V. Summary The reinvestigation of osmium(VI,VII)fluoride and oxide fluoride compounds has been attempted in this work. These compounds are already reported in the literature, but are not fully characterized. The stability of the oxidation state of osmium (VII) is of particular interest. $C_6F_6^+$ has been successfully synthesized using OsF_6 as a precursor and characterized structurally as well as by ESR-spectroscopy. The fluorine containing osmium and ruthenium oxides and oxide halides are being resynthesized and investigated with single crystal X-ray determination. We hereby report the x-ray crystallographic data for these compounds. Also the structures of MoO_2F_2 , CrF_5 and CrF_5SbF_5 have also been determined. In the literature there are five compounds: $Os(VII) OsO_4^-$, OsO_3F , OsO_2F_3 , OsO_5 , OsF_7 , two Osmium (VI) oxide tetrahalides $OsOF_4$, $OsOCl_4$, and two Ruthenium(V,VI) oxide fluorids $RuOF_3$, $RuOF_4$ compounds. In this study the OsO_4 is used as precursor, except for the synthesis of OsF_7 and $[OsF_7]^-$. # OsO₄ The synthesis of OsO₄⁻ as tetraphenylphosphonium tetraoxosmate has been carried out as described in the literature. However the crystal structure of the proposed compound could not be determined because of disorder of the anion in the crystal. #### OsO₃F OsO₃F is the first member of osmium oxide fluoride series with the highest number of oxygen atoms. There is only one report about its possible existence. A colourless crystalline material proposed to be OsO₃F was obtained by reaction of OsF₆ with glass. Through the comparison of the crystallographic data of OsO₄ with the proposed OsO₃F. It could be concluded that the proposed OsO₃F is infact OsO₄. #### OsO₂F₃ It has got two modifications; one of them is a flourine-bridged polymer that was obtained by sublimation. The other is a flourine-bridged tetramer and was obtained by recrystallisation from HF. The polymer modification contains a zigzag chain of OsO₃F₂ and OsOF₄ units, whereas the tetramere is an eight member ring. In both compounds we found two different osmium centres. According to their oxygen and fluorine environments, one contains osmium (VI) center and the other Osmium (VIII) coexisting. The compound can be described as OsO₃F₂.OsOF₄. Since the flourine bridges are asymmetric it could be also described as OsO₃F⁺.OsOF₅. ### $Os_2O_3F_7$ This new compound is green in colour. This compound has a modification similar to that of the cyclic compound OsO_2F_3 . It consists of alternating Os(V)/Os(VIII) corresponding to their oxygen and fluorine environments. The entire compound can be either $OsO_3F_2.OsF_5$ or since the flourine bridges are asymmetric, as $OsO_3F^+.OsOF_6^-$. #### OsOF5 Previous reports including single-crystal structure determination have described this compound to be a monomeric species. Previously the single-crystal-structure has been calculated in space group Pnma with a two fold disorder. We have calculated our data in space group Pna2₁ as a twin, resulting in better crystallographic parameters. # OsF₇ There is also one report about the preparation of this compound. It has been synthesized by reaction of Os-metal with elemental fluorine at 600 °C and 400bar. Our product was pumped from 600°C through a 4 mm PFA tube into -196°C and the excess of F₂ was pumped away immediately. The tube was sealed off both ends. The Ramanspectrum was measured directly. Only OsF₆ was formed with its characteristic peak at 731 cm⁻¹. Other Attempts to generated OsF₇ failed, for example the reaction of OsF₅ with KrF₂. #### OsOF₄ A few methods of preparation of OsOF₄ are reported in the literature, but the physical data differ. We reinspected this compound and found that only the reaction of OsO₄ with OsF₆ in mol equivalents 1:3 at 180°C for many days led to the synthesis of pure dark blue OsOF₄. It has got two modifications, both fluorine bridged, one is a chain polymer which was obtained through sublimation, and the other is a helical polymere which was obtained by recrystalisation from HF. #### RuOF₄ The crystal structure of RuOF₄ was determined. It has been synthesized according to the literature by reaction of RuO₂ with diluted fluorine at 400°C in an stream system. Yellow-green crystals have been obtained. It's a fluorine bridged polymer. The speciality of this structure is the *cis* orientation of the bridging fluorine atoms with respect to the double bonded oxygen atom. This polymer is very similar to the helical structure of OsOF₄. If RuO₂ is treated with undiluted fluorine at 300°C, as first published in 1987, a yellow sublimate is formed. This materiel has been described as RuOF₃. This compound is actually monomeric RuOF₄ with only very weak intermuleculer interactions. This molecule is tetragonal pyramidal with an oxygen in the apical position. The contact to the second molecule occurs through a fluorine atom positioned *trans* to the oxygen, as expected. #### OsOCl₄ OsOCl₄ has been synthesized by reaction of OsO₄ with excess of BCl₃ within one day. In the solid state it is a molecule with an almost perfect tetragonal pyramidal strukture with the oxygenatom in the apical position. Interactions to the second molecule are qualitatively similar to the molecular RuOF₄ monomer ## MoO₂F₂ It can be obtained by pyrolysis of Na₂MoO₂F₄. The compound exists in the solid state as cyclic trimer with three crystallographically different molybdenum atoms. The molybdenum atoms complete their octahedral coordination through contact with the lower and upper trimers with a distance of 195.2 pm. #### CrF₅ und CrF₄SbF₆ Since chromium pentafluoride is a strong oxidizing reagent it could be able to oxidize Cl₂ to Cl₂⁺. However oxidation power of CrF₅ was not enough. Addition of a small amount of lewis acid SbF₅ could increase the oxidizing power of CrF₅. The mixture reacts with chlorine to the well-known cation Cl₃⁺ as Cl₃⁺CrF₄SbF₆⁻. CrF₅ and CrF₄SbF₆ were structurally characterized in the solid state they are as zigzag chain polymers. The chain of CrF₅ consists of octahedral CrF₆ units that are cis-fluorine bridged. The structure of CrF₅SbF₅ is again that of a fluorine bridged chain but with alternating CrF₆ und.SbF₆ units. # Cl₃⁺·OsF₆As₂F₁₁⁻ An attempt was made to oxidize Cl_2 with OsF_6 . The oxidation power of OsF_6 was not strong enough. By the addition of one equivalent of AsF_5 the oxidation power of OsF_6 was increased. And lead to $Cl_3^+OsF_6As_2F_{11}$ anion. ## The Two Strukture of the Hexafluorobenzene Radical Cation, C₆F₆⁺. We have successfully elucidated the crystal structure of $C_6F_6^+$ cation. Single crystal structure investigations revealed that it exist in two structurally different rings. Both of these rings appear distorted from D_{6h} symmetry. One is an Elongated ring, the other is compressed. Both rings have the same symmetry D_{2h} . ESR spectroscopic investigation in SO_2ClF resulted in a symmetrical septet. The knowledge of the structure was essential for the interpretation of the *Jahn-Teller* distortion of the cation.