Appendix I

Magnetic Susceptibilities of Rocks and Minerals

The following table is prepared using the maximum volume susceptibility values from the standard charts compiled by Clark and Emerson (1991) and Hunt et al. (1995).

Rock types	Maximum Volume
	Susceptibility (SI Units)
Igneous Rocks	
Andesite	0.17
Basalt	0.18
Dolerite	0.062
Diabase	0.16
Diorite	0.13
Gabbro	0.09
Norite	0.09
Dacite	0.05
Granite	0.05
Granodiorite/Tonalite	0.062
Peridotite	0.2
Quartz porphyries/Quartz-feldspar porphyries	0.00063
Pyroxenite/Hornblendite (Alaskan Type)	0.25
Rhyolite	0.038
Dunite	0.125
Trachyte/Syenite	0.051
Monzonite	0.1
Phonolite	0.0005
Spilites	0.0013
Avg. Igneous Rock	0.27
Avg. Acidic igneous rock (pegmatites)	0.082
Avg. Basic igneous rock (komatiites, tholeiite)	0.12

Sedimentary Rocks	
Clay	0.00025

Coal	0.000025
Silt/Carbonates	0.0012
Dolomite	0.00094
Limestone	0.025
Red sediments	0.0001
Sandstone	0.0209
Shale	0.0186
Tuffs	0.0012
Conglomerate/arkose/pelites	0.0012
Arenites/Breccia	0.0012
Avg. Sedimentary rock	0.05

Metamorphic Rocks	
Amphibolite	0.00075
Gneiss	0.025
Granulite	0.03
Acid granulite	0.03
Basic granulite	0.1
Phyllite	0.0016
Quartzite	0.0044
Schist	0.003
Serpentine	0.018
Slate	0.038
Marble	0.025
Metasediments	0.024
Migmatites	0.025
Charnockite (pyroxene granulite)	0.03
BIF (anisotropic) hematite rich (~7% magnetite)	0.25
Magnetite rich (>20% magnetite)	1.8
Magnetite Skarn	1.2
Avg. Metamorphic Rock	0.073
Magnetite $\sim 0.1 \%$	0.0034
~ 0.5 %	0.018
~ 1%	0.034
~ 5 %	0.175
~ 10 %	0.34
~ 20 %	0.72

Minerals	
Biotite	0.0029
Garnet	0.0027
Orthopyroxene	0.0018

Graphite	0.0002
Fayalite	0.0055
Olivine	0.0016
Magnetite	5.7

Appendix II

Continental crustal composition

The continental crustal composition is shown in the Table (II.A) and the Archean crustal composition in the Table (II.B) (Taylor and McLennan, 1985).

	Upper crust	Lower crust	Total crust	
SiO ₂	66.0 %	54.4 %	57.3 %	
TiO ₂	0.5 %	1.0 %	0.9 %	
Al ₂ O ₃	15.2 %	16.1 %	15.9 %	
FeO	4.5 %	10.6 %	9.1 %	
MgO	2.2 %	6.3 %	5.3 %	
CaO	4.2 %	8.5 %	7.4 %	
Na ₂ O	3.9 %	2.8 %	3.1 %	
K2O	3.4 %	0.34 %	1.1 %	

Table II.A

Table II.B

	Upper crust	Total crust	
SiO ₂	60.1 %	57.0 %	
TiO ₂	0.8 %	1.0 %	
Al ₂ O ₃	15.3 %	15.2 %	
FeO	8.0 %	9.6 %	
MgO	4.7 %	5.9 %	
CaO	6.2 %	7.3 %	
Na2O	3.3 %	3.0 %	
K ₂ O	1.8 %	0.9 %	

Appendix III

Susceptibility distribution for Cathaysian-Indian craton

The parameters used for deriving vertically integrated susceptibility model for the Cathaysian-Indian craton is shown in the following table. Tectonic map is shown in Figure (2.1) for the Cathaysian craton and in Figure (2.8) for the Indian craton.

Geological	GIS	Maximum	Stratigraphy	Reference
Region	(name)	Susceptibility	known to	
		(SI units)	depth of (km)	
		Arcl	hean	
East Qinling range	Qinlg	0.047		
Wutai district	Wutai	0.034	4.0	
Yinshan district	Yinsa	0.044		
Yanshan district	Yansa	0.037		Goodwin (1991)
Dabie uplift	Dabia	0.065	15.0	Goodwin (1991)
Shandong district	Shndg	0.023		
Liaoning and Jilin	Li-ji	0.023		
Tarim basin	Tarpa	0.045		
		Early Pro	oterozoic	
Wutai-Taihang	Wutae	0.020	16.3	
district				
Yinshan district	Yinse	0.050	6.0	Goodwin (1991)
Yanshan district	Yanse	0.034	4.65	
Tarim basin	Tarpe	0.010		
Songliao Massif	Smasf	0.045		Zhang et al. (1984)
		Mid Pro	terozoic	
Yanshan mountains	Yansm	0.006	9.8	
Western Henan	Henan	0.051	7.0	
Eastern border	Ebrdr	0.010	4.2	
Quruktagh	Quktg	0.004	6.0	Goodwin (1991)
Western Hubei	Whubi	0.021	6.6	Goodwin (1991)
Kham-Yunan	Yunan	0.019	2.5	
Jiangnan	Jiang	0.064	20.0	
Tarim basin	Tarpm	0.001		
Lower Proterozoic				
Gorge	Gorge	0.006	1.095	Goodwin (1991)
Eastern Yunan	Eyunn	0.006	1.095	000uwiii (1791)

Cathaysian craton

Northern Sichuan	Schun	0.006		
Southern China	Schna	0.003	4.0	
Southeast Maritime	Smepr	0.016	10.0	
Tarim mountains	Tarim	0.028	5.0	
Kunlun-Qilian-	Kunln	0.021	6.0	Goodwin (1001)
Qinling				Goodwiii (1991)
Greater Khingan	Khign	0.013		
Changan	Chage	0.029	1.0	
Nantuo	Nan12	0.023	2.285	
Luoquan	Luoqe	0.001	0.35	
Songliao Massif	Songl	0.040		Zhang et al. (1984)
Greater Balkan	Gtbal	0.050	20.0 sediment	
		0.085	cover	Khain (1004)
West Turkmenistan	Wturk	دد	15.0 sediment	Knain (1994)
			cover	

Indian craton

Geological Region	GIS (name)	Susceptibility (SI units)	Stratigraphy known to	Reference		
depth of (km)						
		Arci	nean			
E-trending Gneiss-	Egntz	0.066				
Granulite zone		0.055				
Eastern Dharwar	Esdwr	0.055				
Closepet granite	Clspt	0.025				
Granulite domain	Grnul	0.047				
Western Dharwar	Wsdwr	0.063				
Eastern Ghat belts	Esgha	0.014		Goodwin (1991)		
Singhbhum craton	Srhgh	0.045				
Rajasthan and	Rajas	0.041				
Budelkhand blocks						
Sri Lanka highland	Srlka	0.030				
Sri Lanka southwest	Srlkb	0.033				
Sri Lanka Vijayan	Srlkc	0.077				
complex						
		Early Pro	oterozoic			
Chotanagpur plateau	Chota	0.041	20.0			
Aravalli belt	Aravl	0.017				
Delhi belt	Delhs	0.014	10.0			
South Delhi belt	Sdels	0.037		Goodwin (1991)		
Dongargarh	Dngar	0.039				
Sakoli	Sakol	0.067				
Sausar	Sausr	0.008				
Mid Proterozoic						
Cuddapah basin	Cudph	0.014	7.00			
Nalamalli basin	Nalla	0.027	1.20			
Kurnool basin	Kurnl	0.013	0.60			
Kaladgi basin	Kaldg	0.041	2.00	$C_{2} = \frac{1}{2} \frac{1}$		
Bhima basin	Bhima	0.002		Goodwin (1991)		
Godavari basin	Godvr	0.010	7.01			
Chattisgarh basin	Chats	0.022	2.00			
Eastern Ghats belt	Esghm	0.021				

Lower Proterozoic						
Vindhyan basin	Vndhy	0.016	7.80			
Indo-Gangetic plains	Ganga	0.005	7.00			
(Phanerozoic)		0.045				
Deccan Traps	Decal	0.050	4.00			
(Phanerozoic)		0.016		Goodwin (1991)		
Aravalli	Arvll	0.017				
		0.045				
Himalaya fold belts	Himla	0.006	20.0			
Tibetan plateau	Tibep	0.006	20.0			

Appendix IV

Susceptibility distribution for Siberian craton

The parameters used for deriving vertically integrated susceptibility model for the Siberian craton is shown in the following table. Tectonic map for the Siberian craton is shown in Figure (2.2).

Geological	GIS	Maximum	Stratigraphy	Reference		
Region	(name)	Susceptibility	known to			
		(SI units)	depth of (km)			
		Arch	lean			
Basement	Sbptt	0.035				
Aldan shield	Aldna	0.065	12.0			
		0.014				
<u> </u>	a .	0.036				
Stanovoy fold belt	Stanv	0.020				
Siberian Trap	Sbtrp	0.035		Goodwin (1991)		
Anbar shield	Anbar	0.057	15.0			
Baikal fold belt	Bakln	0.029				
Sayan fold belt	Sayan	0.027				
		0.035 (base)				
Yenisei fold belt	Ynsia	0.020				
Okhotsk block	Okhsk	0.031				
Kolyma block	Kolym	0.031		Goodwin (1991)		
Omolon block	Omlon	0.031		(Sweeney, 1981; Howell and		
Taigonos block	Taign	0.031		Wiley, 1987;Condie, 1989)		
		Early Pro	oterozoic			
Baikal fold belt	Baike	0.022	13.5			
Muya group	Muyae	0.073	13.5			
Ulkan Trough	Ulkan	0.032	4.45	Goodwin (1991)		
East Sayan fold belt	Sayae	0.001		000dwiii (1991)		
Yenisei fold belt	Yense	0.030	5.00			
Taymyr fold belt	Taymr	0.028	12.0			
		Mid Prot	terozoic			
Patom highlands	Patom	0.033	1.80	Goodwin (1991)		
Baikalian highlands	Nbaik	0.029	6.00			
South Baikal range	Sbaik	0.046	6.00			
Ulkan trough	Ulkam	0.038	5.50			
Yudoma-Maya	Yudma	0.011				
trough						
Uchur-Maya region	Umaya	0.006				
Olenek uplift	Olnek	0.006				
Lower Proterozoic						

Uchur-Maya	Umayl	0.031	3.00	Coodwin (1991)
		0.001	0.40	Goodwill (1991)
Yenisei ridge	Yensl	0.018	4.50	
Patom highlands	Patol	0.031	3.00	
		0.013	1.70	
Olenek uplift	Olnel	0.001	0.65	
Anbar shield	Anbal	0.001	0.65	Coodwin (1001)
Tienshan	Tnshl	0.001	4.20	Goodwill (1991)
Kazakhstan	Kazak	0.001	2.70	
Yudoma	Yudml	0.001	1.00	
East Sayan fold belt	Sayal	0.010	1.50	
Western Baikal	baikn	0.001	1.30	

Appendix V

Susceptibility distribution for East European craton

The parameters used for deriving vertically integrated susceptibility model for the East European craton is shown in the following table. Tectonic map for the East European craton is shown in Figure (2.3).

Geological	GIS	Maximum	Stratigraphy	Reference	
Region	(name)	Susceptibility	known to		
		(SI units)	depth of (km)		
		Archean			
Dnieper complex	Dnepr	0.047			
Kola peninsula	Kolap	0.037			
Belomorian province	Belmr	0.058			
Kamennozero belt	Kamnz	0.045			
Koikary belt	Kokry	0.010	3.50		
Hautavaara belt	Hutvr	0.028	5.50		
Himola-Kostomuksa belt	Hm-kt	0.085	4.50		
Suomussalmi-Ilomantsi-Kuhmo-	Sukit	0.033	5.00	Goodwin (1991)	
Tipasjarvi				Khain (1985)	
Basement	Pltfa	0.045		Kildili, (1905)	
Belorussian anteclise	Pltfm	0.045	1.00 sediment		
			cover		
Moscow syneclise	Mosms	0.045	6.00 sed. cover		
Pelchma trough	Pelch	0.045	8.00 sed. cover		
Volga-Uralian anteclise	Vl-ur	0.045	1.50 sed. cover		
North Caspian syneclise	nrcsp	0.045	30.0 sed. cover		
Glasov syneclise	Glasv	0.045	3.00 sed. cover		
	Early	y Proterozoic			
Lapponian (Karelian)	lapon	0.032	1.40		
Sumian (Tunguda-Nadvoitsa)	Smian	0.047			
Sariolian (Sariolan)	Sarln	0.032	1.70		
Jatulian (Segozero-Onega)	Jatul	0.031			
Karelia-Kola peninsula	Kr-kl	0.062			
Suisaarian	Susrn	0.015	4.00	Goodwin (1991)	
Ladoga (Soviet Karelia)	Ladgo	0.017	4.00	(1991)	
Kalevian	Kalvn	0.083			
Bergslagen (southern Sweden)	Brgle	0.032	10.0		
Southern Norrland (central	Snrld	0.074	10.0		
Sweden)					
Vasterbotten (central Sweden)	Vstbn	0.002			

Norrbotten (northern Sweden) Fast and north of Kiruna	Norbn	0.103		
Tampere (Western Finland)	Wfnld	0.038	11.5	_
Lapland granulite belt	Lapln	0.044	11.0	— Goodwin, (1991)
Krivov Rog	Kryoy	0.028	8.50	
Voronezh Massif	Vornz	0.059	5.50	
	Mid	Proterozoic		
Rapakivi granites	Rapkv	0.056		
Bergslagen	Brgl1	0.037		
Metasediments	Msedi	0.024		
Central Norrland	Cnrld	0.050		
Norbotten	Nrbtn	0.044		
Smaland-Varmland belt	Sm-vl	0.058		
West coast (Sweden)	Wswdn	0.015		Goodwin, (1991)
Lake Vanern (Sweden)	Lvarn	0.046		
South western domain	Swdmn	0.044		
Volyn block	Volyn	0.079		
Voronezh Massif	vormz	0.067		
Bashkir Anticlinorium	Bashr	0.016	14.0	
	Lowe	er Proterozoic		
Bashkir (south urals)	Bashl	0.012	3.58	
South Urals	Sural	0.001	0.60	
Middle Urals	Mural	0.001	4.00	
Northern Norway	Nnrwy	0.008	1.20	
West of MTP (British Isles)	wsmtp	0.012	9.00	
Northern highland	Nohld	0.022	,	
Dalradian	Daldn	0.010	17.0	
Midland craton	Midld	0.032		
Charnwood forest-Cardington hill	Cf-ch	0.041	3.00	
Lizard peninsula	Lonin	0.101		
SE Ireland	Irlnd	0.034		
Pentevrian (Armorican Massif)	Pntvr	0.011		- Goodwin, (1991)
Brioverian	Brvrn	0.022	12.0	
Auvergne core (Central Massif)	Avgne	0.028	15.0	
Limousin-Rouergue zone	Lrgue	0.032		
Montagne Noire-Cevennes zone	Mn-cz	0.014		
Moldanubicum (Bohemian	Moldb	0.007		1
Massif)				
Krusne Hory	Kruhy	0.037		
Ossa-Morena (Iberian Massif)	Os-mr	0.001		1
Central Iberian zone	Cibrn	0.020		
West Asturian-Leonese	As-le	0.017		

Appendix VI

Susceptibility distribution for North American craton

The parameters used for deriving vertically integrated susceptibility model for the North American craton is shown in the following table. The tectonic map for the North American craton is shown in Figure (2.5).

Geological	GIS (name)	Maximum	Stratigraphy	Reference
Region		Susceptibility	known to	
		(SI units)	depth of (km)	
		Archean		
Minto subprovince (Ungava	u Minto	0.038		
craton)		0.062		
Ashuanipi complex	Ashnp	0.042		
Massive plutons (South	Mplut	0.051		
western Superior province)		0.062		
Meta supracrustal region	Msupr	0.019		
		0.062		
Abitibi belt	Abiti	0.052	11.0	
Wabigoon region	Wabgn	0.052	16.0	
Sachigo subprovince	Sachg	0.052		
Plutonic suites (central	Plutn	0.049		
superior province)				
Metasedimentary (English	Metas	0.044		
river belt)				
Point Lake (Slave craton)	Point	0.042		Goodwin, (1991)
Yellowknife	Yelow	0.046	13.0	
Hackett river	Hackt	0.021		
High Lake belt	Hghlk	0.032		
Back river	Bckrv	0.069	13.0	
Saglek Fjord (Nain province	e) Saglk	0.004		
Hopedale block	Hopdl	0.072		
Committee Bay and Armit	Cm-ar	0.015		
Lake (Churchill province)		0.042		
Ennadai-Tulemalu blocks	En-tl	0.026		
Minnesota river valley	Mortn	0.037		
Wisconsin-Michigan gneiss	Ws-mh	0.017		
		0.062		
Wyoming uplift	Wyomg	0.060		
Still water complex	Still	0.070	6.00	

Newfoundland	Nwfnd	0.017	0.50	a.t. a.t.
	(base Egren)	0.012	1.50	Colmann-Sadd,
	ζ ų γ	0.090	3.00	(1980)
Golcond-Roberts (bimodal	Gl-rb	0.025		
volcanics, west USA)				Condie, (1989)
Columbia river basalt	Colmb	0.022		
Brooks range	Chuks	0.032		Sweeney, (1981)
Alaska-Yukon	Al-yk	0.048		Goodwin (1991)
Baffin Island	Baffn	0.062		000000000000000000000000000000000000000
Mid Proterozoic province	Gra1s	0.050		Anderson, (1983)
Wopmay-extension	Wmyp5	0.028		Condie, (1989)
Basement central US	Cntms	0.029		
Basement Ungava	Ungav	0.037		Goodwin, (1991)
Basement West Sup. Prov.	Westn	0.045		
	Earl	y Proterozoic		
Lake Huron	Huron	0.017	16.0	
Sudbury Structure	Sudby	0.030	7.50	
Aphebian Supracrustal	Laphb	0.050	2.00	
Michigan-Wisconsin	Mh-ws	0.050	7.50	
Marquette range	Marqt	0.050		
North western segment	Nwank	0.035	6.00	
(Animikie basin)				
South eastern segment	Seank	0.059	11.0	
		0.013		
Mistassini-Otish basin	Ms-ot	0.115	6.80	
Kaniapiskau supergroup	Kanip	0.023	6.50	
(Labrador trough)				
Doublet-Laporte	Db-lp	0.028	5.00	
Cape Smith fold belt	Capes	0.044	5.35	
Belcher fold belt	Belch	0.032	8.00	
Sutton lake Inlier	Suton	0.069		Goodwin (1991)
Fox river belt	Foxrv	0.082	5.50	000dwiii, (1991)
Thompson belt	Thoms	0.098		
Kapuskasing structural zone	Shawm	0.058	20.0	
		0.028		
Hudsonian Mobile zone	Hdcmp	0.022	3.00	
Rottenstone-la Ronge belt	Hdrot	0.036	3.00	
Cree lake zone	Crelk	0.049		
Amer lake zone	Amerl	0.043		
Wopmay zone 1	Wpmy1	0.001	0.60	
Wopmay zone 2	Wpmy2	0.010	3.00	
Wopmay zone 3	Wpmy3	0.031	9.00	
Wopmay zone 4	Wpmy4	0.048	8.00	
Kilohigok basin	Kıloh	0.006	7.00	
Athapuscow Aulacogen	Athap	0.036	5.50	
Wyoming uplift	Wyome	0.012	12.8	
Black hills	Black	0.042		
	Mic	d Proterozoic	-	
Midcontinental belt	Miden	0.034		
Anorogenic complexes	Anorg	0.064		Goodwin, (1991)
Anorthosite massifs	Anrth	0.010		

Sioux Quartzites	Sioux	0.002	0.50	
Baraboo Quartzite	Baroo	0.062	1.50	
Athabasca basin	Athas	0.003	1.50	
Baker lake	Baker	0.012	7.35	
Coppermine river	Coper	0.057	3.00	
Bathurst Inlet basin	Bathr	0.002	5.00	
Parry Bay formations	Parry	0.001	0.22	
Grenville Front Tectonic	Grenf	0.001		
Central gneiss belt	Cngne	0.001		
Central metasedimentary	Cnmet	0.030	5.00	
Central granulite belt	Cntgr	0.004		
Baie Comeau segment	Baiec	0.001		
Eastern Grenville province	Egren	0.007		Goodwin (1001)
Fury and Hecla basin	Furyh	0.017	6.00	000 u wiii, (1991)
Somerset Island area	Somst	0.007	3.00	
Rae Sediments	Raesd	0.011	5.00	
Troy Quartzites (Cordilleran	Troyq	0.013	8.00	
fold belt)				
Unkar-Chuar	Unkch	0.015	3.70	
Crystal spring	Cryst	0.010	1.50	
Cottonwood-Unita fms.	Co-un	0.007	6.00	
Belt-Purcell	Beltp	0.005	9.40	
Purcell	Purcl	0.008	11.2	
Wernecke	Wernk	0.005	13.0	
Lake Superior rift	Lksup	0.045	20.5	
Bruce river	Bruce	0.028	5.80	
	Lat	e Proterozoic		
Amundsen Embayment	Amnds	0.011	4.00	
Mackenzie mountain	Mcknz	0.005	2.00	
Snake river	Snake	0.029	1.56	
Windmere	Winde	0.007	1.20	
	(base Purcell			
	gr)			Goodwin (1901)
Unita mountains	Unita	0.018	4.00	000 u wiii, (1991)
Canadian Appalachians	Canad	0.060		
Avalon zone	Avaln	0.015		
	(base egren)			
US Appalachian (western)	Wbgla	0.003	12.6	
US Appalachian (eastern)	Ebgla	0.028	9.00	

Appendix VII

Susceptibility distribution for South American craton

The parameters used for deriving vertically integrated susceptibility model for the South American craton is shown in the following table. The tectonic map for the South American craton is shown in Figure (2.6).

Geological	GIS (name)	Maximum	Stratigraphy	Reference	
Region		Susceptibility	known to		
		(SI units)	depth of (km)		
Archean					
Pakairama	Pakar	0.018			
Imataca complex	Imtca	0.025			
Xingu (southern)	Xingu	0.037			
Serra dos Carajas	Serra	0.022			
Gois median massif	Goism	0.016			
Gois granulite belt	Goisg	0.080			
San Francisco craton	Sanfr	0.015			
Belo Horizonte	Beloh	0.029	7.00		
Rio das Velhas	Riode	0.025			
Luis Alves	Luisa	0.037		Goodwin (1991)	
Metamorphic grade rocks	Metag	0.017		(1991)	
Rio Negro-Juruena belt	Riext	0.036			
(extension)					
Xingu belt (extension)	Xnext	0.017			
Ribera belt	Ribra	0.037			
Borborema	Borbn	0.037			
Pakaraima Nuleus	Parnl	0.036			
Greenstone belts	Grenb	0.042			
Granitoids, metamorphic	Grant	0.032			
rocks					
	Earl	y Proterozoic			
Maroni-Itacaiuhas	Ma-it	0.032			
Goias massif	Goise	0.001	0.30		
Quadrilatero	Quadr	0.033	9.63	Goodwin (1001)	
Contendas-Mirante	Co-mi	0.020	5.00	(1991)	
Serrinha greenstone belt	Serhn	0.041	9.50		
Jacobina belt	Jacbn	0.003			

Mid Proterozoic				
Uatuma volcanics	Uatum	0.046	5.50	
Central Brazil shield	Cbrzl	0.051		
Roraima	Rormi	0.027	8.70	
Goritore	Gorit	0.002		
Rio Negro-Juruena belt	Riong	0.036		
Aguapei belt	Aguap	0.056		Goodwin, (1991)
San Ignacio belt	Sanig	0.027		
Northern Espinhaco	Noesp	0.010	7.00	
Eastern Espinhaco	Esesp	0.002	0.70	
Southern Espinhaco	Soesp	0.031	3.00	
Uruacu	Uruac	0.003	4.09	
	Low	er Proterozoic		
Paraguay-Araguaia fold	Baixo	0.019	4.00	
belt (northern)				
Southern segment	Soseg	0.020	5.50	
Brasilia fold belt	Brsil	0.002	7.85	
Sao Francisco craton	Macau	0.002	1.25	
Bambui group	Bambi	0.003	0.82	Goodwin, (1991)
Atlantic shield	Margn	0.003		
Atlantic shield (interior)	Inter	0.019		
Aracuai fold belt	Aracu	0.038		
Don-Feliciano belt	Dn-fe	0.059		
Sao Luis craton	Saolu	0.017		

Appendix VIII

Susceptibility distribution for African craton

The parameters used for deriving vertically integrated susceptibility model for the African craton is shown in the following table. African craton is divided into four units: East Africa, West Africa, Central Africa and South Africa. The tectonic map for Africa is shown in Figure (2.7). The susceptibility value for the Gabon craton, Central Africa is computed in section (2.2.1) and is marked here in greyshade.

East Africa	
-------------	--

Geological	GIS (name)	Maximum	Stratigraphy	Reference	
Region		Susceptibility	known to		
		(SI units)	depth of (km)		
		Early Proterozo	oic		
Uweinant block	Umint	0.029			
Tibesti block	Tibst	0.029		Goodwin (1991)	
Arabian shield	Araba	0.032		Goodwin, (1991)	
Nubian shield	Nubia	0.032			
Mid Proterozoic					
Tchad block	Tchad	0.016		Goodwin, (1991)	
Lower Proterozoic					
Nubian shield	Nubil	0.043		Goodwin (1991)	
Arabian shield	Arabl	0.035		Goodwill, (1991)	

West Africa

Geological Region	GIS (name)	Maximum Susceptibility (SL units)	Stratigraphy known to depth of (km)	Reference
		Archean	ucptil of (iiii)	
Liberian	Libra	0.057	9.50	
Amsaga belt	Amsga	0.033		
_	-	0.065		Goodwin (1991)
Ouzzal (western Hoggar)	Ouzal	0.049		0000will; (1991)
Oumelalen (central	Oumln	0.010		
Hoggar)				
		Early Proterozo	oic	
Eburnean	Eburn	0.023		
Yetti (Reguibat shield)	Yetti	0.043		Goodwin, (1991)
Western Hoggar	Wshgr	0.016		

Central Hoggar	Cnhgr	0.020		
Benin-Nigeria shield	Be-ng	0.033		Goodwin, (1991)
Anti Atlas	Antas	0.024		
		Mid Proterozo	oic	
Darfur	Drfur	0.022		Goodwin (1991)
Central Hoggar	Cnhgm	0.010		000dwill, (1991)
]	Lower Proteroz	zoic	
Taudeni basin	Taupt	0.010	4.00	
Anti Atlas	Antal	0.013	9.00	
Western Hoggar	Wshgl	0.025	13.5	
		0.035		
Central Hoggar	Cnhgl	0.011		Goodwin (1991)
Eastern Hoggar	Eshgr	0.011	1.50	000dwill, (1991)
Benin-Nigeria	Bn-nl	0.040		
Togo belt	Togob	0.012	2.80	
Volta basin	Voltp	0.016	2.20	
Gourma Aulacogen	Gurmp	0.001	8.00	

Central Africa

Geological	GIS (name)	Maximum	Stratigraphy	Reference			
Region		(SI units)	depth of (km)				
Archean							
Gabon craton	Gabon	0.089					
Chaillu block	Chail	0.079					
Kasai craton	Kasai	0.036					
Bouca block	Bouca	0.089		Goodwin, (1991)			
Kibalian	Kibal	0.087					
Bomu block	Bomuc	0.012					
Tanzania	Tanzn	0.048					
		Early Proteroze	oic				
Ubendian	Ubend	0.021					
Ruwenzori	Ruwnz	0.021					
Francevillian	Frvln	0.021					
Angolan craton	Angol	0.013		Goodwin, (1991)			
Kunene region	Kunen	0.080	14.0				
Zambian block	Zmbia	0.054					
Usagaran	Usgrn	0.022	7.50				
		Mid Proterozo	oic				
Kibaran	Kibup	0.007	1.70				
		0.015	3.00				
		0.028	5.50	Goodwin, (1991)			
		0.027	3.00				
		0.035					
Burundian	Burdu	0.002	1.30				
		0.003	2.50				
		0.002	8.60				
		0.065		Goodwin (1991)			
Irumides	Irmdu	0.001	2.00	5004, (1)			
		0.001	4.00				
		0.001	4.00				
		0.035					

	-	Lower Protero	zoic	
Katangan	Katgu	0.001	5.80	
	0	0.008	1.50	
West Congo	Wcngz	0.045	3.50	
C C	0	0.047	4.90	
		0.011	4.60	
		0.050		
Lindian	Lindn	0.012	2.70	
Bukoban	Bkbnl	0.012	2.20	
		0.067	0.70	
		0.013		
Mozambique belt	Mzktz	0.051	3.00	
(Kenya-Tanzania)				
Malawi belt	Mzmlw	0.041		$C_{1} = \frac{1}{2} \left(\frac{1}{2} \right)^{2}$
Mozambique	Mzmzm	0.034		Goodwin, (1991)
Zambezi	Mzzmb	0.013		
Madagascar central	Mgcnt	0.011		
Madagascar south-	Mgsnt	0.037		
central	-			
Madagascar Malagsy	Mgmsy	0.035		
Central African belt	Cscmn	0.039		
South Cameroon				
North Cameroon	Cncmn	0.021		
Central African	Cafpm	0.012		
Precambrian belt	-			
Central African	Cafpt	0.039		
Proterozoic belt	_			
Oubanguides	Oubng	0.039		Pin and Poidevin, (1987),
-				Goodwin, (1991)
Congo basin	Cnbsm	0.0001	1.30	
		0.001	9.00	Goodwin (1001)
		0.008		Goodwill, (1991)
		0.020		

Southern Africa

Geological Region	GIS (name)	Maximum Susceptibility (SI units)	Stratigraphy known to depth of (km)	Reference
		Archean		
Swaziland	Swazl	0.029		
Barberton	Bartl	0.024	3.50	
		0.029	2.00	Goodwin, (1991)
		0.026	8.00	
		0.071	4.00	

Murchison	Murhn	0.044		
Pongola	Pngll	0.073	7.00	
		0.069	1.80	Goodwin, (1991)
Witwatersrand	Watal	0.098	2.60	
		0.024	0.10	

X7 / 1	X7 (1	0.056	2.00			
Ventersdorp	Vntrl	0.056	2.00			
		0.006	2.00			
x . (1)	-	0.064	1.20			
Limpopo (northern)	Lmpon	0.062				
Limpopo (central)	Lmpoc	0.068		Goodwin, (1991)		
Limpopo (southern)	Lmpos	0.049				
Zimbabwe	Zimbl	0.081	4.50			
		0.078	20.3			
		0.040				
		Early Proteroz	pic			
Transvaal	Twlbl	0.036	2.00			
		0.092	3.50			
		0.034	7.00			
Cape Botswana	Btswl	0.044	1.50			
		0.077	3.50			
		0.001	2.00	Goodwin, (1991)		
Bushveld	Bvelu	0.151	7.50			
		0.037	6.80			
Matsap	Mtsap	0.033	3.80			
Magondi	Mgndi	0.027	3.50			
Kheis	Kheis	0.053	3.00			
	•	Mid Proterozo	oic			
Richersveld	Rchld	0.031				
Bushmanland	Bsman	0.023				
Gordania	Gdnia	0.018		Goodwin, (1991)		
Natal Province	Natal	0.033				
Ghanzi	Ghnzi	0.041	11.0			
Lower Proterozoic						
Swakop	Swkop	0.021	10.0			
Otavi	Otavi	0.010	6.00			
Gariep	Garip	0.001	5.50	$C_{aa}dwin (1001)$		
Saldania	Saldn	0.002		Goodwin, (1991)		
Nama	Namam	0.010	1.50			
Zambezi	Zambz	0.010				

Appendix IX

Susceptibility distribution for Australian craton

The parameters used for deriving vertically integrated susceptibility model for the Australian craton is shown in the following table. The tectonic map for the Australian craton is shown in Figure (2.9).

Geological	GIS (name)	Maximum	Stratigraphy	Reference		
Region		Susceptibility	known to			
		(SI units)	depth of (km)			
Archean						
Pilbara craton	Pilbr	0.074	30.2			
Hamersley basin	Hmsly	0.048	7.20			
Western gneiss Terrain	Wsgne	0.044				
(Yilgarn)						
Narryer gneiss	Naryr	0.065				
Kalgoorlie area	Kalgr	0.035	15.0			
Murchison	Murch	0.040		Goodwin (1991)		
Southern cross	Socro	0.044	10.0	Goodwin, (1991)		
Eastern gold fields	Egold	0.044	15.0			
Basement (Yilgarn	Yilgl	0.032				
block)						
Gawler block	Gawlm	0.047				
Nullarbor block	Nulbr	0.047				
Great Australian bight	Asger	0.001				
Mt. Isa Inlier (Extension)	In-bl	0.047		Goodwin, (1996)		
Region west of	Wsmgl	0.048		Proposed (This work)		
Musgrave block				Tioposed (Tills Work)		
		Early Proterozo	oic			
Gascoyne province	Gscyn	0.019				
Ashburton trough	Ashbn	0.043	10.0			
Nabberu basin	Nabru	0.017	6.00			
Glengarry sub-basin	Gleng	0.043	6.00			
Halls Creek Inlier	Halls	0.048	19.0			
Pine Creek Inlier	Pinec	0.023	13.0			
Murphy Inlier	Murpy	0.001		Goodwin, (1991)		
Tenant Creek-Davenport	Te-da	0.022	10.0			
Inlier						
George Town Inlier	Gorge	0.047				
Gawler domain	Gawlr	0.100				
		0.047				
Willyama domain	Wilym	0.045	8.00			
		Mid Proterozo	oic			

Mc Arthur basin	Mcarh	0.023	18.0	
Kathleen group	Katln	0.022	3.00	
Mount Isa inlier	Mtisa	0.082	13.5	
South Nicholson	Nchln	0.001	6.00	
Leichardt river	Lchrt	0.001	20.0	
Birrindudu basin	Brndu	0.021	6.00	
Kimberley basin	Kmbly	0.043	16.0	
Gawler range	Gwlrr	0.039		
Musgravian division	Musgv	0.007	3.50	Goodwin (1991)
Western Bangemall	Wbang	0.005	8.00	000dwill, (1991)
basin				
Northern facie	Nbang	0.007	4.50	
Eastern facie	Ebang	0.007	1.00	
Western gneiss	Wg-fr	0.044		
Eastern gneiss	Esgne	0.047		
Transition zone	Trans	0.056		
Arunta domain	Arnta	0.048		
Musgrave domain	Musgr	0.048		
]	Lower Proteroz	oic	
Adelaide Geosyncline	Adeld	0.011	15.0	
		0.050		
Amadeus	Amads	0.001	1.20	
Officer	Ofcer	0.022	9.22	Goodwin, (1991)
Kimberley region	Kimly	0.008	2.50	
Rocky cape & Tyenna	Tyena	0.005	5.00	
(Tasmania)	-			

Appendix X

Susceptibility distribution for Greenland

The parameters used for deriving vertically integrated susceptibility model for Greenland is shown in the following table. The tectonic map for Greenland is shown in Figure (2.4).

Geological	GIS	Maximum	Stratigraphy	Reference			
Region	(name)	Susceptibility	known to				
		(SI units)	depth of (km)				
	Archean						
Isua-Akilia region	Isuaa	0.050					
Amîtsoq gneiss	Amtsq	0.001					
Ameralik dikes	Amrlk	0.040					
Fiskenaesset complex	Fiskn	0.075		Goodwin (1991)			
Umivik & Tingmiarmivt	Umivk	0.054		Goodwin, (1991)			
Southern Archean block	IAAFU	0.053					
Southern Greenland block	Grenr	0.040					
Northern Greenland block	Grenu	0.040					
		Early Proterozo	oic				
Nagssugtoqidian mobile	Nagss	0.030					
belt							
Rinkian mobile belt	Rinkn	0.079					
		0.037					
Umanak-Rinks area	Umank	0.019	9.70	Goodwin (1991)			
Upernavik-Kraulshavn area	Uprnk	0.044		Goodwin, (1991)			
Northern border (Ketilidian	Nobic	0.059	5.60				
belt)							
Central granite zone	Cngrn	0.036					
Folded Migmatite	Fldic	0.029					
		Mid Proterozo	oic				
Eriksfjord formation	Eriks	0.036	2.00				
Dike swarms	Dikes	0.054					
Central complexes	Ccmpl	0.017					
Charcot land window	Charc	0.031	2.00	Goodwin, (1991)			
Central metamorphic	Cmetn	0.007	2.50				
complex							
Northern complexes	Ncmpl	0.030	6.30				
		Lower Proteroz	zoic				
Eleonore bay	Eleon	0.006	14.6				
Hagen Fjord group	Hfjrd	0.010	4.50	Goodwin, (1991)			
Thule basin	Thule	0.018	4.50				

Appendix XI

Susceptibility distribution for Antarctic craton

The parameters used for deriving vertically integrated susceptibility model for Antarctic craton is shown in the following table. The tectonic map for Antarctica is shown in Figure (2.10).

Geological	GIS (name)	Maximum	Stratigraphy	Reference	
Region		Susceptibility	known to		
		(SI units)	depth of (km)		
		Archean			
Dronning Maud land	Drong	0.040			
Napier complex	Naper	0.052			
Prince Charles mountains	Chrls	0.040		Goodwin (1991)	
Vestfold hills	Vestf	0.040		(1991)	
Shackelton range	Shack	0.040			
Bunger hills	Bungr	0.040			
	Ea	arly Proterozoi	c		
Rayner complex	Rainr	0.072			
Prince Charles mountains	Chrle	0.072			
Vestfold hills	Veste	0.072			
Enderby land	Endry	0.072		Goodwin, (1991)	
Western Wilkes land	Wilks	0.072			
Bunger hills	Bnger	0.072			
Dronning Maud land	Dmaud	0.072			
	Ν	Aid Proterozoic			
Southern Prince Charles mountains	Chrlm	0.068			
Shackleton range	Skltn	0.024		C_{advin} (1001)	
Coats land	Coats	0.038		Goodwin, (1991)	
Windmills Island	Windm	0.066			
Marie Byrd land	Ptz1a	0.068			
Lower Proterozoic					
Denman glacier	Denmn	0.018			
Enderby land	Endrb	0.062		Goodwin, (1991)	
Sør Rondane mts.	Rndan	0.062			

Appendix XII

Susceptibility distribution for Oceanic crust and plateaus

The parameters used for deriving vertically integrated susceptibility model for the Oceanic crust and plateaus are shown in the following table.

Geological	GIS	Maximum	Stratigraphy	Reference		
Region	(name)	Susceptibility	known from			
		(SI units)	other sources			
			(km)			
Oceanic crust						
Young oceanic crust	Ocn-y	0.120	2.11			
		0.090	4.97	White et al. (1992)		
Old oceanic crust	Ocn-o	0.120	2.11	(1992)		
		0.090	5.37			
	(Oceanic plateau	S			
Iceland	iceld	0.120				
		0.090				
Flemish cap	flmsh	0.012				
		0.090				
		0.200				
Cape Verde plateau	Verde	"				
South Georgia rise	Georg	"				
Hess rise	Hessr	.د				
Buton-Seron	Bt-sr	.د		3SMAC model		
Maud bank	Maudb	٠٠		JSWAC model		
Walvis ridge	Walvs	دد				
Crozet land	Crozt	0.120				
		0.090				
		0.200				
Conrad rise	Conrd	٠٠				
Kerguelen ridge	Krgln	٠٠				
Bahamas	Bahma	0.560				
		0.090				
Porcupine bank	Porpn	0.056	10.0			
		0.090	18.0	Carlson et al. (1980)		
Madeira plateau	Mader	0.120	5.00	Nur and Ben-Avraham		
		0.090	4.00	(1982)		
		0.200	10.0			

Shatsky rise	Stksy	"	2.00	
	-		6.00	
			8.00	
Ontong-Java plateau	On-jv	"	2.00	
	5		9.00	
			21.0	
Broken ridge	Brokn	0.120	5.00	
C		0.090	7.00	
		0.200	6.00	
Naturliste plateau	Natul	0.056	8.00	Carlson et al. (1980)
1		0.065	10.0	Nur and Ben-Avraham
Lord Howe rise	Hower	"	10.0	(1982)
			12.0	
Norfolk plateau	Norfk	"	8.00	
-			6.00	
Agulhas plateau	Aglhs	0.120	3.00	
	C	0.056	9.00	
		0.200	10.0	
Mozambique	Mzmbq	0.120	3.00	
Ĩ	1	0.056	5.00	
		0.200	11.0	
Alpha-Mendeleev ridge	Alpha	"	4.00	
	1		6.00	
			4.00	
Alpha-Canada basin	Al-cn	"	3.00	-
-			6.00	
			4.00	
Alpha-Markov basin	Al-ma	"	3.00	Jackson and Johnson
-			5.00	(1986)
			4.00	
Markov basin	Markv	"	3.00	-
			4.00	
			3.00	
Canada basin	Cndbs	0.120	5.00	1
		0.090	3.00	