
Chapter 5

Implementation of the Coupled Channel
Approximation

In this chapter, the capabilities of the numerical code for coupled channel calculations,
which has been written for the present work, are described.

In addition, some numerical results are presented. This serves two different pur-
poses: On one hand, the examples illustrate the principal features of the two-centre
coupled channel method. On the other hand, these exemplary calculations also
demonstrate the proper functioning and the correctness of the numerical software.

The entire computer code used for the numerical computations presented in this
work has been newly written, except for some publicly available source code pack-
ages employed for standard tasks, like linear algebra calculations and inter-process
communication in distributed computations. The general functionality, structure and
algorithmic details of the program are not described in this chapter, but in appen-
dix A.

5.1 Reference frames

The program does not permit to solve the coupled channel equations (4.8) in an ar-
bitrarily chosen frame of reference, but it is the first which is capable of performing
numerical computations in various different relativistic frames of reference. The cou-
pled channel equations can be solved in such Lorentz frames, in which the centres
move along the e3-axis and the centres are located on the e1-axis at time t = 0.

vAe3

vBe3

e1

bBe1

bAe1

e3
e2

Hence, it is assumed in the following that the parameters bΓ and vΓ of the straight
line trajectories (2.1) are given by,

bΓ = bΓe1,

vΓ = vΓe3,

where bΓ and vΓ are not necessarily positive.
Note, however, that the overlap and interaction matrix elements, as defined in

equations (4.6) and (4.7), are invariant under spatial rotations and translations,
and, therefore, the coupled channel equations in Lorentz frames connected by such
Poincaré transformations are identical. Hence, it is true that the program allows
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48 5. IMPLEMENTATION OF THE COUPLED CHANNEL APPROXIMATION

for the solution of the coupled channel equations in all Lorentz frames, in which the
centres move on parallel straight-line trajectories and in which the distance of closest
approach of both centres is reached at time t = 0. The particular orientation of the
coordinate axes as defined above is not important.

In this chapter, primed and doubly primed coordinates are always understood as
defined below:

t′ = γA(t − vAx3), x′ = (x − x3e3) + γA(x3 − tvA)e3 − bAe1,

t′′ = γB(t − vBx3), x′′ = (x − x3e3) + γB(x3 − tvB)e3 − bBe1.
(5.1)

Clearly, they are rest frame coordinates of centre A and B respectively. The particu-
lar orientation of these coordinate systems later determines the angular momentum
quantisation axis of coupled channel basis functions. The rapidity of centre Γ, a
useful quantity denoted by χΓ in the following, is related to velocity vΓ by:

vΓ = tanh χΓ.

Although numerical calculations presented in this work have been carried out for
an external field originating from moving point charges, the extension of the program
to arbitrary spherically symmetric charge distributions is straightforward. Thus the
more general case will be considered here, in which the external field matrix WΓ(t, x)
is of the form:

WΓ(t, x) = −e VΓ(rΓ(t, x)) S(2χΓ).

However, VΓ is always assumed to be an attractive electrostatic potential for neg-
atively charged electrons, such that electron bound states exist. For the matrix
part S(2χΓ) of the previous equation the abbreviation,

S(χ) = exp
(

−χ

2
α3

)

=
(

cosh
χ

2

)

−
(

sinh
χ

2

)

α3,

has been introduced for the boost representation matrix S(χ). It satisfies:

S(2χΓ) = S(χΓ)2 = γΓ(1 − vΓα3).

The hermitian matrix S(χ) is a real matrix in case of the standard Pauli–Dirac
representation of the γ-matrices, used in the numerical code (see appendix C). For
the present choice of reference frames, the residual external fields W∞

Γ (t, x), defined
in section 3.7, may be written as follows:

W∞
Γ (t, x) =

−e2Z̃Γ

dΓ(t, x)
S(2χΓ).

It is worth mentioning again the expressions for the Lorentz scalars rΓ(t, x) and
dΓ(t, x), which are defined in equations (2.4) and (2.6) and are particularly simple in
the present context:

rΓ(t, x) =
√

(x1 − bΓ)2 + (x2)2 + γ2
Γ(x3 − tvΓ)2, (5.2)

dΓ(t, x) =
√

(bA − bB)2 + v2γ2
Γ(t − vΓx3)2, (5.3)

Here the velocity v is given by,

v = tanh |χA − χB|, (5.4)
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and is the relative velocity of the centres in a rest frame of either centre (cf. section
2.1). Hence, the collision energy is given by the Lorentz factor γ = cosh(χA − χB).

5.2 Spherical symmetry

The spherical symmetry of the electrostatic potential VA(|x′|) in the primed coor-
dinates has the following well-known implications [Ros61, BD66, Sak67, Tha92,
EM95]. The t′-independent Hamiltonian in the primed Lorentz frame,

H ′
A = −iα · ∇′ + β − e VA(|x′|),

commutes with the spin-orbit operator,1 2

K ′ = −β(L′
· S′ + 1), (5.5)

and at the same time with the total angular momentum operator J ′ = L′ +S′. Here,
L′ denotes the orbital angular momentum operator,

L′ = x
�

∧ (−i∇′),

and S′ the spin angular-momentum operator,

S′ = − i

4
α ∧ α.

The spin-orbit operator K ′ commutes not only with H ′
A, but also with the total

angular momentum operator J ′. Moreover, the set of its eigenvalues σ(K ′) is the set
of all nonzero integers:

σ(K ′) = {±1,±2,±3, . . . } .

Due to the relation,

J ′2 = K ′2 − 1

4
,

any eigenfunction of K ′ with eigenvalue κ is automatically an eigenfunction of J ′2

with eigenvalue j(j + 1), where κ and j are related by:

j = |κ| − 1

2
.

Since H ′
A, K ′, and the third component J ′3 of the total angular momentum oper-

ator J ′ form a set of commuting, self-adjoint operators, it is clear that bound states
of the electrostatic potential VA(|x′|) are orthogonal, if they correspond to differ-
ent eigenvalues. Any energy eigenvalue of a simultaneous eigenstate of H ′

A and K ′,
with the eigenvalues ε and κ respectively is at least 2|κ|-fold degenerate, known as
the angular momentum degeneracy of bound state energies for a spherical potential.

1Here the sign convention agrees with [SFVW95b].
2In principle, it is appropriate to give the operator K ′ (and the other operators defined in this

section) an additional subscript A, in order to indicate that it is defined with respect to the primed

spatial coordinates 5.1 of a rest frame of centre A. But for brevity K ′

A
is written simply as K ′.
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The energy eigenvalues, within an eigenspace of K ′ with eigenvalue κ, are commonly
numbered in ascending order by an integer n, with

n = |κ|, |κ| + 1, |κ| + 2, . . . if κ < 0 and

n = κ + 1, κ + 2, κ + 3, . . . if κ > 0.

If degeneracies within an eigenspace of K ′, that are not angular momentum degenera-
cies, are counted by separate indices n, then any bound state of the radially symmetric
potential VA, which is a simultaneous eigenstate of the operators H ′

A, K ′ and J ′3, is
uniquely characterised by a triple index (n, κ, m). Here m denotes the eigenvalue of
J ′3. However, such degeneracies do not occur for the Coulomb potential. For some
potentials, like the Coulomb potential, the number of orthogonal bound states with
the same eigenvalue κ is infinite. This number may be finite or even zero, depending
on κ, for other attractive potentials, including the Yukawa potential and the class of
potentials of equation (2.10)

Therefore, in the important case where VA(|x′|) is the Coulomb potential, every

triple (n, κ, m) satisfying n ∈ N,

−n ≤ κ < n with κ ∈ Z, κ 6= 0, and

|m| ≤ |κ| − 1

2
with m ∈ 2Z + 1

2
,

corresponds to a Coulomb–Dirac bound state, which is simultaneously an eigenstate
of the operators H ′

A, K ′ and J ′3, and vice versa. These mutually orthogonal Coulomb–
Dirac bound states are consecutively numbered by the single non-negative integer,

i =
(2n − 1)(n − 1)n

3
+ 2κ2 + κ + m − 1

2
= 0, 1, 2, . . . . (5.6)

This integer i constitutes the linear index for bound states, employed in numerical
calculations presented in this work (see e.g. figure 5.1 on page 55). The linear ordering
of Coulomb–Dirac bound states by their index i includes their partial ordering due to
the energy eigenvalues. This means that i(n, κ, m) ≤ i(n̂, κ̂, m̂) implies εnκm ≤ εn̂κ̂m̂.

The integer n represents the principal quantum number of an eigenstate in the
nonrelativistic limit of the Dirac equation and the orbital angular momentum quan-
tum number l with respect to that limit, is given by:

l =







|κ| − 1 if κ < 0,

κ if κ > 0,

Table 5.1 lists the 28 lowest Coulomb–Dirac bound states, including their conven-
tional spectroscopic labels. Clearly, everything described in this section applies sim-
ilarly to bound states of the spherically symmetric electrostatic potential VB(|x′′|) in
the doubly primed Lorentz frame.

5.3 Basis functions

5.3.1 Undistorted basis functions. All basis sets of coupled channel calculations
presented in this work comprise a certain number of bound-electron wave functions
of both centre A and centre B. These basis functions are first constructed in their
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Table 5.1. Single and triple indices of the 28 lowest Coulomb–Dirac bound
states and their designations in spectroscopic notation. The integer i is defined

in equation (5.6).

i n κ m spectrosc.

0 1 −1 −1
2

1s1/2(−1
2
)

1 1 −1 +1
2

1s1/2(+
1
2
)

2 2 −1 −1
2

2s1/2(−1
2
)

3 2 −1 +1
2

2s1/2(+
1
2
)

4 2 1 −1
2

2p1/2(−1
2
)

5 2 1 +1
2

2p1/2(+
1
2
)

6 2 −2 −3
2

2p3/2(−3
2
)

7 2 −2 −1
2

2p3/2(−1
2
)

8 2 −2 +1
2

2p3/2(+
1
2
)

9 2 −2 +3
2

2p3/2(+
3
2
)

10 3 −1 − 1
2

3s1/2(−1
2
)

11 3 −1 + 1
2

3s1/2(+
1
2
)

12 3 1 −1
2

3p1/2(−1
2
)

13 3 1 +1
2

3p1/2(+
1
2
)

i n κ m spectrosc.

14 3 −2 − 3
2

3p3/2(−3
2
)

15 3 −2 − 1
2

3p3/2(−1
2
)

16 3 −2 + 1
2

3p3/2(+
1
2
)

17 3 −2 + 3
2

3p3/2(+
3
2
)

18 3 2 −3
2

3d3/2(−3
2
)

19 3 2 −1
2

3d3/2(−1
2
)

20 3 2 +1
2

3d3/2(+
1
2
)

21 3 2 +3
2

3d3/2(+
3
2
)

22 3 −3 − 5
2

3d5/2(−5
2
)

23 3 −3 − 3
2

3d5/2(−3
2
)

24 3 −3 − 1
2

3d5/2(−1
2
)

25 3 −3 + 1
2

3d5/2(+
1
2
)

26 3 −3 + 3
2

3d5/2(+
3
2
)

27 3 −3 + 5
2

3d5/2(+
5
2
)

respective primed and doubly primed rest frames and then Lorentz-transformed into
the unprimed frame of reference, where the coupled channel ansatz is made. In their
rest frames the bound states are taken to be eigenfunctions of their corresponding
time-independent Hamiltonians, spin-orbit operators and third component of their
total angular momentum operators, as described in the previous section. Hence,
these basis functions are of the form:

ΦA,i(t, x) = S(−χA) exp(−it′εA,i)φA,i(x
′),

ΦB,j(t, x) = S(−χB) exp(−it′′εB,j)φB,j(x
′′).

(5.7)

Here, the indices i and j refer to the linear index (5.6) of orthonormal bound state
eigenfunctions of fixed energy and angular momentum. By construction, the wave
functions φA,i and φB,j solve the following energy eigenvalue equations in their re-
spective rest frames:

[

−iα · ∇′ + β − e VA(|x′|)
]

φA,i(x
′) = εA,i φA,i(x

′),
[

−iα · ∇′′ + β − e VB(|x′′|)
]

φB,j(x
′′) = εB,j φB,j(x

′).

Their precise form is not important here and given in appendix A. Although they
refer to the primed and doubly primed frames respectively, the energy eigenvalues εA,i

and εB,j , and the eigenfunctions φA,i(x
′) and φB,j(x

′′) are not primed, because eigen-
values and time-independent eigenfunctions cannot be transformed to moving frames
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meaningfully, unless the external field vanishes (cf. section B.3). The boosted wave
functions ΦΓ,i(t, x) of equation (5.7) solve the scattering-channel Dirac equations,

[H0 + WΓ(t, x) − i∂t] ΦΓ,i(t, x) = 0, (5.8)

and will be referred to as undistorted basis functions, as opposed to phase-distorted
basis functions introduced in the following subsection.

The specific expressions for overlap and interaction matrix elements (cf. equations
(4.6) and (4.7) respectively) in the case of undistorted basis functions are presented
in the following. Due to the invariance of the scalar product (discussed in section
B.2), and since by construction the eigenfunctions φA,i(x

′) are orthonormal in the
primed reference frame, the basis functions ΦA,i(t, x) in the unprimed reference frame
are orthonormal as well for all times t. The same is true for the bound-state wave
functions ΦB,j(t, x) of centre B. Therefore we have:

NAj,Ai(t) = δij,

NBj,Bi(t) = δij.
(5.9)

The overlap matrix elements (4.6) between basis functions of different centres become:

NAj,Bi(t) =
∫

exp(it′εA,j − it′′εB,i) φ
†
A,j(x

′) S(−χA − χB) φB,i(x
′′) d3x,

NBj,Ai(t) =
∫

exp(it′′εB,j − it′εA,i) φ
†
B,j(x

′′) S(−χA − χB) φA,i(x
′) d3x.

(5.10)

Certainly, the overlap matrix is hermitian, such that N∆j,Γi(t) = NΓi,∆j(t)
∗ holds,

which is evident already from definition (4.6). The overlap matrix elements (5.10)
are vanishing only as t approaches ±∞ and are nonzero otherwise (cf. section 3.4).

As verified by using equation (5.8), the interaction matrix elements (4.7) between
undistorted basis functions are given in the present context by the following expres-
sions:

VAj,Ai(t) =
∫

{

− eVB(rB(t, x))
}

×

× exp(it′εA,j − it′εA,i) φA,j(x
′)† S(−2χA + 2χB) φA,i(x

′) d3x

VAj,Bi(t) =
∫

{

− eVA(rA(t, x))
}

×

× exp(it′εA,j − it′′εB,i) φA,j(x
′)† S(χA − χB) φB,i(x

′′) d3x

VBj,Ai(t) =
∫

{

− eVB(rB(t, x))
}

×

× exp(it′′εB,j − it′εA,i) φB,j(x
′′)† S(−χA + χB) φA,i(x

′) d3x

VBj,Bi(t) =
∫

{

− eVA(rA(t, x))
}

×

× exp(it′′εB,j − it′′εB,i) φB,j(x
′′)† S(2χA − 2χB) φB,i(x

′′) d3x

(5.11)

Numerically the matrix elements (5.10) and (5.11) have to be evaluated by three-
dimensional quadrature formulas (see appendix A). Although the interaction matrix
is not hermitian, the partial symmetry VΓj,Γi = V ∗

Γi,Γj is useful to reduce the effort of
the computationally very demanding numerical evaluation. The fundamental solu-
tion F (t, ti) is then computed by integrating the differential equation (4.8) between
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some suitable initial and final times, ti and tf , chosen in a symmetrical fashion as
ti = −tf .

5.3.2 Phase-distorted basis functions. Compared to the definition (5.7) of the
undistorted basis functions, the phase-distorted basis functions have an additional
phase factor, in order to satisfy Coulomb boundary conditions. They are defined as:

ΦA,i(t, x) = exp(igB(t, x)) S(−χA) exp(−it′εA,i)φA,i(x
′),

ΦB,j(t, x) = exp(igA(t, x)) S(−χB) exp(−it′′εB,j)φB,j(x
′′).

(5.12)

We do not use different symbols for phase-distorted and undistorted basis functions,
because they will not both occur in the same equation. In equations (5.12) the energy
eigenvalues εA,i and εB,j , and the eigenfunctions φA,i(x

′) and φB,j(x
′′) are identical

to those of the previous section. Although the phase-distorted basis functions are
not energy or angular momentum eigenfunctions in the primed and doubly primed
reference frames respectively (cf. section B.3 of the appendix), they are denoted by
analogy to the undistorted functions according to table 5.1.

For the present numerical work the following gauge functions gΓ(t, x) have been
used,

gΓ(t, x) =
e2Z̃Γ

v
log

dΓ(t, x) + vγΓ(t − vΓx3)

|bA − bB|
, (5.13)

with dΓ(t, x) as in equation (5.3) and v = tanh |χA − χB|. Remember that ZΓ = Z̃Γ

for the Coulomb potential. The phase-distorted basis functions (5.12) then solve the
following Coulomb-distorted scattering-channel Dirac equations (cf. section 3.7):

[H0 + WA(t, x) + W∞
B (t, x) − i∂t] ΦA,i(t, x) = 0,

[H0 + WB(t, x) + W∞
A (t, x) − i∂t] ΦB,j(t, x) = 0.

We turn to the specific expressions for overlap and interaction matrix elements in
the case of phase-distorted basis functions. Since the additional phase factor cancels
in scalar products between basis functions of the same centre, phase-distorted basis
functions belonging to the same scattering channel are orthonormal for the same
reason as above:

NAj,Ai(t) = δij,

NBj,Bi(t) = δij.
(5.14)

The overlap between basis functions of different channels is different for undistorted
and phase-distorted basis functions. The remaining elements of the hermitian overlap
matrix N(t) are given by:

NAj,Bi(t) =
∫

exp(igA(t, x) − igB(t, x)) ×

× exp(it′εA,j − it′′εB,i) φA,j(x
′)† S(−χA − χB) φB,i(x

′′) d3x

NBj,Ai(t) =
∫

exp(igB(t, x) − igA(t, x)) ×

× exp(it′′εB,j − it′εA,i) φB,j(x
′′)† S(−χA − χB) φA,i(x

′) d3x

(5.15)
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Finally, in the case of phase-distorted basis functions the elements of the interaction
matrix V (t) are explicitly:

VAj,Ai(t) =
∫

{

eVB(dB(t, x)) − eVB(rB(t, x))
}

×

× exp(it′εA,j − it′εA,i) φA,j(x
′)† S(−2χA + 2χB) φA,i(x

′) d3x

VAj,Bi(t) =
∫

exp(igA(t, x) − igB(t, x))
{

eVA(dA(t, x)) − eVA(rA(t, x))
}

×

× exp(it′εA,j − it′′εB,i) φA,j(x
′)† S(χA − χB) φB,i(x

′′) d3x

VBj,Ai(t) =
∫

exp(igB(t, x) − igA(t, x))
{

eVB(dB(t, x)) − eVB(rB(t, x))
}

×

× exp(it′′εB,j − it′εA,i) φB,j(x
′′)† S(−χA + χB) φA,i(x

′) d3x

VBj,Bi(t) =
∫

{

eVA(dA(t, x)) − eVA(rA(t, x))
}

×

× exp(it′′εB,j − it′′εB,i) φB,j(x
′′)† S(2χA − 2χB) φB,i(x

′′) d3x.

(5.16)

Only the difference of the gauge functions gA and gB appears in the integrands.
Note that the partial symmetry of the interaction matrix, VΓj,Γi = V ∗

Γi,Γj, holds for
undistorted as well as phase-distorted basis functions.

5.4 Numerical tests

Before we describe in section 5.5 the inclusion of basis functions representing the
scattering channel C of asymptotically free particles, some numerical calculations will
be presented in this section. These results are based on a coupled channel expansion
exclusively making use of bound state basis functions. Accordingly, only transition
probabilities of excitation and charge transfer may be obtained by such calculations.

Numerical investigations of this kind have been carried out, and published in series
of papers, by Toshima and Eichler (see the original articles [TE88b, TE88a, TE90]
and also [Eic90, EM95]). The work of these authors represents the only fully rela-
tivistic two-centre coupled channel calculations available in the literature. Therefore,
reproducing some of their results is an important check of the new computer pro-
gram. At the same time the present work is the first independent verification of the
numerical results of Toshima and Eichler.

The relativistic two-centre coupled channel calculations reported by Toshima and
Eichler have been performed for a particular frame of reference, namely the target

frame, where the initial configuration is at rest [TE88b, TE88a, TE90]. This cor-
responds in the present program (e.g.) to a calculation in a frame of reference, where
the velocity of centre A is zero, vA = 0, and where the initial electronic configuration
is a bound state of centre A.

In figure 5.1 such a calculation is presented for a symmetrical collision of two
point-like uranium nuclei, where the charge numbers are ZA = ZB = 92. It has been
performed in a rest frame of nucleus A, with a coupled channel basis comprised of the
ten lowest Coulomb–Dirac bound states of each point charge. The time-evolution of
the squared moduli of the expansion coefficients cΓ,i(t) is shown for undistorted basis
functions, for an initial electronic configuration (A, 1s1/2). The collision energy and
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Figure 5.1. Time evolution of the squared moduli of the coefficients ci(t), as
obtained from a numerical coupled channel calculation in the rest frame of nu-

cleus A. The initial configuration presented here is (A, 1s1/2(+
1
2)). The colli-

sion energy T = 1GeV/u corresponds to a velocity vB = 0.876 r.u.. The im-
pact parameter is b = 1.37 r.u. or 0.01 atomic units. The charge numbers are

ZA = ZB = 92 and the ten lowest undistorted bound states have been used as
basis functions. A second abscissa axis, employing atomic units, is provided to
facilitate the comparison with [TE88b, figure 1]. Moreover, this second axis rep-

resents a length scale, giving the distance between the centres along the e3-axis.
Note, that the K-shell radius of nucleus A (which is not Lorentz-contracted) is
approximately 1.5 r.u. or 0.011 a.u. (cf. figure 1.2 on page 9). Hence, the time in-

terval where the K-shell radii of both centres are overlapping is small, compared
to the total time axis shown here. The top plot demonstrates that the funda-
mental solution of the coupled channel equations is only asymptotically unitary,

which implies that the sum
∑

i |ci(t)|2 over all states of the expansion is not a
constant (cf. section 4.2 and figure 5.3).
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Figure 5.2. Time evolution of the squared moduli of the expansion coefficients
ci(t), obtained from a coupled channel calculation with the same parameters and

initial configuration as in figure 5.1, but making use of phase-distorted basis

functions.

impact parameter are exactly the same as those of an analogous calculation published
in [TE88b].

A comparison of the two plots at the bottom of figure 5.1 with [TE88b, figure 1]
yields that their match is almost perfect. This confirms that the present numerical
code is functioning properly. The numerical results published by Toshima and Eichler
more than ten years ago represent an enormous achievement, in a time, when com-
puting facilities have been much less powerful than today. The marginal difference
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Figure 5.3. Properties of the overlap matrix N(t), the interaction matrix V (t)

and the fundamental solution matrix F (t, ti) for the same calculation as shown
in figure 5.1.

between the two figures is, therefore, attributed to the greater numerical accuracy
of the present numerical results, due to the availability of more powerful computing
facilities for the present work.

The two corresponding plots of figure 5.2 show the time-evolution of the squared
moduli of the expansion coefficients, for the same collision system and parameters as
in figure 5.1, with the only difference that phase-distorted basis functions have been
used. In fact, the data of both figures originates from the same run of the program,
which integrates the coupled channel equations for undistorted and phase-distorted
basis functions simultaneously. The plot in the middle of figure 5.2 may be compared
with [TE90, figure 2] or [EM95, p. 178]. The qualitative resemblance is clearly seen,
although [TE90, figure 2] represents a calculation using the 18 lowest phase-distorted
bound states of each centre.

A principal difference, between the plots in the middle of figures 5.1 and 5.2
respectively, is the missing excitation of target bound states in the calculation with
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Figure 5.4. Properties of the matrices N(t), V (t) and F (t, ti) for the numerical

calculation with phase-distorted basis functions presented in figure 5.2.

phase-distorted basis functions, much before the closest approach of the centres at
t = 0. It demonstrates the effect of the phase distortion, making the interaction short-
ranged. In figure 5.1 the long-range character of the Liénard-Wiechert potential leads
to target excitations long before the time of closest approach of the nuclei. In detail
this has been described first in [TE90].

Finally, let us turn to figures 5.3 and 5.4 which illustrate typical features of the
overlap and interaction matrices, N(t) and V (t), and of the fundamental solution
F (t, ti) of the coupled channel equations, as explained in the previous section. Since
these properties are known due to analytical considerations, their numerical verifica-
tion constitutes another test for the numerical code. Such plots are not yet available,
apparently in the quoted works the full fundamental solution has not been deter-
mined.

The green line of the top plot of figure 5.3 shows the root mean squared deviation
of the overlap matrix N(t) from the unit matrix for undistorted basis functions. Up
to a constant factor this root mean squared deviation is equal to the Frobenius norm
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‖N(t) − 1‖F of the square matrix N(t) − 1 [GV96]:

‖N(t) − 1‖F =





∑

∆,Γ,j,i

|N∆j,Γi(t) − δ∆Γδji|2




1/2

. (5.17)

The non-orthogonality of the basis functions during the collision and their asymptotic
orthonormality is properly obtained by the numerical calculation. For the existence
of the inverse matrix N−1(t) only the linear independence of the basis functions at
any time t is necessary, which is equivalent to the regularity of the overlap matrix
N(t). This regularity of N(t) is observably provided, since the determinant det N(t)
is clearly seen to be nonzero for all times t.

The red line of figure 5.3 shows the root mean squared modulus of the interaction
matrix elements, which are vanishing for large times, and are increasing towards
t = 0, the time of closest approach of the centres.

In the bottom diagram of figure 5.3 the singular values of the fundamental solu-
tion F (t, ti) are plotted as a function of time. As explained in subsection 4.2.1, the
unitarity of the fundamental solution is equivalent to the property, that all singular
values of F (t, ti) are equal to one. Analytically this has been proved to hold asymp-
totically, and it is also obtained from the present numerical calculation for large times
t. A measure of the accuracy of a numerical computation is the difference between
the singular values and unity at the final time tf .

In figure 5.4 the same quantities are presented for the calculation with phase-
distorted basis functions. There are two striking differences between calculations with
undistorted and phase-distorted basis functions. First, it is seen that the overlap of
phase-distorted basis functions is smaller. Secondly, as t tends to ±∞, the interaction
matrix elements decrease much faster to zero in figure 5.4 compared to figure 5.3.
Again, this reflects the short-range character of the scattering theory with Coulomb-
corrected, or phase-distorted, basis functions.

5.5 Free-particle basis functions

In order to describe ionisation and pair creation with the coupled channel method,
the coupled channel basis needs to be extended by basis functions representing free
particles. This section describes the basis functions chosen for the present numerical
approach. Alternative basis functions, which have been used in other numerical
coupled channel treatments of the two-centre Dirac equation, are discussed briefly,
in order to motivate of the present choice.

5.5.1 Free Dirac wave packets. Free particle solutions of the two-centre Dirac
equation, at least for short range forces, asymptotically approach solutions of the
free Dirac equation. The time-dependent free wave packet (cf. appendix B),

Φ(t, x) = (2π)−
3

2

∫

ei � · �
{

eitµ( � ) φ̂+(p) + e−itµ(� ) φ̂−(p)
}

d3p,

solves the time-dependent free Dirac equation. Here µ(p) =
√

1 + p2 is the free energy
corresponding to the three-momentum p. Therefore, in a coupled channel calculation,
the free-particle scattering channel C might be represented by a finite set of free
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Figure 5.5. Asymmetrical description of the free-particle scattering channel C

in a coupled channel calculation, by using wave packets of continuum eigenfunc-
tions of centre B.

Dirac wave packets. In principle, this has been done in [THGS95, GMS+97], where
the time-dependent free Dirac wave packets have been approximated by stationary
wave packets, in a centre of charge frame. In these calculations the bound-state
scattering channels have been omitted, such that only transition amplitudes between
asymptotically free particles, in particular the free pair production amplitudes, have
been obtained.

5.5.2 Weyl eigendifferentials. The basis functions of the coupled channel expan-
sion (4.1) do not necessarily have to be solutions of the scattering-channel Dirac
equations. In order to determine transition amplitudes it is sufficient, that the basis
functions are asymptotically approaching asymptotic conditions, i.e. solutions of the
scattering-channel wave equations. Such basis functions are, e.g., time-dependent
wave packets constructed by means of continuum eigenfunctions of the electrostatic
potential of one of the two centres. Consider for example continuum eigenfunctions
φB,ε(x

′′) of the potential VB(|x′′|) in the doubly primed rest frame of centre B,

[−iα · ∇′′ − eVB(|x′′|)] φB,ε(x
′′) = ε φB,ε(x

′′). (5.18)

Here, the energy eigenvalue ε is in the continuous spectrum |ε| > 1. These contin-
uum eigenvalues are infinitely degenerate, which is, however, not important for the
moment. Time-dependent, or Weyl, wave packets of these eigenfunctions, which are
Lorentz transformed into the unprimed frame, exactly solve the Dirac equation of
scattering channel B:

[

H0 + WB(t, x) − i∂t

]

S(−χB)

{

1√
∆ε

∫ ε̄+∆ε/2

ε̄−∆ε/2
exp(−it′′ε) φB,ε(x

′′) dε

}

= 0

These wave packets asymptotically approach free wave packets as t goes to ±∞, pro-
vided that VB is short-ranged, which is a standard result from quantum mechanical
two-particle scattering theory [RS79, Tha92]. Therefore, they represent asymptot-
ically free particles. Such Weyl wave packets are clearly orthogonal to the bound
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Figure 5.6. Asymmetrical description of the free-particle scattering channel C

in a coupled channel calculation, as in figure 5.5, but here the charge transfer
channel is omitted as well. Hence, centre A only acts as a perturbation.

states of centre B. The Weyl wave packets are also asymptotically orthogonal to the
bound states of centre A, since they are spreading asymptotically in the same way
as the wave packets of the free Dirac equation (see section 3.4). In principle, Weyl
wave packets of one of the two centres may, therefore, be used as basis functions, rep-
resenting the free-particle scattering channel in a coupled channel calculation. This
approach is schematically depicted in figure 5.5.

The main argument, against the use of Weyl wave packets in numerical calcula-
tions, is the additional energy integration, necessary for a numerical determination
of overlap and interaction matrix elements. This presents a considerable numerical
complexity in practical calculations, well-known already from less demanding nonrela-
tivistic coupled channel calculations [BM92]. Nevertheless, relativistic single-centre
coupled channel calculations in the target frame have been done and presented in
[MGS91]. There, a coupled channel basis comprising bound states of one particular
centre (the target) and Weyl wave packets packets of the same centre have been used
(cf. figure 5.6).

Clearly, the choice of centre B for the construction of the wave packets is asym-
metrical. Weyl wave packets of centre A are equally suitable for the representation of
the free-particle channel, at least in a symmetrical collision system. Hence, a coupled
channel basis comprising a (necessarily) finite number of Weyl wave packets, of both
centre A and centre B, at first glance, seems to be a more appropriate choice. But it
is not clear, how to construct these wave packets such that they are asymptotically
orthogonal and, moreover, the approach towards the asymptotic orthogonality is fast
enough for numerical calculations. Numerical calculations using a two-centre basis
comprising free-particle states of this kind have not been attempted yet.

5.5.3 Stationary wave packets. Weyl wave packets are obtained from continuum
eigenstates of the respective electrostatic potentials of the centres A and B. Their
principal advantage over free Dirac wave packets, described in the first subsection, is
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that they should be more suitable for the description of a solution of the two-centre
Dirac equation. This holds in particular for strong external forces, i.e. large charge
numbers, or equivalently for free electrons and positrons of low kinetic energy.

As an approximation to time-dependent wave packets, stationary wave packets
have been used in the literature and also for the present work. Again, as an example,
consider centre B and its continuum eigenfunctions φB,ε(x

′′) in the doubly primed rest
frame as in equation (5.18). In the doubly primed frame a stationary wave packet is
defined as:

Φ′′
B,ε̄(t

′′, x′′) =
1√
∆ε

exp(−it′′ε̄)
∫ ε̄+∆ε/2

ε̄−∆ε/2
φB,ε(x

′′) dε.

It solves the time-dependent Dirac equation in the doubly primed frame approxi-
mately:

[

H ′′
0 − eVB(|x′′|) − i∂t′′

]

Φ′′
B,ε̄(t

′′, x′′) ≈ 0.

By construction a stationary wave packet is localised around the spatial origin of the
doubly primed coordinates for all times. Although stationary wave packets do not
spread, they are usually considered as a helpful substitutes for Weyl wave packets.
The use of stationary wave packets is sometimes referred to as the ‘discretisation of
the continuum’.

For a spherically symmetric external field the continuum eigenvalues ε are infin-
itely degenerate, since an eigenfunction φB,ε(x

′′) may be a simultaneous eigenfunction
of the spin-orbit operator K ′′, with any of the eigenvalues κ = ±1,±2,±3, . . . . Sta-
tionary wave packets are usually constructed from eigenfunctions with definite values
of the angular momentum quantum numbers κ and m. Such wave packets, denoted
by Φ′′

B;ε̄,∆ε,κ,m(t′′, x′′) are orthogonal in the doubly primed reference frame, if their
energy intervals are non-overlapping or if they have different angular momenta.

The advantage of stationary wave packets over Weyl wave packets is, that the
energy integration needs to be carried out only once, yielding radial wave functions,
which can be tabulated for later reference. The energy integration does not need be
included in every single evaluation of an overlap or an interaction matrix element.
Consequently numerical computations become less demanding.

Another advantage is that the stationary wave packets of different centres are
asymptotically orthogonal, due to their localisation at different centres. This makes
a two-centre description of the free-particle scattering channel feasible. As a conse-
quence of the splitting of the free-particle basis functions into two subsets, attributed
to centre A and centre B respectively, ionisation and pair creation processes both
can be subdivided into ‘excitation’- and ‘transfer’-type processes. This is depicted in
figure 5.7.

Single-centre relativistic coupled channel calculations, using stationary wave pack-
ets, have been reported in [RMS+91, RSG93, BRBW93, BRBW94]. These single-
centre approaches can only describe excitation-like processes, as depicted in figure
5.6, and, therefore, they even exclude the description of the charge transfer process.
A relativistic two-centre coupled channel calculation, including wave packets of both

centres, has been implemented for the first time in this work.
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Figure 5.7. The two-centre approximation of the free-particle scattering chan-
nel C. Ionisation and pair creation processes may be of ‘excitation’- or ‘transfer’-
type. A similar schematic picture has previously appeared in [Eic95].

5.5.4 Details of the present approach. Similar to bound-state basis functions,
stationary wave packets for the coupled channel basis are constructed as eigenfunc-
tions of the spin-orbit operators and the third components of the total angular mo-
mentum in the primed and doubly primed frames respectively. These wave functions
have to be Lorentz-boosted into the unprimed reference frame. The parameters of
such wave packets, namely the mean energy ε̄, the width of the energy interval ∆ε,
the spin-orbit quantum number κ and the third component of the total angular mo-
mentum m, are again abbreviated by single indices i or j. Using this notation, the
additional undistorted basis functions, which have been employed in numerical cal-
culations of the present work, have the following form in the unprimed reference
frame:

ΦA,i(t, x) = S(−χA)
exp(−it′ε̄i)√

∆εi

∫ ε̄i+∆εi/2

ε̄i−∆εi/2
φA,ε,κi,mi

(x′) dε,

ΦB,j(t, x) = S(−χB)
exp(−it′′ε̄j)

√

∆εj

∫ ε̄j+∆εj/2

ε̄j−∆εj/2
φB,ε,κj,mj

(x′′) dε.
(5.19)

The precise forms of the normalised continuum eigenfunctions φA,ε,κ,m(x′) and φB,ε,κ,m(x′′)
are given in appendix A. In (5.19) the energy integrals obviously take the roles of
the time-independent bound state eigenfunctions, appearing in the corresponding
equations (5.7).

However, the basis functions (5.19) solve the Dirac equations of the scattering
channels A and B respectively only approximately,

[

H0 + WA(t, x) − i∂t

]

ΦA,i(t, x) ≈ 0,
[

H0 + WB(t, x) − i∂t

]

ΦB,j(t, x) ≈ 0,
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as pointed out earlier. For the determination of the elements of the interaction
matrix this fact is neglected, and the matrix elements are calculated according to
equations (5.11), even if the basis function on the right hand side of the scalar product
corresponds to a wave packet. This procedure is customary also for single-centre
coupled channel calculations.

Unfortunately, a further drawback exists for coupled channel calculations in which
the centre, a stationary wave packet is attributed to, is moving. Due to the ap-
proximation of the time-evolution of stationary wave packets in their rest frame,
Lorentz-transformed wave packets of the same centre are no longer orthonormal in
the unprimed frame, even if they are mutually orthogonal and normalised in their
rest frame. The reason is that the Lorentz-boost invariance of the scalar product
requires, that both wave functions exactly solve the same Dirac equation (see section
B.2). Note, that such a difficulty does not exist for Weyl wave packets, because they
are proper solutions of the wave equations of the respective scattering channel.

This problem has not appeared in the single-centre calculations with stationary
wave packets [RMS

+
91, RSG93, BRBW93, BRBW94]. There, the frame of ref-

erence of the coupled channel calculation has always been identical to the rest frame
of the centre the coupled channel basis referred to. Obviously, in a two-centre ap-
proach, at least one of the centres is moving. In practical calculations of this work
the overlap matrix elements involving wave packets are evaluated numerically, using
the expressions (5.10).

Also phase-distorted wave packets have been used, which are defined in the same
way as the phase-distorted basis functions that represent bound states. The matrix
elements with phase-distorted wave packets are also evaluated according to the equa-
tions (5.15) and (5.16). Numerical results obtained from calculations with coupled
channel bases, comprising both bound-state and free-particle functions, are presented
in sections 6.6 and 6.7 of the next chapter.


