
Charge Transfer and Pair Production in

Relativistic Heavy-Ion Collisions

Dissertation zur Erlangung der Doktorwürde, beim

Fachbereich Physik der Freien Universität Berlin

eingereicht im Mai 2001, von

Carl Ludwig Tim Brunne



Erster Gutachter: Prof. Dr. J. Eichler
Hahn-Meitner-Institut Berlin
Glienicker Straße 100
D-14109 Berlin
E-Mail: eichler@hmi.de

Zweiter Gutachter: Prof. Dr. V. Linke
Fachbereich Physik
Freie Universität Berlin
Arnimallee 14
D-14195 Berlin
E-Mail: linke@physik.fu-berlin.de

Tag der Disputation: 2. Juli 2001

Adresse des Autors: Tim Brunne
Hahn-Meitner-Institut Berlin
Glienicker Straße 100
D-14109 Berlin
E-Mail: tim@brunne.de

mailto:eichler@hmi.de
mailto:linke@physik.fu-berlin.de
mailto:tim@brunne.de


Zusammenfassung

In dieser Arbeit werden Ladungsaustausch und Elektron-Positron Paarerzeugung in
relativistischen Stößen schwerer Ionen theoretisch untersucht. Dabei werden peri-
phere Stöße von Schwerionen betrachtet, auch als atomare Stöße bezeichnet, bei
denen die Atomkerne unverändert bleiben. Bei solchen Stößen ist der minimale
Kernabstand beim Stoß genügend groß, so daß die starke Wechselwirkung der Kerne
untereinander nicht von Bedeutung ist. Der theoretische Zugang beruht auf einer
semiklassischen Näherung. Die Bewegung der Atomkerne, welche als klassische La-
dungsverteilungen angesehen werden, wird durch relativistische klassische Trajekto-
rien beschrieben, die Dynamik der Elektronen dagegen durch die Quantentheorie.
Wir betrachten Stoßsysteme mit Kernladungszahlen zwischen Z = 66 und Z = 92
bei Stoßenergien von etwa 1 GeV/Nukleon kinetischer Energie im Ruhesystem eines
Stoßpartners. Für solche Systeme ist eine relativistische quantentheoretische Be-
schreibung der Elektronen- und Positronen-Dynamik notwendig und gegeben durch
die Zwei-Zentren-Dirac-Gleichung. Experimentell können derartige Stöße untersucht
werden seitdem entsprechende Schwerionen und Energien in Beschleunigeranlagen
zur Verfügung stehen, wie z.B. in Berkeley seit Mitte der achtziger Jahre.

Die nicht-störungstheoretische Lösung der zeitabhängigen Zwei-Zentren-Dirac-
Gleichung ist Hauptgegenstand der vorliegenden Arbeit. Nach einer Einführung
in dieses Modell relativistischer atomarer Stöße wird in Kapitel 3 eine relativisti-
sche Vielkanal-Streutheorie der Zwei-Zentren-Dirac-Gleichung formuliert und unter-
sucht. Für eine Klasse von Zwei-Zentren-Dirac-Gleichungen mit abgeschirmten Kern-
ladungen werden die asymptotische Konvergenz und die relativistische Invarianz der
Anregungs- und Ladungstransfer-Amplituden nachgewiesen.

Zur numerischen Lösung der Gleichung wird die Methode der gekoppelten Kanäle
herangezogen (siehe Kapitel 4). Im Vergleich zu früheren numerischen Rechnungen
dieser Art erlaubt der für diese Arbeit neu erstellte numerische Code (siehe An-
hang A) erstmals die Lösung der gekoppelte-Kanäle-Gleichungen in einer Vielzahl
unterschiedlicher Lorentz-Bezugssysteme. Dadurch kann unter anderem erstmals die
Verletzung der Lorentz-Invarianz aufgrund des Lösungsansatzes studiert und die Ge-
nauigkeit der Ergebnisse beurteilt werden (siehe Kapitel 6). Es zeigt sich durchge-
hend, daß die Verwendung von sogenannten Coulomb-verzerrten Basisfunktionen die
Bezugssystem-Abhängigkeit der numerischen Ergebnisse deutlich vermindert. Eine
weitere Neuerung der hier vorgestellten Rechnungen stellt die benutzte gekoppelte-
Kanäle-Basis dar. Unterschiedliche Ansätze früherer Arbeiten werden in Form einer
bezüglich der Zentren symmetrischen Basis vereinheitlicht, welche gleichzeitig freie
Teilchen beschreiben kann.

Es werden numerische Ergebnisse zum relativistischen Elektronentransfer
präsentiert. Wir beginnen mit Rechnungen, die publizierte theoretische Resulta-
te zu diesem Prozeß bestätigen. Darüber hinaus wird erstmalig die Ladungszahl-
und Stoßenergie-Abhängigkeit des totalen Ladungstransfer-Wirkungsquerschnittes
nicht-störungstheoretisch untersucht. Die berechneten Ergebnisse sind in qualitativer
Übereinstimmung mit den experimentellen Daten für schwere Stoßsysteme. Sie unter-
scheiden sich aber deutlich von den entsprechenden parametrischen Abhängigkeiten,
wie sie von Störungstheorien für höhere Stoßenergien vorrausgesagt werden.
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Desweiteren betrachten wir gebunden-freie Paarerzeugung, d.h. den Prozeß, in
dem ein Elektron in einem gebundenen Zustand und ein Positron in einem freien Zu-
stand erzeugt werden. Der Schwerpunkt der Untersuchungen liegt hierbei auf einem
qualitativen Verständnis der Verwendung einer bezüglich der Stoßpartner symme-
trischen Basis von Positronen-Zuständen. In der Literatur wird bislang ausschließ-
lich eine unsymmetrische Beschreibung verwendet, was numerisch einfacher zu be-
handeln ist. Darüber hinaus wurde auch für den Paarerzeugungsprozeß erstmals
die Abhängigkeit der numerischen Ergebnisse vom Lorentz-Bezugssystem untersucht.
Diese Abhängigkeit erwies sich als sehr ausgeprägt. Aufgrund dieser Tatsache ergibt
sich ein vorerst uneinheitliches Bild bezüglich der Frage, ob eine symmetrischen Basis
zur Beschreibung des Paarerzeugungs-Prozesses bei mittleren relativistischen Stoß-
energien notwendig ist. Das ist allerdings der Fall für die numerischen Rechnungen im
Collider-System, die nicht nur dadurch ausgezeichnet sind, daß eine Symmetrie der
exakten Streutheorie erhalten ist, sondern auch dadurch, daß sie den experimentel-
len Befunden am nächsten kommen. Schließlich wird durch numerische Rechnungen
die Vermutung bestätigt, daß die Abhängigkeit der berechneten Ladungstransfer-
Wahrscheinlichkeiten vom Bezugssystem durch die Hinzunahme von Basisfunktionen
für freie Teilchen abgeschwächt wird.

Summary

In this thesis, we investigate the processes of charge transfer and electron-positron
pair creation in relativistic collisions of heavy ions. Peripheral collisions are consid-
ered, also referred to as atomic collisions, in which the atomic nuclei remain intact.
In such collisions the closest approach of the nuclei is large enough such that the
strong interaction between the nuclei is of no importance. Electromagnetic interac-
tions of the particles prevail. The theoretical treatment is based on a semiclassical
model. The movement of the atomic nuclei, that are regarded as classical charge
distributions, is described by relativistic classical trajectories, whereas for electrons
a description by quantum theory is required. We consider collision systems with
nuclear charge numbers ranging between Z = 66 and Z = 92. Collision energies,
given in terms of the total kinetic energy in a rest frame of either nucleus, are in the
1 GeV/nucleon range. In such collision systems the motion of electrons and positrons
is relativistic and a suitable description of their dynamics is given by the two-centre
Dirac equation. The experimental investigation of these collision systems became
feasible by the use of heavy-ion accelerators, beginning in the mid 1980’s in Berkeley.

The nonperturbative solution of the time-dependent two-centre Dirac equation is
the principal topic of this work. After introducing this model of relativistic atomic
collisions, we formulate and investigate analytically a relativistic multi-channel scat-
tering theory in chapter 3. In particular, asymptotic convergence and relativistic
invariance are shown for a class of two-centre Dirac equations with screened nuclear
charges.

For the numerical solution of the Dirac equation we use the coupled channel
method (see chapter 4). Contrary to similar calculations reported in the literature,
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the numerical code newly written for this work (see chapter A) allows for the solu-
tion of the coupled channel equations in various different Lorentz frames. Hence, the
violation of Lorentz invariance, owing to the coupled channel approximation, can be
investigated quantitatively for the first time, thereby allowing for the estimation of
the accuracy of relativistic coupled channel calculations (see chapter 6). Generally,
we find that the frame dependence of the numerical results is less pronounced if so-
called phase-distorted basis functions are used. Another innovation of the present
calculations is the type of coupled channel basis used. Different approaches of pre-
viously reported calculations are combined to a unified treatment, namely a basis
which is symmetric with respect to the centres and which is capable of describing
free particles at the same time.

We present numerical results for relativistic electron transfer, beginning with cal-
culations which reproduce previously published theoretical data. For the first time,
the parametric dependencies of the charge transfer process on the charge numbers of
the nuclei and the collision energy are investigated using a nonperturbative method.
The results are in qualitative agreement with experimental measurements for heavy
collision systems. However, they are distinctly different from the parametric depen-
dencies obtained by most perturbative calculations for higher collision energies.

Furthermore, we consider the process of bound-free pair production, in which
a free positron and a bound electron are created. The emphasis of the theoretical
studies is on a qualitative understanding of the importance of a symmetrical ba-
sis of positron states for the description of this process at intermediate relativistic
collision energies. In the literature only asymmetrical approaches are used, which
are computationally less demanding. Furthermore, we investigate the Lorentz frame
dependence of the numerical calculations for the pair creation process, which has
likewise not been considered before. Owing to the pronounced frame dependence
found, the necessity of a symmetrical basis for the description of the pair creation
process cannot be assessed unambiguously. However, a symmetrical basis is impor-
tant in calculations in the collider frame, which not only preserve a symmetry of the
exact scattering theory, but are closest to the experimental findings as well. Finally,
we confirm the conjecture that the addition of free-particle states to a coupled chan-
nel basis of bound states reduces the frame dependence of numerical results for the
charge transfer process.
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Chapter 1

Introduction

1.1 Relativistic ion-atom collisions

The aim of this thesis is to contribute to the theory of relativistic atomic collisions. In
relativistic as well as nonrelativistic ion-atom and ion-ion collisions nuclear interac-
tions of the ionic nuclei are of no importance for physical processes. Electromagnetic
interactions prevail. Principal physical phenomena occurring in such collisions are,
e.g., electronic excitation, ionisation, nonradiative and radiative electron transfer.
In relativistic collisions another process, the electromagnetic creation of electron-
positron pairs, has been observed as well.

There are two principal features each of which can make an atomic collision rela-
tivistic in character. First, large nuclear charge numbers of the colliding ions render
a relativistic description of bound states of inner atomic shells mandatory. Second,
a relativistic theory for the exchange of an electron is required in collisions with a
relative velocity of the collision partners that is comparable to the speed of light.
Moreover, for such relativistic collision velocities the retardation of electromagnetic
fields of moving charges, neglected in nonrelativistic theories, must be taken into
account. In this work collision systems are considered, for which the nuclear charge
numbers of the ions are very large and also the collision velocities are comparable to
the speed of light, but not approaching the latter.

The acceleration of heavy-ions to relativistic velocities requires large-scale exper-
imental facilities. Table 1.1 lists the main laboratories that are capable of providing
beams of highly charged heavy-ions with particle velocities exceeding 75% of the
speed of light. As common practice in the field of relativistic atomic collisions, beam
energies are given in terms of a Lorentz factor γ corresponding to a Lorentz boost
from the laboratory frame to a rest frame of the accelerated ions. Collision exper-
iments with heavy and highly-charged ions are usually performed with solid or gas
targets, at rest in the laboratory. Only recently, when the Relativistic Heavy Ion
Collider (RHIC) in Brookhaven started operating in July 2000, experiments with
counter-propagating colliding beams of heavy ions have become feasible, yielding
much higher collision energies compared to fixed target experiments.

The main purpose of investigating high-energy collisions of heavy ions is the study
of nuclear interactions and nuclear matter under extreme conditions. The search for
new phenomena in nuclear and particle physics has led to the construction of more
and more powerful heavy-ion accelerators. However, due to the availability of these
experimental facilities also the experimental and theoretical investigation of electro-
magnetic, or atomic, processes in these high-energy collisions has been revived during
the last two decades. It should be mentioned that not only the physics of relativis-
tic atomic collisions has become experimentally accessible by the advent of these
accelerator facilities, but also other branches of atomic physics, like spectroscopic
and recombination experiments with highly-charged few-electron ions [Mok94]. For
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2 1. INTRODUCTION

Table 1.1. Heavy-ion accelerators, storage rings, and colliders that are able
to provide heavy-ion beams with relativistic particle velocities. Some typical

accelerated ions are listed as well as typical beam energies. The latter are given in
terms of the corresponding Lorentz factor γ. Accelerators and storage rings allow
for fixed target experiments and the collision energy is, hence, characterised by

the Lorentz factor γ given in the table. For colliding beam machines the collision
energy instead corresponds to a Lorentz factor 2γ2 − 1, where γ is the Lorentz
factor of the counter-propagating beams given in the table.

Accelerators and storage rings

Schwerionen-Synchrotron (SIS),
GSI, Darmstadt, Germany

C6+ . . . U73+ (γ ≈ 3)

Experimentier-Speicherring (ESR),
GSI, Darmstadt, Germany

U92+ (γ = 1.6)

BEVALAC (shut down in 1993),
LBNL, Berkeley, U.S.A.

La57+ (γ = 2.4) U92+ (γ = 2.0)

Alternating Gradient Synchrotron
(AGS), BNL, Brookhaven

Au79+ (γ = 12.6)

Super Proton Synchrotron (SPS),
CERN, Geneva, Switzerland

O8+, S16+ (γ = 215) Pb82+ (γ = 170)

Colliders

Relativistic Heavy-Ion Collider (RHIC),
BNL, Brookhaven, U.S.A.

Au79+ (γ = 108)

Large Hadron Collider (LHC),
CERN, Geneva, Switzerland
(under construction)

Pb82+ (γ ≈ 3000)

example, fully stripped uranium ions U92+ have been produced first using the BE-
VALAC at Berkeley. Today, the electron beam ion trap is a competing source of
highly charged ions, but for spectroscopic studies of highly charged few-electron sys-
tems heavy ion accelerators are still important.

In heavy-ion collisions without nuclear, or strong, interaction between the ionic
nuclei, the nuclei remain intact in the course of a collision (except for Coulomb
dissociation of the nuclei [BB88, VGS93, BRBW96, NW98]). Such processes are
physically possible due to the short-range nature of the strong interaction. The
colliding nuclei pass each other at a distance that does not allow for strong interaction,
the colliding nuclei exhibit no overlap. Therefore, these collisions are often referred to
as peripheral or distant heavy-ion collisions. In such collisions all physical processes
are of electromagnetic origin.

Moreover, in peripheral collisions with relativistic beam energies the Coulomb
deflection of projectile nuclei by target nuclei is typically less than a few mradians
[EM95]. Therefore, the marginal Coulomb scattering of the nuclei in high-energy
collisions is not important for a theoretical description. An undisturbed linear motion
of the ionic nuclei, without momentum transfer between the nuclei during a collision,
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is an assumption widely adopted in relativistic and even nonrelativistic theoretical
approaches to ion-atom collisions [BM92, EM95].

The physics of atomic collisions has been an intensely studied branch of both ex-
perimental and theoretical physics at least since the early days of quantum physics.
The first theoretical description of charge exchange in atomic collisions, discovered
by Henderson in 1923, was given by Thomas (1927) using a classical model. Op-
penheimer (1928), and Brinkmann and Kramers (1930) published the first quantum
mechanical calculations. Today, even the literature on relativistic peripheral collisions
of heavy ions has become very extensive, since the investigation of high-energy pe-
ripheral collisions of highly charged nuclei provides a unique physical system to study
quantum electrodynamics in the presence of the strongest electromagnetic fields ex-
perimentally accessible to date [Tel87]. For general reviews we mainly refer to
[BM92], for the nonrelativistic theory, and to [Eic90, EM95], regarding relativistic
collisions.

1.2 Survey of experiments

In the following, we want to describe briefly some experiments investigating peripheral
heavy-ion collisions, in order to sketch the experimental status of the field.

The experimental investigation of relativistic charge transfer has been carried out
since the mid 1980’s using the most powerful heavy-ion accelerator at that time,
the BEVALAC at the Lawrence Berkeley Laboratory. Cross sections for electron
capture by 82, 140, and 200MeV/u Xe54+, Xe53+, and Xe52+ ions incident on thin
solid targets from Be to Au have been measured and reported in [MAE+85].1 In
[AMX+87] single electron capture has been investigated also for higher projectile
charge numbers and collision energies, e.g., U92+ ions with collision energy of 430
and 955MeV/u, with targets up to Au. In these experiments total capture cross sec-
tions have been measured, not differentiating between the various final states of the
projectile electron. Two different processes contribute to this total cross section, non-
radiative electron capture (NRC) and capture of an electron with the simultaneous
emission of a photon, referred to as radiative electron capture (REC). The theoretical
understanding of the measured cross sections, based on the relativistic eikonal theory
of electron capture [Eic85] and photoelectric cross sections, has been regarded sat-
isfactory. Electron capture measurements in relativistic collisions of bare ions, U92+

and La57+, in the 1GeV/u energy range impinging on solid targets of Cu, Ag and
Au have been reported in [BGF+97] as well. Again, the theoretical understanding
was found to be satisfactory except for the heavy collision system U92++Au, where
the measured cross section was found to be larger than theoretically predicted by
perturbative theories. Using the ESR in Darmstadt, Stöhlker and collaborators have
performed electron capture measurements with 223MeV/u Helium-like U90+ imping-
ing on gaseous targets of N2, Ar, Kr and Xe. They investigated the distribution
of final states of the captured electron by means of x-ray spectroscopy of radiation

1The collision energy is given here in terms of the kinetic energy of the projectile in the target

frame divided by the projectile nuclear mass in atomic mass units (cf. appendix C).
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emitted by decaying excited projectile states. Their results, which are not published
yet, partly lack theoretical understanding, in particular for the high-Z targets [Stö].

A general feature of the capture of target electrons is the decrease of the total
cross section with increasing projectile kinetic energy. Another atomic process has
been experimentally confirmed in 1993 [BGF+93], namely ‘capture from the vacuum’
or bound-electron free-positron pair creation. Regarding the detection of a down-
charged projectile ion, this process is appearing like an ordinary electron capture
process. But it can be distinguished from the latter by the presence of an emitted
positron. An important difference of ‘capture from the vacuum’ as compared to
capture of target electrons is the increase of the cross section with increasing collision
energy. In collision experiments, performed closely before the final shutdown of the
BEVALAC accelerator, 0.96GeV/u bare uranium ions (U92+) have been used to
observe this process, incident on various solid targets from Mylar foils up to Au.
Down-charged U91+ have been measured in coincidence with positrons created in
the collision. Cross sections have been determined not only for bound-electron free-
positron pair production, but also for the creation of free electron-positron pairs in
peripheral collisions. It was found that both cross sections are of the same order of
magnitude for the U91++Au collision system. After a series of measurements had
been carried out, it was concluded in [BGF+97] that unlike capture and ionisation,
bound-free pair creation at collision energies around 1GeV/u is not reproduced well
by any of the existing theoretical approaches.

Gould emphasized in 1984 that the bound-free pair creation process is of impor-
tance for the construction of heavy-ion colliders, since it can occur also in peripheral
collisions of bare nuclei and its cross section increases with collision energy. The
latter fact has been verified experimentally [BGF+94] after it had been theoretically
predicted. This capture mechanism limits the lifetime of stored beams of colliding
bare ions in heavy-ion colliders, since lower charge-state projectiles are lost from the
beam circulating in a ring. Therefore, the experimental and theoretical investigation
of bound-free pair creation was stimulated starting in the late 1980’s, when the design
of the RHIC and LHC colliders began.

Cross sections of capture and pair creation in peripheral collisions have been
measured also at higher energies using the 10.8GeV/u Au79+ beam of the Alternating
Gradient Synchrotron at Brookhaven [CBD+97, BCD+98]. For this collision energy
the perturbative theories well describe experimental data, i.e. the absolute value of
the cross section for the Au79++Au collision as well as the Z2

T-dependence of the total
cross section on the target charge number ZT.

Electron capture measurements with Pb82+ ions at 160GeV/u, available from
the Super Proton Synchrotron at CERN, are reported in [KVD+98, VKD+00,
KVD+01]. In peripheral heavy-ion collisions at this energy, the highest used to date
in atomic physics experiments, bound-free pair creation becomes the most important
mechanism for electron capture. This has been confirmed experimentally.

Many related experiments have been done for similar collision systems and en-
ergies, investigating processes like ionisation, free electron-positron pair production,
spectra and angular distributions of emitted electrons and positrons, etc.. Here we
have sketched briefly the development of relativistic electron-capture experiments
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during the last fifteen years, since this process is of principal interest in the present
work.

1.3 General theoretical approach

Generally, ion-atom collisions are processes involving many particles which mutually
interact and which are coupled to the electromagnetic radiation field. It is clear that
such many-particle theories are prohibitively complicated for practical calculations.
Therefore, suitable idealisations of the physical situation are necessary in order to
allow for theoretical investigations. Here, we want to describe briefly the main theo-
retical background of this work.

The principal model which has been studied theoretically by many authors is the
three-particle system comprising two nuclei and a single electron. In fact, this sys-
tem can be realised in experiments in which, for example, protons or alpha-particles
impinge on hydrogenic targets. However, the three-particle model has proved to be
extremely useful for understanding other, more complicated collision experiments as
well. Today, beams of hydrogenic and bare heavy-ions are available. For the de-
scription of collision experiments with such beams and atomic targets, the passive
target electrons are usually neglected or enter a theoretical description only indirectly.
Qualitatively, it is comprehended that electron motion is primarily governed by the
strong electromagnetic field of the heavy and highly charged nuclei.

In a relativistic atomic collision to a good approximation the nuclear motion
can be described by classical mechanics while the motion of the electron must be
described by quantum theory. This approach is highly successful also in nonrela-
tivistic collisions, although in some circumstances, which are not discussed in this
thesis, quantum interference effects are not negligible [BM92]. Moreover, not only
the quantum character of the nuclei is simplified, but it is assumed as well that the
motion of the nuclei is not influenced by the much lighter electrons. Taking this point
of view, a simplified model of an atomic collision is given by the equation of motion
of a single quantum-mechanical electron subject to the field of classical point charges
moving along prescribed trajectories. As indicated above the Coulomb deflection of
the colliding nuclei can often be neglected successfully in theoretical descriptions, in
particular of collisions of heavy-ions at high collision energies.

If the motion of electrons and nuclei is not relativistic, the electrons may be
treated as spinless particles and the Schrödinger equation can be used. The retarda-
tion of the electromagnetic fields of the classical nuclei and magnetic fields are not
taken into account. This model is Galilean invariant and referred to as the impact
parameter model, semiclassical approximation or charge-transfer model. The re-
lation between nonrelativistic quantum-mechanical three-particle scattering and the
charge-transfer model is described in more detail for example in [BM92]. Recently
a precise mathematical discussion has appeared as well [Ito95].

A refined description, necessary for high collision velocities, must take into con-
sideration the magnetic field induced by a moving point nucleus and the retardation
of a time-dependent electromagnetic field. In addition, the electronic spin can be
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described by the Pauli–Schrödinger equation. Note, however, that such quantum
theories are neither Galilean nor Lorentz invariant.

Since the present work is concerned with high-energy ion-atom collisions of heavy
ions the dynamical equation for electrons must be the Dirac equation with an external
electromagnetic field. The electromagnetic field originates from the moving nuclei and
includes both electric and magnetic field components and retardation effects. This
description allows for Lorentz invariance. In the rest frame of one of the point nuclei,
which is denoted by A in the following, this time-dependent Dirac equation reads:

i~
∂

∂t
Ψ(t,x) =

[

−i~α · ∇ +mec
2β +

−e2ZA

|x| +
−e2ZB

|x′| γ
(

1 − v

c
α3

)]

Ψ(t,x), (1.1)

with

x′ = x + (γ − 1)(x3 − tv)e3 − b.

Gaussian units have been used for the electrical charge. The quantities ZA and ZB

denote the charge numbers of the nuclei and me the electron mass. The e3-axis of
the spatial coordinate system has been chosen in the direction of linear motion of
nucleus B. The latter moves with velocity v, corresponding to a Lorentz factor γ. The
impact parameter of the trajectory is b, with b ⊥ e3, and α1, α2, α3 and β denote
Dirac matrices. Clearly, in equation (1.1) the Dirac particle is subject to a stationary
Coulomb potential of nucleus A and the time-dependent Liénard–Wiechert potential
of the moving nucleus B. The numerical solution of equation (1.1), and corresponding
Lorentz-transformed equations, is a major topic of this work.

Charge transfer. In the literature equation (1.1) has been used as a model to
describe charge transfer in relativistic atomic collisions. The Dirac equation(1.1) has
solutions which represent bound states of nucleus A or of nucleus B, as t → −∞
or as t → +∞ (cf. chapter 3). Denote by afi(b) the impact-parameter-dependent
amplitude for the transition from an incoming configuration i, say a bound state
of nucleus A, to an outgoing configuration f, say a bound state of nucleus B. As
shown, e.g., in [EM95] the total cross section σfi for the nonradiative charge-transfer
process i→f is then obtained by integrating the probability |afi(b)|2 over the entire
impact-parameter plane:

σfi =
∫

|afi(b)|2 d2b. (1.2)

The calculation of the transition amplitudes afi(b) is accordingly the principal task
for the theoretical determination of NRC cross sections. Many different perturbative
approaches have been used for that in the literature (see [EM95]). In addition, two-
centre coupled channel calculations have been performed, prior to this work, in order
to obtain transition amplitudes nonperturbatively [TE88b, TE88a, TE89]. In these
numerical calculations the two-centre Dirac equation has been solved numerically
using the coupled channel ansatz. They are reproduced and extended in the present
work.

We note that the Dirac equation allows for an unambiguous interpretation only
in a multi-particle theory, i.e. the framework of quantum field theory, as multiply
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bound-free
pair production

free
pair production

excitation ionisation

Figure 1.1. Furry picture of pair creation by an external perturbation.

discussed in the literature. Therefore, it is not surprising that multi-particle phe-
nomena like pair creation have to be dealt with, as soon as a relativistic description
of electron motion is sought.

Pair creation. The description of pair creation in peripheral heavy-ion collisions
clearly requires a multi-particle theory. Frequently, pair creation is viewed as a tran-
sition from the negative energy continuum of a time-independent Dirac Hamiltonian
to a state of positive energy. Consider the electron-positron field in the presence of
a static external field, for example the Coulomb potential of nucleus A. The energy
spectrum of the corresponding Dirac Hamiltonian is sketched in figure 1.1. Energy
eigenvalues in the gap between the negative and positive energy continua correspond
to bound states of the static external field, i.e. bound states of classical nucleus A.
A time-dependent perturbation, as, e.g., the Liénard–Wiechert potential of nucleus
B, leads to transitions between the eigenstates of the time-independent Dirac Hamil-
tonian of nucleus A,

HA = −i~α · ∇ +mec
2β +

−e2ZA

|x| . (1.3)

Transitions from the negative energy continuum to the positive energy continuum
correspond to the creation of free electron-positron pairs, whereas transitions from
states of negative energy to discrete eigenstates of nucleus A represent bound-free pair
creation. Note that this theory also describes ionisation, but not charge transfer.

Assuming that the time-dependent perturbation vanishes as t → ±∞ (which
can be achieved technically by using the adiabatic switching formalism [Tha92]) a
proper multi-particle interpretation of the seemingly ‘single-particle’ transition am-
plitudes is obtained by second quantisation. Second quantisation is the construction
of a multi-particle Fock space based on the spectral decomposition of the state-
space of the classical ‘single-particle’ Dirac equation. For the spectral decompo-
sition, and, therefore, the particle interpretation, reference to a time-independent
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Hamilton operator is necessary. The relation between quantum field theory sub-
ject to external classical sources and the classical Dirac equation has been dis-
cussed in the literature for a long time, starting with the early works of Feynman,
Dyson and others (e.g. [Sch58]). It is a mathematically well-established theory (e.g.
[SM53, Cap69, Sei72, Rui77a, Rui77b, Rui77c]) discussed in many text books
(e.g. [RS79, FGS91, Tha92, Sch95]). We do not review this formalism in the
present work but take the ‘single-particle’ point of view right from the beginning.
For a few important remarks we refer to section 3.6.

As an alternative to the Furry picture, in which the particle interpretation refers
to the Dirac Hamiltonian with a stationary external Coulomb potential (1.3), the
external fields of nuclei A and B may be regarded both as perturbations of the free
Dirac Hamiltonian,

H0 = −i~α · ∇ +mec
2β. (1.4)

This point of view corresponds to the Feynman–Dyson approach to quantum elec-
trodynamics, in which all particles are asymptotically free. This approach does not
allow for particles bound to either classical nucleus A or B. Therefore, the description
of the elementary bound-free pair creation process is not feasible in this picture.

In both approaches, the Furry picture and the Feynman–Dyson interaction pic-
ture, pair creation cross sections are calculated by the determination of transition
amplitudes of the ‘single-particle’ theory. This has been done using many different
approximations. Principally perturbation theory has been used, in combination with
a variety of initial and final states (reviewed in [EM95, Ion97]). Moreover, several
attempts to solve the two-centre Dirac equation (1.1) numerically using a variety
of different techniques have been published (e.g. [MGS91, TBM+92, WOU+92,
RSG93, THGS95, MBS96, MGS98, IB99]). These numerical solutions are gener-
ally very demanding with respect to computing time and, therefore, their reliability
is still more or less limited by this fact. However, for peripheral collisions at small
impact parameters of heavy and highly charged nuclei these nonperturbative calcula-
tions are regarded to be more appropriate than perturbation theory, due to the very
strong electromagnetic interaction in this case.

Finally, let us mention briefly another theoretical approach to describe ionisa-
tion and pair creation in peripheral collisions. It makes use of the equivalent-photon
method developed by Fermi, von Weizsäcker and Williams [Jac99, EM95], replacing
the Liénard–Wiechert potential of nucleus B by a pulse of linearly polarised electro-
magnetic radiation. This is a suitable approximation for high collision velocities and
can be applied to describe many different electromagnetic processes in atoms and nu-
clei induced by passing charged projectiles [BB88]. The Fermi–Weizsäcker–Williams
method has been the basis of the first calculations of electron-positron pair creation
in the 1930’s, published by Landau and Lifshitz, Bhabha, Racah, Nishina, Tomonaga
and Kobayashi. However, we will not encounter this approach in this work again.

1.4 Aim and context

In view of the presumed necessity of a nonperturbative description of bound-free pair
creation in peripheral collisions of highly charged nuclei, several different attempts to
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Target frame:

e3

e1

vP = 0.876

vT = 0

Collider frame:

e3

e1

vP = 0.591 vT = −0.591

Projectile frame:
e1

vP = 0 vT = −0.876

1 r.u.

e3

Figure 1.2. Three different frames of reference are depicted which have been
studied numerically in this work. The Lorentz contraction of moving bound states

is shown for a collision energy of 1 GeV/u in all three cases. One centimetre of
the drawing corresponds to one relativistic unit of both length and velocity. In
relativistic natural units ~ = c = me = 1 holds. The Lorentz-contracted circles

have the size of the K-shell of uranium (≈ 1.5 r.u.). In all three cases, the impact
parameter is 1 r.u. and the time is 4 r.u. before the closest approach of the nuclei.

solve the time-dependent Dirac equation (1.1) numerically have been published. Due
to the more or less successful explanation of experimental data at collision energies
above 10GeV/u, or equivalently γ ≥ 12, the energy regime of interest for the present
work is 1GeV/u. By contrast to higher energies, the cross sections of the first exper-
iments observing bound-free pair creation at this intermediate relativistic collision
energy have not been reproduced reliably by theoretical calculations [BGF+97].

In particular, single-centre coupled channel calculations have been done to de-
termine probabilities of bound-free pair creation at intermediate relativistic collision
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energies. In such single-centre calculations the solution Ψ(t,x) of equation (1.1) is
approximated by a finite linear combination of eigenstates ΦA,k(t,x) of the Coulomb–
Dirac Hamiltonian (1.3),

Ψ(t,x) =
∑

k

cA,k(t)ΦA,k(t,x), (1.5)

and the coefficients cA,k(t) are determined numerically. Some authors have found
that a strong nonperturbative enhancement of pair creation is exhibited by these
calculations [RMS+91, RSG93] others have argued later that this could not be
reproduced if larger coupled channel bases are used [BRBW93, BRBW94].

A principle objection against single-centre expansions as in equation (1.5) is that
it does not allow for the description of the charge transfer process. Moreover, the
representation of the free-particle states is asymmetrical with respect to the nuclei. In
[Eic95] a ‘transfer-like’ bound-free pair creation description by perturbative means
has been proposed. In this approach, the electron bound state and the positron states
are referred to different nuclei.

Apart from single-centre coupled channel calculations, also relativistic two-centre
coupled channel calculations have been reported [TE88b, TE88a, TE90]. The latter
make use of the two-centre expansion,

Ψ(t,x) =
∑

k

cA,k(t)ΦA,k(t,x) +
∑

k

cB,k(t)ΦB,k(t,x), (1.6)

using bound-state wave functions ΦA,k(t,x) and ΦB,k(t,x) of the nuclei A and B
respectively. These calculations allowed for the determination of charge transfer
amplitudes and have been carried out as well for the 1GeV/u collision-energy range.
Attempts to describe ionisation in such two-centre calculations as well, by using
so-called pseudo-states, have been made [TE89]. Although this approach is very
successful in nonrelativistic coupled channel calculations, the use of pseudo-states in
relativistic calculations, however, gave rise to serious problems.

A two-centre coupled channel treatment of the Dirac equation (1.1) with a suitable
description of free-particle states has not been attempted before this work. However,
only such a coupled channel expansion allows for the investigation of two-centre effects
in the process of bound-free pair creation. The question arose whether two-centre
effects could be a reason for the remaining discrepancies between existing ‘excitation-
like’ descriptions of bound-free pair creation and experimentally determined cross
sections.

Another problem, which has not been paid much attention in the literature before
this work, is the Lorentz frame dependence of numerical results obtained by means
of relativistic coupled channel calculations. Since finite expansions of the form (1.5)
and (1.6) respectively can only be approximations to exact solutions of the two-
centre Dirac equation, Lorentz invariance is not guaranteed. Such a problem does
not exist for nonrelativistic coupled channel calculations, since Galilean boosts do not
transform the time axis. A quantitative study of the frame dependence of numerical
results has been carried out in the present work. Previous numerical calculations only
considered the frame of reference in which the initial electronic configuration before
the collision is at rest (top subfigure of figure 1.2). Two other reference frames,
which have been used for numerical calculations of the present work, are also shown
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in figure 1.2. Note that this figure depicts the same collision system as viewed in
different reference frames. In fact, the problem of frame dependence of numerical
calculations has not been considered in the literature for any of the approaches to
solve the time-dependent Dirac equation until now.

For the coupled channel calculations of this work a new computer code had to
be written. Owing to the availability of this numerical code it became feasible to
extend existing nonperturbative studies of the relativistic charge transfer process. In
particular coupled channel calculations for the determination of parametric depen-
dencies of the electron transfer cross section on the charge numbers ZA and ZB of
the nuclei and the collision energy γ have not been done prior to this work. Such
parametric dependencies had been theoretically derived by perturbative approaches
only. However, the applicability of perturbation theories is doubtful for collisions of
two heavy ions at intermediate relativistic collision energies.

1.5 Outline of this work

Chapter 2 gives a detailed exposition of the semiclassical approximation, i.e. the im-
pact parameter model in which colliding nuclei are represented by classical charge
distributions moving along prescribed trajectories. Particular emphasis is put onto
the choice of the frame of reference with the aim of formulating a relativistically in-
variant theory. Symmetries of the two-centre Dirac equation are presented. In chap-
ter 3 a multi-channel scattering theory for the classical two-centre Dirac equation is
formulated. Transition amplitudes are defined, and the asymptotic convergence and
orthogonality of the Møller wave operators are proved, provided the charges of the
nuclei are screened. A similar presentation of the scattering theory of the two-centre
Dirac equation is not available in the literature. In particular we demonstrate the
Lorentz invariance of the excitation and transfer amplitudes. The aspects regard-
ing second quantisation are discussed, furthermore, Coulomb boundary conditions
are explained. The latter have been used previously to deal with the problem of
the long-range nature of the unscreened Coulomb potential in coupled channel and
perturbative calculations.

The coupled channel method, employed in the present work for the approximate,
but nonperturbative numerical solution of the two-centre Dirac equation, is presented
in chapter 4. Properties of the fundamental solution of the coupled channel equations
and its relation to transition amplitudes are discussed. In chapter 5 we describe the
specific two-centre coupled channel ansatz that was used for the numerical calcula-
tions of this work. The basis functions for asymptotically bound and asymptotically
free particles are presented and motivation for their choice is given. Numerical re-
sults are shown that demonstrate the proper numerical implementation of the coupled
channel ansatz. These results not only represent an important test of the software,
but also, for the first time, reproduce some existing numerical data found in the
literature.

In chapter 6 we present the new numerical results of this thesis, together with
their discussion and comparison with literature. Heavy-ion collision systems with
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charge numbers ranging from Z = 66 to Z = 92 are considered at collision ener-
gies in the 1GeV/u range. In the first sections of the chapter, we discuss coupled
channel calculations that use a basis of bound state functions only. Such calcula-
tions allow for the theoretical investigation of the relativistic charge transfer process.
The frame dependence of such numerical calculations is demonstrated and analysed
in this work for the first time. Furthermore, parametric dependencies are studied
nonperturbatively, which has likewise not been done before. In the last two sections
of chapter 6 results from two-centre coupled channel calculations using bound-state
and free-particle basis functions are presented. Such calculations have neither been
published nor attempted before. We show results of calculations which have been
performed to assess the importance of two-centre effects for the process of bound-free
pair creation in peripheral collisions. The problem of frame dependence of the re-
sults is discussed, as well as the influence of the free-particle channels on the charge
transfer process.

The technical details of the numerical calculations are not described in the main
part of the thesis but in appendix A. In that appendix not only numerical methods are
explained but also some aspects of the implementation of the calculations. In appen-
dix B we state and prove some mathematical results referred to in the main chapters,
but which are not easily found in literature. Appendix C states some conventions
and definitions used in this work, in particular it comprises a table of notation and
symbols. Finally, relativistic natural units (r.u.) for which ~ = c = me = 1 are used
throughout this work, unless specified explicitly.

collide, collision. It is sometimes asserted that these two words are
‘properly’ restricted to circumstances involving a violent impact be-
tween two moving objects. There is no basis for such a belief. [ . . . ]

H. W. Fowler and R. W. Burchfield, Modern English Usage



Chapter 2

Semiclassical Approximation

In collision experiments with heavy-ion accelerators the laboratory frame is frequently
identical to the target frame of reference, in which the initial electronic state is at
rest. In the literature, the two-centre Dirac equation has only been considered in
the target, collider or projectile frames of reference, with the direction of relative
motion chosen as the e3-axis. However, with the aim of formulating a relativistically
invariant theory, it is necessary to start with the most general inertial frame, in which
the colliding nuclei move in arbitrary directions. Furthermore, this approach provides
general insight into the theory. The scattering theory, presented in the next chapter,
refers to this general approach.

On the other hand, for numerical calculations, as those presented later in this
work, a specific frame of reference must be chosen. Again, in the literature only
the target and collider frames have been used for numerical calculations. In this
work numerical calculations are presented, which have been done in various different
reference frames, thereby showing the influence of the choice of the reference frame
on the numerical results.

2.1 Relativistic kinematics

We start by considering an arbitrary frame of reference, where the centres of
force A and B move with constant velocities along straight line trajectories. These

(bB, vB)

(bA, vA)

trajectories will be written in the following form,

RA(t) = bA + tvA,

RB(t) = bB + tvB,
(2.1)

with three-velocities vA and vB that satisfy |vA|, |vB| < 1, and arbitrary three-vectors
bA and bB. The world-line corresponding to the trajectory of centre A is given by
the four-vector,

X
µ
A(s) =

(

γAs, bA + γAs vA

)

,

Here, the proper time is denoted by s. The definition of X
µ
B(s) is analogous. The

Lorentz factors, corresponding to the velocities vA and vB, are denoted by γA and γB

13
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respectively:

γΓ =
1

√

1 − v2
Γ

,

with Γ = A,B. The world-line representation X
µ
Γ(s) of the trajectories is useful for

the computation of Lorentz transformed trajectories, since X
µ
Γ(s) transforms like a

Lorentz four-vector.

2.1.1 Lorentz invariants. The relative motion of the centres A and B is described
entirely by two Lorentz invariant quantities, namely the collision energy and the
impact parameter. Their relation to the parameters of the trajectories is discussed
next.

Since the modulus |vB − vA| is not invariant with respect to Lorentz boosts, it is
not suitable for a characterisation of the collision energy of the centres. One may,
therefore, consider the modulus v of the relative velocity of A and B in a rest frame
either of centre A or equivalently of centre B. This velocity v is a Lorentz invariant,
as well as the corresponding Lorentz factor γ = (1 − v2)−1/2, which in terms of vA

and vB is given by:

γ = γAγB(1 − vA · vB). (2.2)

As mentioned in the introduction, it is customary to indicate the collision energy,
associated with the trajectories (2.1), by this Lorentz factor γ.

Moreover, as opposed to nonrelativistic kinematics, the distance of closest ap-
proach of the centres may be different in reference frames which are moving with
respect to each other. Hence, the impact parameter b must be defined as the dis-
tance of closest approach of the centres in a rest frame of either centre A or centre
B. In terms of the parameters bA, bB, vA and vB of the pair of trajectories (2.1), the
Lorentz invariant impact parameter b is given by the relation:

b2 = d2 − ((d · (vB − vA))2 − ((d · vA) vB − (d · vB) vA)2

(vB − vA)2 − v2
Av2

B + (vA · vB)2
. (2.3)

Here, the abbreviation d = bB − bA was used. In the limit |vA|, |vB|�1 the nonrela-
tivistic expression for the impact parameter is recovered.

2.1.2 Lorentz scalars. In the following, some Lorentz scalars associated with the
pair of trajectories (2.1) are defined for later reference. Let primed quantities refer to
a rest frame of centre A, such that the transformed trajectory R′

A(t′) of A satisfies,

R′
A(t′) = 0.

We define r′A in the primed coordinate system as the radial distance from the spatial
origin, i.e.:

r′A(t′,x′) = |x′|.
Transforming this quantity back to the unprimed reference frame one obtains,

rA(t,x) =
∣
∣
∣(x − bA) + (γA − 1)(v̂A · (x − bA)) v̂A − γAtvA

∣
∣
∣

=

√

(x⊥ − bA⊥)2 + γ2
A

(

x‖ − bA‖ − tvA

)2
,

(2.4)
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which is a Lorentz scalar by definition. Here, the subscripts ‖ and ⊥ indicate compo-
nents parallel and perpendicular to the velocity vA. The corresponding scalar with
reference to centre B will be denoted by rB(t,x). The Lorentz scalars rΓ(t,x) are
related to the trajectories RΓ(t) by the following inequality:

|x − RΓ(t)| ≤ rΓ(t,x) ≤ γΓ |x − RΓ(t)| , (2.5)

with Γ = A,B.
Moreover, consider the distance between centres A and B at time t′ in the primed

frame, the rest frame of centre A, and define,

d′A(t′,x′) = |R′
B(t′)|.

By substituting t′ = γA(t− vA· (x− bA)) the Lorentz scalar dA(t,x) in the unprimed
frame is obtained. A purely algebraic calculation shows that dA(t,x) is given by:

dA(t,x)2 = b2 +

{

γBvB · d

γv
− γAvA · d

γ2v
+ vγA

(

t− vA · (x − bA)
)
}2

. (2.6)

Here, the quantities b, v, γ and d are defined as above. Similarly, the scalar dB(t,x)
is derived from the distance between the centres A and B in a rest frame of centre B.
Contrary to nonrelativistic kinematics dA and dB differ.

2.2 Static charge distributions

With each of the centres A and B we may associate a spherically symmetric electric
charge distribution ρΓ(r) that is time-independent in the respective rest frame of
each centre Γ = A,B. The two charge distributions model the moving nuclei in a
peripheral heavy ion collision, and possibly a mean field of their bound electrons as
well. These charge distributions ρΓ(r) shall refer to the respective rest frames of
their centres: the primes, usually employed to indicate this fact, are omitted here for
simplicity of the notation.1 A Lorentz boost of these static charge distributions to an
arbitrary unprimed frame of reference yields a four-current, which is time-dependent.

In principle, the charge distributions do not have to be spherically symmetric
in their respective rest frames. However, spherical symmetry considerably simpli-
fies the following discussion. In this case, the relative orientation of the rest frame
coordinates does not matter and the discussion is not complicated by the necessity
for rotations in coordinate transformations. Furthermore, the most simple charge
distribution, the point charge, occurring most often in the literature and applied in
numerical calculations of this work, has spherical symmetry. For the presentation of
the scattering theory in the next chapter, it is mandatory to consider more general
spherical charge distributions than the point charge only.

The radially symmetric electrostatic potential VΓ(r) in the rest frame of centre Γ
(again omitting primes) and the charge distribution ρΓ(r) are related by the Poisson

1This convention allows us to refer unambiguously to the charge distributions ρΓ(r), and also

their spherically symmetric electrostatic potentials VΓ(r), in contexts in which primed coordinates

do not denote rest frame coordinates of these entities.
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equation, which is given in the spherically symmetric case by:

− 1

4πr

∂2

∂2r
rVΓ(r) = ρΓ(r) (for r 6= 0). (2.7)

We use Gaussian units for the electrical charge everywhere in this thesis, because
they are usually preferred in atomic physics (cf. appendix C).

The time-dependent electromagnetic field in the unprimed reference frame, orig-
inating from the moving charge distribution ρΓ(r), time-independent only in a rest
frame of centre Γ, is given by the following electromagnetic four-potential:

(

AΓ
0(t,x),AΓ(t,x)

)

= γΓ VΓ(rΓ(t,x)) (1, vΓ) . (2.8)

This four-potential satisfies the Lorenz gauge condition [Jac99]. It is obtained by a
Lorentz boost of the electrostatic potential VΓ(r) from a rest frame of centre Γ to the
unprimed reference frame. In the case of a moving point charge it is usually referred
to as a Liénard–Wiechert potential [Jac99, EM95].

A particular class of radially symmetric charge distributions will be important in
the subsequent presentation, especially serving as an example in chapter 3. Consider
the static charge distribution,

ρΓ(r) = −eZΓ µ
2
Γ exp(−µΓr)

4πr
+ eZΓ







3
4π
%−3

Γ if r ≤ %Γ,

0 otherwise,
(2.9)

leading to the following electrostatic potential, vanishing at spatial infinity:

VΓ(r) =
eZΓ exp(−µΓr) − eZΓ

r
+
eZΓ

r







3
2

r
%Γ

− 1
2

(
r
%Γ

)3
if r ≤ %Γ,

1 otherwise.
(2.10)

Here e denotes the unit charge. This electrostatic potential depends on three param-
eters, namely ZΓ, %Γ and µΓ. In the limit ρΓ → 0 we obtain the Yukawa potential.
The case where only µΓ = 0 corresponds to the potential of a homogeneously charged
sphere. If both µΓ = 0 and ρΓ = 0 the potential VΓ(r) is identical to the Coulomb
potential of a point charge with charge number ZΓ. Clearly, the charge distribution
(2.9) is a sum of a homogeneously charged sphere, with radius ρΓ ≥ 0 and total
charge eZΓ, and an infinitely extended screening charge distribution, with inverse
screening length µΓ ≥ 0 (also known as the Debye screening parameter [Jac99]) and
total charge −eZΓ. The total charge qΓ corresponding to the charge distribution (2.9)
is given by:

qΓ = 4π
∫ ∞

0
r2ρΓ(r) dr =







eZΓ if µΓ = 0,

0 if µΓ > 0.

In particular ZΓ is not the charge number of the total charge in the case of the Yukawa
potential, but represents its field strength near the origin.

Such a potential is not unphysical, it is used as a simple model for an atomic
potential, describing the finite nuclear size and the screening of the nuclear charge by
the electrons of an atom. The nuclear radius then determines %Γ and the screening
length µΓ is obtained by a rough fit to the Thomas–Fermi atomic potential [Jac99,
13.5]. In some situations the idealisation of the atomic nucleus as a point charge
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is an over-simplification: a proper finite nuclear radius is essential, for example, in
quantum electrodynamical calculations [MPS98].

2.3 Two-centre Dirac equation

We shall now introduce the Dirac equation for particles that are subject to the ex-
ternal electromagnetic field of the two linearly moving classical charge distributions
presented in the previous section. This Dirac equation reads:

[H0 +WA(t,x) +WB(t,x) − i∂t] Ψ(t,x) = 0. (2.11)

Here, the following abbreviations have been used, which will be used throughout this
thesis:

H0 = −iα · ∇ + β, (2.12)

WA(t,x) = −eVA(rA(t,x)) γA(1 − vA · α), (2.13)

WB(t,x) = −eVB(rB(t,x)) γB(1 − vB · α). (2.14)

Here α = α1, α2, α3 and β denote Dirac matrices. For the numerical calculations of
this thesis the standard Dirac–Pauli representation has been used (cf. appendix C).
However, all subsequent analytical considerations hold for an arbitrary, unitarily
equivalent representation of the Dirac matrices, if not indicated otherwise.

In this thesis, equation (2.11) is referred to as the two-centre Dirac equation. The
uppercase Greek letter Ψ usually denotes solutions of this two-centre Dirac equation.
Note that the external electromagnetic field is minimally coupled to the Dirac field.
We denote the unitary time-evolution operator of the two-centre Dirac equation by
U(t, s). It satisfies:

U(t, t) = 1, U(t, s0) = U(t, s)U(s, s0), U(t, s)−1 = U(t, s)∗ = U(s, t), (2.15)

and

[H0 +WA(t,x) +WB(t,x) − i∂t]U(t, s) = 0. (2.16)

2.3.1 Note on the unitary time-evolution. If the external fields WA(t,x) and
WB(t,x) are bounded functions, then it is well-known that the time-evolution oper-
ator is given by a Dyson series [RS75, Tha92]. However, the Coulomb and Yukawa
potentials (and their corresponding Liénard-Wiechert potentials) are not bounded.
Therefore, the existence of a unitary time-evolution is a more complicated mathemat-
ical problem, since the self-adjointness of the time-dependent Hamilton operatorH(t)
is not sufficient. The existence has been proved for the Dirac equation with mov-
ing point charges by Kato and Yajima using the technique of local pseudo-Lorentz
transformations [KY91].

2.4 Symmetry

In this section, symmetries of the two-centre Dirac equation are discussed. Recall
that a symmetry is a transformation of a solution Ψ1(t,x) of the time-dependent
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Dirac equation into another time-dependent wave function Ψ2(t,x), such that both,
Ψ1 and Ψ2, solve the same two-centre Dirac equation,

[H0 +WA(t,x) +WB(t,x) − i∂t] Ψi(t,x) for i = 1, 2.

Such transformations must commute with the external field operator W (t,x) and,
therefore, they reflect the symmetries of the external field. In common text book
presentations of invariance properties of the Dirac equation, the transformation of
wave functions is always accompanied by a transformation of the external field. Oc-
casionally, this form invariance of the Dirac equation, namely that a transformed
Dirac spinor solves the transformed Dirac equation, is also called a symmetry of the
Dirac equation [Sch95]. We shall stress that this is not meant by symmetry here.
Instead the symmetries, described below, establish conserved quantities and the cor-
responding symmetry operators commute with the unitary time evolution U(t, s) of
the two-centre Dirac equation.

In order to facilitate the discussion of the symmetries of the two-centre Dirac
equation it is useful to chose a particular frame of reference. In this section unprimed

vAe3

vBe3

e1

bBe1

bAe1

e3
e2

coordinates (t,x) exclusively refer to a reference frame for which the trajectories
RA(t) and RB(t) are given by:

RA(t) = bAe1 + tvAe3,

RB(t) = bBe1 + tvBe3.
(2.17)

In such frames of reference the trajectories are invariant under a reflection at the
e1-e3-plane. Another symmetry transformation is time-reversal in combination with
a reflection in the e1-e2-plane. In order to construct operators representing these
transformations on Dirac four-spinors, recall that an active rotation by some angle
ϕ around an axis, which is given in terms of the unit three-vector n, is generally
represented by the following spinor transformation matrix [Tha92, eq. (2.172)]:

exp
(

− iϕ

2
n · γ5α

)

.

Here the matrix γ5 is defined as γ5 = iγ0γ1γ2γ3, in agreement with the phase conven-
tions in [BD66, Tha92, Sch95]. In the particular case of a rotation by an angle π
around one of the coordinate axes the previous expression simplifies to:

exp
(

−πi

2
ei · γ5γ

0γ

)

= exp
(

−πi

2
γiγ5γ

0
)

= −iγiγ5γ
0.

A reflection at the plane that is perpendicular to ei and passes through the origin
can be obtained by a space inversion P (cf. section C.2 of the appendix) followed by
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a rotation by π around ei. Therefore, the reflection of a Dirac wave function Ψ(t,x)
at the e1-e3-plane is accomplished by an operator P2 defined as follows:

(P2Ψ)(t,x) = γ2γ5Ψ(t,x − 2x2e2). (2.18)

Correspondingly the operators P1 and P3 may be defined by substituting all indices 2
with 1 and 3 respectively.

The operator T3 implementing the other transformation described above, namely
a time reversal followed by a reflection at the e1-e2-plane, may be defined as,

T3 = P3T .
Here T denotes the time-reversal operator (cf. appendix C.2). In the following, C
shall denote the unitary 4×4 matrix which satisfies γµT = −C−1γµC and CT = −C,
and which is employed in the standard definition of the time-reversal operator T for
Dirac spinor-fields. With reference to C the operator T3 is then given explicitly by:

(T3Ψ)(t,x) = γ3CΨ∗(−t,x − 2x3e3), (2.19)

The operators Ti, where i = 1, 2, may again be defined similarly by Ti = PiT .
In the definitions (2.18) and (2.19) the phases have been chosen such that the

operators Pi and Ti are involutions:

(Pi
2Ψ)(t,x) = γiγ5γiγ5Ψ(t,x) = Ψ(t,x),

(Ti
2Ψ)(t,x) = γiCKγiCKΨ(t,x) = γiCγi∗C∗Ψ(t,x) = γiγi†Ψ(t,x) = Ψ(t,x)

Here i = 1, 2, 3 and K denotes the operator of complex conjugation. Consequently,
the eigenvalues of both Pi and Ti are ±1. Note, however, that P1P2P3 = iP. The
following commutation and anti-commutation properties of the operators Pi and Ti

are easily verified:2

[Pi, Tj] = 0. {Ti, Tj} = {Pi,Pj} = 2δij, (2.20)

(2.21)

2.4.1 Commutation properties. Next, it must be demonstrated that both of the
commuting operators P2 and T3 implement a symmetry of the two-centre Dirac equa-
tion (2.11). Due to the particular choice of the Lorentz frame in this section, the
scalars rA(t,x) and rB(t,x) satisfy the following identities:

rΓ(t,x) = rΓ(t,x − 2x2e2) = rΓ(−t,x − 2x3e3),

with Γ = A,B. Using this, we are able to verify that the external field operators WA

and WB commute with both P2 and T3:

[P2,WΓ] = [T3,WΓ] = 0. (2.22)

2For the standard Dirac-Pauli representation a valid choice for C is the real matrix iγ2γ0 (see

section C.2 and [BD66, ch. 5]). Hence, the spinor transformation matrices of P2 and T3 take the

form:

γ2γ5 = iγ2γ0γ1γ2γ3 =

(
σ2 0

0 −σ2

)

,

γ3C = iγ3γ2γ0 =

(
σ1 0

0 −σ1

)

.
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First, it will be checked that the commutator of WΓ and P2 vanishes:

(P2WΓP2Ψ)(t,x) = γ2γ5 (WΓP2Ψ)(t,x − 2x2e2)

= γ2γ5 WΓ(t,x − 2x2e2) (P2Ψ)(t,x − 2x2e2)

= −γΓe VΓ(rΓ(t,x − 2x2e2)) γ
2γ5 (1 − vΓγ

0γ3) γ2γ5 Ψ(t,x)

= WΓ(t,x) Ψ(t,x) = (WΓΨ)(t,x).

Repeatedly using relation (C.9) of the appendix, the calculation for T3 is carried out
similarly:

(T3WΓT3Ψ)(t,x) = γ3C (WΓT3Ψ)∗(−t,x − 2x3e3)

= γ3C W ∗
Γ(−t,x − 2x3e3) (T3Ψ)∗(−t,x − 2x3e3)

= γ3C W ∗
Γ(−t,x − 2x3e3) γ

3∗C∗ Ψ(t,x)

= −γΓe V
∗
Γ (rΓ(−t,x − 2x3e3)) γ

3C(1 − vΓγ
0∗γ3∗)C∗γ3 Ψ(t,x)

= −γΓe VΓ(rΓ(t,x)) γ3CC∗(1 − vΓγ
0γ3)γ3 Ψ(t,x)

= WΓ(t,x) Ψ(t,x) = (WΓΨ)(t,x).

It remains to establish the commutation properties of P2 and T3 with H0 and iD0. Up
to a complex phase, the operators Pi and Ti are products of space-inversions, time-
reversals and spatial rotations. Hence, the commutation relations can be deduced
from well-known properties of the free Dirac equation. More precisely the following
relations hold for i = 1, 2, 3 (for the notation cf. appendix C):

[Pi, H0] = [Ti, H0] = 0, (2.23)

[Pi, iD0] = [Ti, iD0] = 0 (2.24)

As an example the second part of (2.23) will be verified:

(TkH0TkΨ)(t,x) = γkC
(

γ0
(

−iγiDi + 1
)

TkΨ
)∗

(−t,x − 2xkek)

= γkCγ0∗
(

iγi∗∂i − 2iγk∗∂k + 1
)

(TkΨ)∗(−t,x − 2xkek)

= γkCγ0∗
(

iγi∗∂i − 2iγk∗∂k + 1
)

γk∗C∗Ψ(t,x − 2xkek)

= −γkCC∗γ0
(

iγi∗∂i − 2iγk∗∂k − 1
)

γkΨ(t,x)

= γ0
(

iγi∗∂i + 1
)

Ψ(t,x) = (H0Ψ)(t,x).

Note that in the previous calculation there shall not be a summation over the repeated
index k = 1, 2, 3.

2.4.2 Unitary time-evolution. Since P2 commutes with the time-dependent
Hamiltonian of the two-centre Dirac equation and with the time-derivative, it is veri-
fied that P2U(t, s)P2 is also a unitary time-evolution of the two-centre Dirac equation
and, therefore, identical with U(t, s). Hence, the operators P2 and U(t, s) commute:

U(t, s)P2 = P2 U(t, s).

We conclude that solutions Ψ(t,x) of the two-centre Dirac equation may be con-
structed such that they are eigenfunctions of both P2 and T3. In other words P2

and T3 represent conserved quantities of the time-dependent two-centre Dirac equa-
tion in any frame of reference where the trajectories are given by (2.17). In other
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coordinate systems the symmetry operators corresponding to these conserved quan-
tities may be obtained by a Poincaré-transformation of P2 and T3 respectively. It
can be shown that P2 and T3 commute with Lorentz boosts in e3-direction and also
with spatial translations in e1-direction. Hence, the definitions (2.18) and (2.19) are
unambiguous.

The physical importance of these symmetries is that they lead to corresponding
symmetries of the transition amplitudes, which are defined in the next chapter.

2.5 Homonuclear collisions

In the following a two-centre Dirac equation (2.11) is considered for which the ra-
dial electrostatic potentials VA and VB are equal. This situation corresponds to a
homonuclear collision system. In order to discuss the additional symmetry, parity,
present only in those homonuclear collisions, it is useful to chose a coordinate system,
in which both centres move with equal but opposite velocities and have the same dis-

(bB, vB)

(bA, vA)

tance to the origin at time t = 0. Hence, the trajectories shall be given by equations
(2.1) with,

vB = −vA,

bB = −bA.

Then the following relation holds:

rB(t,x) = rA(t,−x). (2.25)

It can be shown similarly to the previous section that the parity operator P (cf.
equation (C.5) of appendix C) transforms the external field operators WA and WB

into each other:
PWAP = WB,

PWBP = WA.

Therefore, in the reference frame considered here, the parity operator P commutes
with the time-dependent Hamiltonian H(t) = H0 +WA(t) +WB(t) of the two-centre
Dirac equation. Parity is a constant of motion.





Chapter 3

Multi-Channel Scattering Theory

The two-centre Dirac equation has been introduced as a model, for describing charge
transfer, ionisation and pair creation in peripheral collisions of highly charged heavy-
ions. Intuition suggests that the two-centre Dirac equation should have solutions
which correspond to particles asymptotically bound to the electrostatic potential VΓ

of centre A or centre B, or move away from both centres, as time t tends to +∞ or
−∞. This corresponds to three different scattering channels or three different types
of scattering states: those, which are essentially subject to either one of the external
fields WA(t,x) or WB(t,x), and those, which are not significantly influenced by any
external field, as t tends to ±∞.

The scattering theory of the two-centre Dirac equation is presented here essentially
for two reasons. First, it seems that a formal discussion of this scattering theory is not
available; although several authors have discussed the scattering theory of the similar
two-centre Schrödinger equation from a conceptional and mathematical point of view
[Yaj80, Hag82, Wül88, Gra90]. Second, a precise definition of the transition
amplitude is given. This is a necessary prerequisite in order to prove the relativistic
invariance of the scattering theory. Boost invariance is not a trivial property in the
present case, as it is for the scattering theory of the two-centre Schrödinger equation:
Lorentz boosts transform the time axes, with respect to which the (necessarily) time-
dependent scattering theory is formulated.

3.1 Scattering channels

First, let us introduce some notation. The three different scattering channels men-
tioned above correspond to three different Dirac equations, describing Dirac particles,
which are bound to either of the external fields WΓ(t,x) or move freely. The Hamilton
operators of these scattering-channel Dirac equations are:

HA(t) = H0 +WA(t,x)

HB(t) = H0 +WB(t,x)

HC = H0.

(3.1)

As opposed to conventional quantum-mechanical multi-particle scattering theory
[San72, San74, Thi94], these scattering channel Hamiltonians have an explicit
time-dependence. The time-dependence of the Hamiltonian operators HA(t) and
HB(t) cannot be removed simultaneously by a Poincaré transformation, if the cen-
tres are moving with different velocities. The unitary time-evolution operators of the
scattering-channel Dirac equations are respectively denoted by,

UA(t, s), UB(t, s) and UC(t, s) = exp(−i(t− s)H0).

Solutions of the scattering-channel Dirac equations are denoted by the uppercase
Greek letter Φ, with a lower index indicating the respective scattering channel, for

23
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example:

[H0 +WA(t,x) − i∂t] ΦA,k(t,x) = 0.

The second index k is used to differentiate between different solutions of the same
Dirac equation symbolically. These wave functions ΦΓ,k(t,x), where Γ = A,B,C
will be referred to as asymptotic configurations, following [BH63, Tha92]. In other
literature, they are also called in- and out-states [New82, Wei95].

3.1.1 Scattering states. A principal problem of scattering theory, as presenting
itself in present context, is to find solutions Ψ+

Γ,k(t,x) and Ψ−
Γ,k(t,x) of the two-

centre Dirac equation, which asymptotically approach the asymptotic configuration
ΦΓ,k(t,x):

lim
t→−∞

‖ΦΓ,k(t) − Ψ+
Γ,k(t)‖ = 0

lim
t→+∞

‖ΦΓ,k(t) − Ψ−
Γ,k(t)‖ = 0.

Here ‖.‖ denotes the Hilbert-space norm of a wave function (cf. appendix C). The
wave functions Ψ+

Γ,k(t,x) and Ψ−
Γ,k(t,x) are usually referred to as the incoming and

the outgoing scattering states respectively. The seemingly paradoxical notation, in
which Ψ+ corresponds to the limit t → −∞ and vice versa, originates in the time-
independent formulation of scattering theory. Although the latter cannot be applied
in the present situation, this notation, common to many presentations of quantum
scattering theory [BD66, San72, RS79, New82, Hag82, Gra90], is employed
here as well. The question, whether scattering states Ψ+

Γ,k(t) and Ψ−
Γ,k(t) exist, for

an arbitrary solution ΦΓ,k(t,x) of the Dirac equation of the scattering channel Γ, is
known as the problem of asymptotic convergence. For certain classes of electrostatic
potentials VΓ(r) asymptotic convergence is proved in section 3.3 below.

In the case of the scattering channels A and B, only such asymptotic configurations
that correspond to bound states of the respective potential are admitted. Wave
functions corresponding to continuum eigenfunctions of the electrostatic potentials
in their respective rest frames are moving away from their centres as time increases.
Therefore, they are attributed to scattering channel C. Taking this convention into
account, it will be shown that scattering states corresponding to different scattering
channels are orthogonal to each other (see section 3.4 below):

(

Ψ+
Γ,k(t),Ψ

+
∆,l(t)

)

=
(

Ψ−
Γ,k(t),Ψ

−
∆,l(t)

)

= 0, if Γ 6= ∆.

This property is known as asymptotic orthogonality.

3.1.2 Wave operators. For the two-centre Dirac equation, asymptotic convergence
is equivalent to the existence of the following strong operator limits:

Ω±
A (s) = s-lim

t→∓∞
ΩA(t, s) = s-lim

t→∓∞
U(t, s)−1 UA(t, s)PA(s).

Ω±
B(s) = s-lim

t→∓∞
ΩB(t, s) = s-lim

t→∓∞
U(t, s)−1 UB(t, s)PB(s),

Ω±
C(s) = s-lim

t→∓∞
ΩC(t, s) = s-lim

t→∓∞
U(t, s)−1 exp(−i(t− s)H0).

(3.2)

The Møller operators Ω±
Γ (s) are time-dependent in the present situation, which has

its origin in the time-dependence of the scattering-channel Hamiltonians (3.1). In
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conventional multi-channel scattering theory the Møller wave operators are not time-
dependent. But the same time-dependence occurs for the scattering theory of the
two-centre Schrödinger equation (see e.g. [Hag82]).

In equations (3.2) the projection operators PA(s) and PB(s) have been introduced,
in order to project onto the subspace of asymptotic configurations ΦΓ(t,x) that
correspond to bound states of the external fields WA(t,x) and WB(t,x) respectively.
The projection operators are included into the definition of the wave operators Ω±

A (s)
and Ω±

B(s), in order to obtain orthogonality of their ranges, which are then orthogonal
proper subspaces of the state space L2(R3)4 of the classical Dirac equation.

For later reference, explicit representations of these time-dependent projection op-
erators, PA(s) and PB(s), are given in the following. Let (ΛA, aA) denote the Poincaré
transformation from the unprimed reference frame to a primed rest frame of centre A
in which centre A is located at the spatial origin, i.e. R′

A(t′) = 0. In the primed
frame, the Hamiltonian H ′

A of scattering channel A does not depend on the time t′:

H ′
A = H ′

0 − eVA(|x′|).

Throughout this chapter, the potential VA is assumed to be of such a form that H ′
A

has bound states. In the primed frame, choose a complete set of orthonormal bound
state eigenfunctions, denoted by φA,k(x

′), with eigenenergies εA,k. Then the projector
P ′

A onto the subspace of the bound states of the potential VA in the primed frame is
time-independent and given by:

(P ′
Aφ)(x′) =

∑

k

(φA,k, φ)′ φA,k(x
′).

In the unprimed frame, the asymptotic configuration ΦA,k(t,x), corresponding to the
bound state φA,k(x

′) in the primed frame, is obtained by a Poincaré transformation:

ΦA,k(t,x) = S(ΛA)−1 exp(−it′εA,k)φA,k(x
′), (3.3)

Here S(ΛA) is the spinor-representation matrix of the Lorentz transformation ΛA and
the primed coordinates are given by (t′,x′) = ΛA(t,x)+ (a0,a). The time-dependent
projector PA(s) in the unprimed reference frame, projecting onto the bound states of
the external field WA(t,x), is thus given by:

(PA(s)ψ) =
∑

k

(ΦA,k(s), ψ) ΦA,k(s,x). (3.4)

An explicit representation of PB(s) is given analogously.

3.2 Transition amplitudes

The two-centre Dirac equation is used by many authors as a model in order to de-
scribe atomic processes in collisions of heavy and highly charged ions, like excita-
tion, ionisation, charge transfer and pair creation [EM95]. For example, an electron
initially bound to either of the colliding nuclei is represented in this model by an
incoming scattering state, Ψ+

A(t,x) or Ψ+
B(t,x). Electron states after the collision are

represented by outgoing scattering states Ψ−
Γ (t,x).
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excitation

excitation bound-free
pair productionpair production

free

ionisation

capture

A BC

Figure 3.1. This figure illustrates the scattering theory of the two-centre Dirac

equation. Transitions within the same scattering channel, i.e. excitation and free
pair production, are depicted by red arrows. Blue arrows correspond to processes
of ionisation and bound-free pair production. Finally, charge transfer is shown as

a green arrow. The three different energy spectra represent the three scattering
channels A, B and C.

The probability amplitude a∆l,Γk for a state of incoming configuration ΦΓ,k(s) to
have the outgoing configuration Φ∆,l(s) is given by,

a∆l,Γk =
(

Ψ−
∆,l(s),Ψ

+
Γ,k(s)

)

. (3.5)

Due to the unitarity of the time-evolution of the two-centre Dirac equation, the
definition of the transition amplitude is independent of the time s. The various
atomic processes are depicted in figure 3.1. There are other equivalent expressions
for the transition amplitude, some of them listed below. In particular, the post and
prior forms frequently appear in the literature.

a∆l,Γk =
(

Ω−
∆(s)Φ∆,l(s),Ω

+
Γ (s)ΦΓ,k(s)

)

= lim
t1→−∞
t2→∞

(

U(s, t2)U∆(t2, s)Φ∆,l(s), U(s, t1)U(t1, s)ΦΓ,k(s)
)

= lim
t1→−∞
t2→∞

(

Φ∆,l(t2), U(t2, t1)ΦΓ,k(t1)
)

= lim
t→∞

(

Φ∆,l(t),Ψ
+
Γ,k(t)

)

(post form)

= lim
t→−∞

(

Ψ−
∆,l(t),ΦΓ,k(t)

)

(prior form).

For the discussion of asymptotic completeness we refer to section 3.6 below.

3.3 Asymptotic convergence

In this section, we will prove the existence of the operator-limits (3.2), defining the
Møller wave operators Ω±

Γ (s), under the assumption that the external fields WA(t,x)
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and WB(t,x) are short-ranged. Asymptotic convergence is essential for an unam-
biguous definition of the transition amplitude a∆l,Γk in equation (3.5). The case of
particular interest, in which moving point charges are the source of external fields,
is not covered in this section. This principal model of the literature has long-range
external fields (cf. sections 3.6 and 3.7 below).

The material presented in the following has not appeared in literature, but some
aspects resemble a discussion of the nonrelativistic charge-transfer model in [Yaj80].
Furthermore, the first subsection recalls standard mathematical results. For detailed
explanations of the notation the reader is referred to appendix C.

3.3.1 Cook’s method. The proofs of convergence given below are based on a
method which was introduced by Cook [Coo57]. Cook’s method has become a
standard tool for convergence proofs of wave operators, see e.g. [Kat80, Dol64,
DV66, RS79, Yaj80, Wül88]. In this subsection Cook’s reasoning, as applicable
in the present context, will be reviewed shortly (see in particular [Kat80, subsec.
X.3.3] and [RS79, sec. XI.3]).

The convergence of the limit,

Ω−
Γ (s) = s-lim

t→∞
ΩΓ(t, s)

with respect to the strong operator topology (cf. [RS80]) is equivalent to,

‖(ΩΓ(t1, s) − ΩΓ(t0, s))φ‖ → 0,

as t0, t1 → ∞ for all φ(x), elements of the Hilbert space L2(R3)4. This equivalence
holds due to the completeness of L2(R3)4 (Cauchy criterion). The convergence on
a dense subspace already implies convergence on the complete state space in the
present situation (see e.g. [Kat80, p. 151]). The estimate,

‖ΩΓ(t1, s)φ− ΩΓ(t0, s)φ‖ =

∥
∥
∥
∥

∫ t1

t0

[
d
dt

ΩΓ(t, s)φ
]

dt

∥
∥
∥
∥ ≤

∫ t1

t0

∥
∥
∥

d
dt

ΩΓ(t, s)φ
∥
∥
∥dt,

leads to the following conclusion: A sufficient condition for the existence of the wave
operator Ω−

Γ (s) is the finiteness of the following time-integral,
∫ ∞

t0

∥
∥
∥

d
dt

ΩΓ(t, s)φ
∥
∥
∥dt < ∞, (3.6)

for some (arbitrary but finite) time t0 and all φ(x) of a subspace of wave functions
that is dense in the state space L2(R3)4.

Obviously, a sufficient condition for the convergence as t→ −∞, i.e. the existence
of the wave operator Ω+

Γ (s), is established in a similar manner.

3.3.2 Asymptotically bound particles. In this subsection, we prove the exis-
tence of the strong operator limit Ω−

A (s). The other three wave operators Ω+
A (s) and

Ω±
B(s) are treated analogously. The Cook integral (3.6) for Ω−

A (s) reads:
∫ ∞

t0

∥
∥
∥

d
dt

ΩA(t, s)φ
∥
∥
∥ dt =

∫ ∞

t0
‖WB(t)UA(t, s)PA(s)φ‖dt. (3.7)
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Recalling the definition (2.14) of WB(t,x), the integrand on the right hand side of
equation (3.7) is estimated as follows:

‖WB(t)UA(t, s)PA(s)φ‖

=

∥
∥
∥
∥
∥
WB(t)

∑

k

ckΦA,k(t)

∥
∥
∥
∥
∥

≤
∑

k

|ck(s)| ‖WB(t)ΦA,k(t)‖

=
∑

k

|ck(s)| ‖γB(1 − vB · α)VB(rB(t,x)) ΦA,k(t,x)‖L2(R3,d3x)4

≤
∑

k

γB|ck(s)| ‖(1 − vB · α)‖2 ‖VB(rB(t,x))ΦA,k(t,x)‖L2(R3,d3x)4 ,

(3.8)

with ck(s) = (ΦA,k(s), φ) and ‖.‖2 denotes the matrix norm with respect to the scalar
product in C4 (see appendix C or [GV96]). The following inequality may be proved
for the straight line trajectories RA(t) and RB(t), as in equation (2.1), and arbitrary
x ∈ R3 and t ∈ R:

1

1 + |x − RA(t)|2
1

1 + |x − RB(t)|2 ≤ 2

1 + |RA(t) − RB(t)|2 .

In conjunction with inequality (2.5) and the Hölder inequality [For84, RS80] the
estimate of the integrand of the Cook integral (3.7) may be continued as follows:

‖WB(t)ΦA,k(t)‖

≤ 2γB ‖(1 − vB · α)‖2

1 + |RA(t) − RB(t)|2 ×
∥
∥
∥

(

1 + rB(t,x)2
)

VB(rB(t,x))
(

1 + rA(t,x)2
)

ΦA,k(t,x)
∥
∥
∥

L2(R3,d3x)4

≤ 2γB ‖(1 − vB · α)‖2

1 + |RA(t) − RB(t)|2
∥
∥
∥

(

1 + rB(t,x)2
)

VB(rB(t,x))
∥
∥
∥

Lp(R3,d3x)
×

4∑

i=1

∥
∥
∥

(

1 + rA(t,x)2
)

ΦA,k;i(t,x)
∥
∥
∥

Lq(R3,d3x)

Here, the positive real numbers p and q have to be chosen such that 1
p

+ 1
q

= 1
2
. The

index i denotes the spinor index of the Dirac four-spinor ΦA,k(t,x).
It remains to show that the norms,

∥
∥
∥

(

1 + rA(t,x)2
)

ΦA,k;i(t,x)
∥
∥
∥

Lp(R3,d3x)
and

∥
∥
∥

(

1 + rB(t,x)2
)

VB(rB(t,x))
∥
∥
∥

Lq(R3,d3x)
,

are finite and moreover time-independent. This is true for arbitrary p and q, if the
radial electrostatic potentials VΓ are of the form (2.10) with µΓ > 0 and ρΓ > 0.
Furthermore, it can be verified that suitable p and q can be determined also in the

case the Yukawa potentials, %Γ = 0, if e2ZB <
√

3
2

holds. The sum in equation (3.8)
is finite if µΓ > 0. In the cases mentioned, the estimate,

∫ ∞

t0

∥
∥
∥

d
dt

ΩA(t, s)φ
∥
∥
∥dt ≤

∫ ∞

t0

const.

1 + |(bA − bB) + t(vA − vB)|2 dt <∞,

holds and, thereby, shows that the Cook integral (3.6) for Ω−
A (s) is finite.
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3.3.3 Asymptotically free particles. In order to show the existence of of Ω−
C(s)

we consider the Cook integral (3.6) for scattering channel C:
∫ ∞

t0

∥
∥
∥

d
dt

ΩC(t, s)φ
∥
∥
∥ dt =

∫ ∞

t0

∥
∥
∥[WA(t) +WB(t)] e−i(t−s)H0 φ

∥
∥
∥dt

≤
∑

Γ=A,B

∫ ∞

t0

∥
∥
∥WΓ(t) e−i(t−s)H0 φ

∥
∥
∥dt.

Here φ(x) shall be a regular free Dirac wave packet,

φ(x) = (2π)−3/2
∫

ei ��� � φ̂(p) d3p,

with φ̂(p) ∈ C∞
0 (R3)4 (cf. section B.1). It is sufficient to consider regular wave

packets because they are dense in the state space L2(R3)4. The estimate is continued
as follows:

∥
∥
∥WΓ(t) e−i(t−s)H0 φ

∥
∥
∥

=
∥
∥
∥γΓ(1 − vΓ · α)VΓ(rΓ(t,x)) e−i(t−s)H0 φ(x)

∥
∥
∥

L2(R3,d3x)4

≤ γΓ ‖1 − vΓ · α‖2

∥
∥
∥VΓ(rΓ(t,x)) e−i(t−s)H0 φ(x)

∥
∥
∥

L2(R3,d3x)4

≤ 2γΓ ‖1 − vΓ · α‖2 sup
� ∈R3

∥
∥
∥e−i(t−s)H0 φ(x)

∥
∥
∥
2
‖VΓ(rΓ(t,x))‖L2(R3,d3x)

≤ const.

(1 + |t− s|3/2)

∫ ∞

0
|r VΓ(r)|2 dr

For the last step, a propagation estimate for regular free wave packets has been used,
which is reviewed in section B.1. Provided that the integral over rVΓ(r) is finite, the
Cook integral for a regular wave packet φ is finite as well:

∫ ∞

t0

∥
∥
∥

d
dt

ΩC(t, s)φ
∥
∥
∥dt ≤

∫ ∞

t0

const.′

(1 + |t− s|)3/2
dt <∞.

The integrability of rVΓ(r) holds in particular for potentials VΓ(r) as in equation
(2.10), if µΓ > 0.

3.4 Asymptotic orthogonality

In this section, we demonstrate the asymptotic orthogonality of the wave operators.
The calculations are simple and given here for the sake of completeness. Asymptotic
orthogonality means that the ranges of the wave operators are mutually orthogonal
subspaces of the state space, i.e. RanΩ±

Γ (s) ⊥ RanΩ±
∆(s) if Γ 6= ∆ . By definition

this relation means that for any pair of states φ1 and φ2 the following scalar product
vanishes,

(

Ω±
∆(s)φ2,Ω

±
Γ (s)φ1

)

= 0, if Γ 6= ∆,

which is equivalent to,

lim
t→∓∞

(

U∆(t, s)P∆(s)φ2, UΓ(t, s)PΓ(s)φ1

)

= 0.
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Here the projector PC(s) is trivially defined as the unit operator. It is sufficient to
consider the following two cases:

RanΩ−
A (s) ⊥ Ran Ω−

B(s), (3.9)

Ran Ω−
A (s) ⊥ RanΩ−

C(s). (3.10)

3.4.1 Orthogonality of channels A and B. Recalling the form (3.4) of the pro-
jection operators PA(s) and PB(s), it must be shown for any pair of asymptotic
configurations ΦA,k(t,x) and ΦB,l(t,x) of the form (3.3) that

lim
t→∞

(

ΦA,k(t),ΦB,l(t)
)

= 0, (3.11)

in order to verify relation (3.9). We estimate the scalar product (3.11) as follows:

∣
∣
∣

(

ΦA,k(t),ΦB,l(t)
)∣
∣
∣

≤
∫ ∣
∣
∣φA,k(x

′)†S(ΛA)†
−1
S(ΛB)−1φB,l(x

′′)
∣
∣
∣d3x

≤ ‖S(ΛA)†
−1
S(ΛB)−1‖2

∫

‖φA,k(x
′)‖2 ‖φB,l(x

′′)‖2 d3x

≤ 2 ‖S(ΛA)†
−1
S(ΛB)−1‖2

1 + |(bB − bA) + t(vB − vA)|2
×

×
∫ ∥
∥
∥(1 + rA(t,x)2)φA,k(x

′)
∥
∥
∥
2

∥
∥
∥(1 + rB(t,x)2)φB,l(x

′′)
∥
∥
∥
2

d3x

≤ const.

1 + |(bB − bA) + t(vB − vA)|2
×

×
{∫

(1 + x′2) ‖φA,k(x
′)‖2

2 d3x′
} 1

2

{∫

(1 + x′′2) ‖φB,l(x
′′)‖2

2 d3x′′
} 1

2

Here, the Cauchy–Schwarz and Hölder inequalities have been used. Doubly primed
coordinates x′′ refer to the rest frame coordinates of centre B. The two integrals of
the last expression are independent of the time t and finite, provided the eigenfunc-
tions φA,k(x

′) and φB,l(x
′′) are decreasing sufficiently fast towards spatial infinity. In

particular, if the potentials VA and VB are of the form (2.10) the eigenfunctions have
the necessary fall-off property and equation (3.11) directly follows from the estimate
above.

3.4.2 Orthogonality of the channels A and C. Equation (3.10), which expresses
the asymptotic orthogonality of the outgoing channels A and C, is equivalent to,

lim
t→∞

(

UA(t, s)PA(s)φ2, e
−i(t−s)H0 φ1

)

= 0,

for any pair of states φ1(x) and φ2(x). However, it is again sufficient to assume that
φ1(x) is a regular wave packet (cf. section B.1). Therefore, it remains to show that,

lim
t→∞

(

ΦA,k(t), e
−i(t−s)H0 φ

)

= 0,
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for any regular wave packet φ(x) and asymptotic configuration ΦA,k(t) of scattering
channel A as in equation (3.3). The following sequence of estimates,

∣
∣
∣

(

ΦA,k(t), e
−i(t−s)H0 φ

)∣
∣
∣

≤
∫ ∣
∣
∣ΦA,k(t,x)†

(

e−i(t−s)H0 φ
)

(x)
∣
∣
∣d3x

≤ ‖S(ΛA)−1‖2

∫

‖φA,k(x
′)‖2

∥
∥
∥

(

e−i(t−s)H0 φ
)

(x)
∥
∥
∥
2
d3x

≤ ‖S(ΛA)−1‖2
const.

(1 + |t− s|)3/2

∫

‖φA,k(x
′)‖2 d3x′,

yields the desired convergence to zero as t → ∞, if the remaining spatial integral is
finite. Note that this remaining spatial integral does not depend on time t. It is finite
if the bound state eigenfunctions φA,k are L1-integrable, which is true in particular for
the class of electrostatic potentials VΓ(r) as in equation (2.10). The estimate again
makes use of estimate (B.2) for regular wave packets, described in the appendix B.

3.5 Relativistic invariance

The existence proofs in section 3.3 refer to some particular, although arbitrarily
chosen, Lorentz frame. In different, relatively moving Lorentz frames, the limits
appearing in the definition of wave operators and scattering states have to be taken
with respect to different time axes. It is, therefore, necessary to prove that the
transition amplitudes are nevertheless Lorentz invariant quantities.

Consider an arbitrary asymptotic configuration ΦΓ,k(t,x) and the correspond-
ing outgoing scattering state Ψ−

Γ,k(t,x) of the two-centre Dirac equation. Given a

Poincaré transformation, (t′,x′) = Λ(t,x) + (a0,a), to an arbitrary primed coordi-
nate system, the transformed wave functions in the primed coordinates are:

Φ′
Γ,k(t

′,x′) = S(Λ) ΦΓ,k(Λ
−1(t′ − a0,x′ − a)),

Ψ−
Γ,k

′
(t′,x′) = S(Λ) Ψ−

Γ,k(Λ
−1(t′ − a0,x′ − a)).

The question arises whether the transformed wave function Ψ−
Γ,k

′
(t′,x′) is identical to

the (unique) outgoing scattering state that corresponds to the asymptotic configura-
tion Φ′

Γ,k(t
′,x′) in the primed frame of reference. In other words, it has to be checked

whether the following holds:

lim
t′→∞

‖Ψ−
Γ,k

′
(t′,x′) − Φ′

Γ,k(t
′,x′)‖L2(R3,d3x′)4 = 0. (3.12)

Of course, the analogous convergence as t′ → −∞ is similarly conjectured for the
Poincaré-transformed incoming scattering state Ψ+

Γ,k
′
(t′,x′).

If these conjectures can be verified, then, in the primed frame, the transition
amplitude a′∆l,Γk is given in terms of the Poincaré-transformed scattering states of
the unprimed frame, according to:

a′∆l,Γk =
(

Ψ−
∆,l

′
(t′),Ψ+

Γ,k
′
(t′)

)

.

The relativistic invariance of the transition amplitude is then simply a consequence of
the Poincaré invariance of the scalar product between two wave functions that solve
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the same Dirac equation (cf. section B.2):

a′∆l,Γk =
(

Ψ−
∆,l

′
(t′),Ψ+

Γ,k
′
(t′)

)′
=
(

Ψ−
∆,l(t),Ψ

+
Γ,k(t)

)

= a∆l,Γk.

Note that in this equation the two scalar products refer to different spatial integra-
tions or hypersurfaces in Minkowski space.

Equation (3.12) is most easily verified, if the Poincaré transformation is only a
product of spatial rotations and space-time translations, which do not mix time and
spatial coordinates. For a verification of equation (3.12) only Lorentz boosts need to
be considered.

3.5.1 Boost invariance of the excitation and capture amplitudes. In this
subsection, it is demonstrated that (3.12) holds for Γ = A. The case Γ = B and
the limits t → −∞ are treated similarly. In the course of the following calculations,
several assumptions about the radially symmetric potentials VA and VB are necessary.
These assumptions hold in particular, if both electrostatic potentials VΓ(r) are of the
form (2.10) with %Γ > 0 and µΓ > 0.

Without loss of generality, it may be assumed that the unprimed Lorentz frame
is a rest frame of centre A, where centre A is located at the origin. This is sufficient
because the Poincaré transformation between two arbitrary Lorentz frames can be
decomposed into a product of a boost into a rest frame of centre A, spatial rotations,
space-time translations, and the inverse of another boost into a rest frame of centre A.
Hence, the primed coordinates, for which the convergence (3.12) must be proved, are
connected to the unprimed coordinates by a pure boost. In this section the velocity
of this boost is denoted by v. Again, without loss of generality, the parameter bB

of the trajectory RB(t) = bB + tvB of centre B in the unprimed coordinates can be
taken to be perpendicular to the boost velocity v. Hence, bB = b′

B holds. Assuming
this case, the following estimates hold for the Lorentz scalars rΓ(t,x) and r′Γ(t′,x′)
in the primed and unprimed frames respectively:

1

1 + rA(t,x)2

1

1 + rB(t,x)2
≤ 2

1 + |bB + tvB|2
,

1

1 + r′A(t′,x′)2

1

1 + r′B(t′,x′)2
≤ 2

1 + |bB + t′(v + v′
B)|2 ,

(3.13)

where v′
B is the velocity of centre B in the primed coordinates.

The asymptotic condition ΦA(t,x) (for the sake of simplicity omitting the second
index in this subsection) may be chosen as,

ΦA(t,x) = exp(−itεA)φA(x),

where φA(x) is a normalised bound state eigenfunction of the electrostatic potential
VA. The statement, that Ψ−

A (t,x) is the outgoing scattering state which corresponds
to the asymptotic condition ΦA(t,x), is equivalent to the following convergence prop-
erty:

lim
t→∞

(

Ψ−
A (t),ΦA(t)

)

= 1. (3.14)
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Similarly, the asymptotic convergence of the two transformed Dirac wave functions
Ψ−

A
′
(t′,x′) and Φ′

A(t′,x′) in the primed frame is equivalent to:

lim
t′→∞

(

Ψ−
A

′
(t′),Φ′

A(t′)
)′

= 1. (3.15)

In order to prove that (3.15) follows from (3.14), the difference of both scalar products
is considered for some finite times t = ζ and t′ = γζ. Here γ denotes the Lorentz
factor corresponding to the boost velocity v. The limit of this difference of scalar
products is shown to vanish as ζ tends to +∞. Using the Gaussian integral theorem
in Minkowski space, the difference of the scalar products is transformed into a four-
dimensional integral:

(

Ψ−
A (ζ),ΦA(ζ)

)

−
(

Ψ−
A

′
(γζ),Φ′

A(γζ)
)′

=
∫

D(ζ)
∂µ

(

Ψ−
A (y) γµ ΦA(y)

)

d4y

=
∫

D(ζ)
Ψ−

A (y)†WB(y) ΦA(y) d4y.(3.16)

For the second step, we have used that Ψ−
A (t,x) solves the two-centre Dirac equation,

whereas ΦA(t,x) solves the Dirac equation of scattering channel A. The four-volume
of integration D(ζ) is given by:

D(ζ) =
{

y ∈ R
4 : 0 ≤ y0 − ζ ≤ v · y or 0 ≥ y0 − ζ ≥ v · y

}

.

It is the volume of space-time bounded by the two spacelike hypersurfaces, which are
determined by t = ζ and t′ = γζ. (See section B.2 for a similar calculation.)

According to the inequalities (3.13), the following estimate holds for sufficiently
large parameter ζ:

sup
y∈D(ζ)

1

1 + rA(y)2

1

1 + rB(y)2
≤ 1

C1ζ2
(3.17)

Here the constant C1 > 0 depends on bB, vB and v only.
Since the time-dependence of the scattering state Ψ−

A (t,x) is not known explicitly,
the integral (3.16) must be estimated in order to demonstrate that it converges to
zero as ζ → ∞. The following estimate is based on the assumption that the solution
Ψ−

A (t,x) of the two-centre Dirac equation is bounded in space-time by some constant
C2:

∥
∥
∥‖Ψ−

A (y)‖2

∥
∥
∥

L∞(R4)
≤ C2 (3.18)

This cannot be expected to be true in general. In fact, it is false if the external
fields WΓ(t,x) correspond to linearly moving Yukawa potentials. But a suitable
assumption on the electrostatic fields VΓ(r) should be sufficient in order to obtain
this property. Although a proof is not given here, (3.18) is expected to hold in
particular if the radial potentials VΓ(r) are of the form (2.10), with %Γ > 0 and
µΓ > 0. The latter condition provides that the potentials VΓ(r), their eigenfunctions,
and the multiplication operators WΓ(t,x) are bounded.
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The estimate of the integral (3.16) is done as follows:
∣
∣
∣
∣
∣

∫

D(ζ)
Ψ−

A (y)†WB(y) ΦA(y) d4y

∣
∣
∣
∣
∣

≤
∫

D(ζ)
‖Ψ−

A (y)‖2 γB ‖1 − vB · α‖2 |VB(rB(y))| ‖ΦA(y)‖2 d4y

≤ γB‖1 − vB · α‖2

C1ζ2

∫

D(ζ)
‖Ψ−

A (y)‖2 (1 + rB(y)2) |VB(rB(y))| (1 + rA(y)2) ‖ΦA(y)‖2 d4y

≤ C2C3γB‖1 − vB · α‖2

C1ζ2

∫

D(ζ)
(1 + y2) ‖φA(y)‖2 d4y

≤ C2C3γB‖1 − vB · α‖2 |v|
C1ζ2

∫

R3

|y|(1 + y2)‖φA(y)‖2 d3y.

The remaining integral is finite, in particular, if the bound state eigenfunction φA(x)
is exponentially decreasing towards spatial infinity. Furthermore, it has been used
that the term |(1 + r2)VB(r)| is bounded by a constant C3. Both requirements are
satisfied for the class of potentials VΓ(r) of equation (2.10) with µΓ > 0 and %Γ > 0.
Therefore, the integral (3.16) vanishes as ζ approaches infinity.

3.6 Remarks

3.6.1 Two-centre Dirac equation with moving point charges. In section 3.3,
asymptotic convergence has not been shown for the two-centre Dirac equation with
moving unscreened point charges. The proofs cannot be extended to include Coulomb
potentials, because the inverse screening lengths µA and µB must not vanish. This
means that the radial potentials VΓ(r) have to be short-ranged.

Furthermore, it seems hardly possible that asymptotic convergence can be proved
for long-range electrostatic potentials VΓ(r), like the Coulomb potential, without a
modification of the dynamics of the scattering channels. The reason for this con-
viction is as follows: For the nonrelativistic and relativistic quantum mechanical
scattering by a single Coulomb potential, the corresponding fact has been demon-
strated by Dollard in [Dol64, DV66] (reviewed in [Tha92]). Also, the scattering
theory of the two-centre Schrödinger equation with long-range potentials has been
investigated by Wüller in [Wül88]. There, it was found that modified dynamics for
the scattering channels of the two-centre Schrödinger equation are necessary, in order
to prove the existence and asymptotic completeness of the Møller wave operators if
long-range forces are present. The modified dynamics of each of the three different
scattering channels closely resembles the distorted free-time-evolution that was given
by Dollard for the nonrelativistic case.

Wüller, in his analysis [Wül88], made use of geometrical methods of scattering
theory, which have been developed by Enß and have also been applied to the discus-
sion of the Dirac equation [Tha92]. Therefore, a proper discussion of the scattering
theory for the Dirac equation with moving point charges may be feasible by using
similar methods as in [Wül88]. Such a mathematical investigation does not exist in
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the literature, but it is required, in particular, for a proof of relativistic invariance
in the long-range case. See, however, the next section for the discussion of Coulomb
boundary conditions.

3.6.2 Asymptotic completeness. Note that asymptotic completeness of the scat-
tering theory of the two-centre Dirac equation is neither proved in this thesis nor has
it been considered in the literature. It is conjectured that it can be shown similarly
to the complicated, corresponding proofs that have been published for the nonrela-
tivistic charge-transfer model [Yaj80, Hag82, Wül88, Gra90].

Asymptotic completeness is defined as the existence of complete sets of orthonor-
mal incoming scattering states Ψ+

Γ,k(t,x) and outgoing scattering states Ψ−
Γ,k(t,x).

It means that any solution Ψ(t,x) of the two-centre Dirac equation can be written
rigorously as linear combination of either incoming or outgoing scattering states:

Ψ(t,x) =
∑

Γ,k

a+
Γ,k Ψ+

Γ,k(t,x) =
∑

Γ,k

a−Γ,k Ψ−
Γ,k(t,x).

As the scattering states Ψ±
Γ,k(t,x) are asymptotically equal to asymptotic configu-

rations ΦΓ,k(t,x) as t → ∓∞, formally the linear expansions above turn into linear
combinations of asymptotic configurations ΦΓ,k(t,x) in the limit t → ∓∞ (cf. chap-
ter 4).

If the solution Ψ(t,x) is itself a scattering state, the coefficients of linear expansion
are identical to the transition amplitudes a∆l,Γk defined in section 3.2:

Ψ+
Γ,k(t,x) =

∑

∆,l

a∆l,Γk Ψ−
∆,l(t,x),

Ψ−
Γ,k(t,x) =

∑

∆,l

a∗Γk,∆l Ψ
+
∆,l(t,x).

Therefore, the ‘conservation of probability’,

‖Ψ±
Γ,k(t)‖ =

∑

∆,l

|a∆l,Γk|2 = 1, (3.19)

is a consequence of asymptotic completeness. Suppose that an initial configuration
(Γ, k) is a bound state of either centre A or centre B. In general, the sum over
transition probabilities |a∆l,Γk|2 to final configurations (∆, l) which are not asymptotic
configurations of channel C with negative energy is strictly less then one. This means
that the naive interpretation of the initial configuration as a one-particle state is not
entirely correct, since the total probability of finding an initial bound state (Γ, k) in
a final configuration of positive energy is not one, as it must be for a single-particle
theory. This reflects that the Dirac theory can only be interpreted as a multi-particle
theory.

3.6.3 Problem of second quantisation. A multi-particle theory requires a multi-
particle state space, namely the Fock space of quantum field theory. The Fock
space formalism of pair creation in external fields makes use of the fact that
the time-dependent external fields vanish everywhere in space as time t tends
to ±∞. This property is necessary, it allows for the construction of the Fock
space (the ‘second quantisation’) based on a spectral decomposition of the state
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space of the classical Dirac field with respect to the time-independent Hamilton-
ian at t = ±∞ [Tha92, Sch95].1 This time-independent Hamiltonian is identical
to the Hamiltonian the interaction picture of quantum field theory refers to (see
e.g. [RS75, FGS91, Sch95]). In common presentations of quantum field theory this
is frequently the free Hamiltonian H0 = −iα ·∇+ β (e.g. [FGS91, Sch95, Wei95])
or the free Hamiltonian plus a stationary Coulomb field, referred to as the Furry
picture of quantum field theory [MPS98].

Clearly, for the two-centre Dirac equation there is no such limit of the time-
dependent Dirac Hamiltonian as t→ ±∞. Therefore, the usual Fock space construc-
tion is not possible, although, as we have seen above, a multi-particle interpretation
of the transition amplitudes is inevitable. The problem of second quantisation of the
scattering theory presented in this chapter remains unsolved. For the present work
we take the pragmatic point of view that transition amplitudes between an asymp-
totic configuration of negative energy and an asymptotic configuration of positive
energy have to be interpreted as probability amplitudes of single pair production or
annihilation processes, as depicted in figure 3.1. Furthermore, in numerical calcula-
tions of this work these amplitudes are so small that the ‘one-particle’ interpretations
of other transition amplitudes, namely those between asymptotic configurations of
positive energy as depicted in 3.1, are reasonable, because numerical uncertainties
are much larger than the ‘error due to a loss of probability’ as a consequence of
transitions to negative energy configurations of scattering channel C.

Finally, we take a look at the role of quantum field theory in other approaches
to pair creation in peripheral heavy-ion collisions. Note, that the scattering channels
A and B of the two-centre Dirac equation can be removed by an adiabatic switching
formalism, namely by replacing the external fields WΓ(t,x), for example, by fields

e−ε2t2 WΓ(t,x) that vanish as time t tends to infinity. For a Dirac field with such
an external potential all particles are asymptotically free. The scattering channels A
and B are removed by the exponential damping factor and the scattering theory can
be formulated with respect to the free particle Fock space (Feynman–Dyson QED).
Although not mentioned explicitly, this point of view is taken implicitly, e.g., in
[BS89, WBS90]. A second possibility, allowing for an asymmetrical description of
bound-free pair production, is given by exponentially damping only the external field
of one of the centres, say WB(t,x). Then, in a rest frame of centre A, the total two-
centre Hamiltonian also becomes stationary as time t tends to ±∞. This allows for a
proper Fock space theory as well and corresponds to the single-centre approaches to
pair creation making use of the Furry picture. It is clearly asymmetrical, since one
of the nuclei only acts as a perturbation.

It is well-known that in quantum field theories, subject to asymptotically vanish-
ing time-dependent external field, transition amplitudes of the multi-particle theory
are directly related to transition amplitudes of the scattering theory of the classical
Dirac field (e.g. [FGS91, Sch95]) and it is, therefore, sufficient to consider the lat-
ter. In conclusion, we have argued in this subsection that the scattering theory of the

1Strictly speaking even stronger assumptions on the time-dependent external fields are necessary

for a second quantised field theory: The scattering matrix of the classical Dirac field must be

implementable in Fock space. A sufficient condition for the implementability is known as the Shale–

Stinesping criterion. (See e.g. [Rui77a, Rui77b, Rui77c, Tha92, Sch95].)



3.7. COULOMB BOUNDARY CONDITIONS 37

two-centre Dirac equation, which allows for bound states of both centres, represents
a more complicated case, for which a proper multi-particle theory is not known.

3.7 Coulomb boundary conditions

In this section, the case of long-range forces is considered. This means that the
electrostatic potential of a charge distribution ρΓ in its rest frame is Coulomb-like
at large distances from the corresponding centre. It has been argued in the previous
section 3.6 that scattering theory as described in section 3.1 is not applicable in this
case, because the potential is not decreasing sufficiently fast towards spatial infinity
to obtain asymptotic convergence. A workaround for that is the modification of the
wave equations for the scattering channels.

Modified Dirac equations for the scattering channels A and B have been proposed
in [Eic87], and reviewed in [TE90] and [EM95, ch. 5], where they have been termed
asymptotic equations. In these wave equations the residual interaction of centre B
with bound states of centre A is added to the corresponding channel Hamiltonian of
centre A, and vice versa, leading to modified scattering-channel Hamiltonians.

A relativistically moving point charge not only induces a long-range electric-field,
but also a long-range magnetic field. The magnetic field only vanishes in the rest
frame of the point source. Therefore, the asymptotic influence of centre B on bound
states of centre A is best considered in the rest frame of centre B. A state bound
to centre A means here that it is localised in the vicinity of centre A for all times.
Such a bound state is subject to the long-range Coulomb potential of centre B also
at arbitrarily large times. This is expressed by the fact that asymptotic convergence
is not achieved, if this large-time influence of centre B is neglected. It has, therefore,
been proposed by Eichler [Eic87, TE90, EM95] to include the following residual
interaction into the Hamiltonian of scattering channel A:

W∞
B

′′(t′′,x′′) =
−e2Z̃B

d′′B(t′′,x′′)
. (3.20)

Here, doubly primed coordinates denote rest frame coordinates of centre B and the
distance between the centres A and B as determined in the rest frame of centre B is
given by the Lorentz scalar d′′B(t′′,x′′) (cf. section 2.1). The charge number Z̃B has
been introduced to indicate the strength of the Coulomb-like tail of the electrostatic
potential of centre B. It is distinguished from the charge number ZB, since the latter
has been used as well for the Yukawa potential, in order to indicate its field strength
near the origin. Clearly, ZB = Z̃B for the Coulomb potential.

In fact, in the doubly primed frame the external fieldW∞
B

′′(t′′,x′′) does not depend
on spatial coordinates x′′. In the rest frame of centre B, it corresponds to the Coulomb
potential at the position of the moving centre A, of a point charge eZ̃B located at the
origin. A Poincaré transformation from the doubly primed coordinates back to an
unprimed coordinate system yields the residual external field of centre B on bound
states of centre A,

W∞
B (t,x) =

−e2Z̃B

dB(t,x)
γB(1 − vB · α), (3.21)
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where vB is the velocity of centre B in the unprimed frame. Similarly, the residual
external field of centre A on bound states of centre B is given in terms of the parameter
Z̃A and the Lorentz scalar dA(t,x). These residual fields have non-vanishing magnetic-
field components, to which bound states are exposed at arbitrarily large times.

The modified Hamiltonians of the scattering channels A and B are therefore:

H∞
A (t) = H0 +WA(t,x) +W∞

B (t,x),

H∞
B (t) = H0 +WB(t,x) +W∞

A (t,x).
(3.22)

These Hamilton operators are time-dependent in any Lorentz frame. For the rest
frames of centre A and B they have been described in the works of Eichler and co-
workers. It was recognised first in [Eic87] that the corresponding scattering-channel
Dirac equations have bound-state solutions, because the residual fields W∞

Γ (t,x) can
be removed by a gauge transformation.

A gauge function suitable to remove the external field W∞
B (t,x) is given by:

gB(t,x) =
e2Z̃B

v
log

[

dB(t,x) − γAvA · d

γv
+
γBvB · d

γ2v
+ vγB

(

t− vB · (x − bB)
)
]

.

(3.23)

The abbreviations v, γ and d have been introduced in section 2.1, where dB(t,x)
has been defined as well. Similarly a gauge function gA(t,x) removing W∞

A (t,x) is
obtained, by interchanging in equation (3.23) the indices A and B and reversing the
sign of d, which was defined as d = bB − bA. These gauge functions satisfy:

{∂t + α · ∇} gΓ(t,x) = −W∞
Γ (t,x).

The gauge functions gΓ(t,x) are determined only up to constant and, therefore,
other, equivalent gauge functions exist. Given a solution ΦA(t,x) of the unperturbed
scattering channel Dirac equation,

[H0 +WA(t,x) − i∂t] ΦA(t,x) = 0,

the gauge transformed wave function Φ∞
A (t,x), given by,

Φ∞
A (t,x) = exp(igB(t,x)) ΦA(t,x),

then solves the Coulomb-distorted channel Dirac equation,

[H0 +WA(t,x) +W∞
B (t,x) − i∂t] Φ

∞
A (t,x) = 0.

By virtue of this connection, Dirac equations of the scattering channels A and B,
with Hamilton operators according to equation (3.22), have solutions which perma-
nently remain localised in the vicinity of their respective centre. Therefore, they are
appropriate for the description of bound states, if Coulomb forces are present. Fol-
lowing Eichler and Dewangan the wave function Φ∞

A (t,x) is said to satisfy Coulomb
boundary conditions [EM95].

Recently, it has been asserted in [WSE99] that the asymptotic equations, as
presented in this section, are ‘not formally correct’ (see in particular appendix A of
[WSE99]). Another residual interaction has been proposed by Segev in the article
quoted. The present author does not agree with Segev for the following reason:
The Hamilton operator of the asymptotic equation, as proposed by Segev, is time-
dependent in a nontrivial way in any Lorentz frame. This means that there are no
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solutions of Segev’s asymptotic equations, which remain localised at a single centre
for all times. Clearly, the asymptotic equations of Segev are not suitable to describe
bound states. Contrary to the argument in [WSE99], the earlier proposal of Eichler
[Eic87] seems to be the only appropriate choice for the Coulomb-modified Dirac
equations of the scattering channels A and B, corresponding to asymptotically bound
particles of the two-centre Dirac equation with unscreened nuclear charges.





Chapter 4

Coupled Channel Approximation

In this chapter, we give an introduction to the coupled channel method, used in this
work to solve the two-centre Dirac equation numerically. Although this method has
been widely used for many years, also for the solution of the two-centre Schrödinger
equation, a brief account of this ansatz is necessary to explain its principal ideas and
present notational conventions. Here, particular emphasis is given to the fundamental
solution of the coupled channel equations and its properties. In this respect the
following sections differ from standard presentations of the numerical method [BM92,
EM95].

4.1 Coupled channel equations for the semiclassical
approximation

The principal idea of the coupled channel ansatz is to construct an approximate solu-
tion Ψ̃(t,x) of the Dirac equation (2.11) as a finite time-dependent linear combination
of asymptotic configurations ΦΓ,i(t,x):

Ψ̃(t,x) =
∑

Γ,i

cΓ,i(t) ΦΓ,i(t,x). (4.1)

The states ΦΓ,i included in this finite sum are usually referred to as the basis func-
tions of the coupled channel expansion [BM92, EM95]. Note that generally an
exact solution of the two-centre Dirac equation cannot be written as finite sum of
asymptotic configurations. However, in the case of the two-centre Dirac equation an
infinite series expansion is suitable to represent an arbitrary solution. The accuracy
and usefulness of this ansatz depends on the physical situation under consideration
and the corresponding choice of basis functions. More general expansions are possi-
ble in which the basis functions are equal to the asymptotic configurations ΦΓ,i only
asymptotically (i.e. for large times).

The determination of the complex expansion coefficients cΓ,i(t) is guided by the
following reasoning. Assume that a solution Ψ(t,x) of a Dirac equation with a time-
dependent Hamilton operator H(t),

[H(t) − i∂t] Ψ(t,x) = 0,

may be approximated by a wave function of the type given in equation (4.1), then
Ψ̃(t,x) approximately solves that Dirac equation:

[H(t) − i∂t]
∑

Γ,i

cΓ,i(t) ΦΓ,i(t,x) ≈ 0. (4.2)

Multiplying this equation from the left by the adjoint of some basis function Φ†
∆,j and

integrating over x yields a set of approximate equations for the coefficients cΓ,i(t). By
turning the approximate equality into an exact equality a prescription for the deter-
mination of the coefficients cΓ,i(t) is obtained. Therefore, given the time-dependent
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Dirac-Hamiltonian H(t), according to this prescription the expansion coefficients
cΓ,i(t) have to be determined by solving the following set of differential equations:
∑

Γ,i

cΓ,i(t)
(

Φ∆,j(t), [H(t) − i∂t] ΦΓ,i(t)
)

− i
∑

Γ,i

(∂t cΓ,i(t))
(

Φ∆,j(t),ΦΓ,i(t)
)

= 0. (4.3)

These equations will be referred to as the coupled channel equations. In the non-
relativistic impact parameter model, based, e.g., on the Schrödinger equation, the
coupled channel equations may also be derived from a variational principle [BM92].
Note that in the literature on atomic physics the term coupled channel equations
sometimes also refers to other (integro-differential) equations which are more or less
related to the present set of equations (4.3) [BM92, Fri90].

The important, distinctive property of the coupled channel equations is that the
norm ‖Ψ̃(t)‖ of an approximate solution Ψ̃(t,x) is independent of the time t. Fol-
lowing [BM92] it is verified as follows. As a consequence of equation (4.3) we have,

∫

Ψ̃(t,x)†
(

[H(t) − i∂t] Ψ̃(t,x)
)

d3x = 0,

although Ψ̃(t,x) is not an exact solution of the Dirac equation in general. Due to
the hermitian property of the Hamiltonian H(t) the time-independence of the norm

‖Ψ̃(t)‖ is obtained by taking the time derivative of the norm squared:

∂t‖Ψ̃(t)‖2 =
(

∂tΨ̃(t), Ψ̃(t)
)

+
(

Ψ̃(t), ∂tΨ̃(t)
)

=
(

−iH(t)Ψ̃(t), Ψ̃(t)
)

+
(

Ψ̃(t),−iH(t)Ψ̃(t)
)

= 0. (4.4)

In the same way it is proved that the scalar product between two arbitrary approxi-
mate solutions Ψ̃(1)(t) and Ψ̃(2)(t), which are different linear combination of the same
basis functions, is conserved:

∂t

(

Ψ̃(1)(t), Ψ̃(2)(t)
)

= 0 (4.5)

This property, which will be used below, is in fact equivalent to (4.4) due to the
polarisation identity of the scalar product [RS80, Kat80].

To conclude this section, we note that the coupled channel ansatz (4.1) can be
formulated in various relativistic frames of reference. Then the coupled channel
equations (4.3) stated in two different reference frames differ if the Lorentz frames
are moving with respect to each other. This constitutes a peculiarity of the rela-
tivistic theory of coupled channel equations. Nonrelativistic inertial frames all have
the same time axis and the coupled equations are the same in all nonrelativistic
inertial frames. By contrast, in the relativistic theory the time axis is transformed
by a Lorentz boost. The influence of the choice of the relativistic frame of refer-
ence on transition amplitudes computed by means of the coupled channel method is
investigated systematically in this thesis, numerical results are presented in chapter 6.

4.2 Fundamental solution and asymptotic unitarity

In this section, the general mathematical properties of solutions cΓ,i(t) of the coupled
channel equations (4.3) are discussed. In order to simplify the notation in the sub-
sequent presentation, the double indices (Γ, i) of the basis functions are mapped one
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to one and onto the integers from 1 to n, where n is the number of basis functions
occurring in the expansion (4.1). Given such a mapping for some particular set of
basis functions ΦΓ,i, the basis functions may be labelled more simply by a single
integer i. Defining the overlap matrix N(t) of the basis functions Φi(t,x) as,

Nij(t) = (Φi(t),Φj(t)) , (4.6)

and the interaction matrix V (t) as,

Vij(t) = (Φi(t), [H(t) − i∂t] Φj(t)) , (4.7)

the coupled channel equations (4.3) may be rewritten in the equivalent matrix form
[BM92, EM95]:

∂t c(t) = −iN(t)−1V (t)c(t). (4.8)

Here, c(t) denotes a vector of expansion coefficients, c(t) = (c1(t), . . . , cn(t)). Equa-
tion (4.8) is a homogeneous linear ordinary differential equation. It is assumed in
the following that every initial value problem of equation (4.8) has a unique solution
defined for all times t. It is known from the theory of ordinary differential equa-
tions that, under this assumption, a system of n linear independent solutions exists
such that every solution of (4.8) is a linear combination of these linear independent
solutions [CL55, Wal93].

We introduce the fundamental solution of equation (4.8) and discuss its properties:
Let F (t, ti) denote the matrix of column-vectors c(i)(t, ti) which are solutions of (4.8)

and meet the initial condition c
(i)
j (ti, ti) = δij at time ti:

F (ti, ti) =
(

c(1)(ti, ti), c
(2)(ti, ti), . . . , c

(n)(ti, ti)
)

= 1. (4.9)

Throughout this work, multiples of the unit matrix are represented simply by com-
plex numbers, therefore, the numeral 1 in the previous equation stands for the unit
matrix. Such a system of solutions is commonly known as a fundamental system of
solutions [Wal93]. It exists for any initial time ti (see above). The two-parameter
matrix-valued function F (t, ti) will be referred to as the fundamental solution of the
coupled channel equations for the initial time ti. The properties of this fundamental
solution have not yet been explicitly discussed in the literature on coupled channel
calculations.

As a consequence of the unique solvability of the initial value problem, the fun-
damental solution F has the following additional properties:

F (t2, t1)F (t1, t0) = F (t2, t0), (4.10)

F (t1, t0)
−1 = F (t0, t1), (4.11)

satisfied for arbitrary times t0, t1 and t2.
Note that F is generally not a unitary matrix (i.e. a unitary time evolution),

because the matrix −iN(t)−1V (t) of the coefficients of the linear differential equa-
tion (4.8) is not anti-hermitian. However, this coefficient matrix may be anti-
hermitian in particular cases, e.g. in single-centre coupled channel equations. In
such cases F (t, ti) is unitary for all arguments t and ti [CL55, Wal93]. However,
the matrix F (t2, t1) is asymptotically unitary, if the overlap matrix N(t) converges to
the unit matrix as t→ ±∞, i.e. if the basis functions are asymptotically orthogonal.
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Asymptotic unitarity is useful later in this work in order to check and assess the
accuracy of a numerically evaluated fundamental solution F (tf , ti).

It can be verified that the time-independence of the scalar product (4.5) is equiv-
alent to the following relation between the fundamental solution F and the overlap
matrix N(t):

F (t1, t0)
†N(t1)F (t1, t0) = N(t0). (4.12)

Given the asymptotic orthonormality of the basis functions, the asymptotic unitarity
of the fundamental solution F is obtained by taking the limits t1 → ∞ and t0 → −∞:

lim
t1→∞

lim
t0→−∞

F (t1, t0)
†F (t1, t0) = 1. (4.13)

This means in particular that the norms at t = ±∞ of some arbitrary solution c(t)
of the coupled channel equations are equal,

lim
t→−∞

‖c(t)‖2 = lim
t→∞

‖c(t)‖2, (4.14)

if N(t) → 1 as t approaches ±∞.
Note that the existence of the limits limt→±∞ c(t) themselves is not implied

by (4.14). Their existence can be deduced from the asymptotic convergence of the
fundamental solution,

lim
t1→∞

lim
t0→−∞

F (t1, t0) = F (∞,−∞), (4.15)

which is likewise not implied by (4.13) and, in principle, requires a separate math-
ematical discussion. The limit F (∞,−∞) takes the role of the ‘coupled channel
scattering matrix’ (see section 4.3 below) and satisfies:

F (∞,−∞)† = F (∞,−∞)−1 = F (−∞,∞). (4.16)

4.2.1 Unitarity criterion. In this subsection a numerically useful method is de-
veloped in order to assess the deviation of the fundamental solution F (t, ti) from
unitarity. The unitarity of a fundamental solution F (t, ti) is equivalent to the prop-
erty,

‖F (t, ti)u‖2 = 1, (4.17)

for all times t and unit vectors u. The unit vector u describes an initial condition at
some initial time ti of a solution c(t) = F (t, ti)u of the coupled channel equations. It
has been mentioned in the previous section that the fundamental solution is generally
not unitary, which means that,

‖F (t, ti)u‖2 6= 1.

As a measure of the deviation of F from unitarity, one may compute the range of the
vector norm ‖F (t, ti)u‖2 substituting all unit vectors u. It turns out that the upper
limit,

max
‖u‖2=1

‖F (t, ti)u‖2,

and the lower limit,

min
‖u‖2=1

‖F (t, ti)u‖2,
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of this range, may be computed easily, because they are related to the so-called
singular values of the the matrix F (t, ti). The singular values of a matrix F are
defined as the positive square roots of the eigenvalues of the matrix F †F [Wil65,
Kat80, RS80, DH93]. Due to the positivity of F †F , the singular values of F are
positive numbers and they will be denoted, in descending order, by σ1, . . . , σn. We
may then compute:

min
‖u‖2=1

‖Fai‖2 =

(

min
v∈Cn

‖Fv‖2
2

‖v‖2
2

) 1

2

=

(

min
v∈Cn

v†F †Fv

v†v

) 1

2

= σn. (4.18)

The last step is obtained by writing the vector v ∈ Cn as a linear combination of
orthonormal eigenvectors of the hermitian matrix F †F . In the same way the relation,

max
‖u‖2=1

‖Fu‖2 = σ1, (4.19)

is obtained. We conclude that,

σn(t, ti) ≤ ‖F (t, ti)u‖2 ≤ σ1(t, ti), (4.20)

for any unit vector u. In particular, a fundamental solution matrix F (t, ti) is unitary if
and only if σ1(t, ti) = σn(t, ti) = 1. Therefore, the determination of the singular values
is an appropriate method to assess the unitarity of F (t, ti) in numerical calculations.
It is also an efficient method because stable iterative methods for the evaluation of
singular values of square matrices exist (see [GV96, DH93, ABB+99]).

4.3 Approximate transition amplitudes

The coupled channel method is used to compute approximate transition amplitudes
numerically. In order to deduce the relation between the analytically defined tran-
sition amplitude and the fundamental solution matrix, recall the post form of the
transition amplitude, presented in section 3.2:

a∆l,Γk = lim
t→∞

(

Φ∆,l(t),Ψ
+
Γ,k(t)

)

. (4.21)

Consider an approximate solution Ψ̃+
Γ,k(t,x) of the two-centre Dirac equation, which

is obtained by means of the coupled channel method and approaches the asymptotic
configuration ΦΓ,k(t,x) as t→ −∞,

lim
t→−∞

∥
∥
∥Ψ̃+

Γ,k(t) − ΦΓ,k(t)
∥
∥
∥ = 0.

The approximate transition amplitude ã∆l,Γk is defined similarly to equation (4.21)
by,

ã∆l,Γk = lim
t→∞

(

Φ∆,l(t), Ψ̃
+
Γ,k(t)

)

. (4.22)
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Assuming asymptotic orthogonality of the basis functions ΦΓ,k(t,x) of the coupled
channel expansion, the short calculation,

ã∆l,Γk = lim
t→∞

(

Φ∆,l(t),
∑

Θ,m

cΘ,m(t) ΦΘ,m(t)
)

(where lim
t→−∞

cΘ,m(t) = δΘm,Γk)

=
∑

Θ,m

lim
t→∞

cΘ,m(t) lim
t→∞

(Φ∆,l(t),ΦΘ,m(t))

= lim
t→∞

c∆,l(t),

shows that the approximate transition amplitudes are identical to the elements of the
matrix F (∞,−∞) defined in equation (4.15),

F (∞,−∞)∆l,Γk = ã∆l,Γk.

As a consequence of the unitarity of F (∞,−∞) the finite sum over all approximate
transition probabilities is one, for any initial configuration (Γ, k), i.e.

∑

∆,l

|ã∆l,Γk|2 = 1.

This property is not a consequence of the conservation of probability (3.19), which
was discussed in the context of the exact scattering theory of the two-centre Dirac
equation. But it is a feature of the coupled channel equations. In general the cor-
responding finite sum over the exact transition probabilities |a∆l,Γk|2 will be smaller
than one.

As demonstrated by numerical calculations presented in chapter 6, the approx-
imate transition amplitude ã∆l,Γk is not invariant under Lorentz boosts. This fact
also reflects the breaking of the Lorentz invariance due to the coupled channel ap-
proximation.

Certainly, the matrix of transition amplitudes F (∞,−∞) must be approximated
in numerical calculations by a fundamental solution matrix F (tf , ti) with finite initial
and final times ti and tf .



Chapter 5

Implementation of the Coupled Channel
Approximation

In this chapter, the capabilities of the numerical code for coupled channel calculations,
which has been written for the present work, are described.

In addition, some numerical results are presented. This serves two different pur-
poses: On one hand, the examples illustrate the principal features of the two-centre
coupled channel method. On the other hand, these exemplary calculations also
demonstrate the proper functioning and the correctness of the numerical software.

The entire computer code used for the numerical computations presented in this
work has been newly written, except for some publicly available source code pack-
ages employed for standard tasks, like linear algebra calculations and inter-process
communication in distributed computations. The general functionality, structure and
algorithmic details of the program are not described in this chapter, but in appen-
dix A.

5.1 Reference frames

The program does not permit to solve the coupled channel equations (4.8) in an ar-
bitrarily chosen frame of reference, but it is the first which is capable of performing
numerical computations in various different relativistic frames of reference. The cou-
pled channel equations can be solved in such Lorentz frames, in which the centres
move along the e3-axis and the centres are located on the e1-axis at time t = 0.

vAe3

vBe3

e1

bBe1

bAe1

e3
e2

Hence, it is assumed in the following that the parameters bΓ and vΓ of the straight
line trajectories (2.1) are given by,

bΓ = bΓe1,

vΓ = vΓe3,

where bΓ and vΓ are not necessarily positive.
Note, however, that the overlap and interaction matrix elements, as defined in

equations (4.6) and (4.7), are invariant under spatial rotations and translations,
and, therefore, the coupled channel equations in Lorentz frames connected by such
Poincaré transformations are identical. Hence, it is true that the program allows

47



48 5. IMPLEMENTATION OF THE COUPLED CHANNEL APPROXIMATION

for the solution of the coupled channel equations in all Lorentz frames, in which the
centres move on parallel straight-line trajectories and in which the distance of closest
approach of both centres is reached at time t = 0. The particular orientation of the
coordinate axes as defined above is not important.

In this chapter, primed and doubly primed coordinates are always understood as
defined below:

t′ = γA(t− vAx
3), x′ = (x − x3e3) + γA(x3 − tvA)e3 − bAe1,

t′′ = γB(t− vBx
3), x′′ = (x − x3e3) + γB(x3 − tvB)e3 − bBe1.

(5.1)

Clearly, they are rest frame coordinates of centre A and B respectively. The particu-
lar orientation of these coordinate systems later determines the angular momentum
quantisation axis of coupled channel basis functions. The rapidity of centre Γ, a
useful quantity denoted by χΓ in the following, is related to velocity vΓ by:

vΓ = tanhχΓ.

Although numerical calculations presented in this work have been carried out for
an external field originating from moving point charges, the extension of the program
to arbitrary spherically symmetric charge distributions is straightforward. Thus the
more general case will be considered here, in which the external field matrix WΓ(t,x)
is of the form:

WΓ(t,x) = −e VΓ(rΓ(t,x))S(2χΓ).

However, VΓ is always assumed to be an attractive electrostatic potential for neg-
atively charged electrons, such that electron bound states exist. For the matrix
part S(2χΓ) of the previous equation the abbreviation,

S(χ) = exp
(

−χ
2
α3

)

=
(

cosh
χ

2

)

−
(

sinh
χ

2

)

α3,

has been introduced for the boost representation matrix S(χ). It satisfies:

S(2χΓ) = S(χΓ)2 = γΓ(1 − vΓα3).

The hermitian matrix S(χ) is a real matrix in case of the standard Pauli–Dirac
representation of the γ-matrices, used in the numerical code (see appendix C). For
the present choice of reference frames, the residual external fields W∞

Γ (t,x), defined
in section 3.7, may be written as follows:

W∞
Γ (t,x) =

−e2Z̃Γ

dΓ(t,x)
S(2χΓ).

It is worth mentioning again the expressions for the Lorentz scalars rΓ(t,x) and
dΓ(t,x), which are defined in equations (2.4) and (2.6) and are particularly simple in
the present context:

rΓ(t,x) =
√

(x1 − bΓ)2 + (x2)2 + γ2
Γ(x3 − tvΓ)2, (5.2)

dΓ(t,x) =
√

(bA − bB)2 + v2γ2
Γ(t− vΓx3)2, (5.3)

Here the velocity v is given by,

v = tanh |χA − χB|, (5.4)
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and is the relative velocity of the centres in a rest frame of either centre (cf. section
2.1). Hence, the collision energy is given by the Lorentz factor γ = cosh(χA − χB).

5.2 Spherical symmetry

The spherical symmetry of the electrostatic potential VA(|x′|) in the primed coor-
dinates has the following well-known implications [Ros61, BD66, Sak67, Tha92,
EM95]. The t′-independent Hamiltonian in the primed Lorentz frame,

H ′
A = −iα · ∇′ + β − e VA(|x′|),

commutes with the spin-orbit operator,1 2

K ′ = −β(L′
· S′ + 1), (5.5)

and at the same time with the total angular momentum operator J ′ = L′ +S′. Here,
L′ denotes the orbital angular momentum operator,

L′ = x
�

∧ (−i∇′),

and S′ the spin angular-momentum operator,

S′ = − i

4
α ∧ α.

The spin-orbit operator K ′ commutes not only with H ′
A, but also with the total

angular momentum operator J ′. Moreover, the set of its eigenvalues σ(K ′) is the set
of all nonzero integers:

σ(K ′) = {±1,±2,±3, . . . } .

Due to the relation,

J ′2 = K ′2 − 1

4
,

any eigenfunction of K ′ with eigenvalue κ is automatically an eigenfunction of J ′2

with eigenvalue j(j + 1), where κ and j are related by:

j = |κ| − 1

2
.

Since H ′
A, K ′, and the third component J ′3 of the total angular momentum oper-

ator J ′ form a set of commuting, self-adjoint operators, it is clear that bound states
of the electrostatic potential VA(|x′|) are orthogonal, if they correspond to differ-
ent eigenvalues. Any energy eigenvalue of a simultaneous eigenstate of H ′

A and K ′,
with the eigenvalues ε and κ respectively is at least 2|κ|-fold degenerate, known as
the angular momentum degeneracy of bound state energies for a spherical potential.

1Here the sign convention agrees with [SFVW95b].
2In principle, it is appropriate to give the operator K ′ (and the other operators defined in this

section) an additional subscript A, in order to indicate that it is defined with respect to the primed

spatial coordinates 5.1 of a rest frame of centre A. But for brevity K ′

A is written simply as K ′.
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The energy eigenvalues, within an eigenspace of K ′ with eigenvalue κ, are commonly
numbered in ascending order by an integer n, with

n = |κ|, |κ| + 1, |κ| + 2, . . . if κ < 0 and

n = κ+ 1, κ+ 2, κ+ 3, . . . if κ > 0.

If degeneracies within an eigenspace of K ′, that are not angular momentum degenera-
cies, are counted by separate indices n, then any bound state of the radially symmetric
potential VA, which is a simultaneous eigenstate of the operators H ′

A, K
′ and J ′3, is

uniquely characterised by a triple index (n, κ,m). Here m denotes the eigenvalue of
J ′3. However, such degeneracies do not occur for the Coulomb potential. For some
potentials, like the Coulomb potential, the number of orthogonal bound states with
the same eigenvalue κ is infinite. This number may be finite or even zero, depending
on κ, for other attractive potentials, including the Yukawa potential and the class of
potentials of equation (2.10)

Therefore, in the important case where VA(|x′|) is the Coulomb potential, every
triple (n, κ,m) satisfying n ∈ N,

−n ≤ κ < n with κ ∈ Z, κ 6= 0, and

|m| ≤ |κ| − 1

2
with m ∈ 2Z + 1

2
,

corresponds to a Coulomb–Dirac bound state, which is simultaneously an eigenstate
of the operatorsH ′

A, K
′ and J ′3, and vice versa. These mutually orthogonal Coulomb–

Dirac bound states are consecutively numbered by the single non-negative integer,

i =
(2n− 1)(n− 1)n

3
+ 2κ2 + κ+m− 1

2
= 0, 1, 2, . . . . (5.6)

This integer i constitutes the linear index for bound states, employed in numerical
calculations presented in this work (see e.g. figure 5.1 on page 55). The linear ordering
of Coulomb–Dirac bound states by their index i includes their partial ordering due to
the energy eigenvalues. This means that i(n, κ,m) ≤ i(n̂, κ̂, m̂) implies εnκm ≤ εn̂κ̂m̂.

The integer n represents the principal quantum number of an eigenstate in the
nonrelativistic limit of the Dirac equation and the orbital angular momentum quan-
tum number l with respect to that limit, is given by:

l =







|κ| − 1 if κ < 0,

κ if κ > 0,

Table 5.1 lists the 28 lowest Coulomb–Dirac bound states, including their conven-
tional spectroscopic labels. Clearly, everything described in this section applies sim-
ilarly to bound states of the spherically symmetric electrostatic potential VB(|x′′|) in
the doubly primed Lorentz frame.

5.3 Basis functions

5.3.1 Undistorted basis functions. All basis sets of coupled channel calculations
presented in this work comprise a certain number of bound-electron wave functions
of both centre A and centre B. These basis functions are first constructed in their
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Table 5.1. Single and triple indices of the 28 lowest Coulomb–Dirac bound
states and their designations in spectroscopic notation. The integer i is defined

in equation (5.6).

i n κ m spectrosc.

0 1 −1 −1
2

1s1/2(−1
2
)

1 1 −1 +1
2

1s1/2(+
1
2
)

2 2 −1 −1
2

2s1/2(−1
2
)

3 2 −1 +1
2

2s1/2(+
1
2
)

4 2 1 −1
2

2p1/2(−1
2
)

5 2 1 +1
2

2p1/2(+
1
2
)

6 2 −2 −3
2

2p3/2(−3
2
)

7 2 −2 −1
2

2p3/2(−1
2
)

8 2 −2 +1
2

2p3/2(+
1
2
)

9 2 −2 +3
2

2p3/2(+
3
2
)

10 3 −1 − 1
2

3s1/2(−1
2
)

11 3 −1 + 1
2

3s1/2(+
1
2
)

12 3 1 −1
2

3p1/2(−1
2
)

13 3 1 +1
2

3p1/2(+
1
2
)

i n κ m spectrosc.

14 3 −2 − 3
2

3p3/2(−3
2
)

15 3 −2 − 1
2

3p3/2(−1
2
)

16 3 −2 + 1
2

3p3/2(+
1
2
)

17 3 −2 + 3
2

3p3/2(+
3
2
)

18 3 2 −3
2

3d3/2(−3
2
)

19 3 2 −1
2

3d3/2(−1
2
)

20 3 2 +1
2

3d3/2(+
1
2
)

21 3 2 +3
2

3d3/2(+
3
2
)

22 3 −3 − 5
2

3d5/2(−5
2
)

23 3 −3 − 3
2

3d5/2(−3
2
)

24 3 −3 − 1
2

3d5/2(−1
2
)

25 3 −3 + 1
2

3d5/2(+
1
2
)

26 3 −3 + 3
2

3d5/2(+
3
2
)

27 3 −3 + 5
2

3d5/2(+
5
2
)

respective primed and doubly primed rest frames and then Lorentz-transformed into
the unprimed frame of reference, where the coupled channel ansatz is made. In their
rest frames the bound states are taken to be eigenfunctions of their corresponding
time-independent Hamiltonians, spin-orbit operators and third component of their
total angular momentum operators, as described in the previous section. Hence,
these basis functions are of the form:

ΦA,i(t,x) = S(−χA) exp(−it′εA,i)φA,i(x
′),

ΦB,j(t,x) = S(−χB) exp(−it′′εB,j)φB,j(x
′′).

(5.7)

Here, the indices i and j refer to the linear index (5.6) of orthonormal bound state
eigenfunctions of fixed energy and angular momentum. By construction, the wave
functions φA,i and φB,j solve the following energy eigenvalue equations in their re-
spective rest frames:

[

−iα · ∇′ + β − e VA(|x′|)
]

φA,i(x
′) = εA,i φA,i(x

′),
[

−iα · ∇′′ + β − e VB(|x′′|)
]

φB,j(x
′′) = εB,j φB,j(x

′).

Their precise form is not important here and given in appendix A. Although they
refer to the primed and doubly primed frames respectively, the energy eigenvalues εA,i

and εB,j , and the eigenfunctions φA,i(x
′) and φB,j(x

′′) are not primed, because eigen-
values and time-independent eigenfunctions cannot be transformed to moving frames
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meaningfully, unless the external field vanishes (cf. section B.3). The boosted wave
functions ΦΓ,i(t,x) of equation (5.7) solve the scattering-channel Dirac equations,

[H0 +WΓ(t,x) − i∂t] ΦΓ,i(t,x) = 0, (5.8)

and will be referred to as undistorted basis functions, as opposed to phase-distorted
basis functions introduced in the following subsection.

The specific expressions for overlap and interaction matrix elements (cf. equations
(4.6) and (4.7) respectively) in the case of undistorted basis functions are presented
in the following. Due to the invariance of the scalar product (discussed in section
B.2), and since by construction the eigenfunctions φA,i(x

′) are orthonormal in the
primed reference frame, the basis functions ΦA,i(t,x) in the unprimed reference frame
are orthonormal as well for all times t. The same is true for the bound-state wave
functions ΦB,j(t,x) of centre B. Therefore we have:

NAj,Ai(t) = δij,

NBj,Bi(t) = δij.
(5.9)

The overlap matrix elements (4.6) between basis functions of different centres become:

NAj,Bi(t) =
∫

exp(it′εA,j − it′′εB,i)φ
†
A,j(x

′)S(−χA − χB)φB,i(x
′′) d3x,

NBj,Ai(t) =
∫

exp(it′′εB,j − it′εA,i)φ
†
B,j(x

′′)S(−χA − χB)φA,i(x
′) d3x.

(5.10)

Certainly, the overlap matrix is hermitian, such that N∆j,Γi(t) = NΓi,∆j(t)
∗ holds,

which is evident already from definition (4.6). The overlap matrix elements (5.10)
are vanishing only as t approaches ±∞ and are nonzero otherwise (cf. section 3.4).

As verified by using equation (5.8), the interaction matrix elements (4.7) between
undistorted basis functions are given in the present context by the following expres-
sions:

VAj,Ai(t) =
∫ {

− eVB(rB(t,x))
}

×

× exp(it′εA,j − it′εA,i) φA,j(x
′)† S(−2χA + 2χB)φA,i(x

′) d3x

VAj,Bi(t) =
∫ {

− eVA(rA(t,x))
}

×

× exp(it′εA,j − it′′εB,i) φA,j(x
′)† S(χA − χB)φB,i(x

′′) d3x

VBj,Ai(t) =
∫ {

− eVB(rB(t,x))
}

×

× exp(it′′εB,j − it′εA,i) φB,j(x
′′)† S(−χA + χB)φA,i(x

′) d3x

VBj,Bi(t) =
∫ {

− eVA(rA(t,x))
}

×

× exp(it′′εB,j − it′′εB,i) φB,j(x
′′)† S(2χA − 2χB)φB,i(x

′′) d3x

(5.11)

Numerically the matrix elements (5.10) and (5.11) have to be evaluated by three-
dimensional quadrature formulas (see appendix A). Although the interaction matrix
is not hermitian, the partial symmetry VΓj,Γi = V ∗

Γi,Γj is useful to reduce the effort of
the computationally very demanding numerical evaluation. The fundamental solu-
tion F (t, ti) is then computed by integrating the differential equation (4.8) between
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some suitable initial and final times, ti and tf , chosen in a symmetrical fashion as
ti = −tf .

5.3.2 Phase-distorted basis functions. Compared to the definition (5.7) of the
undistorted basis functions, the phase-distorted basis functions have an additional
phase factor, in order to satisfy Coulomb boundary conditions. They are defined as:

ΦA,i(t,x) = exp(igB(t,x))S(−χA) exp(−it′εA,i)φA,i(x
′),

ΦB,j(t,x) = exp(igA(t,x))S(−χB) exp(−it′′εB,j)φB,j(x
′′).

(5.12)

We do not use different symbols for phase-distorted and undistorted basis functions,
because they will not both occur in the same equation. In equations (5.12) the energy
eigenvalues εA,i and εB,j , and the eigenfunctions φA,i(x

′) and φB,j(x
′′) are identical

to those of the previous section. Although the phase-distorted basis functions are
not energy or angular momentum eigenfunctions in the primed and doubly primed
reference frames respectively (cf. section B.3 of the appendix), they are denoted by
analogy to the undistorted functions according to table 5.1.

For the present numerical work the following gauge functions gΓ(t,x) have been
used,

gΓ(t,x) =
e2Z̃Γ

v
log

dΓ(t,x) + vγΓ(t− vΓx
3)

|bA − bB|
, (5.13)

with dΓ(t,x) as in equation (5.3) and v = tanh |χA − χB|. Remember that ZΓ = Z̃Γ

for the Coulomb potential. The phase-distorted basis functions (5.12) then solve the
following Coulomb-distorted scattering-channel Dirac equations (cf. section 3.7):

[H0 +WA(t,x) +W∞
B (t,x) − i∂t] ΦA,i(t,x) = 0,

[H0 +WB(t,x) +W∞
A (t,x) − i∂t] ΦB,j(t,x) = 0.

We turn to the specific expressions for overlap and interaction matrix elements in
the case of phase-distorted basis functions. Since the additional phase factor cancels
in scalar products between basis functions of the same centre, phase-distorted basis
functions belonging to the same scattering channel are orthonormal for the same
reason as above:

NAj,Ai(t) = δij,

NBj,Bi(t) = δij.
(5.14)

The overlap between basis functions of different channels is different for undistorted
and phase-distorted basis functions. The remaining elements of the hermitian overlap
matrix N(t) are given by:

NAj,Bi(t) =
∫

exp(igA(t,x) − igB(t,x)) ×

× exp(it′εA,j − it′′εB,i)φA,j(x
′)† S(−χA − χB)φB,i(x

′′) d3x

NBj,Ai(t) =
∫

exp(igB(t,x) − igA(t,x)) ×

× exp(it′′εB,j − it′εA,i)φB,j(x
′′)† S(−χA − χB)φA,i(x

′) d3x

(5.15)
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Finally, in the case of phase-distorted basis functions the elements of the interaction
matrix V (t) are explicitly:

VAj,Ai(t) =
∫ {

eVB(dB(t,x)) − eVB(rB(t,x))
}

×

× exp(it′εA,j − it′εA,i) φA,j(x
′)† S(−2χA + 2χB)φA,i(x

′) d3x

VAj,Bi(t) =
∫

exp(igA(t,x) − igB(t,x))
{

eVA(dA(t,x)) − eVA(rA(t,x))
}

×

× exp(it′εA,j − it′′εB,i) φA,j(x
′)† S(χA − χB)φB,i(x

′′) d3x

VBj,Ai(t) =
∫

exp(igB(t,x) − igA(t,x))
{

eVB(dB(t,x)) − eVB(rB(t,x))
}

×

× exp(it′′εB,j − it′εA,i) φB,j(x
′′)† S(−χA + χB)φA,i(x

′) d3x

VBj,Bi(t) =
∫ {

eVA(dA(t,x)) − eVA(rA(t,x))
}

×

× exp(it′′εB,j − it′′εB,i) φB,j(x
′′)† S(2χA − 2χB)φB,i(x

′′) d3x.

(5.16)

Only the difference of the gauge functions gA and gB appears in the integrands.
Note that the partial symmetry of the interaction matrix, VΓj,Γi = V ∗

Γi,Γj, holds for
undistorted as well as phase-distorted basis functions.

5.4 Numerical tests

Before we describe in section 5.5 the inclusion of basis functions representing the
scattering channel C of asymptotically free particles, some numerical calculations will
be presented in this section. These results are based on a coupled channel expansion
exclusively making use of bound state basis functions. Accordingly, only transition
probabilities of excitation and charge transfer may be obtained by such calculations.

Numerical investigations of this kind have been carried out, and published in series
of papers, by Toshima and Eichler (see the original articles [TE88b, TE88a, TE90]
and also [Eic90, EM95]). The work of these authors represents the only fully rela-
tivistic two-centre coupled channel calculations available in the literature. Therefore,
reproducing some of their results is an important check of the new computer pro-
gram. At the same time the present work is the first independent verification of the
numerical results of Toshima and Eichler.

The relativistic two-centre coupled channel calculations reported by Toshima and
Eichler have been performed for a particular frame of reference, namely the target
frame, where the initial configuration is at rest [TE88b, TE88a, TE90]. This cor-
responds in the present program (e.g.) to a calculation in a frame of reference, where
the velocity of centre A is zero, vA = 0, and where the initial electronic configuration
is a bound state of centre A.

In figure 5.1 such a calculation is presented for a symmetrical collision of two
point-like uranium nuclei, where the charge numbers are ZA = ZB = 92. It has been
performed in a rest frame of nucleus A, with a coupled channel basis comprised of the
ten lowest Coulomb–Dirac bound states of each point charge. The time-evolution of
the squared moduli of the expansion coefficients cΓ,i(t) is shown for undistorted basis
functions, for an initial electronic configuration (A, 1s1/2). The collision energy and
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Figure 5.1. Time evolution of the squared moduli of the coefficients ci(t),
as obtained from a numerical coupled channel calculation in the rest frame of

nucleus A. The initial configuration presented here is (A, 1s1/2(+
1
2)). The collision

energy T = 1 GeV/u corresponds to a velocity vB = 0.876 r.u.. The impact
parameter is b = 1.37 r.u. or 0.01 atomic units. The charge numbers are ZA =

ZB = 92 and the ten lowest undistorted bound states have been used as basis
functions. A second abscissa axis, employing atomic units, is provided to facilitate
the comparison with [TE88b, figure 1]. Moreover, this second axis represents a

length scale, giving the distance between the centres along the e3-axis. Note, that
the K-shell radius of nucleus A (which is not Lorentz-contracted) is approximately
1.5 r.u. or 0.011 a.u. (cf. figure 1.2 on page 9). Hence, the time interval where the

K-shell radii of both centres are overlapping is small, compared to the total time
axis shown here. The top plot demonstrates that the fundamental solution of the
coupled channel equations is only asymptotically unitary, which implies that the

sum
∑

i |ci(t)|2 over all states of the expansion is not a constant (cf. section 4.2
and figure 5.3).
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Figure 5.2. Time evolution of the squared moduli of the expansion coefficients
ci(t), obtained from a coupled channel calculation with the same parameters and

initial configuration as in figure 5.1, but making use of phase-distorted basis

functions.

impact parameter are exactly the same as those of an analogous calculation published
in [TE88b].

A comparison of the two plots at the bottom of figure 5.1 with [TE88b, figure 1]
yields that their match is almost perfect. This confirms that the present numerical
code is functioning properly. The numerical results published by Toshima and Eichler
more than ten years ago represent an enormous achievement, in a time, when com-
puting facilities have been much less powerful than today. The marginal difference
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Figure 5.3. Properties of the overlap matrix N(t), the interaction matrix V (t)

and the fundamental solution matrix F (t, ti) for the same calculation as shown
in figure 5.1.

between the two figures is, therefore, attributed to the greater numerical accuracy
of the present numerical results, due to the availability of more powerful computing
facilities for the present work.

The two corresponding plots of figure 5.2 show the time-evolution of the squared
moduli of the expansion coefficients, for the same collision system and parameters as
in figure 5.1, with the only difference that phase-distorted basis functions have been
used. In fact, the data of both figures originates from the same run of the program,
which integrates the coupled channel equations for undistorted and phase-distorted
basis functions simultaneously. The plot in the middle of figure 5.2 may be compared
with [TE90, figure 2] or [EM95, p. 178]. The qualitative resemblance is clearly seen,
although [TE90, figure 2] represents a calculation using the 18 lowest phase-distorted
bound states of each centre.

A principal difference, between the plots in the middle of figures 5.1 and 5.2
respectively, is the missing excitation of target bound states in the calculation with
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Figure 5.4. Properties of the matrices N(t), V (t) and F (t, ti) for the numerical

calculation with phase-distorted basis functions presented in figure 5.2.

phase-distorted basis functions, much before the closest approach of the centres at
t = 0. It demonstrates the effect of the phase distortion, making the interaction short-
ranged. In figure 5.1 the long-range character of the Liénard-Wiechert potential leads
to target excitations long before the time of closest approach of the nuclei. In detail
this has been described first in [TE90].

Finally, let us turn to figures 5.3 and 5.4 which illustrate typical features of the
overlap and interaction matrices, N(t) and V (t), and of the fundamental solution
F (t, ti) of the coupled channel equations, as explained in the previous section. Since
these properties are known due to analytical considerations, their numerical verifica-
tion constitutes another test for the numerical code. Such plots are not yet available,
apparently in the quoted works the full fundamental solution has not been deter-
mined.

The green line of the top plot of figure 5.3 shows the root mean squared deviation
of the overlap matrix N(t) from the unit matrix for undistorted basis functions. Up
to a constant factor this root mean squared deviation is equal to the Frobenius norm
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‖N(t) − 1‖F of the square matrix N(t) − 1 [GV96]:

‖N(t) − 1‖F =




∑

∆,Γ,j,i

|N∆j,Γi(t) − δ∆Γδji|2




1/2

. (5.17)

The non-orthogonality of the basis functions during the collision and their asymptotic
orthonormality is properly obtained by the numerical calculation. For the existence
of the inverse matrix N−1(t) only the linear independence of the basis functions at
any time t is necessary, which is equivalent to the regularity of the overlap matrix
N(t). This regularity of N(t) is observably provided, since the determinant detN(t)
is clearly seen to be nonzero for all times t.

The red line of figure 5.3 shows the root mean squared modulus of the interaction
matrix elements, which are vanishing for large times, and are increasing towards
t = 0, the time of closest approach of the centres.

In the bottom diagram of figure 5.3 the singular values of the fundamental solu-
tion F (t, ti) are plotted as a function of time. As explained in subsection 4.2.1, the
unitarity of the fundamental solution is equivalent to the property, that all singular
values of F (t, ti) are equal to one. Analytically this has been proved to hold asymp-
totically, and it is also obtained from the present numerical calculation for large times
t. A measure of the accuracy of a numerical computation is the difference between
the singular values and unity at the final time tf .

In figure 5.4 the same quantities are presented for the calculation with phase-
distorted basis functions. There are two striking differences between calculations with
undistorted and phase-distorted basis functions. First, it is seen that the overlap of
phase-distorted basis functions is smaller. Secondly, as t tends to ±∞, the interaction
matrix elements decrease much faster to zero in figure 5.4 compared to figure 5.3.
Again, this reflects the short-range character of the scattering theory with Coulomb-
corrected, or phase-distorted, basis functions.

5.5 Free-particle basis functions

In order to describe ionisation and pair creation with the coupled channel method,
the coupled channel basis needs to be extended by basis functions representing free
particles. This section describes the basis functions chosen for the present numerical
approach. Alternative basis functions, which have been used in other numerical
coupled channel treatments of the two-centre Dirac equation, are discussed briefly,
in order to motivate of the present choice.

5.5.1 Free Dirac wave packets. Free particle solutions of the two-centre Dirac
equation, at least for short range forces, asymptotically approach solutions of the
free Dirac equation. The time-dependent free wave packet (cf. appendix B),

Φ(t,x) = (2π)−
3

2

∫

ei � · �
{

eitµ( � ) φ̂+(p) + e−itµ(� ) φ̂−(p)
}

d3p,

solves the time-dependent free Dirac equation. Here µ(p) =
√

1 + p2 is the free energy
corresponding to the three-momentum p. Therefore, in a coupled channel calculation,
the free-particle scattering channel C might be represented by a finite set of free
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Figure 5.5. Asymmetrical description of the free-particle scattering channel C

in a coupled channel calculation, by using wave packets of continuum eigenfunc-
tions of centre B.

Dirac wave packets. In principle, this has been done in [THGS95, GMS+97], where
the time-dependent free Dirac wave packets have been approximated by stationary
wave packets, in a centre of charge frame. In these calculations the bound-state
scattering channels have been omitted, such that only transition amplitudes between
asymptotically free particles, in particular the free pair production amplitudes, have
been obtained.

5.5.2 Weyl eigendifferentials. The basis functions of the coupled channel expan-
sion (4.1) do not necessarily have to be solutions of the scattering-channel Dirac
equations. In order to determine transition amplitudes it is sufficient, that the basis
functions are asymptotically approaching asymptotic conditions, i.e. solutions of the
scattering-channel wave equations. Such basis functions are, e.g., time-dependent
wave packets constructed by means of continuum eigenfunctions of the electrostatic
potential of one of the two centres. Consider for example continuum eigenfunctions
φB,ε(x

′′) of the potential VB(|x′′|) in the doubly primed rest frame of centre B,

[−iα · ∇′′ − eVB(|x′′|)] φB,ε(x
′′) = ε φB,ε(x

′′). (5.18)

Here, the energy eigenvalue ε is in the continuous spectrum |ε| > 1. These contin-
uum eigenvalues are infinitely degenerate, which is, however, not important for the
moment. Time-dependent, or Weyl, wave packets of these eigenfunctions, which are
Lorentz transformed into the unprimed frame, exactly solve the Dirac equation of
scattering channel B:

[

H0 +WB(t,x) − i∂t

]

S(−χB)

{

1√
∆ε

∫ ε̄+∆ε/2

ε̄−∆ε/2
exp(−it′′ε)φB,ε(x

′′) dε

}

= 0

These wave packets asymptotically approach free wave packets as t goes to ±∞, pro-
vided that VB is short-ranged, which is a standard result from quantum mechanical
two-particle scattering theory [RS79, Tha92]. Therefore, they represent asymptot-
ically free particles. Such Weyl wave packets are clearly orthogonal to the bound
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Figure 5.6. Asymmetrical description of the free-particle scattering channel C

in a coupled channel calculation, as in figure 5.5, but here the charge transfer
channel is omitted as well. Hence, centre A only acts as a perturbation.

states of centre B. The Weyl wave packets are also asymptotically orthogonal to the
bound states of centre A, since they are spreading asymptotically in the same way
as the wave packets of the free Dirac equation (see section 3.4). In principle, Weyl
wave packets of one of the two centres may, therefore, be used as basis functions, rep-
resenting the free-particle scattering channel in a coupled channel calculation. This
approach is schematically depicted in figure 5.5.

The main argument, against the use of Weyl wave packets in numerical calcula-
tions, is the additional energy integration, necessary for a numerical determination
of overlap and interaction matrix elements. This presents a considerable numerical
complexity in practical calculations, well-known already from less demanding nonrela-
tivistic coupled channel calculations [BM92]. Nevertheless, relativistic single-centre
coupled channel calculations in the target frame have been done and presented in
[MGS91]. There, a coupled channel basis comprising bound states of one particular
centre (the target) and Weyl wave packets packets of the same centre have been used
(cf. figure 5.6).

Clearly, the choice of centre B for the construction of the wave packets is asym-
metrical. Weyl wave packets of centre A are equally suitable for the representation of
the free-particle channel, at least in a symmetrical collision system. Hence, a coupled
channel basis comprising a (necessarily) finite number of Weyl wave packets, of both
centre A and centre B, at first glance, seems to be a more appropriate choice. But it
is not clear, how to construct these wave packets such that they are asymptotically
orthogonal and, moreover, the approach towards the asymptotic orthogonality is fast
enough for numerical calculations. Numerical calculations using a two-centre basis
comprising free-particle states of this kind have not been attempted yet.

5.5.3 Stationary wave packets. Weyl wave packets are obtained from continuum
eigenstates of the respective electrostatic potentials of the centres A and B. Their
principal advantage over free Dirac wave packets, described in the first subsection, is
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that they should be more suitable for the description of a solution of the two-centre
Dirac equation. This holds in particular for strong external forces, i.e. large charge
numbers, or equivalently for free electrons and positrons of low kinetic energy.

As an approximation to time-dependent wave packets, stationary wave packets
have been used in the literature and also for the present work. Again, as an example,
consider centre B and its continuum eigenfunctions φB,ε(x

′′) in the doubly primed rest
frame as in equation (5.18). In the doubly primed frame a stationary wave packet is
defined as:

Φ′′
B,ε̄(t

′′,x′′) =
1√
∆ε

exp(−it′′ε̄)
∫ ε̄+∆ε/2

ε̄−∆ε/2
φB,ε(x

′′) dε.

It solves the time-dependent Dirac equation in the doubly primed frame approxi-
mately:

[

H ′′
0 − eVB(|x′′|) − i∂t′′

]

Φ′′
B,ε̄(t

′′,x′′) ≈ 0.

By construction a stationary wave packet is localised around the spatial origin of the
doubly primed coordinates for all times. Although stationary wave packets do not
spread, they are usually considered as a helpful substitutes for Weyl wave packets.
The use of stationary wave packets is sometimes referred to as the ‘discretisation of
the continuum’.

For a spherically symmetric external field the continuum eigenvalues ε are infin-
itely degenerate, since an eigenfunction φB,ε(x

′′) may be a simultaneous eigenfunction
of the spin-orbit operator K ′′, with any of the eigenvalues κ = ±1,±2,±3, . . . . Sta-
tionary wave packets are usually constructed from eigenfunctions with definite values
of the angular momentum quantum numbers κ and m. Such wave packets, denoted
by Φ′′

B;ε̄,∆ε,κ,m(t′′,x′′) are orthogonal in the doubly primed reference frame, if their
energy intervals are non-overlapping or if they have different angular momenta.

The advantage of stationary wave packets over Weyl wave packets is, that the
energy integration needs to be carried out only once, yielding radial wave functions,
which can be tabulated for later reference. The energy integration does not need be
included in every single evaluation of an overlap or an interaction matrix element.
Consequently numerical computations become less demanding.

Another advantage is that the stationary wave packets of different centres are
asymptotically orthogonal, due to their localisation at different centres. This makes
a two-centre description of the free-particle scattering channel feasible. As a conse-
quence of the splitting of the free-particle basis functions into two subsets, attributed
to centre A and centre B respectively, ionisation and pair creation processes both
can be subdivided into ‘excitation’- and ‘transfer’-type processes. This is depicted in
figure 5.7.

Single-centre relativistic coupled channel calculations, using stationary wave pack-
ets, have been reported in [RMS+91, RSG93, BRBW93, BRBW94]. These single-
centre approaches can only describe excitation-like processes, as depicted in figure
5.6, and, therefore, they even exclude the description of the charge transfer process.
A relativistic two-centre coupled channel calculation, including wave packets of both
centres, has been implemented for the first time in this work.
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Figure 5.7. The two-centre approximation of the free-particle scattering chan-
nel C. Ionisation and pair creation processes may be of ‘excitation’- or ‘transfer’-
type. A similar schematic picture has previously appeared in [Eic95].

5.5.4 Details of the present approach. Similar to bound-state basis functions,
stationary wave packets for the coupled channel basis are constructed as eigenfunc-
tions of the spin-orbit operators and the third components of the total angular mo-
mentum in the primed and doubly primed frames respectively. These wave functions
have to be Lorentz-boosted into the unprimed reference frame. The parameters of
such wave packets, namely the mean energy ε̄, the width of the energy interval ∆ε,
the spin-orbit quantum number κ and the third component of the total angular mo-
mentum m, are again abbreviated by single indices i or j. Using this notation, the
additional undistorted basis functions, which have been employed in numerical cal-
culations of the present work, have the following form in the unprimed reference
frame:

ΦA,i(t,x) = S(−χA)
exp(−it′ε̄i)√

∆εi

∫ ε̄i+∆εi/2

ε̄i−∆εi/2
φA,ε,κi,mi

(x′) dε,

ΦB,j(t,x) = S(−χB)
exp(−it′′ε̄j)
√

∆εj

∫ ε̄j+∆εj/2

ε̄j−∆εj/2
φB,ε,κj,mj

(x′′) dε.
(5.19)

The precise forms of the normalised continuum eigenfunctions φA,ε,κ,m(x′) and
φB,ε,κ,m(x′′) are given in appendix A. In (5.19) the energy integrals obviously take
the roles of the time-independent bound state eigenfunctions, appearing in the cor-
responding equations (5.7).

However, the basis functions (5.19) solve the Dirac equations of the scattering
channels A and B respectively only approximately,

[

H0 +WA(t,x) − i∂t

]

ΦA,i(t,x) ≈ 0,
[

H0 +WB(t,x) − i∂t

]

ΦB,j(t,x) ≈ 0,
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as pointed out earlier. For the determination of the elements of the interaction
matrix this fact is neglected, and the matrix elements are calculated according to
equations (5.11), even if the basis function on the right hand side of the scalar product
corresponds to a wave packet. This procedure is customary also for single-centre
coupled channel calculations.

Unfortunately, a further drawback exists for coupled channel calculations in which
the centre, a stationary wave packet is attributed to, is moving. Due to the ap-
proximation of the time-evolution of stationary wave packets in their rest frame,
Lorentz-transformed wave packets of the same centre are no longer orthonormal in
the unprimed frame, even if they are mutually orthogonal and normalised in their
rest frame. The reason is that the Lorentz-boost invariance of the scalar product
requires, that both wave functions exactly solve the same Dirac equation (see section
B.2). Note, that such a difficulty does not exist for Weyl wave packets, because they
are proper solutions of the wave equations of the respective scattering channel.

This problem has not appeared in the single-centre calculations with stationary
wave packets [RMS+91, RSG93, BRBW93, BRBW94]. There, the frame of ref-
erence of the coupled channel calculation has always been identical to the rest frame
of the centre the coupled channel basis referred to. Obviously, in a two-centre ap-
proach, at least one of the centres is moving. In practical calculations of this work
the overlap matrix elements involving wave packets are evaluated numerically, using
the expressions (5.10).

Also phase-distorted wave packets have been used, which are defined in the same
way as the phase-distorted basis functions that represent bound states. The matrix
elements with phase-distorted wave packets are also evaluated according to the equa-
tions (5.15) and (5.16). Numerical results obtained from calculations with coupled
channel bases, comprising both bound-state and free-particle functions, are presented
in sections 6.6 and 6.7 of the next chapter.



Chapter 6

Numerical Results and Discussion

In this chapter, the new numerical results of this thesis are presented. In section 6.1
we start with numerical investigations of the relativistic electron capture process by
calculations performed in various frames of reference. The influence of the number of
bound-state basis functions on the total capture cross section is studied. In sections
6.2 and 6.3 parametric dependencies of electron capture on the collision energy and
the charge numbers of the colliding nuclei are investigated. In sections 6.4 and 6.5 the
effect of different reference frames and of Coulomb boundary conditions is elucidated
systematically by numerical examples. In section 6.6 we turn to the process of bound-
free pair creation in heavy-ion collisions and investigate two-centre effects. The last
section 6.7 briefly describes the influence of free-particle basis functions on electron
capture cross sections.

Many of the results exclusively consider electron capture. The reason is that
the corresponding numerical calculations are computationally much less demanding,
compared to calculations employing free-particle basis functions. Furthermore, the
results presented here concerning electron capture have not been reported previously
in the literature. Many computations required considerable computing time and have
been performed on clusters of workstations and personal computers, and on massively
parallel processor systems.

6.1 Charge transfer

In this section, charge transfer calculations are presented, which have been done with
a set of basis functions only comprising bound-state wave functions. The emphasis
is on the total charge-transfer cross section σcapture(1s1/2) for an initial electronic
configuration 1s1/2. This cross section is obtained by a weighted integral over the
impact-parameter-dependent transfer probability P (b), where b denotes the impact
parameter [EM95]:

σcapture(1s1/2) = 2π
∫ ∞

0
P (b)b db.

Here P (b) is the sum over the approximate transition probabilities for all transitions
from an initial 1s1/2-configuration of the target nucleus, to an arbitrary final config-
uration that corresponds to a bound state of the projectile nucleus. Note that the
role of the target nucleus may be taken by either nucleus A or nucleus B, depending
on which nucleus the initial configuration is associated with. Therefore, P (b) is the
sum over the probabilities of transitions to the bound states of either nucleus B or
nucleus A.

Coupled channel calculations, presented in this section, have been done for three
different basis sets, which respectively comprise the two, ten and 28 lowest bound
states of each centre. The charge numbers of both centres are throughout ZA, ZB =

65
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Figure 6.1. Weighted total capture probabilities P (b)b from coupled channel
calculations with undistorted basis functions. The initial configuration is 1s1/2

and the basis’ comprise either the two, ten or 28 lowest bound states of each

nucleus.
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Figure 6.2. Weighted total capture probabilities P (b)b as in figure 6.1, but
obtained from coupled channel calculations with phase-distorted basis functions

(see equation (5.12)).
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Table 6.1. Total capture cross sections σcapture(1s1/2) in kbarn for the collision

system U91+(1s1/2) + U92+ at a collision energy of T = 1GeV/u. The first row
and column of the table describe the coupled channel basis. The second row gives
the frame of reference in which the coupled channel equations have been solved.

undistorted basis phase-distorted basis

no. states target collider projectile target collider projectile

2 + 2 0.922 0.582 0.923 0.837 0.892 0.836

10 + 10 1.164 0.838 1.330 1.219 1.208 1.072

28 + 28 1.206 0.898 1.441 1.333 1.288 1.146

92, corresponding to uranium nuclei, and the collision energy is T = 1 GeV/u, or
equivalently γ = 2.0735. Calculations have been carried out, on one hand in the
rest frame of nucleus A, and on the other hand in the collider frame, where both
centres move with equal, but opposite, velocities. The calculations in the rest frame
of nucleus A provide capture probabilities both for the target frame and the projectile
frame, since the fundamental solution of the coupled channel equations has always
been determined (cf. chapters 4 and 5). Hence, capture cross sections are obtained
by a numerical solution of the coupled channel equations in the target, collider and
projectile frames. These frames are illustrated in figure 1.2 on page 9.

Figure 6.1 shows the weighted capture probabilities P (b)b for the calculations with
undistorted basis functions. Analogous calculations, with a phase-distorted basis, are
presented in the subsequent figure 6.2. The total capture cross sections are listed in
table 6.1.

Discussion. Charge transfer cross sections, calculated in different Lorentz frames
by means of relativistic coupled channel calculations, are presented here for the first
time. The differences between charge transfer probabilities, which are obtained in dif-
ferent frames of reference, clearly show the violation of the Lorentz boost invariance,
as a consequence of the coupled channel approximation. The cross sections com-
puted in the target frame are in good agreement with similar existing data [TE90,
table I][EM95, p. 241].

The simple 4-state calculations yield cross sections, which are remarkably close to
the values obtained with more basis functions. This demonstrates the importance of
the 1s1/2-states of the projectile for the charge transfer process [EM95]. Moreover,
the differences between the cross sections, obtained with 10+10 and 28+28 basis func-
tions, are generally smaller than the differences between the cross sections computed
in different reference frames, using the same number of basis functions. Therefore, it
must be expected that a further increase of the number of bound states, used in the
coupled channel expansion, will not modify the numerical results significantly. By
contrast, the difference between the results obtained in relatively moving reference
frames is expected to remain, if only the number of bound states is increased.

The increase of the total cross section with the number of basis functions has a
simple explanation: the total capture probability P (b), which is plotted here, com-
prises the transition probabilities to an increased number of final configurations. The
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small difference between the total capture cross sections obtained from calculations
with 10+10 and 28+28 bound states reflects the fact that the higher bound states
of the projectile are less important for the capture process. In fact, the individual
transition probabilities from an initial 1s-configuration to some particular final con-
figuration are slightly changing as well, if different sets of basis functions are used.
But this represents a minor effect.

There are two conclusions from the above observations. First, a coupled channel
expansion using only bound states is not a sufficient approximation to the exact
solution of the two-centre Dirac equation. This fact is only revealed by the frame
dependence of the results. An assessment, e.g., of the top plot of figure 6.1 alone
might suggest that the coupled channel calculation has converged, in the sense that
an increased number of basis functions will not modify the results. The extension
of the coupled channel basis by free-particle wave functions seems to be necessary,
in order to construct a better approximation to the exact solution of the two-centre
Dirac equation. A more accurate approximation to this solution is then expected
to provide Lorentz-frame invariance of the numerical calculations. This reflects the
importance of the ionisation process for the collision system and collision energy,
which have been considered. This is known from perturbation theories and is also
observed in experiments [BGF+97].

Second, for a theoretical study of the capture process, using a pure bound-state
basis, it is helpful to determine the cross sections in various frames of reference and
thereby to obtain an estimate of the systematic error, due to the frame dependence
of the calculations.

Finally, the difference between calculations with undistorted and phase-distorted
basis functions should be noted: The difference between the results obtained in dif-
ferent Lorentz frames is smaller for calculations with phase-distorted basis functions.
This suggests that the frame dependence of the capture calculations is reduced by
using phase-distorted basis functions (for a more detailed discussion see section 6.4
below).

6.2 Collision-energy dependence of capture

In spite of the difficulties, regarding the frame dependence of capture calculations,
it is tempting to study, by means of the coupled channel method, the parametric
dependencies of the capture cross sections on the collision energy and the charge
numbers of the colliding nuclei. Such a nonperturbative investigation has not been
done previously. In this section results for the collision-energy dependence are pre-
sented.

Capture cross sections have been determined for different collision energies ranging
from 0.4 GeV/u up to 1.3 GeV/u. Two different collision systems, U91+(1s1/2)+U92+

and Au78+(1s1/2) + Au79+, have been considered in three different reference frames,
namely the target, collider and projectile frames (as in the previous section). Coupled
channel calculations have been done, which employ the ten lowest bound states of
each nucleus. The results for the total capture cross sections obtained from these
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Table 6.2. Total capture cross sections σcapture(1s1/2) in units of kbarn as a

function of the collision energy T for the collision system U91+(1s1/2) + U92+.
The cross sections have been obtained by means of coupled channel calculations
using the ten lowest bound states of each nucleus.

ZA, ZB = 92 undistorted basis phase-distorted basis

T [GeV/u] target collider projectile target collider projectile

0.4 9.50 8.84 10.1 10.3 10.2 9.89

0.7 2.77 2.28 3.07 3.00 2.98 2.75

1.0 1.16 0.838 1.33 1.22 1.21 1.07

1.4 0.618 0.384 0.711 0.606 0.599 0.516
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Figure 6.3. Collision-energy dependence of electron capture by a bare uranium
projectile from hydrogen-like uranium with an initial 1s-configuration. The cross
sections plotted here correspond to the numerical values given in table 6.2.
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Table 6.3. Total capture cross sections in units of kbarn as in table 6.2, but

for the collision system Au78+(1s1/2) + Au79+.

ZA, ZB = 79 undistorted basis phase-distorted basis

T [GeV/u] target collider projectile target collider projectile

0.4 7.35 6.96 7.73 7.47 7.51 7.11
0.7 1.84 1.55 1.98 1.75 1.76 1.58

0.96 0.812 0.606 0.868 0.703 0.707 0.610
1.4 0.376 0.237 0.393 0.281 0.287 0.237
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Figure 6.4. As figure 6.3, but for hydrogen-like gold colliding with a bare gold
projectile. The cross sections plotted here correspond to the numerical values
given in table 6.3.
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Figure 6.5. Weighted total capture probabilities P (b)b as a function of the
impact parameter b for the collision system U91+(1s1/2)+U92+. The results shown

here have been obtained by calculations with an undistorted basis. Regarding
the length scale, note that the K-shell radius of uranium is 1.5 r.u..
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Figure 6.6. The same as in figure 6.5, but corresponding to calculations with
a phase-distorted basis functions.
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calculations are given in the tables 6.2 and 6.3. The same data is presented in the
figures 6.3 and 6.4.

In both figures, a fit to the energy dependence of the total capture cross section
is shown as well. For the determination of the fit functions, the mean values of the
capture cross sections obtained in different reference frames have been fitted to the
function,

σcapture(1s1/2) = aγ−b, (6.1)

by a numerical least-squares algorithm. Here again, γ denotes the Lorentz factor
describing the collision energy (cf. section 2.1). The values for the fit parameters a and
b are given in table 6.4, for both collision systems and calculations with undistorted
as well as phase-distorted basis functions. In this table also alternative fit functions
are presented, which are of the form σcapture(1s1/2) = aT−b, where T is the kinetic
energy of the collision given in GeV/u.

Finally, the figures 6.5 and 6.6 show the weighted total capture probabilities P (b)b
as a function of the impact parameter b, but for the symmetrical uranium collision
system only.

Discussion. A principal feature, exhibited by the figures 6.3 and 6.4, is the re-
markably similar energy dependence obtained from calculations with undistorted
and phase-distorted basis functions. Furthermore, the absolute values of the total
cross sections are comparable for both methods of calculation. This relationship is
very different compared to the corresponding perturbative capture theories. Note
that the coupled channel calculations with undistorted basis functions as well as the
perturbative Oppenheimer–Brinkmann–Kramers (OBK) approximation [EM95] cor-
respond to a scattering theory not taking into account the long-range character of
the Coulomb interaction. On the other hand calculations with phase-distorted basis
functions as well as the boundary-corrected Born approximation (B1B) [EM95] are
approximations to the exact scattering theory with Coulomb boundary conditions.
In the literature, it has been found that generally the simple OBK cross sections are
significantly larger than the B1B cross sections and that the latter provide a better
description of experimentally measured cross sections of (nonradiative) electron cap-
ture [EM95]. Such a difference is not observable for the presumably more accurate
coupled channel approaches presented here.

As observed already in the previous section, the difference of the cross sections
from calculations in different reference frames is clearly smaller, if a phase-distorted
basis is used. As demonstrated in particular by the figures 6.5 and 6.6, the frame
dependence of the cross sections increases for growing collision energy. This reflects
the fact that a Lorentz boost between the rest frames of both centres mixes time
and spatial coordinates more weakly as the collision energy decreases (leading to the
Galilean transform in the limit of very small collision energies).

For the range of collision energies chosen here, various perturbation theories are
available for a comparison with the present results [EM95]. Almost all of these per-
turbative approximations predict a dependence of the capture cross section which is
proportional to γ−1 for large collision energies. More precisely, the relativistic unsym-
metrical eikonal theory of electron capture [Eic85, ISE93, EM95], which provides
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Table 6.4. Fit parameters for the collision-energy dependence of the capture

cross sections, given in table 6.2 and 6.3. The arithmetic mean values of cross
sections obtained in different reference frame have been fitted to the respective
functions given in the first row, using a least-squares fit. Here, γ denotes the
Lorentz factor giving the collision energy and T denotes the kinetic energy in

GeV/u.

fit function σ[kbarn] = aγ−b σ[kbarn] = aT−b

ZA, ZB a b a b

undist. basis 73 5.7 1.1 2.3
92 (U)

ph.-dist. basis 79 5.8 1.2 2.4

undist. basis 72 6.4 0.69 2.6
79 (Au)

ph.-dist. basis 80 6.7 0.60 2.8

satisfactory agreement with many experiments, shows such a decrease of the cross
section for collision energies above 10 GeV/u. The collision energy dependence, as
predicted by nonrelativistic capture theories for high collision velocities, is T −6 in
first-order and T−5.5 in second order perturbation theory [BM92]. Therefore, the
fits to the present relativistic coupled channel results, given in table 6.4, show that
the range of collision energies around 1GeV/u constitutes an intermediate region,
between the high energy regimes of nonrelativistic and relativistic perturbative cap-
ture theories. The presently found much faster decrease of the capture cross section,
as compared to the relativistic high energy behaviour, is also predicted by the un-
symmetrical relativistic eikonal approximation for collision energies below 10GeV/u
[ISE93]. It must be noted, however, that the eikonal theory is a high-energy approx-
imation.

Experimentally the energy dependence of capture has been measured in particular
for La57+ bare nuclei impinging on a target foil of Au, at collision energies of 0.405,
0.96 and 1.3GeV/u [BGF+97]. It has been found that the capture cross section falls
off approximately as γ−3, similarly indicating that the collision energies considered
here belong to an intermediate range, between the high-energy regimes of relativistic
and nonrelativistic collisions respectively. The quantitative difference of the exponent
of decrease is difficult to account for.

6.3 Charge-number dependence of capture

The dependence of the electron-capture cross section on the charge number of the
target and projectile nuclei has been investigated here, for the first time, using the
coupled channel method. Numerical calculations have been carried out for a collision
energy of 0.96GeV/u and various symmetrical and unsymmetrical collision systems
of heavy nuclei, with charge numbers ranging from ZA, ZB = 66 up to ZA, ZB = 92.
As in the previous section, a coupled channel basis comprising the ten lowest bound
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states of each centre has been used. For the numerical calculations, the rest frame of
nucleus A has been chosen such that cross sections for the target and projectile frames
have been obtained. Table 6.5 lists the results for the total cross sections for capture
from an initial 1s1/2-configuration to one of the bound states of the projectile nucleus.
The data of this table is plotted in figure 6.7. The corresponding weighted impact-
parameter-dependent total capture probabilities P (b)b are shown in the figures 6.8,
6.9 and 6.10 for nine different collision systems.

Discussion. In spite of the manifest differences between the cross sections corre-
sponding to different bases and reference frames, figure 6.5 demonstrates a general
tendency of the charge-number dependence of electron capture in heavy ion collisions
at 0.96GeV/u collision energy. For the range of charge numbers consider here, it is
observed that the electron-capture cross section grows more strongly with the pro-
jectile charge-number, compared to the target charge-number. The increase is not
even linear for the target charge-number dependence, and it is slightly stronger than
linear for the projectile charge-number dependence.

This result should be compared to the ZT-ZP-dependence of other relativistic
capture theories that are based on perturbation theory. Roughly, most capture theo-
ries predict, for large collision energies, a charge-number dependence of nonradiative
electron-capture according to, σcapture ∝ Z5

TZ
5
P [EM95]. For a collision energy of

10GeV/u this behaviour is confirmed by numerical evaluations of cross sections based
on the unsymmetrical eikonal approximation [ISE93]. Clearly the present results
show a much weaker increase of the cross section with growing target and projectile
charge-numbers. In experiments, however, capture from higher atomic shells, which

Table 6.5. Total capture cross sections σcapture(1s1/2) as a function of the

projectile and target charge numbers, ZT and ZP, for a collision energy of
0.96 GeV/u. The cross sections are given in kbarn. The columns are subdivided
to distinguish between results obtained in the target (tar.) and projectile (proj.)

frames respectively. Similarly the rows are subdivided in order to present the
data obtained from calculations with undistorted and phase-distorted basis func-
tions. The cross sections have been obtained from coupled channel calculations

with the ten lowest bound states of each nucleus and are plotted in figure 6.7.

ZP 92 (U) 86 (Rn) 79 (Au) 66 (Dy)

ZT tar. proj. tar. proj. tar. proj. tar. proj.

undist. 1.295 1.465 1.115 1.230 0.908 0.961 0.555 0.533
92 (U)

ph.-dist. 1.355 1.198 1.128 0.995 0.873 0.767 0.475 0.412

undist. 1.235 1.402 1.080 1.187 0.890 0.939 0.553 0.535
86 (Rn)

ph.-dist. 1.231 1.080 1.035 0.906 0.811 0.708 0.452 0.390

undist. 1.102 1.266 0.975 1.083 0.812 0.868 0.513 0.507
79 (Au)

ph.-dist. 1.043 0.908 0.885 0.770 0.703 0.610 0.401 0.344

undist. 0.792 0.907 0.710 0.788 0.597 0.643 0.387 0.390
66 (Dy)

ph.-dist. 0.652 0.563 0.562 0.486 0.455 0.394 0.270 0.232
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Figure 6.7. The dependence of the total cross section of 1s-electron-capture
on the charge numbers ZT and ZP of the target and projectile nuclei respectively

is presented here. The data has been obtained by integrating the interpolating
functions of the figures 6.8, 6.9 and 6.10, and additional data for the remaining
collision systems involving ZT = 86 or ZP = 86. It is clearly discernible that

the capture cross section grows more strongly for growing ZP compared with the
dependence on ZT.

is not considered here, becomes more important for larger charge numbers. There-
fore, the presently found slow increase of the capture cross section, as a function of
the charge numbers ZT and ZP, presumably underestimates the charge-number de-
pendence of experimentally determined total cross sections of (nonradiative) electron
capture slightly.

In [BGF+97] measurements of electron capture by U92+-ions impinging on solid
target foils of Cu, Ag and Au have been reported. The collision energy was
0.96GeV/u and is, therefore, identical to the collision energy of the present numeri-
cal calculations. It has been found that the existing perturbation theory of electron
capture was able to account for the measured cross sections for the targets Cu and
Ag. But for the Au target the total cross section obtained from perturbation the-
ory overestimated the experimental value of 3.4 kbarn by about 20% (see figure 5
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Figure 6.8. The impact parameter dependence of electron capture for a colli-

sion energy of 0.96 GeV/u is presented here for nine different heavy-ion collision
systems. The data has been computed by relativistic coupled channel calculations
employing the 10 lowest bound states of each nucleus. The initial configuration is

a 1s-state of the target nucleus with charge number ZT. Four different series’ of
calculations, performed in the rest frames of the target and the projectile respec-
tively, using either undistorted or phase-distorted asymptotic states, are shown

(see the text for explanations).
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Figure 6.9. (See figure 6.8)

in [BGF+97]). The present calculations roughly support these experimental find-
ings, namely that the charge-number dependence of the nonradiative capture cross
section is overestimated by the perturbative theories, if collisions of heavy ions at
intermediate relativistic energies are considered.



80 6. NUMERICAL RESULTS AND DISCUSSION

0

0.01

0.02

0.03

0.04

ZP=66

Capture of 1s−electrons, ZT=92

undistorted, projectile frame
undistorted, target frame
phase−distorted, target frame
phase−distorted, projectile frame

0

0.01

0.02

0.03

0.04

P
(b

)b
   

[r
.u

.]

ZP=79

0

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8 9 10

b   [r.u.]

ZP=92

Figure 6.10. (See figure 6.8)

A direct comparison of the measured cross section with the present numerical
results is not straightforward, since the coupled channel method allows for target ex-
citations, which are not possible in solid targets. Moreover the measured cross section
of 3.4 kbarn, for the collision U92+ + Au, comprises the process of radiative electron
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capture, contributing approximately 1.0 kbarn (according to [BGF+97]). Neverthe-
less, the presently determined value for electron capture from a filled target-K-shell is
roughly 2 kbarn (cf. table 6.5) and the remaining difference to the experimental value
may convincingly be ascribed to nonradiative capture from higher target-shells.

Regarding the systematic difference between calculations with an undistorted and
with a phase-distorted basis in figures 6.7–6.10, note, however, that cross sections
obtained from calculations with undistorted basis functions in the collider frame are
expected to be smaller than those of the target and projectile frames. This fact has
been established in the preceding sections.

6.4 Frame dependence

The aim of this section is to elucidate further the influence of the choice of the
reference frame on two-centre coupled channel calculations.

6.4.1 Continuum of reference frames. For a sequence of different reference
frames, the total capture probability is shown in figure 6.11, for transitions from
initial 1s- or 2s-configurations to an arbitrary bound state of the projectile nucleus.
Again, the calculations have been done using a basis comprising the ten lowest bound
states of each nucleus. The parameter used to characterise the different reference
frames, employed for the coupled channel calculations, is the following fraction of the
target and projectile rapidities, χT and χP, in e3-direction (cf. section 5.1):

ξ =
χT + χP

χT − χP
. (6.2)

Clearly, ξ = 0 corresponds to the collider frame, and ξ = −1 and ξ = 1 to the
target and projectile frames respectively. If the modulus of ξ is greater than one,
then both centres are moving in the same direction with different absolute velocities.
The value for the impact parameter b = 2 r.u. chosen for the calculations shown in
figure 6.11, approximately coincides with the maximum of the P (b)b-plots presented
in the previous sections. Note as well that the K-shell radius of uranium is approxi-
mately 1.5 r.u., representing a typical length scale of the collision system considered
in figure 6.11.

Figure 6.11 exhibits the strong frame dependence of capture probabilities obtained
from coupled channel calculations using exclusively undistorted bound-state basis
functions. The uncertainty of the results for the initial 1s-configuration is nearly
of the same order of magnitude as the probability itself. This has not been noted
before in the literature. The solid green line, corresponding to calculations with
phase-distorted bound-state basis functions, shows a much weaker dependence on
the reference frame of the calculation. This fact, anticipated already in section 6.1,
suggests that a coupled channel expansion with phase-distorted basis functions yields
a better approximation to the exact solution of the two-centre Dirac equation, than
an expansion using the same number of undistorted states.

6.4.2 Time axes in relatively moving frames. For three different frames of
reference, the green dashed lines in figure 6.12 show the deviation of the overlap
matrix N(t) from the unit matrix, as measured by the Frobenius norm ‖N(t) − 1‖F
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Figure 6.11. Total capture probabilities P (b) in thirteen different reference
frames and for two different initial configurations are shown. The data was ob-

tained by coupled channel calculations employing the 10 lowest bound states
of each centre, either with undistorted or phase-distorted basis functions. The
charge numbers are ZT = ZP = 92, the impact parameter is b = 2 r.u. and the

kinetic energy 0.96 GeV/u in all calculations. Apart from the axis for the ratio of
rapidities (χT+χP)/(χT−χP), which is used to characterise the various reference
frames, two further abscissa axes are provided for the velocities of the centres.

The values −1, 0 and 1 of the ratio (χT+χP)/(χT−χP) correspond to the target,
collider and projectile frames respectively.

(see section 5.4). The time interval of a non-vanishing Frobenius norm represents
the time interval during which the basis functions of different centres overlap and,
thereby, relates the time axes of different coordinate systems. It is seen that the
reference frame with the shortest overlap time (the ‘fastest collision’) is the collider
frame. In other frames the overlap time is longer. A short calculation, taking into
account the Lorentz contraction of bound-state basis functions and the relative speed
of the centres, yields that the overlap time is ‘dilated’ with respect to the collider
frame approximately by the following factor:

cosh
(
χA + χB

2

)

. (6.3)

This relationship among the time axes of relatively moving frames is qualitatively
exhibited by figure 6.12.
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Figure 6.12. This figure illustrates the relation of the time axes of different
relatively moving reference frames. The parameters for the coupled channel cal-

culations, presented here, are same as in figure 6.11. The width of the green
curve, representing the Frobenius norm of the matrix N(t) − 1, characterises
the time interval in which the basis functions of different centres significantly

overlap. It is seen that in calculations with phase-distorted basis functions the
interaction matrix V (t) is essentially vanishing outside this time interval. Con-
trary, the interaction matrix elements with undistorted basis functions are only

slowly decreasing as ±t increases.

6.5 Coulomb boundary conditions

In this section we show that Coulomb boundary conditions take effect in arbitrary
reference frames.

From figure 6.12 it is inferred as well that Coulomb boundary conditions, i.e.
the use of phase-distorted basis functions, lead to a short-range interaction in any
reference frame considered in numerical calculations (cf. section 3.7). More precisely,
in calculations with phase-distorted basis functions the matrix elements of the in-
teraction matrix V (t) decrease much faster to zero as time increases (or decreases),
compared to calculations using undistorted bases. This verifies the efficacy of the
Coulomb boundary conditions in arbitrary reference frames.

Finally, turn to the figures 6.13 and 6.14. The time-evolution of the squared
moduli of the coefficients ci(t) is shown for the target and projectile frames, and two
other frames of reference, in which the centres are moving with different velocities
and in opposite directions. The initial configuration is a 1s1/2-state of centre A, the
latter taking, therefore, the role of the target. Again, the collision system considered
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Figure 6.13. The time evolution of the squared moduli of the expansion co-
efficients ci(t) obtained from coupled channel calculations with undistorted basis
functions, in four different reference frames. The initial configuration is a 1s1/2-

state of nucleus A. The allocation of line styles to basis functions is the same as in
figure 5.1 on page 55. Parameters which are common to all four calculations are:
T = 0.96 GeV/u, b = 2 r.u. and ZT = ZP = 92. They are, therefore, identical to

those of figure 6.11.
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Figure 6.14. As figure 6.13, but for calculations with phase-distorted basis functions.
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is ZA, ZB = 92 at a collision energy of T = 0.96GeV/u, with an impact parameter
of b = 2 r.u.. In fact, the plots take another view on the same calculations, also
presented in the figures 6.11 and 6.12.

A distinctive feature of figure 6.13, showing results obtained with an undistorted
basis, is the existence of long-range target excitations for the target-frame calculation.
Gradually passing over to the projectile frame, the extent of the target excitations
decreases. Correspondingly, oscillations between the projectile states, after the col-
lision, become increasingly visible, and they are greatest in the projectile frame.
Qualitatively this can be understood as follows: since the excitation of target states
is mainly caused by the magnetic field of the projectile [TE90, EM95], these excita-
tions are, hence, vanishing in the projectile frame. Similarly, in the projectile frame,
the target nucleus causes long-range interactions between projectile bound-states.

A detailed analysis of state-differential cross sections of electron excitation and
transfer is not presented in this thesis. The reason is the extraordinary frame depen-
dence of the transition probabilities, clearly exhibited in figure 6.13. For this series
of calculations, using undistorted basis functions in various reference frames, some
transition probabilities vary over more than one order of magnitude. It has been
checked that this is not a spurious effect, due to the finite time interval [ti, tf ] of nu-
merical calculations, but is a clear signature of the violation of the Lorentz invariance
as a consequence of the coupled channel ansatz. In particular, it was found that the
initial and final times ti and tf of a numerical calculation may be chosen shorter than
reported in [TE88a], thereby reducing computational effort without loss of accuracy.

This frame dependence of single transition-amplitudes is less vigorous for the
calculations with phase-distorted basis functions, reflecting the similar behaviour of
the total capture probabilities, which was discussed already. At first glance, it might
seem surprising that the excitation of target bound-states, in calculations performed
with undistorted and phase-distorted bases in the projectile frame, is nearly identical.
This fact is observed by comparison of the bottom plots of the figures 6.13 and 6.14.
But, as stated above, the use of Coulomb boundary conditions mainly removes the
long-range part of the projectile magnetic-field, the bound states of the target nucleus
are exposed to. Clearly, the latter does not exist in the projectile frame.

6.6 Bound-free pair creation

In this section, results from coupled channel calculations with free-particle basis func-
tions are presented. These calculations required much computing time and have been
feasible only as distributed multiple-processor computations.

The main motivation for the present choice of free-particle basis functions has been
explained in section 5.5. In the literature relativistic coupled channel calculations of
bound-free pair creation have been reported by several authors [RMS+91, MGS91,
RSG93, BRBW93, BRBW94]. All of these use a single-centre basis of bound
states and wave packets. Therefore, these calculations can only describe excitation-
like processes (cf. figure 5.6). In the present approach we make an attempt to allow
for the description of excitation- and transfer-like processes at the same time by using
a two-centre basis (cf. figure 5.7).
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Bound-free pair production has been observed first in heavy-ion collisions with
collision energies in the 1GeV/u energy range [BGF+93, BGF+94]. The experimen-
tally found cross sections for this process could not be explained reliably by existing
theoretical descriptions [BGF+97], namely perturbation theories, single-centre cou-
pled channel calculations or nonperturbative numerical solutions of the two-centre
Dirac equation in momentum space [MBS95, MBS96]. Discrepancies have been
reported for the absolute value of the total cross section and its dependencies on
nuclear charge numbers and the collision energy. The agreement between observa-
tion and perturbative calculations is more satisfactory at higher collision energies of
about 10GeV/u [BCD+98]. It has been proposed that the discrepancy at interme-
diate energies is due to two-centre effects, not accounted for in usual perturbative
calculations or single-centre coupled channel approaches.

The aim of the present calculations is not to determine cross sections, in better
agreement with experiment than cross sections obtained by the previous theoretical
approaches. This cannot be expected because of our very limited basis size due to
numerical constraints. Instead, we attempt to assess the relative importance of the
transfer-like pair creation process, neglected in single-centre approaches, compared to
the excitation-like mechanism. In other words, the aim is to get a qualitative insight
into two-centre effects in bound-electron free-positron pair creation at intermediate
relativistic collision energies.

It has been proposed in [Eic95, ED96, IE96] that apart from familiar excitation-
like processes also transfer-like processes contribute to the cross section of bound-free
pair creation. In these articles, perturbative calculations are reported treating bound-
free pair creation as a charge-transfer process. Note that perturbative treatments
must take either point of view and cannot combine both mechanism. In the calcula-
tions a different asymptotic energy dependence of the total cross section, compared to
the usual perturbative treatment of bound-free pair production as an excitation-like
process, was obtained. However, a unified treatment of excitation- and transfer-like
pair creation processes, as depicted in figure 5.7, is not feasible in the framework
of perturbation theory. It has been attempted in the present work by means of a
coupled channel approach.

In the following, results from coupled channel calculations for the collision sys-
tem ZA, ZB = 92 at a collision energy of 0.96GeV/u and 1GeV/u respectively are
presented. Most coupled channel bases comprise the ten lowest bound states of
each nucleus. Furthermore, Lorentz-transformed stationary wave-packets of the form
(5.19) are included, either for one centre or for both centres. For the reason of com-
putational feasibility the parameters, defining the free-particle basis functions (5.19),
have been chosen according to:

κ = ±1,

∆ε = 0.3 r.u.,

ε̄ = ±1.15,±1.45,±1.75 r.u..

For each centre, these parameters yield 24 free-particle basis functions, half of them
with positive energy and the other half with negative energy. The radial wave func-
tions of these wave packets are approximately localised within a sphere of 200 r.u.
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Figure 6.15. Time evolution of the sums over squared moduli of the expansion

coefficients ci(t). The sums are taken over those coefficients which correspond to
the same atomic process. For large times t these sums yield the probabilities of
the respective processes, as indicated in the legend (see figure 5.7 as well). The

charge numbers are ZA, ZB = 92 and the collision is taking place at a collision
energy of T = 1 GeV/u with an impact parameter of b = 0.5 r.u.. The data
shown here has been computed by a coupled channel calculation in the collider

frame using 68 basis functions. The initial configuration is a 1s1/2 bound state.
Due to the long-range character of the Coulomb interaction, oscillations of the
coefficients are present, for large negative as well as positive times. The inset

shows these oscillations for the probability of the excitation-like bound-free pair
creation process.

(with respect to their respective rest frames) and have been cut off outside this vol-
ume. They are oscillating functions and, therefore, the numerical evaluation of ma-
trix elements, in particular of the two-centre interaction and overlap matrix elements,
becomes computationally more demanding in comparison with matrix elements in-
volving only bound-state basis functions.

It should be noted that the mean energies ε̄ of these wave packets are too small
to account for the experimentally observed electron and positron energy spectra
[BGF+97]. Therefore, results of the present coupled channel calculations are gener-
ally not expected to yield cross sections of bound-free pair creation in quantitative
agreement with experiment. The present emphasis is on a qualitative understand-
ing of two-centre effects in pair creation. In addition, the frame dependence of the
coupled channel calculations is studied.
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Figure 6.16. Weighted probabilities for bound-electron free-positron pair cre-
ation as a function of the impact parameter, obtained from coupled channel

calculations in the collider frame using a two-centre basis of 68 basis functions.
The collision energy is 1GeV/u and the results shown refer to a collision of two
bare uranium nuclei. The electron is created in a 1s1/2 state of one of the nuclei.

6.6.1 Collider frame calculation. Coupled channel calculations with a symmetri-
cal basis, comprising the ten lowest bound states and 24 wave packets at each centre,
have been performed for a series of impact parameters in the collider frame. A col-
lision energy of 1GeV/u was chosen and the calculations have been done using an
undistorted basis. Figure 6.15 shows the time evolution of the sum of the squared
moduli of expansion coefficients ci(t), which belong to the same scattering channel.
It is distinguished between excitation-like and transfer-like processes for the free-
particle scattering channels, in accordance with figure 5.7. The initial configuration
is a 1s1/2 bound state of centre A. Transition amplitudes to bound states of centre B
are interpreted as charge-transfer amplitudes (red line). Transitions to wave packets
of positive energy are attributed to either excitation-like or transfer-like ionisation
(green and blue dashed lines). Finally, transition amplitudes to wave packets of neg-
ative energy are interpreted as bound-free pair creation amplitudes (green and blue
dashed-dotted lines) (cf. section 3.6).

Figure 6.15 clearly exhibits the long-range character of the Coulomb potential
leading to a coupling of the initial state to wave packets of negative and positive
energy of centre A, much before the closest approach of the centres at time t = 0.
These couplings are present also for the outgoing channels, leading to oscillations of
the probabilities at large times t. These oscillations are shown, as an example, for
the excitation-like pair creation probability and the time interval t = 50 . . . 100 r.u.
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Figure 6.17. As figure 6.16, but the electron is created in a 2s1/2 bound state
of one of the colliding nuclei.

by the inset of figure 6.15. It is seen that the amplitude of these oscillations is small
and that there is no shift of the mean value as time increases.

The presence of these oscillations demonstrates another numerical complexity:
The time steps for the numerical integration of the coupled channel equations (4.8)
have to be chosen much smaller, compared to the computationally less demanding
pure capture calculations, discussed in the previous sections. If wave packets of higher
energy ε̄, than considered here, were used, not only the evaluation of matrix elements
becomes more involved, but also the time-integration of the coupled equations be-
comes even more demanding.

Figure 6.16 shows the weighted probabilities for bound-free pair creation, in which
the electron is created in a 1s1/2 bound state. The different contributions from
excitation- and transfer-like pair creation probabilities are given, the total proba-
bility of bound-free pair creation just being the sum of these two contributions. It
is discernible that excitation- and transfer-like processes are of similar relative im-
portance, the excitation-type process being favoured. Note that the maximum of the
weighted pair creation probability P (b)b is at an impact parameter b = 0.5 r.u.. Com-
pared to the charge transfer process, the the main contribution to the pair-creation
cross section comes from smaller impact parameters, due to the great field strength
necessary for pair production.

Figure 6.17 shows the analogous plot for bound-free pair production, in which the
electron is created in a 2s1/2 bound state. The corresponding weighted probabilities
are approximately one order of magnitude smaller than in figure 6.16. Again it is
observed that excitation- and transfer-like processes are of equal importance. The
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Figure 6.18. Linearisation and interpolation of experimental data for bound-
free pair creation, as reported in [BGF+97, figure 16]. In the experiment a bare

U92+ projectile impinged with a kinetic energy of 0.96 GeV/u on solid targets of
mylar, Cu, Ag and Au (ZT = 6, 29, 47 and 79). The cross sections are extrapo-
lated to obtain an estimate for a hypothetical solid uranium target.

error bars in both figures, 6.16 and 6.17, represent the amplitude of the oscillations
of the final probabilities in the time interval t = 50 . . . 100 r.u. due to the long-range
Coulomb interaction, as discussed above.

By integrating the weighted total probabilities of bound-free pair production,
shown in the figures 6.16 and 6.17, estimates for the total cross sections of this
process are obtained. According to the present rough calculations, for the creation
of a 1s1/2-electron the cross section is 0.95 barn. The corresponding cross section
for the creation of a 2s1/2-electron is 0.13 barn. In fixed target experiments bound
electrons can be created only as bound states of the projectile, i.e. of a nucleus of
the particle beam in the experiment. Experiments that distinguish specific final
states of the created electron are not available yet. The experimentally measured
total cross section, therefore, always comprise contributions from all bound states of
the projectile. According to the present calculations the contribution of 1s1/2 states
amounts to 2 barn, whereas 2s1/2 states only contribute 0.2 barn. This reflects a major
fraction of the total cross section is due to the creation of 1s1/2-bound electrons.

6.6.2 Experimental cross section. At this point, we shall compare these calcula-
tions briefly with experimental results. In [BGF+97] total bound-free pair creation
cross sections for U92+ impinging on target foils of mylar, Cu, Ag and Au, at a
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collision energy of 0.96GeV/u, have been reported. These experimental results are
plotted in figure 6.18, which partially reproduces [BGF+97, figure 16]. The inset of
figure 6.18 shows a linearisation of the experimental data, not noted before. This cor-
responds to a Z2

T-dependence of the pair creation cross section for small target charge
numbers ZT, as expected by perturbation theory [EM95, BGF+97].1 According to
this linearisation, the cross section grows exponentially as a function of ZT for large
target charge-numbers ZT, where perturbation theory is expected to fail. It has been
noted already in [BGF+97] that the experimental data is not in agreement with the
Z2

T-dependence predicted by perturbation theory.
This linearisation is presented here, mainly because it is used to extrapolate the

experimental data to the collision system U92+ + U. The interpolation function
shown in the main plot of figure 6.18 represents a cubic spline interpolation of the
linearised data. The extrapolation of this interpolation function to ZT = 92 yields
a cross section of 3.7 barn. Other extrapolation methods give similar values, rang-
ing between 3.5 and 4 barn. It is surprising how close experimental data and the
calculation presented in the previous subsection are, taking into account the rather
insufficient coupled channel basis. However, a critical judgement might as well regard
this coincidence as accidental.

6.6.3 Frame dependence. The calculations in the collider frame using 68 basis
functions, presented in subsection 6.6.1, clearly demonstrate that the transfer-like
process contributes significantly to the total cross section of bound-free pair creation.

In view of the Lorentz-frame dependence of coupled channel calculations, observed
in the capture calculations, it is natural to study the relation between excitation-
and transfer-like pair creation also in other computational frames of reference. Cou-
pled channel calculations using the same 68 undistorted basis functions as in subsec-
tion 6.6.1 have been carried out in a rest frame of centre A. In this Lorentz frame
it must be distinguished, whether the electron is created in a bound state of centre
A or centre B. This distinction is not necessary for the collider frame calculation in
which the probabilities are the same due to parity conservation.

In this subsection we discuss the plots (1), (2), (6) and (7) of figure 6.19.
In figure 6.19 the plots (1) and (2) show weighted bound-electron free-positron

pair creation probabilities, similar to figure 6.16. In plot (1) the electron is created
in a 1s1/2-state of nucleus A, whereas in plot (2) it is created in a 1s1/2-state of
nucleus B. The difference of the results by more than one order of magnitude is
striking. The excitation-like pair creation is dominant for the creation of a bound-
electron at centre A and the transfer-like process is nearly negligible. By contrast, the
transfer-like pair creation mechanism is relatively more important if the electron is
created in a bound state of centre B.2 While passing over from plot (1) of figure 6.19,
to figure 6.16, and then to plot (2) of figure 6.19 the excitation-like contribution is

1Here ZT is the charge number of the experimental target. In the experiments measuring bound-

free pair creation the electron is created in a bound state of the experimental projectile.
2Remember the following. If the electron is created in a bound state of nucleus B, then the

laboratory frame in a fixed-target experiment is identical to the presently considered rest frame of

A.
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Figure 6.19. Weighted probabilities P (b)b for bound-free pair creation, ob-
tained from calculations with free-particle basis functions in the rest frame of

centre A, using three different basis sets. All bases comprise the ten lowest bound
states and 24 free-particle states of of centre A. The number of basis functions
at centre B is varying. The electron is created in a 1s1/2 bound state of either

centre A or centre B, as indicated.
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dramatically reducing, showing a similar reduction of excitations as exhibited already
by figure 6.13.3

The difference of the pair creation probabilities is a numerical artifact, because in
a symmetrical collision system the exact probabilities for the creation of a 1s-electron
at nucleus A and nucleus B are the same. The reason for this artifact is the very
small basis size, which had to be used for numerical reasons. Larger bases might not
show such a big frame dependence.

The symmetry mentioned is preserved only by coupled channel calculations in
the collider frame, which has been verified. This might suggest that coupled channel
calculations performed in the collider frame yield the best results for symmetrical
collision systems. Also, experimental data is matched best, by numerical results
obtained in the collider frame. On the other hand it is not a priori clear, whether the
exact solution of the two-centre Dirac equation is approximated best by a coupled
channel ansatz in the collider frame.4

The plots (6) and (7) show weighted probabilities obtained from calculations
with the corresponding 68 phase-distorted basis functions. The frame dependence
of the total pair creation probabilities is much reduced by phase-distorting the basis
functions. This resembles the behaviour of the capture calculations. On the other
hand the excitation-like process is dominating for the creation of a bound electron
at centre A, whereas the transfer-like process is clearly dominating for the creation
of a bound electron at centre B. Calculations with phase-distorted basis functions
do not exhibit oscillations of the final pair creation probabilities, which are shown
in figure 6.15, and which have been observed for the calculations in rest frame of
centre A as well, when using an undistorted basis. Note that results obtained with
the present, small phase-distorted basis significantly overestimate the experimental
cross section of bound-free pair creation.

6.6.4 Two-centre effects. In this subsection, we discuss all plots shown in fig-
ure 6.19 and their mutual relation, with an emphasis on two-centre effects.

Single-centre coupled channel calculations and ‘semi-two-centre’ calculations have
been carried out, in order to compare directly the previously discussed results with
unsymmetrical representations of the free-particle scattering channel, also reported
in the literature [RMS+91, MGS91, RSG93, BRBW93, BRBW94]. Accordingly,
these calculations have been performed also in the rest frame of centre A. For the
single-centre calculations a basis comprised of the ten lowest bound states and 24 wave
packets of centre A has been employed. Semi-two-centre calculations refer to a basis
which includes, in addition, the ten lowest bound states of centre B. Clearly, in both
cases the free-particle states are always localised at centre A. But as opposed to
single-centre calculations, the semi-two-centre calculations allow for the creation of a
bound electron at both centre A and centre B. These bases are schematically depicted
by figures 5.5 and 5.6.

3Note the different scale of the ordinate axes in the figures 6.16 and 6.19.
4This reasoning is applicable to the capture calculations of the preceding sections in an analogous

way.
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It should be mentioned that the single-centre and semi-two-centre bases, used
here, only include wave packets, which are at rest in the reference frame of the calcu-
lation. Therefore, interpretive difficulties, arising from the slight non-orthogonality
of Lorentz-boosted stationary wave packets attributed to the same centre, do not
occur (see section 5.5).

First the plots (1), (3) and (5) of figure 6.19 may be compared. It is seen that
bound-free pair production, with the creation of an electron in a bound state of centre
A, is neither influenced significantly by the presence of the bound states of centre B,
nor by the presence the wave packets attributed to centre B. Hence, the effect of the
extension of an undistorted single-centre basis by bound states and scattering states
of the second centre is not important, in coupled channel calculations in which the
created electron is at rest.

By contrast, regarding the fully symmetrical phase-distorted basis, the transfer-
like pair creation process is relatively more important, as exhibited by plot (6) of
figure 6.19. It may be conjectured that this fact is due to a reduced frame dependence
of such calculations, as observed already for the pure capture calculations. Omitting
the free-particle basis functions of centre B in plot (8) not only removes the possibility
for this contribution, but also reduces the magnitude of excitation-like pair creation
probability. This is observed also, but less significantly, in plot (10) of figure 6.19, for
which the bound states of centre B have been excluded from the basis, too. Hence, the
the extension of a phase-distorted single-centre basis clearly affects the pair creation
probabilities.

The plots (2) and (4), both represent the creation of an electron in a 1s1/2 bound
state of centre B. Their comparison shows that the transfer-like pair creation, already
dominant for the fully symmetric calculation with 68 basis functions (cf. plot (2)), is
enhanced slightly by the omission of the wave packets of centre B (cf. plot (4)). The
qualitatively similar behaviour is observed for the calculations with phase-distorted
bases (cf. plots (7) and (9)), which unfortunately yield very different probabilities of
bound-free pair creation.

6.6.5 Conclusion. The various calculations do not provide a coherent picture of
the importance of two-centre effects in the process of bound-electron free-positron
pair creation. The probabilities obtained from calculations in the collider frame are
most convincing, because they do not suffer from obvious numerical artifacts, as the
violation of the symmetry of electron creation at centre A or B. The collider frame
calculations demonstrate the importance of a symmetrical description of the free-
particle scattering channel for collisions in the 1GeV/u collision-energy range. Due
to the computational difficulty of the calculations presented, larger coupled channel
bases have not been feasible, but they are necessary to avoid the numerical artifacts,
like the strong frame-dependence exhibited by figure 6.19.

6.7 Free-particle channels and charge transfer

The coupled channel calculations including free-particle basis functions, as presented
in the previous section, also provide probabilities for electron capture. Since this
atomic process has been studied extensively in sections 6.1 to 6.4 of this chapter,
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Figure 6.20. Weighted total probabilities P (b)b of electron capture for the

collision U91+(1s1/2) + U92+ as a function of the impact parameter b. The colli-
sion energy is 0.96 GeV/u. Results obtained from coupled channel calculations,
performed in the rest frame of centre A with six different sets of basis func-

tions, are shown. All bases contain the ten lowest bound states of each centre.
The calculations with 68 basis functions, denoted by the label ‘34+34’, comprise
stationary wave packets at both centres, as described in section 6.6. The la-

bel ‘34+10’ denotes semi-two-centre calculations, in which only stationary wave
packets of centre A are included into the coupled channel basis. The addition of
free-particle basis functions to the coupled channel basis only comprising bound

states (upper two plots) does not have a significant effect on the charge transfer
cross section. In calculations with phase-distorted basis functions the inclusion
of wave packets clearly reduces the frame dependence.
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Figure 6.21. The frame dependence of the capture probability for the same

collision parameters as in figure 6.11. The only difference to figure 6.11 is that the
probabilities shown here have been computed with a basis of 68 basis functions,
which comprises the 48 wave packets described in section 6.6.

using bases comprising bound states only, the results obtained with free-particle
bases should be compared with the pure capture calculations. No such investigation
exists in the literature.

Two different questions may be addressed. First, the influence of the free-particle
basis functions on the calculated total cross section of electron capture may be inves-
tigated. Since ionisation probabilities are expected and, indeed, found to be much
larger than capture probabilities, at least for the collision energies considered here,
it could be that the omission of free-particle basis functions introduces a significant
systematic error in the calculated capture cross sections. Second, it is interesting to
ask, whether the addition of free-particle states to the coupled channel basis reduces
the frame dependence of the capture probabilities. This has been conjectured in
section 6.1.

In comparison to the pair creation process, the main contributions to electron
capture cross sections come from larger impact parameters. The physical reason is
that pair creation requires much stronger electromagnetic fields; in peripheral colli-
sions, the peak energy density of the electromagnetic field of the nuclei increases as
the impact parameter decreases [Tel87]. The calculations presented in the previ-
ous section had to be extended to impact parameters up to b = 10 r.u. in order to
obtain the full impact-parameter dependence of electron capture in calculations also
employing free-particle states. For the results of this section, the basis described in
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the previous section has been used and the same collision system and energy have
been considered, namely ZA, ZB = 92 and T = 0.96GeV/u.

6.7.1 Total capture cross section. In figure 6.7 weighted capture-probabilities
are presented that have been obtained by coupled channel calculations in the rest
frame of nucleus A. Two different initial conditions are shown in each plot. Several
different bases have been used. The two diagrams at the top of figure 6.7 represent
calculations using a pure bound-state basis. This data has appeared already in figure
6.10 and is replotted to allow for a convenient comparison. The other four plots show
results from calculations with bases comprising free-particle states.

It has been found that ionisation probabilities in numerical calculations of this
work, which make use of free-particle states, are approximately one order of mag-
nitude larger than the capture probabilities shown here. Since ionisation is not
accounted for in coupled channel calculations with bases comprised of bound states
only, it is remarkable that the omission of free particle states does not have major
effect on the capture cross section. It is seen that the addition of free-particle states
slightly enhances the capture cross section in calculations with undistorted bases.
The opposite behaviour is exhibited by the capture probabilities corresponding to
phase-distorted bases. Note that the frame dependence of the capture probabilities
has nearly vanished in the calculation with phase-distorted states which employs wave
packets at both centres (plot at the bottom right of figure 6.10).

6.7.2 Frame dependence. For the impact parameter b = 2 r.u. the total capture
probability has been evaluated in various frames of reference, using the fully symmet-
rical basis described in the previous section, comprised of the ten lowest bound states
and 24 stationary wave packets of each centre. The results are shown in figure 6.21.
Analogous calculations using a pure bound-state basis have been presented in figure
6.11 on page 82. Comparing these two figures the reduced frame dependence due to
the addition of free-particle states is clearly noticed in figure 6.21. The reduction of
the frame dependence is very convincing for the calculation with phase-distorted ba-
sis functions, in particular if the 1s1/2 initial configuration is considered. Although a
diminished frame dependence is present also for calculations with undistorted bases,
it is less satisfactory, presumably reflecting that the coupled channel basis is still
too small. Nevertheless, the present results demonstrate that the frame dependence
of the numerically determined capture cross section is diminished by the adding of
stationary wave packets to the coupled channel basis.



Appendix A

Numerical and Algorithmic Details

In this appendix, the computer code is described which was used to produce the
numerical results presented in this thesis. It also comprises the details of the compu-
tational methods and explicitly some formulas which have been omitted in the main
part of this work. Furthermore, improvements of the code, which have not been im-
plemented yet, are proposed. The main aim of such changes must be the reduction
of the compute time, thereby making larger bases feasible.

The present program is the first of its kind which is capable of performing numeri-
cal computations in various different relativistic frames of reference. In any previously
existing computer code that numerically solves the relativistic coupled channel equa-
tions a particular frame of reference was chosen, namely the reference frame where
the initial electronic state was at rest. Moving initial configurations have not been
considered. Not only coupled channel codes, but also other numerical approaches
to solve the two-centre Dirac equation (like the momentum space approach, finite
element and finite difference calculations) have only considered initial configurations
at rest in the frame of the computation.

For coding the C/C++ programming languages have been used predominantly
[Str97, CSC+97]. For the convenience of readers who are interested in reading the
source code (although not reproduced here), we quote identifiers occasionally.

A.1 General definitions

At the time of writing, the program is capable of solving the coupled channel equa-
tions in those frames of reference where both nuclei, A and B, move along straight line
trajectories parallel to the e3-axis of the coordinate system. The impact parameter
plane is chosen to be the e1-e3-plane and the time of closest approach of the nuclei
is t = 0. In the subsequent discussion the trajectories are assumed to be of the form,

RA(t) = − b

2
e1 + tvA e3, RB(t) =

b

2
e1 + tvB e3, (A.1)

with

−∞ < b <∞, −1 < vΓ < 1, with Γ = A,B, and −∞ < t <∞.

However, recall that any translation of the origin of the spatial coordinate system
in the e1-e2-plane will yield an identical set of coupled equations (cf. section 5.1).
The input parameters of the computer program that determine these trajectories are
listed in table A.1. In terms of the rapidities χc

B and χc
frame the velocities vA and vB

are determined according to:

vA = tanh(−χc
B − χc

frame),

vB = tanh(χc
B − χc

frame).
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Table A.1. Command line parameters of the main program.

chi Rapidity χc
B of nucleus B in the collider frame.

chiframe Rapidity χc
frame of the frame of reference with re-

spect to the collider frame.
b Impact parameter b in relativistic units.

zA zB Charge number of projectiles A and B respec-
tively.

nmaxA nmaxB Maximum principal quantum numbers of bound-
state basis functions of centre A and B respec-
tively.

kappaA kappaB Maximum absolute values of the spin-orbit quan-
tum numbers κ of free-particle basis functions.

ti tf dt tinnr dtinnr Variables tf , ti,∆t, tinner and ∆t,inner that deter-
mine the time grid (cf. section A.4), in relativistic
units.

infile Name of a checkpoint file. Necessary for the con-
tinuation of a previously interrupted computa-
tion.

id Identification string of a coupled channel calcula-
tion.

The Lorentz factor γ specifying the collision energy (i.e. the kinetic energy of one of
the projectiles measured in the rest frame of the other projectile) is then given in
terms of the rapidity χc

B by:

γ = cosh(2χc
B).

Half the distance between the centres A and B at time t in the unprimed frame,
denoted by f in the following, is equal to:

f =
1

2

√

b2 + t2(vB − vA)2 (A.2)

In the present context, primed rest-frame coordinates (t′, x′, y′, z′) of centre A and
doubly primed rest-frame coordinates (t′′, x′′, y′′, z′′) of centre B are defined as,

t′ = γA(t− vAz), x′ = x +
b

2
, y′ = y, z′ = γA(z − vAt) (A.3)

t′′ = γB(t− vBz), x′′ = x− b

2
, y′′ = y, z′′ = γB(z − vBt). (A.4)

These definitions are emphasised, because the definitions of the basis functions below
explicitly refer to the direction of the z′- and z′′-axis. Note that the directions have
been chosen to be equal to the direction of the z-axis of the computational frame of
reference. In the program radial coordinates (rA, ϑA, ϕA) for the rest frame of A are
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defined in terms of these Cartesian coordinates according to, 1

rA =
√

x′2 + y′2 + z′2, cosϑA =
z′

rA
, ϕA = arg (x′ + iy′) , (A.5)

The spatial radial coordinates (rB, ϑB, ϕB) in the rest frame of B are given similarly
in terms of the doubly primed Cartesian coordinates (x′′, y′′, z′′).

A.2 Basis functions

As described in sections 5.2 and 5.3, in the present impementation of the coupled
channel method the basis functions ΦΓ,i(t,x) are eigenfunctions of the spin-orbit
operator and the third component of angular momentum in their respective rest
frames. In this section we give the precise forms of the eigenfunctions φA,i(x

′) and
φB,i(x

′′), referred to in sections 5.3 and 5.5. The following presentation covers the
eigenfunctions φA,i(x

′) referring to the rest frame of centre A. Everything stated in
the following applies in an analogous way to eigenfunctions φB,i(x

′′) in the rest frame
of centre B.

A.2.1 Spin-angular functions. Numerical calculations make use of the standard
Dirac-Pauli representation of the Dirac matrices (see equation (C.2) of appendix
C). For this representation, the spin-orbit operator K ′ defined in equation (5.5) is
block-diagonal:

K ′ =

(

−1
2
σ · L′ − 1 0

0 1
2
σ · L′ + 1

)

.

In this case, the third component J ′3 of the angular momentum operator J ′ is a
diagonal block-matrix as well:

J ′3 = −i
∂

∂ϕA
+

1

2

(

σ3 0
0 −σ3

)

.

Both K ′ and J ′3 only contain differentiation operators with respect to the angular
variables ϑA and ϕA. Therefore, a simultaneous eigenstate φA(x′) of K ′ and J ′3, with
eigenvalues κ and m respectively, is of the form:

φA(x′) =
1

rA

(

iP (rA) χm
κ (ϑA, ϕA)

Q(rA) χm
−κ(ϑA, ϕA)

)

, (A.6)

with complex-valued radial functions P (rA) and Q(rA). The imaginary constant has
been added for later convenience. The two-spinors χm

κ (ϑ, ϕ) must satisfy the following
eigenvalue equations:

[
1
2
σ · L′ + 1

]

χm
κ (ϑ, ϕ) = −κ χm

κ (ϑ, ϕ),
[

−i∂ϕA
+ 1

2
σ3

]

χm
κ (ϑ, ϕ) = m χm

κ (ϑ, ϕ).

1This notation represents a minor inconsistency with previous notation: In this appendix rA is

not primed, although it is identical to the Lorentz scalar r′A(t′, x′) as defined in section 2.1.
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A suitable choice for these spin-angular functions χm
κ (ϑ, ϕ) is given by the following

definition: 2

χm
κ (ϑ, ϕ) =

1√
2l + 1






−
√

l −m+ 1
2
Y

m− 1

2

l (ϑ, ϕ)
√

l +m+ 1
2
Y

m+ 1

2

l (ϑ, ϕ)




 for κ > 0,with l = κ,

χm
κ (ϑ, ϕ) =

1√
2l + 1






√

l +m + 1
2
Y

m− 1

2

l (ϑ, ϕ)
√

l −m + 1
2
Y

m+ 1

2

l (ϑ, ϕ)




 for κ < 0,with l = |κ| − 1.

In this work we refer to the following phase convention for spherical harmonic func-
tions Y p

l (ϑ, ϕ) and associated Legendre polynomials P p
l (cosϑ):

Y p
l (ϑ, ϕ) = eipϕ

√
√
√
√

2l + 1

4π

(l − p)!

(l + p)!

(−1)l+p

2l l!
(sinϑ)p

[

d

d(cos ϑ)

]l+p

(sin ϑ)2l

︸ ︷︷ ︸

= eipϕ

√
√
√
√

2l + 1

4π

(l − p)!

(l + p)!
P p

l (cosϑ)

The spin-angular functions χm
κ (ϑ, ϕ) constitute a complete set of orthonormal func-

tions on the unit sphere. For the numerical evaluation of the spherical harmonics the
formula,

Y p
l (ϑ, ϕ) = eipϕ

√
√
√
√

2l + 1

4π

(l − |p|)!
(l + |p|)! P

|p|
l (cosϑ) ×







(−1)p if p < 0,

1 if p > 0,

is most suitable, because numerically stable recursion relations exist, which allow
for the determination of associated Legendre polynomials P p

l of positive order p
[PTVF92]. Owing to the presently adopted phase conventions, the spin-angular
functions χm

κ (ϑ, ϕ) also satisfy the relation [Ros61, eq. (1.65’)],

er · σ χm
κ (ϑ, ϕ) = −χm

−κ(ϑ, ϕ), (A.7)

with er = (cosϕ sinϑ, sinϕ sinϑ, cosϑ).

A.2.2 Radial Dirac equation. As explained in chapter 5, basis functions attrib-
uted to centre A are constructed either from eigenstates of the channel Hamiltonian
H ′

A = −iα · ∇′ + β − eVA(rA) (for bound states) or as superpositions of continuum
eigenfunctions of H ′

A (in the case of wave packets). A simultaneous eigenfunction

2Spin-angular functions χm

κ
(ϑ, ϕ) are also known as central field spinors [Ros61], spinor spher-

ical harmonics [Sch95], or spherical spinors [SFVW95b]. In the literature many different phase

conventions for spin-angular functions, spherical harmonics, and associated Legendre polynomials

can be found. For example, the present choice is in agreement with [AS65, PTVF92, Jac99]

regarding associated Legendre polynomials (but disagreeing with [Edm57]), in agreement with

[Edm57, Ros61, Dav65, PTVF92, Jac99] regarding spherical harmonics (but disagreeing with

[Sch55], [BS77], as well as [LL86, BLP82]), and finally in agreement with [Ros61] regarding the

Clebsch-Gordon coefficients which determine the spherical spinors. In consequence of different phase

conventions, equation (A.7) does not hold for spin-angular functions as defined, e.g., in [BD66] or

[BLP82]. However, similar equations are given by the latter authors. In the present work, the

numerical algorithm of [PTVF92, sec. 6.8] is used to compute associated Legendre functions, in

combination with the definition of spherical spinors χm

κ
(ϑ, ϕ) as in [Ros61, eq. (1.60’)].
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φA(x′) of the operators H ′
A, K ′ and J ′3, with eigenvalues ε, κ and m respectively,

is of the form (A.6). Owing to equation (A.7) it can be verified that the eigenvalue
equation,

[H ′
A − ε] φA(x′) = 0,

is equivalent to the following radial Dirac equation for the radial wave functions P (rA)
and Q(rA):

d

drA

(

P (rA)
Q(rA)

)

=







− κ

rA
−ε− eVA(rA) − 1

ε + eVA(rA) − 1
κ

rA







(

P (rA)
Q(rA)

)

. (A.8)

Note that the imaginary factor in equation (A.6) leads to the present form (A.8) of
the radial Dirac equation, which allows for real-valued solutions P (rA) and Q(rA).

An algorithm for an accurate numerical solution of the radial differential equa-
tion (A.8) has been published by Salvat et al. [SM91, SFVW95a, SFVW95b]. It
assumes that a singularity of the radial potential VA(r) at r = 0 is at most Coulomb-
like, more precisely,

lim
r→0

VA(r)r <∞,

is assumed. Furthermore, it is assumed that the potential VA(r) vanishes as r tends
to infinity and that the limit

lim
r→∞

VA(r)r = Z̃A

exists. The algorithm of Salvat et al. allows for the computation of the radial wave
functions of normalised bound states and determines their eigenvalues at the same
time. Furthermore, radial wave functions corresponding to continuum eigenfunctions
with positive energy ε > 1 can be determined. The latter radial functions are nor-
malised by the code of Savat et al. such that the upper component P (r) is oscillating
with unit amplitude as r → ∞. Only regular solutions of the radial Dirac equation
are computed, which are distinguished by their property of square integrability at
the boundary r = 0. For this work the code of Salvat et al. has been ported to the
C programming language and extended to allow for the computation of radial wave
functions of negative energy ε < −1.

The normalisation of continuum eigenfunctions φA,ε(x
′) on the energy scale is

obtained by a multiplication of their radial wave functions P (rA) and Q(rA) by the
factor,

1√
π

(
ε + 1

ε− 1

)1/4

.

That normalisation of continuum wave functions provides that radial wave packets
of the form,

1√
∆ε

∫ ε+∆ε/2

ε−∆ε/2
φA,ε(x

′) dε,

are normalised in the primed frame.
For the numerical calculations presented in this work the Coulomb potential

VΓ(rΓ) = eZΓ/rΓ has been considered for both centres Γ = A,B. However, due
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to the fact that the radial wave functions of the basis functions are determined by
a numerical integration of the radial Dirac equation (A.8), it is straightforward to
extend the existing code to allow for a numerical coupled channel solution of a two-
centre Dirac equation with more general moving charge distributions. This possibility
has motivated the preference of the present determination of the radial wave func-
tions over other numerical methods to compute Coulomb-Dirac wave functions or the
related Whittaker functions [AS65, MRG73, GMR85, CEL].

A.2.3 Implementation details. For bound states, the radial wave functions are
computed at the beginning of a coupled channel calculation and tabulated for a few
thousand radii for later linear interpolation. The size of the radial grid in relativistic
units was chosen according to rmax = (2n2 +Cn1.2)/(e2Z), with a constant C taking
a value between 15 and 20. Here Z is the charge number of the respective centre and
n the principal quantum number of the bound state. Wave functions of wave packets
are integrated using a Gaussian quadrature formula for the energy integration and
tabulated in the same way as bound state radial wave functions, to allow for the
later evaluation of the radial functions by linear interpolation. For the wave packets
as described in section 6.6 a radial grid of size 200 r.u. was used. To check the
code, radial wave functions obtained by the present program have been compared to
corresponding plots published in [BS85].

For numerical calculations, a finite coupled channel basis has to be specified. In
the present program this can be done partly by command line parameters, denoted
by nmaxA, nmaxB, kappaA and kappaB (cf. table A.1). The first two parameters
determine the maximum principal quantum number of bound-state basis functions of
centres A and B respectively. The second two parameters fix the maximum absolute
values of the spin-orbit quantum numbers κ of free-particle basis functions. The
mean energies ε̄ and the widths ∆ε of the energy interval of wave packets cannot be
chosen on the command line presently. In the source code tabulated radial Dirac
wave functions attributed to the same centre are subsumed by an object of the class
DiracRadialBasis. It is the constructor of this class that evaluates radial wave
functions according to the algorithm of Salvat et al..

A.3 Quadrature formulas

The three-dimensional integrals presented in section 5.3 have to be evaluated fully
numerically. This evaluation takes the major part of the computing time and is,
hence, the reason for the numerical complexity of the computational task of solving
the relativistic coupled channel equations (4.8). Efficient quadrature formulas for
these integrals will take into account the distance between the centres as well as the
fact whether the two states occurring in the integrand are located at the same or
a at different centres. Therefore, two different quadrature schemes are used in the
program. Both procedures introduce some curved spatial coordinates in the com-
putational, unprimed frame of reference. The three-volume integrals (5.10), (5.11),
(5.15) and (5.16) are then rewritten as a sequence of three nested one-dimensional in-
tegrals over these curved coordinates. The latter are evaluated successively by means
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Figure A.1. Prolate spheroidal coordinates. (a) The centres A and B are
moving in the x-z-plane. The straight line going through the centres, from A to

B, defines the zp-coordinate axis. (b) A half-plane is rotated around the zp-axis.
(c) The half-plane is parameterised by elliptical coordinates.

of one-dimensional quadrature formulas. The first quadrature method described be-
low is based on prolate spheroidal coordinates, the second on contracted spherical
coordinates around one of the centres.

A.3.1 Quadrature using prolate spheroidal coordinates. If the distance of the
centres A and B is small compared to the extension of the integrand and in the case
of scalar products between states located at different centres, a quadrature method
based on prolate spheroidal coordinates is employed. These coordinates are elliptical
coordinates of the half-plane which are rotated into the third spatial dimension in
order to obtain coordinates of the whole three-dimensional space [AS65, MS88].
Their definition in the present context is depicted in figure A.1.

Elliptical coordinates are rotated around the zp-axis which is defined as the co-
ordinate axis passing through the centres from A to B at some fixed time t. Let

ρp =
√

x2
p + y2

p denote the distance of some point (x, y, z) from the zp-axis. Elliptical

coordinates (ξ, η) of the (zp, ρp)-half-plane can be defined in terms of a conformal
mapping, namely the principal branch of the complex arcsin-function [AS65, FL92],
as follows:

ξ = cosh

(

= arcsin
zp + iρp

f

)

,

η = sin

(

< arcsin
zp + iρp

f

)

.

By this mapping the (zp, ρp)-half-plane is mapped one to one and onto the strip,

1 ≤ ξ <∞ and − 1 ≤ η ≤ 1.
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The inverse mapping is simply given by:

zp = fξη, ρp = f
√

(ξ2 − 1)(1 − η2). (A.9)

Therefore, while passing over from Cartesian coordinates (x, y, z) to prolate spher-
oidal coordinates (ξ, η, ϕ), where ϕ is the angle of rotation around the zp-axis, the
volume element transforms like:

dx dy dz = dϕρp dρp dzp = f 3(ξ2 − η2) dϕ dη dξ.

For large ξ the quantity fξ is approximately equal to the spatial distance of some point
with the coordinates (ξ, η, ϕ) from the origin of the (xp, yp, zp)-coordinate system.

For their numerical evaluation the infinite-volume integrals (5.10), (5.11), (5.15)
and (5.16) are approximated by nested one-dimensional integrals over finite intervals,

∫ ξmax

1
dξ
∫ 1

−1
dη
∫ 2π

0
dϕ f 3(ξ2 − η2) . . . ,

since the relevant integrands are expected to give negligible contributions to the in-
finite integral outside some sufficiently large ellipsoid characterised by ξ < ξmax. The
ξ- and η-integrals are then computed by Gauß-Legendre quadrature formulas which
corresponds to a polynomial interpolation of the integrand as a function of ξ and η
respectively, see e.g. [AS65, PTVF92, DH93]. The ϕ-integration is carried out
using the extended trapezoidal rule which is more simple than the Gauß-Legendre
quadrature. Nonetheless, it is appropriate because the integrand is periodic in ϕ and
the n-point extended trapezoidal rule is an exact quadrature formula for all trigono-
metric polynomials up to the order n− 1. The n-point extended trapezoidal rule for
the ϕ-integral corresponds to an integral over the interpolation of the integrand using
a trigonometric polynomial of the order n−1. Contrary to the Gauß-Legendre quad-
rature formula the trapezoidal rule takes into account the periodicity of the integrand
in ϕ [HH89, DR75, DH93].

In order to evaluate the integrand for some space-time point with coordinates
(t, ξ, η, ϕ) the space-time coordinates (t′, rA, ϑA, ϕA) and (t′′, rB, ϑB, ϕB) of this event
have to be computed. For the sake of completeness the transformations performed
by the program will be described here. Starting from prolate spheroidal coordinates
(ξ, η, ϕ) the spatial Cartesian coordinates (xp, yp, zp) are determined according to
equation (A.9) and the following relations:

xp = ρp cosϕ, yp = ρp sinϕ.

The Cartesian coordinates (x, y, z) are then obtained by a rotation around the yp-axis
followed by a translation in z-direction:

x = xp cosα + zp sinα, y = yp, z = −xp sinα+ zp cosα +
t(vB + vA)

2
.

Here the coefficients of the rotation matrix are given by:

sinα =
b

2f
, cosα =

t(vB − vA)

2f
.

Finally the space-time coordinates (t′, rA, ϑA, ϕA) and (t′′, rB, ϑB, ϕB) are computed
from (t, x, y, z) by Lorentz boosts according to equations (A.3), (A.4) and (A.5).
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It is important to note that the times t′ and t′′ in the rest frames of the respective
centres, are functions of both t and z. For some particular time t they, therefore,
have to be evaluated for each spatial coordinate (ξ, η, ϕ) separately. For the purpose
of computational efficiency there are different functions implementing the coordinate
transformation for computations in the collider frame, where χA = −χB, for com-
putations in the rest frame of centre A, where χA = 0, and for arbitrary frames of
reference.

Quadrature methods based on prolate spheroidal coordinates have also been used
in nonrelativistic coupled channel calculations [Fri] and by Toshima and Eichler for
their relativistic calculations of excitation and charge transfer in the target frame
[TE88a].

A.3.2 Quadrature using contracted and translated spherical coordinates.
For scalar products at large times t, between states which are located at the same
projectile Γ (single centre integrals), a quadrature method is used that is based on the
radial coordinates (rΓ, ϑΓ, ϕΓ) defined in equation (A.5). A short calculation shows
that the volume element dx dy dz in the unprimed frame is given in terms of the
radial coordinates of the boosted frame at time t by:

dx dy dz =
r2
Γ

γΓ

drΓ dcosϑΓ dϕΓ.

In order to verify this relation, it must be remembered that the Cartesian coordinate
z at time t in the unprimed frame may be written as,

z =
rΓ cosϑΓ

γΓ

+ vΓt, (A.10)

due to the uniform motion of centre Γ. For a numerical evaluation, the matrix
elements (5.11) and (5.16) are approximated by nested one-dimensional integrals of
the form,

∫ rmax

0
drΓ

∫ 1

−1
d cosϑΓ

∫ 2π

0
dϕΓ

r2
Γ

γΓ
. . . ,

similarly to the previous subsection. Gauß-Legendre quadrature formulas are used
for the computation of the rΓ- and cosϑΓ-integrals and the extended trapezoidal rule
for the ϕΓ-integral for the same reasons as described above.

In order to evaluate the integrand of an interaction matrix element between two
basis functions located both, e.g., at centre A (cf. equations (5.11) and (5.16)) it is
necessary to calculate times t′ and t′′, the distance dB, and the radius rB. Here the ra-
dius rB must correspond to a space-time point with spatial coordinates (rA, cosϑA, ϕA)
in rest frame A, but with time t in the unprimed coordinate system.

The times t′ and t′′, of the rest frames of centre A and B respectively, are ob-
tained by first determining z, as in equation (A.10), and then using the relations
t′ = γA(t− vAz) and t′′ = γB(t− vBz). The radius rB must be computed according
to,

rB =
[

(rA sinϑA)2 + b2 + z′′
2 − 2b rA sinϑA cosϕA

] 1

2 ,



108 A. NUMERICAL AND ALGORITHMIC DETAILS

where z′′ = γB(z − vBt), as already defined above, and sinϑA =
√

1 − (cosϑA)2. The

distance dB, as given in equation (5.3), can be expressed simply in terms of t′′.
An analogous procedure has been implemented for the numerical determination

of matrix elements between two basis functions that are both located at centre B.

A.3.3 Discussion and improvements. The evaluation of the elements of the in-
teraction and overlap matrices, N(t) and V (t), is the main reason for the compu-
tational complexity of relativistic coupled-channel calculations as presented in this
thesis. In [RSG93, BRBW94] single-centre coupled channel calculations of heavy-
ion collisions using much larger bases have been reported. As the coupled channel
basis in that approach is comprised of eigenstates (and wave packets) of one centre
only, there are no two-centre matrix elements. However, in the present two-centre
calculations the number of two-centre integrals that have to be evaluated is nearly
twice as large as the number of single-centre integrals, showing that the major effort
is to compute the former.

In [RSG93, BRBW94] Coulomb boundary conditions have not been used and
calculations have been carried out in the rest frame of the basis functions (target
frame). As described in [RSG93] the external field of a point-like projectile can be
decomposed into a multipole series (see also [EM95]). Although, compared to the
nonrelativistic case, this expansion is complicated slightly by the Lorentz contrac-
tion of the projectile potential, angular momentum algebra can be used to reduce
the computational effort of determination of the matrix elements. Three-dimensional
integrals for the interaction matrix elements Vij(t) can be reduced to infinite sums
over two one-dimensional integrals, one of which does not need to be evaluated for
every pair of indices (i, j) separately, because it mainly depends on the spin-angular
quantum numbers of the corresponding basis functions [RSG93]. This integration
method is not applicable if coupled channel calculations with phase-distorted basis
functions are considered, as done in this work. If coupled channel calculations not
satisfying Coulomb boundary conditions are an option, the program can be opti-
mised by evaluating the single-centre integrals according to the method described in
[RSG93].

We conclude this section with a few remarks about further ideas to optimise the
numerical quadrature. Two-dimensional quadrature formulas for the integration on
the unit sphere have been developed for numerical calculations of quantum chem-
istry [Del96]. These might turn out to be more efficient than the present integra-
tion method for the unit sphere using nested one-dimensional quadrature formulas.
Another feature of the presently adopted quadrature formulas is the use of a fixed
number of points, independent of, e.g., the distance between the centres. One should
expect, however, that the convergence of the quadrature formulas with respect to
the number of points at which the integrands must be evaluated does depend on the
distance of the centres and the different types of wave functions. Therefore, adaptive
quadrature methods based on extrapolation techniques (Romberg quadrature) might
be more powerful [PTVF92, DH93]. On the other hand, the Romberg quadrature
method requires sufficient smoothness of the integrand, which is not provided by the
present evaluation of radial wave functions by linear interpolation of tabulated data.
Finally, there are alternatives to the use of prolate spheroidal coordinates for the
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quadrature of two-centre integrals. Different multi-centre integration schemes have
been developed for calculations in quantum chemistry. E.g., the decomposition of
multi-centre integrals into a sum of weighted single-centre integrals, as described in
[Bec88, PJB94], is applicable in principal also in the present context. In conclu-
sion, we have proposed improvements of the present quadrature schemes. It must be
remembered, however, that all these proposals require careful and time-consuming
implementation, testing and evaluation before they can replace the present methods.
They should be object of future work.

A.4 Integration of the coupled channel equations

A.4.1 Matrix computations. The program integrates the coupled differential
equations (4.8) for undistorted and phase-distorted bases simultaneously. For the
integration of these differential equations the coefficient matrices,

−iN(t)−1V (t),

must be determined for both choices of the basis functions. This is achieved by
means of an LU-decomposition [PTVF92, DH93] of the respective overlap matrix
N(t). For matrix computations the ‘Template Numerical Toolkit’ (TNT) [Poz00]
has been used and slightly extended to allow for the LU-decomposition of complex-
valued matrices.

Singular value decompositions of the fundamental solution matrices F (t, ti), as
described in subsection 4.2.1 and presented in figures 5.3 and 5.4, have been per-
formed by interfacing the TNT package to the Fortran library for linear algebra
LAPACK [ABB+99]. The latter is optimised and available in binary format for
many computing architectures. It provides the Fortran routines ZGESVD and CGESVD,
which implement the singular value decomposition for complex-valued matrices.

A.4.2 Time integration. The overlap and interaction matrices N(t) and V (t) are
numerically evaluated only for the times of a time grid. This time grid has upper
and lower boundaries tf and ti, usually chosen in a symmetrical manner as ti = −tf .
The spacing of the time grid is chosen to be equidistant, with a time step ∆t, except
for an inner time-interval. In this inner time-interval, ranging from −tinner to tinner,
the equidistant spacing can be made smaller, using the time step ∆t,inner. These five
parameters defining the time grid are controlled by command line parameters of the
program, which are summarised in table A.1.

For times t not part of the time grid, the matrix −iN(t)−1V (t) of coefficients
of the linear differential equation (4.8) is linearly interpolated. In the program this
is achieved by means of the class MatrixInterpolationTNT. The integration of the
coupled channel equations is, therefore, based on this linear interpolation function of
the coefficient matrices.

For the integration of the differential equation over time intervals of the time
grid, a sophisticated algorithm described in [PTVF92, ch. 16] is used. The powerful
Burlisch–Stoer extrapolation technique is combined with a stepsize-control algorithm
proposed by Deuflhard. In the present numerical code this integration method has
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been implemented for differential equations with complex-valued coefficients as a class
called GBSDIntegrationTNT.

The integration method works as follows: For a given stepsize H the so-called
modified midpoint method is used to integrate the fundamental solution F (t, ti) from
some time t to the time t + H. This method subdivides the stepsize H into n
substeps each of size h = H/n. The modified midpoint rule is applied several times
with increasing n, yielding several results for the same integration step from t to t+H.
These different results are then extrapolated to the limit of vanishing substep-size,
h = 0, using a polynomial interpolation (Richardson’s deferred approach to the limit).
If the (estimated) numerical error of this extrapolation is larger than a given error
bound the stepsize H may be reduced. The stepsize adjustment strategy proposed by
Deuflhard, described in [PTVF92, sec. 16.4], has been used with minor modifications
for the present program.

A time grid has been used for the integration of the coupled channel equations
also in [TE88a]. The effect of the Burlisch–Stoer–Deuflhard integration method in
the present context is that the accuracy of the numerically evaluated fundamental
solution F (t, ti) is practically determined by the choice of the time grid only. In order
to control this accuracy the asymptotic unitarity of the fundamental solution can be
verified. As described in section 4.2 asymptotic unitarity is provided, if the singular
values of the fundamental solution are all equal to one at large times t. The smaller
grid spacings in the inner time-interval [−tinner, tinner] of the time grid allows for a
rough adaption: At small times t the coefficients of the differential equations grow
strongly as t tends to zero, due to maximum interaction at the closest approach of
the centres (see e.g. figures 5.1 to 5.4).

A.4.3 Improvements. It may be attempted to apply the Burlisch–Stoer–Deuflhard
integration method directly, without using a time grid and interpolating the coeffi-
cient matrices. However, it must be remembered that the numerical calculation of
the overlap and interaction matrices by three-dimensional quadrature is very time-
consuming and the use of directly evaluated coefficient matrices may actually in-
crease the computing time. Furthermore extrapolation techniques, as the integration
method described, require sufficient smoothness of the numerically evaluated coeffi-
cients as a function of time [PTVF92]. This may not be provided due to numerical
inaccuracies of the quadrature formulas described above, but it is clearly true for
the linear interpolation used for numerical calculations of this work. Finally note
that using cubic splines for the interpolation of the coefficient matrices is presum-
ably a valuable improvement of the present code, allowing for a larger spacing of the
time grid and providing the necessary smoothness of the coefficients necessary for the
Burlisch–Stoer–Deuflhard method.

A.5 Distributed computations

The numerical code has to perform two different tasks: On one hand, the numerical
evaluation of the matrix elements, on the other hand the time integration of the
coupled channel equations. In principle these two tasks can be separated from each
other. They may be implemented in different programs, provided the matrix elements



A.5. DISTRIBUTED COMPUTATIONS 111

can be passed from one program to the other. The latter could be achieved by storing
the matrix elements, or the coefficient matrices of the differential equation, on mass
storage devices. Another possibility is to write software that is able to exchange data
using communication links.

The latter approach has been implemented. In this approach the process integrat-
ing the differential equations (master process) sends requests for matrix elements to
a process only evaluating matrix elements (server process). A single master process is
able to communicate with several different server processes. In the present program,
a request of the master process sent to a server process contains the values of the
following parameters:

χc
B, χ

c
frame, b, t, i and j. (A.11)

Here i and j are the row and column indices of the requested matrix elements.
After the computation, of overlap and matrix elements for undistorted as well as
phase-distorted bases, the server process returns four complex numbers to the master,
namely the values of the matrix elements:

Nu
ij(t), V

u
ij (t), N

p
ij(t) and V p

ij (t).

Here the superscripts u and p refer to undistorted and phase-distorted bases respec-
tively. As soon as the master process receives these results from a particular server
process the former sends a new request to the server. The master process communi-
cates with all server processes simultaneously, assembles the overlap and interaction
matrices, determines the matrix of coefficients −iN(t)−1V (t), integrates the differen-
tial equations and writes the results to several output files.

The program is constructed such that it can either take the role of a master or
a server process. Typically, several processes are started simultaneously on different
processors or networked computers. These processes are numbered and the first pro-
cess automatically takes the role of the master process, establishing communication
links to the other processes, which automatically start their operation in the server
mode. If only a single process is started, it carries out both tasks, evaluating matrix
elements and integrating the differential equations.

The principal advantage of the multiple-processor over single-processor compu-
tations is the much increased computing speed. E.g., a computation taking several
days on a single-processor workstation could be executed on a network of worksta-
tions and personal computers during several hours. In many numerical calculations
of this work multiple-processor computations have been necessary in order to get
acceptable compute times. In addition, the parallelisation of the code allowed for
the use of massively parallel processor systems, providing access to such powerful
computing machinery.

A.5.1 Implementation details. Two different kinds of computing facilities have
been used for the present work. On one hand, a heterogeneous network of work-
stations and personal computers connected via standard ethernet hardware, on the
other hand, massively parallel processor systems of type Cray T3E. The commu-
nication between processes was realised by means of the massage passing interface
[MPI96, GLS99]. Due to the fact that an implementation of the message passing
interface is available both for TCP/IP-connected workstations [MPI00] and for the
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proprietary hardware of the Cray T3E, it was technically feasible to write a portable
code that could be used on both types of hardware.

We would like to close this appendix with a few remarks about technical aspects.
The network of workstations and personal computers, connected via ethernet, in-
cluded several different computing architectures, namely: Compaq True64 Unix run-
ning on workstations with Alpha processors, Sun Solaris for Sun Sparc computers,
Hewlett-Packard Ultrix on HP-RISC computers, and Linux for personal computers
with Intel processors. For all these systems (and additionally the Cray T3E archi-
tecture) the program sources had to be compiled and linked using different, partially
incompatible compilers and linkers. This fact required adapting of sources to the
various environments, selectable by preprocessor directives [Reg96] and compiler
options. Having made available binaries of the program for the different comput-
ing architectures, the latter have been used simultaneously for a single, distributed
coupled channel calculation. Typical distributed computations lasted several hours.

Finally, it should be emphasised that priority has always been given to numerical
accuracy leading to long compute times. The optimisation of both accuracy and
computing speed at the same time must be an object of future work. The potential
for such improvements has been partly described in this appendix.



Appendix B

Mathematical Supplement

This appendix provides some mathematical results not found in the literature in the
specific form necessary for this work. Their proofs are either outlined or given in
detail.

B.1 Spreading of regular wave packets

In this section, a mathematical theorem regarding the spreading of free Dirac wave
packets is formulated. It is applied in the existence and orthogonality proofs for the
wave operators in sections 3.3 and 3.4.

A free Dirac wave packet φ(x) is a linear superposition of plane waves:

φ(x) = (2π)−
3

2

∫

ei � ·� φ̂(p) d3p. (B.1)

Here φ̂(p) denotes the Fourier transform of φ(x), which obviously must be four-
spinors. The time-evolution of φ(x) is most easily written in terms of the Fourier

transform φ̂(p). It is necessary for that purpose to make a spectral decomposition
of the state space with respect to the free Dirac Hamiltonian H0 = −iα · ∇ + β.
Orthogonal projectors PC± onto the spectral subspaces of H0 of positive and negative
energy respectively,

PC± =
1

2

(

1 ± H0

|H0|

)

,

are given in momentum space by a simple multiplication operator:

PC± =
µ(p) ± p · α ± β

2µ(p)

(see e.g. [Tha92, Sch95]). Here,

µ(p) =
√

1 + p2,

denotes the relativistic energy of a free electron with momentum p. Due to the
property,

PC+ + PC− = 1,

the Fourier transform φ̂(p) may be decomposed by means of these projectors PC±
into a sum of two functions,

φ̂(p) = φ̂+(p) + φ̂−(p),

where

φ̂±(p) = PC±φ̂(p).
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The free time-evolution Φ(t,x) = e−itH0 φ(x) of the initial wave packet φ(x) is then
given by,

Φ(t,x) = (2π)−
3

2

∫

ei � · �
{

eitµ(� ) φ̂+(p) + e−itµ( � ) φ̂−(p)
}

d3p,

because in the momentum representation and on the spectral subspaces of H0, which
have been introduced above, the free unitary time-evolution e−itH0 is simply a multi-
plication operator (see e.g. [Tha92, Sch95]).

B.1.1 Regular wave packets. In this work, a regular wave packet is defined as
a wave packet Φ(t,x) = e−itH0 φ(x) where each component of the Fourier transform

φ̂(x) has compact support and is infinitely differentiable. Making use of the notation
common in the mathematical physics literature [Rud74, RS80, Kat80], a regular
wave packet, therefore, satisfies by definition:

φ̂(x) ∈ C∞
0 (R3)4.

The term ‘regular wave packet’ is taken from the corresponding definition in the case
of the Klein-Gordon field in [RS79, p. 42], where the term smooth solution is used
synonymously.

The importance of regular wave packets of the free Dirac equation in this work is
manifested in following property, which is useful in scattering theory. A regular free
Dirac wave packet (in three spatial dimensions) satisfies for any time t and coordinate
x the following inequality:

‖Φ(t,x)‖2 ≤
const.

(1 + |t|)3/2
. (B.2)

Since the L2-norm ‖Φ(t)‖ is time-independent this inequality describes the spatial
spreading of the wave packet for large times t.

A mathematical proof of this statement is possible with the aid of the method of
stationary phase [Hör76, RS79]. Noting that φ̂+(x), φ̂−(x) ∈ C∞

0 (R3)4 for regular
wave packets, mainly the Corollary to Theorem XI.15 in [RS79] has to be be applied.
Although the explicit proof in the case of the Dirac equation was not found in the
literature, its details will not be presented here. A similar result for regular wave
packets of the Klein-Gordon equation constitutes Theorem XI.17(b) in [RS79].

B.2 Lorentz invariance of the scalar product

In this section, it is proved that the scalar product (Ψ1(t),Ψ2(t)) between two wave
functions Ψ1(t,x) and Ψ2(t,x) is invariant under Lorentz-boosts, if they are both
solutions of the same Dirac equation. Lorentz-invariance means that the scalar prod-
uct (Ψ′

1(t
′),Ψ′

2(t
′))′ in a Lorentz-transformed frame between the Lorentz-transformed

wave functions Ψ′
1(t

′,x′) and Ψ′
2(t

′,x′) satisfies,

(Ψ′
1(t

′),Ψ′
2(t

′))
′
= (Ψ1(t),Ψ2(t)) , (B.3)

for arbitrary t and t′. The assumptions necessary to prove this result will be stated in
the subsequent presentation. Only Lorentz boosts will be considered since rotations
and translations do not transform the time axis and the time-independence of the
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scalar product is equivalent to the unitarity of the time evolution. The existence of
such a unitary time evolution will be assumed here.

Consider two Dirac wave functions Ψ1(t,x) and Ψ2(t,x) which are solutions of
the same Dirac equation,

[H0 +W (t,x) − i∂t] Ψi(t,x) = 0, i = 1, 2.

The external field W (t,x) is required to be a hermitian matrix, i.e.

W (t,x)† = W (t,x),

which is true in particular for external electromagnetic fields (A0,A), where

W (t,x) = q(A0 − α · A). The hermitian conjugate Dirac spinors Ψ†
i(t,x) then

solve the following hermitian conjugate equation,

i∇ · (Ψ†
iα) + Ψ†

iγ
0 + i∂tΨ

†
i + Ψ†

iW = 0.

By taking the difference between the hermitian conjugate equation for Ψ1 multiplied
from the right by Ψ2 and the Dirac equation for Ψ2 multiplied from the left by Ψ†

1

one obtains:

∇ · (Ψ†
1αΨ2) + ∂t(Ψ

†
1Ψ2) = 0.

Recalling the definition of the adjoint spinor, Ψ = Ψ†γ0, this equation may be rewrit-
ten as the four-divergence of a complex Lorentz four-vector,

∂µ(Ψ1γ
µΨ2) = 0. (B.4)

The familiar continuity equation of the four-current density jµ = qΨγµΨ is an impli-
cation of this result.

In the following Λ = Λ(v) shall denote a pure Lorentz boost from an unprimed
Lorentz frame to a primed frame moving with velocity v with respect to the unprimed
frame:

(Λµ
ν) =

(

γ −γvT

−γv
(

1 + (γ − 1)v̂v̂T
)

)

,

x′
µ

= Λµ
νx

ν .

(B.5)

Again, γ is the Lorentz factor corresponding to the velocity v. In order to show
the invariance of the scalar product of Dirac spinors under Lorentz boosts we note
that the scalar product at time t = a in the unprimed frame is an integral over a
three-dimensional flat hypersurface of Minkowski space,

∫

t=a
Ψ†

1(t,x)Ψ2(t,x) d3x. (B.6)

The same comment applies to the scalar product computed at time t′ = b in the
primed frame,

∫

t′=b
Ψ′

1
†
(t′,x′)Ψ′

2(t
′,x′) d3x′. (B.7)

The hyperplanes t = a and t′ = b may be characterised using the unit timelike
normal vectors nµ and mµ pointing forward in time:

∂Da = {x : nµx
µ − a = 0, nµ = (1, 0)}

∂Db = {x : mµx
µ − b = 0, mµ = γ(1, v)} .
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−nµ

−mµ

nµ

mµ

DII

∂Da

∂Db

DI

Figure B.1. Sketch of four-wedges.

The hyperplanes ∂Da and ∂Db are depicted in figure B.1. The Minkowski space is
cut into four subsets by these hyperplanes. Two of them, necessary in the subsequent
calculation, are given by the following definitions:

DI = {x : nµx
µ ≥ a and mµx

µ ≤ b} =
{

x : a ≤ x0 ≤ γ−1b + v · x
}

,

DII = {x : nµx
µ ≤ a and mµx

µ ≥ b} =
{

x : γ−1b + v · x ≤ x0 ≤ a
}

.

Their distinctive feature is that the intersections of DI and DII respectively with the
four-dimensional cylinder of radius R, defined through x2 ≤ R2, have finite volume
in Minkowski space. The boundaries ∂DI and ∂DII of DI and DII respectively may
be decomposed uniquely into flat bounded hypersurfaces,

∂DI = ∂Da
I ∪ ∂Db

I and ∂DII = ∂Da
II ∪ ∂Db

II,

such that the following decomposition is valid at the same time:

∂Da = ∂Da
I ∪ ∂Da

II and ∂Db = ∂Db
I ∪ ∂Db

II.

See figure B.1 in order to understand this quite formal definitions easily.
To complete the proof, the scalar product (B.7) in the primed frame is rewritten

as follows:
∫

t′=b
Ψ′

1
†
(t′,x′)Ψ′

2(t
′,x′) d3x′

=
∫

t′=b
Ψ1(Λ

−1(t′,x′)) γ(γ0 − v · γ) Ψ2(Λ
−1(t′,x′)) d3x′

=
∫

∂Db

Ψ1(t,x)γµΨ2(t,x) gµν m
ν dS(x)

=
∫

∂Db

I

Ψ1(x)γ
µΨ2(x)mν dS(x) −

∫

∂Db

II

Ψ1(x)γ
µΨ2(x) (−mν) dS(x)

Here dS(x) denotes the hypersurface element at the space-time point x (following
the notation of [For84]). The scalar product in the unprimed frame may be written
in a similar form:

∫

t=a
Ψ1

†(t,x)Ψ2(t,x) d3x

= −
∫

∂Da

I

Ψ1(x)γ
µΨ2(x) (−nν) dS(x) +

∫

∂Da

II

Ψ1(x)γ
µΨ2(x)nν dS(x)

The unit four-vectors appearing in the integrands above are the outer normal vectors
on the boundaries of the four-volumes DI and DII respectively. If the solutions Ψ1(x)
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and Ψ2(x) decay sufficiently rapidly at spatial infinity for all t then the integral
theorem of Gauß in four dimensions [For84, Das93] may be used to conclude that
the difference between the scalar products (B.6) and (B.7) is given in terms of four-
dimensional volume integrals over the ‘wedges’ DI and DII:

∫

t′=b
Ψ′

1
†
(t′,x′)Ψ′

2(t
′,x′) d3x′ −

∫

t=a
Ψ1

†(t,x)Ψ2(t,x) d3x

=
∫

DI

∂µ(Ψ1γ
µΨ2) d4x −

∫

DII

∂µ(Ψ1γ
µΨ2) d4x

In order to understand the reasoning, remember that the finite volume integral over
the intersection of DI with the four-dimensional cylinder of radius R converges to the
integral over DI itself as the radius R goes to infinity. The Gaussian theorem may be
used to rewrite this finite volume integral as a sum over hypersurface integrals over
the boundary of the volume of the intersection. It is then noted that the hypersurface
integral over that part of the four-dimensional cylinder which appears in this sum
vanishes as R → ∞. We conclude that both four-volume integrals vanish as a result of
equation (B.4) and hence the scalar products (B.6) and (B.7) are equal and equation
(B.3) is verified.

Obviously, the invariance property proved here implies the orthonormality of or-
thonormal stationary Dirac eigenstates after their Lorentz transformation to a moving
frame.

The idea of using the integral theorem of Gauß was taken from the discussion of
the free Dirac equation in [Sch95]. Thirring gives a similar proof for the Lorentz
boost invariance of the total charge in classical electrodynamics [Thi90, (1.3.18,2)].
Note also that for vanishing external field W (t,x) the Lorentz invariance (B.3) proved
in this section is a consequence of the fact that Lorentz boosts, only in this particular
situation, are represented by a time-independent unitary operator exp(−iv ·N). The
self-adjoint generator of this unitary transform is given by N = 1

2
(H0x+xH0) where

H0 is the free Dirac-Hamiltonian [Tha92]. Such a generator does not exist if the
Dirac field is subject to a time-dependent external field.

B.3 Transformations of eigenstates

Consider an eigenfunction ψ(x) of a time-independent Dirac-HamiltonianH0+W (x)
with eigenvalue ε,

[H0 +W (x)]ψ(x) = ε ψ(x). (B.8)

Indeed, the external field W (x) does not necessarily need to originate in a minimally
coupled external electromagnetic field. Other kinds of covariant external fields, like
scalar potentials or non-minimally coupled electromagnetic fields (Pauli term, etc.),
are not explicitly excluded in this section. (See, for example, [Tha92] for a complete
classification of covariant external fields.) The time-dependent wave function,

Ψ(t,x) = exp(−itε)ψ(x),

solves the corresponding time-dependent Dirac equation,

[H0 +W (x) − i∂t] Ψ(t,x) = 0. (B.9)
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Clearly, Ψ(t,x) is also an eigenfunction of H0 +W (x) for any time t.

B.3.1 Lorentz boosts. In the unprimed coordinate system of equations (B.9) and
(B.8) the hermitian matrix W (x) shall not have an explicit time-dependence, as
emphasised above. Now consider primed coordinates (t′,x′) obtained by a Lorentz
boost with velocity v from the unprimed coordinates (t,x), as in equation (B.5). As
usual, let S(Λ) denote the four-spinor representation matrix of the Lorentz boost Λµ

ν,
corresponding to the representation of the γ-matrices employed in the definition of
the free Dirac Hamiltonian H0. The Lorentz transform of the time-dependent Dirac
equation (B.9) in the primed frame is given by,

[H ′
0 +W ′(t′,x′) − i∂t′ ] Ψ

′(t′,x′) = 0, (B.10)

with Ψ′(t′,x′) = S(Λ)Ψ(t,x) and (t,x) = Λ−1(t′,x′). Due to the Lorentz boost
to the unprimed frame, the transformed external field W ′(t′,x′), generally given by
[Tha92],

W ′(t′,x′) = S(Λ)−1†W
(

Λ−1(t′,x′)
)

S(Λ)−1, (B.11)

picks up an explicit (though trivial) time-dependence. Here W (t,x) = W (x) has
been introduced only to simplify the notation. Since, by construction, Ψ′(t′,x′)
solves equation (B.10), the following holds:

H ′(t′) Ψ′(t′, x′) = i∂t′ Ψ
′(t′, x′)

= S(Λ) i∂t′ {exp(−itε)ψ(x)}

= ε S(Λ) exp(−itε)ψ(x)
∂t

∂t′
+ S(Λ) exp(−itε) (i∂iψ(x))

∂xi

∂t′

= γεΨ′(t′, x′) − γ S(Λ) exp(−itε) v · (−i∇ψ(x)),

with γ = (1 − v2)−1/2. This means that Ψ′(t′, x′) is an eigenstate of H ′
0 +W ′(t′,x′),

if and only if the eigenfunction ψ(x) of H0 +W (x) in the unprimed reference frame,
is also an eigenfunction of the momentum operator P = −i∇. In fact the latter
condition is equivalent to the property, that the external potential W (x) of equation
(B.8) is a constant, i.e. does not depend on the unprimed spatial coordinate x.
Clearly, this is precisely the case of free motion, and furthermore the only case,
where the Lorentz-boosted Hamilton operator H ′(t′) is time-independent.

Hence, it is meaningful only in that circumstance to Lorentz-transform the en-
ergy eigenvalue ε to a moving frame. The usual transformation law of the energy-
momentum four-vector is then retained from the preceding calculation:

H ′(t′) Ψ′
p′(t

′, x′) = γεΨ′
p′(t

′, x′) − γS(Λ) exp(−itε) v · (pΨp(x))

= γ(ε− v · p)Ψ′
p′(t

′, x′) = ε′Ψ′
p′(t

′, x′).

Here the usual notation for energy-momentum four-vectors p and p′ is employed, with
p = (ε,p) and p′ = Λp = (ε′,p′).

B.3.2 Galilean boosts in nonrelativistic quantum theory. The same prob-
lem may be addressed in nonrelativistic quantum mechanics. In order to discuss
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this similarity briefly, consider a solution Φ(t,x) of the time-dependent Schrödinger
equation,

[

−1

2
∇2 + V (x) − i∂t

]

Φ(t,x) = 0,

which is of the form Φ(t,x) = exp(−itε)φ(x) and, therefore, an eigenstate of the
time-independent HamiltonianH = − 1

2
∇2+V (x). The Galilean-boosted Schrödinger

wave function,

Φ′(t,x′) = exp
(

− i
2
tv2

)

exp(iv · x′) exp(−itε)φ(x′ + tv),

corresponding to the passive Galilean boost, x′ = x − tv, with boost velocity v,
solves the Galilean-transformed Schrödinger equation,

[

−1

2
∇′2 + V (x′ + tv) − i∂t

]

Φ′(t,x′) = 0.

In the nonrelativistic Schrödinger theory, the Galilean-boosted wave function Φ′(t,x′)
is likewise not an eigenfunction of the Galilean-boosted time-dependent Hamiltonian,

H ′(t) = −1

2
∇′2 + V (x′ + tv),

at any time t, except the external potential V (x) is a constant. This is easily verified
as in the previous subsection. However, contrary to the relativistic case, supposing
that φ(x) is a bound state, the energy expectation value ε̄′ in the primed Galilean
frame is given by a simple expression:

ε̄′ =
(

Φ′(t), H ′(t) Φ′(t)
)

= ε +
v2

2
.

Moreover, the energy uncertainty is time-independent and grows at most linearly
with the modulus of the boost velocity v, since the following estimate holds:

0 ≤
(

Φ′(t), H ′(t)2 Φ′(t)
)

−
(

Φ′(t), H ′(t) Φ′(t)
)2 ≤ v2

∫

φ(x)∗(−∇2φ)(x) d3x.

Therefore, Φ′(t,x) is an approximate eigenstate of the Galilean-boosted Schrödinger
operator H ′(t) for small boost velocities v.

B.3.3 Local gauge transformations. The discussion of local gauge transforma-
tions can be carried out along the lines of the discussion of Lorentz boosts. We
sketch it briefly. It is well-known already in nonrelativistic and relativistic classical
mechanics that the Hamiltonian is not a gauge-invariant observable [Thi88]. The
same is true in (non-)relativistic quantum theory. The locally gauge-transformed
Dirac spinor,

Ψ̆(t,x) = exp(−ig(t,x)) exp(−itε)ψ(x),

solves the gauge-transformed Dirac equation,
[

H0 + W̆ (t,x) − i∂t

]

Ψ̆(t,x) = 0, with

the transformed external field,

W̆ (t,x) = W (x) + {(∂t + α · ∇)g(t,x)} .



120 B. MATHEMATICAL SUPPLEMENT

The gauge-transformed wave function Ψ̆(t,x) is an eigenfunction of the transformed

Dirac operator H̆(t) = H0 + W̆ (t,x), if and only if the gauge function g(t,x)is time-

independent. Then, of course, W̆ is time-independent as well.



Appendix C

Units, Notation, and Other Conventions

In this work, the notation and most conventions of Bjørken and Drell [BD66] are
used whenever possible. Some important definitions and conventions are given in this
chapter for the convenience of the reader.

C.1 System of units and physical constants

If not stated otherwise, relativistic natural units are used for which the vacuum
velocity of light c, the reduced Planck constant ~ and the electron mass me all take
the numerical value 1. Then the unit of length is the reduced Compton wave length
λc = ~

mec
of the electron, the unit of time is λc/c = ~

mec2
, and the unit of energy is

equal to mec
2. Therefore, the relativistic natural units of length and time have the

following values in in MKSA units [MT00]:

quantity numerical value unit

~

mec
3.86 × 10−13 m

~

mec2
1.29 × 10−21 s

For the electrical charge Gaussian units are used, which are commonly preferred in
atomic physics. This means that the unit of electrical charge is chosen such that the
potential energy of two charges Q and q at a distance r is equal to,

Qq

r
.

In the Gaussian system the elementary charge e is related to the fine-structure con-
stant α by:

α =
e2

~c
.

The fine-structure constant α is the only physical constant which directly enters
the numerical calculations. The numerical value which has been used to obtain the
results of this thesis is [EM95],

α−1 = 137.0359895,

deviating insignificantly from the recently recommended value of α−1 = 137.0359998
[MT00]. In the system of units adopted here, we have α = e2. Cross sections are
conventionally given in barn. Regarding the conversion from relativistic natural units
to barn, note that the area of 1 barn corresponds to the 10−28 m2 in MKSA units and
to the area,

0.670605 × 10−3 r.u.,
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in relativistic natural units. The Lorentz factor γ associated with the kinetic energy T
of a heavy-ion collision given in GeV/u in a fixed target frame is defined as:

γ =
T

ma.m.u.c2
+ 1. (C.1)

For the purpose of conversion between these two quantities the value

ma.m.u = 0.931494 GeV/c2.

has been used for the the atomic mass unit ma.m.u [MT00].

C.2 Dirac matrices and discrete symmetry transformations

In terms of the Pauli matrices σ = (σ1, σ2, σ3) the standard Pauli–Dirac represen-
tation of the Dirac-matrices α = (α1, α2, α3) and β is given by the following 4 × 4-
matrices [BD66, Tha92]:

β =

(

1 0
0 −1

)

, αi =

(

0 σi

σi 0

)

. (C.2)

For numerical calculations the standard representation has been used. However,
analytical considerations of the present work do not refer to some particular repre-
sentation, if not noted otherwise.

We use the convention,

gµν = diag(1,−1 − 1 − 1),

for the signature of the Minkowski metric, following [BD66, BLP82, EM95, Sch95,
Jac99] and others. Since the Dirac-matrices are mutually anti-commuting and the
γ-matrices are required to satisfy,

γµγν + γνγµ = 2gµν, for µ, ν = 0, . . . , 3,

the two sets of matrices are related by:

γ0 = β, γi = βαi, for i = 1, 2, 3.

This relation is independent of the particular representation. However, it depends
on the signature of the Minkowski metric, which is sometimes chosen differently
[Wei95]. The definition of the matrix γ5 = γ5 adopted in this work is:

γ5 = iγ0γ1γ2γ3 = −iα1α2α3.

We refer to the following definitions of the operators of charge conjugation C,
time-reversal T and parity P acting on a classical Dirac field Ψ(t,x) [Sch95]:

(CΨ)(t,x) = γ0C Ψ∗(t,x), (C.3)

(T Ψ)(t,x) = γ5C Ψ∗(−t,x), (C.4)

(PΨ)(t,x) = γ0 Ψ(t,−x). (C.5)

These definitions are valid for any representation of the γ-matrices that is unitarily
equivalent to the chiral representation or the standard representation. The matrix C
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occurring in equations (C.3) and (C.4) is always unitary but depends on the repre-
sentation. It satisfies

C−1γµC = −γµT , CT = −C and C∗C = −1, (C.6)

and exits for any representation which is unitarily equivalent to the chiral represen-
tation as a consequence of Pauli’s fundamental theorem on the representation of the
γ-matrices. Furthermore, C is uniquely defined up to a complex phase, which may
be proved by means of Schur’s lemma [Goo55, Tha92, Sch95]. The commutation
properties of the discrete symmetry operators are summarised by the equation:

{C,P} = [P, T ] = [T , C] = 0 (C.7)

The operators C and P are involutions,

C2 = P2 = 1,

whereas the double application of the time reversal operation changes the sign of a
wave function,

T 2 = −1.

Note that the operators defined in equations (C.3–C.5) belong to a particular rep-
resentation of the covering group of the Poincaré group and that non-isomorphic
representations of this group exist. Nevertheless, all different possibilities yield the
same projective representation of the Poincaré group [Tha92, pp. 76, 104–105].

Due to the hermitian properties of the γ-matrices, namely γ0† = γ0 and γi† = −γi,
the following useful ‘commutation relations’ are easily obtained:

− Cγ0∗ = γ0C, (C.8)

Cγi∗ = γiC, i = 1, 2, 3, (C.9)

Cγ∗5 = γ5C. (C.10)

For the standard representation (C.2) a common choice for C is [BD66, (5.6)],

C = iγ2γ0,

where the phase of C has been chosen such that C becomes a real-valued matrix.

C.3 Symbols and Notation

Table C.1: Table of symbols

a∆l,Γk Transition amplitude from an initial
configuration (Γ, k) to a final configuration (∆, l).

cΓ,k(t) and ci(t) Coefficients of a coupled channel expansion.
dA(t,x) Distance between the centres A and B as

measured in a rest frame of centre A (section 2.1).
dB(t,x) The same as dA(t,x), but with respect to a rest

frame of centre B.
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e The physical unit charge e > 0. For natural
relativistic and Gaussian units related to the fine
structure constant by e2 = α.

g(t,x) Gauge function.
rA(t,x), rB(t,x) Distance from a the centres A and B respectively

in their respective rest frames (section 2.1).
vA, vB Velocities of the centres A and B respectively.
vA, vB Scalar three-velocities, which may be either

positive or negative, in a frame where the centres
move in the same direction. Hence, not the
moduli of vA and vB.

x = (x1, x2, x3) Three-vectors. (In appendix A describing the
numerical code x = (x, y, z) is used.)

xµ, xi When using Einstein’s summation convention,
Greek indices µ, ν, σ, ρ, . . . are running from 0 to
3 and Latin indices i, j, k, l, . . . running from 1 to
3 only.

(t,x) and (A0,A) Four-vectors.
C,R The complex and real numbers respectively.
D0, Di,D A notation for partial differential operators,

useful in calculations using the chain rule of
differentiation: Partial differentiation with
respect to the i-th argument of some function.

H0 = −iα · ∇ + β Free Dirac-Hamiltonian in relativistic units and
in general for an arbitrary representation of the
γ-matrices.

P (b) Impact parameter dependent probability.
PA(t) and PB(t) Projectors onto the subspace spanned by the

bound states of centre A and B respectively
(section 3.1).

< and = Real and imaginary parts respectively of some
complex number.

T Collision energy in GeV/u.
Ti,Pi Discrete symmetry operators (section 2.4).
V (t) Interaction matrix in the matrix notation of the

coupled channel equation (section 4.2).
VΓ(r) Spherically symmetric electrostatic potential in a

rest frame of centre Γ (sec. 2.2).
W (t,x) A hermitian 4 × 4-matrix-valued function, acting

as an external potential matrix of a Dirac
equation. (Not necessarily an external
electromagnetic field minimally coupled to the
Dirac field [Tha92].)
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WΓ(t,x) External potential of the two-centre Dirac
equation due to a static charge distribution in a
rest frame of centre Γ (section 2.2).

W∞
Γ (t,x) Residual external field caused by a long range

force of centre Γ that remains for bound states at
the other centre, even at large times (section 3.7).

∂t, ∂1, ∂2, ∂3 Partial derivatives with respect to the variables
t, x1, x2, x3 respectively.

γi = βαi and γ0 = β Dirac matrices. If not indicated otherwise the
equations are stated without reference to a
particular representation.

γ5 = γ5 = iγ0γ1γ2γ3 Definition of the matrix γ5.

γA and γB Lorentz factors, γΓ = [1 − v2
Γ]

−1/2
for Γ = A,B.

µA and µB Inverse screening length of the model potential in
section 2.2.

%A and %B Nuclear radius in the model potential in
section 2.2.

σ1, σ2, σ3 Pauli matrices.
χA and χB Rapidities of the respective centres in a frame of

reference where the centres move along parallel
trajectories.

Γ,∆ Indices for the scattering channels, which may
principally take the values A, B and C.

ΦΓ,k(t,x) If not indicated otherwise, it denotes either a
solution of a scattering-channel Dirac equation
(an asymptotic configuration), or a basis function
of the coupled-channel ansatz.

Ψ(t,x) Usually denotes a solution of the two-centre
Dirac equation.

Ψ±
Γ,k(t,x) Incoming (+) and outgoing (−) scattering states,

which correspond to the asymptotic configuration
ΦΓ,k(t,x) (section 3.1).

ΩA(t, s),ΩB(t, s),ΩC(t, s) Product of time-evolution operators (section 3.1).
Ω±

A (s),Ω±
B(s),Ω±

C(s) Møller operators of the three scattering channels
(section 3.1).

{·, ·}, [·, ·] Anticommutator and commutator brackets.
(Ψ1(t),Ψ2(t)) Scalar product of wave functions.
|x| Modulus of a three-vector.

‖Ψ(t)‖ =
√

(Ψ(t),Ψ(t)) Norm of the wave function Ψ(t,x) at time t.

‖v‖2 =
√
∑n

i=1 v
∗
i vi Norm of a finite vector v ∈ Cn, as in

[Kat80, DH93, GV96].

‖M‖2 = supv∈Cn
‖Mv‖2

‖v‖2
Matrix norm corresponding to the finite-vector
norm ‖v‖2 [GV96].
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‖Ψ(t,x)‖L2(R3,d3x)4 The same as the Hilbert space norm ‖Ψ(t)‖, i.e.
the square root of the spatial integral over
‖Ψ(t,x)‖2

2. This alternative notation is helpful, if
the variable over which is integrated, must
appear for some reason.

‖f‖Lp(R3) and ‖f(x)‖Lp(R3,d3x) Lp-norm of a function f , which is defined as,

‖f‖Lp(R3) = (
∫ |f(x)|p)1/p [For84, RS80].

‖f‖L∞(Rn) Suprenum norm of the function f [RS80].
NT,ΨT, . . . Transposed of matrices, spinors, vectors etc.
v†,Ψ†, N † Hermitian conjugates (i.e. the transposed and

complex conjugated objects) of finite vectors,
spinors, and finite matrices.

z∗,Ψ∗, N∗ Complex conjugate of a number z, Dirac spinor
Ψ, matrix N .

H∗, U(t, s)∗ Adjoint of an operator acting on an infinite
dimensional Hilbert space [RS80].
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