
Appendix B

Mathematical Supplement

This appendix provides some mathematical results not found in the literature in the
specific form necessary for this work. Their proofs are either outlined or given in
detail.

B.1 Spreading of regular wave packets

In this section, a mathematical theorem regarding the spreading of free Dirac wave
packets is formulated. It is applied in the existence and orthogonality proofs for the
wave operators in sections 3.3 and 3.4.

A free Dirac wave packet φ(x) is a linear superposition of plane waves:

φ(x) = (2π)−
3

2

∫

ei � ·� φ̂(p) d3p. (B.1)

Here φ̂(p) denotes the Fourier transform of φ(x), which obviously must be four-
spinors. The time-evolution of φ(x) is most easily written in terms of the Fourier

transform φ̂(p). It is necessary for that purpose to make a spectral decomposition
of the state space with respect to the free Dirac Hamiltonian H0 = −iα · ∇ + β.
Orthogonal projectors PC± onto the spectral subspaces of H0 of positive and negative
energy respectively,

PC± =
1

2

(

1 ±
H0

|H0|

)

,

are given in momentum space by a simple multiplication operator:

PC± =
µ(p) ± p · α ± β

2µ(p)

(see e.g. [Tha92, Sch95]). Here,

µ(p) =
√

1 + p2,

denotes the relativistic energy of a free electron with momentum p. Due to the
property,

PC+ + PC− = 1,

the Fourier transform φ̂(p) may be decomposed by means of these projectors PC±

into a sum of two functions,

φ̂(p) = φ̂+(p) + φ̂−(p),

where

φ̂±(p) = PC±φ̂(p).
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The free time-evolution Φ(t,x) = e−itH0 φ(x) of the initial wave packet φ(x) is then
given by,

Φ(t,x) = (2π)−
3

2

∫

ei �
· �
{

eitµ(� ) φ̂+(p) + e−itµ( � ) φ̂−(p)
}

d3p,

because in the momentum representation and on the spectral subspaces of H0, which
have been introduced above, the free unitary time-evolution e−itH0 is simply a multi-
plication operator (see e.g. [Tha92, Sch95]).

B.1.1 Regular wave packets. In this work, a regular wave packet is defined as
a wave packet Φ(t,x) = e−itH0 φ(x) where each component of the Fourier transform

φ̂(x) has compact support and is infinitely differentiable. Making use of the notation
common in the mathematical physics literature [Rud74, RS80, Kat80], a regular
wave packet, therefore, satisfies by definition:

φ̂(x) ∈ C∞
0 (R3)4.

The term ‘regular wave packet’ is taken from the corresponding definition in the case
of the Klein-Gordon field in [RS79, p. 42], where the term smooth solution is used
synonymously.

The importance of regular wave packets of the free Dirac equation in this work is
manifested in following property, which is useful in scattering theory. A regular free
Dirac wave packet (in three spatial dimensions) satisfies for any time t and coordinate
x the following inequality:

‖Φ(t,x)‖2 ≤
const.

(1 + |t|)3/2
. (B.2)

Since the L2-norm ‖Φ(t)‖ is time-independent this inequality describes the spatial
spreading of the wave packet for large times t.

A mathematical proof of this statement is possible with the aid of the method of
stationary phase [Hör76, RS79]. Noting that φ̂+(x), φ̂−(x) ∈ C∞

0 (R3)4 for regular
wave packets, mainly the Corollary to Theorem XI.15 in [RS79] has to be be applied.
Although the explicit proof in the case of the Dirac equation was not found in the
literature, its details will not be presented here. A similar result for regular wave
packets of the Klein-Gordon equation constitutes Theorem XI.17(b) in [RS79].

B.2 Lorentz invariance of the scalar product

In this section, it is proved that the scalar product (Ψ1(t),Ψ2(t)) between two wave
functions Ψ1(t,x) and Ψ2(t,x) is invariant under Lorentz-boosts, if they are both
solutions of the same Dirac equation. Lorentz-invariance means that the scalar prod-
uct (Ψ′

1(t
′),Ψ′

2(t
′))′ in a Lorentz-transformed frame between the Lorentz-transformed

wave functions Ψ′
1(t

′,x′) and Ψ′
2(t

′,x′) satisfies,

(Ψ′
1(t

′),Ψ′
2(t

′))
′
= (Ψ1(t),Ψ2(t)) , (B.3)

for arbitrary t and t′. The assumptions necessary to prove this result will be stated in
the subsequent presentation. Only Lorentz boosts will be considered since rotations
and translations do not transform the time axis and the time-independence of the
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scalar product is equivalent to the unitarity of the time evolution. The existence of
such a unitary time evolution will be assumed here.

Consider two Dirac wave functions Ψ1(t,x) and Ψ2(t,x) which are solutions of
the same Dirac equation,

[H0 +W (t,x) − i∂t] Ψi(t,x) = 0, i = 1, 2.

The external field W (t,x) is required to be a hermitian matrix, i.e.

W (t,x)† = W (t,x),

which is true in particular for external electromagnetic fields (A0,A), whereW (t,x) =

q(A0−α·A). The hermitian conjugate Dirac spinors Ψ†
i(t,x) then solve the following

hermitian conjugate equation,

i∇ · (Ψ†
iα) + Ψ†

iγ
0 + i∂tΨ

†
i + Ψ†

iW = 0.

By taking the difference between the hermitian conjugate equation for Ψ1 multiplied
from the right by Ψ2 and the Dirac equation for Ψ2 multiplied from the left by Ψ†

1

one obtains:

∇ · (Ψ†
1αΨ2) + ∂t(Ψ

†
1Ψ2) = 0.

Recalling the definition of the adjoint spinor, Ψ = Ψ†γ0, this equation may be rewrit-
ten as the four-divergence of a complex Lorentz four-vector,

∂µ(Ψ1γ
µΨ2) = 0. (B.4)

The familiar continuity equation of the four-current density jµ = qΨγµΨ is an impli-
cation of this result.

In the following Λ = Λ(v) shall denote a pure Lorentz boost from an unprimed
Lorentz frame to a primed frame moving with velocity v with respect to the unprimed
frame:

(Λµ
ν) =

(

γ −γvT

−γv
(

1 + (γ − 1)v̂v̂T
)

)

,

x′
µ

= Λµ
νx

ν .

(B.5)

Again, γ is the Lorentz factor corresponding to the velocity v. In order to show
the invariance of the scalar product of Dirac spinors under Lorentz boosts we note
that the scalar product at time t = a in the unprimed frame is an integral over a
three-dimensional flat hypersurface of Minkowski space,

∫

t=a
Ψ†

1(t,x)Ψ2(t,x) d3x. (B.6)

The same comment applies to the scalar product computed at time t′ = b in the
primed frame,

∫

t′=b
Ψ′

1
†
(t′,x′)Ψ′

2(t
′,x′) d3x′. (B.7)

The hyperplanes t = a and t′ = b may be characterised using the unit timelike
normal vectors nµ and mµ pointing forward in time:

∂Da = {x : nµx
µ − a = 0, nµ = (1, 0)}

∂Db = {x : mµx
µ − b = 0, mµ = γ(1, v)} .
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Figure B.1. Sketch of four-wedges.

The hyperplanes ∂Da and ∂Db are depicted in figure B.1. The Minkowski space is
cut into four subsets by these hyperplanes. Two of them, necessary in the subsequent
calculation, are given by the following definitions:

DI = {x : nµx
µ ≥ a and mµx

µ ≤ b} =
{

x : a ≤ x0 ≤ γ−1b + v · x
}

,

DII = {x : nµx
µ ≤ a and mµx

µ ≥ b} =
{

x : γ−1b + v · x ≤ x0 ≤ a
}

.

Their distinctive feature is that the intersections of DI and DII respectively with the
four-dimensional cylinder of radius R, defined through x2 ≤ R2, have finite volume
in Minkowski space. The boundaries ∂DI and ∂DII of DI and DII respectively may
be decomposed uniquely into flat bounded hypersurfaces,

∂DI = ∂Da
I ∪ ∂D

b
I and ∂DII = ∂Da

II ∪ ∂D
b
II,

such that the following decomposition is valid at the same time:

∂Da = ∂Da
I ∪ ∂D

a
II and ∂Db = ∂Db

I ∪ ∂Db
II.

See figure B.1 in order to understand this quite formal definitions easily.
To complete the proof, the scalar product (B.7) in the primed frame is rewritten

as follows:
∫

t′=b
Ψ′

1
†
(t′,x′)Ψ′

2(t
′,x′) d3x′

=
∫

t′=b
Ψ1(Λ

−1(t′,x′)) γ(γ0 − v · γ) Ψ2(Λ
−1(t′,x′)) d3x′

=
∫

∂Db

Ψ1(t,x)γµΨ2(t,x) gµν m
ν dS(x)

=
∫

∂Db

I

Ψ1(x)γ
µΨ2(x)mν dS(x) −

∫

∂Db

II

Ψ1(x)γ
µΨ2(x) (−mν) dS(x)

Here dS(x) denotes the hypersurface element at the space-time point x (following
the notation of [For84]). The scalar product in the unprimed frame may be written
in a similar form:

∫

t=a
Ψ1

†(t,x)Ψ2(t,x) d3x

= −
∫

∂Da

I

Ψ1(x)γ
µΨ2(x) (−nν) dS(x) +

∫

∂Da

II

Ψ1(x)γ
µΨ2(x)nν dS(x)

The unit four-vectors appearing in the integrands above are the outer normal vectors
on the boundaries of the four-volumes DI and DII respectively. If the solutions Ψ1(x)
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and Ψ2(x) decay sufficiently rapidly at spatial infinity for all t then the integral
theorem of Gauß in four dimensions [For84, Das93] may be used to conclude that
the difference between the scalar products (B.6) and (B.7) is given in terms of four-
dimensional volume integrals over the ‘wedges’ DI and DII:

∫

t′=b
Ψ′

1
†
(t′,x′)Ψ′

2(t
′,x′) d3x′ −

∫

t=a
Ψ1

†(t,x)Ψ2(t,x) d3x

=
∫

DI

∂µ(Ψ1γ
µΨ2) d4x −

∫

DII

∂µ(Ψ1γ
µΨ2) d4x

In order to understand the reasoning, remember that the finite volume integral over
the intersection of DI with the four-dimensional cylinder of radius R converges to the
integral over DI itself as the radius R goes to infinity. The Gaussian theorem may be
used to rewrite this finite volume integral as a sum over hypersurface integrals over
the boundary of the volume of the intersection. It is then noted that the hypersurface
integral over that part of the four-dimensional cylinder which appears in this sum
vanishes as R → ∞. We conclude that both four-volume integrals vanish as a result of
equation (B.4) and hence the scalar products (B.6) and (B.7) are equal and equation
(B.3) is verified.

Obviously, the invariance property proved here implies the orthonormality of or-
thonormal stationary Dirac eigenstates after their Lorentz transformation to a moving
frame.

The idea of using the integral theorem of Gauß was taken from the discussion of
the free Dirac equation in [Sch95]. Thirring gives a similar proof for the Lorentz
boost invariance of the total charge in classical electrodynamics [Thi90, (1.3.18,2)].
Note also that for vanishing external field W (t,x) the Lorentz invariance (B.3) proved
in this section is a consequence of the fact that Lorentz boosts, only in this particular
situation, are represented by a time-independent unitary operator exp(−iv ·N). The
self-adjoint generator of this unitary transform is given by N = 1

2
(H0x+xH0) where

H0 is the free Dirac-Hamiltonian [Tha92]. Such a generator does not exist if the
Dirac field is subject to a time-dependent external field.

B.3 Transformations of eigenstates

Consider an eigenfunction ψ(x) of a time-independent Dirac-HamiltonianH0+W (x)
with eigenvalue ε,

[H0 +W (x)]ψ(x) = ε ψ(x). (B.8)

Indeed, the external field W (x) does not necessarily need to originate in a minimally
coupled external electromagnetic field. Other kinds of covariant external fields, like
scalar potentials or non-minimally coupled electromagnetic fields (Pauli term, etc.),
are not explicitly excluded in this section. (See, for example, [Tha92] for a complete
classification of covariant external fields.) The time-dependent wave function,

Ψ(t,x) = exp(−itε)ψ(x),

solves the corresponding time-dependent Dirac equation,

[H0 +W (x) − i∂t] Ψ(t,x) = 0. (B.9)
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Clearly, Ψ(t,x) is also an eigenfunction of H0 +W (x) for any time t.

B.3.1 Lorentz boosts. In the unprimed coordinate system of equations (B.9) and
(B.8) the hermitian matrix W (x) shall not have an explicit time-dependence, as
emphasised above. Now consider primed coordinates (t′,x′) obtained by a Lorentz
boost with velocity v from the unprimed coordinates (t,x), as in equation (B.5). As
usual, let S(Λ) denote the four-spinor representation matrix of the Lorentz boost Λµ

ν,
corresponding to the representation of the γ-matrices employed in the definition of
the free Dirac Hamiltonian H0. The Lorentz transform of the time-dependent Dirac
equation (B.9) in the primed frame is given by,

[H ′
0 +W ′(t′,x′) − i∂t′ ] Ψ

′(t′,x′) = 0, (B.10)

with Ψ′(t′,x′) = S(Λ)Ψ(t,x) and (t,x) = Λ−1(t′,x′). Due to the Lorentz boost
to the unprimed frame, the transformed external field W ′(t′,x′), generally given by
[Tha92],

W ′(t′,x′) = S(Λ)−1†W
(

Λ−1(t′,x′)
)

S(Λ)−1, (B.11)

picks up an explicit (though trivial) time-dependence. Here W (t,x) = W (x) has
been introduced only to simplify the notation. Since, by construction, Ψ′(t′,x′)
solves equation (B.10), the following holds:

H ′(t′) Ψ′(t′, x′) = i∂t′ Ψ
′(t′, x′)

= S(Λ) i∂t′ {exp(−itε)ψ(x)}

= ε S(Λ) exp(−itε)ψ(x)
∂t

∂t′
+ S(Λ) exp(−itε) (i∂iψ(x))

∂xi

∂t′

= γεΨ′(t′, x′) − γ S(Λ) exp(−itε) v · (−i∇ψ(x)),

with γ = (1 − v2)−1/2. This means that Ψ′(t′, x′) is an eigenstate of H ′
0 +W ′(t′,x′),

if and only if the eigenfunction ψ(x) of H0 +W (x) in the unprimed reference frame,
is also an eigenfunction of the momentum operator P = −i∇. In fact the latter
condition is equivalent to the property, that the external potential W (x) of equation
(B.8) is a constant, i.e. does not depend on the unprimed spatial coordinate x.
Clearly, this is precisely the case of free motion, and furthermore the only case,
where the Lorentz-boosted Hamilton operator H ′(t′) is time-independent.

Hence, it is meaningful only in that circumstance to Lorentz-transform the en-
ergy eigenvalue ε to a moving frame. The usual transformation law of the energy-
momentum four-vector is then retained from the preceding calculation:

H ′(t′) Ψ′
p′(t′, x′) = γεΨ′

p′(t′, x′) − γS(Λ) exp(−itε) v · (pΨp(x))

= γ(ε− v · p)Ψ′
p′(t′, x′) = ε′Ψ′

p′(t′, x′).

Here the usual notation for energy-momentum four-vectors p and p′ is employed, with
p = (ε,p) and p′ = Λp = (ε′,p′).

B.3.2 Galilean boosts in nonrelativistic quantum theory. The same prob-
lem may be addressed in nonrelativistic quantum mechanics. In order to discuss
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this similarity briefly, consider a solution Φ(t,x) of the time-dependent Schrödinger
equation,

[

−
1

2
∇2 + V (x) − i∂t

]

Φ(t,x) = 0,

which is of the form Φ(t,x) = exp(−itε)φ(x) and, therefore, an eigenstate of the
time-independent HamiltonianH = − 1

2
∇2+V (x). The Galilean-boosted Schrödinger

wave function,

Φ′(t,x′) = exp
(

− i
2
tv2

)

exp(iv · x′) exp(−itε)φ(x′ + tv),

corresponding to the passive Galilean boost, x′ = x − tv, with boost velocity v,
solves the Galilean-transformed Schrödinger equation,

[

−
1

2
∇′2 + V (x′ + tv) − i∂t

]

Φ′(t,x′) = 0.

In the nonrelativistic Schrödinger theory, the Galilean-boosted wave function Φ′(t,x′)
is likewise not an eigenfunction of the Galilean-boosted time-dependent Hamiltonian,

H ′(t) = −
1

2
∇′2 + V (x′ + tv),

at any time t, except the external potential V (x) is a constant. This is easily verified
as in the previous subsection. However, contrary to the relativistic case, supposing
that φ(x) is a bound state, the energy expectation value ε̄′ in the primed Galilean
frame is given by a simple expression:

ε̄′ =
(

Φ′(t), H ′(t) Φ′(t)
)

= ε +
v2

2
.

Moreover, the energy uncertainty is time-independent and grows at most linearly
with the modulus of the boost velocity v, since the following estimate holds:

0 ≤
(

Φ′(t), H ′(t)2 Φ′(t)
)

−
(

Φ′(t), H ′(t) Φ′(t)
)2

≤ v2
∫

φ(x)∗(−∇2φ)(x) d3x.

Therefore, Φ′(t,x) is an approximate eigenstate of the Galilean-boosted Schrödinger
operator H ′(t) for small boost velocities v.

B.3.3 Local gauge transformations. The discussion of local gauge transforma-
tions can be carried out along the lines of the discussion of Lorentz boosts. We
sketch it briefly. It is well-known already in nonrelativistic and relativistic classical
mechanics that the Hamiltonian is not a gauge-invariant observable [Thi88]. The
same is true in (non-)relativistic quantum theory. The locally gauge-transformed
Dirac spinor,

Ψ̆(t,x) = exp(−ig(t,x)) exp(−itε)ψ(x),

solves the gauge-transformed Dirac equation,
[

H0 + W̆ (t,x) − i∂t

]

Ψ̆(t,x) = 0, with

the transformed external field,

W̆ (t,x) = W (x) + {(∂t + α · ∇)g(t,x)} .
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The gauge-transformed wave function Ψ̆(t,x) is an eigenfunction of the transformed

Dirac operator H̆(t) = H0 + W̆ (t,x), if and only if the gauge function g(t,x)is time-

independent. Then, of course, W̆ is time-independent as well.


