5 Numerical Results

In this chapter, we give various examples illustrating the performance of the monotone
multigrid method for frictionless contact problems. As it turns out, the monotone multi-
grid method shows to be a reliable and efficient solver for nonlinear contact problems.
It combines the benefits of standard linear multigrid methods with the advantages of a
highly accurate and a globally convergent nonlinear solver.

Before giving the numerical examples, let us discuss what particular aspects of the
numerical experiments we are interested in.

The first one to be considered is the accuracy of the solution. Since contact stresses
are of primary interest in many applications, see, e.g., [ARS99], we start with a Hertzian
Contact Problem, where the analytical solution is known from [Her82|, see also [KO88,
p. 141]. The computed boundary stresses are in excellent agreement with those known
from the analytical solution even for a small number of unknowns. This is due to the
discrete solution satisfying the non-penetration condition exactly. For a comparison of
the boundary stresses computed using a penalty method with the analytical ones, we
refer the reader to [ESW99].

In view of Theorem 3.5, we distinguish between the transient and the linear phase of
the iteration process. Within the transient phase, the discrete zone of contact is searched
whereas within the linear phase the discrete zone of contact is known and the asymptotic
linear problem is solved. The numerical examples presented in this chapter are intended
to illustrate the quantitative aspects of our method within the transient as well as within
the linear phase.

Theorem 3.3 provides the global convergence of our monotone multigrid method. This
theoretical result is of particular importance for the transient phase. However, no upper
bound for the convergence rate is available. Moreover, the convergence speed within the
nonlinear phase depends strongly on the start iterate uj. To illustrate this effect, we take

u% =0 and ulg = I,’j_lﬁkfl as resulting from nested iteration in our numerical examples.

Here, I,’;_lz St=1 ., §(*) denotes the canonical injection.

Once the discrete zone of contact has been identified, the nonlinear problem reduces
to a linear problem with mixed boundary conditions. Thus, it would be possible to apply
a standard linear multigrid method. However, this requires an additional setup phase for
the multigrid method. In particular, the stiffness matrices have to be reassembled. Thus,
we do not proceed in this way and rather use the extended splitting (3.1). This is justified,
if the convergence speed of the multigrid method induced by (3.1) is comparable with that
of a standard multigrid solver applied to the asymptotic linear problem. Our numerical
examples show, that the convergence speed of our truncated monotone multigrid method
is comparable to standard multigrid methods applied to the corresponding linear problem
with known boundary data. That is, applying the nonlinear monotone multigrid method
to a linear problem yields the convergence behavior of a fast linear solver.

Moreover, we consider the effect of varying normals. Since we assume small displace-
ments, the non-penetration condition can be given with respect to the outer normals of
the body % as well as with respect to the outer normals of the rigid foundation, see
Section 2.1. In particular, we consider the contact of a body with constant outer normal
at I's with an obstacle with curvilinear boundary. This allows us to compare the case
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5 Numerical Results

of equal normals with the case of varying normals for almost the same problem, i.e., the
same linearized problem. Finally in Section 5.2, we consider an example with large de-
formations. Here, nearly "opposite" displacements are represented by a single coarse grid
function. As it turns out, this does not affect the speed of convergence.

To summarize, we are interested in the following points:

e quality of the solution, i.e., accuracy of the computed boundary stresses,

e convergence speed within the nonlinear or transient phase of the iteration process,
in particular, influence of the start iterate,

e convergence speed within the linear phase of the iteration process, in particular,
comparison with standard multigrid methods,

e influence of varying normals at the Signorini boundary.

For the case of frictional contact problems, we refer the reader to Section 6.3. Let
us start with a simple example in two space dimensions, where the analytical solution is
known.

5.1 Hertzian Contact Problem

In our first example, we consider a plane strain problem for a half circle centered at
(0,0.4) with radius 0.4 in elastic contact with a rigid plane. The material of the half circle
is assumed to be homogeneous and isotropic with Young’s modulus E = 270269 N/mm?
and Poisson’s ratio v = 0.248. We prescribe vertical displacement u(z,y) = —0.005 at
I'p = {(x,y) € T | y = 0.4} and the Signorini boundary conditions (2.12) at I's =
0% \ I'p. The continuous problem is discretized by linear and bilinear finite elements
on triangles and quadrilaterals, respectively. In this example, normals n;(p) = n(p),
p € N are chosen to be the outer normal of the plane. An example with varying
normals will be given in the next section.

Figure 5.1: Initial partition 7y

Starting with the initial partition 7 as depicted in Figure 5.1, a sequence of triangu-
lations 7y, ...,7;, J = 11, is produced by adaptive refinement. The adaptive refinement
process is controlled by a locally defined error indicator. Following the lines of [Kor96],
we use a hierarchical approach. Since & is not resolved by the coarse grid, new nodes are
moved onto the boundary 0.4.
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5.1 Hertzian Contact Problem

For the iterative solution of the discrete problems, we use the fully truncated variant
of our monotone multigrid method as described at the end of the preceeding chapter, i.e.,
Algorithm 1. On each level & > 0, we apply 4 pre- and 4 post-smoothing steps. Problems
on Level 0 are solved up to machine precision by a projected block Gauf—Seidel iteration.

On subsequent levels, k > 1, the iterate uy = 'u,',f'l is accepted, if the stopping criterion
||“Z+1 —uylla < 0.05 0agOapp | ura (5.1)
is satisfied with safety parameters oy = 1, oapp = 0.1. Here, || - ||2 = a(-,-) denotes the

energy norm. As a consequence, the estimated algebraic error does not interfere with the
estimated discretization error on the final level (cf. [Kor97b], pp. 108). We choose initial
iterates ug = I,’j_lﬂk_l for k =1,...,11 (nested iteration). The resulting approximation
history is reported in Table 5.1. It turns out that only 3 iteration steps are required on

estimated relative errors
level # dof | # iterations | # coincidence set | displacements ‘ normal stress
0 30 - 1 64.93 72.12
1 78 3 1 46.68 58.48
2 146 3 1 37.52 33.31
3 222 3 3 18.20 7.54
4 508 3 5 12.52 0.47
5 1016 3 7 7.51 0.52
6 2 220 3 15 4.77 0.33
7 5 600 3 29 2.91 0.21
8 13 032 3 o1 1.92 0.22
9 39 976 3 89 1.10 0.20
10 67 274 3 119 0.84 0.20
11 | 109 534 3 161 0.65 0.20

Table 5.1: Approximation history

each refinement level. The error of the displacements is measured in the energy norm.
Note that the estimated error is proportional to ni/ ? which is in good agreement with
the O(h) estimate (2.29) and Jackson’s inequality (2.26) for s = 1. In Figure 5.2, the
estimated relative error (blue crosses) and the expected asymptotic behavior from (2.26)
for s = 1 of the error (red circles) is depicted. The underlying hierarchy of tringulations is
illustrated in Figure 5.3. The color reflects the meshsize, ranging from red (small elements)
to blue (large elements). Observe that the red spots of strong local refinement in the final
triangulation 771 coincide with the boundary of the contact set.

Final approximation of tangential (red) and normal boundary stress (blue) is depicted
in Figure 5.4. We emphasize that the tangential stresses are zero up to an algebraic
error which could be reduced down to machine precision by sufficiently many multigrid
iterations. We now check the accuracy of the normal stress. Following [Her82], see also
[KO88, p. 141], normal contact stresses can be computed analytically from the Hertz
solution. Approximating the width of the contact surface of u by the width of the contact
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surface of the discrete solution w11 an approximate Hertzian normal contact stress can be
computed analytically. As it is standard, see, e.g. [CSW99, Wri95|, this approximation
of the Hertzian contact stress is taken as reference solution. The last column of Table
5.1 contains the relative deviation of the maximal normal stress of %, from the maximal
Hertzian normal stress. Both coincide up to an error of less than 0.5% for k = 4. Let us
emphasize that the coincidence set contains only 5 nodes on this level. In particular, a
good approximation of the maximal normal stress can already be obtained after a small
number of refinement steps. We note that the analytical solution of Hertz is based on a
parable and not a half circle [Wri00]. Thus, we cannot expect that the relative error in
the normal stress tends to zero for high level number. The impressive overall accuracy is
a consequence of our discrete approach which does not involve any relazation of contact
conditions. This is in contrast to, e.g., penalty methods.

We now investigate the convergence behavior of our multigrid method on the final grid
T11. The left picture of Figure 5.5 shows the algebraic error ||ui; —uY, ||, forv =0,...,33.
The red curve is obtained using the initial iterate ul; = Z{}43, (nested iteration). We
observe linear convergence throughout the iteration. In fact, the exact discrete coincidence
set is detected after one iteration step. Leading high convergence speed is due to fast
reduction of the high frequency contributions of the error. The blue curve illustrates
the iteration history for the (artificial) initial iterate u{; = 0. In this case the discrete
coincidence set is detected after 10 iterations. In spite of leading fully nonlinear iterations
we observe again a linear reduction of the error throughout the iteration. This effect is
not typical, see, e.g., next section or [Kor97al, but reflects the simplicity of the Hertzian
model problem under consideration.

In our final experiment, we compute approximate asymptotic convergence rates pg
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5.2 An Unphysical Example
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Figure 5.3: Refinement history for partitions 7; for j = 1, 3,7, 11.

according to

luy * — |
pk: = i* V*fl . (5'2)
g —up "
on each level, k =0,...,11. Here, v* is chosen such that

[l < 10722

The asymptotic convergence rates are computed for the V(4,4)- and the W(4,4)-cycle.
As illustrated by the middle picture in Figure 5.5, asymptotic convergence rates seem to
saturate at about p, = 0.4 for the V-cycle (middle) and at about py, = 0.1 for the W
cycle (right) for increasing levels k — oc.

5.2 An Unphysical Example

In this section, our goal is to study the behavior of our algorithm in case of highly varying
normals. Since the extended splitting (3.1) depends on the outer normals, we study the
influence of the outer normals on the convergence speed of the method. Let us note
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Figure 5.4: Final approximation of boundary stress at I'g
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Figure 5.5: Iteration history on Level J = 11 and asymptotic convergence rates for the
V(4,4)-cycle (left) and W(4,4)-cycle (right)

that by construction, the truncated basis functions on the coarsest grid can be used to
represent displacements in arbitrary directions. Concerning the example given in this
section, the single coarse grid function associated with the Signorini boundary represents
nearly "opposite" displacements. As a matter of fact, this does not affect the convergence
speed of the monotone multigrid method. The monotone multigrid method shows to be
robust with respect to highly varying normals.

Here, we consider a contact problem with large deformations but assume linear elas-
ticity. Obviously, this is not covered by the assumptions made in Chapter 1, in particular,
(1.2) is violated. Although this problem has to be considered as "unphysical”, it illus-
trates the behavior of our method in case of highly varying normals. The body £ to be
deformed is the unit square. At the right and left boundary, we prescribe homogeneous
Neumann boundary conditions. The lower boundary is the Signorini boundary I's. We
prescribe displacements of u(z,y) = (—0.6,0) at the upper boundary of the quadrilateral.
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5.3 Elastic Cylinder and Two Rigid Rods

obstacle

Figure 5.6: Deformation with higly varying normals (left) and initial triangulation (right)

The obstacle is a rigid circular arc with radius 0.4, see the right picture in Figure 5.6.
Here, the initial triangulation and the osbtacle are depicted. The material parameters are
E = 206000 and v = 0.28. The resulting deformation and the initial triangulation are
shown in Figure 5.6. For completeness, the computed boundary stresses are depicted in
Figure 5.7. At the endpoints of the actual contact zone we have outer normals which are

Figure 5.7: Boundary stresses

almost linearly dependent but have opposite sign. In particular, the coarse grid correction
originating from minimization in direction of “(()0 0.5) € S contributes to displacements
in direction of nearly "opposite" normals n,,n,, p,q € N(J).(ﬁj), ie, n, -n,~ —1. The
resutling asymptotic convergence rates are depicted in Figure 5.8. As it can be seen, the
method behaves as in the case of constant normal directions.

5.3 Elastic Cylinder and Two Rigid Rods

In this section, we consider a highly nontrivial example in three space dimensions, illustrat-
ing the flexibility and efficiency of our method. The numerical simulation of a nonlinear
contact problems in three space dimensions is a highly challenging task. We consider the
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Figure 5.8: Asymptotic convergence rates for the W(1, 1)-cycle with highly varying nor-
mals (left) and with constant normals (right)

deformation of an elastic cylinder with axis {(z,y,2)|y = 0.5, z = 1.0}, radius 1 and
length one against two rigid cylindrical rods with axis {(z,y,z) |z = 0.25, z = —0.25}
and {(z,y,z) |z = 0.75, z = —0.25}, respectively, radius 0.25 and infinite length. We
choose homogeneous and isotropic material with Young’s modulus £ = 206000 N/mm?
and Poisson’s ratio v = 0.28. Dirichlet boundary conditions u(x,y) = —0.05 are pre-
scribed at I'p = {(x,y,2) € 0% | = > 0.75} and Signorini boundary conditions at
I's = {(z,y,2) € 0% | = < 0.25}. The remaining part of the boundary satisfies ho-
mogeneous Neumann boundary conditions. In Figure 5.9, a cross section is depicted,
illustrating the position of the two rods. The continuous problem is discretized by trilin-

RRNEEY

Cylinder

Figure 5.9: Cylinder and obstacles — cross section

ear finite elements on quadrilaterals. The normals n;(p) = n(p), p € NV, are directed
in radial direction of the cylinder. The initial partition 7y is shown in Figure 5.10. Again,
we produce a sequence 7y, ..., 7;, J = 5, by successive local refinement moving new nodes
at the boundary onto 9%. In order to maximize the significance of the nonlinearity at
I's in the discrete problem, only those elements having at least one vertex p = (pz,py, p-)
with p, < 0.04 are refined in each step. Again, we consider the fully truncated monotone
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5.3 Elastic Cylinder and Two Rigid Rods

Figure 5.10: Initial partition 7y and deformed final partition 75

multigrid with 4 pre- and 4 post—smoothing steps, and the coarse grid problems on Level
0 are solved up to machine precision.

The deformed final partition 75 is shown in the right picture of Figure 5.10, the final
approximation of contact stress is shown in Figure 5.11. We recall that the condition
opr = 0 is fulfilled up to algebraic accuracy, and that in contrast to penalty methods,
the error of the computed boundary stresses depends only on the algebraic accuracy and
the discretization error (2.29), but not on any additional parameters. The convergence
history on the final grid 75 is shown in the left picture of Figure 5.12. Again the red curve
corresponds to nested iteration. As in the twodimensional example given in Section 5.1,
the resulting initial iterate is sufficiently accurate to enter the asymptotic regime imme-
diately. This is different for the artificial guess ul = 0. As illustrated by the blue curve,
it takes about 50 transient steps to reach the asymptotic regime. Note that the asymp-
totic convergence rates are the same, as predicted by Theorem 3.5. We remark, that it
is possible to shorten the initial transient phase by various heuristic strategies, e.g., by
additional truncation in case of very small absolute values of the quasioptimal obstacles
(_;k))i, (QZ()’“))Z Using a W-cycle instead of V-cycle also shortens the transient phase. In
order to illustrate the convergence behavior for decreasing meshsize, we compute approxi-
mate asymptotic convergence rates py, k = 0,...,5, according to (5.2). The right picture
in Figure 5.12 indicates that asymptotic convergence rates saturate at about p, = 0.65
for increasing levels k — oo. Similar results are observed for classical multigrid methods
as applied to unconstraind problems. Indeed, prescribing boundary stresses as depicted
in Figure 5.11 instead of constraints and applying a standard multigrid solver from UG,
we obtain almost the same aymptotic convergence rates.

In the following section, we consider in detail the relation of our monotone multigrid
method to a standard linear multigrid. A comparison in the asymptotic linear phase
is given and discussed. Numerical results illustrate the flexibility and efficiency of our
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Figure 5.12: Iteration history on level J =5 and asymptotic convergence rates
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5.4 Comparison with Standard Multigrid

method.

5.4 Comparison with Standard Multigrid

Since the pioneering work [Osw90] of Oswald, who was the first to realize the strong link
between approximation theory and multigrid convergence theory, multigrid methods are
known to be optimal for elliptic partial differential equations. Unfortunately, these results
cannot be used directly for a quantitave analysis of multigrid methods, since the constants
depend on the geometry of the domain and are in general not available.

In this section, we compare our monotone multigrid with a standard multigrid method
applied to the linear problem, which is related to each Signorini problem. Our aim is to
compare the convergence speed of the monotone multigrid method within the linear phase
to the convergence speed of a standard linear solver. We proceed as follows: After solving
the Signorini problem, on each level we take the computed boundary stresses as Neumann
boundary data for the linear multigrid method. This is done on each refinement level and
allows us to compare the quantitative behaviour of the standard multigrid with that of the
monotone method. As it turns out, our truncated monotone multigrid method shows to
be as efficient as a standard linear multigrid solver. In particular, using nested iteration,
we can solve a nonlinear contact problem nearly as fast as a linear problem with given
boundary data.

We start with a Hertzian contact problem in three space dimensions. Here, a ball with
radius one and midpoint (0.5,0.5,0.5) is pressed against the plane {z = —0.5}. The initial
distance of the ball to the plane is zero, i.e., in the reference configuration there is contact
at exactly one point of I'g. The material parameters are £ = 2000 und v = 0.25. Dirichlet
boundary conditions u(z,y) = —0.05 are prescribed at I'p = {(z,y,2) € 0% | = > 1.25}
and Signorini boundary conditions at I's = {(z,y, 2) € 0% | = < —0.25}. The remaining
part of the boundary satisfies homogeneous Neumann boundary conditions. The normals
are choosen to be the outer normals of the ball, i.e., we have varying normals at the
contact boundary. The deformed configuration scaled by a factor of 5 can be seen in the
right of Figure 5.4. Again, due to the scaling, the shape of the obstacle is not reproduced.
To compare our monotone multigrid method with the standard multigrid method, we
proceed as follows on each level. We compute the solution to Signorini’s problem using
our truncated monotone multigrid method. Then, the computed stresses at the contact
boundary are used as Neumann boundary data for the linear solver. The asymptotic
linear convergence rates are compared, using a W(3,3)-cycle for both methods. The
initial iterate is the same for both methods and is taken to be ug = Z,’jflﬁk,l. We
remark, that the linear multigrid is not able to handle Neumann boundary conditions
given with respect to the normal/tangential coordinate system. Thus, the computed
boundary stresses are transformed to the standard basis {E;} of R®. We use adaptive
refinement controlled by a residual based error indicator, thus stressing the nonlinearity
at the contact boundary. A cross section of the resulting Grid ob Level 5 can be seen
in Figure 5.4. Note the highly local refinement in the contact region. In Table 5.2,
the asymptotic convergence rates of the nonlinear and the linear method, the number
of unknowns and the number of contact nodes are given. For convenience, in Figure
5.14 the asymptotic convergence rates pyue and psrpue Of the nonlinear and the linear
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5 Numerical Results

Figure 5.13: Cross section of the mesh on Level 5 (left) and deformed body (right)
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Figure 5.14: Comparison of the monotone multigrid method (red) and the standard linear
multigrid method with given boundary data (blue): Asymptotic convergence
rates (left) and iteration history on Level 7 (right)

method are depicted. As can be seen, there is nearly perfect agreement of the convergence
rates. Thus, our monotone multigrid method shows to be a fast and efficient solver even
for the asymptotic linear problem. Let us emphasize, that we have solved a nonlinear
contact problem with varying normals with computational amount comparable to that
of a standard method for the case of known boundary data. In the left of Figure 5.14,
also the iteration history on Level 7 is shown, i.e., the estimated algebraic error versus
the number of unknowns. The initial slowdown of the monotone multigrid method (red
crosses) is due to the nonlinearity. As soon as the contact boundary has been identified,
the asymptotic linear regime starts. In particular, there is only one additional iteration
necessary to resolve the nonlinearity. Our next example is the Hertzian contact problem
presented in Section 5.1. Here, we do not only consider the V-cycle as in Section 5.1, but
also the W-cycle. Adaptive refinement is contolled by the hierarchical error estimator.
In contrast to Section 5.1, here on each level the algebraic error, measured in the energy
norm, is reduced up to an estimated error of 107*2. Thus, the grid hierarchy is slightly
different from that used in Section 5.1, see Table 5.3. As can be seen in Figure 5.4, the
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5.5 Influence of the Start Iterate

‘ Level ‘ # dof ‘ # coincidence set ‘ PuMMG ‘ PsTDMG ‘

0 9 0 — —

1 35 1 2.7-10"! | 3.0 -107!
2 189 1 351071 | 3.5 1071
3 554 5 1.6-1071 | 1.6 -10°!
4 2173 9 1.6 -107 | 1.6 -10°*
5 6 843 45 1.6 -1071 | 1.7 -1071
6 29 203 177 221071 | 2.0 -107!
7 69 877 620 1.5-107" | 1.9 -10~!

Table 5.2: Comparison of monotone multigrid method pyume and standard linear multigrid
method pgrpue for the threedimenional example

asymptotic convergence rates of the monotone multigrid method of the V(3, 3)-cycle and
of the W(3,3)-cycle are comparable to the corresponding asymptotic convergence rates
of the standard multigrid method. For both methods, the results obtained by using the
W(3,3)-cycle are better than those obtained by using the V(3,3)-cycle, see Figure 5.4
or Table 5.3. Summarizing the results from both numerical experiments, we have shown
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102 10* 10% 10% 10'0 10'? 10'* 2 4 6 8 10 12
# Iterations
Level

Figure 5.15: Comparison of the monotone multigrid method (red) and the standard linear
multigrid method with given boundary data (blue) for the twodimensional
example from Section 5.1: Asymptotic convergence rates (left) and iteration
history on Level 7 (right)

that the quantitative behavior of our monotone multigrid methods is comparable to that
of a standard multigrid method applied to a linear problem with given boundary data.
Thus, our monotone multigrid method shows to be as efficient for nonlinear problems as
standard multigrid methods are for linear problems.

5.5 Influence of the Start lterate

In this section, we study the behavior of our monotone multigrid method in case of a
bad start iterate. To this end, we consider a simplified model for a journal bearing. The
geometry of the body in the reference configuration and the obstacle are depicted in Figure
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5 Numerical Results

Level # dof | # coincidence set PumMc PsTDMG

0 30 1 — —

1 78 1 6.17 -1072 | 6.84 -1072
2 146 1 6.84 -1072 | 4.53 -1072
3 222 3 8.15 1072 | 5.14 -10°2
4 508 5 7.63 1072 | 6.68 -1072
5 1016 7 1.14 -107! | 7.32 -1072
6 2 260 15 1.16 -10~% | 7.99 .10~2
7 5 570 29 1.10 -10~' | 8.05 1072
8| 12778 51 1.09 -10~! | 8.04 -1072
9 | 46274 99 1.19 -10~! | 8.17 -1072

10 | 76 940 139 1.25 .10~ | 7.90 -1072

11 | 133 088 171 1.07 .10~ % | 7.69 -10~2

Table 5.3: Comparison of monotone multigrid method pyue and standard linear multigrid
method psrpue for the twodimenional example

5.16. According to Figure 5.16, the bearing (red) is pressed against a circular obstacle. At
the outer curvilinear boundary I'p of the bearing we prescribe Dirichlet values according
to u(z,y) = —n(z,y) * 0.05, where n(z,y) is the outer normal at the point (z,y) € I'p.
At the straight parts of the boundary, homogeneous Neumann boundary conditions are
prescribed. The interior curvilinear boundary of the bearing is the Signorini boundary
I's. Here, the obstacle is given with respect to the outer normals at I's. The radius
of the bearing is Rg = 0.5 and the radius of the obstacle is Ro = Rp — 1078, The
material parameters are £ = 206000 and v = 0.28, which correspond to steel. As we have

"

Obstacle Journal bearing

™~

Figure 5.16: Geometry of the bearing model (left) and initial triangulation (right)

seen in the previous sections, in case of nested iteration the coincidence set is in general
found within the first two iteration steps. Thus, for this example on each level j we use
a randomly chosen initial iterate u? with values u; € [—1,1], i = 1,2. For comparision,
we also consider the initial iterate u(; = 0. Due to the physical interpretation of the
model, we expect the actual zone of contact to coincide with the Signorini boundary.
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5.5 Influence of the Start Iterate

This complicates the search for the coincidence set, since every coarse grid correction
has to be admissible with respect to constraints given in the directions of highly varying
normals. In particular, during the nonlinear phase the non penetration conditions in
normal direction lead to constraints in tangential direction on the coarser grids. We use
adaptive refinement controlled by the hierarchical error estimator. Since refinement takes
primarily place near the Signorini boundary, see Figure 5.18, we have a large number
of contact nodes compared with the number of inner nodes. Thus, with respect to the
nonlinearity the problem can be considered as extremely difficult.
The numerical results are analyzed with respect to following criteria:

e number of nonlinear iterations until the coincidence set is found,

e number of total iterations until the prescribed tolerance is reached,
e speed of convergence in the nonlinear phase,

e asymptotic linear convergence speed.

We consider two different cases for the start iterate. In the first case, we chose 'u,? =0
in the interior of the domain % and set u? to random values taken from the interval
[~1,1] x [-1,1] on I's. In the second case, we set u? = 0. On each level j, the iteration
process is stopped, if the algebraic error [lu; — u¥[|, measured in the energy norm is
reduced up to a prescribed tolerance of 10710, Here, u; stands for the exact solution on
level j. We note, that we use the exact algebraic error. To compute the algebraic error,
on each level the monotone multigrid method is applied twice. The first run provides the
discrete solution u;, the second run provides the algebraic error. In Table 5.4, the number
of nonlinear iterations to identify the coincidence set is shown. In round braces, the total
number of iterations, i.e., nonlinear and linear is shown. As can be seen in Table 5.4,

# nonlinear (total) iter.

Level | # dof | # contact ’U,?h‘s rand. ‘ u? =0 p

0 72 S|l— (=) |— () —
1 196 9] 1 (8) 1 (6) |3.54-102
2 556 172 (10) |1 (8 |6.70-1072
3] 1808 33|12 (12) | 1 (10) | 1.14 -1071
4 | 4004 65| 2 (13) [ 1 (9) |1.34-107!
5| 8368 12913 (12) |1 (9) |6.85-1072
6 | 14 276 257 | 5 (13) |1 (9) |6.82-1072
7 | 23 236 513 | 5 (13) | 1 (9) |6.94-1072
8 | 24 756 1025 | 8 (16) | 2 (9) |5.98-102
9 | 41 310 2049 |10  (18) | 1 (9) | 5.64-1072
10 | 74 016 4097 |13 (20) | 1 (9) |6.09-1072

Table 5.4: Nonlinear behavior for different start iterates u;

the number of nonlinear iterations increases with increasing refinement level. However,
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5 Numerical Results

the total number of iterations required to reduce the algebraic error up to 1071° does not
increase proportionally. Comparing with the behavior of the method in case of the initial
iterate u? = (, we see that a badly chosen initial iterate does slowdown the total iteration
process. This is the case for any iterative method. Let us dicuss this point in more detail.
From the iteration history on Level 8 depicted in Figure 5.18, we see that there is some
"nonlinear convergence rate". For this example, it is about 0.7, i.e.,

[ug — ujlla

for v < 8. This is much slower than the asymptotic linear convergence rate of 0.1, but we
observe constant reduction of the error during the nonlinear phase. A badly chosen initial
iterate can slowdown the nonlinear iteration process, but it does not spoil the convergence
speed in the nonlinear phase. Unfortunately, for the case of a randomly chosen initial
iterate the number of nonlinear iterations increaes with increasing refinement level. This

is also illustrated in Figure 5.17 The situation is different for the case u(])- =0. Itisa
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Figure 5.17: Iteration history on Level j = 5,8,10 for random initial iterate (blue) and
zero initial iterate (red)

physically reasonable choice, since it corresponds to the undeformed configuration. From
Table 5.4 it can be seen, that there is per level only one nonlinear iteration necessary.
In Figure 5.17, the iteration history on Level 9 for both choices of u] is depicted. As
can be seen, at the beginng of the nonlinear search phase the algebraic error is reduced
substantially. Then, there is a slowdown dircetly before finally identifying the coincidence
set. This is due to the coarse grid corrections which have to satisfy constraints in both,
tangential and normal direction. This lead to very restrictive constraints for the coarse
grid corrections. For completeness, in Figure 5.19, the boundary stresses are depicted.
Summarizing, we have seen that for the nonlinear iteration the choice of the start iterate
is important. A suitable start iterate is always provided if nested iteration is used. If no

start iterate is available, we propose the choice u?- =0.

5.6 Truncated Nodal Basis versus Standard Nodal Basis

In this section, we consider an essential difference between scalar obstacle problems and
the Signorini problem with varying normals. In particular, we show that for Signorini’s
problem the use of truncated search directions is necessary for getting multigrid conver-
gence speed. This is in contrast to the scalar case. Here, also standard monotone multigrid

82



5.6 Truncated Nodal Basis versus Standard Nodal Basis

i

T
7

NP

o
o
)
5
%
g
o)
X
S
i’
%
g
N
o

%
R
APRRE
.,W/,,w
lr("

i
M

i
i

oS

N
g

N

p

A

Figure 5.18: Boundary stresses and refinement history for levels j = 0, 3, 5.

Figure 5.19: Boundary stresses. Normal stresses are blue, tangential stresses are red

methods show multigrid convergence speed, see [Kor97a]. The reason for this different
behavior of the method is that for systems of equations the obstaclle directions differ in
general. In other words, contact problems with varying normals need the truncated search
directions. To illustrate this effect, we consider the twodimensional example presented in
Section 5.1. In contrast to Section 5.1, we take the outer normals of the computational
domain % as obstacle direction. That is, the non-penetration condition is given with
respect to the outer normals of the body £ in it’s reference configuration. We apply
an W(3,3) cycle of the monotone multigrid method with and without truncation of the
coarse space basis funtions. As can be seen in the left side of Figure 5.21, the standard
splitting shows degenerating asymptotic convergence rates. In contrast, the convergence
speed of the method induced by the extended splitting is level independent, see the right
side of Figure 5.21 An implicit explanation of this effect has already been given in Sec-
tion 3.2. Here, we have been given an interpretation of the truncated basis functions in
terms of a projection. In particular, the truncated basis functions are constructed in a
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Figure 5.20: Geometry of the test example with varying normals
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Figure 5.21: Asymptotic convergence rates for the monotone multigrid method using the
standard nodal basis (left) and using the truncated basis (right)

way, such that there is no contribution in direction of the obstacle direction. Let us now
assume we do not use a truncated basis function, but rather a standard coarse space basis
function. Then, as explained in Section 3.2, any correction originating from a standard
coarse grid function at the contact boundary has to vanish. Thus, there are no coarse
grid correction at the actual contact zone. Our numerical examples show, that already a
single vanishing coarse grid corrections spoils the convergence of the multigrid method.
To be more precise, in this case the approximation property (2.26) is violated, leading to
slow convergence of the multigrid method.

Consequently, the particular choice of the extended splitting (3.1) is crucial for the
convergence speed of the method. Our numerical examples show, that the extended
splitting induced by our truncated basis functions leads to an efficient nonlinear solver.
Moreover, it gives rise to a linear method with multigrid convergence speed.

Remark 5.6 Truncation of coarse grid basis functions is not necessary, if the outer nor-
mals are equal. Then, we are in a setting similar to the scalar case. For a comparison of
the standard und the truncated monotone multigrid method in the scalar case we refer the
reader to [Kor97a/. Anyhow, truncation speeds up convergence, even in case of constant
normal directions.

84
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5.7 Performance of the Parallel Monotone Multigrid Method

In this section, we give an example for solving nonlinear contact problem in three space
dimensions adaptively and in parallel. Additionally, in the linear phase we accelerate the
convergence by using a conjugate gradient method. This example is intended to illustrate
the performance of our method in combination with nested iteration and a Krylov subspace
method. As it turns out, the nonlinear overhead of the method is neglectable with respect
to the total computational cost. Moreover, using nested iteration the coincidence set is
usually identified during the first or second iteration step. Thus, on each level less than
than five iterations are sufficient.

The computational domain % under consideration is the cuboid with lower left and
upper right corner (—1,0,0) and (2,1, 1), respectively, see also Figure 5.23. As obstacle,
we use a cylinder with diameter 0.4 placed on top of the cuboid, see the left of Figure
5.22. The axis of the cylinder is {(z,y,2)| =1 <2 <20,y =0.5 <1,z = 1.4}. Thus, the
minimal distance of the obstacle to the body is zero in the reference configuriation. At the
side opposite to the cylinder we prescribe Dirichlet conditions u(zx,y, z) = (0,0,0.05). The
side facing the obstacle is the Signorini boundary and homogeneous Neumann boundary
conditions are prescribed at the remaining part of the boundary. In Table 5.5, we sum-
marize the results of our numerical experiment. On the coarsest grid, we start with initial
iterate zero and then use nested iteration. On each level, the iteration process is stopped,
if the the stopping criterion (5.1) is satisfied. Adaptive refinment is used, controlled by
an residual based error indicator. The global solution process is stopped, if the estimated
error is below 5%. This is the case on Level 5, here we have an estimated relative error
of 0.034. Let us emphasize that the solution is obtained by parallel computing. For this
example, we use four processors. The final load balancing can be seen in Figure 5.23.
The normal stresses are depicted in the right of Figure 5.22. In Table 5.5, the results of

(o,
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Figure 5.22: Geometry (left) and Normals stresses (right)

our experiment are shown. As can be seen, the total number of iterations is less than five
on each level. On Level five, the iteration is stopped before the nonlinear phase of the
solution process is finished. We remark that the coincidence set is already identified after
two iterations on Levels 5. Here, the iteration is still nonlinear since we have about 20
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"contact" nodes on coarse levels §k, k < 5. This does not affect the coincidence set nor the
convergence speed. The finite element tollbox UGprovides parallel multigrid method, see

‘ Level ‘ # dof ‘ # contact ‘ # nonlin. iter ‘ 7+ total iter ‘

0 375 — — —
1 2187 27 3 5
2 4 557 83 2 4
3| 26424 290 2 4
4 | 148 596 1087 2 4
5 | 354 513 4 164 3 3

Table 5.5: Performance of the nested iteration

[BBJ197, Bas96] and the references cited therein. In particular, load balancing routines
and high level routines providing functionality for the data transfer between the different
processors are available. Thus, to parallelize our nonlinear method, we only have to take
care of the nonlinearity at the contact boundary. In particular, additional information
transfer between the different processors is necessary. This concerns the monotone re-
strictions as well as the nonlinear Gaufs—Seidel scheme and the modification of the coarse
grid functions. In parallel computing, the stiffness matrix is distributed onto different
processors. Thus, at the processor borders the entries in the stiffness matrix used for
parallel computing and the entries in the standard stiffness matrix can differ. For linear
problems, different ways of handling the entries of the stiffness matrix at the processor
borders are possible. In contrast, the convergence of our nonlinear method relies on these
entries being equal, i.e., the matrix entries at the processor borders have to coincide with
the entries of the standard matrix. The reason is, that any node the resdiduum with
respect to the standard stiffness matrix has to be available, which is necessary for solving
the local nonlinear subproblems (3.2). This requirement holds also for the coarse grids
matrices. Here, additional data transfer is necessary to obtain the correct matrix entries.
We do not discuss this topic in detail here, but emphasize, that in our parallel monotone
multigrid method the processor borders can also be in the Signorini boundary, as can be
seen in Figure 5.23.
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Figure 5.23: Distorted grid on Level 5 (left and load balancing (right).
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