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Introduction

Shape matching is an important topic in computational geometry, computer vision, image
retrieval, object recognition and robotics. For a fixed distance measure D and a class of
transformations 7 we can describe the problem as follows: Given two shapes A and B in R¢,
find a transformation T* € 7, such that the distance between A and 7*(B) is minimal among
all transformations 7' € 7. Usually finding such a transformation is computationally expensive,
if at all possible. Thus we concentrate on approximation algorithms. We follow an approach
by Alt, Behrends and Blomer [4], and Alt, Aichholzer and Rote [3]. They use mappings
called reference points to fix the relative position between the two sets. A reference point
is a Lipschitz continuous mapping from the set of shapes into R¢ which is equivariant under
the considered class of transformations. This approach reduces the degrees of freedom of the
underlying problem by the dimension d.

In this thesis we study approximation algorithms for shape matching with respect to vari-
ous metrics, e.g., the Hausdorff distance, the Earth Mover’s Distance, the Monge-Kantorovich
Distance and the bottleneck distance. We investigate translations, rigid motions, i.e., combi-
nations of translations and rotations, and similarities, i.e., combinations of rigid motions and
scalings.

The basic structure of the approximation algorithms is the same for all metrics and we
describe our approach in an abstract reference point framework. We first determine the relative
position of the two shapes to each other by computing their reference points. We then translate
the shapes such that the reference points coincide. Next we determine a rotation for one of
the shapes such that the distance of the two shapes is at most a constant times their optimal
distance. Similarities can always be dealt with by finding an approximate scaling before finding
the rotation.

In the following we give a short outline of the thesis. The formal definitions are postponed
to the introductory sections of the corresponding chapters.

In Chapter 1 we give a description of shape matching which is suitable for our purposes.
We define reference points and prove features of these points. We generalize the approach by
Alt, Behrends and Blomer [4], and Alt, Aichholzer and Rote [3], and construct an abstract
framework that provides approximation algorithms for translations, rigid motions and similar-
ities. These algorithms can be used for any set of shapes which is closed under the considered
class of transformations and for metrics fulfilling the weak property that there is a constant k
such that D(A,7(A)) < k||7| for any shape A and any translation vector 7.

Chapter 2 is devoted to the Hausdorff distance which is the basis of our reference point
framework. We use this chapter to recall the results by Alt, Behrends and Blomer [4], and Alt,
Aichholzer and Rote [3], and investigate open questions posed in the latter paper. We prove a
lower bound of 1 + \/m ~ 1.58 for the approximation ratio of approximation algorithms for
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translations using reference points.

In Chapter 3 we discuss weighted point sets and introduce the Earth Mover’s Distance
(EMD). We show that the center of mass is a reference point for the EMD with respect to affine
transformations. For weighted point sets in the plane, we show a 2-approximation algorithm for
translations, a 4-approximation algorithm for rigid motions and an 8-approximation algorithm
for similarities. The runtime of the translation approximation is O(T*MP (n,m)), the runtime
of the latter two algorithms is O(nm - TEMD( TEMD(
the EMD between two weighted point sets with n and m points, respectively. We also show

n,m)), where n,m) is the time to compute
that these algorithms can be generalized to arbitrary dimension, leading to worse time and
approximation bounds.

We indicate that the proven approximation ratios of the algorithms for transformations
including the rotations are not tight. In fact, we give a lower bound of approximately 1.155 for
the approximation ratio of the algorithm for rotations and argue that this is the true bound.
Unfortunately, a formal proof must be postponed to future work.

Parts of this chapter have already been published by Klein and Veltkamp [37, 38].

In Chapter 4 we introduce the notion of Manhattan networks. A Manhattan network on
a set of n points in the plane is a rectlinear network G with the property that for every pair of
points in S, the network G contains a path between them whose length equals the Manhattan
distance of the two points. A generalization to the d-dimensional space is immediate. In R?, we
show that for any set of n points there is a Manhattan network with O(nlog? ' n) vertices and
edges. We reduce the time to compute the Earth Mover’s Distance based on the Manhattan
metric to O(n?log®® ! n) time. This improves the previously best known result of O(n*logn)
significantly. The construction immediately leads to a constant-factor approximation for the
Euclidean EMD, which is conceptually easier than the slightly faster (1 + ¢)-approximation by
Cabello, Giannopoulos, Knauer and Rote [15]. The results presented in this chapter are joint
work with Gudmundsson, Knauer and Smid [33].

In the following Chapter 5 we generalize the results gained in Chapter 3 to the Monge-
Kantorovich Distance on probability measures. We observe that the algorithm for translations
carries over. In contrast, the algorithm to find an approximation for rotations, which is using
the discreteness in the case of weighted point sets, cannot be generalized directly. Unfortunately
we cannot prove a constant-factor approximation in this case, but we are able to prove an
approximation algorithm for bounding the absolute error.

In Chapter 6 we investigate the application of our reference point framework to point sets
of equal size with respect to the bottleneck distance. We see that several reference points for
this distance measure exist and investigate approximation algorithms for translations, rotations
around a fixed point, rigid motions and similarities. For rotations around a fixed point in the
plane we give an exact algorithm with runtime O(n%%logn). The main contribution of this
chapter is that we show a (1 + /2 )-approximation for this problem with runtime O(n?®logn).
Thus, except for the slightly worse approximation factor, we improve the previously best known
result of Agarwal and Phillips [1] by nearly a linear factor. Based on this, we show a 2(1-++/2)-
approximation for rigid motions and a 4(1+ V2 ) approximation for similarity transformations
with runtime O(n?®logn). We show how to use d-nets to improve the approximation ratio
for rotations to 2 + . We further generalize the results to higher dimensions, leading to
runtimes and approximation ratios exponential in the dimension. We derive fully polynomial-
time approximation schemes by standard discretization methods for translations and rigid
motions in the plane. The dependence on ¢! is quadratic in the first case and cubic in the
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second case.

In the final Chapter 7 we give a short survey on similar shape matching approaches which
can be found in the literature. These concern the Fréchet Distance, the volume of symmetric
difference, the volume of overlap and the Frobenius norm.
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Chapter 1

The General Reference Point
Framework

In this chapter we give a short introduction to shape matching and constant-factor approxi-
mation algorithms. We further state what we mean by computing the optimal distance under
a given class of transformations. We introduce reference points and construct abstract approx-
imation algorithms to find the optimum. These algorithms are independent of the concrete
choice of the set of shapes or the metric on this set.

1.1 Shape Matching

Shape matching is an important topic in computational geometry, computer vision, image
retrieval, object recognition and robotics. One of the main tasks is to decide: Given two
shapes, how much do they resemble each other?

In this thesis we work on different classes of shapes in R?, for example, arbitrary compact
subsets, weighted point sets, and point sets with a fixed number of points. Furthermore we
generalize our approach to Borel probability measures, which can be interpreted as an abstract
type of shapes, see Section 5.1. As stated before, this chapter is independent of a concrete
choice of the set of shapes. We denote an arbitrary set of shapes in R? by S.

Finding a good measure of resemblance is a difficult task and cannot be done without
knowledge of the application. A good choice of a resemblance function for one application may
be a bad one for another. In this thesis we talk about different well-known metrics on shapes,
i.e., the Hausdorff distance, the Earth Mover’s Distance, the Monge-Kantorovich Distance and
the bottleneck distance.

In the following we develop a shape matching framework for arbitrary sets of shapes. This
framework can be applied whenever the resemblance function D is a metric. That is, we assume
that the mapping D: S x § — R fulfills the following conditions:

e VA, BeS : D(A,B)>0 and D(A,B)=0< A= B (positive definite)
e VA, BeS : D(A B)=D(B,A) (symmetry)
e VA, B,CeS : D(A,B)<D(AC)+ D(C,A) (triangle inequality).

1



2 CHAPTER 1. THE GENERAL REFERENCE POINT FRAMEWORK

In many applications the closest resemblance has to be determined where one of the objects
is allowed to be transformed in a certain way. Typical classes of transformations under con-
sideration are translations, rigid motions and similarities. Rigid motions are combinations of
translations and rotations, and similarities are combinations of rigid motions and scalings. In
this work we only consider orientation preserving transformations. The treatment of reflections
is easy by determining the resemblance twice, once between the original sets and once, where
one of the two sets is reflected.

Let 7 be a considered set of transformations in R?. We will always assume that the set
of shapes S is closed under 7. Let A, B € S be two shapes. The minimum distance D under
transformations with respect to 7 is defined as

D' (A, B) = min {D(4,T(B))}.

We also say that we minimize D under 7.

Typically, the calculation of the exact solution is computationally expensive, if it is at
all possible. Therefore we concentrate on approximation algorithms. By an approximation
algorithm we usually mean a constant-factor approximation, i.e., for two shapes A, B € § we
want to find a transformation 7" € 7, such that

D(A,T(B)) < a-D(A,B),

where o > 1 is a fixed constant independent of A and B. In this case we call a the approx-
imation factor or approximation ratio of the algorithm. The advantages of constant-factor
approximations over algorithms which bound the absolute error are immediate. In the case
of exact matches, i.e., A equals B, constant-factor approximations are guaranteed to find the
exact result. Even in the case when the two shapes do not match exactly but are very similar,
a constant-factor approximation is forced to find a good match.

1.2 Weak Reference Points

A weak reference point is an equivariant mapping from the set of shapes into R%. It has
the property that for any two shapes there is a transformation T in the considered set of
transformations 7 for which the two weak reference points coincide and the distance of the
two transformed figures is at most a constant factor times the optimal distance. This structure
was first defined by Alt, Behrends and Blomer [4].

Definition 1.1 (Weak Reference Point). [4] Let S be a set of shapes in RY and D a metric
on S. A mapping r: S — R? is called a weak D-reference point for S with respect to 7 if the
following two conditions hold:

1. Equivariance with respect to 7: For all A € § and T € 7 we have

2. Approximation property: For all A, B € S there is a transformation T € 7 with r(A) =
r(T(B)), such that
D(A,T(B)) < a-D°P'(A,B).

The constant « is called the approximation factor of the weak reference point 7.
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Alt, Behrends and Blomer [4] call this structure a reference point. In our work, a reference
point is a mapping which is equivariant under a class of transformations, and which is Lipschitz
continuous, see Definition 1.2. As we will see later, this definition is more restrictive. Therefore
we call the structure defined by Alt, Behrends and Blomer a weak reference point.

1.3 Reference Points

A reference point is a Lipschitz continuous mapping which is equivariant under the considered
class of transformations. These points have been introduced by Alt, Aichholzer and Rote [3]
to construct approximation algorithms for matching compact subsets of R? under translations,
rigid motions and similarities with respect to the Hausdorff distance. More results concerning
reference points for the Hausdorff and Fréchet distance can be found in the Ph.D. theses by
Knauer [39] and Wenk [52]. We give a generalized definition suitable for the construction of
our shape matching framework for different classes of shapes and metrics.

Definition 1.2 (Reference Point). [3, 39] Let S be a set of shapes and D: § x § — R be
a metric on S. A mapping r: S — R? is called a D-reference point for S with respect to a set
of transformations 7, if the following two conditions hold:

1. Equivariance with respect to 7: For all A € S and T € T we have

2. Lipschitz continuity: There is a constant ¢ > 0, such that for all A, B € S we have

[r(A) =r(B)| < ¢-D(A,B).

We call the smallest constant ¢ such that condition 2 holds, the Lipschitz constant of the
D-reference point r. The unspecified norm || - ||: R? — R is called the underlying norm on R<.

In Section 1.5.1 we see that under an additional condition on the metric D, a reference
point is always a weak reference point. However, it is still open if there are weak reference
points which are not Lipschitz continuous.

1.4 Properties of Reference Points

In the following chapters we consider various metrics on different classes of shapes in R?. For
every metric and class of shapes we find reference points and prove their Lipschitz constants.
In the next few sections we show how we can use reference points to construct more reference
points for the same metric, or show that the same point is also a reference point for another
metric.

1.4.1 Translated Reference Points

Given a reference point with respect to translations, one can add every constant vector to this
reference point to obtain a new one. Alt, Aichholzer and Rote [3] use this in a special case.
We generalize the result:
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Theorem 1.1. [3] Let S be a set of shapes and D a metric on S. Let r: S — R? be a D-
reference point with respect to translations. Then r': & — R, A s r(A) + v, where v € R? is
any fized vector, is a D-reference point with respect to translations. The Lipschitz constant ¢’
of v’ is equal to the Lipschitz constant c of .

Proof. We have to show the equivariance and the Lipschitz continuity of r':

1. Equivariance:
Let 7 be any translation and let 7, be the translation by v. Then

r'(7(A)) = 7(r(r(4) = n(r(r(4))) = 7(ru(r(4))) = 7(r(7(4)) = 7(r'(4)).
2. Lipschitz continuity:

[r'(A) =" (B)|| = |Ir(A) +v—(r(B) +v)ll = [Ir(4) =r(B)| < c-D(A B).

The lower bound for the Lipschitz constant of 7’ is given by the same pair of shapes A,B € S
which prove the lower bound for r. O

Thus there are infinitely many D-reference points with respect to translations. However,
these reference points are not really distinct because in our approximation algorithm they lead
to the same relative position of the sets with respect to each other and therefore lead to the
same value of the approximate distance D, see Section 1.5.

So, the above result might seem useless at first. However, suppose the set of shapes S
includes single points x € R?. Then, by Theorem 1.1 we can always assume that r({z}) = =.
If this does not hold, let O denote the origin of R, We subtract the constant vector r({O})
from r, meaning r'(A4) := r(A) — r({O}). Thus, ' ({O}) = O. Then, ' ({z}) = (O + z) =
7 ({O}) + x = z. Therefore we can always assume that r({z}) = x for all x € R, which
seems to be a natural assumption. Note that this property is forced if the reference point is
equivariant under rotations.

1.4.2 Convex Combination of Reference Points

It is advantageous to use several reference points and thereby obtain several approximating
positions of the sets. In this section we prove that we can construct a whole family of reference
points by choosing any convex combination of a set of given reference points. An upper bound
on the Lipschitz constant of this reference point is given by the same convex combination of
the Lipschitz constants of the used reference points. Though we do not have any example
of a convex combination of reference points where its Lipschitz constant does not match the
upper bound, the convex combination of a large number of reference points might lead to a
better approximation in practical applications. The result holds for any class of transforma-
tions contained in the class of affine mappings. This includes translations, rigid motions and
similarities. Alt, Aichholzer and Rote [3] use this in a special case. We generalize the result:

Theorem 1.2. [3] Let S be a set of shapes in R and D a metric on S. Let T be a subset of
the class of affine mappings. Let r1,...,7m: S — R be D-reference points with respect to T
and let ¢y, ..., ¢y denote their Lipschitz constants. Every conver combination

roi= Z)\jrj, with 0 <X <1 and ZA]- =1
j=1
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is a D-reference point with respect to T . Its Lipschitz constant is at most Zyil Ajcj.

Proof. We have to show the equivariance of the convex combination under affine mappings and
its Lipschitz continuity. We describe an arbitrary affine mapping by M + 7, where M describes
a linear transformation in R¢ and 7, with a slight abuse of notation, denotes the translation
as well as the translation vector.

e Equivariance:
r(M+7)(A)) = ZAm((M+T)(A))

= Z Ai(M + 7)(r;(A)), by the equivariance of r;

= SONM@ri(A) + 3 N (ri(A))
i=1 i=1

= M(r(A) + Z Xi(ri(A) +7), by linearity of M

= M(r(4)) + Z Airi(A) + Z T

= M(r(A) +r(A)+T, since Y it A =1

= M(r(4)) +7(r(4))
= (M+7)(r(A)).
e Lipschitz continuity:
Ir(A) =r(B) = || Airi(A) =Y Niri(B)
i=1 i=1

IN

ZM Iri(A) = ri(B]|

IN

i )\ici . D(A, B)
i=1

1.4.3 Extension of Reference Points to Other Metrics

We show that the existence of a D-reference point can be extended to the existence of a D’'-
reference point, if the metric D can be bounded by a multiple of D’ from above. The proof
is easy but it often enables us to find new reference points. In a special case this was already
used by Knauer [39].

Theorem 1.3. [39] Let S be a set of shapes in R%, T a set of transformations, and D a metric
onS. Letr: S — R? be a D-reference point with respect to T and with Lipschitz constant c.
Let D': & — R be another metric on S with D(A,B) < k- D'(A, B) for any two shapes
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A, B € S and a fixed constant k € R~g. Then r is a D'-reference point with respect to T and
Lipschitz constant at most ck.

Proof. Since the equivariance of r is independent of the choice of the metric, we only need to
prove the Lipschitz continuity. This follows easily by

I7(4) = r(B)| < ¢ D(A,B) < ck-D'(A,B)

for any two shapes A, B € S. O

1.4.4 Lower Bound for the Lipschitz Constant of a Reference Point

Later we construct abstract approximation algorithms using reference points. The approxima-
tion ratios of these algorithms depend on the Lipschitz constant of the used reference point. We
prove a lower bound for the Lipschitz constant of a reference point if the metric on the set of
shapes fulfills a weak condition. Then, this lower bound for the Lipschitz constant immediately
gives us a lower bound for the approximation ratio which can be proven using our approach.
Therefore it can be used to estimate the quality of such an algorithm.

Theorem 1.4. Let S be a set of shapes in R? and T a set of transformations including the
translations. Let the metric D on S fulfill the condition

D(A,7(4)) < |7

for any shape A € S and translation vector 7 € R, Let r: S — RY be a D-reference point with
respect to T and let ¢ be its Lipschitz constant. Then ¢ > 1.

Proof. Let A € S be an arbitrary shape and let B := A+ 7 where 7 # 0 is a translation vector.
By the Lipschitz continuity of r we have

lr(A) =r(B)| < ¢-D(A,B) < c|r|.
On the other hand, using the equivariance of r with respect to translations we get
[7(A) =r(B)| = [Ir(A) = (r(A) +7)[ = |7l

Since ||7|| # 0 the claim follows. O

1.5 Abstract Approximation Algorithms

Later we use reference points to construct approximation algorithms for shape matching. We
derive methods for various metrics and different sets of shapes. In this section we show ab-
stract algorithms independent of a concrete choice of the metric or class of shapes. Some of
them have already been mentioned by Alt, Aichholzer and Rote [3]. These abstract algorithms
form a general framework for shape matching using reference points. The framework for two
shapes A, B € S works as follows: We first translate B such that the reference points of
the two sets coincide. We then compute an optimal or approximate rotation and scaling of
the translated version of B around their coinciding reference points. Thereby we obtain ap-
proximation algorithms for translations, rigid motions and similarities. The first step, namely
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putting the reference points on top of each other and fixing this point as the rotation cen-
ter, reduces the degrees of freedom of the underlying matching problems and therefore yields
efficient algorithms.

For the remainder of the chapter let A, B € S be two shapes. We use 7"*f(A4) to denote
the time to compute the reference point of A. We further use T? (A, B) to denote the time to
compute the metric D between A and B.

1.5.1 Approximation for Translations

The abstract algorithm for matching under translations can be described as follows:

Algorithm 1.1.

1. Compute r(A) and r(B) and translate B by r(A) — r(B).
Let B’ be the image of B.

2. Output B’ together with the distance D(A, B').

We prove that Algorithm 1.1 leads to a constant-factor approximation if the metric D on
the shapes is well-behaved in some sense. Note that this condition is completely independent
of the considered reference point.

Theorem 1.5. Let r: S — R? be a D-reference point with respect to translations. Let ¢ be its
Lipschitz constant. Let k € Rsg be some constant and let D fulfill the condition

D(A,7(A)) < k|7l

for any shape A € S and translation vector T € R%. Then Algorithm 1.1 induces a constant-
factor approximation for D under translations with approximation factor 1 + kc. Its runtime
is O(T*'(A) + T (B) + TP (A, B)).

Proof. Let 7°P* denote an optimal translation of B. Let 77°f := r(A) —r(B) be the translation
for which the two reference points coincide. Note that this is the translation given by Algo-
rithm 1.1. Further, 7 := r(A) — r(7°P*(B)) denotes the translation for which the two reference
points of A, and B in optimal position coincide. Then,

D(A,7(B)) = D(A,7(r°"(B)))
< D(A,7"(B)) + D(r°"(B), 7(r*"(B)))
< D(A,m(B))+k-|r|
= D(A,7(B)) + k- |r(A) = r(r""(B))]|
< D(A,mP(B)) + ke D(A, 7" (B)),

where the last inequality follows by the Lipschitz continuity of the reference point.
The runtime of the algorithm depends on the time to compute the D-reference points, and
the time to compute the distance between A and B. O
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1.5.2 Fully Polynomial-Time Approximation Scheme for Translations

Efrat, Itai and Katz [25] use Algorithm 1.1 to construct a (1 + ¢)-approximation algorithm
for the bottleneck distance under translations. We generalize their construction to obtain an
abstract (1 + €)-approximation algorithm.

A closer look at the proof by Efrat et al. [25] shows that the approach depends on the
knowledge of some value « € R, with Dg(A, 7°PY(B)) < a < (14 3) - Dg(A, 7°P*(B)) for some
fixed constant 3 € Ry, where Dy denotes the bottleneck distance, see Chapter 6, and 7P
denotes the optimal translation. Hence we can use any D-reference point and apply kc as 3,
see Theorem 1.5. To prove this result we follow the notation and technique of Efrat et al. [25]

We prove the theorem for all L,-distances with 1 < p < oo. Recall that all norms in R4
are equivalent. Therefore the result can be extended to any norm on R? by adjusting the grid
size appropriately.

Let diam(p, d) denote the diameter of the d-dimensional unit cube in the underlying L,-
norm, i.e., for finite p, diam(p,d) = ¥/d and diam(co,d) = 1.

Theorem 1.6. [25] Let 1 < p < co. Let S be a class of shapes and D a metric on S. Let
A, B € S andlet r: S — R% be a D-reference point with respect to translations and with
Lipschitz constant c¢. Let D fulfill the condition

D(A,7(A)) < k7l

for any shape A € S, translation vector T € R and some constant k € Rwq. Then there exists
an algorithm that for any 0 < € < 1 finds a translation 7¢, such that

D(A,7%(B)) < (L+¢)- D(A,7°(B)).

Its runtime is O(e=%- TP (A, B) + T (A) + T (B)).

Proof. Let 0 < e < 1 and 7: S — R? be any D-reference point with respect to translations.
Let 7! := r(A) — r(B) be the translation of B for which the two reference points of A and B
coincide. Let a := D(A,7"f(B)) be the approximate distance computed by Algorithm 1.1,
ie., D(A,7°P%B)) < a < (1 + ke) - D(A,7°PY(B)). Let cube[ca] denote the axis-parallel
cube of side length 2ca centered at 77f. Consider a grid T’ centered at 7f
v = ea/(diam(p, d)k(1 + kc)). The distance of any point of cube[ca] to its closest grid point
of I is at most v - diam(p, d) = ea/k(1 + kc). See Figure 1.1 for the construction.
We first have to show that 7°P! is inside the cube:

with cell size

HTopt _ Tref”p _ HTopt —(r(A) — r(B))Hp
Ir(4) = (r(B) + 7],
c- D(A,7°P(B))

CQx.

INIA

Now, let 7¢ be a translation minimizing D(A, B+7) over all grid points 7 € R? inside the cube.
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Figure 1.1: Construction for the (1 + €)-approximation algorithm.

Let g be a grid point closest to 7°P*. We show that D(A, 7¢(B)) < (1+¢) - D(A, 7°P*(B)).

D(A,m5(B)) < D(Ag(B))
< D(A,7"(B)) + D(7°"(B), g(B))
= D(A,7°P(B)) + D(B, (g — 7*")(B))
< D(A7P(B)) + k- |lg =,
< D(A,7°"(B)) +k:7 dlam(p, d)
< DATTB) + o
< D(A,7°P(B)) + T kc( + ke) - D(A, 7°PY(B)).
The number of grid points inside the cube is
(1+ QCTO‘)d = O((1+eh%).

The runtime is given by the time to compute the reference points of A and B, and the time
to compute their distance D at O(¢~¢) grid points. O

1.5.3 Approximation for Rigid Motions

In the following we investigate the problem to compute the minimum distance D of two shapes
under rigid motions. Since this does not make sense in one dimension, we always assume
that the dimension d is greater than or equal to 2. The following algorithm computes an
approximation of D under rigid motions. For a point p* € R? let Rot(p*) denote the set of
rotations around p*. The time and method to find the rotation in Step 2 depends on the set
of shapes and the metric, and will be addressed in the corresponding chapters.
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Algorithm 1.2.

1. Compute r(A) and r(B) and translate B by r(A) — r(B).
Let B’ be the image of B.

2. Determine a rotation R’ € Rot(r(A)), such that

D(A,R(B)) < p- i D(A, R(B)).
( ())_pReRrgl(rg(A))( (B))

3. Output R/(B’) together with the distance D(A, R'(B’)).

Let T*°* denote the time to compute the rotation in step 2.

Theorem 1.7. Let S be a class of shapes and D a metric on S. Let A,B € S and let
r: S — R? be a D-reference point with respect to rigid motions and with Lipschitz constant c.
Let D fulfill the condition

D(A,7(4)) < k7]

for any shape A € S, translation vector 7 € R? and some constant k € Rwqg. Then, Al-
gorithm 1.2 finds an approximately optimal matching for rigid motions with approzimation

factor p(1+ kc) in time O(T*'(A) + T (B) + TP (A, B) + T™*).

Proof. Let A,B € S be two arbitrary shapes. Let M°P® be the rigid motion minimizing
D(A, M(B)) over all rigid motions M. Let 7 := r(A) — r(M°P*(B)) be the translation for
which the reference points of A and B in optimal position coincide. Let M* be a rigid motion
minimizing D(A, M(B)) while mapping 7(B) onto r(A). Let 7' := 7(A4) — r(B) be the
translation moving B in a way that its reference point coincides with the reference point of A.
Let R’ be the approximate rotation determined in Algorithm 1.2. Then we have

D(A,R o™ (B)) < p- i D(A,Ro (B
( om(B)) < p L (A, Ro7™ (D))

D(A,M*(B))
-D(A, 70 M°P"(B))
(D(A, M°PY(B)) + D(M°™(B), 7 o M°*(B)))
(D(A, M°P(B)) + & - ||7]])
(D(A, M°P"(B)) + kc- D(A, M°P*(B)))
p(1+ ke) - D(A, M°PY(B)).

I
T DT D D D

IANIN A IA

The runtime of this algorithm depends on the time to compute the D-reference points,
translate B such that the D-reference points coincide, find the rotation R’ of the translated
version of B around r(A), and compute the distance D between A and the translated version
of B rotated by R’. O

Fixing the position of the coinciding D-reference points as the rotation center in Algo-
rithm 1.2 eliminates several degrees of freedom and the problem to find the optimal rotation
is easier than the one finding the optimal rigid motion itself. For various distance measures,
however, even for this problem there is no efficient algorithm known so far. Therefore we
investigate approximation algorithms. These algorithms are often based on computing the
distance D for each rotation where two event points given by the shapes are aligned. By this
we mean that those event points ly on the same ray starting at the rotation center.
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1.5.4 Approximation for Similarities

The problem to find a similarity minimizing the distance between two shapes A and B differs
from the problems to find the optimal translation or rigid motion. In the latter two cases it
makes no difference, if A, or B, or both A and B are allowed to be transformed. The optimal
position of the two shapes depends on the choice which shapes are transformed, but in contrast,
the optimal distance is the same for every choice.

In the case of similarities the situation is different. If we allow both sets to be transformed,
the optimal distance will be zero by scaling both sets with a scaling factor of zero. If we allow
only one set to be transformed, the optimal distance will depend on the choice which one to
reshape. Another approach which can be found in the literature is bounding the scaling factor
from below.

In our interpretation we leave one of the shapes fixed and the other is free to be transformed
by any similarity. Which one to be reshaped will be clear from the context. Thus we want
to compute ming D(A, S(B)), where the minimum is taken over all similarities S. We only
consider positive similarities, i.e., the scaling factor is positive. The consideration of negative
similarities is easy by using the same algorithms on B and a reflected copy of A.

Basically, the approach is to use the algorithm for rigid motions on the two shapes, where B
is scaled by some value a. This value depends on the metric. For example, in the case of the
EMD we scale by the quotient of the normalized first moments, see Section 3.4.5; in the case
of the bottleneck distance we scale by the quotient of the distances of the furthest points to
the reference point, see Section 6.11.

We state the abstract algorithm for similarities below. We prove the approximation ratios
and runtimes in the appropriate chapters.

Algorithm 1.3.

1. Compute r(A) and r(B) and translate B by r(A) — r(B).
Let B’ be the image of B.

2. Determine an approximate scaling factor «,
and scale B’ by « around the center r(A).
Let B” be the image of B’ under this scaling.

3. Determine a rotation R’ € Rot(r(A)), such that

D(A,R(B)) < p D(A, R(B)).

. min
RERot(r(A))

4. Output B"” together with the distance D(A, B").







Chapter 2

The Hausdorff Distance

An important and widely studied distance measure for determining the resemblance of sets in
Euclidean space, especially in R? and R3, is the so-called Hausdorff distance. This distance
measure can be defined in arbitrary dimension d for the set C? of all non-empty compact subsets
of R? as follows:

Definition 2.1 (Hausdorff Distance). For A, B € C? let

Dy(A,B) = gleaj(gggﬂaf bl|2
be the directed Hausdorfl distance from A to B. The Hausdorfl distance between A and B is
defined as the maximum of the directed Hausdorfl distances from A to B and from B to A:

Dy (A, B) := max{Dy(A, B), Dy(B,A)}.

Ezample. In Figure 2.1 we give an example for the directed Hausdorff distances between two
convex figures. The Hausdorfl distance is equal to Dy (B, A).

The Hausdorff distance defines a metric on C? and is defined on a very general set of shapes.
Therefore it has a wide range of applications and several exact and approximation algorithms
to compute the distance have been given. Most of these algorithms concentrate on shapes
in R? and R®. For two fixed disjoint convex sets in the plane, Atallah [11] gives a linear time
algorithm based on rotating calipers. An O((n + m)log(n + m)) time method is known for

Figure 2.1: The Hausdorff distance between two convex objects in R2.

13
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the case that the sets A and B consist of n and m line segments in the plane, respectively, see
the work of Alt, Behrends and Blémer [4]. This algorithm is based on the computation of the
Voronoi diagrams of the two sets.

However, it is more natural to assume that A and B are not static, but can be transformed
by a given set of transformations. In this case it is interesting to find the optimal transfor-
mation which minimizes the Hausdorff distance. Several algorithms are known to solve this
problem exactly. For the two dimensional problem Alt, Behrends, and Blomer [4] give an
O((nm)log(nm)log*(nm)) time algorithm for the set of translations along a fixed direction;
Agarwal, Sharir, and Toledo [2] describe an algorithm for arbitrary translations with runtime
O((nm)?log®(nm)). This method can be improved to O((nm)?a(nm)) time if A and B are
finite sets of points, see Huttenlocher and Kedem [35]. Chew, Goodrich, Huttenlocher, Kedem,
Kleinberg and Kravets [17] give an algorithm for minimizing the Hausdorff distance under rigid
motions. The runtime of their method is O((nm)?log?(nm)). The latter two algorithms use
sophisticated and powerful tools like parametric search.

Alt, Aichholzer and Rote [3] follow the approach to approximate the result using reference
points. They define reference points for the Hausdorff distance and use these points to derive
approximation algorithms for translations, rigid motions and similarities. In other words they
define the basis for our general reference point framework introduced in Chapter 1. Let r be
a reference point with respect to the considered class of transformations and with Lipschitz
constant c¢. Then, the approximation ratios of their algorithms are 1 + ¢ for translations and
rigid motions, and 3+c¢ for similarities. In the plane, the runtimes for two sets of n and m points
and line segments are O((n+m)log(n +m)) for translations and O(nmlog(nm)log”(nm)) for
rigid motions and similarities. In R3, where the two sets consist of n and m triangles, the
runtimes become O(nm) for translations and O((nm)? - TP*(n,m)) for rigid motions and
similarities, where T”%(n,m) denotes the time to compute the Hausdorff distance in R3.

2.1 Results

In this chapter we derive lower bounds concerning shape matching with respect to the Hausdorff
distance in the plane.

First, we give a lower bound for the Lipschitz constant of the Steiner point, see Defini-
tion 2.2. Alt, Aichholzer and Rote [3] already show two compact subsets in the plane proving
this bound, where one of the sets is non-convex. Our lower bound consists of convex sets only.

Second, we give a concrete set of convex sets in the plane which proves that the Lipschitz
constant of any reference point has to be greater than or equal to \/m Such an example is
also given by Alt, Aichholzer and Rote [3]. But again, in contrast to our lower bound, their
example consists of non-convex sets.

Finally, we give convex sets in the plane which prove a lower bound for the abstract algo-
rithm for matching under translations, see Section 1.5.1. This lower bound is independent of a
concrete choice of a Dy-reference point. In a first approach, these sets have been found using
a computer program. We prove that the approximation ratio is at least 1 + \/m



2.2. PRELIMINARIES 15

Figure 2.2: The A-neighbourhood U (A).

2.2 Preliminaries

The following lemma gives a commonly-known reformulation of the Hausdorff distance, which
is important for our computer experiments, see Section 2.6.

Lemma 2.1. Let A, B € C*. Then
Dyn(A,B) = min{\>0|AC Ux(B) and B C Ux(A)},
where Uy(A) = {x € R?|Ja € A s.t. ||a — x| < A} is the A\-neighbourhood of A.

If A, B C R are convex polytopes, Amenta [9] shows how to simplify the calculation of the
Hausdorff distance as follows: Let U, (A) denote the boundary of Uy(A). See also Figure 2.2,
where OUy(A) is drawn using dashed line segments and circular arcs. Now, EH(A, B) < \if
every vertex of A lies within 90U, (B). This implies that Dy (A, B) < X if every vertex of one
set lies within the A-neighbourhood of the other set. Amenta further shows that a translation
minimizing the Hausdorff distance between two convex polytopes A and B can be found in
linear time.

We prove a basic but fundamental result which enables us to use the abstract approximation
algorithms introduced in Section 1.5.

Theorem 2.1. For any compact subset A € C* and any translation T € R? we have
Dy (A, 7(4)) = |7l

Proof. Find a point a € A minimizing (7, z) over all z € R?, where (x,y) denotes the standard
scalar product in Euclidean space. This point has to lie in the neighbourhood of some point
in 7(A). Of course, any translated point has a distance of at least ||7||2 to this point. Thus
Dy (A, 7(A)) > ||7]l2. Conversely, since any point has a distance of ||7]]2 to its translated
version and vice versa, the theorem is proven. O
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2.3 Reference Points for the Hausdorff Distance

In this section we review known Dy-reference points.

2.3.1 The Lower Left Corner

Let A € C? be a compact subset of R?. Let LL(A) be the point in R? where the j-th coordinate
of LL(A) is the minimum of all j-th coordinates of all points in A. In R? this describes the
lower left corner of the smallest axis-parallel rectangle enclosing A. The mapping LL: C¢ — R?
is a reference point for C% with respect to translations. Alt, Behrends and Blomer [4] show this
result for compact subsets in the plane. The extension to higher dimension is analogous to a
result by Efrat, Itai and Katz [25] for point sets in R

Theorem 2.2. [/, 25] The lower left corner LL: C* — R? is a Dy -reference point with respect
to translations. Its Lipschitz constant is Vd.

The following theorem for sets in the plane is also obtained by Alt, Behrends and Blomer [4].
Again it can be extended to higher dimensions using the result by Efrat et al. [25]. Its proof
is easy using Theorem 2.1 and the abstract algorithm for translations, see Theorem 1.5.

Theorem 2.3. [4, 25] The Dy -reference point LL: C? — R? induces an approzimation algo-
rithm for the Hausdorff distance under translations with approzimation factor 1+ v/d. The
runtime of this algorithm is the time to compute the Hausdorff distance between compact sets
in R%.

In fact, Efrat, Itai and Katz [25] prove that the result can also be extended to the Hausdorff
distance defined on arbitrary Ly-norm on the underlying space R?. The Lipschitz constant in
this case is ¢/d for 1 < p < 0o and 2 for p = co. The approximation algorithm carries over.

Theorem 2.2 can be generalized to every fixed corner of the smallest axis-parallel hyper-
rectangle enclosing a subset of R¢. By Theorem 1.2 we see that every convex combination of
those corners is a Dy-reference point with respect to translations. This especially holds for the
center which might lead to better approximations in practical applications, see also Section 6.4
for the bottleneck distance.

2.3.2 The Center of Mass of the Boundary of the Convex Hull

Alt, Behrends and Blomer [4] show that the center of mass of the boundary of the convex hull
of a compact subset in the plane is a reference point for the Hausdorff distance with respect to
similarities. This is the first mapping shown to be a reference point with respect to this class
of transformations.

Theorem 2.4. [}] The center of mass of the boundary of the convex hull of a compact convex
subset in the plane is a Dy -reference point with respect to similarities. Its Lipschitz constant
1s at most 47 + 3.

Again, we get an approximation algorithm for the Hausdorff distance under translations in
the plane by Theorem 2.1 and the abstract approximation algorithm, see Theorem 1.5.

Theorem 2.5. [4] In the plane, the center of mass of the boundary of the convex hull as
a Dy -reference point induces an approximation algorithm for the Hausdorff distance under
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uhy(u)

Figure 2.3: Integration of u h(u) over all points u € S?~! leads to the
Steiner point.

translations with approximation factor 4w + 4. The runtime of this algorithm is the time to
compute the Hausdorff distance in the plane.

2.3.3 The Steiner Point

Alt, Aichholzer and Rote [3] introduce the Steiner point as a Dy-reference point with respect
to similarities in any dimension. This point is also known as the Steiner curvature point
or curvature centroid and has been intensively studied in the field of convex geometry, see
Griinbaum [31], Shepard [47], and Schneider [46].

Definition 2.2 (Steiner point). [3] Let B¢ be the d-dimensional unit ball and S?~! its bound-
ary. Let A € C? be a compact subset of R%. Then the support function h4: R? — R of A is
given by

ha(u) = gleaj(@,, u),

where (-, -) denotes the standard scalar product in R?. The Steiner point of A is defined as

d

S(4) = VOI(Sd1)/Sd_luhA(u)du)(u),

see Figure 2.3 for an illustration of the integrand.
The following theorem is well-known, see Griinbaum [31] and Shepard [47].

Theorem 2.6. [31, /7] The Steiner point of a convex polytope is the weighted sum of its
vertices, where the weight of a vertex v is that fraction of the surface of the unit sphere that
lies between the unit vectors normal to the hyperplanes meeting at v (the normalized exterior
angle at v).

Alt, Aichholzer and Rote [3] show that the Steiner point is a Dy-reference point. Let T’
denote the Gamma function.
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Theorem 2.7. [3] The Steiner point is a Dy -reference point with respect to similarities in
any dimension d. Its Lipschitz constant is xq = 2I'(d/2 + 1)/(\/7 - T'(d/2 + 1/2)), which for
d =2 is 4/m, for d = 3 is 3/2 and for arbitrary dimension d lies between /2/m\/d and

V2/mVd+ 1. O

Alt, Aichholzer and Rote [3] state the following approximation algorithm for the Hausdorff
distance under translations. Again, the proof is easy using Theorem 2.1 and the abstract
approximation algorithm, see Theorem 1.5.

Theorem 2.8. [3] The Steiner point as a Dy-reference point induces an approximation al-
gorithm for the Hausdorff distance under translations with approzimation ratio 1 4+ xq. The
runtime of this algorithm is the time to compute the Steiner points plus the time to compute
the Hausdorff distance.

Alt, Aichholzer and Rote [3] give two sets proving the lower bound of 4/ for the Lipschitz
constant of the Steiner point as a Dy-reference point in the plane. We recall the two sets in
Section 2.3.5. First we show a way how to compute the Steiner point in the plane.

2.3.4 Steiner Point in the Plane

Let A € C? be any compact subset of R?. Let S;(A), Sy(A) be the 2- and y-coordinate of the
Steiner point of A, respectively. Then both values can be computed independently according
to the following formulas:

sy = L /S aln) o)

s

1 27
= 7/ ha((cost,sint)?) - (cost,sint)”dt
T Jo

which implies

2
Sg(A) = %/0 ha((cost,sint)?) - costdt
1 27
and S,(A) = = ha((cost,sint)T) - sint dt.
T Jo

In the following example we show that the Steiner point of a circle is its center. According
to the equivariance under translations, it is enough to show this for circles centered at the
origin.

Ezample. Let C be the circle in R? centered at the origin with radius R. Then,

1 27
S (C) = ;A he((cost,sint)T) - cost dt

= ;(sin(27r) —sin(0)) =0,

since he((cost,sint)”) = R. An analogous calculation shows S, (C) = 0.
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Figure 2.4: Non-convex lower bound C, A5 given by Alt et al. [3].

2.3.5 Non-Convex Lower Bound for the Lipschitz Constant of the
Steiner Point in the Plane

Alt, Aichholzer and Rote [3] give two sets C, As € C? to prove the lower bound of 4/m for
the Lipschitz constant of the Steiner point. The set C' is the circle of radius R around the
origin. The set As consists of a ”distorted” circle and an additional point. See Figure 2.4 for
an illustration.

2.3.6 Convex Lower Bound for the Lipschitz Constant of the Steiner
Point in the Plane

One of the sets proving the lower bound for the Lipschitz constant of the Steiner point given
by Alt, Aichholzer and Rote [3] is non-convex. We slightly modify this set As and thereby
construct a new set Bs € C2, such that the circle C' with radius R around the origin together
with this set proves the lower bound, and both sets are convex. See Figure 2.5 for an illustration
of C' and B;s. The modified set can be constructed as follows: We add an additional point at
coordinates (—R — §,0) to As and take the convex hull of this set. It is easy to check that C
and Bj are illustrated in optimal position with respect to translations and D;’ft(C’7 Bs) =
Dy (C, Bs) = 0.

We now show that the x-coordinate of the Steiner point S, (Bs) tends to 46/m as the
radius R tends to infinity. See Figure 2.6 for the notation in the following calculation.

Let f(t) denote the support function for points u of the unit circle with an angle a <t < /2
to the x-axis. The trace of u - hp,(u) = u- f(t) is represented by the dashed arc in Figure 2.6.
Analogously, g(t) denotes the support function of Bs for points with an angle between ~ and 7.

1 2
Sz(Bs) = ;/0 ha((cost,sint)”) - costdt

« /2
= (/ (R+5)'Costdt+/ f(t) - costdt
0 «@

™

% T
+/ (R—9)-costdt + / g(t) costdt)
w/2 Y
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Bs
R
0
Figure 2.5: Convex lower bound.
f
R-5.~
. /’y
R+, @ R+0

Figure 2.6: Notation for the proof of the convex lower bound.
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Since f(t) > R — 6 and g(t) < R+ ¢ we have

2 [ /2
S.(Bs) > ((R+(5)-/ costdt+(R—5)~/ cost dt

T 0 «a

vy ™
+(R—5)~/ costdt + (R+5)'/ costdt)
/2 ¥
= —(sina —sinvy).
™

Now,
sina = cos(m/2 —a) = (R—9)/(R+9),

which tends to 1 as R tends to oo, and

siny = /1 —cos2y = /1 —cos?(m—~v) = 1_&2;;

which tends to 0 as R tends to co. Therefore,
B}im Sy (Bs) > 46/7.

Further, by the upper bound on the Lipschitz constant we have

ISBll2 = 15(Bs) = SOll2 < = Dr(Bs,C) = =

implying that S, (Bs) < 40 /7, thus
lim S,(Bs) = 46/m.
R—oo

Similarly we can compute Sy (Bs) = 0. Another way to see this is by observing that Bs has
the z-axis as reflection line.

Again, we combine this result with the fact that the Steiner point of C is the origin, see
Example 2.3.4, and the placement of the two sets in the above figure leads to a Hausdorff
distance of . Thereby we see that the Lipschitz constant in this example tends to 4/ as R
tends to co.

2.4 Rigid Motions and Similarities

Alt, Aichholzer and Rote [3] use the abstract approximation algorithms given in Sections 1.5.3
and 1.5.4 to determine approximation algorithms for rigid motions and similarities in the plane
and 3-space. They use the exact algorithms by Alt, Behrends and Blomer [4] to find an optimal
rotation around a fixed point. In the plane this can be done in O(nm log nmlog” nm) time using
Davenport-Schinzel sequences. In 3-space the solution can be found in O((nm)? - TP (n,m))
time, where TP (n, m) denotes the time to compute the Hausdorff distance in R3.

For similarities they use the approximate scaling given by the quotient of the diameters of
the two sets. This leads to the increased approximation ratio in this case. Summarizing, they
prove the following theorem:

Theorem 2.9. [8] Let r: C¢ — R? be a Dy-reference point with respect to rigid motions or
similarities and with Lipschitz constant ¢, where d = 2 or 3. We can find an approzximately
optimal matching for rigid motions or similarities with approximation factor ¢ +1 or ¢ + 3,
respectively. The runtime in R? is O(nmlognmlog® nm), and in R? it is O((nm)3- TP (n,m)).
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2.5 General Lower Bound for the Lipschitz Constant in
the Plane

In this section we investigate lower bounds for the Lipschitz constant of an arbitrary Dy-
reference point with respect to translations in the plane.

Alt, Aichholzer and Rote [3] prove that the Steiner point is a reference point with Lipschitz
constant 4/7. Using results by Rutovitz [45], Daugavet [23], and Przestawski and Yost [42],
they prove that the Lipschitz constant of any Dy -reference point with respect to translations
from C? into R? is at least 4/7. Their proof however is based on the Hahn-Banach Theorem,
which is based on (a weaker version of) the Axiom of Choice. Consequently, the proof is non-
constructive. This lower bound even holds in the case when restricted to the set of all convex
subsets k2. Thus it is interesting to find (convex) subsets of R? proving lower bounds for the
Lipschitz constant of a Dy-reference point. In Section 1.4.4 we prove a lower bound of 1 for
the Lipschitz constant of any reference point with respect to translations for arbitrary distance
measures. For this we use only convex sets.

Alt, Aichholzer and Rote [3] give three sets in the plane proving that the Lipschitz constant
of any Dy-reference point is greater than or equal to \/m ~ 1.155. This does not quite
match the upper bound of 4/7 = 1.273. One of the sets used to prove this bound is non-
convex, whereas the lower bound based on the results by Przestawski and Yost [42] holds even
when restricted to convex sets. Alt, Aichholzer and Rote [3] pose the question to find better
constructions that either give a better bound or use convex sets only. We address the second
part and show three convex shapes which prove the same lower bound. The technique used
equals the one of Alt et al. [3].

Let C denote the circle with radius 2 around the origin. Let A be the equilateral triangle
with side length 4 and vertices ¢i1,¢2 and ¢3 in counterclockwise order. Let ¢; be the origin.
See Figure 2.7 for an illustration. These two sets equal the sets used in the lower bound by
Alt, Aichholzer and Rote [3]. We substitute the non-convex set from this proof by the third
set which is depicted in Figure 2.7 together with A and C. We denote this set by K. This set
is the convex hull of the circle with radius 1 around the origin, and the intersection points of
the circles around ¢ and g3 with radius 1 and the non-horizontal sides of A.

Theorem 2.10. Let r: K2 — R? be any Dy -reference point with respect to translations and
with Lipschitz constant c. Then, ¢ > \/4/3.

Proof. Let us first assume that the reference point r(C') of the circle C is its center, thus equals
the origin. See Figure 2.7 for an illustration of the following.

Observe that Dy (C, K) = 1. Since ||r(K) —r(C)ll2 < ¢- Dx(C, K) it follows that r(K) has
to lie in a circle of radius ¢ around the origin. Similarly, Dy(A, K) = 1 and therefore r(A) has
to lie in a circle of radius ¢ around r(K) and thus in a circle of radius 2¢ around the origin.
Since ¢; equals the origin, r(A) has to lie in a circle of radius 2¢ around ¢;. Now we rotate K
by angles of 27/3 and 47 /3 counterclockwise around the origin and translate A such that g9
and g3, respectively, are placed in the origin. By the same considerations as above and using
the equivariance under translations, we see that the reference point of A also has to lie in a
circle of radius 2c around ¢s and g3. Thus, the three circles around the corners have to intersect
and therefore, 2¢ has to be greater than or equal to 2/3 times the height of A, that is 24/12/3.

This implies ¢ > 1/4/3.
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q2 43

Figure 2.7: The convex sets A, K and C.

If the reference point 7(C) of the circle C' is not its center, the only difference is that the
centers of the final three circles around the vertices of A are translated by the vector from the
center to r(C). O

2.6 Lower Bounds for the Approximation Algorithm in
the Plane

It is interesting to determine sets of shapes where the approximation algorithm leads to bad
results, no matter which reference point we use. That is, we want to find sets proving a lower
bound for the approximation algorithm for translations using reference points. We concentrate
on convex sets in the plane.

Review the reference point method: Given a reference point with respect to translations
and with Lipschitz constant ¢, and a set of shapes A1, ..., A,, we have that

Dy(Ai —1(Ai), A —r(47)) < (1+¢) DY (A, 47)

forall 1 <i<j<n.

Hence, to find a lower bound ~ for the approximation factor of the algorithm, we have to
find a set of shapes Aj,...,A,, such that for any reference point r there exists a pair (i, j),
such that

Dy(Ai = r(Ai), Aj = (A7) = ~- Dy (Ai, Ay).
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By the optimality of the right side we have that v > 1. The Steiner point as a Dy -reference
point with Lipschitz constant 4/7 implies that v <1 +4/7.

More general, we want to find a set of shapes Aj,..., A,, such that for any set of vectors
1, ..., Tn € R? there exists a pair (4, ), such that

D’}—‘(Al—T“AJ_TJ) 2 VD;)—?JE(AHAJL

where 1 < <1+ 4/m. Of course, a lower bound for this problem is also a lower bound for
the reference point problem.

We have implemented a computer program to construct convex sets proving a lower bound
for the latter problem. Schematically, this program works as follows: Let Ai,..., A, be a
given set of convex polytopes in the plane. We compute the optimal Hausdorff distance under
translations for each pair (4,j) by using Lemma 2.1 and the method proposed by Amenta [9].
This step gives us the numbers D3P (A;, A;) for every pair (4, ).

The second step is to find the current lower bound. By binary search we compute the
minimal number x such that the system of inequalities

V1§Z<]§Tl : DH(Al'fTZ',Ajij) < /{'D;)_ft(Ai,Aj)

has a solution. We approximate the circular parts of the boundary of the neighbourhood by
polygons with a fixed number of vertices and then use linear programming to find the solution.
Again we use ideas by Amenta [9] to solve this problem.

In a third step, we use the dual variables of this solution to construct new convex sets
which, by adding to the current solution, lead to a higher lower bound. We eliminate figures
which do not contribute at the current state.

One of the best results we got by this program is the set of 53 convex sets depicted in
Figure 2.8. The sets in this figure are drawn in optimal position with respect to translations
and lead to an approximation ratio of approximately 1.63. Removing an arbitrary set decreases
the induced lower bound. The points in the center are the Steiner points of the sets.

Later on we generated sets which lead to an approximation ratio slightly higher than 2.
These sets look similar to the one shown in Figure 2.8. Unfortunately, we cannot theoretically
prove the lower bound on the approximation ratio. The incremental construction by the
program leads to sets which are very similar and thus, rounding and approximation errors in
the computation are involved for sure.

We were able to extract the following three convex sets from this set of shapes, see Fig-
ures 2.10 and 2.9.

Let A be the equilateral triangle with side length 4. Let ¢q, g2 and g3 denote the vertices
of A in counterclockwise order. Let ha := 2v/3 denote the height of A. Let AE be A rotated
by 7 counterclockwise around the center of mass C(A) of A. Let ¢F, ¢t and ¢£ denote the
rotated vertices.

We construct the third set as follows: Consider the rectangle with length ha and width 2.
Place a half circle of radius 1 at both short sides of the rectangle. We denote the convex hull
of the rectangle and the two halfcircles by D. Let hp := (2 4 2v/3) denote the height of D.
See Figure 2.10 for an illustration of A and D. Obviously, these two sets are in unique optimal
position with respect to translations.

We use the following lemma to prove the main result of this section.
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Figure 2.8: Convex sets generated by the computer program.
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q2 q3
af!
Figure 2.9: Construction of A and A%,
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q2 \\/ 43

Figure 2.10: Construction of A and D.

Lemma 2.2. Let 72, TAR, 70 € R? be transalation vectors. Let v* := 1++/1/3 ~ 1.58. Then,

either  Dy(A —712,D —7P)

or Dy (AR — TAR,D — D)

ARV

where § = v* + (C(A), — C(AF),)/2.

Proof. With a slight abuse of notation, let A := A — 728, AR .= AR _ 2% and D := D — 7P,
Let a and b be the top and bottom point of D, respectively. See Figure 2.11 for the construction.

Dy (AR D) + Dy(A, D)
> ay— (Qé%)y + ((IS)y - by
= Gy — (Q?{%)y + (Q?))y - (ay - hD)
—(a3")y + (g3)y +hp
hp —2/3ha — C(AR), +C(A),, see Figure 2.11
= 2+2V3-4/3V3-C(AR), +C(A),
= 2+2/3V3-C(AR), +C(A),

This implies that max{Dy (A", D), Dy(A, D)} > 1+1/3V3+1/2(C(A), — C(AT),)
O

We now use this lemma and the invariance of A and A® under rotations to prove the lower
bound on the approximation ratio of our approximation algorithm using reference points.

Theorem 2.11. Let r: K? — R? be a Dy-reference point with respect to translations. The
approzimation ratio v of the induced approzimation algorithm for the Hausdorff distance under
translations is at least v* := 1+ 1/1/3 = 1.58.
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q1
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¢4 A ¢!
AR
C(Af
c(A)
Q a3
q1
b
Figure 2.11: Translated versions of A, A" and D.

Proof. Let D' := D, let D? be D rotated by 27/3 and D? be D rotated by 47/3 as shown
in Figure 2.12. It is easy to see that D5 (D',A) = 1 = D*(D,Af). Let the set X :=
{D', D? D3 A, AR} be positioned in the plane such that

Dy (A,B) < ~v-D(A,B)

for all A, B € X with a minimal 1 <~ <144/7.

If the centers of mass C'(A) and C(AF) coincide, then v = 4* by Lemma 2.2 applied to
A, AR and D'. Let ¢; be a vertical line oriented from bottom to top. Let £y and ¢35 be ¢;
rotated by 27/3 and 47/3, respectively. There is at least one index i* € {1,2,3}, such that
the directed distance Proj,. (C(A)) — Proj;. (C(Af)) > 0, where Proj, denotes the projection
on the line ¢;. Then by Lemma 2.2 either Dy (A, D) > ~* or Dy (A%, D) > ~* for any
position of D", O



a3

Figure 2.12: The set X of shapes proving the lower bound of 1+ +/1/3.




Chapter 3

Earth Mover’s Distance

The Earth Mover’s Distance (EMD) is a useful distance measure on weighted point sets with
applications in shape matching, color-based image retrieval and music score matching. See the
work of Assent, Wenning and Seidl [10], Cohen [19], Cohen and Guibas [21], Giannopoulos
and Veltkamp [27], Graumann and Darell [30], Typke, Giannopoulos, Veltkamp, Wiering and
Oostrum [48], and Rubner, Tomasi and Guibas [44] for more information. For these applications
it is useful to have a quick estimation on the minimum distance between two weighted point
sets which can be achieved under a given class of transformations. For the EMD this problem
was first regarded by Cohen [19] and Cohen and Guibas [21]. They constructed an iterative
Flow-Transformation algorithm, which they proved to converge, but not necessarily to the
global minimum. In this chapter we show that we can apply our reference point framework
to obtain fast constant-factor approximations on the EMD under translations, rigid motions
and similarities. Recently, Cabello, Giannopoulos, Knauer and Rote [15] considered similar
problems. The advantage of our approach is that the results can be applied to arbitrary
dimension and any norm on the underlying space. Therefore the results are widely applicable.
Parts of this chapter have been published by Klein and Veltkamp [37, 38].

3.1 Results

For weighted point sets in the plane, we show a 2-approximation algorithm for translations, a
4-approximation algorithm for rigid motions and an 8-approximation algorithm for similarities.
The runtime of the approximation for translations is O(TEMP (n,m)), the runtime of the other
two algorithms is O(nm - TPMP (n,m)), where T*MP (n,m) denotes the time to compute the
EMD between two weighted point sets with n and m points, respectively. We also show that
these algorithms can be extended to arbitrary dimension, leading however to worse time and
approximation bounds. All these algorithms are based on EMD-reference points, which allows
the elegant generalizations to higher dimensions. We give a comprehensive discussion of EMD-
reference points for weighted point sets.

In Chapter 4 we present more results concerning the EMD. There we prove that the time to
compute the EMD based on the L;-norm exactly can be reduced significantly to O(n? log2d_1 n)
by using small Manhattan spanners, where d > 2 denotes the dimension.

29
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3.2 Basic Definitions

Rubner, Tomasi and Guibas [44] investigate the application of the EMD for image retrieval and
shape matching. In their work images are described as histograms or signatures, i.e., weighted
point sets:

Definition 3.1 (Weighted Point Set). [27, 44] Let p1,...,p, € R? and ay,...,a, € Rsg.
Then, a pair a; = (p;, ;) for i = 1,...,n is called a weighted point in R? and the set A =
{a1,...,a,} is called a weighted point set. We call o; the weight of p; and W4 = 3"" | «; the
total weight of A. We write W for the set of all weighted point sets in R? and W& for the
set of all weighted point sets in R? with total weight G' € Rs.

In the following we use the considered class of transformations on both weighted point sets
and discrete subsets of R?. By a transformation on a weighted point set we mean that we
transform the coordinates of the weighted points and leave their weights unchanged.

We now introduce the center of mass, a point associated to each weighted point set. This
point plays an important role in our approximation algorithms. The computation time of this
point is linear, and therefore it does not affect the runtime of any of our algorithms.

Definition 3.2 (Center of Mass). Let A = {(p;, &)i=1,...n} € WeE be a weighted point set
for some G € R+(. The center of mass of A is defined as

1 n
C(4) = WA E Qip;.
1=1

As we will see later, the center of mass is an EMD-reference point. Next, we define the
EMD for arbitrary distance measures on the underlying space R?, though we restrict all later
considerations to the case where this distance measure is a norm.

Definition 3.3 (Earth Mover’s Distance). [19] Let A = {(pi, @;)i=1,...n}» B = {(¢j,5;)j=1,...m}
in W? be two weighted point sets with total weights W4, W2B > 0. Let h: RY x R? — R>o
be the underlying distance measure on the underlying space R%. The Earth Mover’s Distance
between A and B is defined as

minper Y1y Y50y fij M(pis aj)

EMD(4, B) = min{W4, W5} ’

where the minimum is taken over the set F of feasible flows F' = {f;;}.

fi; = 0, fori=1,...,n,5=1,...,m

m
 fij € ai,  fori=1,....n
=1

Zfij < By, forj=1,...,m
i=1
D> fi = min{WA W)
i=1j=1

Throughout this chapter we concentrate on weighted point sets with equal total weight. In
this case, the calculation of the EMD can be simplified as stated in the following Lemma 3.1.
The proof of this lemma follows immediately by the non-negativity of the flow variables.
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Lemma 3.1. Let A = {(ps, ;)i=1,..n} and B = {(qg;,5;)j=1,..m} € WEE be weighted point
sets with equal total weight G € Rsg. Let h: R? x RY — Rsq be a distance measure on the
underlying space R%. Then the Earth Mover’s Distance between A and B equals

1 ) n m
EMD(A,B) = - II%%ZZfij h(pi, q;),
i=1 j=1

where F' = {fi;} is a feasible flow, i.e.,
fij > 0, fori=1,...,n,j:1,...7m

m
Zfij = fori=1,....n
=1

n
fii o= B forj=1,...,m
i=1

The following properties of the EMD have been proven by Rubner, Tomasi and Guibas [44],
and Giannopoulos and Veltkamp [27]: The EMD is a metric if the underlying distance is
a metric and is applied on the space of weighted point sets with equal total weight. It is
continuous and insensitive against noise. The EMD allows for partial matching by definition,
that is we can compute the EMD between points sets of different total weight. Unfortunately
our reference point approach does not allow for partial matching, see Section 3.3.1. Drawbacks
occur when the EMD is applied to non-equal total weight sets. In this case, it does not obey
the positivity property, does not take into account the surplus of weight, cannot distinguish
between two non-identical sets and, most important, it does not obey the triangle inequality.

An upper bound for the time to compute the EMD is O(n*logn) using a strongly poly-
nomial minimum cost flow algorithm by Orlin [41]. In practice, an algorithm using the
simplex method to solve the linear program is usually faster. Cabello et al. [15] give a
(1 + &)-approximation algorithm with runtime O(n2e~2log?(ne~')). Indyk [36] proves an
O(n logo(l) n)-time randomized O(1)-approximation algorithm if the two point sets consist of
an equal number of unit weight points in R2. Using a Manhattan network as a 1-spanner for the
Li-norm, we can compute the L;-EMD in d dimensions in O(n? logZd_1 n) time using Orlin’s
algorithm on the reduced graph, see Chapter 4. This improves the previously best known run-
time of O(n*logn) significantly. Further, this approach leads to a v/2-approximation with the
same runtime for the important case when the EMD is based on the Euclidean distance. This
algorithm is conceptually easier than the (1 4 ¢)-approximation given by Cabello et al. [15].

For the rest of the chapter we assume that the underlying distance measure is a norm and
hence the EMD is a metric. We further assume that this norm is the same as the one used in
the definition of the EMD-reference point. If the underlying norm is any L,-distance, where
1 < p < o0, we write EMD),, to denote the Earth Mover’s Distance based on this norm.

We now prove a basic but fundamental result which allows us to apply the abstract ap-
proximation algorithms given in Section 1.5.

Theorem 3.1. Let A = {(pi,;)i=1,..n} € WEC be a weighted point set with total weight
G € Rwq, and let 7 € R? be any translation vector. Then

EMD(A4,7(4)) = |7
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Proof.
1 ) n m
EMD(A, () = iy D Sl = g+ 7]
1=1 )=
< L i | (pi +7)|l, by choosing fi; = a; as a feasible flo
~ Q;||Pi — \Pi T 11, i = QO 1 W
6= e Y &

1 n
= =Y ailrl
G =1

= I7ll-

Further, Cohen and Guibas [21] show that the distance of the centers of mass is a lower bound
for the EMD, see also the proof of Theorem 3.4. Therefore

EMD(4,7(4)) = [[C(4) = C(r(A)Il = 7]

and the lemma is proven. O

3.3 EMD-Reference Points

In this section we discuss the existence of EMD-reference points. We start with a negative
result for point sets with unequal total weight.

3.3.1 Non-Existence of Reference Points for Unequal Total Weight

Theorem 3.2. There is no EMD-reference point for weighted point sets with unequal total
weight with respect to all transformation sets that include the set of translations.

Proof. Assume there is an EMD-reference point r with Lipschitz constant ¢ > 0. Let p, ¢ € R?
be any two distinct points. Define the three weighted point sets A := {(p,1)}, B := {(¢, 1)},
and C := AU B.

Since EMD(A, C) = 0 we see by using the Lipschitz continuity that ||r(A)—r(C)|| = 0, which
implies r(A) = r(C). For the same reason we have r(B) = r(C'), which implies r(A) = r(B).
Conversely, observing that B is A translated by ¢ — p, we see that r(B) is r(A4) translated by
q — p using the equivariance under translation. Since ¢ — p # 0 it follows that r(A) # r(B),
leading to a contradiction. O

We can arbitrarily choose the points p and ¢ in the last proof. Therefore, the result is
valid for weighted point sets of arbitrary diameter. Additionally, since all weights are 1, it is
independent of the ratio of the weights of the points.

Corollary 3.1. The statement of Theorem 3.2 holds even if we only consider weighted point
sets of bounded diameter or bounded ratio of weights of the points.

Unfortunately, Theorem 3.2 has a deep impact on the usability of the reference point
approach for shape matching, since it makes it impossible to use this approach for partial
matching applications.

We now extend Theorem 3.2 and show that there is no weak EMD-reference point for
weighted point sets with unequal total weight, see Definition 1.1.
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Theorem 3.3. There is no weak EMD-reference point for weighted point sets with unequal
total weight with respect to all transformation sets that include the set of translations.

Proof. Assume r: WG — R? is a weak reference point for some G € Rsg. Let K > 1 be
a large constant, O the origin and e; the first unit vector in R%. Let EMDrEf(A, B) denote
the Earth Mover’s Distance where the weak reference points of A and B coincide. Let further
EMD®P*(A, B) denote the EMD under an optimal translation. Consider the following four
weighted point sets:

A = {01}
B = {(er, 1)}
G = {(0,K) (er; 1)}
Cy = {(0,1),(er, K)}

By equivariance we know that

Let ¢ € {1,2}. Then,

o O O O

Analogously we see that EMDP*(C;, B) = 0 implies (r(C;) — r(B) = OV r(C;) — 7(B) = e1).
Let us now consider the four possibilities:

1. (r(C;)) —r(A)=0Ar(C;))—r(B)=0) = r(B)=r(A) ~» Contradiction.

2. (r(Cy) —=r(A)=0Ar(C;))—r(B)=¢1) = r(A)—r(B)=e¢; ~ Contradiction.
3. (r(C;) —r(A) =e1 Ar(C;) —r(B)=0) = r(B)=r(C;)

4. (r(Cy) —r(A) =e1 Ar(C;)) —r(B)=e1) = r(B)=r(A) ~» Contradiction.

Thus we have shown that r(B) = r(C;) for ¢ = 1,2 and hence r(Cy) = 7(Cs).

To bound the EMD between C; and Cs in optimal position, we observe that EMD®P*(C1, C»)
is smaller than or equal to the EMD between those sets when Cj is translated, such that the
two points with weight K coincide. Since the underlying distance is a norm, we will always
assign a non-zero flow between points of distance zero. Therefore we have

2||ea |

EMDPY(Cy,Cy) < .

(@ C2) = 5y

On the other hand, the EMD between C; and C5 when the two weak reference points coincide
can easily be computed to

(K = Dller |

EMD™(C,Cy) = EMD(Cy,Cy) = ]
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Thus it follows
EMD* (Cy, Cy) !

EMD®*(Cy,Cy) — 2
This is a contradiction because matching with respect to the weak EMD-reference point r has
to induce a constant-factor approximation, but K can be chosen arbitrarily large. O

3.3.2 The Center of Mass as an EMD-Reference Point

In the following section we present approximation algorithms for the EMD under transforma-
tions using reference points. Since this is only useful if there is an EMD-reference point, we
restrain the consideration to weighted point sets with equal total weight. We show that in this
case the center of mass is a reference point.

Theorem 3.4. The center of mass is an EMD-reference point for weighted point sets with
equal total weight with respect to affine transformations. Its Lipschitz constant is 1. This
result holds for any dimension d and any norm on the underlying space R%.

Proof. Let A = {(piyi)i=1...n}, B = {(¢j,53i)j=1....m} € WE be two weighted point sets
with equal total weight G € R+ in dimension d € N. The equivariance of the center of mass
under affine transformations is well-known. We prove the Lipschitz continuity. This proof
already appeared in the work by Cohen and Guibas [21], and Rubner, Tomasi and Guibas [44]
as a proof of a lower bound on the EMD. We have to show that

1C(4) = C(B)|| < EMD(A4, B).
Let F = {fij}i=1,....n,j=1,..m be a flow determining EMD(A, B). Then

1 1 &
1C(A)-CcB)| = I Z%‘pi -G Zﬁjq]'
i=1 j=1

1 n m
= & Zaipi—Zﬁjq]'
i=1 j=1

Using the flow conditions of Lemma 3.1 we get

I~ = &SN fomi= D3 fuw
=1 j=1 j=11i=1
1 n m n m
= a ZZfijpi - Zz,fijqj
i=1 j=1 i=1 j=1
= é ZZfij(pi —q;)
i=1 j=1

1 n m
< aZZfij”pi —qjll
1=1

j=1
= EMD(4,B).

The lower bound of 1 on the Lipschitz constant follows by Theorem 1.4 together with Theo-
rem 3.1. O
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3.3.3 A Uniqueness Result

We show that the center of mass as an EMD-reference point with respect to affine transforma-
tions is unique for weighted point sets with exactly 3 points and equal weight on each point.
The proof follows a technique used by Knauer [39]. He proves that there is no Dy-reference
point with respect to affine transformations, where Dy denotes the Hausdorff distance. The
strategy of his proof is the following: He first shows that, if there exists a Dy -reference point
for affine transformations, it has to map an arbitrary triangle to the center of mass of the
vertices of its convex hull. Then he proves that the center of mass is not Lipschitz continuous
on the set of triangles and therefore cannot be a Dy-reference point for this set and every set
containing the set of triangles.

Our proof uses the first part. We show that a reference point with respect to affine trans-
formations of a weighted point set with 3 points and equal weight each has to be the center
of mass. Since the center of mass is a Lipschitz continuous mapping on weighted point sets
with respect to the EMD, we have proven that the center of mass is a unique reference point.
The proof holds for weighted point sets in the plane. An extension to higher dimensions is
straightforward.

Theorem 3.5. Let r: WG — R? be an EMD-reference point with respect to affine transfor-
mations. Let « = G/3 and A = {(p1, a), (p2, @), (p3, )} € W>C be a weighted point set with 3
points. Then, the reference point of A equals the center of mass of this set, i.e., r(A) = C(A).

Proof. Let A = {(qi,)}i=1,..3 € W2C be a weighted point set where the coordinates of
the points are the vertices of an equilateral triangle in counterclockwise order. Let R be the
counterclockwise rotation by 27/3 around the center of mass. Let Agr be the image of A
under this rotation. The geometry and the weights of Ag and A are equal and we have that
EMD(A, Agr) = 0. Using Lipschitz continuity we see that r(A) = r(Ag). Then

r(A) = r(Ag) = r(R(A)) = R(r(4)),

using the equivariance of r. Therefore, r(A) is a fixpoint under R and, since the center of
mass C(A) is the only fixpoint of R, it follows that r(A) = C(A). To prove the lemma, we
consider the weighted point set A as the image of A under some affine transformation F' and
get

r(A) = 1(F(A) = F(r(d)) = F(C(A)).

Since the center of mass is invariant under affine transformations, we have

We use the last theorem to prove the following result:

Theorem 3.6. There are no EMD-reference points with respect to every transformation class
containing the projective transformations.

Proof. The class of projective transformations contains all affine transformations. Therefore,
the only candidate for an EMD-reference point for weighted point sets with 3 weighted points
and equal weight on each point is the center of mass according to Theorem 3.5. Since the
center of mass is not equivariant under projective transformations, the theorem follows. O
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3.3.4 Fermat-Weber Point

A candidate for a reference point on weighted point sets is the so-called Fermat-Weber point.
This point minimizes the sum of the weighted distances to all weighted points.

Definition 3.4 (Fermat-Weber Point). Let A = {(p;, i) }i=1,..n € W%E be a weighted point
set. Then

FW(A) = arg min a;llps —
(A) gpeRd; Ipi = pl

is called the Fermat-Weber point of A.

Unfortunately, the Fermat-Weber point does not fulfill the Lipschitz continuity condition.
As the proof shows, this even holds in the case of equal total weight.

Lemma 3.2. The Fermat-Weber point is not an EMD-reference point for weighted point sets.
This holds in any dimension and for any norm on the underlying space R?.

Proof. Let O denote the origin and e; the first unit vector in R?. Consider the following two
weighted point sets, where 0 < § < 1:

A = {(0,1-0),B3er,1—d),(e1,20)}
B = {(0,1-4),3e1,1—0),(21,20)}

Obviously, FW(A) = e; and FW(B) = 2¢;. Therefore || FW(A) — FW(B)| = |le1]||. Further,
EMD(A, B) = é|le1||. Assuming that the Fermat-Weber point is Lipschitz continuous, there is
a constant ¢ > 0, such that

[FW(A) —FW(B)|| < ¢-EMD(A,B) < [ell < cdel.
If now ¢ tends to zero, ¢ has to be arbitrarily large. O

Remark. The example uses more than two points on a line. The same example holds if we
disturb the inner points slightly to the top, thereby getting two weighted point sets with points
in general position showing the non-Lipschitz continuity of the Fermat-Weber point.

In the last lemma we have shown that the Fermat-Weber point is not a reference point. Since
being a reference point is only a sufficient condition to induce an approximation algorithm, it
may still be possible that this point leads to a constant-factor approximation, namely that the
Fermat-Weber point is a weak reference point. We show that this is not true:

Example. The position of A and B in the last proof easily shows that
EMDP"(A, B) < §lle1]|.

On the other hand, matching the Fermat-Weber points of the sets leads to

EMD™(4,B) = [les]|(1 - 9).

Therefore
EMD"W (A, B) L 16
EMD®"(A,B) — &

which tends to infinity as § tends to 0.
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The proofs above depend on placing a point with small weight at a suitable position. In
the same way, or similarly by placing points with large weights, we can prove that the lower
left corner and the center of mass of the boundary of the convex hull are not EMD-reference
points or weak reference points. We generalize this result in the following section.

3.3.5 Non-Existence of Weak Reference Points Independent of Weights

Lemma 3.3. There is no weak EMD-reference point independent of the weights of the points.
This holds in any dimension d > 2 and for any norm on the underlying space RY.

Proof. Assume there is a weak reference point r: W2 — R? independent of the weights of the

points. Let O denote the origin, and e, ep the first and second unit vector in R%, respectively.
Define the two sets A, B € W%? as

A = {(0,1),(e1, 1)},
B = {(0,1),(es,1)}.

Let 7 := r(A) — r(B) and B’ := B + 7. Note that the weak reference points of A and B’
coincide. There is at least one point a € A and one point b’ € B’ with a # . W.Lo.g. let
those points be a; and 7(b1). Since modifying the weights of the points does not affect the
coordinates of r(A) and r(B), we can modify the weights of a; and by to 2—¢, where 0 < & < 2,
without changing the positions of the weak reference points. We further change the weights of
az and by to . With a slight abuse of notation we write A and B’ for the modified sets. Then,

1
EMD" (4, B) < 3 ler—ealle,
since matching the two points with weight 2 — € leads to this value. On the other hand,
1
EMD™ (4, B) > 5 llax = 7(b1)][ (2 - 2¢),

since at least the weight of 2 — 2¢ has to be moved from a; to 7(by). Therefore,

EMD™'(A, B) _ flax — 7(b)| (2 - 2¢)
EMD°PY(A, B') ~ ler — ezl e ’

which tends to oo as € tends to 0. ]

3.4 Approximation Using EMD-Reference Points

In this section we give approximation algorithms for the EMD under translations, rigid mo-
tions and similarities. The section is organized as follows: In each part we consider a class of
transformations, construct an approximation algorithm for matching under these transforma-
tions for general EMD-reference points, and finally use the center of mass to obtain a concrete
algorithm. These results hold only for weighted point sets with equal total weight.

In the following let A = {(pi,ai)izlwvn} and B = {(qj;ﬂj)j:l,...,m} S Wd’G be two
weighted point sets in dimension d with equal total weight G' € R~. Further let r: W% — R?
be an EMD-reference point for weighted point sets with respect to the considered class of trans-
formations and with Lipschitz constant c¢. Let T%f(n) be the time to compute the reference
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point of a point set of size n, and T*MP(n,m) the time to compute the EMD between two

point sets of size n and m, respectively. Further, let 77°%(n, m) be the time to find a rotation R
around a fixed point minimizing the EMD between two point sets of size n and m, respectively.
Even for this restricted problem no exact and efficient algorithm is known so far.

An upper bound on T*MP (n m) is O((nm)?log(n +m)) using a strongly polynomial mini-
mum cost flow algorithm by Orlin [41]. See Section 3.2 for more details concerning the runtime
TEMD (n, m).

3.4.1 Translations

In general, the problem to compute the minimum EMD under translations exactly seems to be
computationally expensive. In the following section we see that we can solve this problem in
linear time if the two weighted point sets are weighted real numbers sorted by their coordinates.
Otherwise we sort the numbers first which increases the runtime to O(nlogn).

Translations on the Line

Theorem 3.7. Let A, B € WhC be two weighted point sets for some G € Rsq sorted by their
coordinates. Then their minimum EMD under translations can be computed in linear time.

Proof. Let A := {(pi;a;)i=1,..n} and B := {(g;, 8;)j=1,...m} be two weighted point sets for
some G € Ryq sorted by their coordinates. Cohen and Guibas [20] prove that flow variables
defining the EMD between A and B can be computed by the following greedy algorithm. Let
fij := 0 for all ¢ and j.

Algorithm 3.1.
Li=1 j:=1 z:=a; y:=/p.
2. fi; = min{z, y}.
3o xi=w— fij3 y:=y— fi
4 If (x=0andi<n) i:=i+1and z:= q,.
5. If (z =0 and ¢ = n): Stop.

6. f y=0: j:=7+1and y:=p;.

7. Goto 2.

In every loop of this algorithm at least one of the variables ¢ and j is increased. Therefore, the
number of loops performed is at most n+m — 1 and the runtime of this algorithm is O(n+m).
Furthermore, in each loop exactly one flow variable gets a non-zero value. Thus, in the end
there are at most n + m — 1 non-zero flow variables and they define the EMD between the
sets A and B. We omit a formal proof of the correctness here. Cohen and Guibas [20] prove
the result using cumulative distribution functions. The same result is also implied by the fact
that the distances between the points fulfill the Monge property, and therefore the greedily
chosen flow variables are optimal, see the work of Bein, Brucker, Park and Pathak [12].
Observing the above algorithm we see that the assignment to the flow variables only depends
on the weights and the order of the points in their respective point set, and is independent of
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the position of the point sets on the real line. That is, this assignment to the flow variables is
invariant under translations of the weighted point sets A and B.

and let g, := f;; denote the flow between those points. Let f(7) denote the distance of pk)
and ¢®) under the translation 7 of B, i.e., fi(7) = |[p*) — ¢'*) — 7|. By the above remarks we
know that EMD(A, B+ 7) = >\ _; 9k fx(7).

The functions f;, are convex. Moreover, they are differentiable if and only if p®) # ¢®) 4.
Therefore, the function EMD(A, B+7) as a weighted sum of these functions is convex, since all
the weights g, are positive. Further, EMD(A, B+7) is differentiable if and only if p(*) # ¢(*) 47
for all k = 1,...,r. The derivative of f is —1 if p®) < ¢®) + 7 and +1 if p®*) > ¢*) 4 7.
Therefore, the derivative of EMD(A, B + 7) is constant on intervals where pF) £ ¢*) 7 for
all k=1,...,r. It follows that the minimum might be assumed on an interval, but there is at
least one k where p*) = ¢(®¥) 4 7 and the minimum is assumed. See the example below for an
illustration of the functions f; and the EMD under translations.

Unfortunately we cannot afford to compute the EMD at all r event points 74, := p*) — ¢(*).
Instead we use the next recursion to compute the minimum EMD under translations.

We start with the list L of all r event points. We first determine the median 7* of these
points and its left and right neighbors 7, := sup,c; {7 < 7} and 7. := inf cp {7 > 7*}.
Assume that both exist. We can determine the median in linear time using a result by Blum,
Floyd, Pratt, Rivest and Tarjan [14]. Let Lin(z) denote a linear function and be initialized with
Lin(z) = 0. We then compute EMD(A, B+7*) = Lin+)___; g-|7 — 77|, where g, denotes the
flow between the two points inducing this event point 7. We also compute EMD(A, B+ 7;) and
EMD(A, B+7,) in the same way. This can be done in O(|L|) time. By convexity we know that
if both EMD(A, B+7*) < EMD(A, B+7;) and EMD(A, B+7*) < EMD(A, B+7,.), then 7* is
optimal. Otherwise assume EMD(A, B+ 7;) < EMD(A, B+ 7*). Again by convexity we know
that the optimal 7 has to lie on the left of 7*. Thus we substitute Lby L' :={r € L : 7 < 7*}.
Since 7* is the median of L, |L'| < |L|/2.

We have to take care that in deeper recursion steps we can still compute the EMD in
O(|L|) time. We do this using the following observation: For any point 7/ € L’ we have that
EMD(A, B+1") =3 cp 977 = 7’|+ 2\ 9- (7 — 7). This is easy to see, since in deeper
recursion steps the second sum is only computed at points in L’. These points are to the left
of all points in L\ L’. Thus the distance can be represented by the left ray of the absolute
value, which is a linear function.

Hence we add the second sum to Lin(z) and proceed. In the following recursion step we
can compute EMD(A, B +7') as Lin+ ) ., g-|7 — 7’|, which needs O(|L/[) time.

The runtime of each recursion step is O(]L|) and the length of the list in the following
recursion step will be at most |L|/2. Thus, the runtime of the algorithm is described by the
recursion T'(n) = O(n) + T(n/2) which resolves to O(n).

We state the algorithm described above in pseudo-code.
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1

(@3

2.

Algorithm 3.2 (FindMinimum(ZL, Lin)).

. If |L| < 3: Output min,c; {EMD(A, B + 7}. Stop.
Find median 7* € L.
. Find left neighbor 7 :=sup, ¢, {7 < 7*}.
. Find right neighbor 7, := inf, ¢ {7 > 7*}.
. If 7 = —o0 and 7, = co: Output EMD(A, B + 7). Stop.
. If ; = —o0 and 7 # oo:
(a) fEMD(A, B+7*) < EMD(A, B+7"): Output EMD(A, B+7*).
Stop.
(b) For all 7 € L with 7 < 7*: Lin := Lin+g.(x — 7)
(¢) ' :={r€L :7>71"}
(d) FindMinimum(Z’, Lin)
If 7 # —o00 and 7, = oc:
(a) If EMD(A, B+7*) < EMD(A, B+7): Output EMD(A, B+7*).
Stop.
(b) For all 7 € L with 7 > 7*: Lin := Lin+¢.(7 — z)
(¢c) L':={reL :1<71*}
(d) FindMinimum(L’, Lin)
. If 77 #£ —o0 and 7 # oo
(a) If EMD(A, B + 7*) < EMD(A, B + ") and EMD(A, B + 7*) <
EMD(A, B + 71): Output EMD(A, B + 7*). Stop.
(b) If EMD(A, B + ') < EMD(A, B + 7*):
i. For all 7 € L with 7 > 7*: Lin := Lin+g¢,(7 — z)
. L':={rel : 7<71*}
iii. FindMinimum(ZL’, Lin)
(¢) I EMD(A,B+71") < EMD(A, B + 7*):
i. For all 7 € L with 7 < 7*: Lin := Lin+g,(z — 7)
ii. L':=={relL :7>71%}
iii. FindMinimum(ZL’, Lin)

O

Ezample. Let the weighted point sets A and B be given by {p1,p2,p3} = {3,4,6} and
{5,7,12}. Then, the functions fi(t) = |p; — ¢; + 7| for ¢« = 1,2,3 describe
the distances of p; and ¢; under the translation 7. Figure 3.1 illustrates fi, fo and f3 by the

{QI7Q2aQS} =

red, green and yellow graph, respectively. The blue graph describes the EMD under 7.
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Figure 3.1: Tllustration of the functions f;(7) and the EMD defined
in the Example.

The General Case

In arbitrary dimension d > 1 we can apply our reference point framework to obtain an approx-
imation on the minimum EMD under translations:

Algorithm 3.3.

1. Compute r(A) and r(B) and translate B by r(A4) — r(B).
Let B’ be the image of B.

2. Output B’ together with the distance EMD(A, B’).

The following theorem is a direct consequence of the result on the abstract approximation
Algorithm 1.1 for translations, and Theorem 3.1.

Theorem 3.8. Let G € Ryg and let r: W¢ — R? be an EMD-reference point with re-
spect to translations and with Lipschitz constant c. Algorithm 3.8 finds an approximately op-
timal matching for translations with approzimation factor ¢ + 1 in time O(T" (max{n,m}) +
TEMD (. m)). This holds for arbitrary dimension d and any norm on the underlying space RY.

Applying the center of mass as an EMD-reference point leads to an almost trivial approx-
imation algorithm for the EMD under translations. Cohen and Guibas [21] propose the same
method if the EMD is based on the squared Euclidean distance. In this case, the algorithm
even finds the optimal translation.

Corollary 3.2. Algorithm 3.3 using the center of mass as an EMD-reference point induces an
approzimation algorithm with approzimation factor 2. Its runtime is O(TEMP (n,m)).
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Proof. The Lipschitz constant of the center of mass as an EMD-reference point is 1 and this
point can be computed in O(max{n, m}) time. The overall runtime is dominated by the time
to compute the Earth Mover’s Distance. O

Lower Bound for Algorithm 3.3

We presented the center of mass as an EMD-reference point with Lipschitz constant 1, thus
inducing an approximation algorithm for translations with approximation factor 2. We show
that this bound cannot be improved in the Euclidean case. Recall that we write EMDs for the
EMD based on the Euclidean distance.

Theorem 3.9. There are weighted point sets where the upper bound on the approximation
factor for Algorithm 3.3 using the center of mass as an EMDg-reference point is assumed in
the limit.

Proof. Consider the following two weighted point sets in the plane, where K € N is some
integer.

A = {((0,0),1),((1,0),K)}
B = {((0,0),1),((0,1), K)}

See Figure 3.2 for an illustration of A and B when the two centers of mass coincide.

We show that EMDQC(A, B)/EMD,°**(A, B) — 2 as K — oo. Here, EMDgc(A7 B) denotes
the EMD, between A and a translated version of B where the two centers of mass coincide,
and EMD,°?*(A, B) denotes the EMDs of A and B under an optimal translation.

1. Calculation of EMDy (A, B): We first calculate the centers of mass of both sets. By

definition
_ 1 - m. — 1 T T _ K T
C(A) = WA;alpZ = K+1((0,0) +K(1,007) = K+1(1,0) .
Similarly,
K
B) = —— (0,1)T.
C(B) K+1(0’ )

See Figure 3.2 for an illustration of the matching according to the centers of mass.

Using basic network flow theory, we know by the integrality of all weights that there is
always an integral flow inducing the minimum cost flow. Thus it is an easy observation
that there are two candidates for an assignment to the flow variables, see Figures 3.3
and 3.4. We compute the flow value in both cases.

For the following calculations, note that the distance between a; and the center of
mass C(A) is K/(K + 1) and the distance between as and C(A) is 1 — K/(K + 1) =
1/(K +1).
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Figure 3.2: Matching of A, B according to their centers of mass.
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Figure 3.3: Flow in Version (a).
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Figure 3.4: Flow in Version (b).
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(a) fir=1, fi2=0, fo1 =0 and fos = K, see Figure 3.3:

EMDC(AB)<LK2L2+ QLQ
S g K+1 K+1

_ 1(K\/§+K\/§>

K+1\K+1 K+1

K
- m2\/5

2v/2 1
= = <1+O<K)> as K tends to oo

(b) fi1=0, fiz =1, for =1 and fao = K — 1, see Figure 3.4:

1 K \? 1 \? 1 \?
C - N - _ -
EMD,C (A, B) — 2 ( +1> +< +1> +(K-1) 2< +1)

- (2 K2+12+(K—1)71 x@)

IN

K+1 (K +1)
1 (2 K1+K1\/§>

K+1 K+1 K+1

2++2 1
= 7 <1+O (K)) as K tends to oo

Therefore, for large K the flow variables given in (a) induce the minimum cost flow, i.e.,
EMD,“(A, B) = 22 K/(K + 1)? for K large enough.

2. EMD,°?"(A, B): We do not calculate this distance exactly but find an upper bound by
fixing the translation where as and by coincide, see Figure 3.5. It follows that

1

EMD,°*(A,B) < 2.
2 ( s ) = K+ 1\[
Combining 1. and 2. we see that
EMD, (4, B) ez 2V2 2K
— > i = — 2as K — oo.
EMD,°P*(A, B) Tﬂﬂ K+1

O

Remark. The proof is independent of the considered diameter of the point set, so bounding
the diameter does not lead to a better approximation. The proof depends on the weights of
the points, exploiting an unbounded ratio of weights. The same proof works if we replace the
points with weight K by K copies of unit weight points. Therefore, even with a bounded ratio
of weights no improvement on the approximation factor is possible.
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b,

Figure 3.5: Translation where as and by coincide.

3.4.2 Fully Polynomial-Time Approximation Scheme for Translations

We can easily construct a (1 + €)-approximation for the EMD,, under translations, using the
abstract algorithm from Section 1.5.2. This result, restricted to the Euclidean EMD in the
plane, was already obtained by Cabello et al. [15]. The proof follows directly using Theorems 1.6
and 3.1 and is omitted.

Theorem 3.10. Let A,B € WEE for some G € Rsg and dimension d € N be two weighted
point sets. Let 1 < p < oo. There exists an algorithm which for any 0 < € < 1 finds a
translation 7%, such that

EMD, (A, 7°(B)) < (1+¢) EMD,(A, r°"(B)).

—d . TEMD,(

Its runtime is O(e n,m)).

3.4.3 Rigid Motions

In the following we investigate the problem to compute the minimum EMD under rotations,
rigid motions and later similarities. Thus we always assume that the dimension is at least 2.
The following algorithm gives a first approach to obtain an approximation of the EMD under
rigid motions, i.e., combinations of translations and rotations. This algorithm is not yet prac-
tical, since we have to find the optimal matching of two weighted point sets under rotations of
one of those around a fixed point. We approximate this problem of finding the optimal rotation
later and thereby create an efficient and implementable algorithm.

Algorithm 3.4.

1. Compute r(A) and r(B) and translate B by r(A) — r(B).
Let B’ be the image of B.

2. Find an optimal matching of A and B’ under rotations of B’ around r(A).
Let B” be the image of B’ under this rotation.

3. Output B” together with the distance EMD(A, B").
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Algorithm 3.4 equals the abstract Algorithm 1.2 if we use the optimal rotation. Thus the
following theorem is a direct consequence of Theorems 1.7 and 3.1.

Theorem 3.11. Let G € Ruq and let r: WY — R be an EMD-reference point with respect
to rigid motions and with Lipschitz constant c. Algorithm 3.4 finds an approximately optimal
matching for rigid motions with approzimation factor ¢ + 1 in time O(T* (max{n,m}) +
TEMD (n, m) 4+ T™%(n,m)). This holds for arbitrary dimension d > 2 and any norm on the
underlying space RY.

We apply the center of mass as an EMD-reference point to the last result:

Corollary 3.3. Algorithm 3.4 using the center of mass as an EMD-reference point induces an
approzimation algorithm with approximation factor 2 and runtime O (T (n, m)+THMP (n, m)).
This holds for arbitrary dimension d > 2 and any norm on the underlying space R<.

Proof. The Lipschitz constant of the center of mass as an EMD-reference point is 1. This point
can be computed in linear time, which is dominated by the time to compute the EMD. O

Lower Bound for Algorithm 3.4

We show that the approximation factor given in the last corollary is tight in the Euclidean
case, thus we prove the following theorem:

Theorem 3.12. There are weighted point sets where the upper bound on the approximation
factor for Algorithm 3.4 using the center of mass as an EMDs-reference point is assumed in
the limit.

Proof. We prove the theorem by using similar weighted point sets as we use in the proof
of the lower bound for Algorithm 3.3, see Figure 3.2 in Section 3.4.1. We introduce two
more points for every set to prevent them from being rotated. These points are far away
from the center of mass and have a low weight. One of them is above and one is below
the original point set. They further have the same distance to the center of mass. Thereby
the position of the center of mass is not affected. These points coincide when the sets given
in the lower bound for Algorithm 3.3 are unrotated and have coinciding centers of mass.
Because of the low weight, a short translation does not have a major effect on the resulting
EMD. A small rotation instead immediately leads to a large distance between those points
and therefore these two points contribute significantly. Let § > 0 be a fixed constant and let
ap = arcsin(d — §%/4). The introduced points depend on a large parameter K and a small
parameter ¢ := 4/(K+/1 — cosap ). Note that € tends to 0 as K tends to co.
Here are two point sets realizing the lower bound, see Figure 3.6 for an illustration.

0000 (0) - (5%4) )}
o () () )
() (64 4) )

We make a case distinction for clockwise rotations with angles 0 < a < ap and ap < a <
7/2. The remaining cases are similar and omitted here. Let R, denote the clockwise rotation
by a.

A
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Figure 3.6: Matching of A and B according to their centers of mass.
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We show that for any § > 0 we have that EMD,“ (A, B)/EMD,°**(4,B) > 2 — § as K
tends to co. Here, EMD,°P" denotes the optimal EMD, under rigid motions and EMD,€ the
optimum where the centers of mass coincide. Using the same arguments as in the proof for the
lower bound for Algorithm 3.3 in Section 3.4.1, we see that

EMD," (4, B) < — 1 (x@+ Nig)

- K+1+2 K+1

by computing the EMD5 of A and a translated version of B where the two points with weight K
coincide.

Let 0 < a < ap. Since K is large and the rotation angle is small, a3 will be matched
to Ru(bs3) and a4 to Ry (by). By similar considerations as before in the case of translations, we
see that a1 is matched to R, (b1) and az to R, (bs). Easy calculation shows

a1 — Ra(b1)|| = V2V1—sinaK/(K +1)
and |lag — Ro(b2)|| = V2V1—sina /(K +1).

Therefore

22K :
EMD,%(A, Ry (B)) > (K+1+2€)(K+1)\/1—sma,

and

EMD;C(4,Ra(B)) _ 5EEVI—sina

opt —
EMD,°?* (A, B) V2 + 2L

which tends to 24/1 —sina as K tends to co. For any a < ag we have
2V1—sina > 2y/1—sinag = /1-6+62/4 = 2(1-6/2) = 2—4.
Let g < o < /2. We make a case distinction on the flow variable fs3:

L. faz >¢/2.
It is easy to calculate that

llas — Ra(b3)|| = V2 K1 —cosa

and therefore

V2Ke/2y/1T = cosa
EMD-% (4, Ro(B)) > .
2 (4 Fa(B)) 2 K+1+2¢
Thus
EMD,“ (4, Ra(B)) _ v2Ke/2yT—cosa
opt =
EMD,"" (4, B) V2t 2
which tends to Ke/2v/1 —cosa > Ke/2y/1 — cosag = 2 as K tends to oo.
2. f33 <e/2.

This immediately implies that f31 + fso + f34 > €/2 and f13 + faz + f34 > €/2. Therefore

2K —1)e/2
MD,¢ > 2= /=
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as K tends to oco. Thus

EMD, (A, Ry(B)) o 2K~ 1)e/2

opt - 2\/55 ’
EMD,°P*(A, B) V2t 2L

which tends to Ke/v/2 = 4/(v/2/T —cosag) > 4/v/2 > 2 as K tends to oco.
O

3.4.4 Rigid Motion Approximation Using Rotation Approximation

Fixing the position of the coinciding EMD-reference points as the rotation center in Algo-
rithm 3.4 eliminates several degrees of freedom and the problem to find the optimal rotation is
easier than the one finding the optimal rigid motion itself. Unfortunately, even for this prob-
lem no efficient algorithm is known so far. Therefore we investigate approximation algorithms.
The next lemma gives an approximation if the underlying norm is the Euclidean distance.
This result was already obtained by Cabello et al. [15] for the Euclidean EMD in the plane.
We extend the result to arbitrary dimension. After that we generalize the statement to all
L,-distances, where 1 < p < oo.

Lemma 3.4. Let A, B be two weighted point sets with equal total weight G € Rsg in dimension
d > 2. Let p* € RY be any point and let Rot(p*) be the set of rotations around p*. There exists
a rotation R’ € Rot(p*) such that

EMD,(A,R'(B)) < 2- min EMDs (A, R(B)),
ReRot(p*)

where R’ aligns p*, a point of A, and a point of B.

Proof. W.lo.g. let A= {(p;,®;)i=1,...n} and B = {(g;, ;) j=1,....m} be in optimal position with
respect to rotations of B around p*. Let F* := {f{;} be a flow defining EMDy(A, B). For
all pairs of points p; € A and ¢; € B, p;,p; # p*, let R;; be the smallest rotation around p*
aligning those two points. More precisely, let R;; be the rotation with the following properties:

1. R;; rotates around the (d—2)-dimensional subspace S;; that contains p* and is orthogonal
to the plane E;; spanned by the points p*, p; and g;.

2. R;;(B) aligns p*, p; and g;.
3. For the rotation angle ¢(R;;) we have |¢(R;;)| < .

Note that the rotation angle is given by the smaller angle between the lines through p; and p*,
and ¢g; and p*. Thus this angle is defined in arbitrary dimension.

Let R be the set of all rotations R;;. Let R’ € R, such that for all R € R we have
lp(R)| < |p(R)|. If ¢(R’) =0, R’ fulfills the claim of the lemma.

In the 2-dimensional case, Giannopoulos [26] shows that

1R (q;) = pill2 < 2llg; — pill2 (3.1)

for all points p; € A and ¢; € B.
We prove that inequality (3.1) carries over to arbitrary dimension d > 2, see also Figure 3.7.
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Su R(q5)
?

i |
? L R(g) =7
- o R(@)
]

P 3 Ep
o

n
Figure 3.7: Construction in higher dimensions.

Let pi and ¢ be a pair of points inducing R’ and let p;, and ¢; be two arbitrary points.
Let p} and p;- be the orthogonal projections of p; and ¢; onto Ej;, respectively. Let p; := p; —
and gq; := q; — q;.. Now, p; = p; +p; and ¢; = q; +q;. Since gj is parallel to Sy; this vector is
invariant under R" and thus we have R'(¢;) = R'(¢; +q;) = R'(¢j) +¢;. Then,

IR (q5) — pill2
= IR (q;) +T — p; — Dill2

\/HR’(q;) —pill3+ |lg; — pill3, by Pythagoras” Theorem

A

\/4 ¢} — pill3 + 1G5 — Pill3, using the 2-dimensional case inside Ej,
VAl = Pl + 4117 - i3

2|lgj +7; — p; — Pill2, by Pythagoras’ Theorem

2lg; — pill2-

A

Following Cabello et al. [15] we prove the lemma in arbitrary dimension d > 2:

EMDs(A, R'(B))

1 ) n m
el glelgzz:fu Ipi — R ()]l

i=1 j=1

SR I — @)l

i=1 j=1

ézz 2 fi5 lIpi — g2

i=1 j=1

= 2.EMDy(4, B).

IN

IN

O

We generalize the last lemma to all L,-distances with 1 < p < oo. Note that the approxi-
mation in the following lemma is induced by the same rotation R’ for any L,-distance.



3.4. APPROXIMATION USING EMD-REFERENCE POINTS 51

Lemma 3.5. Let A,B € W% for some G € Rsq be two weighted point sets and p* € R? be
any fixed point. Let 1 < p < co. Let Rot(p*) be the set of rotations around p*. There exists a
rotation R’ € Rot(p*) such that

EMD,(A,R'(B)) < 2Vd- min EMD,(4, R(B)),
ReRot(p*)

where R’ aligns p*, a point of A, and a point of B.

Proof. Let 1 < p < 2. Tt is well-known that ||z|s < ||z||, < Vd||z||2 for all z € R Let R be
the rotation which gives the 2-approximation in the Euclidean case, see the proof of Lemma 3.4.
Then,

EMD (A R'(B))

= G’ o (f” ZZfZJHaz R'(bj)llp

=1j=1

< = ZZ ||a2 (0)lp, where fl-(f) induces EMDy (A, R'(B))

=1 j=1

1 n m ]

< SN SPVllai = R(b)le, since o], < Vd|all;

i=1 j=1
< 2Vd- min EMDy(A, R(B)), Lemma 3.4

ReRot(p*)

< zxf -EMDy (4, R¥)(B)), where R®) := arg minpcgoq(p-) EMD, (4, R(B))

= . FIIl(lfIl szl] ||az R(p)( j)||2

1=1 j=1

< el Z fi(;-?) |ai — R® (b;)|l2, where fi(jp) induces EMD,, (A4, R?)(B))
i=1j=1
< Zﬂ.Regg&p*)EMDP(A, R(B)), since ||z]]2 < ||z,
This completes the proof for 1 < p < 2. An analogous calculation using the fact that
], < |lz]la < Vd|z|, for any 2 < p < oo shows the other case. O

As we will see in Section 3.4.4, Lemmas 3.4 and 3.5 directly lead to an approximation
algorithm for the EMD under rotations around a fixed point in the plane. We prove this by
observing that in the plane fixing one point-to-point correspondence uniquely determines a
rotation. In dimensions > 3 this is not the case. There, d — 1 correspondences are neces-
sary. We use the following lemma in Section 3.4.4 to show that we can successively fix these
correspondences and thereby find an approximation in higher dimensions.

Lemma 3.6. Let A, B be two weighted point sets with equal total weight in dimension d > 2.
Let S* be a fized d'-dimensional affine space with 0 < d' < d—1. Let A\S* # () and B\ S* # (.
Let Rot(S*) be the set of rotations leaving S* invariant. There exists a rotation R’ € Rot(S*)
such that

EMDy(A,R'(B)) < 2- i EMD, (A, R(B
J(AR(B) < 2. min  EMD(4,R(B))
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where R’ rotates B such that S*, at least one point of A\ S* and at least one rotated point
of B\ S* are in a (d' + 1)-dimensional affine space.

Proof. W.l.o.g. let A and B be in optimal position with respect to rotations around S*. We
prove the result following the technique of the proof of Lemma 3.4. Let p* € S* be a fixed
point. Let St := p* + (S*)1 be the orthogonal affine space containing p*. For all points
pi € A\ S* and ¢; € B\ S* let p; and qjL be their orthogonal projections onto S*. Let Ry
be the rotation with the following properties:

1. R;; rotates around the (d — 2)-dimensional subspace that contains S* and is orthogonal
to the plane E;; spanned by the points p*, pﬁ- and qj--.

2. Ri;(B) aligns p*, pi- and g
3. For the rotation angle ¢(R;;) we have —1 < ¢(R;;) < .

Note that the rotation R;; is independent of the concrete choice of p* € S* since choosing a
different point only causes a parallel translation of p; and qu. Further, the rotation angle is
given by the smaller angle between the lines through pf- and p*, and through qj- and p*. Thus
this angle is defined in arbitrary dimension.

We conclude like in the proof of Lemma 3.4: We first determine a rotation R’ around S*
which minimizes the absolute value of the rotation angle among all rotations R;;. We further
determine a pair of points pr and ¢ inducing R’ and again bound the distance of any pair
of points by using the orthogonal projections onto Ej; and applying Pythagoras’ Theorem.
Finally we bound the EMDs after rotation and the lemma follows. O

Rotation Approximation - A Better Bound

In the last section we have recapitulated and generalized a result by Cabello et al. [15] which
states that there is a rotation aligning the rotation center, a point of A, and a point of B, such
that the EMDs in this position is at most twice the optimum. In this section we indicate that
we can improve this bound significantly using the same rotation and a different analysis.

First we show an upper bound on the approximation ratio of any pair of weighted point sets.
This bound is a fraction of weighted sums of the distance of two pairs of points after and before
rotation. We further restrict the possible positions of these points. We discretize this function
in one variable and compute it. The result is a function with a maximum at approximately
1.155. This implies that the approximation ratio of 2 can be replaced by this value. Further,
the improved approximation bound of 1.155 would carry over to higher dimensions and to
similarities, in the same way as the bound of 2 does.

A final step missing in the proof may be bounding the partial derivative with respect to the
discretized variable by a constant. By choosing the discretization fine enough we could bound
the maximum achieved in the interval between to discretization points. Unfortunately, this
step is missing so far. Anyway, the results in this section finally may lead to a formal proof of
the new upper bound. We indicate the new upper bound for weighted point sets in the plane
and consider the Euclidean case.

Let A = {al, e ,CL"} = {(pi, ai)izl,_“’n} and B = {bl, ey bm} = {(q]',ﬂj)j=17.__7m} S W2’G
be weighted point sets in optimal position with respect to rotations around some point p* € R.
W.lo.g. let p* be the origin. Let I’* = (f;) be a set of flow variables inducing the EMDy
between A and B.
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We want to find an upper bound on the approximation ratio of our approximation algorithm
for rotations. Thus we want to find an upper bound on

EMD, (A, Ry(B))
EMD,(4,B)

where ¢ is the minimum angle between two points in A and B, see the construction used in the
proof of Lemma 3.4. We bound this fraction from above by choosing the same flow variables
in the rotated position:

EMDs (A, Ry(B)) _ 2ima 2501 fi llai = Ro(b)2
EMDy (4, B) B i Z;nzl i llai = bjll2

(3.2)

By substituting each weighted point a; € A by a set of weighted points {(p;, f;;) : f5 > 0}
and defining the new flow variables appropriately, we can assume that for each point a; € A
there is exactly one point b; € B with f7; > 0. By substituting the points in B analogously,
we can assume that there is a one-to-one correspondence between the weighted points in A
and B. Thus we can assume that A = {a1,...,ar} = {(Pi; @i)i=1,.. 1} and B = {b1,...,bx} =
{(gi,i)i=1,... k. Additionally we have fZ*J = qy; if i = j and 0 otherwise. Note that the
quotient (3.2) does not change and we have

EMD2(4, Ry (B)) _ i1 e Jilai = Re(bi)llz 2% ai flag — Ry(b)ll2

EMDy(4,B)  — XL X0 fllai=billz SR s fla — bl

For further simplicity and to keep notation easy, we modify the two weighted point sets
in the following way: For every 1 < ¢ < k we rotate the point b; around the origin onto the
y-axis. We rotate the corresponding point a; by the same angle. Let A’ = {a},...,a}} and
B’ = {b],..., )} be the transformed sets. It is easy to observe that

EMDa(4, Ro(B)) _ Yy cillas = Ro(blle _ iy cillai = Ro(B)l2 (g g
EMD,(A,B) — i llas — b Eoallal — b '
2\ > im i llag ill2 Diz1 qilla] ill2

since we did not change the distances between the points a; and b;.

With a slight abuse of notation we omit the prime and denote the transformed sets by A
and B. The two weighted point sets are in optimal position, since the original point sets A
and B are in optimal position with respect to rotations and the modifications above did not
change the distance between original points with non-zero flow. Rotating B while keeping A
and «; fixed will not decrease the cost. This optimality condition, which is formally derived
below, has the following physical interpretation: The two point sets together with the one-to-
one correspondence describe a system of forces. We can imagine that the points in A are fixed
in the plane and pull at the points of B, where the points of B are fixed on a line through the
origin and this line is free to rotate around the origin. The force between any pair of points
equals the flow. This rotational system is in equilibrium. Therefore we have

Z cosy; a; ||bsll2 — Z cosy; o ||bill2 = 0, (3.4)

{i:(ai).>0} {i:(a:)=<0}

where 7; equals the angle between the z-axis and the line through a; and b;, see Figure 3.8.
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az

Figure 3.8: A and B after rotating the points of B to the y-axis.

We formally derive this equation: Let f(p) := Zle a; |la; — R,(b;)]|2, where as usual the
parameter p describes the rotation angle of the rotation R. Since A and B are in optimal
position with respect to rotations, we have

k
f(0) = mpinZai llai — Ry (bs)ll2
=1

and thus f/(0) = 0. Let b, = (0,y;). Then, R,(b;) = (—y;sinp, y; cos p). By easy computation
we see

k .
(i) cos p + (ai)ysinp
f’ pP) = ;Y
() =2 fac — By (b0l

and therefore

Since cosvy; = [(a;)z|/lla; — bi||2, equation (3.4) follows.

Now, let C' be the vertical cone with opening angle 2¢, see Figure 3.8. Let C, and C;
denote the right and left ray of C, respectively. Note that there is no point of A inside the
cone, since ¢ is the minimum angle aligning the origin, a point of A, and a point of B.

We first show that the upper bound still holds if the points of A with an z-coordinate
greater than 0 lie on C,., and the other points lie on Cj, see Figures 3.9 and 3.10. In this
construction we leave the weights of the points unchanged.

Let R, L C A denote the weighted points of A on the right and on the left of the y-axis,
respectively. For given points | € L and r € R let b;,b, be the corresponding points in B.
We further use a; and «,. to denote their weights. Then, with 7’ denoting the point r shifted
onto C,. along the segment rb,., and with I’ denoting the point [ shifted onto C; along 1 b;, we
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ay

Figure 3.9: Shifting the points on the right onto C,..

Figure 3.10: Shifting the points on the left onto Cj.
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Figure 3.11: Using the Theorem of Intersecting Lines.

EMD, (A, Ry(B))

EMDs (4, B) since A and B are in optimal position

Il — Ry(b +||7 — Rg (b,
Dorer |l o(b)ll2 + 2 e ar I — Ry(br)|l2 by inequality (3.3)

ZleLal ”l*blHQJFZreRO‘rHrfbr||2 ’
e (=Tl + 11" = Rg(0)ll2) + 3o egar (lr ="l + " = Ry (br)l12)

Yaer it =billz+ 32 ep o lIr —brll2
2aer @ (F=Vl2 411" = Ro(0r)ll2) + 2 er @ (Ir = r'll2 + 7" = Ry (br)]l2)

Serar =Vl + 111 =bill2) + >, crar (Ir—7'lla + [ = b.]l2)
Yucralll = Ry(bo)ll2 + X2, cpar 7" — Ry (br) |2

el =billz + 2 cg o [l = brll2

Thus, in the following we assume that all points in A lie either on C,. or C;. We now show
that we can assume that the points b; equal one fixed point b* = (0,1). To keep the system of

forces in equilibrium and to leave the value of the upper bound unchanged, we scale the points
a; and b; by 1/||b;]|2 and simultaneously scale their weights by the inverse factor ||b;||2. See
Figure 3.11 for an illustration of the resulting weighted point sets. The correctness of this step
is an immediate consequence of the theorems of intersecting lines:

Thus for the following we assume that the points b, . .

EMDy(A, Ry(B)) _ Yi aillai = Ro(b)]o
EMD2(4,B) = SF aiflai — bill2
S8 ai [lbillz]lal — R (b*)]l2
S8 aq lIbillz]lal — bl
Yy o lla = Ry (b))l
S o fla — bl

(3.5)

., b, coincide and we are in the situation
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of Figure 3.11. Above we have proved that
Z a; ||bil|2cosy; — Z a; ||bil|2cosy; = 0,
{i:(ai)=>0} {i:(ai)=<0}

see formula (3.4). It is easy to observe that this formula still holds for the upper bound (3.5).
Since here [|b;||2 = ||b*]|2 for all ¢, we have

E Qpcosy; = E QU COS Yy
leL reER

Thus, by eventually subdividing points we can assume that A and B consist of pairs of points
(liy7i)i=1,... k, such that a;, cosy;, = o, cos,,. Therefore,

(35) = im0l = Re()lla+ X, v, liri = Ro(0)l2
Sy I = b2 + X i — %2
S ([l = Ry(5)l2 + e [Iri = Ry (6°)|2)
Sy (e, (Il = b*[la + e, [lri = b¥l2)
_ o, Il = Rg(b*)l2 + v, [lri — R (6")l2
T oimten o ag |l = 0*[l2 4 o e — 0¥z
= supg(l,7,9),
where . .
slrg) = Q= Rs@)llztarllr = Ro®)l2

a[[L=b*l2 + ar [Ir = b*|l2
A bound for g(I,r, ¢) will immediately give a bound for (3.5). We bound this supremum in
the following way: Let (r,1) € C, \ {0} x C; \ {0}. Using «a; cosy; = o cosy, we have

cosy, [l = Ro(b")lz + cosu [Ir = Ry ()l
cosy, 1 = b2+ cos e [[r =5l

g(l,r,¢) =

Now, g is a function in the 3 unknowns [, r and ¢, where, with a slight abuse of notation,
I and r denote the distance of the points | and r to the origin. In Figure 3.12 we have
illustrated g, where we fixed [ to 0.99. The variables r and ¢ vary, such that 0.98 < r < 1.02
and 0.01 < sin¢ < 0.02.

We now use MAPLE to maximize g for fixed values of I. We do this in the following way:

We fix some value | € Rsq, I # 1, let g;(r, ¢) be this function for a fixed value of I. We then
compute the partial derivatives d¢g;/0r and 9g;/0¢p. We then solve the system of equations
(r,¢) = 0 and %(T’ ¢) = 0.
For every value of [ this system of equations has exactly 3 solutions. Note that we solve the
system of equations algebraically and therefore there cannot be more than this 3 candidates
for extrema of g;. One of the solutions is always assumed for » = 1 and is always a minimum
of g;. The other two solutions describe maxima of g;. Let (r}, ¢7) and (r3, ¢3) be the maxima.
We list a few important properties:

99
or

1. ry=1/r}
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Figure 3.12: The function g near the maxima for [ = 0.99.

2. ¢1 = ¢
3. gl(TT7¢T) = gl(r§7¢§)

In Appendix A we show a table of the results and Figure 3.13 depicts the resulting values
g1(r7, ¢1) for different values 0 < 1 < 2.

Observing this function and the list of values given in Appendix A, the result strongly
recommends an upper bound smaller than 1.155 for the approximation ratio for the EMD,
under rotations. Unfortunately, a formal proof of this has to be postponed to future work.
One approach may be to bound dg/dl by a constant. Then, by eventually increasing the
number of points [ near 1, where we compute the maxima of g, we can prove a good upper
bound.

Approximation Algorithms for Rigid Motions in the Plane

Based on Lemma 3.4 we construct an approximation algorithm for minimizing the EMDy
under rotations, which we can use to construct an approximation algorithm for rigid motions.
In this section we discuss the planar case. The general case will be addressed in the following
paragraph.

Consider the following method to find an approximation on the minimum EMDs under
rotations around the fixed rotation center p* € R¢.

Algorithm 3.5.

1. Determine a rotation R’ € Rot(p*) minimizing EMDy(A, R'(B)) over
all possible alignments of p*, a point of A, and a point of B.

By Lemma 3.4 it follows that EMDy (A, R'(B)) < 2 - mingerot(p+) EMD2(A, R(B)). There
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Figure 3.13: ¢ maximized for varying .

are O(nm) possibilities to align p* and any two points of A and B. Hence the runtime of this
algorithm is O(nm-T"MP2(n, m)). We combine this algorithm with the abstract Algorithm 1.2
for rigid motions, see Section 1.5.3.

Algorithm 3.6.

1. Compute r(A) and r(B) and translate B by r(A) — r(B).
Let B’ be the image of B.

2. Find a best matching of A and B’ under rotations of B’ around r(A),
where r(A), a point of A, and a point of B’ are aligned.
Let B” be the image of B’ under this rotation.

3. Output B” together with the distance EMDs(A, B”).

Using the above remarks and Theorem 3.1, we can use our abstract algorithm for rigid
motions, see Theorem 1.7, to prove the following result:

Theorem 3.13. Let A, B € W2 for some G € Rsq be two planar weighted point sets. Let
r: WG — R? be an EMDq-reference point with respect to rigid motions and with Lipschitz
constant c. Algorithm 8.6 finds an approximately optimal matching for EMDs under rigid
motions with approzimation factor 2(c+ 1) in time O(T™f (max{n, m}) +nm - TEMPz(n_m)).

Substituting EMDy by EMD,, in Algorithm 3.6 we obtain a constant-factor approximation
for the EMD,, under rigid motions. Unfortunately, the approximation ratio is slightly worse.
Again we prove the result using our abstract algorithm for rigid motions, applying Lemma 3.5
instead of Lemma 3.4.
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Theorem 3.14. Let 1 < p < co. Let r: W& — R? be an EMD,, -reference point with respect
to rigid motions and with Lipschitz constant c. Algorithm 3.6 finds an approximately optimal
matching for EMD,, under rigid motions in the plane with approzimation factor 2v/2 (c+1) in
time O(T"f (max{n, m}) + nm - TEMPr (n, m)).

In the following corollary we apply the center of mass to the last two theorems:

Corollary 3.4. For weighted point sets in the plane, Algorithm 3.6 using the center of mass
as an EMD-reference point induces an approximation algorithm with approximation factor 4
in the Euclidean case and 4v/2 for any other Ly-distance, where 1 < p < oo. Its runtime is
O(nm - TEMPr (n_m)).

Approximation Algorithms for Rigid Motions in Higher Dimensions.

For the approximations in higher dimensions we need to have a higher dimensional transforma-
tion similar to the transformation of aligning two points and a rotation center in the plane. For
affine spaces S1,. .., S, we use aff (S1, ..., S,) to denote the affine space spanned by S, ..., Sy,.
Using this notation we give the following definition:

Definition 3.5. Let S* be a d’-dimensional affine subspace in R?, where 0 < d’ < d — 1. Let
a,b € R4\ S*. Let S, := aff(S*,a) be the (d’ + 1)-dimensional affine space spanned by S*
and a. Note that S, \ S* has exactly two connected disjoint components, where a lies in one
of them. We say a and b are aligned with respect to S*, if dimaff(S*,a,b) =d' 4+ 1 and b lies
in the same component as a. We also say b lies on the same side of S* as a.

We use the following corollary of Lemmas 3.4 and 3.6 to obtain an approximation algorithm
for the EMD under rigid motions in arbitrary dimension d > 3.

Corollary 3.5. Let A, B be two weighted point sets in dimension d > 3. Let A, B be full-
dimensional, that is dim A = dim B = d. Let p* € R? be an arbitrary point. There are
sequences of points aP), ... al% D € A and bV, ... bl € B, and a sequence of rotations
RMW ..., RU=D c Rot(p*), such that the following conditions hold for any 1 <k <d — 1:

1. 8O = p* and for k > 0,

Sk — aff (p*,a(l),...,a(k),R(k) oo ROGWY, ... R®o...0 R(l)(b(k))) .

2. R%®) leaves S 1) fized,
3. R%) aligns a™ and b*) with respect to S*—1),
4. EMDy(4,R® o+ 0 RM(B)) < 2F.minperoy(p ) EMD2(A, R(B)),

Proof. We prove the result by induction on k. For £k = 1 we can apply Lemma 3.4. Let
1 <k <d—1. By induction we have dim S = [ and

EMDy(A,R® o...0c RM(B)) < 2¥. min EMDy(A, R(B)).
ReRot(p*)

Let R* := argmingego(sey EMDa(A, Ro R¥) o .. o RW(B)). Of course,

EMDy (A, R* o R® o ... 0 RV (B)) EMDy(A4,R® o ...0 RV (B))

ok . in  EMD5y(A, R(B)).
remin 2(4, R(B))

<
<
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Since A and B are full-dimensional we can apply Lemma 3.6 to find a pair of points a**1)
and R o ..o R (b(-+1) together with a rotation R 1) € Rot(S*)), such that a**1) and
RF+D ... o RW(pF+1) are aligned with respect to S*) and

EMD, (A4, R**D o ... 0 RM(B)) 2-EMDy(A, R* o R® o...0 RV(B))

21 min EMDy(A, R(B)).
ReRot(p*)

<
<

O

For the next theorem we need to show that the rotation defined in the last lemma is unique:

Lemma 3.7. Let p* € R? be a point and let R € Rot(p*) be a rotation. Let V), ... ald=1)
and b .. bld=D be two sequences of points in R such that aff(p*7a(1),...,a(d_1)) and
aff (p*, 6™, ... b=V are affinely independent. Further, for every 1 < k < d — 1 let a®
and R(b"*)) be aligned with respect to aff(p*,a™, ... a*=V). Then,

1. for all 0 < k < d —1 we have aff(p*,a™, ..., a®) =R (aff(p*,b(l), .. .,b(k))),
2. and R is uniquely determined.

Proof. We first prove claim 1 and the fact that the positions of R(b(),... R(b(@1) are
uniquely determined. We prove this by induction: For k = 1, R rotates b(!) around p* such
that R(b(l)) lies on the ray with origin p* in direction a(*). This position of R(b(l)) is unique.
We further have that aff(p*,a(!)) = R (aff(p*,b())).

Let the result be true for some 1 < k < d — 1, that is, the positions of R(b(1)),..., R(b(*))
are uniquely determined and claim 1 holds for k.

We know, a*+1) and R(b*+1) are aligned with respect to aff(p*,a?,...,a®). Thus,
R(b*+1) lies in the (k + 1)-dimensional space X, spanned by aff(p*,a™), ... a®**+D). Thus,
the possible positions of R(b*T1) lie on a (d — k)-dimensional affine space X, orthogonal to
R(aff(p*, M), ... b)) = aff(p*,aM), ... a®). Therefore R(b**1) lies in X; N Xy, which is a
1-dimensional space orthogonal to aff(p*,a(V), ..., a®)). Further, the distance of R(b(**1) to
aff(p*,aM, ..., a®) is the distance from b**1) to aff(p*,b(), ... b)) and with this distance
there are 2 possible points on the line X; N X5. One of these points lies on the same side of
aff(p*,aM, ... a®) as a'**1) and one on the other. Since R(b(*+1)) lies on the same side, the
position of this point is uniquely determined. We further have that aff(p*,a™, ... a**D) =
R(aff(p*,bM) ... pk+1)Y),

By induction we know that the images of d affinely independent points p*, R, ..., R(4=1)
under the rotation R are uniquely determined. By basic linear algebra we know that R is
uniquely determined. O

Based on the abstract Algorithm 1.2 in Section 1.5.3 we get an approximation algorithm
for minimizing the EMDy under rigid motions.

Theorem 3.15. Let A, B € W%C | where d > 3 and G € Rwq. Let A, B be full-dimensional,
that is dim A = dim B = d. Let r: W4 — R? be an EMDy-reference point with respect to
rigid motions and with Lipschitz constant c. An approzimate rigid motion M', such that

EMDy(A, M'(B)) < 2¢7(c+1) - EMD,°"*(A, B)

can be found in O(T*! (max{n,m}) + n?"Imd=1. TEMD2(p m)) time.
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Proof. As in the planar case we first translate B such that the reference points of A and B
coincide. Algorithmically we proceed in the following way: We choose a pair of points (a(*), b(1))
in A x B. We rotate B around the reference point such that a(*),b(*) and the reference point
are aligned. We fix the line determined by these points. We then choose a second pair of
points (a(®,b?)) and rotate B around the fixed line such that b lies in the plane spanned
by a® and the fixed line. We fix the plane, choose another pair of points and continue until
a (d — 1)-dimensional subspace is fixed. We compute the EMDy between A and the rotated
version of B and continue.

Altogether we compute the EMDs for every sequence of pairs of points as described in Corol-
lary 3.5. Thus we have surely considered those sequences oV, ..., a4V and (M) . . pd=1
and the corresponding rotation R := R4~V o ... o R that induce the approximation prop-
erty in Corollary 3.5. Since by Lemma 3.7 the rotation R is unique, it equals the rotation
constructed above and therefore we have proven the approximation property of the theorem.

Observing that there are O(n?~!.md=1) possibilities for these sequences proves the runtime
of the algorithm. O

Note that if d’ := dim B < dim A it is enough to consider every sequence of d’' pairs of
points. After this, every rotation leaves B invariant and thus does not change the EMDs
between the two sets.

Analogous to the proof of Lemma 3.5 we can extend the result to the EMD defined on any
Ly-norm:

Theorem 3.16. Let A, B € W*C  where d > 3 and G € R-q, and let 1 < p < oo. Let A, B be
full-dimensional, that is dim A = dim B = d. Let r: W% — R? be an EMD,,-reference point
with respect to rigid motions and with Lipschitz constant c. An approximate rigid motion M’
such that

EMD, (A4, M'(B)) < 2*'Vd(c+1) -EMD"(4,B)

can be found in O(T* (max{n, m}) + n?"tmd=1. TEMD (n m)) time.
We apply the center of mass and obtain the following corollary:

Corollary 3.6. Applying the center of mass as an EMD-reference point to the algorithm
described above, the method induces an approximation algorithm with approzimation factor 2%
in the case of the Euclidean norm and 2%v/d for any other Ly-norm, where 1 < p < co. Its
runtime is O(n?=tmd=1 . TEMDs (n m)).

3.4.5 Similarities

In this section we present approximation algorithms for matching weighted point sets under
similarities, i.e., combinations of translations, rotations and scalings. More precisely, we want
to compute ming EMD(A, S(B)), where the minimum is taken over all similarities S. Note
that in this case exchanging A and B makes a difference. We only consider positive similarities,
i.e., the scaling factor is positive. The consideration of negative similarities is easy by using
the same algorithms on B and a reflected copy of A.

Basically, the approach is to use the algorithm for rigid motions on the two weighted
point sets, where B is scaled by the quotient of the normalized first moments with respect to
their reference points. See also the comments in Section 1.5.4 on the abstract approximation
algorithm for similarities.
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We give the well-known definition of the normalized first moment of a weighted point set
with respect to an arbitrary point p* € R%.

Definition 3.6 (Normalized First Moment). Let A = {(p;, &;)i=1,.n} € WEE be a weighted
point set for some G € R+, and let p* € R? be an arbitrary point. We call

1 n
my-(A) = WA Z%’ lpi —p|
i=1
the normalized first moment of A with respect to p*.

Note that the normalized first moment of a weighted point set with respect to an arbitrary
point can be calculated efficiently in linear time.
Consider the following algorithm to approximately compute the EMD under similarities:

Algorithm 3.7.

1. Compute r(A) and r(B) and translate B by r(A) — r(B).
Let B’ be the image of B.

2. Determine the normalized first moments m,.(4y(A) and m,. g (B’),
and scale B’ by my.(a)(A)/m,p(B’) around the center r(A).
Let B” be the image of B’ under this scaling.

3. Find an optimal matching of A, B” under rotations of B” around r(A).
Let B" be the image of B” under this rotation.

4. Output B together with the distance EMD(A, B").

We now analyze the approximation factor of this algorithm. First we show that it is trivial
to compute the EMD between two weighted point sets which are scalings of the same weighted
point set.

Lemma 3.8. Let A € WY for some G € Rsq be a weighted point set, and let my«(A) be
its normalized first moment with respect to some point p* € R, Let T, 7o be positive scalings
around the same center p* with ratios 1 and 2, respectively. Then

EMD (71(A4),72(4)) = |n =2l - mp-(A).

Proof.
1 n
EMD (71(4),72(4)) < Ezai [71(pi) — 72(pi)l
=1
1 n
= = > ai "+ —p") = (0" + 20 — p))
=1
1 & .
= g2 i ln =)@ -l
=1

|71—72\ ~ %
= —a E a; |lpi — 7|
=1

= Im —72| s Mipx (4)
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In the first inequality we have chosen the flow between the corresponding scaled points. This
is a feasible flow and therefore the inequality holds.

We now prove that EMD(71(A), 2(A)) > |y1 — 72| - mp+(A). Thus we have to show that
the flow variables described above are optimal. Let C be any cycle in the residual network.
By the structure of the flow, C is always of the form

W) = (M) = n@E®) = n@E®) - - = ") - nE®) — M)

for a list of points p), ..., p*) € A. Wlo.g. let vo > ;. Let p*+1) := p() Then, the
residual costs of this cycle can be computed as

k

> (I () = m 6 = I () =m0

ZHTl ) — (0D
Z I () = ()]

leﬁ ) =72 (3.6)

= 3 [t - 5~ (i

72 (D) — p*|| = (|71 ()

(]

72 (™) = p*[| = I (p"

M=

= Ir2(p1) =71 (p H*Z”ﬁ @) = ()]

It remains to show that inequality (3.6) holds. Thus we have to bound

k
S |0 = o7l = Im (6 -
i=1
k
S [rallp ) = ) =l (3.7)
i=1
Consider the two lists of points V := vy,..., v and W := wy, ..., wy, where v; := 71 |p(® —

p*|| and w; := y2|[p? — p*||. Formula (3.7) describes the cost of a perfect matching between
the points in V and W. Since w; = v2/v1 v; we have v; < v; is equivalent to w; < w; for
two indices 1 < 4,5 < k. Thus, the minimum cost perfect matching is given by the matching
where v; is matched to w; for every 1 <+ < k. This fact is a special case of the considerations
in Section 3.4.1. Thus we have

k

(37) Z Z |’U)l - Uil

i=1

k
= 3 el = ot = lp® - p°
i=1

k
= 3 |1 57l = I ()
i=1
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which completes the proof of inequality (3.6).
Altogether we have shown that there is no cycle with negative costs in the residual network.
By basic network flow theory we conclude that the flow is optimal. O

We use the following lemma to prove a new lower bound for the EMD.

Lemma 3.9. Let A, B € W% for some G € Rsq. Let p* and ¢* be two fized points in RY.
Then
[mp+(A) —mg-(B)| < EMD(A, B) + |[p* — ¢"||.

Proof. Let ™" := {f} be a flow defining EMD(4, B).

1 — 1 &
[mp« (A) —mg-(B)| = IE > aillpi—ptll - el > Billa — |l
i=1 j=1
1 n m m n
= & S Elp = =D £ lla — a7l
i=1j=1 j=11i=1
1 n m
= & S £l =l = llg — ')
i=1j=1
1 n m
< G S £ =l =Ml —¢*l | (3.8)
i=1 j=1
Now,
lps =%l = lpi—ai+a—a +q —p
< Api —gill +llgg — "l + llg" —p*| (3.9)
and analogously
lg; —a*l < llpi — il + llpi = "I + [lg" —p"||- (3.10)

By inequalities (3.9) and (3.10) we immediately see
P =27l = llg; = ¢"lll < llpi = g5ll + g™ = 7. (3.11)

Therefore it follows

mp(A) = mg-(B)] fijUlpi =p*l = llg; = ¢l |, by inequality (3.8)

Ql~
-
NE

s
I

—
<
Il

-

iy Upi = g5l + llg" = p*[l), by inequality (3.11)

Ql~
-
NE

s
I
—
<.
I
-

3

[
Ql =

Il

-
<

I

* 1 - < * * *
fij Hpi_%’” +5 E E fij llg" — ™|
1

i=1 j=1

(2

= EMD(A, B) + |l¢" — p*|.
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The next theorem gives a lower bound for the EMD based on the first moments of the
weighted point sets. It would be interesting to see how this lower bound compares with the
known lower bounds in applications; see also the work on image retrieval by Cohen [20] and
the recent work by Assent, Wenning and Seidl [10]. In the latter paper the authors investigate
a multi-step approach for efficient query processing in large multimedia databases. They use
the lower bounds to speed up their approach.

Theorem 3.17. Let A, B € WG for some G € Rsq and let r: WHE — R? be an EMD-
reference point with Lipschitz constant c. Then

[m(ay(A) = my)(B)] < (14¢)- EMD(A, B).
Proof. By Lemma 3.9 we have
mr(ay(A) = my5)(B)| < EMD(A, B) + |[r(B) — r(A)].
The claim follows by Lipschitz continuity. O

Applying the center of mass as an EMD-reference point with Lipschitz constant 1 immedi-
ately proves the following corollary:

Corollary 3.7. Let A, B € W for some G € Rso. Then
|me(ay(A) —mes)(B)| < 2-EMD(A, B).

Using these results we can prove that Algorithm 3.7 leads to a constant-factor approxima-
tion for minimizing the Euclidean EMD under similarities:

Theorem 3.18. Let r: W4 — R? be an EMDy-reference point with respect to similarities
and with Lipschitz constant c. Algorithm 3.7 finds an approrimately optimal matching for
similarities with approzimation factor 2(c + 1) in time O(T™ (max{n, m}) + T*MP2(n, m) +
T™%(n,m)). This holds for arbitrary dimension d > 2.

Proof. Consider an optimal similarity S°P%. It can be written as S°P* = g°Pto M°Pt, where M P
is a rigid motion and ¢°P' is a scaling with ratio a°P® around some point ¢q. Let § :=
EMD5 (A4, S°P*(B)) be the optimal EMDy under similarities. Then,

Ir(A) = r(SP(B)ll2 < o

because of the Lipschitz continuity of the EMDs-reference point r. Let 7" be the translation
by r(A) — r(S°PY(B)); then S := 7" 0 §°P! is a similarity mapping 7(B) onto r(A) and

EMDs(A, S(B)) EMD5 (A, 7" 0 S°PY(B))

< EMDsy(4, S°P(B)) + EMDy(S°P*(B), 7" 0 §°PY(B))
= 6+ 7|2, by Theorem 3.1
< d4cd.

Now write S as S = & o M, where M is a rigid motion mapping r(B) onto r(A) and & is
a scaling with center 7(A) and ratio a®?*. Let o := m,(a)(A)/m,(p)(B), o the scaling with
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q

o™ oA (b)) =M ((B))l2 __ [0 M (r(B))~ql

Mo ()

o o M (b;)

Me(r(B))

o o M(r(B))

opt

M) =M B Bl @

Figure 3.14: Using the Theorem of Intersecting Lines.

center 7(A) and ratio o, and S = o o M. Then,

EMD; (5(B),5(B)) =

IN

EMD, (& o M(B),o o M(B))

’(aom —a)- m,-(A)(M(B)) , by Lemma 3.8

(" — @) - m,(5)(B)| (3.12)
%Pt ) (B) — - my ) (B)|

| - m,. gy (B) — my(a)(A)|, by definition of a

’mT(Sopt(B))(SOpt(B)) — My (4) (A)| (3.13)
(14 ¢) - EMDy(S°?*(B), A), by Theorem 3.17.

It remains to show that equations (3.12) and (3.13) hold:

e For equation (3.12) we have to show that m,.4)(M(B)) = m,p)(B). This holds because
M is a rigid motion mapping 7(B) onto r(A) and a rigid motion does not affect the
distances to a point which is translated and rotated in the same way.

e For equation (3.13) we have to show that a°P*m,.g)(B) = m,(sert(5))(SP*(B)).

mT(Sopt(B)) (SOpt (B))

Altogether we have

mr(o-optoMopt(B)) (O’Opt e} ]\40pt (B))

MgoptoMort(r(B)) (O-Opt o MP* (B))

G 2By o™ o M (y) — 0 o 2 (r(B))
j=1

éZﬁ] Q°Pt ||M0pt(bj) — MOpt(r(B))HQ, Fig. 3.14
j=1

OéOpt . mMopt(T(B)) (MOpt(B))

OéOpt . mT(B) (B)

EMDy (4, S(B)) < EMDy(A,S(B)) + EMDy(S(B),S(B)) < 2(c+1)8
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for some similarity S composed of a rigid motion that maps r(B) onto r(A) and a scaling with
center r(A) and ratio . Since Algorithm 3.7 finds the optimum among these similarities, the
bound holds for it as well. The runtime of this algorithm depends on the time to compute (i) the
EMDs-reference points, (ii) translate B such that the EMDag-reference points coincide, (iii) scale
the translated version of B, (iv) find the optimal rotation around r(A) and (v) compute the
EMDs between A and the transformed version of B. Since computing the normalized first
moment and therefore the scaling can be done in linear time, the time bound remains the same
as for Algorithm 3.4. O

We can generalize the last theorem to any L,-distance, where 1 < p < oo. The proof is
analogous to the proof of Theorem 3.5 and omitted here.

Theorem 3.19. Let 1 < p < co. Let r: WHE — R? be an EMD,,-reference point with respect
to similarities and with Lipschitz constant c. Algorithm 3.7 finds an approximately optimal
matching for similarities with approzimation factor 2v/d (c + 1) in time O(T* (max{n,m}) +
TEMD (0, m) 4+ T*%(n,m)). This holds for arbitrary dimension d > 2.

We apply the center of mass to obtain implementable algorithms.

Corollary 3.8. Algorithm 3.7 using the center of mass as an EMD-reference point induces an
approzimation algorithm with approzimation factor 4 in the Euclidean case and 4v/d for any
other Ly,-distance, where 1 < p < oo. The runtime is O(T*MP (n,m) +T™%(n,m)). This holds
for any dimension d > 2.

Approximation Algorithm for Similarities in the Plane.

As in the case of Algorithm 3.4, Algorithm 3.7 depends on finding the optimal rotation, which
is impractical. Again we make this algorithm practical and efficient by using the approximation
algorithm for rotations and again we have to pay by a worse approximation factor. As before
we start with the Euclidean EMD in the plane.

Algorithm 3.8.

1. Compute r(A) and r(B) and translate B by r(A4) — r(B).
Let B’ be the image of B.

2. Determine the normalized first moments m,.4y(A) and m,. g (B’),
and scale B" by m,(a)(A)/m,p(B’) around r(A).
Let B” be the image of B’ under this scaling.

3. Find a best matching of A and B” under rotations of B” around r(A),
where r(A), a point of A, and a point of B” are aligned.
Let B” be the image of B” under this rotation.

4. Output B" together with the distance EMDy (A, B").

Theorem 3.20. Let r: W% — R? be an EMDy-reference point for planar weighted point sets
with respect to similarities and with Lipschitz constant c. Algorithm 3.8 finds an approximately
optimal matching for similarities with approzimation factor 4(c+1) in time O(T™f (max{n, m})+
nm - TEMPz2(n_m)).
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Proof. Let A,B € W% for some G € Ry be two planar weighted point sets. Let 7 :=
r(A) —r(B), and let o be the scaling by m,(4)(A)/m,a)(7(B)). Let M* be the rigid motion
minimizing EMDs(A, M o o o 7(B)) while mapping r(B) onto r(A). Let M** be the rigid
motion minimizing EMDg(A, M o 0 o 7(B)) while mapping r(B) onto r(A) and additionally
aligning r(A) a point of A, and a point of B. Let S* = M** o o o 7(B). Note that S* is the
similarity found by Algorithm 3.8. Then

EMDs (A, S*(B)) EMDy (A, M™ o0 o 7(B))
2-EMDy (A,M* oo o7(B)), by Lemma 3.4

<
< 4(1+¢)d, by Theorem 3.18.

The runtime of this algorithm depends on the time to compute the EMDs-reference points,
translate B such that the EMDay-reference points coincide and compute the EMDs at all O(nm)
possible alignments of points in A, B and r(A). O

We extend the result to any L,-distance, where 1 < p < co. The proof is analogous to the
proof of Theorem 3.5.

Theorem 3.21. Regarding EMD,, in the plane, where 1 < p < oo, Algorithm 3.8 finds an
approzimately optimal matching for similarities with approzimation factor 4v/2(c + 1) in time
O(T"*f (max{n,m}) + nm - T*MPr (n_m)).

Applying the center of mass to the last two theorems leads to the following corollary:
Corollary 3.9. Algorithm 3.8 using the center of mass as an EMD-reference point induces an
approximation algorithm with approzimation factor 8 in the case of the Euclidean distance in
the plane and 8v/2 for any other Ly-distance, 1 < p < co. Its runtime is O(nm-TEMP» (n, m)).

Similarities in Higher Dimensions.

As in the corresponding Section 3.4.4 for rigid motions, we can use Algorithm 3.8 to construct
an algorithm for dimensions > 3. Working out the details in Section 3.4.4, one sees that the
necessary changes only concern the process of finding an approximate rotation. Therefore we
can use the same approach and obtain the following results:

Theorem 3.22. Let A, B € W€, where d > 3, G € Rwg and A, B are full-dimensional. An
approzimate similarity S’ such that

EMDy(A,S'(B)) < 2%(c+1) - EMDy°*"(A, B)

can be found in O(T " (max{n,m}) + n?~tma=1 . TEMD(n_m)) time.
Again we can extend the algorithm to any L,-distances:

Theorem 3.23. Let A, B € WG where d > 3, G € Rvg and A, B are full-dimensional. Let
1 <p < oo. An approzimate rigid motion S’ such that

EMD,(4,5'(B)) < 2%Vd(c+1)-EMD"(A, B)

can be found in O(T ! (max{n,m}) + n?"tmd=1. TEMD(n_m)) time.

We apply the center of mass to obtain implementable algorithms:
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Corollary 3.10. Applying the center of mass as an EMD-reference point to the algorithm
described above, the method induces an approxzimation algorithm with approximation factor 2¢+1
in the case of the Euclidean distance and 2%t1\/d for any other L,-distance, where 1 < p < 0.
Its runtime is O(n?=tmd=1 . TEMDs (5 m)).

3.4.6 Scalings that Do Not Work

In this section we show that scaling with respect to the diameter and the normalized second
moment does not lead to a constant-factor approximation algorithm.

Diameter Does Not Work

In the last section we used the quotient of the normalized first moments of the two sets as
approximate scaling factor. Intuitively, a more natural idea is to choose the quotient of the
diameters of the sets. Here we show that this does not lead to a constant-factor approximation.
The reason is that points of very small weight can determine the diameter, without having a
big effect on the EMD. We show that this does not work for the center of mass as an EMD-
reference point and therefore cannot work in general. We concentrate on the Fuclidean case.
It is easy to see that the result holds for any L,-distance as well, where 1 < p < oo.
Consider the following two sets, where K > 1 is any positive constant:

A = {((-1,0),1),((1,0),1),((0,0), 2K — 2)},
B = {((_170)aK)v((1’0)7K)}

The centers of mass of those two sets coincide and they are in optimal position with respect
to rotations. The diameters of both sets are 2, so Algorithm 3.7 using the diameter leaves
those two sets unchanged and computes

1 K-1

EMDy"™(4,B) = s-2(K—1) = ——

as approximate EMDs under similarities. The optimal similarity scales B to 0 for K > 2 and
EMD,%P"(A, B) = 1/K. Thus we get that EMD,*"*(A, B)/EMD,°""(A, B) = K — 1, which
tends to oo as K tends to co. This proves that there is no constant-factor approximation.

Normalized Second Moment Does Not Work

Similar as in the previous section we show that scaling by the quotient of the normalized second
moments does not work either. Again we concentrate on the Euclidean case. We give the well-
known definition of the normalized second moment of a weighted point set with respect to an
arbitrary point p* € R%.

Definition 3.7 (Normalized Second Moment). Let A = {(p;, &;)i=1,...n} € WE be a weighted
point set for some G € R+ and let p* € R? be an arbitrary point. We call

1 n

2 *

m? (A) = D eallp = v
i=1

the normalized second moment of A with respect to p*.
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We show that normalizing by the second moment does not lead to a constant-factor ap-
proximation. We show that this does not work for the center of mass as an EMD-reference
point and therefore cannot work in general.

Consider the following two sets, where K > 1 is any positive constant:

{((—\/E, 0), 1) , ((\/I?, 0), 1) (0,0, 2K — 2)} ,
{((_170)7K) 9 ((170)7K)}'

The centers of mass of those two sets coincide and they are in optimal position with respect

A
B

to rotations. The normalized second moments with respect to the origin can be computed as
follows:

1
mP () = 5= (VE +VE') =1,
1
and m(B) = s E+E) = 1.

Thus, Algorithm 3.7 using the quotient of the normalized second moments leaves the two
weighted point sets unchanged and computes

EMD,™(4,B) = o (2(VE ~1)+2(K ~ 1)),

which tends to 1 as K tends to oco. The optimal similarity scales B to 0 for K > 2 and in this

case we have
WK
2K
which tends to 0 as K tends to co. Thus we get that EMD,*"*(A, B)/EMD,°*" (A, B) tends
to oo as K tends to co. This proves that there is no constant-factor approximation.

EMD,%Y(4, B) =






Chapter 4

Small Manhattan Networks

A Manhattan network on a set S of n points in the plane is a (not necessarily planar) rectilinear
network G with the property that for every pair of points in S, the network G contains a path
between them, whose length equals the Manhattan distance between the points. A Manhattan
network on S can be thought of as a graph G = (V| E), where the vertex set V' corresponds to
the points of S and a set of Steiner points S’. The edges in E correspond to horizontal and
vertical line segments connecting points in V' = S U S’. A Manhattan network can also be
interpreted as a 1-spanner (for the Li-metric) for the points in S. Note that in contrast to the
other Chapters, a Steiner point here describes an additional vertex instead of the curvature
centroid. We give the definition for arbitrary dimension:

Definition 4.1 (Rectlinear Network). A rectilinear network is a graph G = (V, E) with vertex
set V C R? and edge set F, such that E consists of axis-parallel line segments connecting the
points in V.

Definition 4.2 (Manhattan Network). Let S = {p1,...,p,} C R? be a set of points. A Man-
hattan network on S is a rectilinear network G = (V, E), where V consists of the points of S
and a set of Steiner points S’, such that for every pair of points p;, p; in S there is a Manhattan
path, i.e., a path of length ||p; — g;|/1, between them.

The problem to compute a minimum length Manhattan network is a well-researched area,
see Gudmundsson, Leveopoulos and Narasimhan [32], Benkert, Wolff, Widmann and Shirabe [13],
and Chepoi, Nouioua and Vaxes [16]. Even though this problem has received considerable at-
tention, the variant of minimizing the number of vertices and edges of the graph has not been
considered.

In the planar case, we show that there is a Manhattan network on S with O(nlogn) vertices
and edges which can be constructed in O(nlogn) time. The network constructed is not planar.
We show that if we force the network to be planar, there are point sets where every Manhattan
network needs (n?) vertices and edges. We further show that our construction is optimal
in the sense that there are point sets in the plane where every Manhattan network needs
Q(nlogn) vertices and edges. At the expense of a slightly higher time and space complexity of
O(n logd_1 n), we are able to extend our approach to any dimension d > 3. This allows us to
compute the L;-Earth Mover’s Distance EMD; on weighted point sets in R? in O(n? logzdf1 n)
time, which improves the currently best known result of O(n*logn) using Orlin’s algorithm,
see Chapter 3.
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Our approach can be used to speed up the reference point methods for the EMD introduced
in the last chapter. While it can be directly applied in case of the EMD;, it will increase the
approximation ratio by a constant factor for other L,-distances.

The main parts of this chapter have already been published by Gudmundsson, Klein,
Knauer and Smid [33].

4.1 Small Manhattan Networks in the Plane

We formulate and prove the main result of this chapter, whose construction was suggested by
Christian Knauer.

Theorem 4.1. Let S be a set of n points in the plane. Then there is a Manhattan network
on S with O(nlogn) vertices and edges. It can be computed in O(nlogn) time.

Proof. Let S = {p1,...,pn} be a set of n points in the plane and assume that the points are
sorted with respect to their y-coordinates. The sorting can be done in O(nlogn) time. In the
following, L always denotes a list of points which is sorted by y-coordinate. The i-th point in L
is denoted by L[i]. We run the following algorithm on S, see Figure 4.1 for an illustration.

Algorithm 4.1 (ConstructNetwork(L)).
1. Find median p* with respect to x-coordinate.
2. Set L1 = @, L2 = @
3. Fori=1,...,|L| do
(a) Construct vertex v[i] := (pk, L[i],).
(b) Construct edge ep[i] := (L[i],v[d]).
(c) If i > 2: Construct edge e,[i] := (v[i — 1],v[d]).
(d) If L[i]y < pi: add L[i] at the end of L;.
(e) If L[i], > pk: add L[i] at the end of Ls.

4. If |L1] > 1: ConstructNetwork(Ly).
5. If |Lg| > 1: ConstructNetwork(Ls).

We have to prove that the algorithm constructs a Manhattan network. Let p,q € S be two
arbitrary points. Let p* be the first point chosen as a median in Step 1 with p, < p} < ¢,.
Clearly, p and ¢ are both contained in L. W.lLo.g., let p = L[i] =: p; and ¢ = L[j| =: p,
with ¢ < j. In Step 3, p; is considered before p;. Therefore, by construction there are vertices
v[i], v[j], edges (v[i], pi), (v[j],¢;) and sequence of Steiner points v[i],...,v[j]. This sequence
is y-monotone since we have considered the original points in y-increasing order. Thus, the
whole sequence p;,v[i], ..., v[j],p; is an z- and y-monotone path consisting of two horizontal
edges connected by a path of vertical edges, and therefore this path is a Manhattan path. This
proves that the resulting graph is a Manhattan network on S.

The median in a list of k& := |L| numbers can be computed in O(k) time using a result by
Blum, Floyd, Pratt, Rivest and Tarjan [14]. Steps (a) to (d) can be done in constant time.
Therefore, the runtime of Algorithm 4.1 without the two recursive calls is O(k). The insertion
in the lists Ly, Lo is done in sorted order with respect to the y-coordinate. No re-sorting is
needed after the initial sorting step.

The number of points in the lists L1 and Ly is at most half the number of points in L.
Thus, the overall runtime can be described by the recursion T'(n) = O(n) + 2 - T'(n/2), which
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Figure 4.1: Construction of the Network.

resolves to T'(n) = O(nlogn). The number of Steiner points and edges in the construction
obeys the same recursion, since in every recursive call of Algorithm 4.1, O(k) vertices and edges
are added. O

In practice, paths with a small number of vertices are often desirable. We show how to
construct a network such that for every pair of points there is a shortest path with a small
number of vertices. Let a(n) denote the inverse of Ackermann’s function, see Yao [53].

Theorem 4.2. Let S be a set of n points in the plane. Then there is a Manhattan network on S
with O(nlogn) vertices and edges, where the number of edges on a shortest Manhattan path
between any pair of points is bounded by O(a(n)). The network can be computed in O(nlogn)
time.

Proof. The Manhattan path between two input points p, ¢ constructed by Algorithm 4.1 always
has the form p,v1, ..., vk, pj, where vy, ..., v, is a y-monotone sequence of Steiner points lying
on a vertical line. Let k* be the number of Steiner points lying on such a vertical line, generated
in one recursion step in Algorithm 4.1. Using a result of Yao [53], we can compute O(k*) edges
in O(k*) time, each connecting two Steiner points, such that for any pair of Steiner points the
number of edges on a y-monotone shortest path is O(a(k*)). That is, there is a Manhattan
path between p and ¢ with length O(a(k*)) +2 = O(a(n)). Since we can compute these O(k*)
edges in every recursive call in O(k*) time, the asymptotic runtime, the number of edges and
the number of Steiner points does not change. O

At the expense of a slightly higher runtime we can reduce the length of a shortest Man-
hattan path to a constant. The proof is analogous to the proof of Theorem 4.2, again using
constructions by Yao [53].

Theorem 4.3. Let S be a set of n points in the plane. Then there is a Manhattan network
on S with O(nlog®n), O(nlognloglogn) and O(nlognlog® n) vertices and edges, where the
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Figure 4.2: Lower Bound

number of edges on a shortest Manhattan path between any pair of points is bounded by 6,7
and 8, respectively. The networks can be computed in the same runtime.

The upper bound given in Theorem 4.1 is tight. We show this by using 2-dimensional
Horton sets which were introduced by Horton [34].

Theorem 4.4. There are sets of n points in the plane, where every Manhattan network needs
Q(nlogn) vertices and edges.

Proof. We construct a point set P in general position, such that any Manhattan network on P
consists of Q(nlogn) vertices and edges. We assume that n is a power of two. Let £ be a vertical
line separating P into two point sets U := {u1,...,up 2} and V := {v1,...,v,/2}, such that
the points u1,v1,u2,v2, ..., Uy 2,0y /2 are sorted by y-coordinates, from top to bottom, see
Figure 4.2.

For 1 < i < n/2, let R; be the axis-parallel rectangle with top-left corner u; and bottom-
right corner v;. Any Manhattan network on P must contain a path between u; and v; that
crosses ¢ and is completely contained in R;. Since the rectangles R; are pairwise disjoint, it
follows that any Manhattan network on P contains at least n/2 edges that cross ¢. Observe
that this remains true if we move the points of U and V horizontally, as long as U stays to the
left of ¢ and V stays to the right of £. Thus, we can move the points of U, such that they can
be split into two subsets U; and Us that are separated by a vertical line £’ such that the sorted
y-order alternates between a point in U; and a point in Us. Any Manhattan network on P
must contain at least n/4 edges that cross ¢’ and that are distinct from the above n/2 edges.
Similarly, we can move the points of V', and split them into two subsets Vi and V5 that are
separated by a vertical line £ in such a way that any Manhattan network on P must contain
at least n/4 edges that cross ¢ and are distinct from the above n/2 + n/4 edges. We continue
this moving in a recursive way. Below we prove that all these edges are distinct. It follows that
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the number T'(n) of vertices and edges in any Manhattan network on the final set P satisfies
T(n) > n/2+ 2-T(n/2), which proves that T'(n) = Q(nlogn). O

A rigorous proof that the edges constructed in the last proof are distinct was given by
Smid [33]:

Proof. For every integer n which is a power of two, we define the following n x log n matrix M,:
Each entry of M, is one of the symbols L and R. For 1 < k < logn, the k-th column of M,,,
when considered as a string over the alphabet {L, R}, is equal to

<L2k—1R2k—1)n/2k .

Observe that M, = () and, for n > 4, M, consists of two copies of M,, /5 stacked on top of
each other and one last column which is equal to the transpose of (L"/2R"/?),

Let T;, be a perfectly balanced binary tree with n leaves. We store the values 1,2,...,n at
these leaves (from left to right).

Define the point set P, = {p1,p2,...,pn} in the following way: For 1 < ¢ < n, the y-
coordinate of p; is equal to n — ¢. To define the z-coordinate of p;, we traverse the tree T,
(starting at the root) and follow the path as described by the i-th row of the matrix M,, (where,
of course, L stands for “go left” and R stands for “go right”). The z-coordinate of p; is equal
to the value stored at the leaf in which this path ends.

Observe that the set P, consists of the two points (1,1) and (2,0). For n > 4, the point
set P, consists of two “copies” U and V' of P, /, such that

1. U has the same geometric structure as P, 3,
2. V has the same geometric structure as P, /s,
3. U is completely to the left of V', and

4. when visiting the points of P, from top to bottom, we alternate between a point in U
and a point of V.

Let T(n) denote the minimum number of edges in any Manhattan network on P,. Obvi-
ously, T'(2) > 2. Let n > 4, and consider an arbitrary Manhattan network G,, on P,. Consider
the two point sets U and V' as described above. Let £ be the vertical line that separates U
and V. The edge set of the network G, consists of

1. an edge set E, containing all edges that are completely to the left of £,
2. an edge set Fi containing all edges that are completely to the right of £, and
3. an edge set Epp containing all edges that cross £.

The edge set Ef, defines a graph on the set U, which is a Manhattan network on U. Since the
set U has the same geometric structure as P, /o, the size of Ef is at least T(n/2). Similarly,
the size of Eg is at least T(n/2). To prove a lower bound on the size of Epr, we write
U= {u1,...,uyo} and V' = {v1,...,v,/2}, such that the points ui,vi,us,v2,. .., Uy 2, Vp /2
are sorted by y-coordinates, from top to bottom. For 1 < i < n/2, let R; be the axis-parallel
rectangle with top-left corner u; and bottom-right corner v;. The network G,, must contain a
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Figure 4.3: Planar Construction.

path between w; and v; that crosses ¢ and that is completely contained in R;. In particular,
this path contains an edge which is in Fpgr. Since the rectangles R; are pairwise disjoint,
it follows that Epp contains at least n/2 edges. Thus, we have shown that the network G,
contains at least n/2 + 2 - T(n/2) edges. Since G,, was an arbitrary network on P, it follows
that T'(n) > n/2 + 2-T(n/2), which proves that T'(n) = Q(nlogn). O

If the network is required to be planar the lower bound can be improved:

Theorem 4.5. There are sets of n points in the plane, where every planar Manhattan network
needs Q(n?) vertices and edges.

Proof. Let the set P of points in R? be defined as follows, see the black points in Figure 4.3:

n—1 . . . .
i i i i
P = —,0] U —1)2U<(0,— U 1, — .
UGt ACpof ()
Let G be a Manhattan network for this point set. There must be a Manhattan path between
every pair of points (%, 0), (%, 1) and (0, %), (1, %) These paths have to be straight lines, since

in the first case the z-coordinate and in the second case the y-coordinate is the same. This
forces the Q(n?) intersection points of the straight lines to be Steiner points. O

A point set in general position giving the same lower bound can be constructed easily by
perturbing the points slightly.

4.2 Higher Dimensions

In dimensions d > 3 we can use a similar divide-and-conquer approach as in the plane.

Theorem 4.6. Let S be a set of n points in R?. Then there is a Manhattan network on S
with O(nlog® ' n) vertices and edges. It can be computed in O(nlog® ' n) time.
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Proof. Let S = {p1,...,pn} C R? be a set of n d-dimensional points and assume that the
points are sorted with respect to their first coordinates. The sorting can be done in O(nlogn)
time. In the following, L always denotes a list of points which is sorted by their first coordinate.
The é-th point in L is denoted by L[i]. Run the following algorithm on S.

Algorithm 4.2 (ConstructNetwork(L, d)).

1. Find median p* with respect to the d-th coordinate.

2. Set L1 :=0, Lo:=0, P:=0.

3. Fori=1,...,|L| do

(a) Project L[i] on the hyperplane containing p* and orthogonal to

the d-th coordinate.
(b) Let Proj(L[é]) be this point.
(c) Construct edge (Lli], Proj(Ll[d])).
(d) Add Proj(L[i]) at the end of P.
(e) If d =2 and ¢ > 2: Construct edge (Proj(L[i — 1]), Proj(L][d])).
(f) If L[i]lq < pj: add L[¢] at the end of L.

(g) If L[ilq > p}: add L[i] at the end of L.

4. If d > 2: ConstructNetwork(P,d — 1).

(Compute the Manhattan network on this hyperplane.)
5. If |L1] > 1: ConstructNetwork(Lq,d).
6. If |La| > 1: ConstructNetwork(Ls, d).

Except for the recursive calls in the algorithm, any call can be done in O(|L|) time. There
are three recursive calls, one call of the routine for the same number of points in one dimension
less and two calls for the number of points halved in the same dimension. Analogous to the
earlier proof, the runtime of this can be expressed as

T(n,d) = O(n)+T(n,d—1)+2-T(n/2,d)
= O(nlog®'n).

The bound on the number of points and edges follows analogously. Note also that the sorting of
the points with respect their first coordinates is maintained and no re-sorting is necessary. [

4.3 Earth Mover’s Distance

We now show how we can use Algorithm 4.2 to compute the Li-Earth Mover’s Distance (EMDy )
on weighted point sets in O(n2log?? ! n) time. This improves the previously best known time
of O(n*logn). See Chapter 3 for a definition and more details on the EMD.

Theorem 4.7. The EMD; can be computed in O(n?log**~' n) time.

Proof. Let A, B be weighted point sets. Using Theorem 4.6 we can construct a 1-spanner of the
complete bipartite graph between the points of A and B for the L;-metric in O(n log?1 n) time.
The number of points and edges in the resulting network is bounded by O(nlog?~'n). Now
we proceed as in Cabello, Giannopoulos, Knauer and Rote [15]. By the standard method of
doubling each edge and orienting the two copies in different directions we obtain a flow network,
where between any pair of points there is a directed path of minimum L;-length. Now we can
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use the minimum cost flow algorithm by Orlin [41] on the l-spanner. Given a network G =
(V, E), Orlin’s algorithm solves the minimum cost flow problem in O((| E|log |V |)(| E|+log |V])).
Since the number of points and edges in our spanner is bounded by |E| = [V| = O(nlog? ' n),
the overall runtime is bounded by O(n?log ! n). O

Theorem 4.7 immediately leads to a v/2-approximation with the same runtime for the im-
portant case when the EMD is based on the Euclidean distance. This algorithm is conceptually
easier than the slightly faster (1 + £)-approximation given by Cabello, Giannopoulos, Knauer
and Rote [15]. Their method has a runtime of O((n?/e2)log®n) in arbitrary dimension.



Chapter 5

Monge-Kantorovich Distance

In Chapter 3 we have seen how to apply our reference point framework for matching weighted
point sets with respect to the Earth Mover’s Distance (EMD). In this chapter we discuss
whether it is possible to apply the framework to the more general case of Borel measures
defined on R%. The corresponding distance measure is called the Monge-Kantorovich Distance
(MKD). For a comprehensive introduction into this topic see Rachev and Riischendorf [43], and
Villani [50]. We first show that the center of mass is an MKD-reference point for Borel measures
with equal total weight with respect to affine transformations. This was already indicated by
Cohen [19]. We further show that we can use reference points in the same way as we did in
the discrete case to construct approximation algorithms for matching Borel measures under
translations. Unfortunately we cannot directly generalize the constant-factor approximation
algorithms for rigid motions and similarities. In these cases we prove approximation algorithms
for bounding the absolute error.

Although we give a short introduction into Borel measures, we assume basic knowledge of
integration theory. A short introduction can be found in the book by Villani [50].

5.1 Definition

We introduce measures on the Borel o-algebra B in R¢.The Borel o-algebra B of Borel sets is
defined as the o-algebra generated by the open subsets in R?. That is, B fulfills:

1.0eB

2. ACR%openset = AcB
3. AcB=>RI\ AcB

4. (A)ieneB=J2 A eB

A Borel measure is a non-negative and countably additive function defined on the Borel
sets:

Definition 5.1 (Borel Measure). A function ¢: B — R> is called a Borel measure, if () = 0,

81
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and for pairwise disjoint sets of elements (A;);en € B it holds that

w(UAz) = > ol4).

€N €N

As in the case of the EMD, our matching algorithms for two given Borel measures ¢ and ¥
only work when the total weights ¢(R9) and 1(R?) are equal. For simplicity, we concentrate
on Borel measures with total weight 1, that is, Borel probability measures:

Definition 5.2 (Borel Probability Measure). A function ¢: B — R is called a Borel prob-
ability measure, if ¢ is a Borel measure and ¢(R%) = 1.

The extension of the following algorithms to arbitrary Borel measures with finite positive
total weight is straightforward by normalizing by the coinciding total weight of the measures.

Let A, B € B be Borel sets. We can imagine ¢(A) as the amount of mass which is located
in A, and ¢(B) as the amount of mass which can be put into B. To define the MKD between
two given measures we need to define a transportation plan between them. A transportation
plan is a Borel probability measure 7 defined on the Borel sets of R? x R%, where 7(A x B)
denotes the amount of mass which is moved away from A and put into B. To get a reasonable
transportation, m(A x R?) describes the total amount of mass which is moved away from A.
Since the total weights of ¢ and v are the same, m(A x R%) equals the amount of mass ((A)
which is located in A. Similarly, 7(R% x B) equals the amount of mass which is put into B
and therefore equals ¢(B). This leads to the following definition:

Definition 5.3 (Transportation Plan). Let ¢, be Borel probability measures. A transporta-
tion plan from ¢ to 1 is a Borel probability measure 7 defined on the Borel sets of R? x R¢,
such that for all Borel sets A, B € B we have:

1. (A x RY) = p(A)
2. (R4 x B) = (B)

Let II(p, ) denote the set of all transportation plans from ¢ to 1. Note that I1(p, ) # 0
since the tensor product of ¢ and ¢ is in II(p, ). This plan corresponds to the transportation
distributing every single piece of mass over the entire hole, proportionally to the depth.

We define the Monge-Kantorovich Distance between two measures in the following way:

Definition 5.4 (Monge-Kantorovich Distance). Let ¢, 1 be Borel probability measures. We
call

MKD = inf - d
o) = ot [ o=l da(u)

the Monge-Kantorovich Distance between ¢ and .

As in the case of the EMD we do not specify the norm on the underlying space R? in
the above definition. In fact, some of our algorithms work for any norm, although sometimes
adjustments on the approximation ratios are necessary. In some cases the results only hold
when the underlying space R? is equipped with an L,-distance, where 1 < p < co. In these
cases we also use MKD,, to denote the Monge-Kantorovich distance.
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In the following sections we minimize the MKD under translations, rigid motions and
similarities. Let S be a similarity and ¢ be any probability measure. Then we define the
transformed probability measure S(p) by the function ¢, where

90/: B_’RZ(% AH@(S(A)%

i.e., ¢'(A) equals the measure of the transformed Borel set S(A).

5.2 The Center of Mass as an MKD-Reference Point

As in the discrete case of the EMD we prove that the center of mass of a Borel probability
measure is an MKD-reference point with respect to affine transformations. We first define the
continuous version of the center of mass:

Definition 5.5 (Center of Mass). Let ¢: B — Rx( be a Borel probability measure. The center
of mass of ¢ is defined as

Clo) = [ viotw).

The main part of the following theorem is the Lipschitz continuity of the center of mass with
respect to the MKD. Cohen [19] proves this in the discrete case and indicates the extendability
to the continuous case.

Theorem 5.1. The center of mass is an MKD-reference point for Borel probability measures
with respect to affine transformations. Its Lipschitz constant is 1. This holds for arbitrary
dimension d and any norm on the underlying space RY.

Proof. Let ¢,1 be Borel probability measures. The equivariance of the center of mass of a
Borel probability measure under affine transformations is well-known. To prove the Lipschitz
continuity we have to show that

1C(p) = CW)]| < MKD(p,¢)).

By definition we have

1C(p) = CW)Il =

fawat 0= [ was]

Let m be a transportation plan determining MKD(p, ). Informally, dp(v) equals the
weight located at the point v € R? and therefore equals the amount of mass moved by 7 to all
points w € R%, which is described by J.yepa dm(v,w). Analogously, we have that di)(w) equals
Joera dm(v,w). Therefore,

€R4

/ v/ dm(v,w) — / w/ dﬂ(v,w)H

veERE weRE weRY vER

= / / vdr(v,w) — / / w dm (v, w)H
veR JweR4 veRd JweRd

= / / (v —w)dr(v,w)
veR JweR

/ / o — ]| dn(v, w)
veER? JweRd
MKD(p, ).

1C(#) = C ()l

IN
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This proves that the Lipschitz constant of the center of mass as an MKD-reference point is
at most 1. The lower bound follows directly by the fact that the Lipschitz constant of any
reference point is at least 1, see Theorem 1.4. O

We prove the following basic but fundamental result which we use to apply the abstract
approximation algorithm for translations, see Section 1.5.

Theorem 5.2. Let ¢ be a Borel probability measure and let 7 € R? be a translation. Then
MKD (¢,7(¢)) = [7ll
Proof.

MKD(¢p, 7(¢))

= min / ||lv — wl|| dm(v,w)
m€ll(p,7(¢)) JRa xRa

—  min / o = (w+ 7| dr(v,w)
TEIl(p,») JrRdxRd

IN

/ lv = (v+7)| de(v), Dby choosing m(v,v) := ¢(v) as transportation plan
Rd

I
=
T
QU
5
S

By Lipschitz continuity of the center of mass we have MKD(p, 7(¢)) > ||C(p) — C(7(p))|| =
||7||. This proves the lemma. O

5.3 Approximation Using MKD-Reference Points

In this section we give approximation algorithms for the MKD under translations, rigid mo-
tions and similarities. The section is organized as follows: In each part we consider a class of
transformations, construct an approximation algorithm for matching under these transforma-
tions for general MKD-reference points, and finally use the center of mass to obtain a concrete
algorithm. The following results do not hold for measures with unequal total weight.

In the case of rotations, rigid motions and similarities we concentrate on the MKD based
on the Euclidean distance on the underlying space R?. The extension to arbitrary L,-distances
is similar to the case of the EMD and does not lead to any new insights.

In this section let ¢, 1: B — R>( be Borel probability measures. Let  be an MKD-reference
point with respect to the considered class of transformations and with Lipschitz constant c.
Let T"f be the time to compute the MKD-reference point and 7MXP the time to compute the
MKD.

5.3.1 Translations

In this section we apply the abstract approximation algorithms for translations introduced in
Sections 1.5.1 and 1.5.2.
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2-Approximation Algorithm

The following algorithm finds an approximation for the MKD under translations. It determines
the reference points and computes the MKD once. In general there is no algorithm to compute
the MKD, even for fixed probability measures. However, there may be applications where an
achievement of similarity by a translation of one of the sets is desired. The following algorithm
provides a way to find such a translation without computing the MKD.

Algorithm 5.1.

1. Compute r(¢) and r(¢) and translate ¢ by r(p) — r(¢).
Let 7' be the image of .

2. Output ¢’ together with the distance MKD (¢, ¥').

The following theorem is a direct consequence of Theorems 1.5 and 5.2.

Theorem 5.3. Algorithm 5.1 finds an approximately optimal matching for translations with
approzimation factor ¢+ 1 in time O(T" +TMKD) . This holds for arbitrary dimension d and
any norm on the underlying space R?.

The Lipschitz constant of the center of mass is 1 and the time to compute this point is
dominated by the time to compute the MKD. Therefore we can state the following corollary:

Corollary 5.1. Algorithm 5.1 using the center of mass as an MKD-reference point induces an

approzimation algorithm with approximation factor 2. The time to compute the approximation
is O(TMKD),

Lower Bound for the Approximation Factor of Algorithm 5.1

The approximation factor given in Corollary 5.1 is tight in the Euclidean case. Recall that we
write MKDs for the Euclidean Monge-Kantorovich distance.

Theorem 5.4. There are Borel probability measures where the upper bound on the approxima-
tion factor of Algorithm 5.1 using the center of mass as an MKDsy-reference point is assumed
in the limit.

Proof. The result follows by considering small environments around the weighted points which
prove the lower bound for the corresponding algorithm for the EMDsy, see Section 3.4.1. The
probability measure can be any function distributing 1/K of the weight in one of the environ-
ments and (K —1)/K in the other. O

Fully Polynomial-Time Approximation Scheme for Translations

We apply the abstract (1+¢)-approximation algorithm presented in Section 1.5.2 to the MKD,,.
Thus, using Theorems 1.6 and 5.2 we see the following result.

Theorem 5.5. Let ¢, be Borel probability measures. Let 1 < p < oo. Let r be an MKD,,-
reference point with respect to translations and with Lipschitz constant c. Then there exists an
algorithm that for any 0 < e <1 finds a translation 7¢, such that

MKD, (¢, 75(1)) < (L +¢) - MKD, (¢, 7P (1))).

Its runtime is O(e =4 - TMKDPr),
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5.3.2 Rotations

In this section we consider the problem to find an approximation for the MKD under rotations
around a fixed point p* € R?. Unfortunately, we are only able to bound the absolute error.
That is, the result does not lead to a constant-factor approximation. We find the approximate
rotation by computing the minimum MKD on a sufficiently large and dense grid in rotation
space. Let K > 0 be the desired bound on the absolute error. Then the number of grid points
we use is O((K =1 - my-(1))471), where

mp@) = [ o=pladé

denotes the first moment of ¥ with respect to p*. See Definition 3.6 for the discrete analogue.

We first compute an approximation for planar measures with respect to the Euclidean
MKD, and address the general case later. Let R, denote the rotation by angle v € [—7, 7]
around p*.

Algorithm 5.2.
1. Let o := 2 - arcsin (K/(2 - myp-(1)).

2. B* := argmin { MKD(y, R3(¢))) : f=ka with k € Z, and § € [-n, 7] }

3. Output Rg-(¢) together with the distance MKD(¢p, Rg~(%)).

Theorem 5.6. Let ¢, be Borel probability measures in the plane, and let K > 0. Algo-
rithm 5.2 finds a rotation R* := Rg«, such that

MKDs(p, R** (1)) < K+ min MKDs(p, R(3))).
ReRot(p*)

The runtime is the time to compute the MKDy at O(K~! - my« (1)) angles in rotation space.
Proof. W.l.o.g. let ¢, be in optimal position with respect to rotations of ¢) around p*. Let
a =2 - arcsin(K/(2 - my- (1)) denote the angle between two grid angles in rotation space. We

assume that o < 7/2. If necessary we can achieve this by adding at most 4 angles in rotation
space. Let 3 be the grid angle in rotation space closest to the optimum. W.l.o.g. let 8’ > 0.

MKDs (0, R**(¢)))

< MKDsq (¢, Ra (1)), since 4 is a grid point
= MKDs (¢, 1) + min / v—w|o dr(v,w
2 (9, 9) ren R o) Jusscne I 2 dm (v, w)

< MKDsq (¢,v) + / lv — Rg(v)|l, dip(v), by choosing a fixed transportation plan
Rd

— MKD: (e, 0) + [ 2esin(8/2) o~ 5l du(o) (5.1)
R

= MKD; (¢, ¢) +2-sin(5'/2) - mp-(¢)

< MKDs (¢,1) + 2 - sin(a/2) - mp« (), since 0 < 3'/2 < /2 <7 /4

K

MKDq(p, ) + 2 2 ()
P

MKDq(p,v) + K.

-mp« (1), by definition of «
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The number of grid angles is
2m\ 27 B my« ()
o(%) - o (rmmmremray) ~ 0 ("%

The angle between the grid angles in the above theorem is given by a = 2 - arcsin(K/(2 -
myp- (1)) and the runtime of the algorithm is O(my«(¢)/K). Since

O

in  MKD = min  MKD
R 20, B(Y)) = | min 2(R(9),¥),

we can compute the optimal rotation for the probability measure with the smaller first moment
and thereby improve the runtime of the algorithm.

We generalize the last result to higher dimensions by using a sufficiently large grid on the
boundary of the d-dimensional unit ball to determine the grid angles. The number of grid
angles is exponential in the dimension.

Theorem 5.7. Let p,1) be Borel probability measures in R?, and let K > 0. We can find a
rotation R*P*, such that

MKDy(p, B*"(¢)) < K+ min MKDs(p, R(¢)).
ReRot(p*)

The runtime is the time to compute the MKDy at O((K ™! - my-(¥))?1) angles in rotation
space.

Proof. Let § := K/myp-(p). Let Y be a d-net on the boundary of the d-dimensional unit
ball S¥~1. In general, a d-net on S~ ! is a subset Y C S?~!, such that for any point = € S4~!
there exists a point y € Y with ||z — y||2 < J, see Gonzalez [29] and Clarkson [18]. A d-net can
be computed by a greedy-algorithm with a runtime linear in the size of the net. This d-net
consists of ©(1/§971) points on SI~1.

Let R*P* be a rotation inducing the minimum MKDy(¢, Rg())), minimized over all angles 3
corresponding to points in Y. Let g be the grid angle closest to the optimal rotation RPt.
Let 8’ be the angle between g and R°P'. Then,

sin(8'/2) = [lg — R"[2/2 < §/2 = K/(2-my-(p)).

Substituting =" by ”<” in equation (5.1) we can use an analogous calculation as in the proof
of the planar case and the claim follows. O

The latter two results can be generalized to arbitrary L,-distances. The proof is similar to
the proof of Lemma 3.5 and does not lead to new insights.

5.3.3 Rigid Motions

The approach to construct an approximation algorithm for rigid motions is similar to the
construction of the abstract algorithm in Section 1.5.3. Of course, small differences exist based
on the absence of a constant-factor approximation for rotations in general. The algorithm
combines the approximation algorithms for translations and rotations:
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Algorithm 5.3.

1. Compute r(¢) and r(¢)) and translate ¥ by (@) — r(¢).
Let ¢ be the image of .

2. Determine a rotation R*™ € Rot(r(p)), such that

MKD(p, R*™(y")) < K+ min MKD(p, R(¥)).
ReRot(r(p))

3. Output R*P*(¢)') together with the distance MKD(p, R**(¢)')).

Theorem 5.8. Let ¢,1 be two Borel probability measures in R?, and let K > 0. Let r be
an MKDs-reference point with respect to rigid motions and with Lipschitz constant c. Then
Algorithm 5.8 finds a rigid motion M?P*, such that

MKDy(p, M*P(¢)) < K + (1+¢) - MKD3™ (¢,9)).

The runtime is the time to compute the MKDg at O((K~! - my,«(1))?~1) angles in rotation
space, plus the time to compute the reference points.

Proof. Let M°P' be the optimal rigid motion minimizing MKDs (@, M (1)) over all rigid mo-
tions M. Let 7 := r(p) — r(M°P())) and 77 := r(p) — r(). Let M* be a rigid motion
minimizing MKDsy(¢p, M (¢)) while mapping (/) onto r(¢). Let R** be the approximate
rotation determined by Algorithm 5.3.

MKDy (g, R** o 77t (1)) < RER%%(@)) MKDs (¢, R o 7 (1))
= K+ MKDs(p, M*(¢)))
< K +MKDs(p, 70 MPH(1)))
< K 4 MKDy (0, MOPH (1)) + MKDo (MO (), 7 0 MP (1))
= K 4 MKDs(p, MPY () + |72
< K +MKDy(p, M°P (1)) + ¢ - MKDy(¢, M°P (1))

K + (1 + ¢) - MKDy(ip, M°Pt (1))

The runtime of this algorithm is the time to compute the MKDs-reference points, the time
to find the rotation R*"*, and the time to compute the MKD, between ¢ and R o 77¢(¢)).
By Theorems 5.6 and 5.7 we know that the time to find R*P* equals the time to compute the
MKD; at most O((K~! - m,«(1))?~1) times. O

As before, the runtime can be improved by choosing the minimum of the two first moments.
A generalization to arbitrary L,-distances is also possible.

5.3.4 Similarities

We construct an algorithm for minimizing the MKD under similarities by applying Algo-
rithm 5.3 to the two probability measures, where one of them is scaled by the quotient of the
first moments of the two measures. Exchanging the roles of ¢ and 1 makes a difference in
this case. See also the remarks on the abstract approximation algorithm for similarities in
Section 1.5.4.



5.3. APPROXIMATION USING MKD-REFERENCE POINTS 89

Algorithm 5.4.

1. Compute r(¢) and r(¢) and translate ¢ by r(p) — r(¢).
Let v’ be the image of .

2. Determine the first moments m,.(,)(¢) and m,.4) (1) and scale ¥’ by
My () (9) /Mgy (¥) around the center ().
Let 9" be the image of 9’ under this scaling.

3. Determine a rotation R** € Rot(r(y)), such that

MKD(p, R*®*()")) < K+ min  MKD(p, R(x")).
ReRot(r(y))

4. Output R*P*(¢)"") together with the distance MKD(p, R*P*()")).

It is straightforward to generalize Lemma 3.8 and Theorem 3.17 to the continuous case.
Thereby it is possible to prove an analogous version of Theorem 3.18. Further, analogously to
the proof of Theorem 3.20 we observe the following result:

Observation 5.1. Let ¢, be Borel probability measures, and let K > 0. Let r be an MKD,-
reference point with respect to similarities and with Lipschitz constant c. Algorithm 5.3 finds
a similarity S*P*, such that

MKDz(p, S**(¢)) < K +2(1 + ¢) - MKDy™ (9, ).

The runtime is the time to compute the MKDy at most O((K " - my- ()%™ 1) times plus the
time to compute the reference points.

The transformed Borel probability measure is scaled such that its first moment equals the
first moment of the fixed measure before finding the approximating rotation. Therefore the
runtime depends on the first moment of the fixed measure. Thus, choosing the measure with
the smaller first moment to be fixed decreases the runtime, but also changes the result.






Chapter 6

Bottleneck Distance

A well-known and frequently used metric in shape matching is the bottleneck distance for point
sets with an equal number of points in each set. The bottleneck distance is the maximum
distance of two matched points minimized over all perfect matchings between the two sets. We
give a formal definition:

Definition 6.1. Let P%"™ denote the set of d-dimensional point sets with exactly n points.
Let A= {ai,...,a,} and B = {by,...,b,} € P¥" and let S, be the group of permutations.
We define the bottleneck distance between A and B as

Di(A,B) := min max |la; = ey, -

€Sy j=1,..

It is easy to prove that this defines a metric for point sets of equal size in R%. This distance
measure is preferred whenever it is required that each object in one image has to be matched
by exactly one object in the other image. See the papers of Efrat, Itai and Katz [25], and
Vaidya [49] for further information on the bottleneck distance.

6.1 Related Work and Results

Efrat, Itai and Katz [25] show how to compute the bottleneck distance between two fixed
point sets with n points each in the plane in O(n'5logn). They also give approximation
algorithms to compute the bottleneck distance for fixed sets in higher dimensions. In R3,
a (1+&1)-approximation for the Euclidean bottleneck distance can be computed in O(n!!/6+22)
time. If we use the L,.-metric as the underlying norm, this runtime can be improved to
O(nl'slogd n). In arbitrary dimension a (1 4 ¢)-approximation of D} can be computed in
O(d(1 4+ &e~1)4nt5logn) time. This holds in any dimension and for any 1 < p < co.

Efrat, Itai and Katz [25] also describe a method to minimize the bottleneck distance under
translations. They first give an algorithm with runtime O(n®logn) for the decision problem.
A second algorithm is based on ideas for the first algorithm and on the parametric search
paradigm of Megiddo [40] as well as Cole’s trick [22]. It solves the optimization problem in
O(nlog® n) time.

These algorithms to compute the bottleneck distance under translations are the best known
methods for finding the exact solution. Therefore fast approximation routines are needed.
Efrat, Itai and Katz [25] give a (14 Vd )-approximation algorithm for the optimization problem

91
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under translations with runtime O(n!-%logn). As we discuss later in Section 6.4, this algorithm
is a special case of our reference point method if we choose the lower left corner of the smallest
axis-parallel hyperrectangle enclosing a point set as the reference point. Using the center of
mass as the reference point we can improve this result to an approximation factor of 2 without
increasing the runtime.

In contrast to the lower left corner, the center of mass is equivariant with respect to affine
transformations. This allows us to construct approximation algorithms for wider classes of
transformations, like rigid motions and similarities. Recently, Agarwal and Phillips [1] have
shown a 2-approximation algorithm for matching point sets under rotations in the plane in
time O(n3polylogn) if the Euclidean distance is chosen as the underlying metric. The main
contribution of this chapter is that we improve this runtime significantly using different ideas.
We show a (1 + v/2)-approximation for the same problem with runtime O(n?®°logn). Thus,
except for the slightly worse approximation factor, we improve the result of Agarwal and
Phillips [1] by a factor of Q(n). Based on this, we show a 2(1 + v/2)-approximation for
rigid motions and a 4(1 + ﬁ)—approximation for similarity transformations with runtime
O(n*®logn). Later we use a uniformly distributed -net of size O(¢~1/2) on the unit circle to
bound the approximation ratio to 24+¢e. We further derive fully polynomial-time approximation
schemes (FPTAS) by standard discretization methods for translations and rigid motions. The
dependence on e~! is quadratic in the first case and cubic in the second case.

We also give an exact algorithm to compute the bottleneck distance under rotations around
a fixed point. The runtime of this algorithm is O(n°°logn).

Based on the fact that ||al|, < V/d||allz < d||al|, for every a € R and 1 < p < oo, we show
that the approximation algorithms generalize to arbitrary L,-distance as the underlying norm.
The approximation ratio increases by a factor of at most v/d.

We can generalize the approximation algorithms for rigid motions and similarities to any
dimension > 3. The method is similar to the one which was used by Klein and Veltkamp [3§]
for the Earth Mover’s Distance (EMD). Unfortunately, the runtime and approximation factor
are exponential in the dimension.

6.2 Preliminaries

We prove a basic but fundamental result which allows us to use the abstract approximation
algorithms introduced in Section 1.5.

Theorem 6.1. For any point set A € P*"™ and any translation 7 € R we have
Di(A,7(A)) = [l

Proof. In Theorem 6.7 below we show that the center of mass is a D}-reference point with
Lipschitz constant 1. Thus,

Di(A,7(4)) = [|IC(A) =C(A+7), = II7llp,

where C'(A) denotes the center of mass of A. Since any point has a distance of |||, to its
translated version we have DY%(A, 7(A)) > ||7||, and the lemma is proven. O
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Figure 6.1: Distance Functions Under Translations

6.3 Bottleneck Distance Under Translations on a Line

In general, the problem to exactly compute the minimum bottleneck distance under translations
seems to be computationally expensive. In this section we show that this problem is easy if
the point sets consist of real numbers, i.e., of points on a line.

Let A= {ai,...,a,} and B = {by,...,b,} be two point sets in P1". Let the coordinates a;
and b; be monotonously increasing. If the point sets are not sorted, we sort them beforehand.
This increases the runtime given in Theorem 6.2 to O(nlogn).

In Figure 6.1 we give an example of two point sets A, B € P13 under translation, where
A={5,7,12} and B = {3,4,6}.

Lemma 6.1. The minimum bottleneck distance under translations is always induced by the
permutation which maps a; to b; for every j =1,...,d.

Proof. We can interpret the matching problem as minimum cost flow problem and use the
greedy algorithm given in the proof of Theorem 3.7. O

Theorem 6.2. The minimum bottleneck distance under translations between sorted point sets
on the line can be computed in O(n) time.

Proof. By Lemma 6.1 we know that

DR (A, B) = min max a; —b; — 7],
Hence we have to minimize the upper envelope of n functions describing the distance of
points under translation on the line, see Figure 6.1. Let m := minjzlymm(aj — b;) and
M = maxj=1_. n(a; — bj). The distance function of two points under translation equals
the function of the absolute value translated by the difference of the two points. For all these
functions we have that the derivative is —1 on the left side of the translation where the two
points coincide, and 41 on the right. Therefore, the minimum of the upper envelope is assumed
by a translation exactly in the middle of the minimum and the maximum difference of two
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points, i.e., the minimum is attained when 7 = (M +m)/2. The optimal distance DgOpt(A, B)
equals (M —m)/2. O

6.4 The Lower Left Corner as a Reference Point

Let LL(A) be the point in R? where the j-th coordinate of LL(A) is the minimum of all j-
th coordinates of all points in A. In R? this describes the lower left corner of the smallest
axis-parallel rectangle enclosing A. Then the mapping LL: P%" — R% is a D?y-reference point
with respect to translations. The ideas involved in the proof have been used by Efrat, Itai
and Katz [25] and Alt, Behrends and Blomer [4]. In the first paper [25], an approximation
algorithm for the bottleneck distance under translations in R? is given, in the second work [4]
a similar one is given for the Hausdorff distance, see Section 2.3.1.

Theorem 6.3. Let 1 < p < co. Then the lower left corner LL: P%" — R? is q Dy -reference
point with respect to translations. Its Lipschitz constant is at most ¥/d for 1 < p < co and it
is 1 for p = oo.

Proof. The equivariance of the lower left corner under translations is obvious. We show the
Lipschitz continuity

ILL(A) = LL(B)|l, < ¥d-Dj(A, B).

To see this consider

d
ILL(A) —LL(B)ll, = | > I(LL(A) — LL(B))lr

IA

</d - max [(LL(4) — LL(B));[»

= \’Vajnllaxd\(LL(A)fLL(B))jL
Let j* be an index where the maximum in the above formula is assumed. Let a* and b*
be points with minimal j*-th coordinate in A and B, respectively. That is, |[(a* — b*);-
max;—1,. q|(LL(A) — LL(B));|. W.Lo.g. let a* be the point with the smaller j*-th coordinate
of these two. This point has to be matched to a point of B in every matching and clearly, the
distance of a* to its match is at least the distance of the j*-th coordinate. Therefore

(" = %)+ ] < |

a* — b,r(a*) »

for every permutation = € S,,. Naturally, 7(a*) denotes 7(k), where k is the index of a*. Since
the above inequality holds for any permutation, it especially holds for the minimum, i.e.,

(@ = 0%);

< min Ha* = br(a*)

TESH P’

The last inequality stays true if we maximize over all distances of all matched points instead
of the distance between a* and by (q-), i.e.,

[(a® —b") -

< min max Ha~—b H .
— 7meS,j=1,...n J () P
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This leads to

ILL(A) = LL(B)|,, < ¥/d- |(a” = b");-

< ¥/d- min max la; = bry)|| = Vd - D4(A, B).

eSS, j=1,..

This concludes the proof for 1 < p < co. The proof for p = oo is analogous since by definition
ILL(A) — LL(B)|l, = max;—1,...a |(LL(A) = LL(B));]. O

The following theorem is a reformulation of a result by Efrat, Itai and Katz [25] in terms
of reference points and extended to arbitrary dimension. The proof follows directly, using the
result on the abstract approximation Algorithm 1.1 for translations and Theorem 6.1.

Theorem 6.4. The Dy-reference point LL: P — R induces an approximation algorithm
for the bottleneck distance under translations with approzimation factor 1+ ¥/d for 1 < p < oo
and 2 for p = co. Its runtime is the time to compute the bottleneck distance in R?.

Efrat, Itai and Katz [25] use an e-grid in translation space around the translation for which
the two lower left corners coincide to construct a (14 ¢)-approximation algorithm. In arbitrary
dimension d, this algorithm has a runtime of O(¢~2%n!-5lognloge~!). We describe the method
in Section 6.8 and generalize the result to arbitrary reference points.

In the following section we give a lower bound for the matching algorithm using the lower
left corner in the Euclidean case, i.e., we give an example of two point sets in R? where an
approximation ratio of 14 /2 is assumed. Recalling Theorem 1.2 and the fact that every fixed
corner of the smallest axis-parallel hyperrectangle enclosing a point set is a reference point
as well, one might think about using a convex combination of all those points as a reference
point. A natural candidate is the convex combination defining the center of the set, i.e., the
combination where every corner contributes the same part.

Definition 6.2. Let A € P%" be a point set. We define CC(A) as the sum of all corners of
the smallest axis-parallel hyperrectangle enclosing A divided by 2™.

By Theorem 1.2, CC is a reference point with Lipschitz constant at most {/d and therefore
leads to a constant-factor approximation of ratio 14 {/d. Unfortunately, even for this reference
point we were able to find a lower bound in the Euclidean case, as we describe in Section 6.4.2.
Note that CC is not equivariant under rotations and therefore is a reference point with respect
to translations only.

6.4.1 Lower Bound for the Lower Left Corner

We show that the constants given in Theorems 6.3 and 6.4 cannot be improved. We do this
for the Euclidean case in the plane. The lower bound is given by two sets where matching of
the two lower left corners leads to an approximation factor of 1+ /2. The lower bound for the
Lipschitz constant of LL as a reference point follows from this. Let A, B € P4,

1 1 1 1

4= e (J5-75) 00 (5 )
B := {(0,0),(0,0),(0,0),(0,0)}.

See Figure 6.2 for an illustration. The two point sets are obviously in optimal position with
respect to translations. It follows that D" (A4, B) = 1.
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Figure 6.2: Optimal Matching Figure 6.3: LL-Matching

On the other hand, matching with respect to coinciding lower left corners leads to a position
where the points of B are placed in (—1, —1), see Figure 6.3. The maximum distance is assumed

by any point in B and a4 and equals ||by — aq]2 = 4/2(1 + %)2 =1+V2

A lower bound in general position can be easily constructed by perturbing B slightly.

6.4.2 Lower Bound for the Center

Similar to the last section we show a lower bound for the approximation algorithm induced
by the center of the point set, i.e., the convex combination of all corners of the smallest axis-
parallel hyperrectangle enclosing the point set, where any of these points contributes the same
part. Again we prove this for the Euclidean case in the plane. By Theorem 1.2 this mapping
is a reference point with respect to translations and with Lipschitz constant v/2. Let the point
sets A and B in P27 be given by

(o o000 () (o) (s )
= {(1,-1),(-1,1),(-1,-1),(-1,-1),(-1,-1), (-1, -1),(-1,-1)}.

See Figure 6.5 for an illustration.

In the given position CC(A) = CC(B) = (0,0) and therefore the approximation algorithm
leaves the point sets unchanged. The bottleneck distance in this position is 1 4+ v/2, since at
least one point of as, ag and a7 has to be matched to some point of {bs,...,b7}. But, as can
be seen in Figure 6.4, a translation of B by (1,1) leads to a bottleneck distance of 1, proving
an approximation ratio of 1+ /2. The lower bound for the Lipschitz constant of the center as

a reference point follows from this.
Again, a lower bound using point sets in general position can be constructed by perturbing
the two point sets slightly.

6.5 Center of Mass of the Boundary of the Convex Hull

Alt, Behrends and Blomer [4] show that the center of mass of the boundary of the convex hull
of a compact subset in the plane is a reference point for the Hausdorff distance with respect
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to similarities, see Chapter 2. They do this in the case of R? equipped with the Euclidean
distance. This is the first mapping shown to be a reference point with respect to similarities.
Its Lipschitz constant is at most 47 4+ 3. We show that the center of mass of the boundary of
the convex hull is also a Dg-reference point.

We first prove that the Hausdorff distance D,Q{ is a lower bound for the bottleneck distance.

Lemma 6.2. Let A, B € P%". Then
D2(A,B) < DA(A,B).

Proof. Let m* € S, be a permutation inducing the bottleneck distance between A and B. Let
D3,(A, B) denote the directed Hausdorff distance from A to B. Then,

D}(A,B) = :HllaXnHa:j_bTr*(j)HQ

> i N
2 max min |a;—bi,

= D3/(A,B).
Using D%(A, B) = D(B, A), an analogous proof shows D%(A, B) > 5%{(3, A). O
Using Theorem 1.3, we obtain the following result:

Theorem 6.5. The center of mass of the boundary of the convex hull is a D¥-reference point
with respect to similarities. Its Lipschitz constant is at most 4w + 3.

In contrast, the center of mass of the volume of the convex hull and the center of mass of
the vertices of the convex hull are not Dg-reference points.

Again, we obtain an approximation algorithm for the bottleneck distance under translations
by Theorem 6.1 and the abstract approximation Algorithm 1.1.

Theorem 6.6. The center of mass of the boundary of the conver hull as a D%-reference
point induces an approrimation algorithm for the bottleneck distance under translations with
approzimation factor 4w + 4. The runtime of this algorithm is O(n'-5logn).

Proof. The time to compute the convex hull is O(nlogn) and the center of mass can be
computed in linear time. Therefore, the runtime of the algorithm is dominated by the time
needed to compute the bottleneck distance in the plane, which is O(n'->logn). O
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6.6 The Center of Mass as a Reference Point

In this section we show that the center of mass C(A) = %Z?:l a; of a point set A =
{a1,...,a} € PLn s a D7-reference point with respect to affine transformations.

Theorem 6.7. Let 1 < p < co. The center of mass C: P¥" — R? is q D7 -reference point
with respect to affine transformations. Its Lipschitz constant is 1.

Proof. The equivariance of the center of mass of a point set under affine transformations is
well-known. We prove the Lipschitz continuity as follows:

Let A= {a,...,an},B = {by,...,b,} € P%" be two point sets in R%. Let 7* € S, be a
permutation inducing the bottleneck distance. Then,

1 — 1™
e -cwl, = 33033
Jj=1 j=1
P

1 — 1 —
= gZaj—gaw*<j>
j=1 j=1

p

IA

1 n
- > ;- b= (i),
=1

1

—n -+ max ||a-fb « H
i=1,...,n J ™ (9) p

n J
— DY(A,B).

IN

This proves that the Lipschitz constant of the center of mass as a Dp-reference point is at
most 1. The lower bound follows directly by the fact that the Lipschitz constant of any
reference point is at least 1, see Theorem 1.4. O

The last proof does not make any use of the properties of the L,-metric. In fact, the center
of mass is a reference point for the bottleneck distance defined on any norm on the underlying
space R?%. The Lipschitz constant in all of these cases is 1.

Using results of Rubner, Tomasi and Guibas [44], and Cohen [19], it was shown by Klein
and Veltkamp [37] that the center of mass is a reference point for the Earth Mover’s Distance,
see Chapter 3. Observing basic network flow theory, in the case of two point sets with the
same number of points and equal weight in each point, there is always a minimum cost flow
inducing the EMD which also induces a perfect matching between the two sets. Since the
bottleneck distance is the maximum distance of a matched pair of points and the EMD is
the average distance, we have that EMD(A, B) < Dg(A, B) for all point sets A, B € P%n.
Thus, Theorem 6.7 follows directly by Theorem 1.3 and the fact that the center of mass is an
EMD-reference point with Lipschitz constant 1.

Again we apply the abstract approximation Algorithm 1.1. Using Theorems 1.5 and 6.1 we
obtain the following result:

Theorem 6.8. Let 1 < p < co. The center of mass as a Di-reference point induces an appro-
imation algorithm for the bottleneck distance under translations with approzimation factor 2.
Its runtime is the time to compute the bottleneck distance in RY.
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6.6.1 Lower Bound for the Center of Mass

In this section we prove a lower bound for the approximation algorithm for the bottleneck
distance under translations using the center of mass as a Dj-reference point. The lower bound
does not equal 2, but tends to 2 as the number of used points tends to infinity. Consider the
following two point sets A, B € P

e A consists of the point a located at coordinates (2,0) and n — 1 points located at the
origin.

e B is be a set of n points located at (1,0).

Obviously, A and B are in optimal position with respect to translations and the bottleneck
distance between the two sets is 1. For n tending to infinity, the center of mass of A tends to
the origin. The center of mass of B stays at (1,0). Therefore, matching in a way that the two
centers of mass coincide translates B in a way that all its points are located near the origin.
One point of B has to be matched to a = (2,0) and thus, the length of the longest matching
arc tends to 2 as n tends to infinity.

6.7 The Steiner Point as a Reference Point

Alt, Aichholzer and Rote [3] show that the Steiner point is a reference point for the Hausdorff
distance for compact subsets of R? with respect to similarities, see Section 2.3.3. They consider
the case of R? equipped with the Euclidean distance. Therefore we also restrict our consider-
ations to this case. The Steiner point is a D%—reference point with respect to similarities. By
Theorem 1.3, this is a direct consequence of the fact that D3,(A, B) < D%(A, B) for all point
sets A, B € P%", see Lemma 6.2. Its Lipschitz constant is

~2d-Vol(BY)  2D(d/2+1)
XM= NS T a(d/2 + 1)2)

where B¢ denotes the d-dimensional unit ball and S¢~! its boundary, the (d — 1)-dimensional
unit sphere in R?, and I' denotes the Gamma function.

Theorem 6.9. The Steiner point is a D%-reference point with respect to similarities. Its
Lipschitz constant is x4, which ford =2 is4/m, for d = 3 is 3/2, and for arbitrary dimension d

lies between \/2/mVd and \/2/7\/d + 1.

Again we obtain an approximation algorithm for the bottleneck distance under translations
using Theorems 1.5 and 6.1.

Theorem 6.10. The Steiner point as a D%-reference point induces an approzimation algorithm
for the bottleneck distance under translations with approrimation factor 14+xq. The runtime of
this algorithm is O(n'-5logn) in the plane. In general, the runtime equals the time to compute
the Steiner points plus the time to compute the bottleneck distance in RY.

Proof. The runtime of the algorithm is the sum of the time to compute the Steiner points and
the time to compute the bottleneck distance. In the plane, the Steiner point of a point set is
defined as the Steiner point of the convex hull, see Alt, Aichholzer and Rote [3]. Computing
the convex hull of a point set in the plane takes O(nlogn) time and the Steiner point can be
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computed in linear time. Therefore, the runtime of the algorithm in the plane is dominated by
the time needed to compute the bottleneck distance, which is O(n!-% logn). O

6.8 FPTAS for Translations

Efrat, Itai and Katz [25] use the constant-factor approximation induced by the lower left corner,
see Section 6.4, to obtain a (1 + €)-approximation algorithm for the bottleneck distance under
translations. In Section 1.5.2 we have shown how to generalize their approach to arbitrary
reference points and to a huge class of distance measures on shapes. Thus, the following result
is a direct consequence of Theorems 1.6 and 6.1. We further apply the (1 + &)-approximation
for the bottleneck distance between fixed sets with a runtime of O(d(1 + e~1)9n!->logn) by
Efrat, Itai and Katz [25].

Theorem 6.11. [25] Let A, B € P4"™ and let r be a Di-reference point with respect to trans-
lations and with Lipschitz constant c. There exists an algorithm that for any € > 0 finds in
time O(e~2n!? lognloge™!) a translation 7° such that

DYL(A,B+171°) < (1+¢€)-DR(A, B+ 7°P").

In the plane we can compute the optimal distance in O(n!®logn) time at each of the
O(e72) grid points and get a (1 + €)-approximation in O(~2n!5logn) time.

6.9 Exact Algorithm for Rotations in the Plane

We give a polynomial time algorithm to compute the minimum bottleneck distance under
rotations around a fixed point in the plane. We do this for the bottleneck distance based on
L,-distances where p is a rational number. The question if there is a polynomial algorithm
if p is irrational is open. Thus for the whole section we assume that 1 < p < oo and that p is
rational if # co. We further assume that p is a constant.

We first discuss how the distance of two points in the plane changes while one of them is
rotated around a fixed rotation center. W.l.o.g. we fix the rotation center to the origin. Let
a = (ag,ay) be the unrotated point and let b := (b, b,). The distance of a and b under a
counterclockwise rotation of b by an angle (3 is

la— Rg(b)|l, = {/|az — by -cos S+ by -sin B’ + |a, — by - sin B — by, - cos B|°
if 1 <p<ooand

la — R3(b)||sc = max{|ag — by - cosf+ by -sinf|,|ay — by -sin B — by - cos |}
for p = o0.

Lemma 6.3. Let f1 # fo be two functions describing the distance of two pairs of points under
rotations around the same center. The number of angles 8 where f1(8) = f2(8) is bounded by
a constant.

Proof. Tt is well-known that we can parameterize the sine and cosine as

2t 1—¢2

sinfg = e and cosf = e
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In each of the functions fi, fo there are two absolute values, which leads to 4 possible sign
patterns in each of the functions. Thus, checking the equality of f; and fs can be done by
checking the equality for the at most 16 sign patterns of the two functions. Since p € Q if
# 00, every equation is algebraic and of constant degree. Therefore this equation has at most
a constant number of solutions and thus the overall number of angles 8 where f1(8) = f2(3)
is bounded by a constant. O

Since p is a constant, every distance function as described above is algebraic and of constant
degree. We assume that we can minimize those functions on an arbitrary interval in constant
time. Further we assume that we can compute all angles where two of these distance functions
are equal in constant time.

Note that it is open if there is a global bound on the number of solutions which is indepen-
dent of p. Using this lemma we can prove the following theorem:

Theorem 6.12. Let A, B € P?" be two planar point sets and let p* € R? be a fized point. Let
1<p<ooandpeQif#oco. We can compute the minimum bottleneck distance D7 under
rotations of B around p* in O(n55logn) time.

Proof. Let m be a fixed permutation. If 7 induces the minimum bottleneck distance under
rotations of B around p*, we can write
min D%(A,R(B)) = min max ||a; — Rg(bx(; .
RERot(p*) 5( (B)) #€[0,27] j=1,...,n H J o ’T(j))HP

Therefore we can determine the optimal angle by minimizing the upper envelope of n distance
functions as described above.

In the following we prove that there are O(n?) angles where the permutation set inducing
the bottleneck distance can change. For ¢ = 1,2 let ¢; be a fixed angle and let m; be a
permutation inducing the bottleneck distance of A and Ry, (B). Consider the functions

fri:10,27] = Rzo, - &= mmaxfla; = Rolbr, ()],

Since fr, is the upper envelope of n continuous functions, fr, is continuous itself. Assume 7;
does not induce the bottleneck distance between A and Rg,(B), and m does not induce
the bottleneck distance between A and Ry, (B). This implies that fr, (¢1) < fr,(¢1) and
fay (P2) > fry(p2). Since fr, and fr, are continuous, there exists an angle ¢*, such that
fry (6%) = fry(¢*). This implies that

jmax laj = Ror (bn )|, = max [la; = Bor (brai)| -
Thus there are points a1, a2 € A and by, by € B such that |jai — Ry« (b1)]|p = ||az — Re+ (b2)||p-
There are O(n?) pairs of points in A and B. Therefore the number of pairs of pairs of points
is O(n*). The distance of a fixed pair of points equals the distance of another pair of points
at at most a constant number of rotations, see Lemma 6.3 and the following comments. This
directly leads to O(n*) event angles which can be computed in O(n*) time. Computing the
bottleneck distance at the midpoint between two subsequent event angles determines a per-
mutation inducing the bottleneck distance on the interval between the two event angles. This
function can be minimized in constant time on this interval, see the remarks above.

Thus we have shown that the following algorithm computes the optimal bottleneck distance
under rotations of B around p*.
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Algorithm 6.1.
1. Compute the O(n*) event angles and sort them.
2. Let ¢1,..., Pm, Pm+1 := ¢1 be the sorted list.
3. Foranyt=1,...,m—1do:

(a) Let ¢ := (¢i+1 — &5)/2.

(b) Consider a permutation m inducing D% (A, Ry(B).
)
)

(c

(d) Minimize f, on the interval [¢;, p;11].

Determine f;.

4. Output the global minimum.

The runtime of this algorithm is the time to compute the bottleneck distance at the O(n*)
event angles. Sorting these angles needs O(n*logn) time. Since computing the bottleneck
distance once needs O(n'-5logn) time, the claim follows. O

6.10 Rigid Motions

We now investigate rigid motions and give several algorithms to minimize the bottleneck dis-
tance under this class of transformations. As in the corresponding Section 3.4.3 for the EMD
we show a first method using an oracle which finds the optimal rotation around a fixed point.
In contrast to the EMD, where we do not know an exact algorithm, we have seen a solution for
this problem in Section 6.9. This method has a runtime of O(n°logn) and it can be applied
for any rational p, where 1 < p < oo, or p = cc.

6.10.1 Approximation for Rigid Motions

The first algorithm provides a tool for the development of efficient algorithms:

Algorithm 6.2.

1. Compute r(A) and r(B) and translate B by r(A) — r(B).
Let B’ be the image of B.

2. Find an optimal matching of A and B’ under rotations of B’ around r(A4).
Let B” be the image of B’ under this rotation.

3. Output B” together with the distance D% (A, B”).

The following theorem is a direct consequence of Theorems 1.7 and 6.1.

Theorem 6.13. Let A,B € P%". Letr be a D -reference point with respect to rigid motions
and with Lipschitz constant c. Algorithm 6.2 finds an approzimately optimal matching for rigid
motions with approzimation factor ¢ + 1 in time O(T* (n) 4+ TP5(n) + T™%(n)).

All reference points with respect to a transformation class including the set of rigid motions
mentioned in this chapter may be applied to the last theorem. Therefore this result leads
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to several approximation algorithms with different approximation ratios, depending on the
Lipschitz constant of the used reference point. For instance, applying the center of mass as a
Di-reference point leads to the following corollary:

Corollary 6.1. Algorithm 6.2 using the center of mass as a D%-reference point finds an approx-

imately optimal matching for rigid motions with approzimation factor 2 in time O(TP5(n) +
TrOt (n))

Lower Bound for Algorithm 6.2

A lower bound for Algorithm 6.2 using the center of mass as Dp-reference point is given by
the same sets used in Section 6.6.1. These point sets are in optimal position with respect to
rotations. Therefore an approximation ratio tending to 2 is assumed as n tends to infinity.

6.10.2 Rigid Motion Approximation Using Rotation Approximation

We use Algorithm 6.2 to construct faster approximation algorithms for rigid motions. Similar
to the corresponding Section 3.4.4 for the EMD we prove a lemma that suggests a constant-
factor approximation for the bottleneck distance under rotations around a fixed point. We
prove the result for the Euclidean case first and generalize it to arbitrary L,-distance later.
The proof of the following lemma is based on a result by Giannopoulos [26].

Lemma 6.4. Let A, B € P4™ be two point sets and let p* € R be a fized point. Let Rot(p*)
be the set of rotations around p*. There is a rotation R** € Rot(p*) such that
D3(A, R™(B)) < 2- min D}(A,R(B)),
ReRot(p*)

where R*P* aligns p*, a point of A, and a point of B.

Proof. W.l.o.g. let A and B be in optimal position with respect to rotations of B around p*.
In the proof of Lemma 3.4 we have shown that there is a rotation R**, which aligns p*, a
point of A, and a point of B, and additionally, for every pair of points a € A and b € B we
have

la = B*X(b)]l2 < 2]ja = b2

This surely holds for any matched pair of points and therefore we conclude

DA B (B) = mip max fa; = B (bxi)],
< 2-min max |la; —bagyll,
= 2-D%(A,B).

Analogous to Lemma 3.5 we extend the result to any L,-distance, where 1 < p < oo:

Lemma 6.5. Let A, B € P%™ be two point sets and let p* € R be a fized point. Let Rot(p*)
be the set of rotations around p*. There exists a rotation R** € Rot(p*) such that

p apx < . 3 P
DE(A, R*P(B)) < 2Vd rein  DE(A, R(B)),

where R*P* aligns p*, a point of A, and a point of B.
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Figure 6.6: Lower Bound for Lemma 6.4.

Lower Bound for Lemma 6.4

A lower bound for the approximation constant given in Lemma 6.4 is easy to find, see Fig-
ure 6.6. The depicted constellation describes the minimum bottleneck distance under rotations
around p*. The approximation found in Lemma 6.4 rotates the point set B by either «/2
or —a/2. For « tending to 0 this leads to a 2-approximation.

Approximation for Rigid Motions in the Plane

As in Section 3.4.4 we use Lemmas 6.4 and 6.5 to construct an approximation algorithm for the
bottleneck distance under rigid motions in the plane. The routine is based on Algorithm 6.2.
The difficult part in this algorithm, namely to find the optimal rotation around a fixed point,
is substituted by the following method:

Algorithm 6.3.

1. Compute the minimum D7 over all possible alignments of the coinciding
reference points, a point of A, and a point of B.

Since there are O(n?) possibilities to align the reference point and two points of A and B, the
runtime is O(n2-TP5(n)). Using this algorithm we obtain an easy to implement approximation
for rigid motions.

Algorithm 6.4.

1. Compute r(A) and r(B) and translate B by r(A) — r(B).
Let B’ be the image of B.

2. Find an optimal matching of A and B’ under rotations of B’ around r(A),
where r(A), a point of A, and a point of B are aligned.
Let B” be the image of B’ under this rotation.

3. Output B” together with the distance D} (A, B").
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Using the above remarks, the following theorem is a direct consequence of the results on our
abstract algorithm for rigid motions, see Theorem 1.7, as well as Theorem 6.1 and Lemma 6.4.

Theorem 6.14. Let A, B € P*" be planar point sets. Let v be a DYy-reference point with

respect to rigid motions and with Lipschitz constant c. Algorithm 6.4 finds an approximately

optimal matching for rigid motions with approzimation factor 2(c + 1) in time O(T* (n) +
3.5

n3°logn).

The proof of the following theorem is analogous to the proof of Theorem 6.14, using
Lemma 6.5 instead of Lemma 6.4.

Theorem 6.15. Let 1 < p < co and let A, B € P>™ be planar point sets. Let r be a Dy-
reference point with respect to rigid motions and with Lipschitz constant c. Algorithm 6.4 finds

an approzimately optimal matching for D under rigid motions in the plane with approzimation
factor 2v/2 (¢ + 1) in time O(T"" (n) + n®°logn).

In the following corollary we apply the center of mass to the last two theorems:

Corollary 6.2. Algorithm 6.4 using the center of mass as a D%-reference point induces an
approximation algorithm with approximation factor 4 in the case of the Fuclidean distance
and 4v/2 for arbitrary L,-distance, where 1 < p < oco. Its runtime is O(n*°logn) in the
Euclidean case and O(n? - TP5(n)) for arbitrary 1 < p < cc.

Approximation for Rigid Motions in Higher Dimensions

It is possible to generalize Algorithm 6.4 to dimensions > 3. The proofs of the following two
theorems are analogous to those of the corresponding Theorems 3.15 and 3.16 for the EMD
and are omitted.

Theorem 6.16. Let A, B € P*", where d > 3. Let r be a D}, -reference point with respect to
rigid motions and with Lipschitz constant c. An approzimate rigid motion M?** such that

DR(A, M (B)) < 2'7M(e+1)- D™ (A, B)
can be found in O(T™ (n) + n2@=D . TD5(n)) time.
Using Lemma 6.5 we can extend the result to any L,-norm:

Theorem 6.17. Let A,B € P%", where d > 3, and let 1 < p < oco. Let r be a Dg-
reference point with respect to rigid motions and with Lipschitz constant c. An approximate
rigid motion M?P* such that

DY(A, M*(B)) < 292 (c+1)- D™ (A, B)
can be found in O(T**f(n) + n?@=D . TPE(n)) time.
We apply the center of mass to the last two theorems:

Corollary 6.3. The center of mass as a D-reference point induces an approzimation algo-
rithm with approzimation factor 2% in the case of the Euclidean distance and 2°\/d for arbitrary
L,-distance, where 1 < p < oo. The runtime is O(n>@=1 . TP5(n)).
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6.10.3 Rigid Motion Approximation - An Improved Version

We present an improvement on Algorithm 6.4 to compute the bottleneck distance under rigid
motions. Using Algorithm 6.4 in the plane, we have to compute the bottleneck distance
whenever at least one point of each set and the rotation center are aligned, that is, O(n?)
times. A different approach but also leading to O(n?) point-to-point correspondences is given
by Agarwal and Phillips [1]. We reduce this number to O(n) events by observing that it suffices
to consider those alignments where the furthest point from the rotation center is aligned with
some point of the other set. If there is more than one point at the same furthest distance
from the rotation center it suffices to arbitrarily choose one. We have to pay for the decreased
runtime by a slightly worse approximation ratio of 1 4+ /2 against 2. However, later we use
a uniformly distributed d-net of size O(¢~/2) on the unit circle to bound the approximation
ratio to 2 + €, see Theorem 6.8.

If not stated otherwise we assume that one of the furthest points is in B. If not, we can
exchange the roles of A and B, which does not make a difference if only rigid motions are
under consideration. We start with the (1 + V/2)-approximation in the Euclidean case.

Lemma 6.6. Let A, B € P%“" be two point sets in dimension d > 2 and let S* be a fized
d'-dimensional affine space with 0 < d' < d—1. Let A\ S* # () and B\ S* # (. Let Rot(S™)
be the set of rotations leaving S* invariant. Let by € B be a point among all points of both sets
with mazimum distance to S*. There exists a rotation R’ € Rot(S*) such that
DE(A,R(B)) < (1+vV2)- in Dg(A,R(B
B(A,R'(B)) < (1+v2) relin DA, R(B)),

where R’ rotates B such that S*, R'(b1) and some point of A\ S* are in a (d' + 1)-dimensional
space.

Proof. W.lo.g. let A=1{as,...,a,} and B = {by,...,b,} be in optimal position with respect
to rotations of B around S*. After renumbering we can assume that there is a permutation
inducing D% (A, B) and mapping a; to b; for all j = 1,...,n. Let p* € S* be a fixed point. Let
S+ = p*+(S*)* be the orthogonal affine space containing p*. For all points a; € A\ S* let aj-
be its orthogonal projection onto S*. Let bi- be the orthogonal projection of b; onto S*. For
every 1 < j < nlet R; be the rotation with the following properties:

1. R; rotates around the (d—2)-dimensional subspace S; that contains S* and is orthogonal
to the plane E; spanned by the points p*, ajl and by

2. R;(B) aligns p*, aj- and by-.
3. For the rotation angle ¢(R;) we have |¢(R;)| < 7.

Note that if ¢(R;) = 7 the plane E; is not uniquely defined in property 1. In this case we
can use any plane orthogonal to S* containing the points p*, aj- and bi. Further note that
the rotation angle is given by the smaller angle between the lines through ccjl and p*, and bi
and p*. Thus this angle is defined in arbitrary dimension. Furthermore, R; is independent of
the concrete choice of p* € S*, since choosing a different point only causes a parallel translation
of aj- and bi. Let R be the set of all rotations R;. Let R’ € R such that for all R € R we
have [¢(R')| < |¢(R)|. Let ¢' := ¢(R'). If ¢’ =0, R’ fulfills the claim of the lemma.

Let aj be a point inducing R’ = Ry and let a; and b; be two arbitrary points. Let a}
and b; be the orthogonal projections of a; and b; onto Ej, respectively. Let @; := a; — a} and
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Figure 6.7: sin(¢/) - |16 — p*[lo < 5 — iz

b; == b; — b;. Now, a; = a} +a; and b; = b, + b;. Since b; is parallel to Sk, this vector is
invariant under R’ and therefore we have R'(b;) = R'(b; + b;) = R'(b}) + b;.
We prove the result by a case distinction on the angle ¢':

1. Let ¢/ € (0,7/2]. We first bound the distance between the projections of two matched
points inside the plane E}, after the rotation by R’. For every matched pair, i.e., for every

j=1,...,n we have
[l — R'(55)]],
< flay = 51, + 1165 = B @)l
< |aj = by]|, +2sin(¢'/2) - || — p7,
< o} =0, +2-sin(¢'/2) - by — p*[l,, by assumption
<l = 0l + V2 esin(@) oy = w7l since SEER = sy < 1/V2
< laf = V]|, + V2 [lah = billy, see Figure 6.7.

We now bound the maximum distance after the rotation by R’ between all pairs of
matched points:

|a; — R'(b;)]l,
= |laj +a@j - R'(b) = by,

\/Ha; - R’(b;)”i + ||@ - EH;, by Pythagoras’ Theorem

2 J——
< Vlla = 5 + 2v2la = ], — ¥l + 2+ 0t — 13 + [l - 551
< \/||aj — b||§ +2v2 Ha’A - b’»H lla}t = billy +2- [|af — b} ||§, by Pythagoras’ Theorem
< \/||a] bjlls +2v2la; = bsll, llar = bally + 2+ lax = i3, since [|a} = Bj], < lla; — by,
< lag = billy, + V2 llar = b,
< (1+v2)D3(4,B).
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2. Let ¢’ € (w/2,7]. For every matched pair, i.e., for every j = 1,...,n we have

laj = R'(b)ll, = ||} +a5 — R'(b)) — b,

= \/Ha; — R’(b;)”i + H@ — EH;, by Pythagoras’ Theorem

2 _
< e =l + ot = R + 7 B
/ / 2 —_ 112
= (=l o =5l + -l
< B = p7lly + 0" = Bily) + (|7 — B2
< a2+ @ b)), since o € (x/2,7]
< \Jalb— @il + g — b1
< \/5'1)%(A4£”
< (1+V2) Di(A, B).

Using these results:

Dg(A, R'(B))

min max Haj - R/(bw(j))Hz

wesSy, j=1,.

< _max la; — R'(b;)|l,, choosing the identity as permutation
j=1,....n

< (1+V2)- Di(A, B).

O

Note that the approximation factor of 1++/2 in the last lemma can be improved by choosing
an angle smaller than /2 for the case distinction. However, the approximation factor is greater
than 2, even in the 2-dimensional case.

In the last proof we have made a case distinction and considered the case where ¢’ > /2.
This case, at first glance, seems to be impossible. That this case can actually arise is shown in
the following example:

Example. Two point sets in the plane showing the existence of such a case are illustrated in
Figure 6.8. As one can easily check, the constellation given describes the minimum bottleneck
distance under rotations around p*, since at least one of the points b, ..., bs has to be matched
to at least one of the points as, a3 and another point of bs, ..., bs has to be matched to one of
the points a4 and as. Therefore, any rotation of B would increase one of the distances between
these two pairs. The angles given by by, p* and any point of A are strictly larger than 7/2.

We generalize the last result to every L,-distance, where 1 < p < oo. The proof is analogous
to the proof of Lemma 3.5 and is omitted.

Lemma 6.7. Let A,B € P%™ be two point sets in dimension d > 2 and let S* be a fived
d'-dimensional affine space with 0 < d <d—1. Let A\ S* # 0 and B\ S* # (). Let Rot(S*)
be the set of rotations leaving S* invariant. Let by € B be a point among all points of both sets
with mazimum Fuclidean distance to S*. Let 1 < p < co. There exists a rotation R’ € Rot(S*)
such that

D%(A’R/(B)) < (1+\/§)\/a'R€ggggS*)D%(AvR(B))a
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Figure 6.8: An angle > 7/2 is possible.

where R’ rotates B such that S*, R'(b1) and some point of A\ S* are in a (d' 4 1)-dimensional
space.

Note that in the above lemma we are using the furthest point to the rotation center with
respect to the Euclidean distance to determine a rotation fulfilling the claim. This is important
since the furthest point with respect to other distance measures on the ground set may vary
while rotating the set.

Approximation for Rigid Motions in the Plane - An Improved Version

In this section we show how to use Algorithm 6.4 and Lemmas 6.6 and 6.7 to construct a fast
approximation algorithm for rigid motions in the plane. We address higher dimensions in the
following section.

Algorithm 6.5.

1. Compute r(A) and r(B) and translate B by r(A) — r(B).
Let B’ be the image of B.

2. Let b} € B’ be a point with maximum Euclidean distance to the rotation
center r(A).

3. Find an optimal matching of A and B’ under rotations of B” around r(A),
where r(A), b} and a point of A are aligned.
Let B” be the image of B’ under this rotation.

4. Output B” together with the distance D}(A, B”).

Theorem 6.18. Let A,B € P?" be two planar point sets. Let r be a D¥-reference point
with respect to rigid motions and with Lipschitz constant c. Algorithm 6.5 finds an approxi-
mately optimal matching for rigid motions with approzimation factor (1 ++v/2)(c+ 1) in time
O(T"** (n) + n?%logn).
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Proof. Using Lemma 6.6 we obtain a (1 + /2 )-approximation for the bottleneck distance
under rotations of B’ around r(A4) by computing the minimum bottleneck distance among all
rotations aligning b, r(A) and some point of A. Thus, the total number of computations in
the plane is O(n), where each needs O(n'®logn) time. The claim follows by our abstract
approximation Algorithm 1.2, see Theorem 1.7. O

The latter algorithm decreases the runtime by a factor of O(n) in comparison to the one
described in Section 6.10.2. Unfortunately, as already introduced in the beginning of this
section, we have to pay for the speed up by a slightly increased approximation ratio.

We generalize the result to any L,-distance, where 1 < p < co. The proof is analogous to
the proof of Theorem 6.18, using Lemma 6.7 instead of Lemma 6.6.

Theorem 6.19. Let A, B € P%" be planar point sets and let 1 < p < oo. Let r be a Dy-
reference point with respect to rigid motions and with Lipschitz constant c. Algorithm 6.5 finds
an approximately optimal matching for rigid motions with approzimation factor (2++v/2)(c+1)
in time O(T" (n) +n - TP5).

We apply the center of mass as a Dy-reference point to the last two theorems:

Corollary 6.4. For point sets in the plane, Algorithm 6.5 using the center of mass as a D%-
reference point induces an approzimation algorithm with approximation factor 2(1 + \/ﬁ) m
the Fuclidean case and 2(2 + \/5) for arbitrary Ly-distance, where 1 < p < oo. Its runtime is
O(n - TPs(n)).

Approximation Algorithms for Rigid Motions in Higher Dimensions - An Improved
Version.

We use the following corollary of Lemma 6.6 to obtain an improved approximation algorithm
for the bottleneck distance under rigid motions in arbitrary dimension d > 3. The proof is
similar to the proof of Corollary 3.5, except for the fact that in this case we align the furthest
point. Recall that for affine spaces Sy, ..., S, we use aff(S1,...,S5,) to denote the affine space
spanned by Si,...,5,.

Corollary 6.5. Let A,B € P%" be two point sets in dimension d > 3. Let A, B be full-
dimensional, that is dim A = dim B = d. Let p* € R? be an arbitrary point. There are
sequences of points aP, ... a'% D € A and bV, ... bl ¢ B, and a sequence of rotations
RMW ... RU=D c Rot(p*), such that the following conditions hold for any 1 <k <d — 1:

1. SO =p* and for k >0

S®) = aff (p*,a(l), a® R oo ROBMW) L RM 6.0 R(l)(b(k))) ,

2. R® Jeqves S*=1) fiz,

o

. R®) aligns a™® and b*) with respect to S*=1,

. a® or b%) s furthest to S*—1),

B S

v

. DA, R o...0c RD(B)) < (1+V2)F - Mingerot(pr) Dg(A, R(B)).
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Proof. We prove the result by induction on k. For k = 1 we can apply Lemma 6.6. Let
1 <k < d— 1. By induction we have dim S®*) = k and

D3(A,R® o...0 RO(B)) < (1+\f2)’“~R61thitrép*)Dl23(A,R(B)).

Let R* := arg minpgeret(str) D%(A,Ro R® o...0 RW(B)). Of course,

D%(A,R* oR® o6...0 R(l)(B)) D%(A,R(’“) o.-. OR(I)(B))

1+V2)F. in  D%(A, R(B)).
(1+v2) emin 5(A, R(B))

<
<

W.lo.g. let R o...0 RM(p(k+1)) be the furthest point to S**) among all points in (AU R®) o
~-o RM(B))\ S®. Since A and B are full-dimensional this point exists and we can apply
Lemma 6.6 to find a point a**1) and a rotation R¥*Y € Rot(S*), such that a**1) and
RF+D ... 0 R (pF+1) are aligned with respect to S*) and

DE(A,R**Vo...c RM(B)) < (1+V2) -D%(A,R* ocR®o...0 RV (B))

1 2)kt1. in D2%(A, R(B)).
(1+v2) Rein 5(A, R(B))

A

O

Based on the abstract Algorithm 1.2 in Section 1.5.3 we get an approximation algorithm
for minimizing the Euclidean bottleneck distance under rigid motions:

Theorem 6.20. Let A, B € P", where d > 3. Let A, B be full-dimensional, that is dim A =
dimB =d. Letr: P*" — R? be a D%-reference point with respect to rigid motions and with
Lipschitz constant c. An approzimate rigid motion M’ such that

D3(A,M'(B)) < (14 v2)" ' (c+1)- DF*™ (A, B)
can be found in O(T™ (n) + no=1 . TP5(n)) time.

Proof. As in the planar case we first translate B such that the reference points of A and B
coincide. Algorithmically we proceed in the following way: We determine a furthest point to
the rotation center p*. W.lLo.g. let b(!) be this point. For every point a(!) € A we do the
following: We rotate B around the reference point such that a(!),b(1) and the reference point
are aligned. We fix the line determined by these points. We determine a furthest point to this
line, w.l.o.g. let b(®) be this point. For every point a® € A we do the following: We rotate B
around the fixed line such that 53 and a(® are aligned with respect to the fixed line. We fix
the plane, determine a furthest point to this plane and continue until a (d — 1)-dimensional
subspace is fixed. We compute the bottleneck distance between A and the rotated version of B
and continue.

Altogether we compute the bottleneck distance for every sequence of pairs of points as
described in Corollary 6.5. Thus we have surely considered those sequences aV), ... al4=1)
and b™) ... b4~ and the corresponding rotation R := R@ 1 o ... o R that induce the
approximation property in Corollary 6.5. Since by Lemma 3.7 the rotation R is unique, it
equals the rotation constructed above and therefore we have proven the approximation property
of the theorem.

Observing that there are O(n?~!) possibilities for these sequences proves the runtime of
the algorithm. For the runtime we further assume that the time to find a furthest point to a
subspace is dominated by the time to compute the bottleneck distance. O
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Note that if d := dim B < dim A it is enough to stop after d’' steps. After this, every
rotation leaves B invariant and thus does not change the bottleneck distance between the two
sets. If dim A < dim B, we exchange the roles of A and B.

Similar to the proof of Lemma 3.5 we can extend the result to the bottleneck distance
defined on any L,-norm:

Theorem 6.21. Let A, B € P4, where d > 3. Let A, B be full-dimensional, that is dim A =
dimB =d. Let 1 <p <oo. Let r: P" — R? be a Di-reference point with respect to rigid
motions and with Lipschitz constant c. An approximate rigid motion M’ such that

DR(A,M'(B)) < (1+V2)"Wd(c+1)- Dy (A, B)
can be found in O(T***(n) 4 n?=1 - TP5(n)) time.
We apply the center of mass and obtain the following corollary:

Corollary 6.6. Applying the center of mass as a Dy;-reference point to the algorithm described
above, we obtain an approzimation algorithm with approzimation factor 2(1 + v/2)%" in the
case of the Euclidean norm and 2(1 + ﬂ)d—lﬁ for any other L,-norm, where 1 < p < oco.
The runtime is O(n?=' - TP5(n)).

Using §-Nets for a Better Approximation Ratio

In this section we show how to use d-nets, see Gonzalez [29], Clarkson [18] and the proof of
Theorem 5.7, to improve the approximation ratio given in Lemma 6.6.

Lemma 6.8. Let A, B € P%™ be two point sets and let S* C R? be a fived d’'-dimensional
affine space with 0 < d' < d—1. Let0 < e < 1/16. Let A\ S* # () and B\ S* # 0. Let Rot(S*)
be the set of rotations leaving S* invariant. Let by € B be a point among all points of both
sets with mazimum distance to the rotation center S*. There exists a rotation R*P* € Rot(S*)
such that

2 apx < . . 2
DR(AR™(B)) < (2+¢)- min_ DR(A,R(B)).

We can find this rotation by O (n + 571/2) computations of the bottleneck distance in R?.

Proof. Basically we use the same proof as for Lemma 6.6. Observing the analysis for case 1
of the case distinction we see that the approximation is bad if sin(¢’/2)/sin(¢’) gets close to
1/4/2, that is, for angles ¢’ close to /2. Therefore we bound the angle ¢’ by computing the
bottleneck distance for every rotation aligning b} and at least one of the points a;, and for
every rotation on a sufficiently fine uniformly distributed grid on the unit circle. By choosing
the grid fine enough we additionally have that ¢’ < 7/2 and thus the second case of the case
distinction does not occur.

Let 6 :=1/2-y/1—1/(1+¢)2. Let Y be a d-net on the boundary of the unit circle S*.
Let R* be a rotation inducing the minimum D%(A, Rg(B)), minimized over all angles 3
corresponding to points in Y and rotations aligning b7 and at least one of the points aj. Let R’
be the closest rotation to the optimal rotation R°Pt. Let a be the angle between R’ and R°Pt.
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Now, we have

5 sin(«/2)

sn(a) = 2(2-cos(a/2))”

= ( 1sin2(a/2))l
< (viceer)

- (Vica-yareon)
= 1+e.

Therefore, analogously to the proof of Lemma 6.6 for every matched pair, i.e., for every
j=1,...,n we have

|af — R'®)|l, < |laj = b5, + (1 +e)llal —bill,

and further
laj = R'(bj)|l, < (2+¢)-Dp(A,B).

Similarly to the proof of Lemma 6.6 we have

Dj(A,R*™(B)) < Di(A,R'(B)) < (2+¢) Dj(A, B).

Since
1 JETDE 0
=1/2-/1—- ——— = 1/2. X — 7~ — /2
=121 = 1 L o ()
the number of grid points is O (671) = O (e7/2). 0

The last lemma describes an approximation algorithm in the planar case, thus it directly
proves the following theorem. It is open if it can be generalized to arbitrary dimension d > 2.

Theorem 6.22. Let A, B € P> be planar point sets. Let0 < e < 1/16. Letr: P>" — R% be a
D%-reference point with respect to rigid motions and with Lipschitz constant c. An approzimate
rigid motion M’ such that

D%(A,M'(B)) < (2+¢)(c+1)- D3 (A, B)

can be found in O(T*™ (n) + (n +e=1/2) - n'®logn) time.

The proof of the generalization to arbitrary L,-distance is analogous to the proof of
Lemma 3.5 and omitted.

Theorem 6.23. Let A, B € P%™ be planar point sets. Let 0 < & < 1/16 and let 1 < p < oo.
Let r: P>" — R? be a D%-reference point with respect to rigid motions and with Lipschitz
constant c. An approrimate rigid motion M' such that

DB(A,M'(B)) < (2+¢)(c+1)V2- D% (A, B)

can be found in O(T™ (n) + (n 4 =1/2) - TPs(n)) time.
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Figure 6.9: (1 + ¢)-Approximation for Rotations

6.10.4 FPTAS for Rotations in the Plane

We use the constant-factor approximation derived in Section 6.10.3 to obtain a (1 + &)-
approximation for the bottleneck distance under rotations around a fixed point in the plane.

As we have observed in Section 6.10.3 it suffices to take care that the furthest point lies
in the neighborhood of the point matched to it in a perfect matching inducing the bottleneck
distance. We do this by computing the bottleneck distance on a sufficiently fine grid in rotation
space around the rotation aligning those two points. Since we do not know this rotation, we
place the grid around every rotation aligning the furthest point and a point of the other set.
Thus we have to compute the bottleneck distance at O(e~1) angles for each of the n points of
the other set.

Theorem 6.24. Let 0 < e < 1. Let A, B € P%" be two planar point sets and let p* € R? be a
fized point. Let Rot(p*) be the set of rotations around p*. We can find a rotation R® € Rot(p*)
such that
D%(A,R°(B)) < (14+¢)- min Dgj(A,R(B))
ReRot(p*)

in O(e~n?5logn) time.

Proof. W.l.o.g. let the point sets A, B be in optimal position with respect to rotations of B
around p*. We determine a value o, such that D%(A,B) < a < (14 v/2) - D%(A, B) using
the approximation derived in Lemma 6.6. For the following construction see Figure 6.9. Let
b1 € B be a point among all points of both sets with maximum FEuclidean distance to the
rotation center p*. Let K be the circle through b; around the rotation center p*. For any
1 <j<mn,let Ay(a;) denote the disc around a; with radius a. Let d; be the circular arc
defined by d; :== A, (a;) N K. Since D§(A, B) < a, by has to lie in one of the discs A, (a;) and
therefore has to be located on d;. The length |d;| of d; is bounded by the perimeter of the
circle around aj, that is, |d;| < 2ra. Now, we subdivide d; into pieces of length ca/(1 + v/2).
The number of pieces is at most 2(1 4+ v/2)ra/(sa) = O(e71). Let A; denote the set of angles
aligning b, and the subdivision points on d;. W.l.o.g. let b; be matched to ay, that is, b; is
located on d;. Let ¢ € d; be the subdivision point closest to b;. Let ¢, € A; be an angle, such
that the rotation Ry, rotates B in a way that b; and ¢ coincide. Since by and g are on dy, the
distance between these two points is at most /(1 + v/2). Now,
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A
-
=
o
»

Dg(4, Ry, (B)) Mlas = B, (b)]

< jzfrllf}?in||aj _bj||2+j:n/11?.)in||bj —R¢q(bj){|2

< Dg(A,B) + ||b1 — Rg, (b1)]), since by is furthest
= D(A B) +[Ibr —ql,

< Di(AB)+——

(1+v2)
(1+¢)- D%(A, B).

Computing the bottleneck distance at all O(ne~!) subdivision points in time O(n'-5 log n) leads
to the approximation algorithm and completes the proof. O

We have proven the last lemma for the Euclidean case. The ideas involved also hold for
arbitrary L,-distance, where 1 < p < oo. The constants involved have to be adjusted.

6.10.5 FPTAS for Rigid Motions in the Plane

It is straightforward to construct an FPTAS for rigid motions in the plane. The method is

similar to the one used by Giannopoulos [26] to construct an approximation algorithm for the
EMDs.

Algorithm 6.6.

1. Run Algorithm 6.5 to determine «, such that

D2 (A, M(B)) < a < (1+v2)(c+1)- D& (A, M(B)).

2. Let 7'*f := r(A) — 7(B) be the approximate translation.
3. Place an axis-parallel cube C' of side length 2ca centered at 7+°F.
4. Consider a grid T' centered at the origin with cell size v := e/ ((2v/2 + 4)(c + 1)).

5. For every grid point g inside C do:
Compute a rotation R° € Rot(g), such that

D}(A,RF(B+9)) < (14+¢/3)- min D%(A,R(B+g))

ReRot(g)

according to Theorem 6.24.

6. Output the minimum of all rotations computed in 5.

Theorem 6.25. Let 0 < ¢ < 1. Let A,B € P?™ be two planar point sets. Let r be a Dy-
reference point with respect to rigid motions and with Lipschitz constant c¢. Algorithm 6.6 finds
a rigid motion M¢ € Rot(p*) such that

D}(A,M*(B)) < (1+¢)- D& (A, M(B))

in O(e73n2%logn) time.
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Proof. Let 0 < € < 1. Let M°P* := R°P' o 7°P' be an optimal rigid motion of B, where
7Pt € R? is a translation and R°P! is a rotation around 7°P*(r(B)). We show that 7°P! is
inside the cube C:

H7_rcf_7_0ptH2 — HT(A) ) opt”
[r(A4) = 7 (r(B))
= ||r(4) - ROPt Opt(r(B))} ,» since RP' rotates around 7°P*(r(B))
= HT(A) r(R°" o TOpt(B))} ,» Dby the equivariance of r

¢+ D(A, M*(B))

CCx.

IN N

Let g be the grid point closest to 7°Pt. Let R%9 be a rotation around g, such that
Di(A,R*90g(B)) < (1+¢/3) D§(A, R 0 g(B)),

where R°PY“9 denotes the optimal rotation of B around g. By Theorem 6.24 we can com-
pute R%9 in O(e~'n?logn) time for a fixed translation g. Let M®# be the rigid motion we
get by Algorithm 6.6. Obviously, D% (A, M°P*(B)) < D%(A, M¥8(B)). Further,

D% (A, M¥8(B)) D%(A,R*9 0 g(B)), since g is a fixed grid point
+¢/3) - Dg(A, R 0 g(B))
Di(A, R o g(B))

(1

(1 )

(14¢/3) (DB(A, R o 7°P*(B)) + Dj(R°" o 7°PY(B), D(A, R°" 0 g(B))))
( )

( )

VAN VAN VAN VAN VAN

B
1+¢/3) (DE(A, M°P(B)) + |lg — Topt||2)

IA

D(A, M°P*(B)) + V2

(2v2 + 4)(c+ 1))

) e(1+Vv2)(c+1) - D™ (A, M(B))
D2(A, M (B)) + V2 & Va3 et ) )

IN

—

+

)

~

w

N—
/N 7/

= (14¢/3)(1+¢/2)- DE(A, M (B))
< (1+¢)- Di(A, M°PY(B)).

The runtime of Algorithm 6.6 is the time to compute the (1 + ¢)-approximation for the bot-
tleneck distance under rotations in O(e~1n*®logn) time at the O(¢~2) grid points. O

6.11 Similarities

In this section we present approximation algorithms for matching point sets under positive
similarities with respect to the Euclidean bottleneck distance. More precisely, we want to
compute ming D%(A, S(B)), where the minimum is taken over all positive similarities S. Again,
negative similarities can be handled by running the algorithms twice, once with a reflected
version of one of the shapes. See also the remarks in Sections 1.5.4 and 3.4.5. The approach is
to use the approximation algorithm for rigid motions where B is scaled by d£2(24)(A) / d£2(33) (B).

In general, for a fixed point p* € R? and a point set A € P%", dl(fi)(A) is defined as the distance
of a furthest point in A to p*, i.e., dfﬂ)(A) = maxge4 |la — p*||,. We will only use the furthest
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point with respect to the Euclidean distance to obtain an approximation on the scaling ratio.
This is important since the furthest point with respect to arbitrary L,-distance is not invariant
under rotations.

Algorithm 6.7.

1. Compute r(A) and r(B) and translate B by r(A4) — r(B).
Let B’ be the image of B.

2. Scale B’ by dﬁz&‘)(A)/dgg,)(B’) around 7(A).
Let B” be the image of B’ under this scaling.

3. Find an optimal matching of A and B” under rotations of B” around r(A).
Let B” be the image of B” under this rotation.

4. Output B" together with the distance D¥(A, B").

To show the correctness of this algorithm we use the following results. We prove the first
lemma for arbitrary L,-distance though we only need the Euclidean case later on.

Lemma 6.9. Let A € P™ be a point set. Let 01,09 be scalings around the same center p*
with ratios y1 and ~ys, respectively. Then

Di(01(A),03(A)) = |11 — 72| - dP(A).

Proof.

D (01(A),02(4)) = ;ggr;jg??gnHal(aj)—az<aw(j>>||p
< max [loi(e;) — o2(a)]],
j=1,....,n
= |low(aj) = o2(az«)[l,,, for a fixed index j*
= lp* +m(aj —p*) = (p* +72(a;- —p))Il,
= [l —2)(a;- =),
= |m =92l llaj- —p7,
< =l dP(A).
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Let a be the
argmax;—i, ..
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furthest point in A to the center with respect to the L,-distance, that is, a =

nllaj —p*|lp- W.Lo.g. let v1 > 2. Then

Dj (01(A), 02(A4))

> min [loi(a) —o2(ay)l,
Jj=1,...,
= min Joi(a) —p" +p" —oa2(ay)ll,,
Jj=1,....,n
> min [loa(@) =7l — I~ oa(a)l, |, since el ~ Iyl < -+l
= r?in (Hol(a) —p*llp = llo2(a;) —p*||p) , since a is furthest and 3 > 7o
J=1,..m
= llow(@) = p7ll, — max loaa;) —p7l,

= |loi(a) = p*|, — ||02( )fp ,, sincea is furthest

|o1(a) —o2(a)ll,, o1(a) and o2(a) lie on a ray through p*

= |y1—7| |la—p*|lp, see the proof of ?<”
= n =l 42 (A).

We use the following lemma to prove a lower bound for the bottleneck distance.

Lemma 6.10. Let A, B € P", and let p* and ¢* be two fized points in RL. Then

’dgz)(A) —dP(B)| < D{(A,B) + |p" ",

|dp-(A) = dg-(B)|

Proof.
<
<
<
To prove

s o =, e [,
j=1 n

min max ||aj p*ll, - ;Mnax Hbﬂ(]) only a reordering
TeS, |j=1,..., =1,...,

(1)

T{régn J_max ‘Haj —P*Hp - Hbﬂ(j) -

: L * _ * 7b
min max_ [la; = "1, — |l

min max o, —p* 40"~ bagyl,.  since [l ~ [yls| < 2 + vl

min max (llas = bail, + la* = 2°11,)

l™ =1, +mISnJH}aX les = bxi I,

.....

(1): Let (z;)j=1,...ns (¥j)j=1,....,n > 0 be two non-negative sequences of real num-
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bers. W.lo.g. let max;—; . ,%; > maxj_i .. ,¥;. Then

.....

max rj; — max y;| = max T — max y;
j=1,....n j=1,....,n Jj=1,....,n Jj=1,....,n
= ;- — max y;, foranindex j* € {1,...,n}
j=1,...,n
< @y —yyx, since 0 <y <maxj—1,.. n¥Yj
< lwge —yye
<  max |zj; —yj

O

The following theorem gives a lower bound for the bottleneck distance based on the distance
of the furthest points to their reference points.

Theorem 6.26. Let A, B € P%"™. Let r be a Dy -reference point with respect to similarities
and with Lipschitz constant c. Then

d%(4) = dBy (B)| < (1+¢)- DE(A, B).

Proof. By Lemma 6.10 we have

d%(A) = dDy (B)| < lIr(4) = (B)l, + D5(A, B).
The claim follows by the Lipschitz continuity. O

We state the following result proving that Algorithm 6.7 leads to a constant-factor approx-
imation for the bottleneck distance under similarities in the Euclidean case. Using Lemma 6.9
and Theorem 6.26, the proof is analogous to the proof of the corresponding Theorem 3.18 for
the EMDs.

Theorem 6.27. Let A,B € P4". Let r be a D-reference point with respect to similarities
and with Lipschitz constant c. Algorithm 6.7 finds an approzimately optimal matching for
similarities with approzimation factor 2(c + 1) in time O(T™ (n) + TP5 (n) + T™(n)).

We generalize the last theorem to any L,-distance, where 1 < p < oo. The proof is
analogous to the proof of Theorem 3.5 and omitted.

Theorem 6.28. Let 1 < p < oo. Let r be a DY-reference point with respect to similarities
and with Lipschitz constant c. Algorithm 6.7 finds an approzimately optimal matching for
similarities with approzimation factor 2v/d (c 4 1) in time O(T* (n) + TP5 (n) + T %(n)).

Applying the center of mass as a Dp-reference point leads to the following corollary:

Corollary 6.7. Algorithm 6.7 using the center of mass as a D%-reference point induces an ap-
prozimation algorithm with approzimation factor 4 in the Euclidean case and 4v/d for arbitrary
L,-distance, where 1 < p < oo. The runtime is O(TP%(n) + T™(n)).
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Approximation for Similarities in the Plane

Analogous to Section 6.10.3 we get a fast approximation algorithm by combining Algorithm 6.7
and the method for approximating the optimal rotation presented in Lemma 6.6.

Algorithm 6.8.

1. Compute r(A) and r(B) and translate B by r(A) — r(B).
Let B’ be the image of B.

2. Scale B’ by df@l) (A)/df?(}g,)(B’) around the center r(A).

Let B” be the image of B’ under this scaling.

3. Let bf € B” be a point with maximum Euclidean distance to the rotation
center r(A).

4. Find an optimal matching of A and B” under rotations of B” around r(A),
where r(A), b{ and a point of A are aligned or b/ is matched to a coordinate
axis of a coordinate system placed at r(A).

Let B"' be the image of B” under this rotation.

5. Output B" together with the distance D{;(A, B").

The following theorem proves that Algorithm 6.8 leads to an efficient constant-factor ap-
proximation for the bottleneck distance under similarities in the Euclidean case. Again the
proof is analogous to the proof of the corresponding Theorem 3.20 for the EMDs.

Theorem 6.29. Let A,B € P>™ be planar point sets. Let r be a D%-reference point with
respect to similarities and with Lipschitz constant c. Algorithm 6.8 finds an approzimately
optimal matching for similarities with approzimation factor 2(14++/2)(c41) in time O(T*f (n)+
n%®logn).

We generalize the last theorem to any L,-distance, where 1 < p < oo. The proof is
analogous to the proof of Theorem 3.5 and omitted.

Theorem 6.30. Let A,B € P*" be planar point sets. Let 1 < p < oco. Let r be a Di-
reference point with respect to similarities and with Lipschitz constant c. Algorithm 6.7 finds an

approzimately optimal matching for similarities with approzimation factor 2v/d (1++/2)(c+1)
in time O(T™ (n) 4+ TPB(n) + T%(n)).

Applying the center of mass as a D%-reference point leads to the following corollary:

Corollary 6.8. For planar point sets, Algorithm 6.7 using the center of mass as a D-reference
point induces an approximation algorithm with approximation factor 4(1+\/§) in the FEuclidean
case and 4N/d(1++/2) for arbitrary L,-distance, where 1 < p < co. The runtime is O(TP5 (n)+
T (n)).

Approximation Algorithms for Similarities in Higher Dimensions

We can apply the approach used in Section 6.10.3 to obtain an algorithm for similarities in
dimensions > 3. We can do this by applying the algorithm for rigid motions to A and B’,
where B’ is B scaled by the quotient of the distances of the furthest points in each set. We
just state the result. The proof is analogous to the proofs for rigid motions.
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Theorem 6.31. Let A, B € P%", where d > 3. Let A, B be full-dimensional, that is dim A =
dimB = d. Let r: P4 — R? be a D%-reference point with respect to similarities and with
Lipschitz constant c. An approzimate similarity S’ such that

D%(A,S'(B)) < 2(14+v2)“c+1)- D3P (A, B)

can be found in O(T* (n) + n®=1 . TP5(n)) time.

Similar to the proof of Lemma 3.5 we can extend the result to the bottleneck distance
defined on any L,-norm:

Theorem 6.32. Let A, B € P", where d > 3. Let A, B be full-dimensional, that is dim A =
dimB = d. Let1 < p < oco. Let r: P — R? be a D -reference point with respect to
similarities and with Lipschitz constant c. An approzimate similarity S’ such that

Di(4,5'(B)) < 2(1+v2)"'Vd(c+1)- DE™(4, B)

can be found in O(T™ (n) +n®=1 - TPE(n)) time.

Using 6-Nets for a Better Approximation Ratio

It is also possible to use the approach using §-nets to get a better approximation for computing
the bottleneck distance under similarities. This can be done by applying the algorithm for rigid
motions, see Section 6.10.3, to A and B’, where B’ is B scaled by the quotient of the distances
of the furthest points in each set. We just state the result and omit the proof which is analogous
to the proof for rigid motions.

Theorem 6.33. Let A, B € P?" be planar point sets. Let 0 < e < 1/16. Let r: P>" — R% be
a D%—refe'rence point with respect to similarities and with Lipschitz constant c. An approximate
similarity S’ such that

D%(A,5'(B)) < 2(c+1)(2+¢) D3™ (A, B)

can be found in O(T™ (n) + (n +e~Y/2) - nl®logn) time.
We can also prove the result for arbitrary L,-distance, where 1 < p < oc:

Theorem 6.34. Let A, B € P?™ be planar point sets. Let0 < e < 1/16 and let1 < p < co. Let
r: P2" — R? be a Dg-reference point with respect to similarities and with Lipschitz constant c.
An approzimate similarity S’ such that

Di(4,5'(B)) < 2(2+¢)(c+1)v2- DE™ (A, B)

can be found in O(T™ (n) + (n 4 e='/2) - TPE(n)) time.






Chapter 7

Other Distance Measures

In this chapter we give a short overview about reference point methods or similar approaches
for distance measures on shapes which can be found in the literature. We consider the Fréchet
distance, the volume of the symmetric difference, the volume of overlap and the Frobenius
norm and embed the result in our reference point framework.

7.1 Fréchet Distance

For several applications in the area of shape matching one wants to compute the similarity of
parameterized curves. Efficiently computable distance measures are known for this problem
if the parameterizations of the curves are fixed. However, it may be more interesting to
compute the distance between the geometry of the curves and thus independent of the given
parameterization. A distance measure fulfilling this demand is the Fréchet distance, see for
example the work of Alt and Godau [7], and Godau [28]. We define a curve in R? as a continuous
function from the unit interval [0, 1] into R%. Let f,g be two curves and let 1 < p < co. Let
Hom([0,1]) be the set of homeomorphisms from [0, 1] onto itself with the additional constraint
that for all & € Hom([0, 1]) we have a(0) = 0 and a(1) = 1. Then
D%(f.9) = max 1f (e(t)) = g(B()) I

inf
a,3€Hom([0,1]) t€[0,1
denotes the Fréchet distance between f and g.

Alt, Knauer, and Wenk [8] prove the following result:

Theorem 7.1. [8] The starting point f(0) of a curve f : [0,1] — R is a reference point for
the Fréchet distance with respect to translations. Its Lipschitz constant is 1.

We can extend this result easily by observing that the starting point of a curve is also
equivariant under affine transformations. Since the Lipschitz continuity is independent of the
considered class of transformations we have the following sharper result:

Theorem 7.2. The starting point f(0) of a curve f :[0,1] — R? is a reference point for the
Fréchet distance with respect to affine transformations. Its Lipschitz constant is 1.

It is easy to see that also the end point f(1) is a reference point for the Fréchet distance
with respect to affine transformations. Note that it is not true that f(«) is a reference point
for any « € [0, 1]. Instead the following result is a corollary from Theorem 1.2:
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Corollary 7.1. Let « € [0,1]. Then the mapping r., defined on the set of curves as

ra(f) = f(0) +a(f(1) = f(0))

s a reference point for the Fréchet distance with respect to similarity operations. Its Lipschitz
constant s 1.

7.2 Volume of Symmetric Difference

Alt, Blomer, Godau and Wagener [5], and Alt, Fuchs, Rote and Weber [6] investigate the
volume of the symmetric difference of compact convex subsets of R% as a distance measure in
shape matching. For arbitrary compact subsets of R? the volume of the symmetric difference is
defined as the volume of A\ B plus the volume of B\ A. Alt, Fuchs, Rote and Weber [6] show
that the center of mass is a weak reference point, see Definition 1.1, for the symmetric difference
for compact convex subsets of R? with respect to affine transformations. Its approximation
factor is 11/3 and this bound is tight. Weber [51] generalizes this result to higher dimensions
and shows that the center of mass is a weak reference point in any dimension d > 2. Its

approximation factor is 1 + P

71 and again this constant is sharp.

7.3 Volume of Overlap

Substantially different from all distance measures mentioned in this thesis is the volume of
overlap. The overlap of two compact subsets A, B in R? is defined as the volume of AN B. It
is different because two shapes are the more similar the larger their volume of overlap is. Thus
computing the optimum under transformations leads to a maximization problem.

Nevertheless, de Berg, Devillers, van Kreveld, Schwarzkopf and Teillaud [24] remark that
minimizing the volume of the symmetric difference of two convex polygons is equivalent to
maximizing their volume of overlap. They further show that the translation for which the
centers of mass of two convex polygons coincide realizes an overlap that is at least 9/25 of
the maximum possible overlap which can be achieved using any translation. They also give
an upper bound example where the factor is 4/9 and believe that this is the true bound.
De Berg, Devillers, van Kreveld, Schwarzkopf and Teillaud [24] further generalize the approach
to arbitrary dimension d > 2 and show that matching the centers of mass of two d-dimensional
convex polyhedra realizes an overlap volume of at least (3/(d+3))? times the maximal overlap
volume.

7.4 Frobenius Norm

Zikan and Silberberg [54] investigate the minimum Frobenius norm under different classes of
transformations. Given two point sets A = {ay,...,a,} and B = {by,...,b,} € P4, the
Frobenius norm between these point sets is given by

1/2
n

d n 1/2
Dp(A,B) := min Z (aij — b,r(i)j)z = min (Z Hai — bﬂ(i)HQ) .

TeS TES,
" \i=1 j=1 " \i=1
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The Frobenius norm is another distance measure for point sets with the same number of
points. Like the bottleneck distance, see Chapter 6, it is computed via the consideration of all
possible pairs of points. But unlike the bottleneck distance, it is computed via averaging the
squared distances and not just taking the maximum into account. This, in contrast, is similar
to the EMD, see Chapter 3.

Zikan and Silberberg [54] use an approach similar to our reference point framework to
approximate the minimum Frobenius norm under rigid motions between two point sets of
equal size. They first exclude the problem to find an approximate similarity by scaling both
point sets in a way that their normalized first moments coincide. They further motivate this
approach by showing that this is optimal in the case where the two point sets perfectly match
under similarities.

To compute the approximate rigid motion, they first use Algorithm 1.1 based on the centers
of mass of the two point sets. We can show that the center of mass is Lipschitz continuous
with respect to the Frobenius norm and the proof of Theorem 1.5 carries over, proving a 2-
approximation for the Frobenius norm under translations. However, Zikan and Silberberg [54]
show that in the case of the Frobenius norm, the translation given by the difference of the two
centers of mass is optimal and thus Algorithm 1.1 provides the optimal solution. Note that
this is not the case for any other distance measure of shapes considered in this thesis.

Zikan and Silberberg [54] then compute an approximate rotation around the coinciding
reference points by using a parametric linear programming approach. To find the optimal
rotation for a fixed assignment, they use rotations in the complex plane in the 2-dimensional
case, quaternions in 3 dimensions and singular value decomposition for arbitrary dimension d.

It would be interesting to check if an approach similar to the EMD, where one computes the
Frobenius norm for all rotations aligning at least one point of each set, leads to a constant-factor
approximation.






Bibliography

1

2]

Pankaj K. Agarwal and Jeff M. Phillips. On bipartite matching under the rms distance.
In Proc. 18th Canadian Conf. on Comput. Geom., pages 143-146, 2006.

Pankaj K. Agarwal, Micha Sharir, and Sivan Toledo. Applications of parametric searching
in geometric optimization. In Proc. 8rd ACM-SIAM Sympos. Discrete Algorithms, pages
72-82, 1992.

H. Alt, O. Aichholzer, and Giinter Rote. Matching shapes with a reference point. Internat.
J. Comput. Geom. Appl., 7:349-363, 1997.

H. Alt, B. Behrends, and J. Blémer. Approximate matching of polygonal shapes. In Proc.
7th Annu. ACM Sympos. Comput. Geom., pages 186—-193, 1991.

H. Alt, J. Blomer, M. Godau, and H. Wagener. Approximation of convex polygons.
In Proc. 17th Internat. Collog. Automata Lang. Program., volume 443 of Lecture Notes
Comput. Sci., pages 703—-716. Springer-Verlag, 1990.

H. Alt, U. Fuchs, Giinter Rote, and G. Weber. Matching convex shapes with respect to the
symmetric difference. In Algorithms — Proc. 4th Annu. European Sympos. Algorithms,
volume 1136 of Lecture Notes Comput. Sci., pages 320-333. Springer-Verlag, 1996.

H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves.
Internat. J. Comput. Geom. Appl., 5:75-91, 1995.

Helmut Alt, Christian Knauer, and Carola Wenk. Matching polygonal curves with respect
to the fréchet distance. In Proc. 18th Int. Sympos. on Theoretical Aspects of Comp.
Science, pages 63-74, 2001.

N. Amenta. Bounded boxes, Hausdorff distance, and a new proof of an interesting Helly
theorem. In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 340-347, 1994.

I. Assent, A. Wenning, and T. Seidl. Approximation techniques for indexing the earth
mover’s distance in multimedia databases. In Proc. 22nd Int. Conf. on Data Engineering
(ICDE), 2006.

M. J. Atallah. A linear time algorithm for the Hausdorff distance between convex polygons.
Inform. Process. Lett., 17:207-209, 1983.

Wolfgang W. Bein, Peter Brucker, James K. Park, and Pramod K. Pathak. A monge
property for the d-dimensional transportation problem. Discrete Appl. Math., 58(2):97—
109, 1995.

127



128

[13]

[14]

[15]

[16]

[17]

[18]

[21]

[22]

[23]

[26]

[27]

[28]

BIBLIOGRAPHY

Marc Benkert, Alexander Wolff, Florian Widmann, and Takeshi Shirabe. The minimum
Manhattan network problem: Approximations and exact solution. CGTA, 2006.

Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre
Tarjan. Time bounds for selection. J. Comput. Syst. Sci., 7(4):448-461, 1973.

S. Cabello, P. Giannopoulos, C. Knauer, and G. Rote. Matching point sets with respect
to the earth mover’s distance. In Proc. European Sympos. Algorithms, 2005.

Victor Chepoi, Karim Nouioua, and Yann Vaxes. A rounding algorithm for approximating
minimum manhattan networks. 2005.

L. P. Chew, M. T. Goodrich, D. P. Huttenlocher, K. Kedem, J. M. Kleinberg, and
D. Kravets. Geometric pattern matching under Euclidean motion. Comput. Geom. Theory
Appl., 7:113-124, 1997.

Kenneth L. Clarkson. Nearest-neighbor searching and metric space dimensions. In Gregory
Shakhnarovich, Trevor Darrell, and Piotr Indyk, editors, Nearest-Neighbor Methods for
Learning and Vision: Theory and Practice, pages 15-59. MIT Press, 2006.

Scott Cohen. Finding Color and Shape Patterns in Images. PhD thesis, Stanford Univer-
sity, Department of Computer Science, 1999.

Scott Cohen and Leonidas Guibas. The earth mover’s distance: Lower bounds and invari-
ance under translation. Technical Report CS-TR-97-1597, 1997.

Scott. D. Cohen and Leonidas. J. Guibas. The earth mover’s distance under transformation
sets. In Proc. 7th IEEFE Int. Conf. Comp. Vision, pages 173-187, 1999.

R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. ACM,
34(1):200-208, 1987.

I. K. Daugavet. Some applications of the marcinkiewicz-berman identity.  Vestnik
Leningrad Univ., Math., pages 321-327, 1974.

Mark de Berg, Olivier Devillers, Marc van Kreveld, Otfried Schwarzkopf, and Monique
Teillaud. Computing the maximum overlap of two convex polygons under translations.
In Proc. 7th Annu. Internat. Sympos. Algorithms Comput., volume 1178 of Lecture Notes
Comput. Sci., pages 126-135. Springer-Verlag, 1996.

A. Efrat, A. Itai, and M. J. Katz. Geometry helps in bottleneck matching and related
problems. Algorithmica, 31:1-28, 2001.

Panos Giannopoulos. Geometric Matching of Weighted Point Sets. PhD thesis, Univer-
siteit Utrecht, 2005.

Panos Giannopoulos and Remco C. Veltkamp. A pseudo-metric for weighted point sets.
In Proc. 7th Europ. Conf. on Comp. Vision, LNCS 2352, pages 715-731, 2002.

M. Godau. On the Complezity of Measuring the Similarity Between Geometric Objects in
Higher Dimensions. PhD thesis, Freie Universitat Berlin, 1998.



BIBLIOGRAPHY 129

[29]

[30]

T. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoret. Comput.
Sci., 38:293-306, 1985.

K. Graumann and T. Darell. Fast contour matching using approximate earth mover’s dis-
tance. In Proc. 1991 IEEE Comp. Society Conf. on Comp. Vision and Pattern Recognition,
pages 220227, IEEE Service Center, Piscataway, NJ, USA (IEEE cat n 91CH2983-5),
2004. IEEE.

B. Griinbaum. Convez Polytopes. John Wiley & Sons, New York, NY, 1967.

J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Approximating a minimum Man-
hattan network. Nordic J. Comput., 8:219-232, 2001.

Joachim Gudmundsson, Oliver Klein, Christian Knauer, and Michiel Smid. Small man-
hattan networks and algorithmic applications for the earth mover’s distance. In Proc. 23rd
Europ. Workshop Comp. Geom., pages 174-177, 2007.

J. D. Horton. Sets with no empty convex 7-gons. Canad. Math. Bull., 26:482-484, 1983.

D. P. Huttenlocher and K. Kedem. Computing the minimum Hausdorff distance for point
sets under translation. In Proc. 6th Annu. ACM Sympos. Comput. Geom., pages 340-349,
1990.

Piotr Indyk. A near linear time constant factor approximation for euclidean bichromatic
matching (cost), to appear. In Proc. 18th Symp. on Disc. Alg., 2007.

Oliver Klein and Remco C. Veltkamp. Approximation algorithms for the earth mover’s
distance under transformations using reference points. In Proc. 16th Intl. Sympos. Algo-
rithms and Computation, pages 1019-1028, 2005.

Oliver Klein and Remco C. Veltkamp. Approximation algorithms for the earth mover’s
distance under transformations using reference points. Report B 05-11, Freie Universitat
Berlin, Institut fiir Informatik, 2005.

Christian Knauer. Algorithms for Comparing Geometric Patterns. PhD thesis, Freie
Universitat Berlin, Institut fir Informatik, 2002.

N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
J. ACM, 30(4):852-865, 1983.

J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations
Research, 41:338-350, 1993.

K. Przestawski and D. Yost. Continuity properties of selectors and michael’s theorem.
Michigan Math. J., 36:113-134, 1989.

S. Rachev and L. Riischendorf. Mass Trasportation Problems. Vol. I: Theory, Vol. II:
Applications. Springer, 1998.

Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric for image
retrieval. Int. J. of Comp. Vision, 40:99-121, 2000.



130

[45]

[46]

[47]

[48]

BIBLIOGRAPHY

D. Rutovitz. Some parameters associated with a finite dimensional banach space. J.
London Math. Soc., 2:241-255, 1965.

R. Schneider. Kriimmungsschwerpunkte konvexer Korper. Abh. Math. Sem. Hamburg,
37:112-132, 1972.

G. C. Shepard. The Steiner point of a convex polytope. Canad. J. Math., 18:1294-1300,
1966.

R. Typke, P. Giannopoulos, R. C. Veltkamp, F. Wiering, and R. Oostrum. Using trans-
portation distances for measuring melodic similarity. In Proc. 4th Int. Conf. on Music
Information Retrieval, pages 107-114, 2003.

P. M. Vaidya. Geometry helps in matching. SIAM J. Comput., 18:1201-1225, 1989.
C. Villani. Topics in Optimal Transportation. American Mathematical Society, 2003.

Gerald Weber. The centroid is a reference point for the symmetric difference in d dimen-
sions. Report UoA-SE-2004-1, University of Auckland, 2004.

Carola Wenk. Shape Matching in Higher Dimensions. PhD thesis, Freie Universitat Berlin,
Institut fiir Informatik, 2002.

A. C. Yao. Space-time trade-off for answering range queries. In Proc. 14th Annu. ACM
Sympos. Theory Comput., pages 128-136, 1982.

Karel Zikan and Theresa M. Silberberg. The Frobenius metric in image registration.
In L. Shapiro and A. Rosenfeld, editors, Computer Vision and Image Processing, pages
385-420. Academic Press, 1992.



131



132

APPENDIX A. LOWER BOUND FOR THE EMD UNDER ROTATIONS

Appendix A

Lower Bound for the EMD
Under Rotations

l Max 1: r] Max 2: r3 sin ¢ Approx. Ratio
0.1 0.2744646880 | 3.643455948 0.7961286352 1.031102773
0.2 0.3808573470 | 2.625655007 0.7454811025 1.054514795
0.3 0.4648467435 | 2.151246651 0.6914893705 1.074950280
0.4 0.5388130560 | 1.855931271 0.6310736355 1.093317292
0.5 0.6077079156 | 1.645527357 0.5619979981 1.109842515
0.6 0.6747641047 | 1.481999402 0.4818463712 1.124449510
0.7 0.7432426857 | 1.345455555 0.3875854431 1.136840155
0.8 0.8174753427 | 1.223278487 0.2755283240 1.146487880
0.82 | 0.8334935771 | 1.199769293 0.2506916271 1.148025105
0.84 | 0.8500073125 | 1.176460467 0.2250295597 1.149416170
0.86 | 0.8670512485 | 1.153334364 0.1985673307 1.150654512
0.88 | 0.8846470340 | 1.130394340 0.1713574339 1.151734043
0.9 0.9027971779 | 1.107668505 0.1434865666 1.152649523
0.92 0.9214788335 | 1.085212122 0.1150812464 1.153397032
0.94 | 0.9406388679 | 1.063107250 | 0.08631006634 1.153974446
0.96 | 0.9601920648 | 1.041458305 | 0.05738036238 1.154381897
0.98 | 0.9800241231 | 1.020383046 | 0.02852788354 1.154622116
0.99 | 0.9900030114 | 1.010097938 | 0.01420800295 1.154681108
0.992 | 0.9920015410 | 1.008062950 | 0.01135649035 1.154688126
0.994 | 0.9940006497 | 1.006035560 | 0.008509696885 1.154693569
0.996 | 0.9960001923 | 1.004015870 | 0.005667860612 1.154697446
0.998 | 0.9980000240 | 1.002003984 | 0.002831217249 1.154699765
0.999 | 0.9990000030 | 1.001000998 | 0.001414915889 1.154700343

0.9992 | 0.9992000015 | 1.000800639 | 0.001131820951 1.154700415
0.9994 | 0.9994000006 | 1.000600360 | 0.0008487816639 1.154700466
0.9996 | 0.9996000002 | 1.000400160 | 0.0005657982564 1.154700516
0.9998 | 0.9998000000 | 1.000200040 | 0.0002828709586 1.154700534
0.9999 | 0.9999000000 | 1.000100010 | 0.0001414284225 1.154700537




l Max 1: r} Max 2: r3 sin ¢ Approx. Ratio
1.0002 | 0.9998000400 | 1.000200000 | 0.0002828143900 | 1.154700534
1.0004 | 0.9996001601 | 1.000400000 | 0.0005655719826 | 1.154700523
1.0006 | 0.9994003604 | 1.000599999 | 0.0008482725490 | 1.154700472
1.0008 | 0.9992006410 | 1.000799998 | 0.001130915861 1.154700418
1.0010 | 0.9990010020 | 1.000999997 | 0.001413501690 1.154700349
1.002 | 0.9980040159 | 1.001999976 | 0.002825560636 1.154699786
1.004 | 0.9960161263 | 1.003999808 | 0.005645237041 1.154697457
1.006 | 0.9940364234 | 1.005999354 | 0.008458804659 1.154693654
1.008 | 0.9920649966 | 1.007998471 | 0.01126604216 1.154688338
1.010 | 0.9901019326 | 1.009997019 | 0.01406673160 1.154681499
1.02 | 0.9804148885 | 1.019976351 | 0.02796458599 1.154625183
1.04 | 0.9617093292 | 1.039815222 | 0.05515506822 1.154406259
1.06 | 0.9439343170 | 1.059395746 | 0.08140244953 1.154055573
1.08 | 0.9271092368 | 1.078621548 0.1065859353 1.153585891

1.10 | 0.9112253996 | 1.097423316 0.1306321495 1.153010297
1.12 | 0.8962521756 | 1.115757403 0.1535092660 1.152341679
1.14 | 0.8821438222 | 1.133601999 0.1752186327 1.151592317
1.16 | 0.8688456918 | 1.150952361 0.1957860061 1.150773650
1.18 | 0.8562991849 | 1.167816130 0.2152537015 1.149896121
1.2 0.8444453224 | 1.184209295 0.2336742275 1.148969132
1.3 0.7937000871 | 1.259921747 0.3121207701 1.143853002
1.4 0.7533748881 | 1.327360409 0.3727553473 1.138401676
1.5 0.7200219492 | 1.388846550 0.4207934694 1.132983698
1.6 0.6916060430 | 1.445909865 0.4597398903 1.127771402
1.7 0.6668707176 | 1.499541026 0.4919424548 1.122838338
1.8 0.6449941469 | 1.550401666 0.5190129196 1.118208435
1.9 0.6254094904 | 1.598952391 0.5420895866 1.113880805
2.0 0.6077079156 | 1.645527357 0.5619979981 1.109842514
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Zusammenfassung

Die geometrische Mustererkennung ist ein wichtiges Thema unter anderem in der algorith-
mischen Geometrie, beim computerunterstiitzten Sehen und in der Robotik, um nur einige
Anwendungsgebiete zu nennen. Fiir eine feste Abstandsfunktion und eine feste Klasse von
Transformationen 7 kann das Problem wie folgt beschrieben werden: Gegeben seien zwei
Muster A und B, finde eine Transformation T* € 7, so dass der Abstand zischen A und
T*(B) minimal ist unter allen Transformationen 7' € 7. Die betrachteten Muster in dieser
Arbeit sind im Wesentlichen kompakte Teilmengen, gewichtete Punktmengen, Punktmengen
mit einer festen Anzahl von Punkten und Wahrscheinlichkeitsmafle. Unabhéngig von der Wahl
einer dieser speziellen Muster ist das Finden einer optimalen Transformation aufwendig, falls
iiberhaupt moglich. Daher konzentrieren wir uns auf Naherungsalgorithmen.

Der Ansatz dieser Arbeit basiert auf Referenzpunkten. Dieser Ansatz wurde unter an-
derem von Alt, Behrends und Blémer [4] und Alt, Aichholzer und Rote [3] gewdhlt. Die
Autoren dieser beiden Arbeiten benutzen spezielle Abbildungen, sogenannte Referenzpunkte,
um eine relative Position der beiden Muster zueinander zu bestimmen. Dieses reduziert die
Freiheitsgrade des zugrundeliegenden Problems um die Dimension des Raumes. Ein Referen-
zpunkt ist eine Lipschitz-stetige Funktion definiert auf der Menge der Muster, die in den R?
abbildet. Zusétzlich bleibt die relative Position des Referenzpunktes bei Anwendung einer
Transformation erhalten.

In dieser Dissertation beschéftigen wir uns mit Naherungsalgorithmen fiir die Muster-
erkennung beziiglich verschiedener Abstandsmafle. Im Wesentlichen sind dies der Hausdorff-
Abstand, der diskrete und kontinuierliche Transportabstand und der Engpass-Abstand. Dabei
werden Naherungsalgorithmen fiir die verschiedenen Mafle beziiglich Verschiebungen, starren
Bewegungen, d.h. Verschiebungen und Drehungen, und positiven Ahnlichkeitsabbildungen,
d.h. starren Bewegungen in Verbindung mit positiven Streckungen, betrachtet.

Die Grundstruktur der N&herungsalgorithmen fiir die verschiedenen Abstandsmafle und
unterschiedlichen Transformationen ist jeweils &hnlich und wird in einem allgemeinen Rahmen
beschrieben. Zuerst wird die relative Position der beiden Muster zueinander durch Berech-
nung der Referenzpunkte der beiden Mengen bestimmt. Anschliefend werden die Muster so
verschoben, dass die beiden Referenzpunkte iibereinstimmen. Im Anschluss bestimmen wir
eine Drehung fiir eine der beiden Mengen, sodass der Abstand der beiden Mengen, den Wert
einer optimalen Losung hochstens um einen konstanten Faktor iibersteigt. Streckungen wer-
den betrachtet, indem vor dem Finden einer Drehung eine Streckung bestimmt wird, die einer
optimalen Streckung sehr nahe kommt.






