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Zusammenfassung 

In vielen Situationen des Alltags, wie beispielsweise bei der Wahl einer privaten 

Altersvorsorge, müssen Entscheidungen unter Risiko getroffen werden. Diese können, wie 

im Falle von Altersvorsorgeentscheidungen, die den Lebensstandard im Alter beeinflussen, 

weitreichende Konsequenzen für das weitere Leben haben. Zum heutigen Zeitpunkt ist 

allerdings weitestgehend unklar wie Menschen Risiko verarbeiten und wie sie 

Entscheidungen unter Risiko treffen. Das Ziel der vorliegenden Arbeit war es daher, die 

Mechanismen von Risikoverarbeitung und Entscheidungen unter Risiko näher zu 

untersuchen. Hierzu wurde zunächst eine Meta-Analyse von fMRT-Studien zur 

Risikoverarbeitung (Projekt I) durchgeführt. Ziel der Studie war es herauszufinden, wie die 

neurale Verarbeitung von Risiko durch Emotionen, potentielle Verluste und Kontext 

beeinflusst wird. Die gefundenen Aktivationen in der anterioren Insula, einer Hirnregion, 

die mit der Verarbeitung aversiver Emotionen wie Furcht, Enttäuschung oder Bedauern 

assoziiert wird, deuten darauf hin, dass Risikoverarbeitung von Emotionen beeinflusst 

wird. Die anteriore Insula war allerdings vorwiegend aktiv, wenn Verluste möglich waren. 

Dies deutet darauf hin, dass Verluste einen Einfluss auf die Art der Risikoverarbeitung 

haben. Weiterhin waren der dorsolaterale präfrontale Kortex und der parietale Kortex nur 

im Kontext von in Entscheidungssituationen aktiv, nicht aber in Situationen, in denen 

keine Entscheidung zu treffen war, was nahe legt, dass Risikoverarbeitung 

kontextabhängig ist.  

In den meisten Entscheidungen unter Risiko, wie beispielweise beim Roulette, sind alle 

möglichen Konsequenzen und zugehörigen Wahrscheinlichkeiten bekannt. Bei 

Anlageentscheidungen unterliegen die möglichen Renditen von Wertpapieren allerdings in 

der Regel stetigen Verteilungen. Es ist daher nahezu unmöglich alle möglichen Renditen 

und Wahrscheinlichkeiten in die Bewertung des Wertpapiers einzubeziehen. Unklar ist 

daher wie Menschen Anlageentscheidungen treffen. Die Ergebnisse aus Projekt II zeigen, 

dass Risiko-Gewinn Modelle Entscheidungen auf Verhaltensebene gut erklären können 

und dass die Komponenten dieser Modelle (Wert, Risiko und Risikoeinstellung) während 

einer Entscheidung im Gehirn repräsentiert werden. Insbesondere die Repräsentation des 

Risikos in der anterioren Insula spricht eher für Risiko-Gewinn Modelle als für 

nutzenbasierte Modelle, da Risiko eine explizite Komponente von Risiko-Gewinn 

Modellen, nicht aber von nutzenbasierten Modellen ist.  
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In Projekt III werden mithilfe einer Literaturanalyse das dopaminerge und das 

serotoninerge Hirnsystem als wichtige Neurotransmittersysteme im Kontext ökonomischer 

Entscheidungen identifiziert. Beide sind bekannt dafür, sich im Verlauf der Lebensspanne 

Veränderungen zu unterziehen. Ebenso ändert sich das ökonomische Verhalten während 

der Lebenszeit. Zusammengenommen deuten diese Erkenntnisse auf einen triadischen 

Zusammenhang zwischen (a) ökonomischen Entscheidungen, (b) dopaminerger und 

serotoninerger Neuromodulation und (c) Altern hin.  
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Summary 

In our everyday life we often have to make decisions with uncertain consequences, for 

instance in the context of retirement savings. Although these decisions can have important 

consequences (i.e., they can have an effect on our living standard in old age) it is still not 

fully understood how individuals process risk and how they make decisions under risk. In 

the context of this dissertation I have investigated three main questions all related to the 

topic risky decision making, namely (a) how neural processing of risk is influenced by 

emotions, context, and potential losses, (b) how individuals value choice options with 

continuous outcome distributions, and (c) how age-related changes in economic decision 

making are related to neurobiological changes during the adult life span. 

By showing in Project I that risk is consistently represented in the anterior insula, a brain 

region known to process aversive emotions like anxiety, disappointment, or regret, I 

provide evidence that risk processing is influenced by emotions. Further, the results show 

risk-related activity in the dorsolateral prefrontal cortex and the parietal cortex in choice 

situations but not in situations were no choice is involved or a choice has already been 

made. The anterior insula was predominantly active in the presence of potential losses, 

indicating that potential losses modulate risk processing. The results thus provide evidence 

that neural processing of risk is influenced by emotions, context, and potential losses. 

In Project II I can show that risk-return models can explain choices behaviorally and that 

the components of risk-return models (value, risk, and risk attitude) are represented in the 

brain during choices. Most importantly, the observed correlation between risk and brain 

activity in the anterior insula during choices supports risk-return models more than utility-

based models in the case of continuous outcome distributions because risk is an explicit 

component of risk-return models but not of the utility-based models. 

In Project III I identify the dopaminergic and serotoninergic brain systems as key 

neurotransmitter systems involved in economic behavior. Both are known to be prone to 

significant changes during the adult life span. Similarly, economic behavior undergoes 

significant age-related changes over the course of the adult life span. Consequently, I 

propose a triadic relationship between (a) economic decision making, (b) dopaminergic 

and serotoninergic neuromodulation, and (c) aging. 
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1. Introduction 

In our everyday life we often have to make decisions with uncertain consequences. 

Choosing a job, a partner to marry, or a form of private retirement saving are prominent 

examples of decisions with uncertain consequences. Such decisions are usually referred to 

as decisions under risk by decision scientists. Especially retirement saving decisions have 

become more and more important in Germany over the last years. Due to demographic 

changes the public pension system is no longer able to ensure the living standard for older 

adults. Therefore everybody is recommended to invest in private retirement plans. 

Although we have to make decisions under risk throughout our everyday life and although 

these decisions can have important consequences (e.g., they can affect the living standard 

in old age) it is still not fully understood how individuals process risk and how they make 

decisions under risk. It further remains unclear how risk processing and decision making 

under risk might change across the lifespan, influencing especially retirement saving 

decisions that individuals have to make throughout the entire adult lifespan.  

Traditional research in risk processing and decision making under risk focused on 

observable choice behavior neglecting the underlying processes. Technological and 

conceptual advancements in the last two decades offered new methods to investigate these 

underlying processes. Especially, the advancement of functional magnetic resonance 

imaging (fMRI) offered a new tool that contributed significantly to the understanding of 

human cognition. The new field of neuroeconomics uses neuroscientific methods and 

psychological concepts to investigate the underlying processes of economically relevant 

behavior, including risk processing and decision making under risk. The aim of this 

dissertation is to close some of the gaps in research on risk processing and decision making 

under risk and to advance knowledge in these domains by following the neuroeconomics 

approach. 

This dissertation is organized as follows. In chapter 2 the theoretical background of risk 

processing and decision making under risk will be discussed. Here, I will introduce some 

concepts of risk, models of decision making under risk and behavioral findings regarding 

age-related changes in economic decision making. I will further describe the current 

knowledge regarding the neural foundations of risk processing and decision making under 

risk as well as age-related changes in the neuromodulation of dopamine and serotonin. 

Based on this theoretical background and the current state of the art I will formulate the 

research questions that should be targeted in this dissertation in chapter 3. In chapter 4, I 
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will then describe the methods that I used to answer these questions, followed by brief 

summaries of the results of the different projects I conducted. Finally, I will discuss the 

results of the different projects and integrate them into a novel neural model of risky 

decision making in chapter 6. Chapter 7 concludes by summing up the main findings of 

this dissertation. 
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2. Theoretical and empirical foundations 

2.1. Risk 

2.1.1. Concepts of risk 

Risk is a concept that is defined differently in different scientific disciplines. Most of these 

disciplines define risk in relation to an unwanted or hazardous outcome. In engineering, for 

example, risk is usually defined as the probability of an accident times the losses per 

accident. In decision theory, however, risk is usually defined as a form of uncertainty. But 

even in decision sciences risk is often not clearly defined and used ambiguously. Basically, 

there are three forms of risk in decision sciences that are distinguishable though they are 

highly related to each other: (a) risk as a state, (b) risk as variance, and (c) perceived risk.  

In an early approach, economics distinguished three states in which a gamble can occur: 

(a) certainty, (b) risk, and (c) ambiguity (Camerer & Weber, 1992; Ellsberg, 1961; Knight, 

1921). These states can be characterized by two dimensions. The outcome(s) of a gamble 

can be either certain or uncertain and the probabilities in which specific outcomes occur 

can also be either certain or uncertain. The first dimension specifies whether outcomes are 

probabilistic or certain. The second dimension determines whether the probabilities (e.g., 

100% in the case of certain outcomes) are known or unknown. The first dimension is 

object-related whereas the second one is subject-related. Certainty is defined by a certain 

(non-probabilistic) outcome that is also known to be certain (i.e., to have a probability of 

100%). Risk refers to a probabilistic outcome of which the probabilities associated with the 

different possible outcomes are known. Ambiguity reflects all cases in which probabilities 

are unknown, independent of whether the outcomes are certain or probabilistic. In this 

approach risk is defined as a state which is either present or not. It has, however, no 

dimension and thus cannot be high or low. 

The definition of risk as variance has overcome this shortcoming. Here, risk was defined 

from a slightly different perspective. It was no longer defined as a state, but as a metric that 

can be measured or computed (Markowitz, 1952). The variance of possible outcomes (or 

the standard deviation as the square root of the variance) was chosen as a metric for risk as 

it reflects the spread of the outcome distribution around its mean. The logic behind this 

approach is that a lower variance increases the certainty that the outcome of a gamble will 

be close to the mean and thus decreases the uncertainty regarding the outcome. The 

definition of risk as variance is, however, only object-related. Following this definition it 
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makes no difference whether probabilities and/or outcomes are known to a potential 

decision maker. The gamble either contains a specific amount of risk or not (the special 

case when the variance is equal to zero). 

Psychology, in contrast, took a different route and defined risk as a purely subjective 

construct. Risk perception is thus only determined by the individual’s subjective perception 

(Weber & Milliman, 1997). This perception is affected by a variety of different factors. 

One line of research focused on systematic object-related influences on risk perception. 

Perceived risk usually increases with variance (standard deviation) (Keller, Sarin, & 

Weber, 1986). Most individuals, however, care more about downside variability (i.e., 

outcomes that are worse than the average) than upside variability. Oftentimes, individuals 

do not consider upside variability risky at all, even though there might be uncertainty 

involved (Weber, Anderson, & Birnbaum, 1992). Similarly, perceived risk usually 

increases with increasing probability of a loss and increasing expected loss (expected value 

of possible losses). Furthermore, perceived risk usually decreases if a constant positive 

amount is added to all outcomes (i.e., the mean outcome increases). In line with this 

observation is the coefficient of variation (standard deviation divided by the mean) better 

able to predict choices in humans and animals than the standard deviation (Weber, Shafir, 

& Blais, 2004). Finally, skewed outcome distributions are usually perceived as more risky 

than corresponding symmetric gambles with equal mean and variance (Keller, et al., 1986). 

Although most of these object-related factors are highly related to each other, there are 

huge inter-individual differences in the strength of the specific influences. This is due to 

the fact that risk is at least partly a learned concept. The risk perception of an investment 

broker who has learned the concept of risk as variance will likely be more closely related 

to the variance than the risk perception of an insurance broker who usually focuses more 

on potential losses. Similarly, risk perception also has a cultural component, indicated by 

significant cross-cultural differences in risk perceptions between the USA, Germany, 

Poland, and China (Weber & Hsee, 1998). But risk perception does not only differ 

between individuals. Even within individuals risk perception changes depending on prior 

experiences (e.g., winning or losing) (Weber & Milliman, 1997), depends on the time 

horizon (Klos, Weber, & Weber, 2005), and differs with the framing of the risky object. 

Risk perceptions of investments, for example, are significantly different when presented 

either as bar charts of past returns or as continuous distributions of possible returns (e.g., 

inferred from past returns) (Weber, Siebenmorgen, & Weber, 2005).  
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Another important inter-individual difference in risk perception is domain specificity 

(Blais & Weber, 2006; Weber, Blais, & Betz, 2002; Weber & Milliman, 1997). The way 

an individual perceives risk in the financial domain is usually not related to her concept of 

risk in the health domain. This finding could (at least) be partly explained by another line 

of research that investigates the psychological dimensions of risk perceptions. It turned out 

that risk perceptions of various hazards are related to dread and controllability, qualitative 

experiences associated with risk that are not captured by probabilities and magnitudes of 

outcomes (Fischhoff, Watson, & Hope, 1984; Slovic, Fischhoff, & Lichtenstein, 2000). 

Recently the importance of the dread dimension was replicated for risk perception in the 

financial domain (Holtgrave & Weber, 1993). Different domains could, thus, differ in the 

importance of these two dimensions resulting in different risk perceptions.  

But most importantly, these findings indicate that emotions might play an important role in 

risk perceptions and that one needs both cognitive and affective components to fully 

capture individuals’ risk perception (Loewenstein, Weber, Hsee, & Welch, 2001; Slovic, 

Finucane, Peters, & MacGregor, 2004; Slovic, Peters, Finucane, & Macgregor, 2005). 

Emotions are, however, hard to investigate with self-report measures, as these are highly 

dependent on the introspective abilities of individuals. It thus remains unclear if emotions 

are indeed implicated in risk processing and how they influence risk perceptions. 

 

2.1.2. Neural representations of risk 

Risk has frequently been investigated with neuroscientific methods (e.g., fMRI in humans 

and single cell recording studies in monkeys). Although only few studies defined risk 

explicitly, two lines of research can be distinguished. The first line implicitly uses the 

definition of risk as a state, whereas the other line of research implicitly builds on the 

assumption that risk is a metric, and is thereby more in line with the definitions of risk as 

variance and risk perception. 

Due to the implicit definition of risk as a state, the first line of research compares risky 

situations with safe situations (e.g., risky choices vs. safe choices). A typical task used to 

compare risky with safe situations is the Risky-Gains Task (Paulus, Rogalsky, Simmons, 

Feinstein, & Stein, 2003). In this task, subjects are presented with three numbers in 

ascending order (20, 40, and 80). Each number is presented on the screen. The subjects are 

informed that 20 represents a safe outcome, whereas for both 40 and 80 points there is a 

chance that a 40 or an 80 in red color may appear which signals that the subject loses 40 or 
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80 points. Subjects further knew the probabilities in which a red 40 or 80 appears, which 

was set such that the expected value of all gambles was equal (20 points). By comparing 

risky (waiting for the 40 or 80 points option) and safe choices (taking the safe 20 points) it 

is possible to identify brain regions that are active in the presence of risk.  

Studies that compared risky with safe situations identified a wide network of brain regions 

implicated in processing risky situations. These included the anterior insula (aINS), the 

ventral striatum (VST), the medial prefrontal cortex (MPFC), and the dorsolateral 

prefrontal cortex (DLPFC) (Hsu, Bhatt, Adolphs, Tranel, & Camerer, 2005; Matthews, 

Simmons, Lane, & Paulus, 2004; Paulus, et al., 2001; Paulus, et al., 2003; Tobler, 

O'Doherty, Dolan, & Schultz, 2007; Weber & Huettel, 2008).  

The other line of research investigates which brain regions code for the degree of riskiness 

of a situation thereby building on the definitions of risk as a metric (risk as variance or 

perceived risk). The studies that followed this approach either compared high risk with low 

risk situations or correlated brain activity with the degree of riskiness. A typical task that 

allows to correlate brain activity with the degree of riskiness is the Card Gambling Task 

(Preuschoff, Bossaerts, & Quartz, 2006). On each trial of this task two cards are drawn 

(without replacement within each trial) from a deck of ten cards, numbered from 1 to 10. 

Before seeing either card subjects have to place a bet (usually 1$) on one of the two 

options, “second card higher” or “second card lower” (than first card shown). Subjects can 

earn the amount betted if they guessed right and lose it if they were wrong. The number on 

the first card determines the probabilities for winning and losing the bet, which can be used 

to compute the risk of the respective situation (in this case the variance of possible 

outcomes). By comparing high risk with low risk situations or correlating brain activity 

with risk, it is possible to identify brain regions in which brain activity co-varies with risk. 

Not all studies, however, specified risk as variance but used metrics (e.g., increasing 

reward probability for p<0.5) that are usually highly correlated with the variance (e.g., 

Huettel, Song, & McCarthy, 2005). 

Studies that followed this approach identified several brain regions as sensitive to the 

present degree of riskiness. These included the aINS, the VST, the midbrain, the MPFC, 

and the DLPFC (Behrens, Woolrich, Walton, & Rushworth, 2007; Critchley, Mathias, & 

Dolan, 2001; Huettel, 2006; Huettel, et al., 2005; Kuhnen & Knutson, 2005; Preuschoff, et 

al., 2006; Preuschoff, Quartz, & Bossaerts, 2008; Rolls, McCabe, & Redoute, 2008; Volz, 

Schubotz, & von Cramon, 2003, 2004; Yoshida & Ishii, 2006). 
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The results of both lines of research are highly consistent with each other, as they revealed 

similar networks of brain regions coding for risk either defined as a state or a metric. A 

comparison between a situation with a certain outcome and a situation with a probabilistic 

outcome is, however, not sufficient to distinguish between the definition of risk as a state 

and definitions of risk as a metric. The probabilistic situation is not only risky following 

the risk as state definition (and therefore differs from the certain situation) but is also more 

risky than the certain situation following the risk as metrics definition. The results of the 

first line of research thus provide no evidence in favor of the definition of risk as a state 

over the definitions of risk as a metric. But as the results of the second line of research 

may distinguish between the two (classes of) definitions and indicate that the aINS, the 

VST, the MPFC, and the DLPFC co-vary with risk following the risk as a metric 

definitions, it is likely that they code for a risk metric. Nevertheless, there might also be 

brain regions that code the pure presence of uncertainty in the sense of risk as a state. 

Risk processing can also be differentiated further. It can be performed during or before 

choice (decision risk) and after or without a choice (anticipation risk). The crucial 

difference between the two is that the risk information is likely used to guide behavior in 

the context of decision risk but not in the context of anticipation risk. To date, however, 

little is known if risk is processed differently during decisions compared with pure 

outcome anticipation. 

 

2.2. Decision making under risk 

2.2.1. Models of decision making under risk 

Individuals are not only exposed to situations with uncertain outcomes, but also they often 

have to make decisions regarding choice alternatives which outcomes are (at least partly) 

uncertain. These types of decisions are often referred to as decisions under risk based on 

the definition of risk as a state. 

During the 17th century classical economics started out with a very simple but elegant 

model of risky decision making. The Expected Value Theory (EVT) assumes that 

individuals make risky decisions on the basis of the objective expected value of a gamble 

X.  
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EV (X) = p(x) ! x
x

"     (1) 

 

Individuals are thought to always choose the alternative that offers a higher expected value. 

EVT formed the basis for most modern models of risky decision making and influenced 

models in several other domains. Modern reinforcement learning models for example still 

assume that decisions are based on expected values and describe how these could be 

learned from past outcomes (Sutton & Barto, 1981). EVT, however, has two important 

shortcomings, namely (a) that it does not allow for inter-individual differences, and (b) that 

it fails to predict a number of observable choice patterns, including the so-called St. 

Petersburg Game, where individuals are only willing to pay a small price for the privilege 

of playing a game with a highly skewed payoff distribution that has an infinite expected 

value. It turned out that both shortcomings are related to risk (either defined as a state or as 

a metric) and individuals’ attitudes towards risk. 

 

 Utility-based Models Risk-Return Models 

Normative  

Economic Models 

Expected Utility 

Theory 

Mean-Variance 

Model 

Descriptive 

Psychological Models 
Prospect Theory 

Psychological Risk-

Return Model 

Fig. 1. Classification of different models of decision making under risk. 

 

Modern models of decision making under risk therefore implemented individuals’ 

reactions to risk. These models can be characterized by two dimensions: (a) the way they 

incorporate the influence of risk, and (b) their origin and scientific orientation (cf. Fig. 1). 

The way these models incorporate risk is highly dependent on the underlying definition of 

risk (see chapter 2.1.1). Utility-based models implicitly use the risk as a state definition 
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and incorporate risk indirectly by assuming that outcomes and/or probabilities are non-

linearly transformed, whereas risk-return models use definitions of risk as a metric (risk as 

variance or perceived risk) and assume that risk directly linearly influences the overall 

subjective value of a choice option. The normative economic models have their origins in 

economics/finance and describe optimal behavior under certain circumstances. Descriptive 

psychological models, in contrast, aim to describe actual choice behavior without any 

normative constraints and take psychological factors and limitations into account. 

Expected Utility Theory (EUT) proposes that individuals do not maximize their expected 

value, but behave as if they would maximize their expected utility (von Neumann & 

Morgenstern, 1953).  

 

EU(X) = p(x) !u(x)
x

"    (2) 

 

Utility in this case was defined as a function of objective wealth states. Individuals are 

assumed to have hidden preferences for wealth states that can be described by the utility 

function. EUT, however, remains agnostic regarding the actual decision-making process. It 

only claims that preferences can be described by expected utility, but not that individuals 

in fact maximize this metric during the decision making process. 

Importantly, it can be shown analytically that the existence of a certain utility function is 

formally equivalent with following a small set of axioms related to the rationality of an 

individual. This axiomatic foundation gave EUT its character as a normative model of 

decision making under risk. 

As a utility-based model of decision making under risk, EUT does not directly model the 

influence of risk on decisions. This influence is modeled through the curvature of the 

utility function. For concave utility functions the expected utility of a risky gamble is 

always lower than the expected utility of a certain outcome with the same expected value. 

In this case individuals are characterized as risk averse (cf. Fig. 2). In convex utility 

functions this relation is reversed, resulting in higher expected utilities for risky gambles. 

Thus, individuals with convex utility functions are characterized as risk seeking. In the 

case of linear utility functions, where preferences are equivalent to EVT, individuals are 

described as risk neutral. 



Synopsis                                                                                                                                                                                                       18 

 

Figure 2. Relationship between curvature of the utility function and risk attitude. In the case of concave 

utility functions (solid line), the expected utility (EU) of a risky choice alternative (dashed line) is 

always lower than the utility function itself. As the EU of a certain choice alternative lies on the utility 

function, it is always higher than the EU of a risky choice alternative that offers the same expected value 

(EV). Individuals with concave utility functions can thus be characterized as risk averse. For convex 

utility functions this relation is reversed. Consequently, individuals with convex utility functions are 

characterized as risk seeking. 

 

 

 

In parallel to the development of modern EUT, finance scholars proposed another 

normative economic model of decision making under risk: The Mean-Variance Model 

(MVM; also called normative Risk-Return Model) is based on the idea of a risk premium 

(Markowitz, 1952). To be equally attractive, a risky choice option has to offer a higher 

expected value compared to a safe choice option. 

 

SV (X) = EV (x) ! b "SD(x)    (3) 
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The MVM proposes that the subjective value (SV) of a choice option is determined by the 

expected value of possible outcomes (EV) minus its standard deviation (SD) (or variance) 

linearly weighted with a factor b. This factor represents the risk attitude in the MVM and 

determines the risk premium. If b is positive, risk (measured as the SD) reduces the SV of a 

choice option and the individual is characterized as risk averse. Similarly, individuals can 

be described as risk neutral if b is equal to zero (reducing the MVM to EVT) and as risk 

seeking if b is negative. 

The MVM is highly related to EUT and therefore is also regarded as a normative model of 

decision making under risk. For the special case of quadratic utility functions it can be 

shown analytically that the expected utility of a choice option can be re-described in the 

form of the MVM (see Appendix). Furthermore, utility functions can be approximated by 

means of a second-order Taylor series expansion, that is the sum of an infinite number of 

statistical moments (e.g., expected value, variance, skewness, etc.) of the utility function 

(d'Acremont & Bossaerts, 2008). Taking the first two statistical moments (expected value 

and variance) results in a formulation of expected utility that is similar to the MVM. 

As both, EUT and the MVM, are normative economic models of decision making under 

risk they have proven very useful in economics, where predictions often have to be made 

on an aggregate macroeconomic level, but they have failed to accurately describe the full 

range of individual behaviors. Psychologists showed that the rationality axioms on which 

EUT (and also the MVM, as a special case of EUT) was built are frequently violated even 

in decisions between simple gambles (Allais, 1953; Ellsberg, 1961). For example, Allais 

(1953) showed that individuals are often risk averse with regard to gains, but risk seeking 

when faced with potential losses. 

On the basis of these findings psychologists further developed EUT and the MVM, thereby 

taking a descriptive rather than a normative route. Prospect Theory (PT) took basically the 

same utility-based approach as EUT but revised it in three substantial parts (Kahneman & 

Tversky, 1979; Tversky & Kahneman, 1992). First, PT proposes that the choice option is 

edited before it is evaluated. Important editing steps are, for example, the simplification of 

the choice options in the sense that probabilities and/or outcome magnitudes are rounded 

and the elimination of dominated choice options. Second, PT proposes to transform not 

only outcome magnitudes but also probabilities. 
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SV (X) = w(p(x)) ! v(x)
x

"    (4) 

 

The subjective value of a choice option in PT is determined by the weighted sum of 

transformed outcomes. The weights in this case are determined by a function of 

(cumulative) probabilities. Third, PT proposes that outcome magnitudes are not 

transformed on the basis of the resulting wealth levels (as in EUT), but on the basis of 

deviations from a reference point. This reference point is not formally described, as it is 

assumed to be influenced by the specific object, individual, and context in which the 

decision should be made. PT further assumes that the value function of individuals (which 

is equivalent to the utility function in EUT) is concave in the gain domain (in relation to 

the reference point) and convex but steeper in the loss domain. This reflects the 

behaviorally observed tendency of individuals to be risk averse regarding gains and risk 

seeking regarding losses as well as the general tendency of individuals to be loss averse 

(Kahneman & Tversky, 1979). 

The psychological Risk-Return Model (PRRM) took a different route to account for these 

phenomena (Weber & Johnson, 2009). It generalized the intuitively appealing idea of the 

MVM to trade off risk and return, reflecting positive and negative characteristics of the 

choice options. Based on findings that risk is often perceived differently from the variance 

(see chapter 2.1.1), the PRRM defines risk and return as subject-related variables.  

 

SV (X) = SER(x) ! b "PR(x)    (5) 

 

In the PRRM the SV of a choice option is defined by the difference between subjective 

expected return (SER) and weighted perceived risk (PR). Similarly to the MVM the trade-

off factor b reflects the risk attitude of the individual (in this case perceived risk attitude). 

Whereas observed risk attitudes are highly dependent on individual and contextual factors 

in EUT, PT, and the MVM, perceived risk attitudes are constant within individuals for 

certain choice domains (Weber, et al., 2002; Weber & Milliman, 1997). 
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2.2.2. Neural basis of decision making under risk 

Decision making under risk is usually seen as a type of value-based decision making (but 

see (Brandstatter, Gigerenzer, & Hertwig, 2006), where the values of different actions are 

first compared, and the action selected is the one that corresponds to the highest value. All 

models presented in chapter 2.2.1 of this dissertation follow this approach. But as value 

predictions of all presented models are usually highly correlated with each other, to date, 

no study explicitly related predicted values to brain activity. 

Some studies, however, investigated the neural correlates of value in situations in which no 

risk was involved (e.g., intertemporal decision making and consumer choices). One study 

investigated the value of monetary rewards during intertemporal choice (Kable & 

Glimcher, 2007). In this study, the subjective value of delayed monetary rewards was 

modeled with a hyperbolic function and was significantly correlated with the blood oxygen 

level dependent (BOLD) response in the ventromedial prefrontal cortex (VMPFC), 

posterior cingulate cortex (PCC), and VST. Another study investigated the value of food 

products in a consumer choice paradigm (Plassmann, O'Doherty, & Rangel, 2007). 

Determined by the willingness-to-pay, the subjective value of the food products correlated 

with the BOLD signal in the medial orbitofrontal cortex (mOFC) and the DLPFC. These 

results were supported by a study using a similar consumer choice paradigm that found 

representations of value in mOFC and VMPFC (Hare, O'Doherty, Camerer, Schultz, & 

Rangel, 2008). Thus, although these studies did not investigate the value of risky choice 

alternatives they indicate that value is represented in mOFC, VMPFC, DLPFC, and VST. 

Studies that investigated the neural basis of decision making under risk focused on 

representations of basic choice parameters (e.g., magnitudes and probabilities of rewards) 

and behavioral choice phenomena (e.g., loss aversion). These were mainly investigated 

using simple gambling tasks with probabilistic outcomes (e.g., Tom, Fox, Trepel, & 

Poldrack, 2007) or cued reaction time tasks where outcomes are determined by reaction 

times faster or slower than an adaptive threshold (e.g., Knutson, Taylor, Kaufman, 

Peterson, & Glover, 2005).  

Several studies investigated the magnitudes and/or probabilities of possible rewards before 

they were actually obtained. The magnitude of possible gains usually correlates with 

ventral striatal activations including the nucleus accumbens (NACC) (Knutson, Adams, 

Fong, & Hommer, 2001; Knutson, et al., 2005; Tobler, et al., 2007; Tom, et al., 2007). 
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Potential losses are also represented in the VST (Tom, et al., 2007) although another study 

failed to find any loss-related activations in this region (Knutson, et al., 2001).  

Representations of reward probability were found in the VST as well as in the VMPFC 

(Knutson, et al., 2005; Abler, Walter, Erk, Kammerer, & Spitzer, 2006; Tobler, et al., 

2007). Similarly, these studies found representations of expected value, which integrates 

magnitudes and probabilities into one single metric, in these same brain regions (Knutson, 

et al., 2005; Tobler, et al., 2007). These results are in line with EVT (compare section 

6.2.1), as they found representations of all parameters (magnitude, probability, and 

expected value) specified in this model. They are, however, also in line with EUT and PT 

of which EVT can be seen as a special case.  

Another line of research aimed to differentiate between EUT and PT within the class of 

utility-based models of decision making under risk. This line of research targeted the 

special assumptions and psychological phenomena implemented in PT. Three of these 

psychological phenomena, namely reference dependence, framing, and loss aversion are 

highly interrelated, as the categorization of outcomes as gains and losses differs between 

different reference points and different forms of framing. There is, however, only one 

study directly investigating the assumption that individuals are loss averse, meaning that 

potential losses have a greater impact on the overall subjective value of an action than 

potential gains (Tom, et al., 2007). In this study participants made several decisions 

whether to accept a mixed gamble offering a 50% chance of gain and loss, respectively, or 

not. The authors found that the decrease of ventral striatal activity for losses was steeper 

than the increase in activity for gains, reflecting loss aversion, as implemented in PT. 

Another study manipulated the framing of choice options in a decision task in which 

participants chose between a sure outcome and a gamble after receiving an initial 

endowment (De Martino, Kumaran, Seymour, & Dolan, 2006). The initial endowment was 

manipulated such that the gamble was either a loss or a gain compared to the endowment, 

although offering exactly equal final wealth states. The authors found that amygdala 

activity was associated with the dominant choices, with increased activity for sure choices 

in the gain frame and risky choices in the loss frame whereas the dorsomedial prefrontal 

cortex (DMPFC) showed the opposite pattern across conditions.  

Reference-dependence was mostly investigated in the context of market transactions. One 

study used consumer decisions in which no risk was involved (Weber, et al., 2007). During 

decisions whether to accept the price for a consumer good or not the reference point was 
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manipulated by sometimes providing the original store price of the good which was always 

higher than the offered price. Activity in the VMPFC and mOFC was higher in the 

condition where (higher) original store prices were shown, indicating that these regions 

track a reference-dependent value-signal. Together these results provide evidence for a 

neural basis of loss aversion in combination with reference-dependence and framing, 

although they provide no clear picture with regard to the underlying processes of these 

psychological phenomena.  

A further aspect that distinguishes PT from EUT is probability weighting. EUT assumes 

that outcomes are linearly weighted with their probability of occurrence whereas PT 

assumes that probabilities are weighted with a probability weighting function, usually 

overweighting low probabilities and underweighting high probabilities (Kahneman & 

Tversky, 1979; Tversky & Kahneman, 1992). Neuroscience usually did not investigate 

neural representations of probabilities including probabilities near zero or one (Knutson, et 

al., 2005; Abler, et al., 2006; Tobler, et al., 2007). Therefore, they only investigated a 

nearly linear part of the probability weighting function assumed by PT. One study 

explicitly investigated probabilities near the endpoints and found that brain activity in the 

VST indeed follows an S-shaped function, overweighting probabilities near zero and 

underweighting probabilities near one (Hsu, Krajbich, Zhao, & Camerer, 2009). Together 

these findings indicate that the brain processes risky alternatives at least partly as proposed 

by PT, although the exact processes remain unclear. 

Another line of research investigated the basic choice parameters of risk-return models, 

namely risk and return of possible outcomes. Studies that solely investigated risk found 

neural representations in aINS, DLPFC, DMPFC, and VST (see chapter 2.1.2). But more 

importantly, some studies investigated neural representations of risk and expected value 

simultaneously. Two studies used a card game to manipulate variance and expected value 

of possible outcomes (Preuschoff, et al., 2006; Preuschoff, et al., 2008). In this game 

individuals initially have to state in each trial whether they think the second of two cards 

that will be drawn is higher or lower than the first one. If the participant is right she gets a 

fixed amount of money. After the first card is drawn, variance and expected value are fixed 

as winning probabilities are known. During this time period (after first card and before 

second card) both studies found that the variance correlates with brain activity in the aINS 

and VST as well as the expected value correlates with the BOLD signal in the VST. The 

variance-related BOLD response in the VST was, however, one second delayed. Another 
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study that conducted two experiments with simple gambles found that both expected value 

and variance covary with brain activity in the ventrolateral prefrontal cortex (VLPFC) 

(Tobler, Christopoulos, O'Doherty, Dolan, & Schultz, 2009).  

There is, thus, also evidence that the brain processes risky alternatives by trading off risk 

and return and it therefore remains a puzzle how the valuation process is actually 

implemented in the brain. Further, studies to date only used simple gambles with a limited 

number of known probabilities and outcomes to investigate the neurobiological basis of 

risky decision making. The outcomes of real-life choice alternatives (e.g., stocks), 

however, often follow continuous distributions. Thus, to date it remains also unclear if the 

outcome distribution influences the valuation process of risky choice alternatives.  

 

2.3. Aging 

2.3.1. Age-related changes in economic decision making 

Most economic decisions, such as buying a lottery ticket or investing money for retirement 

saving, can be seen as decisions under risk. Economic preferences are quite stable in the 

short term. If you actually prefer, for example, a specific kind of meal (e.g., Lasagne) over 

another meal (e.g., Pizza), your preference will likely also hold next week or in a few 

months. It is, however, assumed that value (utility) functions change over the long run, that 

is, over the adult lifespan (Rogers, 1994; Trostel & Taylor, 2001). Your actual preference 

for Lasagne over Pizza might thus chnage in five or ten years. Economic preferences are 

also influenced by situational, environmental, and biological factors. A woman, for 

example, who has just become a mother will likely have different economic preferences 

than she had a few years earlier. Similarly, a newly retired man may also have different 

financial considerations than before the retirement. Age is a descriptive variable for many 

changes that might cause changes in risky decision making in general and specifically in 

economic behavior over the adult life span.  

One study that used data from a large representative sample found that age has a 

significant effect on the willingness to take risks (Dohmen, et al., 2005). The applied scale 

was validated in a sub-sample by showing that it predicts actual risk-taking behavior in a 

lottery game where subjects repeatedly had to choose between safe gains and risky 

lotteries. Thus, the authors conclude that risk-taking behavior decreases over the adult 

lifespan. An experimental study using a gambling task supported this finding (Deakin, 
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Aitken, Robbins, & Sahakian, 2004). In each trial of the gambling task, subjects receive a 

certain amount of points. In the following they can freely distribute the amount of points 

between two different option (e.g., half of the points for option 1 and half of the points for 

option 2). In one option, points were kept safe, whereas they were exposed to lottery risk in 

the other. The authors observed that the mean proportion of available points that a subject 

staked on each trial was significantly lower in older adults than in younger adults, that is, 

older adults showed less risky behavior. 

Further support for the hypothesis that economic behavior changes over the adult lifespan 

comes from experimental studies that used the Iowa Gambling Task (IGT) (Bechara, 

Damasio, Tranel, & Damasio, 1997), which has been used in numerous studies to 

investigate individuals’ ability to make favorable choices (Bechara, Damasio, & Damasio, 

2000; Maia & McClelland, 2004). In the IGT subjects have to choose repeatedly between 

four decks of cards without any knowledge about possible outcomes (i.e., reward 

magnitude and probability). Two of these card decks are “bad decks” in the sense that they 

result on average in a loss. The other two decks (“good decks”) have a positive expected 

reward. Usually, individuals start with preferring the bad decks, which have higher gains 

but also much higher losses compared to the good decks, and then switch to the good 

decks.  

In one study, both younger and older subjects started with the usual pattern to choose the 

bad card decks (Denburg, Tranel, & Bechara, 2005). Whereas the younger subjects then 

gradually shifted towards the good card decks as the game progressed, the older subjects 

did not demonstrate this shift, staying with the bad card decks, indicating an impaired 

ability to identify favorable options in the long run. Two other studies also found that older 

adults perform less advantageously in the IGT compared to younger adults (Fein, 

McGillivray, & Finn, 2007; Zamarian, Sinz, Bonatti, Gamboz, & Delazer, 2008). Zamarian 

et al. (2008) compared the performance of younger and older adults in the IGT with their 

performance in another task that, in contrast to the IGT, provides the subjects with full 

information about the lotteries (probabilities and magnitudes of associated gains and 

losses). Older adults showed poor performance in the IGT relative to younger adults, 

indicating difficulty in making advantageous decisions under ambiguous conditions. In 

contrast, older adults performed as well as younger adults in the other task, demonstrating 

their ability to make decisions in situations where they are given full information about the 

problem. However, despite substantial evidence for age-related differences in the 
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performance of the IGT, it should be noted that there is also one study using a variant of 

the IGT (only two card decks) to compare the economic behavior of younger and older 

adults that did not find any significant differences between the age groups (Kovalchik, 

Camerer, Grether, Plott, & Allman, 2005).  

Indirect support for the hypothesis that economic behavior changes over the adult lifespan 

can be derived from age-comparative studies related to second-order factors influencing 

economic decision making. Working memory capacity and processing speed both decline 

during the course of normal aging (e.g., Bäckman, Small, Wahlin, & Larsson, 1999; Baltes 

& Lindenberger, 1997; Dobbs & Rule, 1989; Li, et al., 2008; Salthouse & Babcock, 1991; 

Schmiedek, Li, & Lindenberger, 2009) and thus likely influence economic behavior and 

decision making in general. In one study, that investigated the effect of aging on the 

adaptive selection of decision strategies, older adults with lower working memory capacity 

and lower processing speed tended to look up less information, took longer to process it, 

and used simpler, less cognitively demanding strategies (Mata, Schooler, & Rieskamp, 

2007).  

Thus, many studies have identified age-related differences in economic behavior, 

specifically in risk-taking behavior, delay discounting, and the ability to make 

advantageous decisions in the IGT. These studies, however, provide no evidence for the 

underlying mechanisms that drive age-related changes in economic decision making.  

 

2.3.2. Neurobiological changes during healthy aging 

Brain aging involves neurofunctional, neuroanatomical, and neurochemical changes as 

well as dynamic interactions between these changes (Cabeza, Nyberg, & Park, 2005; 

Lindenberger, Li, & Backman, 2006). As individuals get older their brains become subject 

to significant changes (Reuter-Lorenz & Lustig, 2005). Structural imaging and postmortem 

studies indicate a general loss of brain tissue (white matter and gray matter). However, 

some brain regions are more affected by these losses than others. Especially, prefrontal 

grey matter volume seems to be more strongly negatively influenced by age than other 

brain areas (Raz, et al., 2004).  

On the level of brain activation initial neuroimaging studies of cognitive aging reported 

activations in older adults in brain regions not activated by younger adults. In some studies 

these overactivations co-occur with underactivations in other brain regions (Reuter-Lorenz 
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& Lustig, 2005, for review). The terms overactivation and underactivation in this context 

are purely relative, referring to higher or lower activations in older adults compared to 

younger adults. Overactivation is often observed in prefrontal brain regions that mirror 

activation patterns in younger adults, but in the opposite hemisphere (Cabeza, Anderson, 

Locantore, & McIntosh, 2002). This pattern of reduced asymmetry in older adults has been 

referred to as hemispheric asymmetry reduction in older age (short HAROLD) (Cabeza, et 

al., 2002). 

Age-related underactivations are typically interpreted as a sign of impairment, for example 

due to structural changes such as atrophy. In the case of an overactivation an interpretation 

is less straight forward. To date it remains unclear whether overactivations are beneficial, 

detrimental, or inconsequential to cognitive functioning (Reuter-Lorenz & Lustig, 2005, 

for review). 

Two explanations for the observed over- and underactivation patterns were proposed in the 

literature – dedifferentiation and compensation. The first explanation proposed – 

dedifferentiation – is based on the differentiation-dedifferentiation hypothesis of lifespan 

intelligence (Baltes, Cornelius, Spiro, Nesselroade, & Willis, 1980). This hypothesis states 

that the functional organization of cognitive processes is rather undifferentiated in 

childhood, undergoes differentiation during child development, and becomes relatively 

dedifferentiated again during aging. This means that different measures of cognition (e.g., 

working memory, processing speed, etc.) show stronger correlations between each other in 

older adults and children compared to young adults. Applied to the neurobiological level, 

this means that brain regions are less functionally distinct in old age, resulting in more 

diffuse activation patterns (Reuter-Lorenz & Lustig, 2005). A study regarding the ventral 

visual cortex found evidence for this hypothesis (Park, et al., 2004). Unlike younger adults, 

who show discrete, anatomically and functionally separable activation peaks for faces, 

places, and words, older adults show less differentiated activation patterns, recruiting all 

regions-of-interest, regardless of stimuli category. 

The compensation hypothesis assumes that overactive brain regions in older adults are 

“working harder” than corresponding regions in younger adults. There are several reasons 

why a brains region needs to “work harder” in older adults. One reason is that 

overactivation compensates for the declining efficiency of the overactivated brain region. 

Another reason might be that overactivation compensates for degraded or compromised 

inputs from other brain regions (Reuter-Lorenz & Lustig, 2005). Compensation, however, 
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usually works only to a certain degree. Consequently, overactivations were usually 

reported for relatively low task demands. As task difficulty increases older adults tend to 

show a more constrained BOLD response than younger adults (Nagel, et al., 2009; Nyberg, 

Dahlin, Stigsdotter Neely, & Backman, 2009). These findings are in line with the 

Compensation-related Utilization of Neural Circuits Hypothesis (CRUNCH) (Reuter-

Lorenz & Capell, 2008). According to the CRUNCH, processing inefficiencies cause the 

aging brain to recruit more neural resources to achieve a computational output equivalent 

to that of younger adults. Compensatory activation is effective at lower levels of task 

demand. At higher load, activation cannot be further increased, leading to an insufficient 

processing and a compromised BOLD response.  

During the course of normal aging, dopaminergic systems undergo substantial decline. 

Much of the work on the relationship between aging and dopamine neurotransmission has 

focused on the caudate and the putamen, two major nuclei in the striatal complex with 

dense dopaminergic innervation from the substantia nigra. Thus, the conditions for reliable 

analyses of dopamine biomarkers are particularly favorable in the striatum. There is strong 

evidence for age-related losses of pre- and postsynaptic biochemical markers of the 

nigrostriatal dopamine system. Regarding presynaptic mechanisms, both positron emission 

tomography (PET) and single photon emission computed tomography (SPECT) studies 

(Erixon-Lindroth, et al., 2005; Mozley, Gur, Mozley, & Gur, 2001) indicate marked age-

related losses of the dopamine transporter in the striatum, with the average decline 

estimated to be 5-10% per decade from early to late adulthood. For postsynaptic 

mechanisms, molecular imaging work reveals age-related losses of both striatal D1 

(Suhara, et al., 1991; Wang, et al., 1998) and D2 (Antonini & Leenders, 1993) receptor 

densities of comparable magnitude, as found for the dopamine transporter.  

A similar downward age trajectory is observed for the mesocortical and mesolimbic 

dopaminergic pathways. Thus, marked age-related losses in D2 receptor binding have been 

observed throughout the neocortex as well as in the hippocampus, the amygdala, and  the 

thalamus (Inoue, et al., 2001; Kaasinen & Rinne, 2002). The fact that similar age patterns 

can be observed for the dopamine transporter and postsynaptic markers suggests that the 

expression of transporters and receptors may reflect adaptation of major components of the 

dopaminergic pathways. One possibility derived from work on knockout mice is that the 

loss of the dopamine transporter initially results in increased dopamine concentrations; 

increased dopamine levels may subsequently lead to down regulation of neurotransmission 
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in postsynaptic neurons (Shinkai, Zhang, Mathias, & Roth, 1997; Zhang, Ravipati, Joseph, 

& Roth, 1995). 

Various neurocomputational models have been proposed to link aging-related decline in 

dopaminergic neuromodulation to behaviorally observed cognitive deficits. One of these 

models relates weakened phasic activity of the mesencephalic dopamine system with 

aging-related deficits in detecting performance errors (Nieuwenhuis, et al., 2002). Another 

model focuses on capturing the effect of deficient dopaminergic neuromodulation on 

compromised prefrontal cortex functions, such as cognitive control (Braver, et al., 2001). 

A third model captures the effects of deficient neuromodulation on processing variability 

and the distinctiveness of memory and goal representations in more general terms (Li, 

Lindenberger, & Sikstrom, 2001). 

Compared to dopamine there is limited data in the literature that deals with changes in the 

serotonin system during normal aging. Several post-mortem studies have reported a 

reduction in the number of serotonin binding sites with age in the frontal lobe, occipital 

lobe, and hippocampus (Arranz, Eriksson, Mellerup, Plenge, & Marcusson, 1993; 

Cheetham, Crompton, Katona, & Horton, 1988; Gross-Isseroff, Salama, Israeli, & Biegon, 

1990; Marcusson, Oreland, & Winblad, 1984; Marcusson, Morgan, Winblad, & Finch, 

1984; Sparks, 1989). A PET study provided in vivo evidence for an age-related decline in 

cortical serotonin binding sites (Wong, et al., 1984). Further, abnormalities of the 

serotoninergic nervous system are well documented in studies of Alzheimer's disease, and 

there is evidence suggesting that changes in this system occur in association with non-

disease aging (McEntee & Crook, 1991). 

In sum, separate lines of research have found evidence for age-related changes in economic 

decision making and dopaminergic and serotoninergic brain systems over the adult life 

span. To date it remainsunclear, however, how changes in economic decision making can 

be attributed to neurobiological changes during healthy aging.  
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3. Research questions 

3.1. Neural processing of risk 

Traditional models of risky decision making implicitly assume that the characteristics of a 

choice option (e.g., magnitude of possible outcomes) are evaluated cognitively. In the 

framework of EUT people’s willingness to take risk depends on the concavity of the utility 

function, and in EUT’s popular relative PT it additionally depends on the shape of the 

probability weighting function (e.g., Bossaerts, Preuschoff, & Hsu, 2009; Fox & Poldrack, 

2009,  for reviews). Recent approaches, however, highlighted the role of emotions in 

decision making. Based on psychological and neuroscientific research, theories like the 

affect heuristic (Slovic, et al., 2004), the Risk-as-feelings hypothesis (Loewenstein, et al., 

2001), and the Somatic Marker Hypothesis (SMH) (Damasio, Tranel, & Damasio, 1991), 

claim that emotions interact with a cognitive evaluation of the choice problem to guide 

behavior. To date, however, it remains unclear if risk processing is specifically influenced 

by emotions. 

Traditional models of risky decision making further often assume that risk is a context-

independent function of the variability of possible outcomes (e.g., variance) (Markowitz, 

1952). Research on the perception of risk, however, indicates that risk perception is neither 

context-independent nor a pure measure of outcome variability (Weber, et al., 2002). One 

can distinguish risk processing during or before choice (decision risk) and risk processing 

after or without a choice (anticipation risk). The crucial difference between the two is that 

the risk information is likely used to guide behavior in the context of decision risk but not 

in the context of anticipation risk. Furthermore, research has shown, that individuals’ 

judgments of perceived risk are more sensitive to downside variability and losses than to 

upside variability, indicating that risk might be processed differently if losses are possible 

(Weber, et al., 1992).  

 

Research question 1:  

How is neural processing of risk influenced by emotions, context, and potential losses? 
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3.2. Valuation of choice options with continuous outcome distributions 

Various models have aimed to describe decision making under risk. Utility-based models 

as well as risk-return models have proven biologically plausible when using simple 

gambles with limited pairs of outcomes and probabilities. It therefore remains a puzzle 

how the valuation process is actually implemented in the brain. As individuals are limited 

in their processing capacity, one criterion, by which different models might be assigned to 

different types of decisions, is the amount of information processing required by each. In 

investment decisions individuals are usually faced with investments where returns follow 

continuous distributions (e.g., stocks); thus they are faced with an infinite number of 

potential outcomes and probabilities. While the amount of required computations stays 

constant in risk-return models (calculation of risk, return, and value), it increases with the 

amount of outcome-probability pairs in EUT and PT. That is, in EUT and PT each outcome 

and each probability (in the case of PT) first needs to be transformed before they are 

combined to derive the value of a choice option. Although this indicates that individuals 

use risk-return models in this case, it remains unclear how they actually value choice 

options with continuous outcome distributions. 

 

Research question 2:  

How do individuals value choice options with continuous outcome distributions? 

 

3.3. Neural foundations of age-related changes in risky economic decision 

making 

Many developed countries are now faced with aging populations, due to an increase in 

average life expectancy and a decrease in birth rate (Beddington, et al., 2008). The 

prosperity of societies generally depends heavily on its ability to profit from the cognitive 

resources of its constituent members, both economically and socially. Thus, in aging 

societies it is crucial to understand how brain mechanisms that affect cognitive abilities 

and decision making change over the adult lifespan to guide strategies for cognitive 

interventions at the individual level and social policies at the societal level.  

It was recently suggested that risky economic decision making is influenced by two 

neurotransmitter systems, namely dopamine and serotonin, which are known to be prone to 

significant changes during the adult lifespan. It remains unknown, however, how changes 
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in these neurotransmitter systems are related to changes in economic behavior during 

healthy aging. 

 

Research question 3:  

How are age-related changes in risky economic decision making related to neurobiological 

changes during the adult life span? 
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4. General methodology 

All three studies were based on fMRI data: Project I was a quantitative meta-analyses of 

fMRI studies on risk processing, Project II was an fMRI study on investment decisions, 

and Project III was a review of fMRI studies on age-related changes in economic decision 

making. FMRI is a method to study brain activity non-invasively (Logothetis, 2008) for 

review). It is important to emphasize that fMRI does not measure neuronal activity 

directly. FMRI employs the BOLD contrast to indicate local changes in neural activity 

(Kwong, et al., 1992; Ogawa, Lee, Kay, & Tank, 1990). Neural activity associated with 

information processing leads to metabolic changes including increased oxygen 

consumption in the respective brain regions. Mediated by physiological mechanisms that 

are still not completely understood, this increased oxygen consumption leads to an increase 

of local blood volume and a large rise in local blood flow, the so-called luxury perfusion 

(Fox & Raichle, 1986; Fox, Raichle, Mintun, & Dence, 1988). As a result of this increased 

blood flow, vessels in activated brain regions contain an over-supply of oxygenated blood 

and consequently a relatively low amount of de-oxygenated blood. Because 

deoxyhemoglobin has paramagnetic features, its presence leads to local inhomogeneities of 

the magnetic field. Inhomogeneities lead to a faster decay of the MRI signal. Therefore, 

active brain regions which exhibit a relatively low amount of deoxyhemoglobin show a 

slower decay of the MRI signal than non-activated brain regions resulting in an increased 

BOLD signal. In brief, fMRI measures the relative absence of deoxyhemoglobin in a given 

brain region which, mediated over hemodynamic coupling and the associated BOLD 

response, is an indicator of local neural activity (Logothetis & Wandell, 2004). In contrast 

to electroencephalography (EEG), fMRI offers a very good spatial resultion which depends 

on the magnetic field strength of the applied MRI scanner (Logothetis, 2008). Although 

still an issue of intense research, the BOLD contrast is assumed to reflect mainly neuronal 

input and local integration processes within a brain region associated with pre- and 

postsynaptic currents and to a lesser degree neuronal output of a brain region related to 

action potentials in projection neurons (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 

2001; Viswanathan & Freeman, 2007). There are, however, also other mechanisms that 

might elicit significant BOLD responses, that are not related to stimuli or task demands 

(Logothetis, 2008). Increases of the BOLD signal may for example occur as a result of 

balanced proportional increases in the excitatory and inhibitory conductances (Logothetis, 

2008).  
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The time course of the BOLD response to stimulation is called the hemodynamic response 

function (HRF). Whereas the neuronal response to the stimulus rises quickly and ends a 

few hundred ms post-stimulus, the typical BOLD response only begins to rise at about 2 s 

and reaches a maximum at 5–9 s after stimulus onset and then slowly returns to baseline 

(Logothetis and Wandell, 2004, for review). In some instances the BOLD response has an 

initial dip and a post-stimulus undershoot. The slow HRF causes the relatively poor 

temporal resolution of fMRI. The exact form of the HRF differs across brain regions and 

between subjects as well as tasks. It also depends on the stimulus duration. To model brain 

activity in fMRI analyses usually a canonical HRF is used (Friston, et al., 1996). 

Depending on the degree of spatial smoothing applied, the spatial resolution of fMRI is 

relatively highlies usually between 4 and 12 mm2. For group analyses, functional maps are 

normalized to a structural brain template using coordinates according to the Talairach or 

the Montreal Neurological Institute standards (Talairach & Tournoux, 1988). For 

illustration purposes, the relatively low-resolution functional activation maps are usually 

super-imposed on high-resolution structural MRI images. 
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5. Dissertation projects 

5.1. Project I: Neural processing of risk  

In Project I I investigated, how neural processing of risk is influenced by emotions, 

context, and potential losses (Research Question 1). To answer these questions I conducted 

quantitative meta-analyses on studies that investigate risk in the brain. By using the 

Activation Likelihood Estimation (ALE) approach we can base our argumentation not only 

on a single study or a qualitative view on several studies but on a quantitative integration 

of many studies investigating risk. ALE is a quantitative meta-analysis technique that 

compares activation likelihoods calculated from observed activation foci with a null 

distribution of randomly generated activation likelihoods. In ALE, peak activation 

coordinates from a number of studies investigating similar effects are pooled (Chein, 

Fissell, Jacobs, & Fiez, 2002; Laird, et al., 2005; Turkeltaub, Eden, Jones, & Zeffiro, 

2002). These coordinates are generally published relative to Talairach or Montreal 

Neurological Institute (MNI) space and have to be spatially renormalized to a single 

template.  

The resulting coordinates are used to generate “activation likelihoods” for each voxel in 

the brain. For each focus, ALE scores each voxel as a function of its distance from that 

focus using a three-dimensional Gaussian probability density function centered at the 

coordinates of the focus. As a result, ALE gets vectors of values for each voxel 

representing probabilities to belong to specific foci. These values are assumed to be 

independent (the existence of one focus gives no information about whether another focus 

will occur) and are combined with the addition rule for probabilities, yielding so-called 

ALE statistics. The ALE statistic represents the probability of a certain voxel to belong to 

any of the included foci.  

To test for significance the ALE statistic in each voxel is compared with a null distribution, 

generated via repeatedly calculating ALE statistics out of random activation foci (same 

number as included in the study). This null distribution is then used to estimate the 

threshold that results for a given false discovery rate (FDR). Finally, a cluster threshold 

(minimum spatial extend of significant clusters) can be applied. 

The ALE meta-analysis can also be used to contrast two independent meta-analyses. In this 

case the ALE statistic in each voxel is calculated as the difference in ALE values between 

the two meta-analyses. Whereas ALE values can only be positive in a single ALE meta-
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analysis they can be negative as well in a contrast of ALE meta-analyses. The null 

distribution is calculated accordingly via calculating the differences between ALE statistics 

of randomly generated foci (again same number of foci as included in the respective 

studies). Further steps of the analysis equal the procedure used for a single ALE meta-

analysis described above. 

I identified a network including bilateral aINS, dorsomedial Thalamus, posterior 

Thalamus, DMPFC, right DLPFC, and right parietal cortex for processing risk. The aINS 

was active for both decision risk and anticipation risk but predominantly when individuals 

were faced with potential losses. The aINS is regarded as a key brain region in emotion 

processing and arousal (Quartz, 2009) but also in the mapping of internal bodily states 

(Craig, 2009; Critchley, 2005). Several studies related activity in the aINS especially to 

aversive emotions such as fear, sadness, disgust, or anxiety (Paulus & Stein, 2006; Phan, 

Wager, Taylor, & Liberzon, 2002; for reviews). Thus, our results clearly support the 

hypothesis that aversive emotions are implicated in risk processing independent of the 

context but predominantly (not solely) when individuals are faced with potential losses.  

The Thalamus is one of the most ignored brain regions in functional neuroimaging. 

Although most of the studies included in our meta-analyses found risk representations in 

the Thalamus, none of the studies discussed them. I found representations of risk in 

posterior and dorsomedial Thalamus. The posterior Thalamus was found to be active in the 

processing of emotions like regret (Chandrasekhar, Capra, Moore, Noussair, & Berns, 

2008) and showed stronger activity for losses compared to gains (Xu, Liang, Wang, Li, & 

Jiang, 2009). The dorsomedial Thalamus is part of the striatal loop and reflects information 

about reward magnitudes (Glimcher & Lau, 2005). Thus, both parts of the Thalamus likely 

process important aspects of a risky stimulus. 

The DMPFC was active during decision risk and anticipation risk as well as in both 

domains (gains+losses and gains). It was, however, more likely to be active during 

decision risk compared to anticipation risk. Activity in the DMPFC was found in a variety 

of different tasks related to the cognitive processing of stimuli. These studies included 

investigations of response conflict, error monitoring, decision making, as well as strategy 

selection (Venkatraman, Payne, Bettman, Luce, & Huettel, 2009); (Ridderinkhof, 

Ullsperger, Crone, & Nieuwenhuis, 2004) for review).  

I further found that both the right DLPFC and parietal cortex were active for decision risk 

but not for anticipation risk. Both brain regions were usually observed in the context of 
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decision making (Heekeren, Marrett, & Ungerleider, 2008, for review). In the context of 

reward-based decision making, activity in the right DLPFC is related to valuing choice 

options (Camus, et al., 2009; Mohr, Biele, Krugel, Li, & Heekeren, 2009). These results 

indicate that DLPFC and parietal cortex do not play a general role in risk processing but a 

specific role in risk processing during decision making.  

In sum, our finding of insula activity supports the hypothesis that emotions are implicated 

in risk processing. The differential activation patterns for decision risk vs. anticipation risk 

and for the gain vs. gain+loss domain suggest that risk processing on the neural level is 

context dependent and specifically influenced by potential losses (note though, that context 

and domain are not fully independent in the fMRI studies I found). 

 

5.2. Project II: Neural foundations of risk-return trade-off in investment 

decisions 

In Project II we investigated how do individuals value choice options with continuous 

outcome distributions (Research question 2). Two classes of risky decision making models 

have been proposed that can be applied to investment decisions in general, one based on a 

transformation of outcomes and/or probabilities (EUT and PT) (Kahneman & Tversky, 

1979; von Neumann & Morgenstern, 1953) and the other based on a risk-return trade-off 

(risk-return models) (Sarin & Weber, 1993; Weber & Johnson, 2009). 

To be superior to other models, a better model should, in the best case, explain behavioral 

and neural data better than the other models. As value- and choice predictions of both 

classes of models are usually highly consistent with each other (Bossaerts, et al., 2009; 

d'Acremont & Bossaerts, 2008), here I focused on the question which class of models 

better describes the valuation process. In this case fMRI data can serve as a tiebreaker, 

because they provide additional insight into the neurobiological processes that sub-serve 

the cognitive processes, which ultimately lead to decisions. As previous research found 

neurobiological support for both classes of models we suggest to associate both classes of 

models with certain types of decisions, environments, or decision contexts in which 

different strategies are appropriate. One criterion by which different models can be 

assigned to different types of decisions is the amount of information processing required 

by each. In investment decisions, where investment returns often follow continuous 

distributions, both classes of models differ significantly with regard to this criterion. 
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To investigate the brain processes associated with investment decisions I used a novel 

investment decision task in an fMRI experiment. Each trial of the Risk Perception and 

Investment Decision (RPID) task consisted of two phases: the presentation of a return 

stream, followed by a decision or subjective judgment task. In investment situations 

investors are often confronted with past performance data of possible investments. To 

mimic this situation, in the first phase we sequentially presented a stream of ten returns 

from an investment (each presented for 2 sec). These ten returns provided information 

about the past performance of a given investment. In the experiment, each return stream 

was independent of the others and described a new investment option. We varied the mean 

and the standard deviation of the return streams parametrically with 3 means (6%, 9%, and 

12%) and 3 standard deviations (1%, 5%, and 9%), resulting in 9 different combinations of 

means and standard deviations. 

In the second phase, subjects performed one of three possible tasks in each trial (each 7 

sec) without knowing in advance which one they would have to perform after the stream. 

The goal of these three tasks was to investigate choices as well as perceived risk and 

subjective expected return, as specified in the psychological risk-return models (see 

chapter 2.2.1). In the decision task the subjects had to make a choice between an 

investment with 5% fixed return (safe investment) and the investment represented by the 

return stream they saw before (risky investment). In the other two tasks subjects reported 

their subjective expected return and perceived risk of the investment represented by the 

return stream. Subjects indicated subjective expected return on a scale ranging from -5% to 

+15% and perceived risk on a scale ranging from 0 (no risk) to 100 (maximum risk; (Klos, 

et al., 2005). Subjects performed each task (decision, subjective expected return, perceived 

risk) twenty-seven times (81 trials in total). Before the experiment subjects completed four 

training trials, knowing that the standard deviations in the experiment would be in the same 

range as in the training trials. But no information with regard to the distribution of returns 

was given to the participants. 

Using the RPID task, which mimics real-life investment decisions by providing subjects 

with past returns of investments, I found that value and return covaried with brain activity 

in bilateral DLPFC, PCC, VLPFC, and MPFC. Activation in these regions has usually 

been observed in the context of value and reward. Changes in the BOLD signal in these 

regions correlate with the magnitude of experienced and anticipated rewards as well as 

with the subjective value of (delayed) rewards and the willingness to pay for consumer 
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goods (Amiez, Joseph, & Procyk, 2006; Kable & Glimcher, 2007; Kennerley, Dahmubed, 

Lara, & Wallis, 2009; Knutson, et al., 2005; Kuhnen & Knutson, 2005; Markowitz, 1952; 

Plassmann, et al., 2007; Tom, et al., 2007). 

I found that perceived risk correlated significantly with the BOLD signal in the aINS. 

Risk-related brain activity in the aINS was observed in a variety of studies (Critchley, et 

al., 2001; Grinband, Hirsch, & Ferrera, 2006; Huettel, et al., 2005; Paulus, et al., 2003; 

Preuschoff, et al., 2006; Preuschoff, et al., 2008; Rolls, et al., 2008). None of these studies, 

however, used lotteries with continuous distributions. Thus, our finding supports the results 

of previous studies and extends them by showing that risk is represented in the aINS in 

situations where subjects have to make a choice between two independent alternatives 

where one alternative is described by a continuous distribution of possible outcomes. Most 

importantly, the existence of a neural representation of risk during choices offers neural 

support for risk-return models because in the case of EUT and PT one would not expect a 

neural representation of risk whereas risk is explicitly specified in risk-return models. 

I further found that inter-individual differences in decision-related brain activity in lOFC 

and PCC covaried with inter-individual differences in risk attitudes derived from the 

psychological risk-return model, which provides additional support for this model. The 

more risk averse a participant was, the greater was her decision-related brain activity in 

lOFC and PCC (independent of current risk and value). Our results support the findings 

from a recent study that found correlations between risk attitude and risk-related brain 

activity in lateral OFC for risk averse individuals and in medial OFC for risk seeking 

individuals (Tobler, et al., 2007). 

In sum, I found support for the hypothesis of a risk-return trade-off in investment 

decisions. I extended existing evidence regarding the neurobiological basis of risky 

decision making (a) by predicting both behavioral data and neuroimaging data with the 

same choice model (risk-return model), (b) by showing that (perceived) risk and risk 

attitude do not only influence the value signal but are represented independently in the 

aINS (perceived risk) and the lOFC (risk attitude), and (c) by showing that risk and value 

are not only represented in the brain during choices between simple gambles with discrete 

outcome distributions but especially during choices where outcomes follow continuous 

distributions (like stocks usually do). 
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5.3. Project III: Neuroeconomics and aging: Neuromodulation of economic 

decision making in old age 

In Project III I investigated how age-related changes in risky economic decision making 

are related to neurobiological changes during the adult life span? Risky economic decision 

making is a complex process of integrating and comparing various aspects of 

economically-relevant choice options. Most models of risky decision making are based on 

reward and risk, which is explicitly defined in risk-return models (Bell, 1995; Sarin & 

Weber, 1993) and implicitly influences the value of an alternative in utility-based models 

via the curvature of the utility function and additionally in the case of PT via the curvature 

of the probability weighting function (Kahneman & Tversky, 1979; von Neumann & 

Morgenstern, 1953). Importantly, however, a third factor influences the value of a choice 

alternative, namely the possible delay between action and reward delivery, which is 

specified in models of intertemporal choice (Ainslie, 1974; Kirby, 1997; Laibson, 1997). 

Neuroeconomics has made important progress in grounding these aspects of decision 

making in neural systems and the neurotransmitters therein. Evidence from a range of 

fMRI studies indicates that the ventral striatum (VST) and the ventromedial prefrontal 

cortex (VMPFC) are implicated in the representations of reward (Delgado, Nystrom, 

Fissell, Noll, & Fiez, 2000; Elliott, Friston, & Dolan, 2000; Elliott, Newman, Longe, & 

Deakin, 2003). In the context of risk processing, many studies have shown two key regions 

to be involved – the ACC and the aINS (see section 9.1). Some recent studies have also 

investigated the effect of delayed rewards and showed that the subjective value of delayed 

rewards covaries with brain activity in VST, VMPFC, and PCC (Ballard & Knutson, 2009; 

Kable & Glimcher, 2007; McClure, Ericson, Laibson, Loewenstein, & Cohen, 2007; 

McClure, Laibson, Loewenstein, & Cohen, 2004) 

The dopaminergic and serotoninergic brain systems have been identified as key 

neurotransmitter systems involved in economic behavior influencing all three aspects of 

economic decision making discussed above (reward, risk, and delay). Whereas dopamine 

and serotonin separately influence both reward - and risk processing (Tobler, Fiorillo, & 

Schultz, 2005) (Fiorillo, Tobler, & Schultz, 2003; Talbot, Watson, Barrett, & Cooper, 

2006) they are also assumed to interact in implementing prediction signals that reflect the 

temporal information about the outcome (Denk, et al., 2005; Tanaka, et al., 2007) 

Both neurotransmitters are known to be prone to significant changes during the adult life 

span. Regarding presynaptic mechanisms, both PET and SPECT studies (Erixon-Lindroth, 
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et al., 2005; Mozley, et al., 2001) indicate marked age-related losses of the dopamine 

transporter in the striatum, with the average decline estimated to be 5-10% per decade from 

early to late adulthood.  For postsynaptic mechanisms, molecular imaging work reveals 

age-related losses of both striatal D1 (Suhara, et al., 1991; Wang, et al., 1998) and D2 

(Antonini & Leenders, 1993) receptor densities of comparable magnitude, as found for the 

dopamine transporter. Several post-mortem studies have further reported a reduction in the 

number of serotonin binding sites with age in the frontal lobe, occipital lobe, and 

hippocampus (Arranz, et al., 1993; Cheetham, et al., 1988; Gross-Isseroff, et al., 1990; J. 

Marcusson, et al., 1984; J. O. Marcusson, et al., 1984; Sparks, 1989). 

Similarly, economic behavior undergoes significant age-related changes over the course of 

the adult life span. Several studies indicate that older adults are more risk averse than 

younger adults (Deakin, et al., 2004; Dohmen, et al., 2005; Green, Fry, & Myerson, 1994) 

and that discount rates increase with age. These changes were reflected in changes in 

activation patterns observed while individuals make economic decisions. Although older 

adults show intact striatal activation during gain anticipation, one can observe a relative 

reduction in activation during loss anticipation (Samanez-Larkin, et al., 2007). They also 

show higher activations in the aINS when choosing risky choice alternatives, indicating 

that they perceived the alternative as more risky compared to younger adults. 

In sum, I suggest, based on the reviewed evidence, a triadic relationship between (a) 

economic decision-making, (b) dopaminergic and serotoninergic neuromodulation, and (c) 

aging. 
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6. General discussion 

In our everyday life we frequently have to make decisions under risk. Choosing a job, a 

partner to marry, or a form of private retirement saving are prominent examples of 

decisions with uncertain consequences. Although we have to make decisions under risk 

throughout our everyday life and although these decisions can have important 

consequences (e.g., they can affect the living standard in old age) it is still not fully 

understood how individuals process risk and how they make decisions under risk. It further 

remains unclear how risk processing and decision making under risk might change across 

the lifespan, influencing especially retirement saving decisions that individuals have to 

make throughout the entire adult lifespan. 

In the context of this dissertation I investigated three main questions all related to risky 

decision making, namely (a) how neural processing of risk is influenced by emotions, 

context, and potential losses, (b) how individuals value choice options with continuous 

outcome distributions, and (c) how age-related changes in economic decision making are 

related to neurobiological changes during the adult life span. All of these questions can be 

addressed in the framework of neuroeconomics. 

 

6.1. Why neuroeconomics? 

Neuroeconomics (a convenient shorthand for “decision neuroscience”) seeks to integrate 

ideas from different disciplines that investigate decision making in general, namely 

psychology, economics, and neuroscience (Sanfey, Loewenstein, McClure, & Cohen, 

2006). In fact, neuroeconomics emerged when two lines of research met, that followed 

already interdisciplinary ideas – behavioral economics and cognitive neuroscience 

(Glimcher, Camerer, Fehr, & Poldrack, 2009). Behavioral economics aims to integrate 

ideas from psychology and economics to provide a better understanding of economic 

behavior. Cognitive neuroscience, in contrast, aims to integrate ideas from psychology and 

neuroscience to investigate the biological substrates of cognition. Neuroeconomics 

consequently tries to ground economic behavior in neural mechanisms thereby getting 

insights on the processes underlying economic decision making (Camerer, 2007). It can 

therefore be seen as a subfield of both behavioral economics and cognitive neuroscience. 

These two, however, constitute two different views on neuroeconomics. Behavioral 

economics aims to use neuroscientific methods as a tool to both test economic models of 

decision making and develop alternatives to classical revealed preference models (e.g., 
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EUT). Cognitive neuroscience in contrast uses economic models as a tool to test and 

develop algorithmic models of the neural hardware of choice. 

But whereas the neuroeconomics approach, that is, investigating the neural processes 

underlying economic behavior, is widely accepted in psychology and neuroscience, it is 

met with more skepticism in economics and received substantial criticism especially from 

economics scholars (Gul & Pesendorfer, 2008). The main argument of these scholars is 

that evidence from neuroscience cannot falsify economic theories as they make no claims 

regarding the psychological and neurological processes involved in economic decision 

making. Following this argument behavioral data are both necessary and sufficient to 

evaluate the validity of economic models. This is obviously correct, as economic models 

usually make “as if” statements. EUT for example proposes that individuals behave “as if” 

they would maximize their expected utility, implying that they behave “as if” a metric like 

utility would actually exist. The weakness of this argument is, however, that a variety of 

studies already provided behavioral data that questioned the predictive power of EUT or 

PT (e.g., Allais, 1953; Birnbaum, 2008).  

The goal of neuroeconomics is, thus, not to falsify any model of individual decision 

making, as this has in most cases already been done (Clithero, Tankersley, & Huettel, 

2008). The role of neuroeconomics in decision sciences lies mostly in its potential to guide 

and constrain the development of new hypotheses and models. Without this guidance and 

these constraints, research has to test in its extreme all plausible influencing factors on 

economic decision making to form the basis for a comprehensive model. This is of course 

highly impractical. No collection of researchers can obtain all possible data about all 

possible behaviors. An understanding of the neural processes underlying economic 

decision making can indicate which possible factors are more likely and which are less 

likely to influence economic behavior. Neural and behavioral studies should interact to 

identify interesting phenomena, to suggest mechanisms that underlie those phenomena, and 

to map out the biological substrates that support those mechanisms.  

Aside from generating new hypotheses neurobiological data can also introduce constraints. 

Psychological research has already turned to focus not only on predicting and explaining 

choices, that is, the outcome of a decision process, but tries to develop process models that 

include testable hypotheses regarding the underlying processes of decision making (e.g., 

Weber & Johnson, 2009, for review). By virtue of hypothesizing a series of psychological 

processes that precede decisions, process models make predictions about intermediate 
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states of the decision maker, between the start and the end of the decision. Process models 

can, thus, improve model selection because they consider more variables and add multiple 

constraints. Following the same logic the neuroeconomics approach can add 

neurobiological constraints to models of decision making. In addition, neurobiological data 

can serve to test the biological plausibility of these models.  

In this dissertation I took the neuroeconomics approach to contribute to a better 

understanding of risk processing and risky economic decision making. In the case of risk 

processing (Project I) several behavioral findings indicate that it is influenced by emotions, 

context, and potential losses (see chapter 2.1.1). By providing neurobiological data on risk 

processing we can strengthen behavioral findings and test the biological plausibility of 

recent approaches on risk perception. In the case of risky decision making choice 

predictions of competing theories are highly consistent with each other. Neuroeconomics 

has already provided neurobiological data that so far did not question the biological 

plausibility of these theories in simple gambles, that is, found support for risk-return 

models and utility-based models of risky decision making (see chapter 2.2.2). Prior studies 

have, however, neglected the biological plausibility of these models for gambles with 

continuous outcome distributions. Consequently, I tested which of the proposed models is 

biologically more plausible in this special case (Project II). Furthermore, behavioral 

research has identified several changes in economic decision making across the adult 

lifespan. However, the reasons for these changes are still debated. By reviewing parallels 

in behavioral changes and changes in dopaminergic and serotoninergic neuromodulation 

(Project III), which are implicated in economic decision making, I can guide hypothesis 

testing by suggesting new research agendas. 

 

6.2. The role of emotions in risk processing and risky decision making 

One central question of this dissertation was if and how emotions influence risk processing 

and risky decision making. In Project I, I identified the aINS as a key brain region in risk 

processing. It was found to be active in the context of risk across a wide range of tasks and 

experiments, including experiments where risk was processed in non-choice situations and 

during risky decision making. Consequently, I found a representation of perceived risk in 

the aINS also in Project II. 

The aINS is regarded as a key brain region in emotion processing and arousal (Quartz, 

2009) but also in the mapping of internal bodily states (Craig, 2009; Critchley, 2005). 
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These bodily states range from changes in the internal milieu and viscera that may not be 

perceptible to an external observer (e.g., heart rate) to changes in muscoloskeletal system 

that may be obvious to an external observer (e.g., facial expression) and play an important 

role in the generation of emotions (Bechara & Damasio, 2005).  

Several studies related activity in the aINS especially to aversive emotions such as fear, 

sadness, disgust, or anxiety (Paulus & Stein, 2006; Phan, et al., 2002; for reviews). In the 

context of risky decision making, activity in the aINS was recently found to be implicated 

in outcome-related processing of disappointment and regret (Chua, Gonzalez, Taylor, 

Welsh, & Liberzon, 2009). Singer et al. proposed a model of insula functioning, in which 

the insula integrates external sensory and internal physiological signals with computations 

about their uncertainty (Singer, Critchley, & Preuschoff, 2009). According to this model 

the integration is expressed as a dominant feeling state that influences social and 

motivational behavior. A study on temporal discounting indicates that this feeling state 

might be stronger when making intertemporal decisions in the loss domain compared to the 

gain domain (Xu, et al., 2009). Thus, our results so far clearly support the hypothesis that 

aversive emotions are implicated in risk processing.  

Standing alone, this conclusion is based on reverse inference (Poldrack, 2006), and needs 

to be qualified as the aINS is also active in a variety of tasks not explicitly related to 

emotions (e.g., Yang et al., 2009). Still, additional evidence comes from behavioral 

research on the influence of emotions on decision making. Several studies demonstrated 

that incidental emotions (i.e., emotions not related to the decision problem) significantly 

influence judgment and decision making. Risk judgments, for example, change if 

individuals perceive fear or anger (Lerner & Keltner, 2000). Together with these 

behavioral findings our results strongly indicate that emotions influence risk processing. 

 

6.3. Complexity as determinant of decision strategy 

Two classes of risky decision making models have been proposed, one based on a 

transformation of outcomes and/or probabilities (EUT and PT) (Kahneman & Tversky, 

1979; von Neumann & Morgenstern, 1953) and the other based on a risk-return trade-off 

(risk-return models) (Sarin & Weber, 1993; Weber & Johnson, 2009).  

To be superior to other models, a better model should, in the best case, explain behavioral 

and neural data better than the other models. Value- and choice predictions of both classes 
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of models are, however, usually highly consistent with each other (Bossaerts, et al., 2009; 

d'Acremont & Bossaerts, 2008). In this case fMRI data can serve as a tiebreaker, because 

they provide additional insight into the neurobiological processes that sub-serve the 

cognitive processes, which ultimately lead to decisions. 

Recent research has found neural support for both classes of models. Some studies found 

representations of magnitudes and probabilities (supporting utility-based models) (e.g., 

Knutson, et al., 2005) whereas others found representations of risk and return (supporting 

risk-return models) (e.g., Preuschoff, et al., 2006; Tobler, et al., 2009). It has to be 

emphasized, however, that representations of magnitudes and probabilities, could also be 

attributed to the return component of risk-return models, as they form the (subjective) 

expected return of a choice option. But all of these studies used gambles with discrete 

outcome distributions. In investment decisions, however, outcomes are usually 

continuously distributed. Consequently, I investigated in Project II which class of models 

is better able to describe the underlying neural processes in this case. 

By showing (a) that risk-return models can explain choices behaviorally and (b) that the 

components of risk-return models (value, risk, and risk attitude) are represented in the 

brain during choices, I provide evidence that risk-return models describe the neural 

processes underlying investment decisions well. Most importantly, the observed 

correlation between risk and brain activity in the aINS during choices supports risk-return 

models more than utility-based models because risk is an explicit component of risk-return 

models but not of the utility-based models. But this finding does not generally speak 

against utility-based models which were shown to be biologically plausible in the case of 

simple gambles (e.g., Tom, et al., 2007). In contrast, it remains possible that both classes of 

models are able to describe the processes underlying risky decision making.  

One way to reconcile this apparent conflict is to assume that the return component of risk-

return models follows a function similar to the expected utility in the framework of EUT or 

the value in the framework of PT. Another possibility is to associate both classes of models 

with certain types of decisions, environments, or decision contexts in which different 

strategies are appropriate. One criterion by which different models can be assigned to 

different types of decisions is the amount of information processing required by each. 

Individuals are limited in their processing capacity and therefore need to be selective in 

how to use information and under what conditions (Weber & Johnson, 2009). If one 

assumes that the return component of risk-return models does not follow a function like in 
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EUT or PT, but is computed simply as the mean of all possible returns of the choice option, 

the amount of required computations stays constant in risk-return models (calculation of 

risk, return, and value). In contrast, it increases with the amount of outcome-probability 

pairs in EUT and PT. That is, in EUT and PT each outcome and each probability (in the 

case of PT) first needs to be transformed before they are combined to derive the value of a 

choice option.  

Thus, our findings indicate that the underlying processes of risky decision making might 

change depending on the complexity of the decision problem. The more complex a 

decision problem, the more likely it is that individuals use strategies like the risk-return 

trade-off or simple heuristics (e.g., Gigerenzer, Todd, & ABC Research Group, 1999, for 

an overview), which limit the amount of information processing. 

 

6.4. The correlative triad of economic decision making, dopaminergic and 

serotoninergic neuromodulation, and aging 

The dopaminergic system and the serotoninergic system interact in value-based decision 

making like decision making under risk as well as in reward-based learning. Both are 

known to influence reward, risk, and delay of reward, and undergo significant changes 

during the adult lifespan. These changes are paralleled by changes in economic behavior, 

specifically in risk taking, delay discounting, and reward-based learning. The 

neuroeconomics approach has already helped to identify age-related differences in 

activation patterns associated with reward processing, indicating that older adults have 

problems forming correct stimulus reward associations (Cox, Aizenstein, & Fiez, 2008; 

Marschner, et al., 2005; Schott, et al., 2007). One reason for these problems might be a 

higher temporal variability in the BOLD signal, which has been shown to mediate age-

related suboptimal risk-taking in the case of the VST (Samanez-Larkin, Kuhnen, Yoo, & 

Knutson, 2010). Importantly, one reason for higher temporal variability in the BOLD 

signal could be lower levels of dopamine expression in dopamine-sensitive brain regions 

such as the NACC or the prefrontal cortex. This notion is based on the more general 

hypothesis that dopamine influences the signal-to-noise ratio of information processing, 

thereby influencing the distinctiveness of representations in the brain and ultimately 

performance (Li, et al., 2001). 
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Given the known relationships between reward, risk, and delay of reward and dopamine 

and serotonin on the one hand and dopamine and serotonin with aging on the other hand, it 

can be hypothesized that the observed age-related changes in reward processing are caused 

by declines in the dopaminergic and serotoninergic systems. A recent study found support 

for this view.  

Consequently, I propose in Project III, where I review the evidence described above, a 

triadic relationship between economic decision making, dopaminergic and serotoninergic 

neuromodulation, and aging. To date however, no study took the full triade into account to 

fully discover the underlying mechanisms. Thus, future research should apply paradigms 

that include age differences as well as other individual differences that affect the 

functionality of the relevant transmitter systems. 

Currently, there are two complementary approaches to investigate effects of 

neuromodulation on cognition in general and on decision making in particular: 

pharmacological intervention and genetics. In the case of a pharmacological intervention, 

one group of subjects is given a drug that increases or decreases dopamine or serotonin 

availability whereas another group receives a placebo, leaving availability unchanged. In 

case of genetics studies, subjects are chosen according to a genetic polymorphism that is 

known to influence the level of dopamine or serotonin (e.g., the catechol-O-

methyltransferase Val158Met polymorphism). But one should note that the effects are much 

stronger for pharmacological interventions, and that individuals that have lower levels of 

dopamine or serotonin due to a genetic polymorphism might already have compensated for 

this difference (e.g., by recruiting additional brain resources).  

Most studies have, thus, only included one of these two approaches. A few exceptions took 

either a pharmacoimaging approach (Mattay, et al., 2003) or a behavioral genetic age 

comparative approach (Nagel, et al., 2008), which allowed direct investigations of the 

effects of genetic-based and age-related differences in neuromodulation and their 

interactions on cognitive and brain functions (Lindenberger, et al., 2008). Along these 

lines, future combined age comparative pharmacoimaging studies could shed light on the 

triadic relationship between (a) economic decision-making, (b) dopaminergic and 

serotoninergic neuromodulation, and (c) aging.  
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6.5. An integrated neural model of risky decision making 

Several studies to date have investigated the neural foundations of risk processing and 

risky decision making in humans. The results of these studies reveal that both are highly 

complex processes that (a) are influenced by several factors and (b) recruit a network of 

different brain regions. Studies using simple gambles with discrete outcome distributions 

usually identified representations of reward magnitude and probability in VST, VMPFC, 

and VLPFC (Knutson, et al., 2001; Knutson, et al., 2005; Tobler, et al., 2007). Both were, 

however, found to be nonlinearly represented in the VST. The decrease of ventral striatal 

activity for losses is steeper than the increase in activity for gains, reflecting loss aversion 

(Tom, et al., 2007). Further probability-related activity in the VST follows an S-shaped 

function, overweighting probabilities near zero and underweighting probabilities near one 

(Hsu, et al., 2009). Similarly, the VST, VMPFC, and VLPFC all code the expected and 

subjective value of simple gambles (Tobler, et al., 2007; Tom, et al., 2007). In addition to 

VST, VMPFC, and VLPFC, also the DLPFC might play an important role in valuing 

choice options. Compared with a control condition, application of repetitive transcranial 

magnetic stimulation (rTMS) to the right DLPFC decreases values assigned to the stimuli 

(Camus, et al., 2009).  

In Project II I did not find any representations of expected or subjective value in VST or 

VMPFC in the case of more complex gambles with continuous outcome distributions. But 

I found representations of expected and subjective value in VLPFC, DLPFC, and DMPFC, 

suggesting that the underlying processes of risky decision making at least partly change if 

individuals have to deal with abstract in contrast to concrete reward information. They 

further stress the important role of DLPFC and VLPFC in value computations.  

Although risk is not directly implicated in utility-based models of risky decision making 

several studies found representations of risk during decision making. In Project I, I 

integrated this evidence and identified the neural underpinnings of risk processing during 

decision making independent of complexity. I found neural representations of risk 

especially in aINS, Thalamus, DLPFC, DMPFC, and parietal cortex.  

Together, these findings suggest the following neural mechanism of risky decision making 

(cf. Fig. 3): When individuals observe a risky stimulus such as a gamble with uncertain 

outcomes or an investment option, two parallel processes are induced, a return process and 

a risk process. Both contain two sub-processes, an emotional and a cognitive process. 

During emotional return processing VST and VMPFC reflect both the magnitude and the 
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probability of potential outcomes. These are, however, not necessarily linearly represented 

in VST and VMPFC, but could, for example, differ between gains and losses or follow an 

S-shaped function of probabilities. VST and VMPFC also integrate the information 

regarding magnitude and probability and form an emotional estimate of the rewarding 

potential of the stimulus. The DMPFC evaluates the return of the stimulus on a cognitive 

level, for instance calculating the expected value of potential outcomes, thereby using the 

information from the VST and the VMPFC as a starting point. During this process 

information is repeatedly exchanged between DMPFC on the one hand and VST and 

VMPFC on the other hand, updating the emotional reward expectation, which in turn 

informs the cognitive return computation. If the risky stimulus is highly complex, as for 

example in the case of continuous outcome distributions, the brain is unable to represent all 

possible magnitudes and probabilities of outcomes. Return processing is in this case 

performed predominantly on the cognitive level in the DMPFC, thereby only roughly 

estimating the expected return in contrast to an exact computation. 

Risk processing is performed by a similar interaction of emotional and cognitive processes. 

On the emotional level, activity in the aINS initially serves as a fast and rough estimate for 

the potential of the stimulus to result in an unwanted outcome (e.g., a loss). At the same 

time, this signal prepares the organism to take action to avoid the unwanted outcome. 

Activity in the Thalamus could thereby reflect anticipation of regret in response to possible 

outcomes of the risky stimulus. The DMPFC evaluates the risk of the stimulus on a 

cognitive level, for instance computing the variance of outcomes or the probability of a 

loss, thereby using the information from the aINS and the Thalamus as a first estimate for 

the riskiness of the stimulus. During this process information is also repeatedly exchanged 

between DMPFC on the one hand and aINS and Thalamus on the other hand, updating the 

emotional response to the stimulus, which in turn informs the cognitive processing of risk.  
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Figure 3. A potential mechanism of risky decision making. A risky stimulus such as a gamble with 

uncertain outcomes or a choice menu with different financial investments is evaluated by trading off 

return and risk. Both, during risk processing and during return processing, the risky stimulus is 

evaluated on an emotional level as well as a cognitive level. These two levels interact to determine the 

return and the risk of the stimulus. Return and risk are then traded off against each other to determine 

the value of the risky stimulus. A decision is formed by comparing the values of different choice 

alternatives. 

 

After return and risk processing have concluded, risk and return are traded off against each 

other in the DLPFC, VLPFC, and parietal cortex to determine the value of a choice option. 

A decision is then made by comparing the values of different choice alternatives. The 

described process follows the general idea of a risk-return trade-off and is compatible with 

the general approach of the risk-as-feelings hypothesis (Loewenstein, et al., 2001). It 

reflects, however, only the level of brain activity. As described in section 2.5 the 

neurotransmitters dopamine and serotonin were already shown to influence return (reward) 

and risk processing. The exact relationship between levels of dopamine and serotonin and 

changes in activity in certain brain areas remains, however, unclear. Future studies should 

therefore directly target this obvious lack of research.  
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7. Conclusion 

The results of this dissertation contribute to the existing literature on risk processing and 

risky decision making by suggesting that: 

• The aINS plays a central role in risk processing, indicating that risk processing is 

influenced by emotions. 

• The emotional influence on risk processing is especially high when losses are 

possible. 

• The complexity of the choice problem likely influences the decision strategy, 

favoring risk-return models in more complex situations compared to utility-based 

models. 

• There might be a triadic relationship between economic decision making, 

dopaminergic and serotoninergic neuromodulation, and aging. 
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Appendix 

Relationship between Mean-Variance Model and Expected Utility Theory 

In certain conditions the MVM and the EUT become equivalent. For instance, if the utility 

function is quadratic, 

u(x) = ax
2
+ bx + c  

the expected utility can be written in the form of the MVM 

EU X( ) = u µ( ) + a !" 2 , 

where µ and !2 are the expected value and variance of the gamble X. 

In general, utility functions can always be approximated by means of a Taylor series 

expansion 

u(x) ! u µ( ) + "u µ( ) x # µ( ) +
1

2
""u x # µ( )

2
, 

where u´and u´´denote the first and the second derivative of u. Taking the expected value 

of the utility results in 

EU X( ) = u µ( ) +
1

2
!!u µ( ) "# 2 , 

which has the form of a MVM. As such valuations from EUT can be always approximated 

by the MVM. 
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In our everyday life, we often have to make decisions with risky consequences, such as choosing a restaurant for dinner or choosing a form
of retirement saving. To date, however, little is known about how the brain processes risk. Recent conceptualizations of risky decision
making highlight that it is generally associated with emotions but do not specify how emotions are implicated in risk processing.
Moreover, little is known about risk processing in non-choice situations and how potential losses influence risk processing. Here we used
quantitative meta-analyses of functional magnetic resonance imaging experiments on risk processing in the brain to investigate (1) how
risk processing is influenced by emotions, (2) how it differs between choice and non-choice situations, and (3) how it changes when losses
are possible. By showing that, over a range of experiments and paradigms, risk is consistently represented in the anterior insula, a brain
region known to process aversive emotions such as anxiety, disappointment, or regret, we provide evidence that risk processing is
influenced by emotions. Furthermore, our results show risk-related activity in the dorsolateral prefrontal cortex and the parietal cortex
in choice situations but not in situations in which no choice is involved or a choice has already been made. The anterior insula was
predominantly active in the presence of potential losses, indicating that potential losses modulate risk processing.

Introduction
Many decisions in our everyday life, such as choosing a restaurant
for dinner or choosing a form of retirement saving, can be de-
scribed as decisions under risk. Decision sciences such as psychol-
ogy and economics usually define risk as the uncertainty about
which of several possible outcomes will occur, whereby the prob-
ability of each possible outcome is known (Knight, 1921). In
contrast, ambiguity describes a form of uncertainty in which
probabilities and/or possible outcomes are unknown.

Traditional models of risky decision making implicitly assume
that the characteristics of a choice option (e.g., magnitude of
possible outcomes) are cognitively evaluated. In the framework
of expected utility theory, people’s willingness to take risk de-
pends on the concavity of the utility function. In prospect theory,
it additionally depends on the shape of the probability weighting
function (for review, see Bossaerts et al., 2009; Fox and Poldrack,
2009).

Recent approaches, however, highlighted the role of emotions
in decision making. Based on psychological and neuroscientific
research, theories such as the affect heuristic (Slovic et al., 2004),
the risk-as-feelings hypothesis (Loewenstein et al., 2001), and the
somatic marker hypothesis (Damasio et al., 1991) propose that
emotions interact with a cognitive evaluation of the choice prob-
lem to guide behavior. To date, however, it remains unclear how
risk processing is influenced by emotions.

Traditional models of risky decision making further often as-
sume that risk is a context-independent function of the variability
of possible outcomes (e.g., variance) (Markowitz, 1952). Re-
search on the perception of risk, however, indicates that risk per-
ception is neither context independent nor a pure measure of
outcome variability (Weber et al., 2002). One can distinguish risk
processing during or before choice (decision risk) and risk pro-
cessing after or without a choice (anticipation risk), with the
crucial difference that risk information is likely used to guide
choices in the context of decision risk but not in the context of
anticipation risk. Furthermore, individuals’ judgments of per-
ceived risk are more sensitive to downside variability and losses
than to upside variability, indicating that risk might be processed
differently if losses are possible (Weber et al., 1992).

Thus, three main questions regarding risk processing remain
unresolved, namely (1) how risk processing is generally influ-
enced by emotions, (2) whether the neural processing of risk is
context dependent, differing between decision making and pure
outcome anticipation, and (3) whether risk is processed differ-
ently in the brain when individuals are faced with potential losses.

Because single studies use specific tasks, their ability to answer
such general questions is limited. In contrast, quantitative meta-
analyses provide unbiased, objective measures of brain function-
ing and provide a useful approach to address such questions.
Here, we performed quantitative voxelwise meta-analyses on
neural representations of risk using the activation likelihood es-
timation method (ALE) (Turkeltaub et al., 2002; Laird et al.,
2005). Importantly, ALE also allows a comparison of different
task conditions (e.g., decision and anticipation) that were not
contrasted in the same study.

Materials and Methods
Study selection. To identify studies investigating the neural processing of
risk, we performed a literature search in two databases, namely Web of
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Science and Medline. Both databases were searched with the following
logic conjunction of keywords: (“risk” OR “uncertainty”) AND (“deci-
sion making” OR “choice” OR “anticipation”) AND (“fMRI” OR “neu-
roimaging”). The search (performed on November 1, 2009) identified
285 hits. We further identified recent review papers about risky decision
making that explicitly discuss the issue of risk processing in the brain
(Knutson and Bossaerts, 2007; Platt and Huettel, 2008; Rangel et al.,
2008; Rushworth and Behrens, 2008; Mohr et al., 2010b). All studies
found through the database search and those that were cited by one of
these review papers underwent the study selection process. The full se-
lection process included a reading of introduction and methods part of
each article by at least one of the three authors, followed by application of
the following inclusion criteria: (1) functional magnetic resonance im-
aging (fMRI) study involving healthy young adult human participants;
(2) imaging data acquired over the whole brain; (3) availability of peak
activation coordinates from group activation maps; (4) outcomes of the
task are at least partly uncertain; (5) available information for partici-
pants regarding outcome probabilities; and (6) outcomes of the task are
independent of the behavior of others.

The inclusion criteria were chosen to ensure that our results could be
generalized to the population of young healthy adult humans. Several
studies on cognitive aging showed that cognitive changes across the adult
lifespan are paralleled by structural and functional changes in the brain
(Cabeza et al., 2005; Mohr et al., 2010b). Furthermore, older adults often
show activations that are qualitatively different from those of young
adults (Park et al., 2004). Therefore we included only studies that inves-
tigated risk processing in young healthy adults (criterion 1).

Driven by specific functional hypotheses, some neuroimaging studies
do not acquire images of the whole brain but only of parts of the brain,
allowing a higher image resolution. These images, however, impede the
detection of nonhypothesized activations in brain regions that were not
scanned. That is why criterion 2 excludes studies that did not scan the
whole brain.

Because the ALE approach is based on activation foci (see below), we
only included studies that report peak activation coordinates of group
activation maps (criterion 3).

Because risk is usually contrasted with ambiguity—a form of uncer-
tainty in which probabilities are unknown—we included only studies in
which outcomes are uncertain (criterion 4) and probabilities are known,
learned, or could be estimated (criterion 5). We further limited the in-
cluded studies/analyses to those in which outcomes are independent of
the behavior of others (criterion 6), because these might be confounded
with other effects of, e.g., trust or reciprocity.

Because of non-independence considerations, we set an additional
inclusion criterion on the level of analyses. If two risk analyses (e.g.,
contrast and correlation) were performed on the same dataset (and same
time window), we included only the more specific risk analysis (correla-
tion) because it reflects risk processing likely better than the less specific
analysis (contrast).

Thirty studies met the inclusion criteria (Table 1) (supplemental Table
S1, available online on www.jneurosci.org), representing 232 risk-related
foci. Fifteen studies (101 foci) compared conditions, whereas 15 studies
(131 foci) correlated risk with brain activity. Twenty-one studies (172
foci) investigated decision risk, and 10 studies (60 foci) investigated an-
ticipation risk (one study investigated both). We further categorized
studies according to potential outcomes. Eleven studies (101 foci) inves-
tigated risk in the context of only gains, whereas in 11 (92 foci) studies
gains and losses were possible outcomes. For two studies (28 foci), the
categorization was ambiguous because they investigated objective gains
but included an obvious reference point that could lead to the perception
of some positive outcomes as losses (with regard to the reference point).
The tasks of six studies (39 foci) did not include monetary gains or losses
(e.g., only right/wrong as outcomes).

ALE meta-analysis. In contrast to meta-analyses in behavioral sciences
that aim to estimate the true effect size for an effect, fMRI meta-analyses
aim to identify networks of brain regions implicated in certain cognitive
processes (Turkeltaub et al., 2002). The focal question of fMRI meta-
analyses is thus about the location of brain activity associated with spe-
cific cognitive processes rather than about the effect size of the

relationship. Because of this difference in research questions, new meta-
analytic techniques were developed, which are adapted to the format of
fMRI results. Specifically, whereas the key results of behavioral studies
are test statistics ( p, t, or z score) and effect sizes, test statistics in fMRI
studies usually have meaning only together with information about the
location of the effect, often given by the voxel with the highest test statis-
tic. One frequently used meta-analytic technique that exploits this loca-
tion information is ALE.

ALE is a quantitative meta-analysis technique that compares activa-
tion likelihoods calculated from observed activation foci with a null dis-
tribution of randomly generated activation likelihoods. In ALE, peak
activation coordinates from a number of studies investigating similar
effects are pooled (Chein et al., 2002; Turkeltaub et al., 2002; Laird et al.,
2005). These coordinates are generally published relative to Talairach or
Montreal Neurological Institute (MNI) space and therefore need to be
spatially renormalized to a single template.

The resulting coordinates are used to generate “activation likelihoods”
for each voxel in the brain. For each focus, ALE scores each voxel as a
function of its distance from that focus using a three-dimensional Gauss-
ian probability density function centered at the coordinates of the focus.
As a result, ALE gets vectors of values for each voxel representing prob-
abilities to belong to specific foci. These values are assumed to be inde-
pendent (the existence of one focus does not give information about
whether another focus will occur) and are combined with the addition
rule for log-probabilities, yielding so-called ALE statistics. The ALE sta-
tistic represents the probability of a certain voxel to belong to any of the
included foci.

To test for significance, the ALE statistic in each voxel is compared
with a null distribution, generated via repeatedly calculating ALE statis-
tics from randomly placed activation foci (same number as included in
the study). This null distribution is then used to estimate the threshold

Table 1. Included risk studies

No. of
risk-related foci

Context Analysis Domain

DR AR Corr Contr G G ! L O

Volz et al. (2004) 5 x x x
Volz et al. (2003) 7 x x x
Preuschoff et al. (2006) 22 x x x
Paulus et al. (2003) 5 x x x
Paulus et al. (2001) 10 x x x
Preuschoff et al. (2008) 16 x x x
Critchley et al. (2001) 4 x x x
Kuhnen and Knutson (2005) 2 x x x
Matthews et al. (2004) 4 x x x
Tobler et al. (2006) 1 x x x
Huettel et al. (2005) 10 x x x
Hsu et al. (2005) 12 x x x
Dreher et al. (2006) 4 x x x
Huettel (2006) 15 x x x
Grinband et al. (2006) 8 x x x
Behrens et al. (2007) 1 x x x
Rolls et al. (2008) 1 x x x
Yoshida and Ishii (2006) 3 x x x
Smith et al. (2009) 2 x x x
Weber and Huettel (2008) 16 x x x
Bach et al. (2009) 2 x x x
Blackwood et al. (2004) 6 x x x
Elliott et al. (1999) 12 x x x
Engelmann and Tamir

(2009)
32 x (25)a x (7)a x x

Labudda et al. (2008) 6 x x x
Lee et al. (2008) 3 x x x
van Leijenhorst et al. (2006) 16 x x x
Xue et al. (2009) 3 x x x
Christopoulos et al. (2009) 2 x x x
Mohr et al. (2010a) 2 x x x
Number of foci 232 172 60 131 101 101 92 67

DR, Decision risk; AR, anticipation risk; Corr, correlation; Contr, contrast; G, gains; G ! L, gains and losses; O, other.
aEngelmann and Tamir (2009) investigated risk in both contexts.
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resulting for a given false discovery rate (FDR). Finally, a cluster thresh-
old (minimum spatial extent of significant clusters) can be applied.

The ALE meta-analysis can also be used to contrast two independent
meta-analyses. In this case, the ALE statistic in each voxel is calculated as
the difference in ALE values between the two meta-analyses. Whereas

ALE values can only be positive in a single ALE
meta-analysis, they can be negative as well in a
contrast of ALE meta-analyses. The null distri-
bution is calculated accordingly via calculating
the differences between ALE statistics of ran-
domly generated foci (again, same number of
foci as included in the respective studies).
Additional steps of the analysis equal the pro-
cedure used for a single ALE meta-analysis de-
scribed above.

The ALE procedure was recently improved
in that activation foci are now smoothed only
in gray matter and in that group statistics are
calculated as random effects, so that results can
now be generalized beyond the studies in the
sample (Eickhoff, 2009). Because this ap-
proach does not yet allow contrasting two sets
of foci, we applied the standard approach in
this study. Still, we report the results of each
single meta-analysis using the new approach
in the supplemental data (available at www.
jneurosci.org as supplemental material) and
show that they do not differ qualitatively from
the results obtained with the standard ap-
proach. Actually, most clusters of significant
foci were larger using the new approach (see
supplemental data, available at www.jneurosci.
org as supplemental material).

Application of the ALE meta-analysis. We
first transformed MNI coordinates into Ta-
lairach space using the icbm2tal (Lancaster et
al., 2007) transformation implemented in the
GingerALE toolbox (http://brainmap.org; Re-
search Imaging Center of the University of
Texas Health Science Center, San Antonio,
Texas). Second, we calculated different ALE
meta-analyses with GingerALE. The ALE sta-
tistics in each of these meta-analyses is calcu-
lated by modeling each equally weighted
activation peak using a three-dimensional
Gaussian probability density function with a
full-width half-maximum that is calculated as
the average smoothing kernel of the included
studies weighted with the number of foci for
each study. To test for significance, we gener-
ated null distributions from 10,000 permuta-
tions for each meta-analysis.

The first meta-analysis included all risk-
related foci (risk analysis), independent of the
context. Additionally, we divided risk-related
foci in two groups according to their context
(decision risk vs anticipation risk) and con-
ducted separate meta-analyses for each group
of foci (decision risk analysis and anticipation
risk analysis). A contrast of these two meta-
analyses identified regions that are more active
in one context than in the other context (deci-
sion risk vs anticipation risk analysis). Simi-
larly, we divided risk-related foci into two
different groups according to the presence of
losses (gains only and gains ! losses, respec-
tively). A third group of foci that represented
neither gains nor gains ! losses (but, e.g., right
vs wrong or pain) was omitted from these
analyses. To identify the effect of losses on risk

processing, we contrasted the gains foci with the gains ! losses foci
(gains ! losses vs gains only analysis). One has to note, however, that
the two comparisons of groups of foci (decision risk vs anticipation
risk and gains ! losses vs gains, respectively) were not independent

Figure 1. Neural representations of risk. Results from an ALE meta-analysis on risk independent of the context (decision risk or
anticipation risk) and the domain (gains! losses or only gains in which risk was investigated). Activated clusters included bilateral
aINS, DMPFC, and thalamus (FDR of "0.05; cluster size of #200 mm 3).

Figure 2. Neural representations of decision risk and anticipation risk. A, Risk activated bilateral aINS and DMPFC in both a
meta-analysis on decision risk and a meta-analysis on anticipation risk (although there is in all cases only a small overlap). Right
DLPFC and right parietal cortex (both not displayed) were solely activated by decision risk. B, Right aINS, right DLPFC (not dis-
played), DMPFC, and right parietal cortex (not displayed) were more likely to be activated by decision risk compared with antici-
pation risk in a meta-analysis on the contrast between the two contexts in which risk was investigated. Left aINS, in contrast, was
more likely to be activated by anticipation risk.
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(Table 1). Most foci from the gains group were
investigated during decision making (and vice
versa), whereas most foci from the gains !
losses group also belong to the set of foci for
anticipation risk.

Results
In the risk analysis, we included all risk-
related foci from all studies (232 foci)
independent of the specific context (deci-
sion context vs anticipation context) and
domain (gains ! losses vs gains). We
found representations of risk in bilateral
anterior insula (aINS), thalamus, dorso-
medial prefrontal cortex (DMPFC), right
dorsolateral prefrontal cortex (DLPFC),
right parietal cortex, left precentral gyrus,
and occipital cortex (supplemental Table
S2, available at www.jneurosci.org as sup-
plemental material) (Fig. 1).

To analyze the differences in represen-
tation of decision risk and anticipation
risk, we conducted separate meta-analyses
of studies involving these types of risk.
The goal was to identify common neural
substrates by using a conjunction analysis
and to identify dissociations by contrast-
ing the results of the meta-analyses. Both
decision risk and anticipation risk acti-
vated bilateral aINS, DMPFC, and thala-
mus (supplemental Table S3, S4, available
at www.jneurosci.org as supplemental
material) (Fig. 2A). Significant clusters of
the two contexts showed, however, only
small overlap in these regions or did not
overlap at all (thalamus).

To investigate activations associated
only with decision or anticipation risk, re-
spectively, we conducted an ALE meta-
analysis on the contrast between decision risk and anticipation
risk (decision risk vs anticipation risk analysis). Right aINS,
DMPFC, DLPFC, parietal cortex, striatum, and occipital cortex
were significantly more likely to be activated by decision risk,
whereas left aINS and left superior temporal gyrus (STG) showed
significantly higher ALE values for anticipation risk (supplemen-
tal Table S5, available at www.jneurosci.org as supplemental ma-
terial) (Fig. 2B).

Because tasks that investigated neural representations of risk
sometimes only included gains as possible outcomes and others
also included losses, we formed two groups of foci according to
this criterion. The goal of these analyses was to investigate
whether risk is processed differently if subjects could lose money.
Here we again conducted separate meta-analyses for the two
groups of foci to identify common neural substrates and con-
trasted the results of the meta-analyses to identify significant dif-
ferences. We found risk-related activations in both analyses in
right aINS, DMPFC, and thalamus (supplemental Tables S6, S7,
available at www.jneurosci.org as supplemental material) (Fig.
3A). Only the cluster in right aINS, however, showed an overlap
between the two analyses. When contrasting the two sets of foci,
we found that left aINS, left STG, and left precentral gyrus were
more likely to be activated when losses were possible, whereas
DMPFC, DLPFC, right parietal cortex, thalamus, and occipital

cortex were more likely to be activated if only gains were possible
(supplemental Table S8, available at www.jneurosci.org as sup-
plemental material) (Fig. 3B).

Discussion
In our everyday life, we often have to make decisions with risky
consequences. In fact, the outcome of a specific action is rarely
certain. That is why risk has become an important concept in
decision sciences. In the present study, we investigated three
main questions regarding risk processing, namely (1) how risk
processing is influenced by emotions, (2) whether the neural pro-
cessing of risk is context-dependent, differing between decision
making and pure outcome anticipation, and (3) whether risk is
processed differently in the brain when individuals are faced with
potential losses.

To answer these questions, we conducted quantitative
coordinate-based meta-analyses on studies investigating neural
representations of risk. By using the ALE approach (Laird et al.,
2005), we can base our argumentation not only on a single study
or a qualitative view on several studies but on a quantitative in-
tegration of 30 studies investigating risk. Although the ALE ap-
proach does not take the cluster size and significance-level ( p, t,
or z score) of an activated cluster into account, it offers the op-
portunity to locate an effect precisely, which is especially impor-

Figure 3. Domain-specific neural representations of risk. A, Risk investigated in tasks that included both the gain and the loss
domain activated bilateral aINS, DMPFC, and thalamus. In contrast, risk representations investigated only in the gain domain only
include right aINS and DMPFC. B, Left aINS was more likely to be activated if both gains and losses were possible outcomes, whereas
DMPFC was more likely to be activated if only gains were possible.
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tant in the context of large brain regions that likely consist of
subregions serving different functions (e.g., medial prefrontal
cortex) (Venkatraman et al., 2009a). Note that an alternative ap-
proach for fMRI meta-analyses could summarize studies based
on effect sizes (and their SEs). This approach would have the
advantage that small effects that remained undetected in single
studies could be discovered as being significant. To our knowl-
edge, however, no fMRI meta-analysis based on effect sizes has
been published to date. One reason for this is that fMRI meta-
analyses are only feasible, when whole brain maps of these statis-
tics are available. When effect sizes are reported only for
significant activations (as is currently the standard), effect sizes
for all other areas remain unknown, and there is currently no
method to estimate them with any confidence (Costafreda,
2009). Hence, the current reporting format of fMRI studies does
not allow performing (effect-size based) meta-analyses that could
detect weak but stable effects that were not published because of a
publication bias for results with strong effects (that is inherent to
fMRI studies with often small sample sizes). Note, however, that
our identification of the thalamus as an important part of the risk
processing network shows that coordinate-based meta-analyses
allow identifying task-relevant brain regions that are activated in
many studies and yet have remained unnoticed before.

We identified a network including bilateral aINS, dorsome-
dial thalamus, posterior thalamus, DMPFC, right DLPFC, and
right parietal cortex for processing risk. The aINS was active for
both decision risk and anticipation risk but predominantly when
individuals were faced with potential losses. The aINS is regarded
as a key brain region in emotion processing and arousal (Quartz,
2009) but also in the mapping of internal bodily states (Critchley,
2005; Craig, 2009). Several studies related activity in the aINS
especially to aversive emotions such as fear, sadness, disgust, or
anxiety (for review, see Phan et al., 2002; Paulus and Stein, 2006).
Thus, our results clearly support the hypothesis that aversive
emotions are implicated in risk processing independent of the

context but predominantly (not solely) when individuals are
faced with potential losses.

Standing alone, this conclusion is based on reverse inference
(Poldrack, 2006) and needs to be qualified because the aINS is
also active in a variety of tasks not explicitly related to emotions
(Yang et al., 2010). Still, additional evidence comes from behav-
ioral research on the influence of emotions on decision making.
Several studies demonstrated that incidental emotions (i.e., emo-
tions not related to the decision problem) significantly influence
judgment and decision making. Risk judgments, for example,
change when individuals perceive fear or anger (Lerner and Keltner,
2000).

The thalamus is one of the most ignored brain regions in
functional neuroimaging. Although most of the studies included
in our meta-analyses found risk representations in the thalamus,
none of the studies discussed them. We found representations of
risk in posterior and dorsomedial thalamus. The posterior thala-
mus was found to be active in the processing of emotions such as
regret (Chandrasekhar et al., 2008) and showed stronger activity
for losses compared with gains (Xu et al., 2009). Furthermore, the
posterior thalamus is connected to the parietal cortex, which we
also found to be active in risk processing. The dorsomedial thal-
amus is part of the striatal loop and reflects information about
reward magnitudes (Glimcher and Lau, 2005). Interestingly, ac-
tivity in the dorsomedial thalamus covaries with the magnitude
of the smaller of two possible rewards (Minamimoto et al., 2009).
The dorsomedial thalamus is also connected with the prefrontal
cortex, a region that is consistently implicated in risk processing.
Thus, both parts of the thalamus likely process important aspects
of the risky stimulus and relay them to other brain regions of the
risk processing network.

The DMPFC was active during decision risk and anticipation
risk as well as in both domains (gains ! losses and gains). It was,
however, more likely to be active during decision risk compared
with anticipation risk. Activity in the DMPFC was found in a

Figure 4. A potential mechanism of risky decision making. A risky stimulus such as a gamble with uncertain outcomes or a choice menu with different financial investments is initially evaluated
on an emotional level. Activity in the aINS thereby serves as an estimate for the potential of the risky stimulus to result in an unwanted outcome, whereas the thalamus reflects important aspects
of potential outcomes (e.g., their variability). At the cognitive level, the risky stimulus is processed in the DMPFC. Both parts of risk processing (emotional and cognitive) inform the actual decision
process performed in DLPFC and parietal cortex. In situations, in which no decision has to be made, such as in the bingo game, the process concludes after emotional and cognitive risk processing.
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variety of different tasks related to the cognitive processing of
stimuli. These studies included investigations of response con-
flict, error monitoring, decision making, as well as strategy selec-
tion (for review, see Ridderinkhof et al., 2004; Venkatraman et al.,
2009b). As recently reported, some of these functions can be
attributed to subregions of the DMPFC (Venkatraman et al.,
2009a). The cluster that we identified overlaps with the subre-
gions for decision control and strategy control in the study by
Venkatraman et al. (2009a). Because taking risks can be seen as
acting against the dominant strategy of avoiding risks in risk-
averse individuals, our findings are consistent with those previ-
ous findings about neural representations of strategy control.

We further found that both the right DLPFC and parietal
cortex were active for decision risk but not for anticipation risk.
Both brain regions were usually observed in the context of deci-
sion making (for review, see Heekeren et al., 2008). In the context
of reward-based decision making, activity in the right DLPFC is
related to valuing choice options (Camus et al., 2009; Mohr et al.,
2010a). These results indicate that DLPFC and parietal cortex do
not play a general role in risk processing but a specific role in risk
processing during decision making.

In summary, our finding of insula activity supports the hy-
pothesis that emotions are implicated in risk processing. The
differential activation patterns for decision risk versus anticipa-
tion risk and for the gain versus gain ! loss domain suggest that
risk processing on the neural level is context dependent and spe-
cifically influenced by potential losses (note, however, that con-
text and domain are not fully independent in the fMRI studies we
found).

Based on the results of our meta-analyses, we propose the
following account of a risk-processing mechanism (Fig. 4): when
individuals observe a risky stimulus such as a gamble with uncer-
tain outcomes or an investment option, two parallel and recipro-
cal risk processes are induced, an emotional and a cognitive risk
process. On the emotional level, activity in the aINS initially
serves as a fast and rough estimate for the potential of the stimu-
lus to result in an unwanted outcome (e.g., a loss). At the same
time, this signal prepares the organism to take action to avoid the
unwanted outcome. Activity in the thalamus could thereby re-
flect an anticipation of regret in response to possible outcomes of
the risky stimulus. The DMPFC evaluates the risk of the stimulus
on a cognitive level, for instance, computing the variance of out-
comes or the probability of a loss, thereby using the information
from the aINS and the thalamus as a first estimate for the riskiness
of the stimulus. During this process, information is repeatedly
exchanged between DMPFC on the one hand and aINS and thal-
amus on the other hand, updating the emotional response to the
stimulus, which in turn informs the cognitive processing of risk.
If a decision has to be made, parietal cortex and DLPFC integrate
the risk information with other aspects of the stimulus (e.g., ex-
pected reward) and form the final decision. If no decision has to
be made, like in the bingo game, the process stops after risk pro-
cessing on the emotional and the cognitive level. The mechanism
proposed here is compatible with the general approach of the
risk-as-feelings hypothesis (Loewenstein et al., 2001). Note that
the temporal sequence of risk processing we propose cannot be
derived from our meta-analysis or fMRI data in general. EEG
and/or magnetoencephalographic experiments could shed light
on the temporal sequence of cortical risk processing. Moreover,
the suggested mechanism is based on results of experiments that
investigated risk processing in the presence of only gains or both
gains and losses. No study has so far investigated risk processing
specifically in the loss domain. Future research should target this

obvious lack of research and complete the picture of risk process-
ing for the loss domain.
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