
Chapter 4

Coupled Channel Approximation

In this chapter, we give an introduction to the coupled channel method, used in this
work to solve the two-centre Dirac equation numerically. Although this method has
been widely used for many years, also for the solution of the two-centre Schrödinger
equation, a brief account of this ansatz is necessary to explain its principal ideas and
present notational conventions. Here, particular emphasis is given to the fundamental
solution of the coupled channel equations and its properties. In this respect the
following sections differ from standard presentations of the numerical method [BM92,
EM95].

4.1 Coupled channel equations for the semiclassical

approximation

The principal idea of the coupled channel ansatz is to construct an approximate solu-
tion Ψ̃(t, x) of the Dirac equation (2.11) as a finite time-dependent linear combination
of asymptotic configurations ΦΓ,i(t, x):

Ψ̃(t, x) =
∑

Γ,i

cΓ,i(t) ΦΓ,i(t, x). (4.1)

The states ΦΓ,i included in this finite sum are usually referred to as the basis func-

tions of the coupled channel expansion [BM92, EM95]. Note that generally an
exact solution of the two-centre Dirac equation cannot be written as finite sum of
asymptotic configurations. However, in the case of the two-centre Dirac equation an
infinite series expansion is suitable to represent an arbitrary solution. The accuracy
and usefulness of this ansatz depends on the physical situation under consideration
and the corresponding choice of basis functions. More general expansions are possi-
ble in which the basis functions are equal to the asymptotic configurations ΦΓ,i only
asymptotically (i.e. for large times).

The determination of the complex expansion coefficients cΓ,i(t) is guided by the
following reasoning. Assume that a solution Ψ(t, x) of a Dirac equation with a time-
dependent Hamilton operator H(t),

[H(t) − i∂t] Ψ(t, x) = 0,

may be approximated by a wave function of the type given in equation (4.1), then
Ψ̃(t, x) approximately solves that Dirac equation:

[H(t) − i∂t]
∑

Γ,i

cΓ,i(t) ΦΓ,i(t, x) ≈ 0. (4.2)

Multiplying this equation from the left by the adjoint of some basis function Φ†
∆,j and

integrating over x yields a set of approximate equations for the coefficients cΓ,i(t). By
turning the approximate equality into an exact equality a prescription for the deter-
mination of the coefficients cΓ,i(t) is obtained. Therefore, given the time-dependent
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42 4. COUPLED CHANNEL APPROXIMATION

Dirac-Hamiltonian H(t), according to this prescription the expansion coefficients
cΓ,i(t) have to be determined by solving the following set of differential equations:
∑

Γ,i

cΓ,i(t)
(

Φ∆,j(t), [H(t) − i∂t] ΦΓ,i(t)
)

− i
∑

Γ,i

(∂t cΓ,i(t))
(

Φ∆,j(t), ΦΓ,i(t)
)

= 0. (4.3)

These equations will be referred to as the coupled channel equations. In the non-
relativistic impact parameter model, based, e.g., on the Schrödinger equation, the
coupled channel equations may also be derived from a variational principle [BM92].
Note that in the literature on atomic physics the term coupled channel equations
sometimes also refers to other (integro-differential) equations which are more or less
related to the present set of equations (4.3) [BM92, Fri90].

The important, distinctive property of the coupled channel equations is that the
norm ‖Ψ̃(t)‖ of an approximate solution Ψ̃(t, x) is independent of the time t. Fol-
lowing [BM92] it is verified as follows. As a consequence of equation (4.3) we have,

∫

Ψ̃(t, x)†
(

[H(t) − i∂t] Ψ̃(t, x)
)

d3x = 0,

although Ψ̃(t, x) is not an exact solution of the Dirac equation in general. Due to
the hermitian property of the Hamiltonian H(t) the time-independence of the norm

‖Ψ̃(t)‖ is obtained by taking the time derivative of the norm squared:

∂t‖Ψ̃(t)‖2 =
(

∂tΨ̃(t), Ψ̃(t)
)

+
(

Ψ̃(t), ∂tΨ̃(t)
)

=
(

−iH(t)Ψ̃(t), Ψ̃(t)
)

+
(

Ψ̃(t),−iH(t)Ψ̃(t)
)

= 0. (4.4)

In the same way it is proved that the scalar product between two arbitrary approxi-
mate solutions Ψ̃(1)(t) and Ψ̃(2)(t), which are different linear combination of the same
basis functions, is conserved:

∂t

(

Ψ̃(1)(t), Ψ̃(2)(t)
)

= 0 (4.5)

This property, which will be used below, is in fact equivalent to (4.4) due to the
polarisation identity of the scalar product [RS80, Kat80].

To conclude this section, we note that the coupled channel ansatz (4.1) can be
formulated in various relativistic frames of reference. Then the coupled channel
equations (4.3) stated in two different reference frames differ if the Lorentz frames
are moving with respect to each other. This constitutes a peculiarity of the rela-
tivistic theory of coupled channel equations. Nonrelativistic inertial frames all have
the same time axis and the coupled equations are the same in all nonrelativistic
inertial frames. By contrast, in the relativistic theory the time axis is transformed
by a Lorentz boost. The influence of the choice of the relativistic frame of refer-
ence on transition amplitudes computed by means of the coupled channel method is
investigated systematically in this thesis, numerical results are presented in chapter 6.

4.2 Fundamental solution and asymptotic unitarity

In this section, the general mathematical properties of solutions cΓ,i(t) of the coupled
channel equations (4.3) are discussed. In order to simplify the notation in the sub-
sequent presentation, the double indices (Γ, i) of the basis functions are mapped one
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to one and onto the integers from 1 to n, where n is the number of basis functions
occurring in the expansion (4.1). Given such a mapping for some particular set of
basis functions ΦΓ,i, the basis functions may be labelled more simply by a single
integer i. Defining the overlap matrix N(t) of the basis functions Φi(t, x) as,

Nij(t) = (Φi(t), Φj(t)) , (4.6)

and the interaction matrix V (t) as,

Vij(t) = (Φi(t), [H(t) − i∂t] Φj(t)) , (4.7)

the coupled channel equations (4.3) may be rewritten in the equivalent matrix form
[BM92, EM95]:

∂t c(t) = −iN(t)−1
V (t)c(t). (4.8)

Here, c(t) denotes a vector of expansion coefficients, c(t) = (c1(t), . . . , cn(t)). Equa-
tion (4.8) is a homogeneous linear ordinary differential equation. It is assumed in
the following that every initial value problem of equation (4.8) has a unique solution
defined for all times t. It is known from the theory of ordinary differential equa-
tions that, under this assumption, a system of n linear independent solutions exists
such that every solution of (4.8) is a linear combination of these linear independent
solutions [CL55, Wal93].

We introduce the fundamental solution of equation (4.8) and discuss its properties:
Let F (t, ti) denote the matrix of column-vectors c(i)(t, ti) which are solutions of (4.8)

and meet the initial condition c
(i)
j (ti, ti) = δij at time ti:

F (ti, ti) =
(

c(1)(ti, ti), c
(2)(ti, ti), . . . , c(n)(ti, ti)

)

= 1. (4.9)

Throughout this work, multiples of the unit matrix are represented simply by com-
plex numbers, therefore, the numeral 1 in the previous equation stands for the unit
matrix. Such a system of solutions is commonly known as a fundamental system of
solutions [Wal93]. It exists for any initial time ti (see above). The two-parameter
matrix-valued function F (t, ti) will be referred to as the fundamental solution of the
coupled channel equations for the initial time ti. The properties of this fundamental
solution have not yet been explicitly discussed in the literature on coupled channel
calculations.

As a consequence of the unique solvability of the initial value problem, the fun-
damental solution F has the following additional properties:

F (t2, t1)F (t1, t0) = F (t2, t0), (4.10)

F (t1, t0)
−1 = F (t0, t1), (4.11)

satisfied for arbitrary times t0, t1 and t2.
Note that F is generally not a unitary matrix (i.e. a unitary time evolution),

because the matrix −iN(t)−1V (t) of the coefficients of the linear differential equa-
tion (4.8) is not anti-hermitian. However, this coefficient matrix may be anti-hermitian
in particular cases, e.g. in single-centre coupled channel equations. In such cases
F (t, ti) is unitary for all arguments t and ti [CL55, Wal93]. However, the matrix
F (t2, t1) is asymptotically unitary, if the overlap matrix N(t) converges to the unit
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matrix as t → ±∞, i.e. if the basis functions are asymptotically orthogonal. Asymp-
totic unitarity is useful later in this work in order to check and assess the accuracy
of a numerically evaluated fundamental solution F (tf, ti).

It can be verified that the time-independence of the scalar product (4.5) is equiv-
alent to the following relation between the fundamental solution F and the overlap
matrix N(t):

F (t1, t0)
†N(t1)F (t1, t0) = N(t0). (4.12)

Given the asymptotic orthonormality of the basis functions, the asymptotic unitarity
of the fundamental solution F is obtained by taking the limits t1 → ∞ and t0 → −∞:

lim
t1→∞

lim
t0→−∞

F (t1, t0)
†F (t1, t0) = 1. (4.13)

This means in particular that the norms at t = ±∞ of some arbitrary solution c(t)
of the coupled channel equations are equal,

lim
t→−∞

‖c(t)‖2 = lim
t→∞

‖c(t)‖2, (4.14)

if N(t) → 1 as t approaches ±∞.
Note that the existence of the limits limt→±∞ c(t) themselves is not implied

by (4.14). Their existence can be deduced from the asymptotic convergence of the
fundamental solution,

lim
t1→∞

lim
t0→−∞

F (t1, t0) = F (∞,−∞), (4.15)

which is likewise not implied by (4.13) and, in principle, requires a separate math-
ematical discussion. The limit F (∞,−∞) takes the role of the ‘coupled channel
scattering matrix’ (see section 4.3 below) and satisfies:

F (∞,−∞)† = F (∞,−∞)−1 = F (−∞,∞). (4.16)

4.2.1 Unitarity criterion. In this subsection a numerically useful method is de-
veloped in order to assess the deviation of the fundamental solution F (t, ti) from
unitarity. The unitarity of a fundamental solution F (t, ti) is equivalent to the prop-
erty,

‖F (t, ti)u‖2 = 1, (4.17)

for all times t and unit vectors u. The unit vector u describes an initial condition at
some initial time ti of a solution c(t) = F (t, ti)u of the coupled channel equations. It
has been mentioned in the previous section that the fundamental solution is generally
not unitary, which means that,

‖F (t, ti)u‖2 6= 1.

As a measure of the deviation of F from unitarity, one may compute the range of the
vector norm ‖F (t, ti)u‖2 substituting all unit vectors u. It turns out that the upper
limit,

max
‖u‖2=1

‖F (t, ti)u‖2,

and the lower limit,

min
‖u‖2=1

‖F (t, ti)u‖2,
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of this range, may be computed easily, because they are related to the so-called
singular values of the the matrix F (t, ti). The singular values of a matrix F are
defined as the positive square roots of the eigenvalues of the matrix F †F [Wil65,
Kat80, RS80, DH93]. Due to the positivity of F †F , the singular values of F are
positive numbers and they will be denoted, in descending order, by σ1, . . . , σn. We
may then compute:

min
‖u‖2=1

‖Fai‖2 =

(

min
v∈Cn

‖Fv‖2
2

‖v‖2
2

)
1

2

=

(

min
v∈Cn

v†F †Fv

v†v

)
1

2

= σn. (4.18)

The last step is obtained by writing the vector v ∈ Cn as a linear combination of
orthonormal eigenvectors of the hermitian matrix F †F . In the same way the relation,

max
‖u‖2=1

‖Fu‖2 = σ1, (4.19)

is obtained. We conclude that,

σn(t, ti) ≤ ‖F (t, ti)u‖2 ≤ σ1(t, ti), (4.20)

for any unit vector u. In particular, a fundamental solution matrix F (t, ti) is unitary if
and only if σ1(t, ti) = σn(t, ti) = 1. Therefore, the determination of the singular values
is an appropriate method to assess the unitarity of F (t, ti) in numerical calculations.
It is also an efficient method because stable iterative methods for the evaluation of
singular values of square matrices exist (see [GV96, DH93, ABB+99]).

4.3 Approximate transition amplitudes

The coupled channel method is used to compute approximate transition amplitudes
numerically. In order to deduce the relation between the analytically defined tran-
sition amplitude and the fundamental solution matrix, recall the post form of the
transition amplitude, presented in section 3.2:

a∆l,Γk = lim
t→∞

(

Φ∆,l(t), Ψ
+
Γ,k(t)

)

. (4.21)

Consider an approximate solution Ψ̃+
Γ,k(t, x) of the two-centre Dirac equation, which

is obtained by means of the coupled channel method and approaches the asymptotic
configuration ΦΓ,k(t, x) as t → −∞,

lim
t→−∞

∥

∥

∥Ψ̃+
Γ,k(t) − ΦΓ,k(t)

∥

∥

∥ = 0.

The approximate transition amplitude ã∆l,Γk is defined similarly to equation (4.21)
by,

ã∆l,Γk = lim
t→∞

(

Φ∆,l(t), Ψ̃
+
Γ,k(t)

)

. (4.22)
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Assuming asymptotic orthogonality of the basis functions ΦΓ,k(t, x) of the coupled
channel expansion, the short calculation,

ã∆l,Γk = lim
t→∞

(

Φ∆,l(t),
∑

Θ,m

cΘ,m(t) ΦΘ,m(t)
)

(where lim
t→−∞

cΘ,m(t) = δΘm,Γk)

=
∑

Θ,m

lim
t→∞

cΘ,m(t) lim
t→∞

(Φ∆,l(t), ΦΘ,m(t))

= lim
t→∞

c∆,l(t),

shows that the approximate transition amplitudes are identical to the elements of the
matrix F (∞,−∞) defined in equation (4.15),

F (∞,−∞)∆l,Γk = ã∆l,Γk.

As a consequence of the unitarity of F (∞,−∞) the finite sum over all approximate
transition probabilities is one, for any initial configuration (Γ, k), i.e.

∑

∆,l

|ã∆l,Γk|
2 = 1.

This property is not a consequence of the conservation of probability (3.19), which
was discussed in the context of the exact scattering theory of the two-centre Dirac
equation. But it is a feature of the coupled channel equations. In general the cor-
responding finite sum over the exact transition probabilities |a∆l,Γk|

2 will be smaller
than one.

As demonstrated by numerical calculations presented in chapter 6, the approx-
imate transition amplitude ã∆l,Γk is not invariant under Lorentz boosts. This fact
also reflects the breaking of the Lorentz invariance due to the coupled channel ap-
proximation.

Certainly, the matrix of transition amplitudes F (∞,−∞) must be approximated
in numerical calculations by a fundamental solution matrix F (tf , ti) with finite initial
and final times ti and tf .


