4 Ergebnisse

4.1 Übersicht zu den Untersuchungsgrößen

Die durchschnittliche Vorbereitungsdauer der Färsen beträgt 16 \pm 6 Tage. Sie schwankt zwischen 3 und 37 Tagen.

In den Tabellen 5 bis 11 sind die Ergebnisse der verschiedenen Untersuchungsparameter für die Gesamtstichprobe dargestellt.

Tabelle 5: Mittelwerte ± s der RFD (mm), des Gewichtes (kg) und der Widerristhöhe (cm)

	Alle Färsen n= 339				
Parameter					
	n	$x \pm s$			
RFD –6	225	18 ± 5			
RFD -3/-2	333	19 ± 4			
RFD 0	323	20 ± 4			
RFD 28	327	12 ± 3			
RFD 100	305	11,5 ± 3			
dRFD -6 bis -3/-2	225	0,4 ± 3			
dRFD -3/-2 bis 0	320	0,6 ± 4			
dRFD 0 bis 28	312	- 8 ± 5			
dRFD 28 bis 100	303	- 0,2 ± 3			
Gew -6	187	602 ± 44			
Gew -3/-2	271	619 ± 48			
Gew 0	275	585 ± 48			
dGew -6 bis -3/-2	149	19,6 ± 21			
dGew -3/-2 bis 0	220	-33,4 ± 30			
Widerristhöhe 0	334	139 ± 2			

Tabelle 6: Mittelwerte \pm s des Immunglobulingehaltes in mg/ml und die Eutermaße in cm

	Alle Färsen n= 339 n				
Parameter					
Immunglobulingehalt	241	65 ± 18			
Euterlänge	237	46 ± 7			
Euterbreite	237	27 ± 5			
Zitzenlänge	237	5 ± 1			

Tabelle 7 : Mittelwerte $\pm\,$ s der Milchleistung

		Alle Färsen				
Parameter	n= 339					
	n	$x \pm s$				
Einsatzleistung I	325	29 ± 6				
100-Tage-Milchmenge kg	301	3088 ± 475				
100-Tage-Fett %	301	3,8 ± 0,4				
100-Tage-Fett kg	301	113 ± 26				
100-Tage-Eiweiß %	301	3,1 ± 0,2				
100-Tage-Eiweiß kg	301	92 ± 21				

Tabelle 8: Mittelwerte ± s der Fruchtbarkeitskennzahlen

	Alle Färsen				
Parameter		n= 339			
	n	$x \pm s$			
Rastzeit d	206	80 ± 38			
Güstzeit d	206 103 ± 95				
Verzögerungszeit d	206	24 ± 65			

Von denn 339 Färsen sind bis zum 200. d p.p. 206 Tiere tragend (61~%).

Tabelle 9: Mittelwerte \pm s der Blutserumgehalte unmittelbar post partum

Doromotor	Alle Färsen				
Parameter (Parameter)	n= 339				
(Referenzbereich)	n	$x \pm s$			
Ca (2,3 – 2,8 mmol/l)	333	$2,4 \pm 0,2$			
P (1,6 – 2,3 mmol/l)	333	1,5 ± 0,3			
Mg (0,8 – 1,3 mmol/l)	333	1,0 ± 0,1			
Cholesterin (2,0 – 4,5 mmol/l)	333	2,0 ± 0,4			
Harnstoff (3,2 – 5,0 mmol/l)	333	3,6 ± 1,0			
Bilirubin (< 5,0 µmol/l)	333	4,5 ± 2,5			
AST (< 1334 nkat/l)	333	1382 ± 553			
CK (< 4,2 µkat/l)	333	4,4 ± 3,8			
GLDH (< 500 nkat/l)	333	281 ± 435			
BHB (< 895 μmol/l)	333	399 ± 125			

Die Blutserumkonzentrationen für P, CK und die AST liegen außerhalb des Referenzbereiches.

Tabelle 10: Häufigkeiten verschiedener Erkrankungen aller Färsen bis zum 150. d p.p.

Grund	Alle Färsen (n=339)				
	n	%			
Mastitis	94	28%			
Bewegungsapparat	74	22 %			
Gebärmutter	57	17 %			
Nachgeburtsverhaltung	8	2,4 %			
Sonstiges	44	13 %			
Gesamt	277	82 %			

Bei den 339 Färsen traten 227 Erkrankungen auf (Tabelle 10). Dies entspricht einer Inzidenz von 82%. Mit 28 % und 22 % stellen die Mastitis und Erkrankungen des Bewegungsapparates die häufigsten Erkrankungen bei den Probanden dar. Bei einigen Tieren traten mehrere Erkrankungen auf.

Tabelle 11 : Verschiedene Abgangsgründe aller Färsen bis zum 150. d p.p.

Abgangsgrund	Alle Färsen (n = 339)			
Abgangsgrund	n	%		
Geringe Leistung	10	3 %		
Klauen+Gliedmaßen	6	2 %		
Stoffwechsel	5	1,5 %		
Melkbarkeit	2	0,5 %		
Euter	3	1 %		
Sonstiges	9	2,5 %		
Gesamt	35	10 %		

Von den 339 Färsen wurden 35 Tiere (10%) vorzeitig aus dem Betrieb aussortiert (Tabelle 11).

In der Tabelle 12 sind die Korrelationen zwischen der Milchleistung und der Fruchtbarkeit dargestellt.

Zusammenhänge zwischen der Milchleistung und der Fruchtbarkeit konnten nicht beobachtet werden (Tabelle 12). Eine hohe positive Korrelation besteht zwischen der Einsatzleistung und der 100-Tage-Milchmenge (r=0,9). Tiere mit einer hohen Einsatzleistung erbringen auch die höheren 100-Tage-Milchmengen. Die Einsatzleistung und die 100-Tage-Milchmenge zeigen zu den 100-Tage-Fettprozenten und 100-Tage-Eiweißprozenten eine negative Korrelation, zu der 100-Tage-Fettmenge und 100-Tage-Eiweißmenge eine positive Korrelation. Je höher die Leistung ist, desto geringer ist die Konzentration der Milchinhaltsstoffe.

Tabelle 12: Korrelation zwischen der Milchleistung und der Fruchtbarkeit;
Signifikanzangabe für den linearen Korrelationskoeffizienten (r): *p=0,05;

**p=0,01; freie Felder= keine Signifikanz

Parameter	Rastzeit	Güstzeit Einsatz-	Einsatz-	100-Tage-	100-Tage-	100-Tage-
raiametei	Nasizeit	Gustzeit	leistung		Fett kg	Eiweiß kg
Ratszeit		0,4**				
Güstzeit	0,4**					
Einsatzleistung				0,9**	0,43**	0,46**
100-Tage- Milchmenge			0,9**		0,8**	0,92**
100-Tage-						
Fett %			-0,35**	-0,47**	0,14*	-0,31**
100-Tage- Eiweiß %			-0,46**	-0,56**	-0,28**	-0,19**

4.2 Untersuchungen zum Einfluss der differenzierten Vorbereitungsfütterung

4.2.1 Abkalbezeitraum und Vorbereitungsdauer

In der Tabelle 13 werden die Abkalbezeiträume sowie die durchschnittliche Vorbereitungsdauer der acht verschiedenen Versuche aufgezeigt. Die mittlere Vorbereitungsdauer aller Versuchstiere (155 Färsen) und damit auch der Einfluss der Rationszusätze beträgt 20 ± 5 Tage, die mittlere Vorbereitungsdauer der Kontrolltiere (184 Färsen) beträgt 13 ± 5 Tage.

Tabelle 13: Mittelwert ± s der Vorbereitungsdauer in Tagen und die Abkalbezeiträume

		Vorbereitungsdauer				
Rationszusatz	Abkalbezeitraum	Vers	such	Kontrolle		
		n	x ± s	n	x ± s	
Mais	18.6. – 13.8.	21	17 ± 3	32	10 ± 5	
Soja	1.8. – 20.9.	21	19 ± 4	28	13 ± 6	
Harnstoff	14.9. – 20.10.	20	21 ± 5	22	15 ± 5	
Triticale	15.10. – 29.11.	20	22 ± 7	27	13 ± 6	
Triticale + Soja	15.11. – 18.12.	19	21 ± 3	16	14 ± 4	
Mais + Soja	6.12. – 3.1.	20	21 ± 4	18	15 ± 4	
Triticale +Harnstoff	28.12. – 2.2.	20	20 ± 5	22	15 ± 4	
Mais + Harnstoff	16.1. – 16.2.	14	19 ± 3	19	15 ± 3	
Gesamt	18.6.05 – 16.2.06	155	20 ± 5	184	13 ± 5	

4.2.2 Körpermasse

In den Tabellen 14, 15 und 16 sind die Körpermassen zu den Zeitpunkten 6 Wochen a.p., zu Beginn der Vorbereitung und zur Kalbung dargestellt.

Zu Beginn der Untersuchung 6 Wochen a.p. besitzen die Versuchs- und Kontrolltiere eine einheitliche Körpermasse. Ein statistisch gesicherter Unterschied besteht in den Versuchen Mais und Triticale + Harnstoff zum Zeitpunkt des Beginns der Vorbereitungsfütterung zwischen den Versuchs- und Kontrolltieren und zwischen den mittleren Körpermassen aller Versuchstiere und aller Kontrolltiere (Tabelle 15). Direkt nach der Kalbung haben sich diese Unterschiede wieder ausgeglichen.

Tabelle 14: Mittelwerte ± s der Körpermasse zum Zeitpunkt 6 Wochen a.p. in kg

	١	/ersuch	Kontrolle		-
Rationszusatz	n=155		n=184		Signifikanzprüfung
	n	$x \pm s$	n	x ± s	
Mais	13	586 ± 26	1	594 ± 0	
Soja	17	613 ± 58	16	626 ± 59	
Harnstoff	14	586 ± 58	22	586 ± 38	
Triticale	13	624 ± 37	20	608 ± 38	
Triticale + Soja	16	606 ± 44	13	612 ± 31	
Mais + Soja	8	608 ± 54	4	617 ± 29	
Triticale +Harnstoff	7	588 ± 32	5	589 ± 24	
Mais + Harnstoff	8	593 ± 39	10	577 ± 23	
Gesamt	96	602 ± 57	91	602 ± 42	

Tabelle 15: Mittelwerte \pm s der Körpermasse zum Zeitpunkt Beginn der Vorbereitung in kg

Rationszusatz	Vers	Versuch n=155		rolle n=184	Signifikanzprüfung
	n	$x \pm s$	n	x ± s	о д
Mais	21	607 ± 26	32	630 ± 37	p<0,05
Soja	20	626 ± 61	27	633 ± 51	
Harnstoff	15	595 ± 79	20	602 ± 47	
Triticale	15	641 ± 45	20	639 ± 39	
Triticale + Soja	14	620 ± 52	11	641 ± 46	
Mais + Soja	0		3	573 ± 30	
Triticale +Harnstoff	20	585 ± 41	20	611 ± 39	p<0,05
Mais + Harnstoff	14	614 ± 41	19	619 ± 34	
Gesamt	119	612 ± 53	152	624 ± 43	p<0,05

Tabelle 16: Mittelwerte \pm s der Körpermasse unmittelbar nach der Kalbung in kg

Rationszusatz	Vers	Versuch n=155		rolle n=184	Signifikanzprüfung
rtanono2uout2	n	x ± s	n	x ± s	o.gtar.izp.a.a.i.g
Mais	21	565 ± 31	29	579 ± 36	
Soja	19	613 ± 61	28	589 ± 61	
Harnstoff	17	581 ± 70	19	573 ± 39	
Triticale	13	612 ± 48	17	590 ± 34	
Triticale + Soja	5	602 ± 19	4	576 ± 54	
Mais + Soja	17	611 ± 46	14	578 ± 48	
Triticale +Harnstoff	19	560 ± 46	22	580 ± 38	
Mais + Harnstoff	14	586 ± 44	17	586 ± 36	
Gesamt	125	589 ± 53	150	582 ± 43	

4.2.3 Rückenfettdicke

In den Tabellen 17 bis 21 sind die Rückenfettdicken zu den verschiedenen Zeitpunkten dargestellt.

Tabelle 17: Mittelwerte \pm s der RFD zum Zeitpunkt 6 Wochen a.p. in mm

Rationszusatz	Vers	Versuch n=155		rolle n=184	Signifikanzprüfung
ranonozadatz	n	x ± s	n	x ± s	org.minanzprarang
Mais	13	21 ± 5	1	19 ± 0	
Soja	19	22 ± 4	16	19 ± 4	p<0,05
Harnstoff	12	15 ± 8	20	14 ± 5	
Triticale	13	18 ± 3	18	18 ± 4	
Triticale + Soja	16	21 ± 3	12	20 ± 2	
Mais + Soja	19	21 ± 3	17	18 ± 3	p<0,05
Triticale +Harnstoff	15	15 ± 3	15	15 ± 3	
Mais + Harnstoff	8	17 ± 4	11	16 ± 3	
Gesamt	115	19 ± 5	110	17 ± 4	p<0,05

Tabelle 18: Mittelwerte \pm s der RFD zum Zeitpunkt Beginn der Vorbereitung in mm

Rationszusatz	Versuch n=155		Kontrolle n=184		Signifikanzprüfung
rtanono2acat2	n	x ± s	n	x ± s	o.g.m.ta.i.zp.a.a.i.g
Mais	21	20 ± 6	26	22 ± 5	
Soja	21	21 ± 4	28	19 ± 5	
Harnstoff	20	17 ± 5	22	16 ± 4	
Triticale	20	20 ± 2	27	20 ± 3	
Triticale + Soja	19	20 ± 3	16	20 ± 2	
Mais + Soja	20	21 ± 2	18	18 ± 3	p<0,05
Triticale +Harnstoff	20	17 ± 3	22	17 ± 3	
Mais + Harnstoff	14	19 ± 3	19	18 ± 3	
Gesamt	155	20 ± 4	178	19 ± 4	

Tabelle 19: Mittelwerte $\pm\,s$ der RFD unmittelbar nach der Kalbung in mm

Rationszusatz	Vers	such n=155	Kontrolle n=184		Signifikanzprüfung
	n	x ± s	n	x ± s	
Mais	21	20 ± 5	26	21 ± 4	
Soja	21	21 ± 4	27	18 ± 5	p<0,05
Harnstoff	17	21 ± 7	22	19 ± 6	
Triticale	19	22 ± 3	26	21 ± 3	
Triticale + Soja	19	21 ± 3	16	20 ± 2	
Mais + Soja	20	21 ± 3	18	18 ± 3	p<0,05
Triticale +Harnstoff	20	17 ± 3	22	18 ± 3	
Mais + Harnstoff	12	19 ± 3	17	18 ± 3	
Gesamt	149	20 ± 4	174	19 ± 4	p<0,05

Tabelle 20: Mittelwerte \pm s der RFD zum Zeitpunkt 28 d p.p. in mm

Rationszusatz	Vers	Versuch n=155		rolle n=184	Signifikanzprüfung
	n	x ± s	n	x ± s	o.g.m.tan.ap. aran.g
Mais	21	11 ± 3	32	12 ± 3	
Soja	21	12 ± 3	27	11 ± 3	
Harnstoff	17	10 ± 4	22	11 ± 3	
Triticale	20	13 ± 3	26	12 ± 3	
Triticale + Soja	18	13 ± 4	16	12 ± 4	
Mais + Soja	20	14 ± 4	18	11 ± 4	
Triticale +Harnstoff	19	10 ± 3	20	12 ± 3	
Mais + Harnstoff	12	12 ± 3	18	12 ± 2	
Gesamt	148	12 ± 3	179	12 ± 3	

Tabelle 21: Mittelwerte \pm s der RFD zum Zeitpunkt 100 d p.p. in mm

Rationszusatz	Vers	such n=155	Kontrolle n=184		Signifikanzprüfung
ranonozacanz	n	x ± s	n	x ± s	o.gtar.zp.a.a.i.g
Mais	20	12 ± 2	31	14 ± 3	p<0,05
Soja	21	12 ± 4	23	12 ± 3	
Harnstoff	14	12 ± 4	19	12 ± 4	
Triticale	18	13 ± 4	25	11 ± 3	
Triticale + Soja	18	11 ± 4	15	10 ± 3	
Mais + Soja	15	12 ± 4	16	10 ± 2	
Triticale +Harnstoff	19	10 ± 4	20	11 ± 2	
Mais + Harnstoff	13	11 ± 3	18	11 ± 3	
Gesamt	138	12 ± 4	167	12 ± 3	

Signifikante Unterschiede der durchschnittlichen Rückenfettdicken zwischen Tieren mit einem Rationszusatz und Tieren ohne einen Rationszusatz bestehen zu den Zeitpunkten 6 Wochen a.p. und zum Zeitpunkt der Kalbung.

In den einzelnen Versuchen ist ein signifikanter Unterschied der durchschnittlichen Rückenfettdicke in den Versuchen Soja und Mais+Soja zu den Zeitpunkten 6 Wochen a.p., zu Beginn der Vorbereitung und zum Zeitpunkt der Kalbung zu beobachten.

Die größten Rückenfettdicken werden zum Zeitpunkt der Kalbung erreicht. Die Kontrolltiere der Gruppen Mais und Soja erreichen ihre größten Rückenfettdicken zur Vorbereitung und nehmen bis zur Kalbung wieder an Rückenfettdicke ab.

Nach dem Erreichen der höchsten Rückenfettdickenauflagen zum Zeitpunkt der Kalbung erfolgt in allen Gruppen ein deutlicher Abbau in den ersten vier Wochen der Laktation. Die mit 11mm am deutlichsten ausgeprägte Lipolyse erfolgt bei den Tieren mit dem Rationszusatz Harnstoff.

In der darauffolgenden Zeit bis zum 100. Tag der Laktation nimmt die Intensität der Mobilisation ab, teilweise wird in dieser Zeit wieder Rückenfett aufgebaut. Ein signifikanter Unterschied wird im Versuch Mais zwischen Versuchs- und Kontrolltieren erreicht.

4.2.4 Widerristhöhe

Es gibt keinen signifikanten Einfluss der Fütterung auf die Widerristhöhe zum Zeitpunkt der Kalbung (Tabelle 22).

Tabelle 22: Mittelwerte \pm s der Widerristhöhe in cm zum Zeitpunkt der Kalbung

	Versuch		Kontrolle		
Rationszusatz		n=155		n=184	Signifikanzprüfung
	n	x ± s	x ± s		
Mais	21	140 ± 2	31	140 ± 3	
Soja	21	140 ± 2	28	140 ± 2	
Harnstoff	20	139 ± 3	22	138 ± 3	
Triticale	20	139 ± 2	27	139 ± 2	
Triticale + Soja	19	139 ± 2	16	139 ± 2	
Mais + Soja	20	140 ± 2	18	139 ± 2	
Triticale +Harnstoff	20	140 ± 2	22	140 ± 2	
Mais + Harnstoff	12	140 ± 2	17	140 ± 2	
Gesamt	153	140 ± 2	181	139 ± 2	

4.2.5 Kolostrumqualität

Die mittleren Gehalte an IgG im Kolostrum sind zwischen den Versuchstieren und Kontrolltieren der Gruppe Mais+Soja sowie Mais+Harnstoff signifikant unterschiedlich (Tabelle23). Die Färsen, die zusätzlich Maisschrot+Sojaschrot in der Vorbereitungsfütterung bekamen, weisen ein um 10 mg/ml höheren IgG-Gehalt auf als die Kontrolltiere. Einen um 11 mg/ml höheren IgG-Gehalt als die Kontrolltiere zeigen die Färsen, denen Maisschrot+Harnstoff zugefüttert wurden.

Tabelle 23: Mittelwerte ± s des IgG-Gehaltes im Kolostrum in mg/ml

	١	ersuch	K	Controlle	
Rationszusatz	n=155		n=184		Signifikanzprüfung
	n	$x \pm s$	n	x ± s	
Mais	5	44 ± 22	3	57 ± 15	
Soja	19	57 ± 24	21	56 ± 15	
Harnstoff	18	58 ± 22	19	53 ± 14	
Triticale	13	60 ± 15	15	65 ± 16	
Triticale + Soja	14	78 ± 14	12	71 ± 25	
Mais + Soja	20	79 ± 10	17	69 ± 15	p<0,05
Triticale +Harnstoff	19	63 ± 18	21	66 ± 10	
Mais + Harnstoff	12	78 ± 12	13	67 ± 9	p<0,05
Gesamt	120	66 ± 20	121	63 ± 16	

Die durchschnittlichen IgG- Gehalte im Kolostrum in den unterschiedlichen Monaten sind in Tabelle 24 aufgeführt.

Tabelle 24 : Mittelwerte ± s des IgG- Gehaltes in den verschiedenen Monaten in mg/ml

Monat	n	x ± s
August	35	55 ± 17
September	25	55 ± 23
Oktober	44	58 ± 16
November	18	74 ± 18
Dezember	57	73 ± 16
Januar	45	65 ± 13
Februar	17	75 ± 13

Der IgG- Gehalt im Kolostrum ist in den Monaten August, September und Oktober in etwa gleich groß und liegt noch im positiven Bereich. Ein deutlicher Anstieg des IgG- Gehaltes ist ab November zu erkennen.

In der Tabelle 25 wird die Anzahl der Färsen betrachtet, die einen IgG- Gehalt im Kolostrum von über 50 mg/ml aufweisen. Von den 155 Versuchstieren konnte bei 120 Tieren eine Kolostrumprobe gewonnen werden, von den 184 Kontrolltieren bei 121.

Tabelle 25 : Relative und absolute Anzahl der Färsen mit einem IgG- Gehalt >50mg/ml

	Versuch	K	Controlle	Gesamt		
	n=120	1	n= 121			
n	%	n	%	n	%	
94	78	86	71	180	75	

Von den insgesamt 241 gewonnenen Kolostrumproben zeigt sich bei 180 ein IgG- Gehalt über 50 mg/ml. Damit gibt es bei 75% aller Färsen eine gute Kolostrumqualität. In der Gruppe der Versuchstieren liegen 7% mehr Tiere im IgG- Bereich über 50 mg/ml als Tiere in der Kontrollgruppe. Die unterschiedlichen Häufigkeiten sind nicht signifikant.

4.2.6 Eutergröße

Es gibt keine Unterschiede in der Eutergröße zwischen Tieren mit einem Rationszusatz und Tieren ohne einen Rationszusatz in der Vorbereitungszeit zum Zeitpunkt der Kalbung (Tabelle 26).

Tabelle 26: Mittelwerte ± s der Eutermaße in cm

		Ve	ersuch						
Rationszusatz		n=155 n=184 Signifikanzprüfun			n=184			Signifikanzprüfung	
Rationszasatz	n	Breite	Länge	Zitzen-	n	Breite	Länge	Zitzen-	Olgrimkarizprararig
		Diono	Lango	länge		Diono	Lango	länge	
Mais	0				0				
Soja	4	27±4	38±4	5±0	4	28±8	45±17	5±0	
Harnstoff	19	27±5	43±5	5±1	20	27±5	42±6	5±1	
Triticale	19	28±4	47±8	5±2	27	26±4	45±8	5±1	
Triticale+ Soja	19	27±4	44±7	5±1	16	27±5	44±7	5±1	
Mais + Soja	20	28±6	48±8	5±1	18	27±6	47±4	5±1	
Triticale +Harnstoff	20	28±4	49±4	5±1	22	29±3	49±5	5±1	
Mais + Harn- stoff	12	29±4	48±5	5±1	17	28±4	48±5	5±1	
Gesamt	113	28±5	46±7	5±1	124	27±5	46±7	5±1	

4.2.7 Milchleistung

4.2.7.1 Einsatzleistung

Die Unterschiede der mittleren Einsatzleistung der Versuchtiere zu den jeweiligen Kontrolltieren sind nicht signifikant (Tabelle 27). Die größte Differenz ergibt sich im Versuch Harnstoff.

Tabelle 27: Mittelwerte \pm s der Einsatzleitung in I

Tabono 27: Williamonto					
	Versuch			Kontrolle	
Rationszusatz	n=155			n=184	Signifikanzprüfung
	n	x ± s	n	$x \pm s$	
Mais	21	26,1 ± 5,3	31	$26,7 \pm 4,8$	
Soja	21	$26,5 \pm 5,5$	26	$28,3 \pm 4,6$	
Harnstoff	16	24,8 ± 6,4	21	$28,8 \pm 6,2$	
Triticale	20	29,2 ± 6,2	27	29,4 ± 7,3	
Triticale + Soja	18	27,0 ± 5,4	16	31,1 ± 6,6	
Mais + Soja	17	$30,8 \pm 7,3$	18	30,1 ± 5,1	
Triticale +Harnstoff	20	$30,7 \pm 6,2$	21	$28,0 \pm 5,9$	
Mais + Harnstoff	13	32,8 ± 7,1	19	$29,5 \pm 7,3$	
Gesamt	146	$28,3 \pm 6,5$	179	28,8 ± 6,0	

4.2.7.2 100-Tage- Milchmenge

Im Mittel zeigen die Tiere mit der Zusatzration Triticale+Harnstoff eine um 338 kg höhere 100-Tage Milchmenge als die Kontrolltiere. Dieser Unterschied ist signifikant (Tabelle 28).

Tabelle 28: Mittelwerte \pm s der 100-Tage-Milchleistung in kg

	Versuch			Kontrolle	
Rationszusatz	n=155			n=184	Signifikanzprüfung
	n	$x \pm s$	n	$x \pm s$	
Mais	21	2912 ± 405	31	2876 ± 403	
Soja	20	2934 ± 460	25	2977 ± 323	
Harnstoff	15	2923 ± 463	19	3022 ± 518	
Triticale	17	3168 ± 499	25	3300 ± 576	
Triticale + Soja	17	3157 ± 371	15	3236 ± 523	
Mais + Soja	15	3209 ± 581	17	3234 ± 360	
Triticale +Harnstoff	16	3306 ± 373	18	2968 ± 461	p<0,05
Mais + Harnstoff	12	3412 ± 379	18	3103 ± 552	
Gesamt	133	3107 ± 467	168	3073 ± 481	

4.2.7.3 Milchinhaltsstoffe

Als Milchinhaltsstoffe wurden die Fett- und Eiweißgehalte untersucht. Die Mittelwerte der Milchinhaltsstoffe Fett und Eiweiß sind in den Tabellen 29 bis 32 dargestellt.

Tabelle 29: Mittelwerte ± s der 100-Tage- Milchfettmenge in kg

		Versuch	Kontrolle		
Rationszusatz	n=155		n=184		Signifikanzprüfung
	n	$x \pm s$	n	$x \pm s$	
Mais	21	113 ± 15	31	111 ± 15	
Soja	20	114 ± 18	25	116 ± 16	
Harnstoff	15	111 ± 17	19	115 ± 16	
Triticale	17	118 ± 14	25	124 ± 16	
Triticale + Soja	17	116 ± 33	15	114 ± 35	
Mais + Soja	15	112 ± 35	17	119 ± 14	
Triticale +Harnstoff	16	99 ± 46	18	100 ± 38	
Mais + Harnstoff	12	108 ± 47	18	115 ± 18	
Gesamt	133	112 ± 30	168	115 ± 22	

Die in der Tabelle 29 dargestellten durchschnittlichen 100-Tage- Milchfettmenge zeigen in keinem Versuch einen signifikanten Unterschied zwischen den Tieren mit einem Rationszusatz und den Tieren ohne einen Rationszusatz. Die Werte liegen zwischen 99 kg und 124 kg.

Tabelle 30: Mittelwerte \pm s der 100-Tage-Milchfettprozente in %

Rationszusatz		Versuch n=155	Kontrolle n=184		Signifikanzprüfung
rationszasatz	n	x ± s	n	x ± s	Oigninkanzpraiding
Mais	21	3,9 ± 0,4	31	3,9 ± 0,3	
Soja	20	$3,9 \pm 0,5$	25	3,9 ± 0,4	
Harnstoff	15	$3,8 \pm 0,3$	19	$3,8 \pm 0,3$	
Triticale	17	3,8 ± 0,4	25	3,8 ± 0,4	
Triticale + Soja	17	$3,9 \pm 0,5$	15	3,8 ± 0,3	
Mais + Soja	15	3,8 ± 0,4	17	3,7 ± 0,2	
Triticale +Harnstoff	16	$3,6 \pm 0,4$	18	$3,8 \pm 0,3$	
Mais + Harnstoff	12	$3,7 \pm 0,3$	18	$3,7 \pm 0,3$	
Gesamt	133	3,8 ± 0,4	168	3,8 ± 0,3	

Die in der Tabelle 30 dargestellten durchschnittlichen 100-Tage-Milchfettprozente zeigen in keinem Versuch einen signifikanten Unterschied zwischen den Tieren mit einem Rationszusatz und den Tieren ohne einen Rationszusatz. Die Werte liegen zwischen 3,6 % und 3,9%.

Tabelle 31 : Mittelwerte $\pm\,$ s der 100-Tage-Milcheiweißmenge in kg

	Versuch		Kontrolle		
Rationszusatz		n=155		n=184	Signifikanzprüfung
	n	x ± s	n	x±s	
Mais	21	89 ± 12	31	87 ± 10	
Soja	20	92 ± 12	25	94 ± 9	
Harnstoff	15	94 ± 12	19	94 ± 14	
Triticale	17	98 ± 13	25	101 ± 15	
Triticale + Soja	17	91 ± 25	15	93 ± 28	
Mais + Soja	15	89 ± 27	17	98 ± 9	
Triticale +Harnstoff	16	85 ± 39	18	82 ± 30	
Mais + Harnstoff	12	87 ± 39	18	95 ± 13	
Gesamt	133	91 ± 24	168	93 ± 18	

Die in der Tabelle 31 dargestellten durchschnittlichen 100-Tage-Milcheiweißmenge zeigen in keinem Versuch einen signifikanten Unterschied zwischen den Tieren mit einem Rationszusatz und den Tieren ohne einen Rationszusatz. Die Werte liegen zwischen 82 kg und 101 kg.

Tabelle 32 :Mittelwerte \pm s der 100-Tage-Milcheiweißprozente in %

Detionary		Versuch n=155	Kontrolle n=184		Signifikanzariifung
Rationszusatz	n	x ± s	n	x ± s	Signifikanzprüfung
Mais	21	3,1 ± 0,1	31	3,1 ± 0,2	
Soja	20	3,2 ± 0,2	25	3,2 ± 0,2	
Harnstoff	15	$3,2 \pm 0,2$	19	3,1 ± 0,1	
Triticale	17	3,1 ± 0,2	25	3,1 ± 0,2	
Triticale + Soja	17	3,1 ± 0,2	15	3,1 ± 0,2	
Mais + Soja	15	$3,0 \pm 0,3$	17	3,1 ± 0,2	
Triticale +Harnstoff	16	3,1 ± 0,2	18	3,1 ± 0,2	
Mais + Harnstoff	12	3,0 ± 0,2	18	3,1 ± 0,2	
Gesamt	133	3,1 ± 0,2	168	3,1 ± 0,2	

Die in der Tabelle 32 dargestellten durchschnittlichen 100-Tage-Milcheiweißprozente zeigen in keinem Versuch einen signifikanten Unterschied zwischen den Tieren mit einem Rationszusatz und den Tieren ohne einen Rationszusatz. Die Werte liegen zwischen 3,0% und 3,2%.

4.2.8 Blutserumwerte

4.2.8.1 Enzymaktivitäten

In den Tabellen 33 bis 35 sind die Serumaktivitäten der AST, GLDH und CK der einzelnen Rationszusätze und ihrer Kontrolltiere dargestellt.

Tabelle 33: Mittlere Serumaktivität von AST \pm s in nkat/l zum Zeitpunkt der Kalbung

Rationszusatz	`	Versuch	Kontrolle		Signifikanzprüfung
	n	$x \pm s$	n	$x \pm s$	0.9a.
Mais	20	1277 ± 278	32	1440 ±1047	
Soja	21	1190 ± 281	28	1626 ±1121	p<0,05
Harnstoff	20	1280 ± 250	22	1409 ± 444	
Triticale	20	1303 ± 222	27	1340 ± 217	
Triticale + Soja	19	1375 ± 375	16	1394 ± 362	
Mais + Soja	20	1368 ± 271	18	1376 ± 381	
Triticale +Harnstoff	20	1405 ± 323	22	1369 ± 459	
Mais + Harnstoff	12	1425 ± 339	17	1452 ± 497	
Gesamt	152	1322 ± 295	182	1432 ± 695	

Referenzwert: < 1334 nkat/l

Tabelle 34 : Mittlere Serumaktivität von GLDH \pm s in nkat/l zum Zeitpunkt der Kalbung

Rationszusatz	Ve	ersuch	Kontrolle		Signifikanzprüfung
T GUISTIOZ GOGLE	n	x ± s	n	x ± s	o.gap. a.ag
Mais	20	193 ± 88	32	204 ± 195	
Soja	21	326 ± 751	28	263 ± 320	
Harnstoff	20	335 ± 251	22	526 ± 957	
Triticale	20	329 ± 445	27	453 ± 769	
Triticale + Soja	19	204 ± 95	16	307 ± 187	p<0,05
Mais + Soja	20	201 ± 66	18	255 ± 162	
Triticale +Harnstoff	20	232 ± 127	22	187 ± 78	
Mais + Harnstoff	12	220 ± 79	17	190 ± 84	
Gesamt	152	258 ± 341	182	300 ± 485	

Referenzwert: < 500 nkat/l

Tabelle 35: Mittlere Serumaktivität von CK \pm s in μ kat/l zum Zeitpunkt der Kalbung

Rationszusatz	Ve	Versuch		ontrolle	Signifikanzprüfung
rationozadatz	n	x ± s	n	x ± s	Olgrimmanizprarang
Mais	20	4,4 ±6,6	32	5,3 ±5,2	
Soja	21	4,0 ±3,4	28	4,7 ±2,9	
Harnstoff	20	4,0 ±2,8	22	4,3 ±3,4	
Triticale	20	3,3 ±2,7	27	4,3 ±4,4	
Triticale + Soja	19	3,5 ±2,5	16	3,8 ±2,3	
Mais + Soja	20	5,0 ±4,0	18	4,0 ±2,5	
Triticale +Harnstoff	20	5,6 ±3,7	22	3,7 ±2,2	
Mais + Harnstoff	12	6,6 ±6,3	17	4,6 ±2,5	
Gesamt	152	4,4 ± 4,1	182	4,4 ± 3,1	

Referenzwert: < 4,2 µkat/l

Die Kontrolltiere im Versuch Soja erreichen im Durchschnitt eine Aktivität der AST im Serum über dem Referenzwert im Unterschied zu den Versuchstieren. Diese Differenz ist statistisch gesichert (p<0,05).

Ein signifikanter Unterschied in der Aktivität der GLDH besteht zwischen den Versuchstieren der Gruppe Triticale+Soja und den Kontrolltieren. Der Referenzwert wird jedoch nicht überschritten.

4.2.8.2 BHB

In der Tabelle 36 sind die Serumwerte der BHB der einzelnen Rationszusätze und ihrer Kontrolltiere dargestellt.

Tabelle 36 : Mittlere Serumwerte von BHB \pm s in μ mol/I zum Zeitpunkt der Kalbung

Rationszusatz	,	Versuch	Kontrolle		Signifikanzprüfung
T Cation 102 a Sale	n	x ± s	n	$x \pm s$	Olgrimitarizprararig
Mais	20	373 ± 89	32	383 ± 124	
Soja	21	389 ± 174	28	395 ± 142	
Harnstoff	20	341 ± 120	22	338 ± 124	
Triticale	20	372 ± 84	27	404 ± 118	
Triticale + Soja	19	452 ± 150	16	417 ± 103	
Mais + Soja	20	469 ± 147	18	461 ± 101	
Triticale +Harnstoff	20	402 ± 128	22	417 ± 106	
Mais + Harnstoff	12	399 ± 112	17	401 ± 71	
Gesamt	152	399 ± 133	182	399 ± 118	

Referenzwert: < 895 µmol/l

Es gibt keine signifikanten Unterschiede in den durchschnittlichen BHB-Konzentrationen in den Versuchen. Alle Gruppen liegen mit den BHB-Serumwerten innerhalb des Referenzbereiches.

4.2.8.3 Harnstoff

In der Tabelle 37 sind die Serumwerte von Harnstoff der einzelnen Rationszusätze und ihrer Kontrolltiere dargestellt.

Tabelle 37 : Mittlere Harnstoff-Serumwerte \pm s in mmol/l zum Zeitpunkt der Kalbung

Rationszusatz	,	Versuch	Kontrolle		Signifikanzprüfung
rationozadatz	n	x ± s	n	x±s	Olgrimmanizprarang
Mais	20	2,9 ± 0,8	32	3,2 ± 0,9	
Soja	21	5,0 ± 1,0	28	2,9 ± 1,2	p<0,05
Harnstoff	20	4,4 ± 0,8	22	$3,3 \pm 0,9$	p<0,05
Triticale	20	$3,1 \pm 0,8$	27	3,1 ± 0,7	
Triticale + Soja	19	4,3 ± 0,9	16	$3,6 \pm 0,8$	p<0,05
Mais + Soja	20	4,2 ± 0,7	18	$3,4 \pm 0,7$	p<0,05
Triticale +Harnstoff	20	$4,0 \pm 0,5$	22	$3,7 \pm 0,8$	
Mais + Harnstoff	12	$3,6 \pm 0,8$	17	4,1 ± 0,9	
Gesamt	152	3,9 ± 1,0	182	3,3 ± 1,0	p<0,05

Referenzwert: 3,2 - 5,0 mmol/l

Signifikante Unterschiede in den mittleren Harnstoffwerten bestehen in den Versuchen Soja, Harnstoff, Triticale+Soja, Mais+Soja und für die Gesamtheit der Färsen. Die Färsen mit einem Rationszusatz weisen jeweils die höhere durchschnittliche Harnstoff-Konzentration im Serum auf.

4.2.8.4 Bilirubin

In der Tabelle 38 sind die Serumwerte des Gesamt-Bilirubins der einzelnen Rationszusätze und ihrer Kontrolltiere dargestellt.

Tabelle 38: Mittlere Serumbilirubinwerte \pm s in μ mol/l zum Zeitpunkt der Kalbung

Rationszusatz	,	Versuch	Kontrolle		Signifikanzprüfung	
T CANONICE GOOD	n	x ± s	n	x±s	o.g.man_prarang	
Mais	20	4,2 ± 2,0	32	5,0 ± 3,5		
Soja	21	3,5 ± 1,6	28	5,5 ± 4,1	p<0,05	
Harnstoff	20	$5,3 \pm 4,3$	22	4,2 ± 2,5		
Triticale	20	4,5 ± 1,8	27	4,0 ± 1,7		
Triticale + Soja	19	4,3 ± 2,4	16	4,7 ± 2,4		
Mais + Soja	20	4,5 ± 2,1	18	4,0 ± 1,4		
Triticale +Harnstoff	20	4,2 ± 1,2	22	4,6 ± 2,1		
Mais + Harnstoff	12	4,5 ± 1,3	17	4,6 ± 2,2		
Gesamt	152	4,4 ± 2,3	182	4,6 ± 2,7		

Referenzwert: < 5,0 µmol/l

Ein signifikanter Unterschied besteht in dem Versuch Soja zwischen den Kontrolltieren und den Versuchstieren.

4.2.8.5 Cholesterin

In der Tabelle 39 sind die Serumwerte des Cholesterins der einzelnen Rationszusätze und ihrer Kontrolltiere dargestellt.

Tabelle 39: Mittlere Serumcholesterinwerte ± s in mmol/l zum Zeitpunkt der Kalbung

Rationszusatz	,	Versuch	Kontrolle		Signifikanzprüfung
Transmissassis	n	x ± s	n	x±s	o.g.man_praiang
Mais	20	$2,1 \pm 0,3$	32	$2,0 \pm 0,4$	
Soja	21	$1,7 \pm 0,4$	28	$2,0 \pm 0,5$	p<0,05
Harnstoff	20	2,1 ± 0,5	22	$2,3 \pm 0,7$	
Triticale	20	2,1 ± 0,4	27	$2,0 \pm 0,5$	
Triticale + Soja	19	1,9 ± 0,4	16	2,1 ± 0,6	
Mais + Soja	20	2,0 ± 0,4	18	2,1 ± 0,3	
Triticale +Harnstoff	20	$1,7 \pm 0,3$	22	$2,0 \pm 0,4$	p<0,05
Mais + Harnstoff	12	1,9 ± 0,4	17	$1,9 \pm 0,3$	
Gesamt	152	1,9 ± 0,4	182	2,0 ± 0,5	p<0,05

Referenzwert: 2,0 - 4,5 mmol/l

In den Versuchen Soja und Triticale+Harnstoff und für die Gesamtheit haben die Kontrolltiere einen signifikant höheren mittleren Cholesterinwert als die Färsen mit dem Rationszusatz.

4.2.8.6 Ca, P, Mg

In den Tabellen 40 bis 42 sind die Gehalte im Serum von Ca, P und Mg dargestellt.

Tabelle 40: Mittlere Serumcalciumwerte \pm s in mmol/l zum Zeitpunkt der Kalbung

Rationszusatz	\	Versuch	ı	Kontrolle	Signifikanzprüfung
	n	$x \pm s$	n	$x \pm s$	0.gg
Mais	20	$2,5 \pm 0,1$	32	$2,4 \pm 0,3$	
Soja	21	$2,5 \pm 0,3$	28	$2,4 \pm 0,4$	
Harnstoff	20	2,4 ± 0,2	22	2,4 ± 0,2	
Triticale	20	$2,4 \pm 0,2$	27	2,4 ± 0,1	
Triticale + Soja	19	$2,3 \pm 0,1$	16	$2,4 \pm 0,1$	
Mais + Soja	20	$2,3 \pm 0,1$	18	$2,4 \pm 0,1$	
Triticale +Harnstoff	20	$2,3 \pm 0,1$	22	$2,4 \pm 0,1$	
Mais + Harnstoff	12	2,4 ± 0,1	17	2,4 ± 0,1	
Gesamt	152	2,4 ± 0,2	182	2,4 ± 0,2	

Referenzwert: 2,3 - 2,8 mmol/l

Tabelle 41: Mittlere Serumphosphatwerte \pm s in mmol/l zum Zeitpunkt der Kalbung

Rationszusatz	Versuch		Kontrolle		Signifikanzprüfung
T tallollozada.	n	x ± s	n	$x \pm s$	o.g.man_praiang
Mais	20	$1,6 \pm 0,3$	32	1,5 ± 0,4	
Soja	21	1,5 ± 0,5	28	$1,4 \pm 0,3$	
Harnstoff	20	1,5 ± 0,3	22	$1,5 \pm 0,3$	
Triticale	20	1,5 ± 0,4	27	$1,4 \pm 0,3$	
Triticale + Soja	19	1,4 ± 0,2	16	$1,4 \pm 0,3$	
Mais + Soja	20	1,4 ± 0,3	18	$1,5 \pm 0,2$	
Triticale +Harnstoff	20	1,2 ± 0,2	22	$1,5 \pm 0,3$	p<0,05
Mais + Harnstoff	12	1,4 ± 0,4	17	$1,5 \pm 0,3$	
Gesamt	152	1,4 ± 0,4	182	$1,5 \pm 0,3$	

Referenzwert: 1,6 - 2,3 mmol/l

Tabelle 42: Mittlere Magnesiumwerte ± s in mmol/l zum Zeitpunkt der Kalbung

	_			•	•
Rationszusatz	Versuch		Kontrolle		Signifikanzprüfung
	n	$x \pm s$	n	$x \pm s$	orgari_prararig
Mais	20	1,1 ± 0,1	32	$1,0 \pm 0,1$	p<0,05
Soja	21	1,1 ± 0,1	28	$1,0 \pm 0,2$	p<0,05
Harnstoff	20	1,0 ± 0,1	22	1,0 ± 0,1	
Triticale	20	1,0 ± 0,1	27	1,0 ± 0,1	
Triticale + Soja	19	1,1 ± 0,1	16	$1,0 \pm 0,1$	p<0,05
Mais + Soja	20	1,1 ± 0,1	18	1,1 ± 0,1	
Triticale +Harnstoff	20	1,1 ± 0,1	22	1,1 ± 0,1	
Mais + Harnstoff	12	1,1 ± 0,1	17	1,1 ± 0,1	
Gesamt	152	1,0 ± 0,1	182	1,0 ± 0,1	

Referenzwert: 0,8 – 1,3 mmol/l

Es gibt keine signifikanten Unterschiede in den mittleren Serumcalciumwerten zwischen den Versuchs- und Kontrolltieren.

Die Färsen der Kontrollegruppe im Versuch Triticale+Harnstoff weisen einen signifikant höheren mittleren Phosphatwert auf als die Färsen mit der Rationszusatz.

Alle durchschnittlichen Magnesiumserumwerte liegen im Referenzbereich. Ein Unterschied in den mittleren Magnesiumserumwerten zwischen den Versuchstieren und den Kontrolltieren besteht in den Versuchen mit dem Rationszusatz Mais, Soja und Triticale+Soja. Die Versuchsfärsen weisen einen um 0,1 mmol/l höheren Serummagnesiumwert auf als die Tiere der Kontrollgruppe. Diese Unterschiede sind signifikant.

4.2.9 Fruchtbarkeit

In den Tabellen 43 bis 46 sind die Fruchtbarkeitskennzahlen dargestellt.

Tabelle 43: Anzahl der bis zum 200. Tag p.p. trächtigen Tiere

Rationszusatz	Versuch		Kontrolle		Signifikanzprüfung
ranonozadatz	n	Anzahl (%)	n	Anzahl (%)	Olgrimmanizprarang
Mais	21	14 (67 %)	32	18 (56 %)	
Soja	21	15 (71 %)	28	17 (61 %)	
Harnstoff	20	10 (50 %)	22	11 (50 %)	
Triticale	20	13 (65 %)	27	17 (63 %)	
Triticale + Soja	19	13 (68 %)	16	12 (75 %)	
Mais + Soja	20	11 (55 %)	18	9 (50 %)	
Triticale +Harnstoff	20	12 (60 %)	22	12 (55 %)	
Mais + Harnstoff	14	10 (71 %)	19	12 (63 %)	
Gesamt	155	98 (63 %)	184	108 (59 %)	

Tabelle 44: Mittelwerte \pm s der Rastzeit in Tagen

Rationszusatz	Versuch		Kontrolle		Signifikanzprüfung
Transmissassis	n	x ± s	n	x±s	o.g.m.tan.zpratan.g
Mais	21	84 ± 29	32	85 ± 28	
Soja	21	64 ± 20	28	77 ± 19	
Harnstoff	20	79 ± 25	22	73 ± 19	
Triticale	20	74 ± 24	27	79 ± 27	
Triticale + Soja	19	78 ± 33	16	84 ± 27	
Mais + Soja	20	83 ± 31	18	78 ± 14	
Triticale +Harnstoff	20	77 ± 25	22	81 ± 34	
Mais + Harnstoff	14	95 ± 34	19	82 ± 31	
Gesamt	155	79 ± 28	184	80 ± 25	

Tabelle 45: Mittelwerte \pm s der Güstzeit in Tagen

Rationszusatz	Versuch		Kontrolle		Signifikanzprüfung
Transmissassis	n	x ± s	n	x ± s	o.g.m.tan.zprarang
Mais	21	103 ± 34	32	111 ± 44	
Soja	21	97 ± 45	28	104 ± 39	
Harnstoff	20	116 ± 43	22	89 ± 41	
Triticale	20	93 ± 34	27	96 ± 49	
Triticale + Soja	19	119 ± 54	16	86 ± 29	
Mais + Soja	20	97 ± 35	18	99 ± 46	
Triticale +Harnstoff	20	103 ± 26	22	113 ± 48	
Mais + Harnstoff	14	111 ± 46	19	104 ± 48	
Gesamt	155	105 ± 40	184	100 ± 43	

Tabelle 46: Mittelwerte \pm s der Verzögerungszeitzeit in Tagen

Rationszusatz	,	Versuch	Kontrolle		Signifikanzprüfung
	n	$x \pm s$	n	$x \pm s$	о.gа.
Mais	21	19 ± 27	32	26 ± 36	
Soja	21	33 ± 36	28	27 ± 36	
Harnstoff	20	37 ± 51	22	16 ± 28	
Triticale	20	19 ± 27	27	17 ± 35	
Triticale + Soja	19	41 ± 48	16	2 ± 6	p < 0,05
Mais + Soja	20	14 ± 33	18	21 ± 36	
Triticale +Harnstoff	20	26 ± 30	22	33 ± 39	
Mais + Harnstoff	14	16 ± 27	19	22 ± 36	
Gesamt	155	26 ± 35	184	21 ± 32	

Mit einer Ausnahme gibt es keine statistisch gesicherten Unterschiede der mittleren Fruchtbarkeitskennzahlen zwischen den Versuchs – und den Kontrolltieren.

4.2.10 Erkrankungen und Abgänge

In der Tabelle 47 sind die Häufigkeiten der gesamten Erkrankungen bis zum 150. Tag der Laktation dargestellt.

Tabelle 47: Häufigkeiten der Erkrankungen

Rationszusatz	Versuch		Kontrolle		Signifikanzprüfung
rationozadatz	n	Anzahl (%)	n	Anzahl (%)	Olgrimmanizprarang
Mais	21	15 (71 %)	32	34 (106 %)	
Soja	21	13 (62 %)	28	28 (100 %)	
Harnstoff	20	13 (65 %)	22	20 (91 %)	
Triticale	20	16 (80 %)	27	16 (59 %)	
Triticale + Soja	19	17 (89 %)	16	12 (75 %)	
Mais + Soja	20	18 (90 %)	18	19 (106 %)	
Triticale +Harnstoff	20	18 (90 %)	22	29 (132 %)	
Mais + Harnstoff	14	9 (64 %)	19	10 (53 %)	
Gesamt	155	119 (77 %)	184	168 (91 %)	p< 0,05

In den einzelnen Versuchen wurde auf eine statistische Auswertung verzichtet, da in einigen Versuchen bei einzelnen Tieren mehrere Erkrankungen auftraten. Insgesamt erleiden die Kontrolltiere signifikant häufiger eine Erkrankung als die Versuchstiere.

In der Tabelle 48 sind die Häufigkeiten der gesamten Abgänge der Tiere bis zum 150. Tag der Laktation dargestellt.

Tabelle 48: Häufigkeiten der Abgänge

Rationszusatz	Versuch		Kontrolle		Signifikanzprüfung
ranonozadatz	n	Anzahl (%)	n	Anzahl (%)	Olgrimmanizprarang
Mais	21	0(0%)	32	1 (3%)	
Soja	21	1 (2%)	28	3 (11 %)	
Harnstoff	20	5 (25 %)	22	3 (14 %)	
Triticale	20	4 (20 %)	27	3 (11 %)	
Triticale + Soja	19	1 (5%)	16	0 (0 %)	
Mais + Soja	20	4 (20 %)	18	1 (6%)	
Triticale +Harnstoff	20	3 (15 %)	22	3 (14 %)	
Mais + Harnstoff	14	2 (14 %)	19	1 (5%)	
Gesamt	155	20 (13 %)	184	15 (8%)	

Es gibt keine statistisch gesicherten Unterschiede in den Häufigkeiten der Abgänge.

4.2.11 Zusammenstellung der Gesamtmittelwerte von Versuchs- und Kontrolltieren

In den Tabellen 49 bis 51 werden die Gesamtmittelwerte im Vergleich zwischen den Tieren mit einem Rationszusatz und den Tieren ohne einen Rationszusatz aufgezeigt.

Tabelle 49: Gesamtmittelwerte \pm s von Versuchs- und Kontrolltieren der verschiedenen Parameter

Untersuchungsparameter	Versuch n=155	Kontrolle n=184	Signifikanzprüfung
Gew -6 (kg)	602 ± 57	602 ± 42	
Gew -3/-2 (kg)	612 ± 53	624 ± 43	p<0,05
Gew 0 (kg)	589 ± 53	582 ± 43	
RFD –6 (mm)	19 ± 5	17 ± 4	p<0,05
RFD -3/-2 (mm)	20 ± 4	19 ± 4	
RFD 0 (mm)	20 ± 4	19 ± 4	p<0,05
RFD 28 (mm)	12 ± 3	12 ± 3	
RFD 100 (mm)	12 ± 4	12 ± 3	
WH 0 (cm)	140 ± 2	139 ± 2	
IgG-Gehalt (mg/ml)	66 ± 20	63 ± 16	
Einsatzleistung (I)	$28,3 \pm 6,5$	28,8 ± 6,0	
100-Tage-Milchmenge (kg)	3107 ± 467	3073 ± 481	
100-Tage-Fettmenge (kg)	112 ± 30	115 ± 22	
100-Tage-Fettprozente (%)	3.8 ± 0.4	3.8 ± 0.3	
100-Tage-Eiweißmenge (kg)	91 ± 24	93 ± 18	
100-Tage-Eiweißprozente (%)	3,1 ± 0,2	3,1 ± 0,2	
Tragenden Tiere bis 200d p.p.	98 (63 %)	108 (59 %)	
Rastzeit (d)	79 ± 28	80 ± 25	
Güstzeit (d)	105 ± 40	100 ± 43	
Verzögerungszeit (d)	26 ± 35	21 ± 32	

Tabelle 50: Gesamtmittelwerte $\pm\,s\,$ von Versuchs- und Kontrolltieren der Blutserumwerte

Untersuchungsparameter	Versuch n=155	Kontrolle n=184	Signifikanzprüfung
AST (< 1334 nkat/l)	1322 ± 295	1432 ± 695	
GLDH (< 500 nkat/l)	258 ± 341	300 ± 485	
CK (< 4,2 µkat/l)	4,4 ± 4,1	4,4 ± 3,1	
BHB (< 895 µmol/l)	399 ± 133	399 ± 118	
Harnstoff (3,2 – 5,0 mmol/l)	3,9 ± 1,0	$3,3 \pm 1,0$	p<0,05
Bilirubin (< 5,0 µmol/l)	4,4 ± 2,3	4,6 ± 2,7	
Cholesterin (2,0 – 4,5 mmol/l)	1,9 ± 0,4	$2,0 \pm 0,5$	p<0,05
Ca (2,3 – 2,8 mmol/l)	$2,4 \pm 0,2$	$2,4 \pm 0,2$	
P (1,6 – 2,3 mmol/l)	$1,4 \pm 0,4$	$1,5 \pm 0,3$	
Mg (0,8 – 1,3 mmol/l)	1,0 ± 0,1	1,0 ± 0,1	

Tabelle 51: Absolute und relative Häufigkeiten der Erkrankungen und Abgänge

Untersuchungsparameter	Versuch n=155	Kontrolle n=184	Signifikanzprüfung
Erkrankungen	119 (77 %)	168 (91 %)	p< 0,05
Abgänge	20 (13 %)	15 (8 %)	

4.3 Untersuchungen zum Einfluss der Vorbereitungsdauer

Zur Untersuchung über den Einfluss der Vorbereitungsdauer wurden alle Färsen retrospektiv in drei Gruppen mit unterschiedlicher Länge der Vorbereitungsdauer eingeteilt. In den Tabellen 52 bis 56 sind die Ergebnisse einer unterschiedlichen Vorbereitungsdauer dargestellt.

Tabelle 52: Mittelwerte ± s der RFD (mm), des Gewichtes (kg) und der Widerristhöhe (cm)

		Vorbereitungsdauer	
Parameter	< 14 Tage	14 – 21 Tage	> 21 Tage
	n= 102	n= 176	n= 61
RFD –6	17,6 ± 4,0	18,9 ± 5,0	17,3 ± 4,2
RFD -3/-2	18,8 ± 3,7	19,4 ± 4,1	19,0 ± 4,4
RFD 0	19,2 ± 3,9	19,8 ± 4,3	$20,3 \pm 4,9$
RFD 28	12,0 ± 3,4	12,1 ± 3,2	11,1 ± 3,4
RFD 100	11,9 ± 3,3 a	11,7 ± 3,4	10,8 ± 3,2 b
dRFD -3/-2 bis 0	0,4 ± 3,1	0,5 ± 3,4	1,2 ± 4,8
dRFD 0 bis 28	- 7,1 ± 4,3 a	- 7,9 ± 4,2	- 9,0 ± 5,0 b
dRFD 28 bis 100	$0,02 \pm 3,2$	- 0,3 ± 3,2	- 0,06 ± 3,5
Gew -6	602 ± 32	604 ± 49	597 ± 45
Gew -3/-2	621 ± 35	620 ± 52	610 ± 53
Gew 0	577 ± 39 a	586 ± 53	597 ± 45 b
WH 0	139 ± 2	140 ± 2	140 ± 2

(zwischen unterschiedlichen Indizes besteht ein signifikanter Unterschied)

Das Körpergewicht zur Kalbung wird durch die Vorbereitungsdauer beeinflusst (Tabelle 52). Die Färsen mit einer langen Vorbereitungsdauer erreichen zur Kalbung ein signifikant höheres Gewicht als die Färsen mit einer kurzen Vorbereitungsdauer. Zwar bauen die Färsen mit der langen Vorbereitungsdauer während dieser Zeit die meiste RFD auf und erreichen auch zur Kalbung die größte RFD, doch sind diese Unterschiede statistisch nicht gesichert. Die Abnahme der RFD in den ersten 4 Wochen der Laktation fällt in der Gruppe mit der langen Vorbereitungsdauer am größten aus und ist zu den Tieren mit der kurzen Vorbereitungsdauer signifikant. Damit besitzen diese Tiere in dieser Zeit eine ausgeprägtere negative Energiebilanz und besitzen am 100. Tag p.p. eine signifikant geringere RFD im Vergleich zu den Tieren mit der kurzen Vorbereitungsdauer.

Tabelle 53: Mittelwerte ± s des Immunglobulingehaltes in mg/ml und der Eutermaße in cm

	Vorbereitungsdauer			
Parameter	< 14 Tage	14 – 21 Tage	> 21 Tage	
	n= 102	n= 176	n= 61	
Immunglogulingehalt	62 ± 16	65 ± 18	67 ± 20	
Euterlänge	46 ± 7	45 ± 7	47 ± 7	
Euterbreite	28 ± 5	27 ± 4	28 ± 4	
Zitzenlänge	5 ± 1	5 ± 1	5 ± 1	

Es gibt keine signifikanten Unterschiede zwischen den drei Gruppen. Mit einer längeren Vorbereitungsdauer besteht der Trend zu einer höheren IgG- Konzentration im Kolostrum (Tabelle 53).

Tabelle 54: Mittelwerte ± s der Milchleistung

	Vorbereitungsdauer					
Parameter	< 14 Tage	14 – 21 Tage	> 21 Tage			
	n= 102	n= 176	n= 61			
Einsatzleistung I	$28,2 \pm 6,0$	$28,4 \pm 6,5$	29,4 ± 5,7			
100-Tage Milchmenge kg	2994 ± 490 a	3107 ± 481	3200 ± 398 b			
100-Tage Fett %	3,9 ± 0,4 a	3.8 ± 0.4	$3,7 \pm 0,4$ b			
100-Tage Fett kg	113 ± 23,2	114 ± 26	111 ± 31			
100-Tage Eiweiß %	3,1 ± 0,2 a	3,1 ± 0,2 b	$3.0 \pm 0.2 \; \mathbf{b} \; \mathbf{c}$			
100-Tage Eiweiß kg	91 ± 19	92 ± 21	92 ± 25			

(zwischen unterschiedlichen Indizes besteht ein signifikanter Unterschied)

Die Vorbereitungsdauer beeinflusst die Milchleistung positiv (Tabelle 54). Die Tiere mit einer langen Vorbereitungsdauer erreichen eine signifikant höhere 100-Tage-Milchmenge als die Tiere mit einer kurzen Vorbereitungsdauer. Die Fett- und die Eiweißprozente fallen etwas geringer aus.

Tabelle 55: Mittelwerte \pm s der Fruchtbarkeitskennzahlen und Anteil der tragenden Tiere

	Vorbereitungsdauer			
Parameter	< 14 Tage	14 – 21 Tage	> 21 Tage	
	n= 102	n= 176	n= 61	
Tragende Tiere bis 200.d p.p.	66 (65 %)	107 (61 %)	33 (54 %)	
Rastzeit d	78 ± 25	79 ± 28	86 ± 25	
Güstzeit d	98 ± 39	105 ± 44	104 ± 39	
Verzögerungszeit d	20 ± 31	26 ± 38	19 ± 32	

Es gibt keine signifikanten Unterschiede zwischen den drei Gruppen.

Tabelle 56: Mittelwerte ± s der Blutserumparameter zum Zeitpunkt der Kalbung

		Vorbereitungsdauer				
Parameter	Referenzwert	< 14 Tage 14 – 21 Tage		> 21 Tage		
		n= 102	n= 176	n= 61		
Са	2,3 – 2,8 mmol/l	$2,4 \pm 0,2$	2,4 ± 0,2	2,4 ± 0,1		
Р	1,6 – 2,3 mmol/l	1,5 ± 0,4	1,4 ± 0,3	$1,4 \pm 0,3$		
Mg	0,8 – 1,3 mmol/l	1,0 ± 0,1	1,0 ± 0,1	1,0 ± 0,1		
Cholesterin	2,0 – 4,5 mmol/l	$2,0 \pm 0,5$	2,0 ± 0,4	$2,0 \pm 0,4$		
Harnstoff	3,2 – 5,0 mmol/l	3,2 ± 1,0 a	3,7 ± 1,0 b	4,0 ± 1,0 b		
Bilirubin	< 5,0 µmol/l	$4,6 \pm 3,2$	$4,4 \pm 2,3$	4,7 ± 1,8		
AST	< 1334 nkat/l	1504,1 ± 847,8 a	1319,4 ± 366,0 b	1356 ± 280		
СК	< 4,2 µkat/l	$4,6 \pm 4,0$	4,3 ± 3,7	$4,7 \pm 3,8$		
GLDH	< 500 nkat/l	399,9 ± 692,3 a	235,1 ± 229,2 b	209,8 ± 127,7 b		
внв	< 895 μmol/l	389,5 ± 110,1 a	391,6 ± 126,2 a	435,2 ± 140,4 b		

(zwischen unterschiedlichen Indizes besteht ein signifikanter Unterschied)

Die mittleren Aktivitäten der Enzyme AST und GLDH sind signifikant größer bei Tieren mit einer kurzen Vorbereitungsdauer, die BHB und die Harnstoff Werte sind signifikant geringer (Tabelle 56).

4.4 Einfluss der Körperkondition

4.4.1 Beziehungen zwischen der RFD und der Änderung der RFD

Signifikante positive Korrelationen ergeben sich zwischen der RFD in der Vorbereitungszeit, zur Kalbung und in der Frühlaktation (Tabelle 57). Es ist erkennbar, dass Tiere, die zum Abkalben eine hohe Fettauflage besitzen, auch in den ersten 28 Tagen nach der Kalbung (r=0,32) und mit etwas geringeren Korrelationskoeffizienten bis zum 100. Tag in der Laktation (r=0,23) eine höhere RFD aufweisen. Eine negative Ausrichtung der Korrelationen bei der dRFD steht dabei für eine Abnahme der RFD im angegebenen Zeitraum. Signifikant negative Korrelationen mit einen Koeffizienten von r= - 0,72 lassen einen Einfluss der RFD zur Kalbung auf die Intensität des Fettabbaues in den ersten 28 Tagen der Laktation erkennen. Der Verlauf der Ausbildung der Fettreserven in der Vorbereitungsphase korreliert negativ mit der Änderung der RFD in den ersten 28 Tagen der Laktation. Die Tiere, die viel an RFD in dieser Zeit zulegen, besitzen in den ersten 28 Tagen der Laktation eine erhöhte Fettmobilisation (r= - 0,45). Tiere, die 6 Wochen ante partum eine hohe RFD besitzen, mobilisieren in der Zeit bis zur Vorbereitung die größten Fettreserven (r= - 0,59) und mit etwas geringerer Korrelation auch noch bis zur Kalbung (r= -0,22).

Tabelle 57: Korrelationen zwischen der Rückenfettdicke und der Rückenfettdickenänderung; Signifikanzangabe für den linearen Korrelationskoeffizienten (r): *p=0,05;
**p=0,01; freie Felder= keine Signifikanz; - = bereits dargestellt;

RFD	-2/-3	0	28	100	d –6 bis –2/-3	d -2/-3 bis 0	d 0 bis 28	d 28 bis 100
-6	0,71**	0,44**	0,40**	0,29**	-0,59**	-0,22**		
-2/-3		0,63**	0,32**	0,19**	0,41*	-0,38**	-0,37**	
0	-		0,32**	0,23**		0,49**	-0,72**	
28	-	-		0,50**			0,43**	-0,45**
100	-	-	-				0,14*	0,55**
d –6 bis –2/-3	-	-	-	-			-0,17*	
d -2/-3 bis 0	-	-	-	-	-		-0,45**	
d 0 bis 28	-	-	-	-	-	-		-0,25**

4.4.2 Beziehungen der RFD und der Änderung der RFD sowie des Gewichtes und der Widerristhöhe zur Milchleistung

In der Tabelle 58 sind die Korrelationen zur Milchleistung dargestellt. Die Höhe der Einsatzleistung steht bei der Berechnung für die Gesamtheit aller Probanden in keiner statistisch zu sichernden Beziehungen zur RFD, Widerristhöhe und zum Gewicht unmittelbar nach der Kalbung. Die Änderung der RFD in der Zeit bis zur Vorbereitung übt einen positiven Einfluss auf die Einsatzleistung (r = 0,17) und die 100-Tage-Leistung (r= 0,18) aus. Die RFD zum Zeitpunkt 100 und die Änderung der RFD von 28 bis 100 zeigen eine negative Korrelation zur Einsatzleistung und zur 100-Tage-Milchleistung. Demzufolge nimmt eine geringere Fettauflage, aber stärkere Fettmobilisation, einen positiven Einfluss auf die Milchleistung. Hohe 100-Tage-Milchleistungen konnten im vorliegenden Versuch von den Färsen erbracht werden, die zu den Untersuchungszeitpunkten das größte Gewicht aufwiesen. Ein Einfluss in Form einer positiven Korrelation besteht zwischen der RFD- Auflage und dem Milchfettgehalt. Die Tiere, die eine hohe RFD in der antepartalen Zeit erreichen und damit auch eine größere Mobilisation in der Laktation, erbringen die höchsten Fettgehalte.

Tabelle 58 : Korrelationen zwischen der Rückenfettdicke, der Rückenfettdickenänderung, des Gewichtes und der WH zu der Milchleistung; Signifikanzangabe für den linearen Korrelationskoeffizienten (r): *p=0,05; **p=0,01; freie Felder= n.s.

	Einsatz-	100-Tage-	100-	100-Tage-	100-Tage-	100-Tage-
		Milchmen-	Tage-Fett	_		Eiweiß %
	leistung	ge	kg	Fett %	Eiweiß kg	Elwells %
RFD -6				0,29**		
RFD -2/-3			0,17**	0,12*	0,12*	
RFD 0			0,16**	0,15*		
RFD 28						0,14*
RFD 100	-0,25**	-0,30**	-0,17**	0,15*	-0,16**	0,26*
dRFD -6 bis -2/-3	0,17*	0,18*				
dRFD −2/-3 bis 0						
dRFD 0 bis 28			-0,16*			
dRFD 28 bis 100	-0,18**	-0,23**	-0,21**		-0,19**	0,14*
Gew –6		0,14*				
Gew -2/-3		0,18**	0,18**	0,15*	0,14*	
Gew 0		0,18**	0,17**		0,13*	
WH 0						

4.4.3 Beziehungen der RFD und der Änderung der RFD sowie des Gewichtes und der Widerristhöhe zur Fruchtbarkeit

Es konnten zu keinen Zeitpunkten signifikante Zusammenhänge zwischen der RFD, der Änderung der RFD und der Widerristhöhe für die Gesamtheit aller Färsen im Untersuchungszeitraum auf die Fruchtbarkeit festgestellt werden (Tabelle 59).

Eine positive Korrelation besteht zwischen dem Gewicht zum Zeitpunkt der Kalbung und der Rastzeit (r= 0,14). Schwerere Färsen haben eine längere Rastzeit.

Tabelle 59: Korrelationen zwischen der Rückenfettdicke, der Rückenfettdickenänderung, des Gewichtes und der WH zu den Fruchtbarkeitskennzahlen;

Signifikanzangabe für den linearen Korrelationskoeffizienten (r):

*p=0,05;**p=0,01; freie Felder= keine Signifikanz

	1 5	0" 4 14	
	Rastzeit	Güstzeit	Verzögerungszeit
RFD -6			
111 0			
RFD -2/-3			
DED 4			
RFD 0			
RFD 28			
2 20			
RFD 100			
4 DED 0 kin 0/ 0			
d RFD -6 bis -2/-3			
d RFD -2/-3 bis 0			
d RFD 0 bis 28			
d RFD 28 bis 100			
U KFD 20 DIS 100			
Gew –6			
Gew –2/-3			
Gew 0	0,14*		
OCW 0	0,17		
WH 0			

4.4.4 Beziehungen der RFD und der Änderung der RFD sowie des Gewichtes und der Widerristhöhe zu Enzymaktivitäten und der BHB

Zusammenhänge zwischen den Rückenfettdicken und deren Änderungen auf die AST,CK und auch die BHB konnten nicht beobachtet werden (Tabelle 60). Schwere Färsen zum Zeitpunkt der Kalbung erreichen höhere BHB-Gehalte im Serum zur Kalbung (r=0,14) und gleichzeitig eine geringere Aktivität der CK (r= -0,16).

Korrelationen bestehen zwischen der GLDH und der RFD zum Zeitpunkt 100 Tage p.p. sowie zur Änderung der RFD in der Zeit 28 Tage p.p. bis 100 Tage p.p..

Tabelle 60 : Korrelationen zwischen der Rückenfettdicke, der Rückenfettdickenänderung, des Gewichtes und der WH zu den Enzymaktivitäten und der BHB;

Signifikanzangabe für den linearen Korrelationskoeffizienten (r): *p=0,05;

**p=0,01; freie Felder= keine Signifikanz

	AST	СК	GLDH	ВНВ
RFD -6				
RFD -2/-3				
RFD 0				
RFD 28				
RFD 100			0,14*	
d RFD -6 bis -2/-3				
d RFD -2/-3 bis 0				
d RFD 0 bis 28				
d RFD 28 bis 100			0,13*	
Gew –6				
Gew -2/-3		-0,13*		
Gew 0		-0,16*		0,14*
WH 0				