, we cannot proceed
in this way, since the functional J is nondifferentiable and nonquadratic. To isolate the
difficulty, let us note that the minimizer of the functional of reduced frictional energy (6.8)
over K can equivalently be found as the minimizer of the functional

J(u) = J(u) + ¢x(u) + w(u),

which is defined on H. Here, ¢, is the characteristic functional of the set . We see,
that the difficulties are caused by the term i + w. The first term, i.e., the characteristic
functional ¢, has already been discussed in Chapter 3. Here, we restricted the coarse grid
corrections to the set of admissible displacements. Additionally, the coarse grid corrections
were not allowed to cause a change of phase. In other words, we restricted the coarse grid
corrections to a neighborhood of the smoothed iterate 4!, where the functional J + @i, is
smooth. Following [Kor01], the same idea can be applied to piecewise smooth functionals.
The functional w is nondifferentiable and nonquadratic, but piecewise smooth. Thus,
we can use constrained Newton linearization as proposed in [Kor01l]. To this end, let us
consider the smoothed iterate u’; € S() in case of Signorini’s problem with Coulomb
friction. Here, we additionally have to take care of the tangential displacement and the
stick and slip regime. In particular to ensure convergence, the coarse grid corrections
must not cause a change of phase. Thus, we define for any p € N/ ).(175)

o = g(p) , Py = o0 , ifpeTs,

o = (@) (p) . ¥5 = (a4)? , if p is a sticky node,

%’ = —(u%)?*(p), p5 = o , if p is a sliding node and (@%)! >0 °
¥, = —oo , 72 = —(u4)*(p), if pis a sliding node and (u%)' <0

(6.12)
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6.2 Fixed Point Iteration

For d = 3, f§’¢§ are defined accordingly. At all remaining nodes we set g’] = —o0 and
@'y = oo. We now introduce the neighborhood Kgy of the smoothed iterate by

Kay = {w e SV | ¢, < (u)'(p) <97}
We recall that the nonquadratic functional to be minimized is given by

J(u) + ok (u) +w-(u).

This functional is discretized by means of its S “ )—interpolant, ie.,

i, (0) +wl(v) = o, (0) + Y0 Fr(p) lwr(p)].

peNNTg

We discuss this discretization in detail later, see (6.16). Right now, we stick to our line
of argumentation. On Kgy, we can linearize the smooth energy J + w%z with

w

a(w)= Y Fr(p)wr(p).

PEN® (w¥)

As in Chapter 3, the coarse grid corrections are restricted to a neighborhood of the
smoothed iterate @". For contact problems without friction, the set IC,—L:} gives only rise
to constraints in normal direction. Here, the situation is different. We also have to take
into account the linearization of the functional w”. This leads to additional constraints
in tangential direction, see (6.12). The extended relaxation steps (3.2) are now done with
respect to the quadratic energy functional jﬁxj , which is given by

with

and

Fw)ay = f(w) — why (1) (w) + why () (w, w)

respectively. In particular, the resulting quadratic obstacle problem: Find w € Kg, such
that

Jar(w) < Jax(v), v € Kay

gives rise to a constrained Newton linearization. For a detailed analysis, see [Kor01]. In
consequence, we do not only have to take the constraints in normal direction into account
but also the constraints in tangential direction. Moreover in each step of our monotone
multigrid method, we have to modify the coarse grid stiffness matrices with respect to

w%; ().
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We consider the local nonlinear subproblems which have to be solved in the lead-
ing relaxation. The local corrections v; from (3.2) are the unique solutions of the local
subproblems: Find v; € V; such that

j(’wl,1 +v;) < j(’wl,1 +v), veV;. (6.13)

Using (6.16), this can be equivalently rewritten as the following variational inclusion: Find
v; € V, such that

0€ a(vhv) - (f(vl) - a(wl—la ’U)) + 8(@’?} + wTJ)(wl—l + vl)(v) ) v e Vl ) (6'14)

where O denotes the subdifferential as introduced in (2.20). The variational inclusion
(6.14) gives rise to a local nonlinear system. In a next step, we consider this nonlinear
system in more detail. Let p; be the node associated with V;. We set

= el —alwia XDel), ah, = aOel Al

P TP pzpz P’

and we have (T;;l)lgigd =Ty € R? and (agpz)lﬁi,jﬁd = Qp;p, € Rixd  We remark, that
ap,p, is a diagonal d x d block matrix entry of the stiffness matrix on level .J. Using these
definitions, the variational inclusion (6.14) can equivalently be rewritten as the inclusion:
Find 2, € R? such that

0 € apyp Zp, — Ty + 0Py, (Z) - (6.15)

Here, ®,, is a suitable subdifferentiable functional. We define ®, in terms of a discretiza-
tion of the reduced frictional functional w; and the characteristic functional ¢x. The
discretization of the reduced frictional functional w, is realized by means of its S
interpolant and the dual basis functions ¢(§J). We define the function 7': R~! — R by
®%(vy) = |vy| and set

wi(v) = Y Fr@ud) o' (vr(p) A de (6.16)

g p,geNINT

= > Fr(p)®"(vr(p)). (6.17)

pGN(‘] N'g

Here, we have exploited the property (6.9) of the dual basis functions 1/151‘]). To define the
discretization of the characteristic functional, we introduce ®"*: dom ¢"? C R — R by

+oo , zp > g(p)
n,p _
(I) (z")_{ 0, 2z,<g(p) °

zn, € R Now, the discretization of @i is given by

o, () = Y 2™ (u(p).

peN(NTg

As is done in [Kor97a] for the scalar case, we define the convex function ®,, by

Dy, (2) = ok, (wi—y + 2'e'(pr)) + wi (wi—1 + "€ (py)) ze R,
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6.2 Fixed Point Iteration

The subdifferential 0®,,(z) of ®,, is given by
0P, (z) = 0P(wi_1(p1) + 2), z € dom 99y, .

To obtain a solution of the inclusion (6.15), we have to compute the subdifferential of the
function ®. This is done in the following lemma.

Lemma 6.5 Let z, € R. The subdifferential of the scalar convex function ®™P is given
by

NP, ) — 0 , 2,<g(p)
92" (zn) {[0700) ) ang(p) ’

with z, € R. Let zp € R, The subdifferential of the convex function ® is given by

1} , zpr=0
99T (5 — 4 Bl =1}  zr=0,
en= M B

with p € RL,

Proof Let 2], € R and let p € R. Then from the definition of the subdifferential (2.20),
we get for all z,, 2/, < g(p)

O™ (2y,) — @™ (2,) = 0> - (2, — 2)
and thus g = 0. For the case z, = g(p), z;, < g(p) we have z], — z, < 0 and thus
O™ (z),) — @™ (2,) =0 > - (2, — 2p)

for all 4 > 0. Since ®™P(z!) = +oo for 2], > g(p), the assertion follows. To proof
the second assertion, it suffices to consider the case zp = 0. In this case, we have for
p, 2l € Ri-L

o1 (2h) — " (zr) = 27| > |pl - 127 > (w,20),

if |p| < 1.
O
Let us assume, there is no contact at p;. Then, we find 7(p;) = 0 and thus 0 =
Qpp Uy, — Ty, Here, we have introduced the unknown correction u,, = ul, e’(p;) € R?
given with respect to the rotated coordinate system {e’(p;)} with e!(p;)) = n(p). It
remains to consider the case of contact at p;. Then, there are two possibilities. Either,

p1 is a sticky node, and we have u,, = (g(p;),0)? or p; is a sliding node and we have
up, = (9(p1),vr)? with vy # 0. We note that using the modified residual 7, = r,, +
appwi—1(p;) and setting u, = w;_i(p) + Z, we see that the inclusion (6.15) can be
written as

0¢ Qpypy Up; — 'f'pz + a(b(upl) .
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Let now ,, = (g(p;),0)7 and let

UT(&’pz) = (apzpzﬁpz - %PZ)T'

Let us first consider the case |or(@p,)| < F7(p;). Then p; is a sticky node, since the
solution of the variational inclusion (6.14) is unique. In the second case, we have to solve
the local nonlinear system

-, K
ApypyUp, — Tpp = — (f . TUT/‘”T‘) ) (6.18)

for 0 < p € R. We remark that the value of y is unknown and the value for u, is known,
up, = u! = g(p). The unknowns in (6.18) are ur and p. In two space dimensions,
ur/|lur| € {—1,1} and thus (6.18) can easily be solved. More precisely, at most two
linear twodimensional system, have to be solved. The situation is completely different
for problems in three space dimensions. Here, the boundary of the unit sphere is a
onedimensional curve. We solve the arising local subproblems iteratively using a Uzawa

method, see [Glo84, p. 170].

Remark 6.6 If the tangential displacement of a sliding node is very small, even a damped
Newton method fails to solve the local subproblems in three space dimensions. This problem
does not arise in two space dimensions, since here the boundary of the unit sphere consists
of only two points.

Now, we can give our first algorithm for solving Signorini’s problem with Coulomb friction.

Algorithm 2 (Jacobi like fixed point iteration)
Initialize: u8 =0, 7'8 =0
Level: for j =0,...,J do
Initialize: Assemble stiffness matrix A and right hand side f
Normal stress: for k=1,...,K do
Solve nonlinear contact problem with Tresca Friction and given normal stress
Find uf € K; by applying sufficiently many multigrid steps to

(Auf,'v — uf) +wik,1(u’?) —wi,_c,l(v) > (f,v— uf), ve 8,
J J

Compute the boundary stress p” € S0 ph = Auf — f .
Compute normal stress: Tf = ln

Estimate error and refine _

Interpolate solution: u9+1 = Ij-flu]K

Interpolate normal stress: 7'2 1= (IJJ;INJK In
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6.2 Fixed Point Iteration

Here, w’ () denotes the algebraic representation of the functional w?(-). It is also possible
to stop the outer iteration in the boundary stresses if some suitable stopping criterion is
satisfied, e.g.,

k
I =}

[z -

for some prescribed tolerance . Here, || - || stands for the Euclidian vector norm.

In what follows, we present a new algorithm for solving contact problems with friction.
In Algorithm 2, the normal stress is updated after the reduced frictional problem has
been solved. It is also possible to update the prescribed discrete normal stress 7 after
each intermediate iteration step. In the resulting monotone multigrid method, we use
all information on the nonlinearity as soon as it is available. Thus, we expect much
faster convergence than from Algorithm 2. We replace the local subproblems (6.13) in the
leading Gauf—Seidel iteration by the local subproblems

veV;: j’wl,] (wl_l + vl) < jwl,1 (wl_l + ’U), veV;. (6.19)
Here, the functional jw is defined by
j’w =J + ¢k +w\on(w)| =J + ek +w(w7 ') :

is nonconvex. No proof of convergence of the suc-
9) is known. Let us now state our Gauk-Seidel like

Unfortunately, the functional j()(
cessive minimization induced by (6.
algorithm.

)
1

Algorithm 3 (Gaufi—Seidel like iteration)
Initialize: u8 =0
Level: for j =0,...,J do
Initialize: Assemble stiffness matrix A and right hand side f
Set wf = 0.
Solve nonlinear contact problem with friction:
Find uf € K; by carrying out sufficiently many of the following multigrid steps:
Forl=1,... ,n; do
Compute local corrections vé- € V; according to

(Avé—,v - vé) + Wl (wh™! v) — wj(wé_l,vl-) > (f,v— vé), veVy.

1—
J J

Update of the intermediate iterate: w

T'Lj
j A

Compute coarse grid correction ¢ with respect to Jg;

Set u; =u; +c

1 _ 01 1
PTW; 1Y

Compute smoothed iterate: 4; = w

Interpolate solution: u?H = I]].;luj
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We note that the extended relaxation steps are the same for Algorithm 2 and 3. The
advantage of Algorithm 3 is that no outer iteration in the normal stress is required. We
point out that the inner iteration in Algorithm 3 is a local iteration, whereas the inner
iteration of Algorithm 2 requires the solution of a global contact problem with given
friction. However, the question of convergence of Algorithm 3 is open. This is in contrast
to the discrete fixed point iteration (6.11). Nevertheless, to our knowledge there are no
results concerning the convergence speed of (6.11). In our numerical experiments, we
observe rapid convergence of (6.11). Also in all of our numerical experiments, Algorithm
3 converges significantly faster than Algorithm 2. Both algorithms give asymptotically
the same results. For a more detailed analysis we refer to the next section.

The differences between Algorithms 2 and 3 can also be interpreted as follows: In
Algorithm 2, the normal stress is associated with the outer iteration, whereas in Algorithm
3 it is associated with the local relaxation. In Algorithm 2, we have to apply in each
iteration step our multigrid method, whereas in Algorithm 3 only one multigrid solver has
to be applied.

6.3 Numerical Results

In this section, we present numerical results illustrating the performance of Algorithm
2 and Algorithm 3 for Signorini’s problem with Coulomb friction. In our numerical ex-
periments, Algorithm 2 as well as Algorithm 3 turn out to be a reliable tool for solving
frictional contact problems. In particular, the fixed point iteration shows to converge
rapidly. Using nested iteration, we also observe the necessary number of fixed point iter-
ations to be bounded independent of the level. Thus using monotone multigrid method
as an inner solver, the computational effort for solving a nonlinear contact problem with
friction is proportional to the number of unknowns. Using the Gaufs—Seidel like Algorithm
3 instead of Algorithm 2, even no outer iteration is necessary.

In the rest of this section we proceed as follows. We start with a twodimensional
example and followed by a threedimensional example. In both examples, we compare Al-
gorithm 2 and Algorithm 3. For results concerning the elastic contact of two bodies with
friction, we refer the reader to Section 7.2. For both of the following examples, we use
sufficiently many steps of a W(3,3)-cycle of our monotone multigrid method as inner
solver. In three space dimensions, we apply truncation in normal and tangential direc-
tion at a node p, if contact at p has been found. Proceeding in this way does not slow
down the convergence significantly, but reduces the computational effort needed for the
reassembling of the coarse grid matrices.

We start with the Hertzian contact problem described in Section 5.1. In contrast
to Section 5.1, we enforce Coulomb friction at I's with coefficient of friction F = 0.4.
Moreover, adaptive refinement is controlled by a residual based error indicator and not
by the hierarchical error estimator used in Section 5.1. The discrete solution on the final
Level J = 10 is obtained using Algorithm 2. Since our aim is to study the quantitative
aspects of the fixed point iteration, we stop the inner iteration on each level j if

st — k|

luf

1077,
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6.3 Numerical Results

The fixed point iteration, i.e., the outer iteration, is stopped on each level j, if the stopping
criterion

k+1 _ _k
T — 7k

6? = I7 E+l i <2.1077
7572

is satisfied. The number of necessary outer iterations is shown in Table 6.1. As an
estimate for the convergence speed of the outer iteration, we define the average estimated
convergence rate of the fixed point iteration

K 1/K
o (i)
k=1

The estimated convergence rate is given in the last column of Table 6.1. The values printed
in the last column are also shown in the left picture of Figure 6.5. As it can be seen, the
number of outer iterations does not increase with the refinement level. Moreover, the fixed
point iteration converges rapidly. We also applied Algorithm 3 to the Hertzian contact

‘ Level ‘ dof ‘ # contact ‘ # sticky ‘ # outer it. ‘ # Jac ‘ #GS ‘ A ‘

0 94 — — —1 — —
1 330 1 1 1 12 12 —

2| 1234 3 1 3 32 14 |19-107*
3| 1602 5 3 4 32 9 2.3.1073
41 2200 7 3 5 39 9 1.9-10°2
5| 3274 15 7 6 45 11 | 4.4-1072
6| 5330 29 13 7 46 10 | 6.0-1072
71 9114 57 27 7 45 13 | 6.1-1072
8 | 16646 113 53 7 45 11 |6.1-1072
9 | 31 596 225 107 7 45 17 | 6.0-1072
10 | 64 870 449 213 7 45 13 | 6.0-1072

Table 6.1: Performance of the fixed point iteration, twodimensional example

problem. In the column entitled "# Jac" the total number of W-cycles for Algorithm 2
is printed, in the column entitled "# GS" the total number of W-cycles for Algorithm
3 is printed. As it turns out, Algorithm 3 and Algorithm 2 give asymptotically the
same results, but Algorithm 3 does not require an outer iteration in the normal stresses.
Moreover, for this example it is about four times faster than Algorithm 2. Since the
nonlinearity is resolved within the multigrid cycle by solving local nonlinear problems, the
optimal complexity of one iteration step is preserved. In particular, the computational
cost of solving a nonlinear contact problem with friction is comparable to the cost of
solving a linear problem.

The resulting boundary stresses are shown in the middle of Figure 6.4. Between the
two "peaks" of the tangential stresses, we have the sticky region. Here, the tangential
stresses increase until the critical stress F|uy,| is reached. Then, sliding occurs and the
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6 Frictional Contact Problems

tangential stresses decrease. We emphasize that by construction our method separates
sticky and slippy nodes, i.e., we do not only compute the displacements but get also
the phase of each node in I'g for free. To illustrate the effect of different coefficients of
Friction, in Figure 6.4 the boundary stresses for 7 = 0.05,0.4, 1.0 are depicted. In the case
F = 0.05, there is only one sticky node on the final level, all other nodes are sliding nodes.
In the case F = 1.0, for the sliding nodes we expect the tangential stresses to coincide
with the normal stresses. This behavior is perfectly shown by our discrete approximation.

For different twodimensional numerical examples, the performance of the fixed point
iteration (6.11) is also investigated in [LPR91]. A successive over relaxation method is
used as the inner solver. The authors observe a constant number of outer iterations on
each refinement level for small coefficients of Friction F. For large coefficients of Friction,
ie., 5 < F <100, they observe convergence depending on the chosen grid. These results
are in good agreement with the results of our numerical experiments. For a different to
the solution of contact problems with friction, see, e.g., [PC99, DV97] and [RCL88| for a
survey. Our next example is the elastic cylinder on two rigid rods as presented in Section

Figure 6.4: Normal stress (blue) and tangential stress (red) for the Hertzian contact prob-
lem with F = 0.05,0.4, 1.0

5.3. In contrast to Section, 5.3 here we use a coarse grid with only one element. Moreover
we use adaptive refinement, controlled by a residual based error indicator. We solve
Signorini’s problem with Coulomb friction using Algorithm 2 and Algorithm 3. In Table
6.2, the number of outer iterations on each level is shown. As in the twodimensional
example, we also give the numbers p? in the last column. The significant increase of
the number of inner iterations is caused by degenerating elements near the boundary of
the cylinder. Due to the extremely coarse initial grid, the shape regularity is lost when
approximating the curved boundary on finer grids. This is in contrast to Section 5.3, where
we have used a different coarse grid. However, this does not affect the outer iteration.
Again, the fixed point iteration shows to converge rapidly. We also applied Algorithm 3
to this example. As before, in the column entitled "# Jac" the total number of W-cycles
for Algorithm 2 is printed and in the column entitled "# GS" the total number of W-
cycles for Algorithm 3 is printed. Asymptotically, Algorithm 3 yields the same results as
Algorithm 2. For this example, Algorithm 3 is about four times faster than Algorithm 2.
Compared to the case of two space dimensions, the computational cost of one multigrid
cycle is considerably higher. Thus especially in three dimensions, it is important to have an
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6.3 Numerical Results

‘ Level ‘ dof ‘ # contact ‘ # sticky ‘ # outer it. ‘ # Jac ‘ # GS ‘ A
0 27 — — — — — —
1 567 6 2 5 72 23 | 4.1-1072
2 3 723 14 4 4 63 17 ] 22-1072
3| 10194 46 18 5 75 18 | 2.2-1072
4| 37935 180 56 5 87 21 | 4.3-1072
5| 92961 684 188 6 146 32 [59-1072
6 | 226 500 2 728 747 6 274 70 | 7.2-1072

Table 6.2: Performance of the fixed point iteration, threedimensional example
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Figure 6.5: Performance of the discrete fixed point iteration, Hertzian example (left) and
cylinder (right)
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6 Frictional Contact Problems

iteration scheme without outer iteration. This is provided by Algorithm 3. The numbers
pr are depicted in the right picture of Figure 6.5. In Figure 6.6, the tangential stresses

Figure 6.6: Tangential stresses for the three dimensional cylinder example

with respect to the local coordinate systems {e;(p)}, e1(p) = n(p) and p € N® NTg are
depicted. Note that the tangential stresses show a similar structure as for the Hertzian
contact problem.

Remark 6.7 In our implementation, the modification of the coarse grid matrices due to
the additional linearization terms is done locally as described in Section 4.5. We also per-
formed numerical experiments in three space dimension, where we omitted the additional
linearization terms. Here, for some problems the convergence of the method was lost due
to wrong coarse grid corrections. For two dimensional problems no additional terms are
necessary at all, because in this case |vr| is piecewise linear..

It is also possible to truncate any node being in contact with the foundation in normal
and tangential direction, regardless of it being a sticky or slippy node. In this case, the
stiffness matrices on the coarser grids remain unaltered.
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