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Summary 
Human choice is strongly guided by emotions, even when these emotions are incidental, i.e. 

unrelated to a decision at hand. Yet, most theoretical frameworks in the domain of value-

based decision making are either completely devoid of emotion or lack a mechanistic 

understanding of the interaction of emotion and deliberative decision making. By applying 

both a behavioral and a neuroscientific approach, the present thesis investigated the influence 

of incidental emotions on decision making under risk as well as the neurocognitive processes 

than can give rise to such effects. 

In Study 1, we found that incidental happiness was positively associated with optimis-

tic probabilistic weighting of potential monetary outcomes in the gain domain, reflected in 

the elevation parameter of a prospect-theoretic probability-weighting function. In Study 2, we 

observed that incidental fear cues increased monetary loss aversion for mixed gambles. 

Moreover, affective-interpersonal features of psychopathic personality attenuated this 

emotion-induced effect on loss aversion. Going beyond behavioral models that are mute to 

the sources of loss aversion, we provide a neural mechanism for emotion-induced increases 

in loss aversion in Study 3. In this functional magnetic resonance imaging study, we observed 

emotion-induced shifts from positive to negative value coding in a distributed set of brain 

regions, including the amygdala. Therefore, our results suggest that loss aversion and 

emotion-induced changes in its magnitude are mediated by the context-dependent involve-

ment of distinct valuation processes. 

Taken together, these findings illustrate that future research should place a greater 

emphasis on linking emotion, choice, and neurocognitive processes to arrive at a full process-

based understanding of emotional effects on decision making. 
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Zusammenfassung 
Menschliche Entscheidungen werden oftmals von Emotionen gesteuert, sogar wenn diese 

Emotionen inzidentell sind, d.h., nicht mit der jeweiligen Entscheidung zusammenhängen. 

Dennoch befassen sich die meisten theoretischen Modelle zu wertbasierten Entscheidungen 

entweder gar nicht mit Emotionen oder sie liefern kein mechanistisches Verständnis der 

Interaktion von Emotion und reflektiertem Entscheiden. Durch eine kombinierte verhaltens- 

und neurowissenschaftliche Herangehensweise untersuchte die vorliegende Dissertation den 

Einfluss von inzidentellen Emotionen auf Entscheidungen unter Risiko sowie jene neurokog-

nitiven Prozesse, die diesen Einfluss vermitteln. 

In Studie 1 fanden wir einen positiven Zusammenhang zwischen inzidenteller Fröh-

lichkeit und optimistischer Wahrscheinlichkeitsgewichtung von potentiellen monetären 

Gewinnen, der sich im Elevations-Parameter einer auf der Prospect Theory basierenden 

Wahrscheinlichkeits-Gewichtungsfunktion widerspiegelte. In Studie 2 beobachteten wir dass 

inzidentelle Furchtreize die monetäre Verlustaversion in gemischten Lotterien steigerten. 

Außerdem fanden wir heraus dass affektiv-interpersonelle Facetten psychopathischer 

Persönlichkeit den emotionsinduzierten Effekt auf Verlustaversion verminderten. In Studie 3 

entdeckten wir einen neuronalen Mechanismus für die emotionsinduzierte Steigerung der 

Verlustaversion und gingen damit über verhaltensorientierte Modelle hinaus, die keine 

Informationen zu den Ursachen von Verlustaversion liefern. In dieser funktionellen Mag-

netresonanztomographie-Studie beobachteten wir emotionsinduzierte Verlagerungen von 

positiver Wertkodierung hin zu negativer Wertkodierung in mehreren, verteilten Hirnregio-

nen, inklusive der Amygdala. Unsere Ergebnisse deuten daher darauf hin, dass Verlustaversi-

on und emotionsinduzierte Veränderungen in ihrer Ausprägung durch eine kontext-abhängige 

Beteiligung von distinkten Bewertungsprozessen vermittelt werden. 

Zusammenfassend illustrieren diese Ergebnisse dass zukünftige Forschung ein größe-

res Augenmerk auf die Verbindungen von Emotionen, Entscheidungen und neurokognitiven 

Prozessen legen sollte um ein vollständigeres prozessbasiertes Verständnis von emotionalen 

Effekten auf das Entscheidungsverhalten zu erlangen. 
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Let's not forget that the little emotions are the great captains of our lives  
and we obey them without realizing it.  
 

—Vincent Van Gogh (1853 - 1890) 

1. Introduction 
Human choice is often guided by emotions (Bechara, Damasio, & Damasio, 2000; Lerner, Li, 

Valdesolo, & Kassam, 2015; Seymour & Dolan, 2008), even when they are incidental, i.e., 

unrelated to the decision at hand (Angie, Connelly, Waples, & Kligyte, 2011; Lerner et al., 

2015; Loewenstein & Lerner, 2003). This insight, however, has emerged only slowly and had 

been preceded by a long-standing ignorance of emotions within the major disciplines that 

investigate decision making such as economics. Even psychologists’ contributions to decision 

making first focused predominantly on cognitive processes (e.g., Kahneman & Tversky, 

1979; Tversky & Kahneman, 1974), reflecting an ongoing cognitive revolution in psychology 

at that time (Baars, 1986; G. A. Miller, 2003), before emotional processes have become 

(again) into focus. This development is paralleled by an increasing focus on emotions in 

behavioral economics (Loewenstein, Weber, Hsee, & Welch, 2001; Rick & Loewenstein, 

2008) and in neuroeconomics (Phelps, Lempert, & Sokol-Hessner, 2014; Volz & Hertwig, 

2016), which both have emerged as interdisciplinary endeavors to study decision making. 

The present work owes its origins to these developments and aims to contribute to our 

understanding of the role of emotions in decision making under risk. 

For scholars and laymen alike, the effects of incidental emotions on risky choice are 

particularly puzzling. Moreover, the mechanisms that mediate such effects are currently not 

well understood given that traditional research on decision making under risk relied on 

observable choice behavior, neglecting the underlying processes. Recent conceptual and 

technological advances, however, allow for a more process-oriented approach. In particular, 

neuroscientific methods such as functional magnetic resonance imaging (fMRI) provide 

valuable insights into decision processes (Clithero, Tankersley, & Huettel, 2008). By 

combining a behavioral and a neuroscientific approach, the present thesis investigated 

incidental emotional effects on decision making under risk as well as their underlying 

mechanisms. 

This dissertation is organized as follows: In Chapter 1, I will begin by giving a thor-

ough theoretical and empirical background on decision making under risk. Here, I will 

introduce the concept of risk and risk attitudes, followed by an introduction to economic and 

behavioral models of decision making under risk, with a focus on Prospect Theory. I will 

then continue with describing the relationship between emotions and decision making. Here, 

10



 

I will present a framework for decision-related emotions and describe their links to Prospect 

Theory, with a focus on two of the theory’s major constructs—probability weighting and loss 

aversion. In the last part of the introduction, I will give a summary of our current understand-

ing of the neural basis of risky choice, with a particular focus on loss aversion and emotion-

induced variations in its magnitude. In the course of this general introduction, I will identify 

open questions in the literature, which the present dissertation aimed to answer. In Chapter 2, 

I will give a summary on the explicit research questions and will formulate hypotheses. In 

Chapter 3, I will then describe the materials and methods used to test these hypotheses. In 

Chapter 4, I will give succinct summaries of the three empirical studies that form the core of 

this dissertation. Finally, in Chapter 5, I will discuss the empirical findings and put them into 

a broader theoretical context. By integrating the findings from behavioral modeling and 

neuroimaging, I will also develop a neurocognitive model of emotion-induced effects on loss 

aversion. Chapter 6 concludes by summing up the main findings of this dissertation. 

1.1.Decision Making under Risk 
Making decisions under risk is an integral part of our lives, whether we decide on a financial 

investment, on whether to leave home with an umbrella on a cloudy day or on whether to 

have unprotected sex. Two dimensions can describe lay peoples’ conceptions of risk—

unknown risk (hazards that are judged to be unknown, new, delayed) and dread risk (hazards 

associated with dread, fatal consquences; Slovic, 1987). Risk is also often associated with the 

possibility of loss or harm (Furby & Beyth-Marom, 1992; March & Shapira, 1987).  

In economics, there has been a long-standing distinction between certainty, risk and 

ambiguity (Camerer & Weber, 1992; Ellsberg, 1961; Knight, 1921): Certainty refers to 

outcomes that are certain (i.e., 100% probability) and also known to be certain. Risk refers to 

probabilistic outcomes whose probabilities are known to the decision-maker (e.g., flipping a 

fair coin, buying a lottery ticket). Ambiguity refers to all cases with unknown probabilities, 

regardless of whether the outcomes are certain or probabilistic (e.g., deciding between 

potential romantic partners). All the experiments throughout this thesis used monetary 

gambles where potential outcomes and probabilities were made explicit to participants and 

therefore fall into the second category, i.e., decision making under risk. 

While the previous economic concepts treat risk as a state (i.e., it is either present or 

not), risk can also be defined as a metric (Markowitz, 1952). From this perspective, risk is 

understood as increasing with variance in the probability distribution of possible outcomes, 

regardless of whether a potential loss is involved (although losses can have a particular 
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influence on risk preferences, see below). For instance, one common definition is that an 

option can be considered riskier if it can be expressed as a mean-preserving spread of another 

option (Rothschild & Stiglitz, 1970), e.g., a lottery with a 50% chance of winning €10 and €0 

otherwise (expected value = €5) is a mean-preserving spread of a sure outcome of €5 and 

thus riskier. From this example, it is also evident that risk encompasses not just potential 

negative or less positive outcomes (downside risk; here €0), but also potential positive 

outcomes (upside risk; here €10). The last point is often ignored in lay definitions of risk, 

although it is an important feature in many decisions, since, compared to a safe option (here 

€5), an option without a potential, relatively more positive outcome (here €10) would usually 

always be considered inferior. It is the combination of upside and downside risk that makes 

risky decisions often such an intricate matter. As mentioned before, the empirical studies of 

this thesis investigated decision making under risk, defined as a state, but also adopt the 

metric perspective of risk as variance. 

1.1.1. Risk Preferences 

People’s attitudes toward risk differ substantially (see, e.g., Dohmen, Falk, Huffman, & 

Sunde, 2010) and can be characterized by their degree of risk aversion, which can be defined 

as the tendency to prefer a sure outcome over a gamble of equal expected value (Wakker, 

2010). For instance, in the gamble example above, a risk-averse person prefers the safe 

option of €5 instead of the gamble with a 50% chance of winning €10 and €0 otherwise. In 

contrast, a preference for the gamble characterizes a risk-loving person. Risk preferences, 

however, not only differ between individuals, but also within individuals, e.g., depending on 

the framing of decision options (Tversky & Kahneman, 1981). In the following, we will see 

how risk preferences and decision making can be described by formal models. 

1.1.2. Economic Models of Decision Making under Risk 

Over the course of centuries, various theories and formal models of decision making have 

been developed. Certainly, they have several historical roots, but a particular epistolary 

exchange between the French mathematicians Pascal and Fermat (1654) is often regarded as 

the birth of the systematic study of decision making. In this exchange, Pascal and Fermat laid 

the ground for Expected-Value Theory, which assumes that decision makers choose the 

option with the highest expected value. Expected value is defined as  

 

𝐸𝑉 =  𝛴𝑝!𝑥!. 
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Here, pi and xi are the probability and magnitude of each outcome of a risky option, respec-

tively. Returning to the example given above, a risky gamble that offers a 50% chance of 

winning €10 and €0 otherwise, the EV = 0.5 * 10 + 0.5 * 0 = €5. However, as mentioned 

before, many people would prefer a sure outcome of €5 over this gamble, despite identical 

expected values of those two options—a common phenomenon termed risk aversion (see, 

e.g., Wakker, 2010). In this case, Expected-Value Theory predicts indifference and fails to 

explain risk aversion. 

Another major milestone was Bernoulli’s seminal text on Expected-Utility Theory 

(Bernoulli, 1738/1954), which builds on Expected-Value Theory but replaces objective 

monetary amounts with subjective utilities with marginally diminishing returns, i.e., utility 

does not increase linearly, but the increase in utility per additional unit declines progressive-

ly. For instance, a change from €1 to €2 has a larger subjective weight than a change from 

€1,000 to €1,001. Expected utility is defined as  

 

𝐸𝑈 =  𝛴𝑝!𝑢 𝑥! .  

 

Here, u(xi) is a monotonically increasing function of objective monetary amounts xi. 

Importantly, in contrast to Expected-Value Theory, Expected-Utility Theory can explain 

widespread risk aversion by a concave utility function, which was originally proposed to be 

logarithmic. To illustrate this, let us return to our gamble example from above: According to 

Expected-Value Theory, one should be indifferent between the gamble that offers a 50% 

chance of winning €10 and €0 otherwise and a sure option of €5. In contrast, due to decreas-

ing marginal utility (i.e., a concave utility function), Expected-Utility Theory predicts that the 

utility for the sure €5 will be larger than half (50% probability) the utility of the gamble’s 

gain of €10, explaining why most people would prefer the sure option (i.e., show risk 

aversion). 

Not before the middle of the last century, Expected-Utility Theory received an axio-

matization, i.e., the necessary and sufficient conditions under which the theory holds were 

mathematically proven (Von Neumann & Morgenstern, 1947). When, and only when, a 

decision maker satisfies the following four axioms, their decision behavior could be de-

scribed by a utility function and maximization of utility, and thus as rational. These four 

axioms are: 
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1. Completeness: For any two alternatives A and B, the individual has well-

defined preferences, i.e., either prefers A to B, is indifferent between A and B, 

or prefers B to A. 

2. Transitivity: Given completeness, for any three alternatives, the individual’s 

preferences are consistent, i.e., if A is preferred to B and B is preferred to C, 

then A is preferred to C. 

3. Continuity: Given the ordering of the three alternatives above, there is a prob-

abilistic compound of the best alternative A and worst alternative C that is 

equivalent to the intermediate alternative B, i.e., there is a probability p such 

that the individual is indifferent between B and the following lottery:  

pA + (1-p)C. 

4. Substitution or Independence: An individual’s preference for A to B is inde-

pendent of the presence of a probabilistic mixture with a third alternative C, 

i.e., pA+(1-p)C is preferred to pB+(1-p)C (In the case of C = 0, the options 

thus reduce to pA preferred to pB). 

 

However, several violations of these axioms were observed soon after their formula-

tion – rendering Expected-Utility Theory a normative rather than a truly descriptive model. 

For instance, one of the first and influential violations was the certainty effect, also known as 

Allais paradox (Allais, 1953). An illustrative demonstration was given by Kahneman and 

Tversky (1979, p. 266). In their study, participants faced two hypothetical choices: 

 

Choice Problem 1: Choice between an 80% chance of winning 4,000 ILP (Israeli 

Pounds) [A] or a sure outcome of 3,000 ILP [B]. 

Choice Problem 2: Choice between a 20% chance of winning 4,000 ILP [C] or a 25% 

chance of winning 3,000 ILP [D]. 

 

While the majority of subjects (i.e., 80%) chose B over A, implying that u(3,000) > 

0.8u(4,000), the majority of subjects (i.e., 65%) chose C over D, implying the opposite 

preference order, 0.2u(4,000) > 0.25u(3,000), equivalent to 0.8u(4,000) > u(3,000) (multi-

plied by 4). This pattern constitutes a violation of the substitution or independence axiom, 

since alternatives in Choice Problem 2 are probability mixtures of the alternatives in Choice 

Problem 1 (i.e., each alternative was weighted with a p of 0.25). Importantly, this violation 
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indicates that a change from certainty to 25% chance loomed larger (hence certainty effect) 

than a change from 80% to 20% chance. 

When investigating choices that involved potential losses, Kahneman and Tversky 

(1979, p. 268) observed another violation of Expected-Utility Theory. For instance, partici-

pants were given Choice Problem 1 from above and a mirrored Choice Problem 1loss in the 

loss domain: 

 

Choice Problem 1: Choice between an 80% chance of winning 4,000 ILP [A] or a 

sure gain of 3,000 ILP [B]. 

Choice Problem 1loss: Choice between an 80% chance of losing 4,000 ILP [C] or a 

sure loss of 3,000 ILP [D]. 

 

Remember that the majority (i.e., 80%) of participants chose B over A, indicating risk 

aversion. However, in the loss domain, the majority (i.e., 92%) chose the gamble C over the 

sure loss D, indicating risk seeking. This reversal was termed the reflection effect, because 

the reflection of prospects around 0 reversed the preference order. Risk seeking in the loss 

domain cannot be explained by an extrapolation of the concave utility function to the loss 

domain, calling for a model that accounts for reference dependence. In an attempt to explain 

such violations and provide a more descriptive account of actual choice behavior, a new 

model has been developed: Prospect Theory (Kahneman & Tversky, 1979). 

1.1.3. Prospect Theory As A Behavioral Model of Decision Making under Risk 

Prospect Theory goes beyond Expected-Utility Theory by 1) replacing the utility function 

u(xi) over states of wealth with a value function v(xi) over gains and losses relative to a 

reference point (e.g., the status quo), and 2) by introducing nonlinear weighting of probabili-

ties, i.e., the value of an outcome is weighted not by its objective probability but receives a 

decision weight w(pi) that is a nonlinear transformation of the outcome’s probability pi. 

Furthermore, in Cumulative Prospect Theory (Tversky & Kahneman, 1992), probability 

weighting is rank-dependent (following Quiggin, 1982), i.e., the decision weight attached to 

an outcome depends on the rank of that outcome with respect to other outcomes in the 

gamble. In (Cumulative) Prospect Theory, the value of a simple prospect is then given by  

 

𝑉 𝑥, 𝑝 =  𝑤 𝑝! 𝑣 𝑥!  
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Reference dependence of the value function allows for different curvatures in the gain and 

loss domain—typically concave for gains and convex for losses. It is this reference-

dependent reflection of the curvature of the value function that can explain the reflection 

effect mentioned before, i.e., risk aversion in the gain domain and risk seeking in the loss 

domain. It also explains a similar effect, the so-called framing effect (Tversky & Kahneman, 

1981). In contrast to the reflection effect, the outcome domain is not changed objectively, but 

is framed to appear to involve the other domain. For instance, when people are given €50 as 

an initial endowment and in a second step they can decide between a sure payoff of €20 

(“keep €20”) and a gamble with some probability of keeping all or losing all, they will be 

more risk-averse than when they have to decide between a sure loss of €30 (“lose €30”) and 

the same gamble. Please note that the final outcome for both sure payoffs would be €20, i.e., 

the objective outcome domains did not change, but their framing. Just as the reflection effect, 

the framing effect can be explained by a reference-dependent value function in Prospect 

Theory. 

Moreover, Prospect Theory postulates a kinked value function with a steeper slope for 

losses than for gains, a feature termed loss aversion, with the effect that “losses loom larger 

than gains” (Kahneman & Tversky, 1979, p. 279), which results in risk aversion in mixed 

gambles. For instance, subjects typically reject mixed gambles that offer a 50% probability of 

gaining money and a 50% probability of losing money, unless the potential gain is at least 

about one and a half times or twice as large as the potential loss (e.g., Gächter, Johnson, & 

Herrmann, 2010; Kahneman & Tversky, 1979). 

A popular parameterization of the value function expresses its reference dependence 

(Tversky & Kahneman, 1992): 

 

𝑣𝑥! =
𝑥!! 𝑖𝑓 𝑥! ≥ 0

−𝜆 −𝑥! ! 𝑖𝑓 𝑥! < 0.
 

 

Here, α and β represent the curvature parameters in the gain and loss domains, respectively. 

Please note that the parameter position indicates a power function. Typically, the estimated 

parameter values are α<1, indicating a concave value function for gains that can explain 

commonly observed risk aversion in the gain domain, and β<1, indicating a convex value 

function for losses that can explain commonly observed risk seeking in the loss domain. The 

λ parameter models the degree of loss aversion, i.e., λ>1 indicates commonly observed loss 
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aversion, λ=1 indicates loss (and thus risk) neutrality, and λ<1 indicates gain seeking. The 

value function is schematized in Figure 1, Panel A.  

Not just the value function, but also the probability weighting function has been con-

sidered reference-dependent, but here with regard to its natural end points of impossibility (p 

= 0) and certainty (p = 1). Just as the expected utility (in Expected-Utility Theory) and value 

functions (in Prospect Theory) capture diminishing sensitivity to changes in the outcomes, 

the probability weighting function captures diminishing sensitivity to changes in probability 

with increasing distance from the reference points. This parallels insights from psychophysics 

on reference-dependence and diminishing marginal sensitivity in several perceptual domains 

(Fechner, 1948; Stevens, 1957). 

The postulated shape of the probability weighting function is an inverse S (see Figure 

1, Panel B), reflecting overweighting of low probabilities, underweighting of high probabili-

ties, and lowest sensitivity to probability changes in the intermediate range. This property can 

explain the Allais paradox or certainty effect that we encountered above. Specifically, in 

Choice Problem 1, the alternative A associated with an 80% probability [4,000 ILP, 80%] 

receives a decision weight that is lower than its objective probability. This is not the case for 

the sure outcome B [3,000 ILP, 100%], which receives a decision weight identical to its 

objective probability of 100%. Together, this renders the sure, but smaller outcome B 

relatively more attractive. However, in Choice Problem 2, the probabilities associated with 

the two alternatives C and D, 20% [4,000 ILP, 20%] and 25% [3,000 ILP, 25%], respective-

ly, receive similar decision weights (in fact, due to overweighting of smaller probabilities, the 

difference in decision weights is slightly reduced relative to the difference based on un-

weighted, objective probabilities). This renders the similarly weighted, but larger outcome C 

more attractive. Hence, the observed preference reversal in the Allais paradox can be 

explained by nonlinear probability weighting. 

The nonlinear, inverse S-shaped weighting function generally fits aggregate experi-

mental data well (Fehr-Duda & Epper, 2012; Stott, 2006), but there is considerable heteroge-

neity on an individual participant level with the most common curves being inverse S-shaped 

or convex (Fehr-Duda & Epper, 2012; Gonzalez & Wu, 1999; van de Kuilen & Wakker, 

2011). Two-parameter models of probability weighting further distinguish between the 

curvature of the probability weighting function, which reflects sensitivity to changes in 

probability, and the elevation of the probability weighting function, which is thought to 

reflect “attractiveness” to gamble or “optimism/pessimism” across probability levels (e.g., 

Fehr-Duda & Epper, 2012; Gonzalez & Wu, 1999, see also Chapter 3.5.2.). 
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Figure 1. Value and probability weighting functions in Prospect Theory. Panel A: Value function that maps 
outcomes x (e.g., monetary gains and losses) to subjective values v(x), which have arbitrary units. The function 
is typically concave for gains and convex for losses and has a steeper slope for losses than for gains, i.e., loss 
aversion (also illustrated by the dashed colored lines reflecting different subjective values for a gain and a loss 
of equal magnitude). Panel B: Nonlinear probability weighting that maps probabilities p to decision weights 
w(p). The commonly observed inverse S-shaped function reflects overweighting of small probabilities, 
underweighting of moderate and high probabilities, and diminished sensitivity to probability changes in the 
intermediate range. The function thereby deviates from linear weighting (dashed 45° line). 

 
Together with a reference-dependent value function, the probability weighting function can 

also explain the commonly observed four-fold pattern of risk attitudes (Tversky & 

Kahneman, 1992). More precisely, while both a concave value function and underweighting 

of high probabilities can explain risk aversion for high-probability gains (in favor of a smaller 

sure gain), risk seeking for low-probability gains (common, e.g., in real-world lotteries) can 

be explained by the overweighting of small probabilities. In a similar vein, while both a 

convex value function and underweighting of high probabilities can explain risk seeking for 

high-probability losses—with often devastating consequences—risk aversion for low-

probability losses (reflected, e.g., in the popularity of insurances) can mainly be explained by 

overweighting of small probabilities. Such gains in explanatory power have raised the belief 

“… that probability nonlinearity will eventually be recognized as a more important determi-

nant of risk attitudes than money nonlinearity” (Prelec, 2000, p. 89). However, as we have 

seen, both concepts jointly explain risky choice. Prospect Theory’s concept of loss aversion 

adds further explanatory value. Specifically, in mixed prospects, risk aversion appears to be 

predominantly driven by loss aversion (Novemsky & Kahneman, 2005). This high explanato-

ry power of Prospect Theory is reflected in its common designation as a descriptive model 

−1000−800 −600 −400 −200 0 200 400 600 800 1000

0

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

w
(p

) 
p x 

v(
x)

 
Probability Weighting Subjective Value 

A B 

18



 

(i.e., explaining how people actually make decisions), in contrast to previous models like 

expected value theory and expected utility theory, which are now commonly regarded as 

normative models (i.e., explaining how rational agents would make decisions). 

Since the development of Prospect Theory, subjective transformations of outcomes 

and probabilities, loss aversion, and phenomena like the framing effect have commonly been 

considered cognitive biases. However, there has been an increasing interest in whether they 

also reflect affective processes, as it soon became clear that decision making also depends on 

expected emotional outcomes (e.g., Bell, 1985; Gul, 1991; Loomes & Sugden, 1986) as well 

as emotions felt at the time of choice (e.g., Reimann & Bechara, 2010). Before we delve into 

the relationship between emotions and Prospect Theory, let me first give you a general 

introduction to decision-related emotions. 

1.2. Emotions and Decision Making 
Decision scientists have been indifferent to emotions for a long time. Recently, however, it is 

increasingly acknowledged that different kinds of emotions are involved in decision making 

(Lerner et al., 2015; Rick & Loewenstein, 2008). Before turning to decision-related emotions, 

let me first give a brief working definition of emotions. 

1.2.1. Emotions—A Working Definition 

Despite the widespread use of emotions in lay theories (Ong, Zaki, & Goodman, 2015; 

Tamir, John, Srivastava, & Gross, 2007) and language to describe and explain behavior, there 

is no consensual, unitary scientific definition of emotions, although there is some consensus 

regarding, e.g., common antecedents and functions of emotions (Izard, 2010; Scherer, 2005). 

A common conceptual and heuristic understanding of emotion is that they comprise multiple 

interrelated components—cognitive appraisals, psychophysiological activation, action 

tendencies, motor expressions (e.g., facial), and subjective feelings—as postulated by the 

component process model of emotions (Scherer, 2009). In this framework, an emotion is 

defined as an episode of interrelated, synchronized changes in all or most of these compo-

nents in response to the evaluation of an external or internal stimulus event as relevant to 

major concerns of the organism (Scherer, 2005). A multi-componential perspective allows 

addressing decision-related emotions and their effects on behavior on several levels, e.g., in 

terms of appraisal and action tendencies (Lerner & Keltner, 2000; Lerner et al., 2015), which 

might provide unique as well as complementary insights. In the following chapter, I will 

continue by describing how decision-related emotions can be classified. 
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1.2.2. Decision-Related Emotions 

Contemporary theoretical accounts distinguish between several types of decision-related 

emotions, for instance, by the associated stage in the decision process, their source, and their 

compliance with normative decision theory (Lerner et al., 2015; Rick & Loewenstein, 2008), 

which is consequentiatlistic and postulates that decision makers only assess utility based on 

future consequences (and not current affective states) and their likelihood. Figure 2 below 

gives an overview of these decision-related emotions. 

For instance, so-called expected emotions are emotions that are anticipated to be expe-

rienced when the outcomes of a decision materialize. They are not experienced at the moment 

of choice, where they are only reflected in cognitions about the future emotions. In decision 

sciences, it is now widely accepted that people use expected emotions to form preferences 

(e.g., disappointment and elation; Bell, 1985; Gul, 1991; Loomes & Sugden, 1986). For 

instance, a decision maker can anticipate feeling disappointment when a recently bought 

stock declines in price afterwards and decides against the purchase to avoid potential 

disappointment. This type of emotion is consistent with a consequentialist perspective in that 

utility can also arise from experienced outcome-related emotions. Nevertheless, it took a 

while until their importance had been acknowledged. 

In contrast to expected emotions, immediate emotions are actually experienced at the 

moment of choice and can be further subdivided in two kinds of emotions:  

1) Integral emotions, like expected emotions, arise from anticipating the consequenc-

es of one’s decision, but are experienced at the moment of choice. For instance, a decision 

maker might experience immediate fear when thinking about a potential huge loss after 

buying a stock. In principle, these emotions can also be incorporated into a consequentialist 

framework. Specifically, they might effectively signal decision makers their own tastes and 

values. Compelling evidence for this view comes from studies that investigated patients with 

injuries to the ventromedial prefrontal cortex (vmPFC) that cause emotional impairments 

(Bechara, Damasio, Tranel, & Damasio, 1997; Bechara, Tranel, Damasio, & Damasio, 1996). 

These patients repeatedly selected choice options with a high risk in decision-making tasks, 

resulting in a net loss, even when they cognitively understood the consequences. Physiologi-

cal measures of skin conductance responses indicated that vmPFC-lesioned patients had 

deficient anticipatory arousal to risky options. Such anticipatory signals have been considered 

“somatic markers” that signal healthy individuals to avoid high risks (Reimann & Bechara, 

2010). Interestingly, vmPFC-lesioned patients display physiological reactions when they 

experience losses or gains (Bechara, Damasio, Damasio, & Lee, 1999), which might enable 
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them to expect future emotional consequences (i.e., expected emotions) without experiencing 

anticipatory emotions (i.e., integral emotions) that directly guide choice. 

2) Incidental emotions are also experienced at the moment of choice. In contrast to in-

tegral emotions, they arise from situational or dispositional sources that are objectively 

unrelated to the decision at hand, but can influence this very decision (Angie et al., 2011; 

Lerner et al., 2015; Loewenstein & Lerner, 2003). Thereby, they pose a fundamental and 

likely insurmountable challenge to normative decision theory, which postulates that utility is 

based on the integration of only future consequences and their likelihood, but not current 

affective states. However, incidental emotions are also a challenge to more recent theories 

and behavioral models of decision making such as Prospect Theory, which has not explicitly 

addressed emotions in the first place. However, as we will see in the next chapters, consider-

able progress has been made in linking emotions and Prospect Theory. The present thesis 

aims to advance the field by investigating the effects of incidental emotions on decision 

making under risk from a prospect-theoretic perspective. 

 

 
Figure 2. Different types of decision-related emotions. 
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1.2.3. Emotions and Prospect Theory 

Prospect Theory’s principles of reference-dependence and diminishing marginal sensitivity 

resonated well with those established in the psychophysics of perception (Fechner, 1948; 

Stevens, 1957), and, in general, cognitive conceptions have been implicitly or even explicitly 

prevailing. A widely held implicit assumption, however, is that subjective value at least 

partially reflects emotions, which in turn guide choice. In fact, this assumption has been made 

relatively explicit by Kahneman, stating that “… Humans described by Prospect Theory are 

guided by the immediate emotional impact of gains and losses …” (Kahneman, 2011, p. 

286/287). This description roughly corresponds to the notion of integral emotions that arise 

from thinking about the consequences of one’s decisions (e.g., the fear at the thought of a 

potential loss), although it could also refer to emotions experienced when outcomes material-

ize and which are cognitively anticipated in the present. 

In the following chapters, I will show that both types of emotions have been associat-

ed with prospect-theoretic features, in particular with probability weighting and loss aversion. 

However, despite a growing body of evidence that also linked incidental emotions and 

decision making (see, e.g., Angie et al., 2011; Pham, 2007), the number of experimental 

studies that investigated the influence of incidental emotions on probability weighting and 

loss aversion is limited. Hence, I will also identify gaps in the literature on the links between 

incidental emotions and Prospect Theory that the present thesis aims to close. 

1.2.4. Emotions and Probability Weighting 

The consideration of expected and integral emotions, in particular with regard to probability 

weighting, has led to interesting insights in modeling of risky choice. For instance, according 

to one account, probability weighting can result from anticipated elation or disappointment 

(i.e., expected emotions) regarding the future realization of an uncertain payoff (Bell, 1985; 

Brandstätter, Kühberger, & Schneider, 2002; Gul, 1991; Walther, 2003). For instance, 

overweighting of small probabilities could result from anticipated elation after winning, 

given that winning was very unlikely, and underweighting of large probabilities can result 

from anticipated disappointment of not winning, given that winning was very likely 

(Brandstätter et al., 2002). The authors have shown that nonlinear power surprise functions 

for elation and disappointment allow the reconstruction of the typically observed inverse S-

shaped probability-weighting function. Interestingly, it has also been found that disappoint-

ment looms larger than elation. Importantly, this offers a plausible psychological interpreta-

tion of over- and underweighting, whereas Prospect Theory’s notion of diminishing sensitivi-
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ty is not sufficient to imply such a pattern (e.g., permanent over- or underweighting would 

also be in line with this notion, as noted by Brandstätter et al., 2002). However, one major 

drawback of this account is that the introduced emotional terms were mainly defined as 

anticipated expectancy violations (see above), but have not been linked to actual affective 

experience (see, e.g., Brandstätter et al., 2002). 

In a similar vein, but related to integral emotions, it has been hypothesized that the ex-

tent of probability weighting depends on the “affective richness” of potential outcomes and 

elicited hope or fear at the time of choice (Rottenstreich & Hsee, 2001). To be specific, 

overweighting of small probabilities is thought to result from the differentiation of situations 

in which some hope of winning exists (whenever p > 0) from situations in which there is no 

hope (in case of impossibility of winning). Likewise, underweighting of large probabilities is 

thought to result from the differentiation of situations in which some fear of not winning 

exists (whenever p < 1) from those in which there is no fear (in case of certainty of winning). 

Although changes from impossibility or certainty to possibility are emphasized by these 

emotions, changes in the intermediate range of probabilities may be de-emphasized (e.g., fear 

vs. not fear looms larger than slightly less vs. more fear). Furthermore, hope and fear should 

be stronger for affect-rich outcomes (e.g., a kiss, a vacation, or receiving an electric shock) 

compared to relatively affect-poor outcomes (e.g., a moderate cash prize). Consistent with 

these hypotheses, Rottenstreich and Hsee found a more strongly curved probability-weighting 

function for affect-rich compared to affect-poor outcomes, which reflects both the postulated 

over- and underweighting effects as well as diminished sensitivity to changes in the interme-

diate range of probabilities. 

This phenomenon was also investigated in a recent fMRI study, which found that sev-

eral brain areas were differentially activated in decisions on affect-poor and affect-rich 

outcomes (Suter, Pachur, Hertwig, Endestad, & Biele, 2015). For instance, affect-rich choice 

was associated with increased amygdala activity, consistent with emotional reactivity. 

Moreover, brain activity in regions that were more active during affect-poor choice (e.g., 

supramarginal gyrus) correlated with decision weights estimated via behavioral modeling, 

indicating that these regions display sensitivity to probability (changes). This finding is also 

consistent with the idea that sensitivity to probability (changes) is decreased in affect-rich 

decisions. Although these findings have been associated with integral emotions that are felt at 

the time of choice, evidence on their involvement is only indirect (e.g., increased amygdala 

activity during affect-rich choice in Suter, Pachur, Hertwig, Endestad, & Biele, 2015). 

Moreover, the reported effects could also be explained by the anticipation of emotions 
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following future outcomes (i.e., expected emotions), which was the only emotional variable 

directly assessed (e.g., by self-reports, Suter, Pachur, Hertwig, et al., 2015). Taken together, 

although there remain open questions on the nature of the involved emotions, these findings 

provide evidence in favor of an emotional influence on probability weighting. 

In contrast to expected and potential integral emotions, the influence of incidental 

emotions on probability weighting is far less understood. Incidental emotions are, like 

integral emotions, experienced at the moment of choice, but might influence decision making 

in a different manner. One early indication that incidental emotions might affect probability 

weighting is their influence on probability judgments. For instance, happy people make more 

optimistic probabilistic judgments and sad people make more pessimistic judgments (Johnson 

& Tversky, 1983; Wright & Bower, 1992), suggesting that similar effects might be observa-

ble in the subjective weighting of probabilities in risky choice.  

Somewhat surprisingly, there has been almost only correlative and indirect evidence 

on the influence of incidental affect on probability weighting when this dissertation com-

menced. For instance, one study found seasonal and weather-dependent effects on probability 

weighting in US market price data, which were interpreted as mood effects though this 

assertion is speculative, as affective states have not been assessed. Data from fall (i.e., a 

season with decreasing daylight duration) and from days with high cloud coverage could be 

explained by a more strongly inverse S-shaped probability-weighting function compared to 

other seasons and lower sky coverage. In contrast, another study found a more elevated 

probability-weighting function (i.e., more optimistic weighting across probabilities) for both 

gains and losses in women (but not in men) that regarded the current day to be more promis-

ing than usual, which was also speculated to be an effect of mood (Fehr-Duda, Epper, Bruhin, 

& Schubert, 2011). However, to prove a causal effect of incidental emotions, it is indispensa-

ble to experimentally manipulate incidental emotions, optimally accompanied by a manipula-

tion check (e.g., emotional self reports), and to investigate emotion-induced changes in 

probability weighting, which was the aim of Study 1 (for a summary, see Chapter 4.1.). 

1.2.5. Emotions and Loss Aversion 

There is a considerable body of evidence showing that loss aversion is intimately tied to 

emotions. For instance, participants that reported a high ability to identify and describe 

emotions (i.e., low alexithymia; Bibby & Ferguson, 2011) or objectively showed high 

interoceptive awareness (i.e., in a heart-beat detection task; Sokol-Hessner, Hartley, 

Hamilton, & Phelps, 2015) also displayed increased loss aversion compared to lower-scoring 
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participants. Other studies focused on affective features of choice options. For instance, 

choice on hedonic goods (e.g., sweets) that induce pronounced affective reactions is associat-

ed with greater loss aversion than choice on affect-poor utilitarian goods (e.g., glue sticks; 

Dhar & Wertenbroch, 2000). Another example is that people are more willing to pay for 

insurance against potential loss of an object, the more affection they have for the object, even 

when holding monetary worth constant (Hsee & Kunreuther, 2000)—which could be 

explained by differences in loss aversion. Together, these studies suggest that loss aversion 

seems to be at least partly determined by expected or integral emotions, although the relative 

contribution of the two is not always clear. 

In contrast to probability weighting, incidental emotional effects on loss aversion are 

better established, though evidence is still limited. Early studies found that incidental positive 

affect, induced by the receipt of a small bag of candy, was associated with more thoughts 

about losing in a thought-listing task (Isen & Geva, 1987), and with greater negative utilities 

of losses compared to control (Isen, Nygren, & Ashby, 1988). In contrast, a recent study 

found increased loss aversion for incidental negative affect (Stancak et al., 2015). Specifical-

ly, the presentation of unpleasant odor (methylmercaptan) was associated with greater loss 

aversion than pleasant odor (jasmine) or clean air, and the effects could be attributed to 

changes in odor pleasantness, but not intensity (i.e., arousal, but see Sokol-Hessner, 

Lackovic, et al., 2015). Emotional influence on loss aversion, however, is not always related 

to increased loss aversion. For instance, induced anger has been associated with reduced loss 

aversion (Campos-Vazquez & Cuilty, 2014). It is thus important to increase our understand-

ing of the unique effects of specific emotions and affective dimensions on loss aversion. 

One emotion that has received strong theoretical emphasis in loss aversion is fear. In 

fact, it has been even hypothesized that loss aversion is an expression of fear (Camerer, 

2005). Neural systems mediating fear and anxiety overlap with those implicated in the 

computation of value and choice in decision making (Hartley & Phelps, 2012), and in 

particular with loss processing (described in more detail in Chapters 1.3.2. and 1.3.3.), which 

suggests a tight link between loss aversion and fear. Indirect evidence for such a link has also 

been provided by some behavioral studies. For instance, a serotonin transporter polymor-

phism (5-HTTLPR) has been associated with enhanced fear conditioning, trait anxiety, and 

increased risk taking when the alternative was framed as a sure loss—consistent with 

increased sensitivity to losses (Crişan et al., 2009). In addition, the effect of unpleasant odors 

on loss aversion mentioned above has also been interpreted in terms of signaled threat or 

danger (Stancak et al., 2015).  
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Despite these putative links between fear and loss processing, there has been no direct 

investigation of the influence of incidental fear cues on loss aversion so far. To close this gap, 

Study 2 aimed to establish this influence on a behavioral level (see Chapter 4.2.) and Study 3 

investigated the underlying neural mechanisms (see Chapters 4.3. and 5.2.).  

Personality constructs related to affective reactivity can also shed light on the rela-

tionship between incidental fear and loss aversion. One such personality construct is psy-

chopathy—at its high end primarily characterized by deficits in affective processing and 

antisocial behavior (Cleckley, 1941; Hare & Neumann, 2008). Understanding psychopathy as 

a multidimensional and not unitary construct allows disentangling unique and differential 

effects related to dissociable psychopathic traits (Fowles & Dindo, 2009; Patrick & Bernat, 

2009; Patrick, Fowles, & Krueger, 2009), which has also been demonstrated in my work on 

performance monitoring that is not subject of this dissertation (for a review, see Schulreich, 

2016; and see Schulreich, Pfabigan, Derntl, & Sailer, 2013). In particular affective-

interpersonal features of psychopathy, e.g., the higher-order factor fearless dominance in the 

Psychopathic Personality Inventory-Revised (PPI-R, Alpers & Eisenbarth, 2008), are 

plausible moderators of the influence of incidental fear cues on loss aversion, given that they 

reflect dispositional fear deficits (N. E. Anderson, Stanford, Wan, & Young, 2011; López, 

Poy, Patrick, & Moltó, 2013; Patrick et al., 2009). Such a moderation effect would corrobo-

rate an affective interpretation of potential effects of incidental fear cues on decision making. 

Therefore, Studies 2 and 3 also investigated whether such a moderation effect exists. 

1.3. From Choice Data to Neural Data 
So far, I identified some open questions in the behavioral literature about the influence of 

incidental emotions on decision making under risk and the moderating role of personality. 

These questions can be readily answered using choice data—the primary source of infor-

mation and level of analysis in most economic and behavioral decision studies. Choice data 

alone, however, do not tell us how people exactly make decisions. For instance, while 

Prospect Theory implies that people behave as if they calculated weighted sums of subjective 

utilities and probabilities of all outcomes, answering the question on how people make 

decisions requires data that also tell us something about the underlying processes (see, e.g., 

Johnson, Schulte-Mecklenbeck, & Willemsen, 2008; Schulte-Mecklenbeck, Kühberger, & 

Ranyard, 2011). Furthermore, it is possible that different processes mediate similar or even 

identical choice behavior (i.e., equifinality), which poses a problem for models based on 
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choice data alone. Problems of equifinality, however, might be solvable by employing a 

process-centered approach that is based on additional sources of information. 

Two examples of process-centered data are eye-tracking data (e.g., Glöckner & 

Herbold, 2011) our mouse-tracking data (e.g., Schulte-Mecklenbeck et al., 2011), which 

could be used to infer sequential information processing steps in decision making. Another 

way of opening the “black box” is the acquisition of neural data, which tell us something 

about how neural circuits process specific kinds of information. Thereby, neurobiological 

knowledge can introduce constraints (e.g., biological plausibility) in the development of 

better models of decision making (Clithero et al., 2008). 

Going beyond choice data, the present thesis also employed a neuroscientific ap-

proach to establish a link between choice behavior and its underlying mechanisms. Specifi-

cally, in Study 3 (see Chapter 4.3.), we complement our behavioral research of Study 2 on the 

effect of incidental fear cues on loss aversion by investigating the neural mechanisms that 

give rise to this effect. Thereby, we also build upon previous research on brain systems 

involved in value-based decision making and emotion. Hence, I will first give a general 

introduction to the neural basis of decision making under risk, before turning to the current 

understanding of the neural basis of loss aversion and emotion-induced changes in its 

magnitude. 

1.3.1. Neural Basis of Decision Making under Risk 

Decision making under risk is commonly seen as a type of value-based decision making, 

where the values of different options are first assessed, compared to each other, and the 

option with the highest value is chosen (see, e.g., Rangel, Camerer, & Montague, 2008). 

There is a rapidly increasing number of studies investigating value-based decision making in 

humans, most of them using fMRI due to its high flexibility in experimental control and in 

the analysis of specific events. Particular useful sources of information, however, are meta-

analyses that integrate the findings of a multitude of fMRI studies, thereby detecting particu-

larly reliable neural features (see, e.g., Bartra, McGuire, & Kable, 2013; Clithero & Rangel, 

2013; Liu, Hairston, Schrier, & Fan, 2011). These meta-analyses have often included both 

decisions under risk (e.g., risky gambles, Tom, Fox, Trepel, & Poldrack, 2007) as well as 

decisions that did not include risk (e.g., on desirable or undesirable food items, Plassmann, 

O’Doherty, & Rangel, 2010). However, given that valuation and choice are integral features 

of both kinds of decisions, one can benefit from integration across these domains and the 
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resulting high statistical power to detect reliable and common representations of valuation 

and choice. 

One robust meta-analytic finding is that subjective value is positively associated with 

brain activity in the (ventral) striatum and the vmPFC/rostral anterior cingulate cortex 

(rACC) in the decision phase (Bartra et al., 2013; Clithero & Rangel, 2013; Levy & 

Glimcher, 2012). Moreover, it has been suggested that the vmPFC (and possibly other 

regions, e.g., the striatum) represents subjective value across different kinds of rewards (e.g., 

food, money) in a “single neural currency”, i.e., when two disparate kinds of rewards are 

equally desirable for the subject, brain activity will be identical (Bartra et al., 2013; Levy & 

Glimcher, 2011, 2012). As already mentioned, the main strength of meta-analyses is that the 

integration of findings from a large array of studies allows for detection of reliable neural 

correlates of specific decision-related features. One major limitation, however, is that such an 

integration is only feasible for variables that a large number of studies have in common, e.g., 

some (binary or parametric) regressor that indicates variations in subjective value (see, e.g., 

Bartra et al., 2013). Furthermore, as already mentioned, these meta-analyses included studies 

on decisions that involved no risk. Hence, to better understand the neural basis of specific 

decision- and risk-related features (e.g., probabilities, variance) and behavioral phenomena 

(e.g., loss aversion) that have not been differentiated in the meta-analyses above, original 

studies are indispensable sources of information. 

In this regard, fMRI studies on decision making have focused on a multitude of spe-

cific variables and phenomena. Many studies in the field targeted the neural representations 

of objective choice parameters. For instance, several studies found brain areas tracking gain 

magnitudes, e.g., the ventral striatum including the Nucleus accumbens (e.g., Canessa et al., 

2013; Knutson, Taylor, Kaufman, Peterson, & Glover, 2005; Tobler, O’Doherty, Dolan, & 

Schultz, 2007; Tom et al., 2007), whereas loss-related findings have been more inconsistent 

(as discussed in greater detail in Chapter 1.3.2.). Some studies also found brain regions that 

tracked reward probabilities, including also the striatum as well as the medial PFC (e.g., 

Berns & Bell, 2012; Knutson et al., 2005; Tobler et al., 2007). Given the partial overlap of 

the processing of gains and probabilities, some studies also reported neural representations of 

expected value, which integrates these two features into one single metric, e.g., in the 

striatum (e.g., Knutson et al., 2005; Preuschoff, Bossaerts, & Quartz, 2006; Tobler et al., 

2007; Yacubian et al., 2006). Furthermore, there are studies that observed neural representa-

tions of risk (e.g., defined as variance), e.g., in the anterior insula (e.g., Mohr, Biele, Krugel, 
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Li, & Heekeren, 2010; Preuschoff, Quartz, & Bossaerts, 200; and for a meta-analysis, see, 

Mohr, Biele, & Heekeren, 2010). 

Neural activity tracking integrated (i.e., expected) value and its constituent elements 

(e.g., gains, probabilities) is consistent with economic Expected-Value Theory formulated 

long ago. However, these findings are also in line with expected utility theory or Prospect 

Theory, of which expected value theory can be seen as a special case (e.g., lacking subjective 

transformations of outcomes and probabilities, as postulated by Prospect Theory). Given that 

Prospect Theory describes actual decision behavior pretty well (see Chapter 1.1.3.), it comes 

as no surprise, that neuroeconomic research soon targeted the special assumptions of Prospect 

Theory and the behavioral phenomena it explains (e.g., context-dependent preference 

reversals). 

For instance, one fMRI study investigated the neural correlates of the framing effect 

(De Martino, Kumaran, Seymour, & Dolan, 2006), which illustrates the prospect-theoretic 

principle of reference dependence impressively. Participants received an initial endowment 

(e.g., “You receive £50”) and were asked to choose between a sure payoff and a gamble 

afterwards. The critical manipulation was that once the sure payoff was framed as a gain 

(e.g., “keep £20”) and once framed as a loss (e.g., “lose £30”), whereas the gamble (i.e., 

“keep all” and “lose all” associated with particular probabilities) was not changed. Please 

note, that the final objective outcomes of the sure options are the same in both frames (here, 

£20). Despite this, the authors replicated the well-known framing effect (Tversky & 

Kahneman, 1981)—risk aversion in the gain frame and risk seeking in the loss frame. At the 

neural level, this study found increased amygdala activity when participants decided in 

accordance with the framing effect, whereas the ACC was more active when decisions ran 

counter to the framing effect. Hence, this study illustrates that Prospect Theory’s principle of 

reference-dependence can be linked to specific structures and mechanisms in the brain. 

In a similar vein, brain activity can also be directly associated with the preference pa-

rameters derived from prospect-theoretic models. For instance, there are some fMRI studies 

that investigated the neural correlates of probability weighting (Berns, Capra, Chappelow, 

Moore, & Noussair, 2008; Hsu, Krajbich, Zhao, & Camerer, 2009; Paulus & Frank, 2006; 

and for a positron emission tomography study, see Takahashi et al., 2010). A methodological 

prerequisite for detecting neural representations of a nonlinear (inverse S-shaped) probability 

weighting function was to explicitly include probabilities near to certainty and impossibility, 

because previous studies commonly focused on intermediate, roughly linear parts of the 

function (e.g., Knutson et al., 2005; Tobler et al., 2007). Aware of this prerequisite, one 
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research group then modeled separate regressors for linear and nonlinear components of the 

probability weighting function for gains and found both related to activity in the dorsal 

striatum (Hsu et al., 2009). Furthermore, the authors also observed a positive correlation 

between behavioral nonlinearity in probability weighting and nonlinearity of striatal respons-

es across subjects. Another study also found neural representations for nonlinear probability 

weighting of aversive outcomes, e.g., in the striatum and anterior insula (Berns, Capra, 

Chappelow, Moore, & Noussair, 2008). 

Another central construct in Prospect Theory is loss aversion, which also received 

great attention in decision neuroscience. In the following, I will dedicate two chapters to an 

introduction to the neural basis of loss aversion and possible neural mechanisms underlying 

emotion-induced changes in its magnitude, given that Study 3 of the present thesis builds 

upon this body of knowledge. 

1.3.2. Neural Correlates of Loss Aversion 

In recent years, a number of studies accumulated evidence on the neural mechanisms of loss 

aversion. For instance, one influential fMRI study investigated whether neural responses to 

losses and gains would reflect behaviorally observed neural loss aversion (Tom et al., 2007). 

To this end, participants made repeated decisions whether to accept or reject a mixed gamble 

offering a 50% chance of gaining and a 50% chance of losing variable amounts of money. 

The authors hypothesized that loss aversion could be mediated either by the recruitment of 

brain structures that are thought to mediate negative emotions towards potential losses, e.g., 

the amygdala (Duvarci & Pare, 2014; Lang, Davis, & Öhman, 2000; LeDoux, 2003) or by an 

asymmetric response to losses versus gains within a single system that codes subjective 

value, e.g., the ventral striatum or vmPFC (Bartra et al., 2013; Clithero & Rangel, 2013; Levy 

& Glimcher, 2012). Their findings were in favor of the second hypothesis. Specifically, they 

found a distributed set of regions that displayed activations for gains and deactivations for 

losses, e.g., the striatum, vmPFC, and dorsal ACC, consistent with positive value coding. 

Crucially, they also observed that the deactivation slope for losses was steeper than the 

activation slope for gains in most of these areas, similar to the overweighting of losses 

relative to gains in behavioral loss aversion. Consequently, this asymmetric response pattern 

was termed “neural loss aversion”. Importantly, neural loss aversion was positively correlated 

with behavioral loss aversion, e.g., in the bilateral ventral striatum. In contrast to loss-related 

deactivations, Tom et al. (2007) found no brain regions that responded to increasing losses 
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with increasing brain activity, which would had indicated negative value coding and, 

possibly, negative emotions. 

The last finding is surprising, given previously observed activations for potential loss-

es, e.g., in the amygdala (e.g., Basten, Biele, Heekeren, & Fiebach, 2010; Hahn et al., 2010; 

Kahn et al., 2002), although these studies did not directly investigate loss aversion. One 

neuropsychological study, however, found sharply reduced monetary loss aversion in two 

patients with focused bilateral amygdala lesions compared to matched controls, suggesting 

that the amygdala causally contributes to loss aversion (De Martino, Camerer, & Adolphs, 

2010). However, this study did not provide information on the underlying amygdalar 

mechanisms that could give rise to loss aversion.  

A later study also found structural evidence for an amygdalar contribution to loss 

aversion (Canessa et al., 2013). By using multivariate source-based morphometry (SBM) and 

univariate voxel-based morphometry (VBM) to process anatomical MRI data, a structural 

amygdala-thalamus-striatum network has been detected, whose gray matter volume positive-

ly predicted behavioral loss aversion. The same study also included an fMRI experiment, in 

which a neural loss aversion response—characterized by a steeper slope for loss-related 

deactivations relative to gain-related activations—was observed in some of the same areas as 

in the Tom et al. study (e.g., in the striatum). However, Canessa et al. also found a few 

regions, including the amygdala and the posterior insula, which displayed loss-related 

activations that also positively predicted behavioral loss aversion. Similarly, another fMRI 

study observed greater amygdala activations for loss relative to gain outcomes, which also 

predicted monetary loss aversion (Sokol-Hessner, Camerer, & Phelps, 2013). Another 

electroencephalography (EEG) study used source modeling to investigate outcome-related 

processes (Kokmotou et al., 2017) and found that loss aversion was associated with increased 

brain activity to loss outcomes in the vmPFC/orbitofrontal cortex. However, one needs to be 

cautious when comparing neural correlates observed during the decision stage and during the 

outcome stage, given that the underlying structures and mechanisms might differ (Bartra et 

al., 2013; Clithero & Rangel, 2013; Liu et al., 2011). In contrast to the Tom et al. study, these 

studies indicate that loss-related activations, e.g., in the amygdala, at least partially contribute 

to loss aversion. 

However, two recent studies observed instead loss-related deactivations in amygdala 

activity, that were also stronger than gain-related activations (i.e., neural loss aversion) in the 

more recent study (Pammi et al., 2015; Pammi, Ruiz, Lee, Noussair, & Sitaram, 2017). Taken 

together, while there is considerable evidence in favor of a causal contribution of the 
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amygdala to loss aversion, its functional role in loss aversion is currently only incompletely 

understood. 

Overall, the observations of different forms of value coding—deactivations for losses 

in some studies, activations for losses in others—may at first glance seem inconsistent. 

However, they add to a growing body of evidence of two opponent—excitatory and inhibito-

ry—loss (and gain) signals within disparate, but overlapping motivational systems (Brooks & 

Berns, 2013; Seymour, Maruyama, & De Martino, 2015). The first, reward-oriented system is 

thought to display enhanced neural activity for gains and inhibited neural activity for losses, 

i.e., positive value coding. Neural loss aversion, i.e., stronger deactivations for increasing 

losses relative to gain-related activations (e.g., Canessa et al., 2013; Tom et al., 2007) is 

consistent with such a mechanism, although the asymmetry of these bidirectional responses 

represents an additional, behaviorally relevant, feature. However, there is also evidence of a 

second, punishment-oriented system that displays enhanced neural activity to losses and 

inhibited neural activity to gains. These signals are partially generated in direct adjacency to 

reward-oriented signals, e.g., in the striatum (Brooks & Berns, 2013; Seymour, Daw, Dayan, 

Singer, & Dolan, 2007; Seymour et al., 2015). Similarly, electrophysiological studies in 

rodents (Gore et al., 2015; Shabel & Janak, 2009) recently combined with optogenetic 

methods (Beyeler et al., 2016), also indicate the existence of different neuronal populations 

that display excitatory or inhibitory responses to losses (and gains) within the amygdala. 

Some neurons displayed opposite responses to positive and negative outcomes (i.e., increased 

activity for aversive and decreased activity for appetitive outcomes; increased activity for 

appetitive and decreased activity for aversive outcomes), others to appetitive or aversive 

outcomes only. All of these patterns can give rise to the different value responses detected in 

human fMRI studies. Since these neuronal subpopulations are spatially intermingled (see, 

e.g., Beyeler et al., 2016), it might be impossible or at least difficult to disentangle excitatory 

and inhibitory responses to the same stimulus with fMRI, unless one signal clearly dominates 

the other, since fMRI does not provide a single-cell spatial resolution. In other words, within 

a small neuronal population, fMRI may only detect the response type that is stronger or 

spatially more extended relative to others, while oppositely signed signals of similar strength 

and extension would (partially) cancel each other out.  

Interestingly, there are also amygdala neurons that respond to both appetitive and 

aversive stimuli in a similar manner (e.g., excitatory responses to both, Shabel & Janak, 

2009), which might be a neural mechanism for salience-like responses, i.e., enhanced value-

unspecific brain activity to both positive and negative outcomes, which has also been 
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associated with loss aversion (Gelskov, Henningsson, Madsen, Siebner, & Ramsøy, 2015; 

Gelskov, Madsen, Ramsøy, & Siebner, 2016). However, given that behavioral loss aversion 

reflects a value asymmetry, neural mechanisms that causally generate loss aversion should 

also reflect value-specific activity. 

Taken together, there is evidence that loss aversion might be mediated by two distinct 

valuation mechanisms that are tuned to rewards and punishments, respectively. However, it is 

an open question to what degree each mechanism contributes to loss aversion and whether 

these distinct valuation processes are differentially involved in different contexts. As we will 

see in the next chapter, incidental emotions may represent one contextual factor that alters 

valuation—a possibility explored in Study 3 of the present thesis (see Chapter 4.3.). 

1.3.3. Neural Correlates of Emotion-Induced Changes in Loss Aversion 

There is an increasing interest in the neural mechanisms underlying the influence of inci-

dental emotions on decision making in diverse domains such as intertemporal decisions (e.g., 

Luo, Ainslie, & Monterosso, 2014; Sohn et al., 2015) and social decisions (e.g., Harlé, 

Chang, van ’t Wout, & Sanfey, 2012). However, only a few neuroscientific studies investi-

gated the link between emotions and prospect-theoretic phenomena such as loss aversion. For 

instance, one study (Sokol-Hessner et al., 2013) that we encountered above did not just 

observe that greater amygdala activity to loss relative to gain outcomes was associated with 

greater loss aversion, but also found that cognitive reappraisal—an emotion-regulation 

strategy—reduced amygdala activity to loss outcomes (and psychophysiological arousal in a 

previous study, Sokol-Hessner et al., 2009) and thereby loss aversion. This suggests that 

negative value coding in the amygdala might be linked to negative emotion, at least when 

loss outcomes materialize. However, only two recent studies experimentally manipulated 

incidental emotions at the time of choice and investigated their effect on loss aversion at the 

neural level (Charpentier, De Martino, Sim, Sharot, & Roiser, 2015; Engelmann, Meyer, 

Fehr, & Ruff, 2015). 

One of these studies found that enhanced amygdalar-striatal connectivity predicted in-

creases in monetary loss aversion in a mixed-gambles task following the presentation of 

fearful or happy faces, relative to neutral faces and objects (Charpentier et al., 2015). This 

indicates that the amygdala is centrally involved in mediating emotional effects on decision 

making, consistent with its previously demonstrated role in the generation of loss aversion 

(De Martino et al., 2010) and in affective processing, in particular of fear and threat (Lang et 

al., 2000; LeDoux, 2003; Tovote, Fadok, & Lüthi, 2015) or arousal (A. K. Anderson et al., 
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2003; P. A. Lewis, Critchley, Rotshtein, & Dolan, 2007, but see Anders, Eippert, Weiskopf, 

& Veit, 2008). Amygdalar-striatal connections are critically involved in the generation of 

avoidance behaviors (Amorapanth, LeDoux, & Nader, 2000; LeDoux & Gorman, 2001), 

consistent with the observed emotion-induced increases in loss aversion. However, the study 

by Charpentier et al. did not report value-related amygdala activity that predicted emotion-

induced changes in loss aversion. Hence, the exact functional role of the amygdala in the 

generation of emotion-induced changes in loss aversion (and of loss aversion in general) 

remains unclear. 

The second study compared decisions on mixed gambles under threat of electrical 

shock and in a safe context (Engelmann et al., 2015). Surprisingly, while the authors 

observed loss aversion across contexts, they did not observe emotion-induced changes in its 

magnitude. However, gamble acceptance (and thus, possibly, loss aversion) was predicted by 

context-dependent valuation. Specifically, increasing striatum and vmPFC activity for 

increasing subjective expected value, i.e., positive value coding, positively predicted gamble 

acceptance in the neutral context. In contrast, increasing insula activity for decreasing 

subjective expected value, i.e., negative value coding, negatively predicted gamble ac-

ceptance in the threat-of-shock context. By contrast, the authors did not report any value-

related amygdala activity that predicted choice. Interestingly, apart from possible gain-related 

changes, in particular greater loss-related activations are one plausible source of the observed 

shifts towards negative coding, but this possibility has not been explored so far. 

In Study 3 of the present thesis (see Chapter 4.3.), we aimed to further elucidate the 

neural mechanisms underlying the influence of incidental affect—incidental fear cues in 

particular—on monetary loss aversion. On the basis of the literature described so far, there 

are two plausible hypotheses on the mediating mechanisms, which are also illustrated in 

Figure 3 and described in the following. 

The first one is based on the idea that in particular excitatory loss signals in the amyg-

dala (e.g., Basten et al., 2010; Canessa et al., 2013; Sokol-Hessner et al., 2013) may account 

for fear-cue induced increases in loss aversion—given the prominent role the amygdala plays 

in fear processing (Lang et al., 2000; LeDoux, 2003; Tovote et al., 2015) and given preferen-

tial processing of threat-related relative to appetitive stimuli under fear-related affective states 

(e.g., Cavanagh, Urry, & Shin, 2011). Moreover, amygdala responses to fearful movies have 

been found to enhance subsequent activation to unrelated threat-related stimuli (Pichon, 

Miendlarzewska, Eryilmaz, & Vuilleumier, 2015). Similarly, we expected a general increase 

in amygdala activity after the presentation of fear cues in combination with increased 
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activation in response to increasing monetary losses, reflecting negative value coding. In fact, 

the amygdala might be part of a broader, distributed network that displays an emotion-

induced shift from positive to negative value coding that also includes, e.g., the striatum, 

vmPFC, and insula (Engelmann et al., 2015). Crucially, Study 3 tested whether such effects 

mediate emotion-induced increases in monetary loss aversion.  

The second, alternative hypothesis is that emotion-induced changes in loss aversion 

might be mediated by a positive-value–coding mechanism via enhanced deactivations for 

losses relative to activations for gains (i.e., neural loss aversion), e.g., in the striatum 

(Canessa et al., 2013; Tom et al., 2007). 

 

 

 
 

Figure 3. Hypotheses on the neural mechanisms that mediate the influence of incidental fear cues (i.e., fearful 
faces in Study 3) on monetary loss aversion in a mixed-gambles task. Panel A: The first hypothesis (H5 in 
Chapter 2) states that incidental fear cues enhance amygdala activity which primes the processing of monetary 
payoffs via loss-related activations in particular, e.g., in the amygdala and, possibly, a distributed set of regions. 
This effect, in turn, mediates emotion-induced increases in behavioral loss aversion. Panel B: The second, 
alternative hypothesis states that emotion-induced increases in amygdala activity enhance loss-related 
deactivations relative to gain-related activations (i.e., neural loss aversion) in regions that typically display such 
a pattern in a neutral context, e.g., the striatum. Increases in neural loss aversion mediate emotion-induced 
changes in behavioral loss aversion. Note: G = Gain, L = Loss, V+ = positive subjective value, V– = negative 
subjective value. 
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2. Summary of Research Questions (RQ) and Hypotheses (H) 

In this chapter, I will give a succinct summary of the research questions identified above and 

formulate hypotheses that the empirical studies of the present thesis aimed to test. 

RQ1: Is there an influence of incidental emotions (e.g., incidental happiness) on probabil-

ity weighting? 
 

Study 1 aimed to address this question by experimentally manipulating incidental emotions 

via music as well as modeling risk preferences (for more details, see Chapters 3.2. and 

3.5.2.). Based on previous evidence of incidental emotional effects on probability judgments 

(Johnson & Tversky, 1983; Wright & Bower, 1992) and indirect evidence of incidental 

emotional effects on probability weighting (e.g., Fehr-Duda et al., 2011), hypothesis H1 was 

formulated: 
 

H1: Music-evoked incidental emotions are associated with changes in risk taking and 

probability weighting. Specifically, incidental happiness is positively related to the elevation 

of the probability-weighting function. 
 

Based on the observation that emotional effects are typically fleeting (Andrade & Ariely, 

2009; Isen & Gorgoglione, 1983), hypothesis H2 was formulated: 
 

H2: The effect of music-evoked incidental emotions on decision making declines over time. 
 

RQ2a: Is there an influence of incidental fear cues on loss aversion? 
 

Study 2 aimed to address this question by experimentally manipulating the affective context 

by presenting fearful vs. neutral faces prior or during decisions on mixed gambles as well as 

by estimating the degree of loss aversion via behavioral modeling (for more details, see 

Chapters 3.2. and 3.5.2.). Based on the neural overlap of fear processing and decision making 

(Hartley & Phelps, 2012) and behavioral evidence consistent with increased loss-sensitivity 

in fear/anxiety-prone individuals (e.g., Crişan et al., 2009), hypothesis H3 was formulated: 
 

H3: Incidental fear cues increase monetary loss aversion compared to neutral cues. 
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RQ2b: Is the influence of incidental fear cues on loss aversion moderated by psychopathic 

personality, in particular affective-interpersonal features? 
 

Study 2 aimed to address this question by administering the PPI-R (Alpers & Eisenbarth, 

2008, see Chapter 3.4.)—a self-report questionnaire to measure psychopathic personality—

and by including personality scores in the behavioral modeling. Based on evidence that 

psychopathic personality, in particular the affective-interpersonal traits (e.g., PPI-R fearless 

dominance), is associated with deficient fear-reactivity (e.g., López et al., 2013; Patrick et al., 

2009), hypothesis H4 was formulated. 
 

H4: Psychopathic personality, in particular PPI-R fearless dominance (but not PPI-R self-

centered impulsivity) moderates the effect of incidental fear cues on loss aversion. Specifical-

ly, higher fearless dominance is associated with an attenuated effect of incidental fear cues 

on loss aversion. 
 

RQ3a: What are the neural mechanisms that mediate emotion-induced changes in loss 

aversion? 
 

Study 3 aimed to address this question by adapting the experimental design of Study 2 for 

fMRI (for more details on fMRI, see Chapter 3.6.). Based on evidence of fear-related (e.g., 

Lang et al., 2000; LeDoux, 2003; Tovote et al., 2015) and loss-related processing in the 

amygdala (e.g., Basten et al., 2010; Canessa et al., 2013; Sokol-Hessner et al., 2013) as well 

as emotion-induced shifts from positive to negative value coding in the striatum, vmPFC, and 

insula (Engelmann et al., 2015), hypothesis H5 was formulated. 
 

H5: Incidental fear cues enhance amygdala activity relative to neutral cues. This general 

increase is accompanied by altered value processing, i.e., emotion-induced increases in 

activations for losses in the amygdala and, possibly, shifts towards negative value coding in 

other regions as well (e.g., striatum, insula, vmPFC). These emotion-induced shifts in 

valuation mediate increases in behavioral loss aversion (for an illustration of this hypothesis 

and an alternative hypothesis, please see again Figure 3, Panel B above).  
 

 

 

 

 

 

 

37



 

RQ3b: How is the influence of psychopathic personality on emotion-induced changes in 

loss aversion mediated at the neural level? 
 

Study 3 aimed to address another research question that follows from evidence in Study 2 in 

favor of H4, i.e., affective-interpersonal features of psychopathy attenuated emotion-induced 

increases in loss aversion. Study 3 aimed to replicate this effect using the Triarchic Measure 

of Psychopathy (TriPM, Patrick, 2010, see Chapter 3.4.), for which the affective-

interpersonal traits TriPM boldness and meanness are thought to display the same behavioral 

effect. At the neural level, the moderation effect on emotion-induced changes in loss aversion 

might be mediated by altered value responses in the amygdala, given that affective-

interpersonal features of psychopathy have been related to amygdala hypoactivation during 

emotion processing (e.g., Gordon, Baird, & End, 2004). Hypothesis 6 states: 

H6: The attenuating effect of affective-interpersonal psychopathic traits (e.g., TriPM 

boldness and meanness) on emotion-induced increases in loss aversion is mediated by 

attenuated emotion-induced increases in amygdala activations for losses. 

 

3. General and Specific Methodology 
In this chapter, I will give a summary of the experimental and statistical methods used for the 

elicitation of risk preferences (via lottery choice procedures), affective manipulation and 

measurement, personality assessment, analysis of choice behavior (e.g., via estimation of 

prospect-theoretic parameters), and for the investigation of neural processes (via fMRI). 

3.1. Lottery Choice Procedures 
There are various simple and transparent methods to elicit risk attitudes that are believed to 

provide reliable results (for an overview, see Harrison & Rutström, 2008). Here, I will focus 

on the random lottery pairs (RLP) procedure (Hey & Orme, 1994) that has been used in 

Study 1 (gains-only), and a random mixed gambles (RMG) procedure (gains and losses) that 

has been used in Studies 2 and 3 to elicit monetary loss aversion. 

3.1.1. Random Lottery Pairs (RLP) Procedure 

In the RLP procedure, subjects are presented multiple pairs of lotteries with varying out-

comes and probabilities and thus levels of risk and are asked to pick one of the lotteries in 

each pair. In Study 1, each lottery consisted of two possible, strictly positive payoffs and 

associated probabilities. The restriction to the gain domain allowed us to abstract from loss 
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aversion, which facilitated behavioral modeling (described in Chapter 3.5.2.) and increased 

detectability of emotional effects on probability weighting. The use of only risky prospects 

could also have had benefits in this regard, since certain payoffs might provide a striking 

reference point and could potentially induce sign-dependency and loss aversion, as argued by 

Harrison & Rutström (2008). The payoffs and probabilities were visualized on screen by a 

pie chart (see Figure 4). The lotteries differed form each other in their riskiness. To be 

specific, a lottery was considered riskier than another lottery if it can be expressed as a mean-

preserving spread of the other lottery (Rothschild & Stiglitz, 1970), but we obtained qualita-

tively identical results if we considered variance as the risk measure, which is also common 

in the literature. For instance, in Figure 4, the bottom lottery is the riskier lottery for both risk 

definitions. The set of lottery pairs was designed to allow for a precise estimation of prefer-

ence parameters in the range that has been observed in previous studies (e.g., Harrison & 

Rutström, 2008; Stott, 2006). Probabilities ranged from 10% to 90% to allow for a reliable 

estimation of the probability weighting function. 
 

 

 
Figure 4. Example of a lottery pair with the two choice options in Study 1. 

 

3.1.2. Random Mixed Gambles (RMG) Procedure 

Since we were interested in loss aversion in Studies 2 and 3, we had to include gains and 

losses simultaneously as gain-only and loss-only prospects do not elicit loss aversion, which 

is defined as increased weighting of losses relative to gains (Kahneman & Tversky, 1979; 

Tversky & Kahneman, 1992). To this end, participants had to decide on a pseudo-randomized 

series of mixed gambles with equal (i.e., 50%) probability of winning or losing variable 

amounts of money (e.g., ranging from ±€6 to ±€20 in steps of €2 in Study 3). Participants 

could accept or reject each gamble (rejection equals the acceptance of a sure outcome of €0). 

The mixed gambles were presented in a simple visual form (e.g., as pie charts in Study 3, also 

see Figure 6 in Chapter 3.2. below). 

€6 €9 

€3 €15 

top$ bo&om$
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3.1.3. Random Incentive Mechanism 

Lottery procedures often come with a random incentive mechanism (see, e.g., Harrison & 

Rutström, 2008; Starmer & Sugden, 1991) under which subjects respond in multiple decision 

trials but only one trial is randomly selected for payoff at the end of the experiment. The 

subject’s preferred (RLP procedure) or accepted (RMG procedure) lottery is then played out 

for real. For mixed gambles, this could result in a gain or in a loss. Rejected mixed gambles 

and unchosen lotteries in the RLP procedure are not played out. 

This mechanism has four main advantages: 1) It provides an incentive for truthful re-

sponding of ones preferences, 2) It excludes wealth effects arising from paying more than one 

choice sequentially during the experiment (i.e., changes in wealth might affect decision 

making), 3) it excludes portfolio effects arising from paying more than one choice at the end 

of the experiment (i.e., one might prefer a combination of options, whereas one option is 

clearly preferred over another when the pair is evaluated independently), and 4) it reduces 

expenditures (i.e., reduced subject payments compared to payoffs from multiple trials). Due 

to theses appealing features, it has been used in many experimental studies (e.g., De Martino 

et al., 2010; Hey & Orme, 1994) and in our experiments as well. 

In Studies 2 and 3, subjects were endowed with an initial amount of money (in cash) 

to compensate for eventual losses—a frequent procedure in decision tasks involving the 

possibility of real losses (e.g., De Martino et al., 2010; Sokol-Hessner et al., 2009). Subjects 

were told that the money was theirs to risk during the study and to place it into their wallets 

or purses. This procedure allows for non-hypothetical decision making (i.e., with real 

monetary stakes), meets ethical requirements (i.e., no net financial losses but only relative 

losses for research participants) and facilitates subject recruitment (compared to the possibil-

ity of a net loss). 

3.2. Emotion Manipulation 
Although emotions elicited under natural conditions are often stronger and inherently have 

higher ecological validity, laboratory-based experimental manipulations are considered the 

via regia to ensure internal validity, enabling causal inferences. A diversity of emotion 

induction methods have been applied in emotion research (for reviews and systematic 

comparisons, see, e.g, Gerrards-Hesse, Spies, & Hesse, 1994; Jallais & Gilet, 2010; 

Westermann, Spies, Stahl, & Hesse, 1996). 

For instance, musical stimuli have been found useful for eliciting emotional states 

(Juslin, Liljeström, Västfjäll, Barradas, & Silva, 2008; Juslin & Västfjäll, 2008; Koelsch et 
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al., 2013; Zentner, Grandjean, & Scherer, 2008) and were also used in Study 1. To be 

specific, we used instrumental excerpts—happy and sad pieces—and random tone sequences 

that have also been used in previous studies (Koelsch et al., 2013; Pehrs et al., 2013), together 

with a no-music control condition (for a complete list of the musical pieces, see the original 

research paper in the appendix). To note, musical stimuli are not just a handy means of 

emotional manipulation, but also interesting from an ecological perspective, because of their 

ubiquity in everyday life, e.g., background music while making purchasing decisions in a 

store (Garlin & Owen, 2006). 

Subjects participated in four separate sessions that comprised four experimental con-

ditions, i.e., “happy” music, “sad” music, random tones, and no music (i.e., a within-subject 

design), which were about one week apart. In each session (except the no-music condition), 

multiple musical pieces were presented in a 6-min block via headphones, followed by a block 

of pairwise lottery choices lasting approximately 10 min. This procedure was repeated twice, 

so that there were 2 music blocks and two choice blocks per session. The music blocks and 

choice blocks were immediately followed by an emotion-rating task (described in Chapter 

3.3). In the no-music condition, only the emotion-rating tasks and choice blocks were 

presented. The sequence of experimental events is illustrated in Figure 5. 
 

 
Figure 5. Sequence of events forming an experimental block in Study 1. 
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In Studies 2 and 3, we used facial stimuli—fearful and neutral faces—from a well-validated 

research data base (FACES; Ebner, Riediger, & Lindenberger, 2010) to induce affective 

processing (fearful faces) or as a control condition (neutral faces). Facial affective primes 

have been repeatedly used in the literature, among others in decision-making studies (e.g., 

Luo et al., 2014; Winkielman, Berridge, & Wilbarger, 2005). Faces have evolutionarily 

acquired signaling value. For instance, fearful faces warn conspecifics of potential threats 

(Adolphs, 2002). They also prepare the organism to encounter a potential threat by increasing 

attention to subsequent stimuli (Pourtois, Grandjean, Sander, & Vuilleumier, 2004; Taylor & 

Whalen, 2014) and preferentially activate the amygdala (Fusar-Poli et al., 2009) with 

accompanying peripheral physiological arousal, e.g., enhanced skin-conductance responses 

(Hariri, Tessitore, Mattay, Fera, & Weinberger, 2002). Together, although the presentation of 

fearful faces might not automatically result in a full-blown experience of fear or anxiety, 

facial fear cues can be considered adequate affective signals. 

Facial cues were presented simultaneous (Study 2, Experiment A) or briefly prior 

(Study 2, Experiment B, and Study 3, see Figure 6) to each decision trial in a pseudo-

randomized order. The latter priming procedure used stimulus onset asynchronies (SOAs) of 

250 ms, which is in the range of SOAs (0 ms – 100 ms) that have been found to elicit robust 

priming effects in previous priming studies (Hermans, De Houwer, & Eelen, 2001; Hermans, 

Spruyt, & Eelen, 2003). Furthermore, the priming procedure with preceding primes was 

embedded in a gender-discrimination task in which participants were instructed to silently 

evaluate the gender of the face unless they were asked to explicitly respond with a button 

press in randomly interspersed gender-discrimination trials (“Gender?” question instead of a 

gamble). This procedure was used for two reasons: 1) Emotional faces embedded in a gender-

discrimination task (i.e., relatively implicit emotion recognition) elicit stronger amygdala 

activity compared to faces in an explicit emotion-recognition task (Critchley et al., 2000), and 

2) implicit emotion processing resembles everyday implicit psychological processes (see, 

e.g., Bargh & Chartrand, 1999; Kliemann, Rosenblau, Bölte, Heekeren, & Dziobek, 2013). 

In contrast to the design of Study 1, which was well-suited to detect the hypothesized 

behavioral effects on probability weighting, the experimental paradigm used in Study 2 was 

also perfectly adaptable for event-related fMRI (Study 3), given that its within-subjects 

manipulation was implemented in a single experimental session (in contrast to four separate 

sessions in Study 1). 
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Figure 6. Sequence of events in a trial in Study 3. 

 

3.3. Emotion Measurement 
Success of affective manipulation can be secured in two complementary ways: 1) By using 

potent emotional stimuli, and 2) by measuring the emotional response post-manipulation. As 

mentioned above, we used well-validated affective material from previous research (Ebner et 

al., 2010; Koelsch et al., 2013; Pehrs et al., 2013) to address point 1. To address point 2, one 

can measure different emotional components, e.g., subjective feelings, cognitive appraisals or 

peripheral- and neurophysiological responses (Scherer, 2009). 

In Study 1, we decided to focus on subjective feelings, in particular basic emotions 

(e.g., happiness)—a more promising approach than using a two-dimensional emotion model 

of valence and arousal (see, e.g., Russell, 1980), because basic emotions can not only be 

described in terms of valence and arousal but also other appraisal dimensions that have been 

found relevant for risky decision making (e.g., certainty and control; Lerner & Keltner, 

2000). To this end, we used 9-point rating scales to measure a set of current affective states 

(see Figure 5), i.e., happiness and sadness (e.g., “I am happy”), an inverse proxy for arousal 

(i.e., calmness), and items unrelated to a basic emotion (e.g., “I slept well last night”) to 

reduce potential experimenter demand effects (Orne, 1962) and obscure the objective of 

emotion ratings (“non-deceptive obfuscation”; Zizzo, 2010). The emotion-rating task was 

administered immediately after musical stimulation and after the decision blocks again, 

which also allowed us to investigate time trends in emotional effects. 

In Studies 2 and 3, we deliberately decided not to measure subjective feeling states af-

ter emotional manipulation for two reasons: 1) to not interfere with affective priming through 

briefly presented stimuli with an optimal SOA (described above), and 2) to keep the experi-

ment to a reasonable length (i.e., emotion ratings after each prime presentation would have an 
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enormous cost of time). Post-experimental measurements or after multiple trials would not be 

useful, because they do not capture transient emotional states over single trials of alternating 

conditions. To corroborate an affective interpretation of any observed behavioral effect in 

Study 2, we investigated the moderating influence of a personality construct associated with 

reduced fear reactivity, i.e., psychopathy (e.g., López et al., 2013; Patrick et al., 2009). 

In Study 3, we acquired skin conductance responses (SCRs) and neuroimaging data 

(see Chapter 3.6.). Unfortunately, SCR measurements suffered from a severe loss of data due 

to technical reasons, which made it impossible to perform a reliable analysis (consequently, 

SCR data is not reported here). At the brain level, after the presentation of fearful faces, one 

expects activity in brain areas that have been related to affective processes, in particular fear 

and anxiety (e.g., Duvarci & Pare, 2014; Lang et al., 2000; LeDoux, 2003; Tovote et al., 

2015), such as the amygdala. Hence, brain activation following affective stimuli represent an 

important measure of emotional processes, although from this data alone it is unclear whether 

this reactivity is also associated with (conscious) subjective emotional experience. 

3.4. Personality Assessment 
In Studies 2 and 3, we were also interested whether psychopathic personality moderates the 

influence of incidental fear cues on loss aversion. As mentioned before, we prefer a multidi-

mensional over a unitary construct perspective of psychopathy, because the latter might 

obscure differential contributions of dissociable psychopathic traits (see, e.g., Patrick & 

Bernat, 2009; Schulreich, 2016; Schulreich et al., 2013). To this end, we used psychometric 

instruments that provide a multidimensional operationalization of psychopathy, the Psycho-

pathic Personality Inventory-Revised (PPI-R; Alpers & Eisenbarth, 2008; Lilienfeld & 

Andrews, 1996) in Study 2, and the Triarchic Psychopathy Measure (TriPM Patrick, 2010, 

German translation by H. Eisenbarth) in Study 3, both self-report questionnaires. 

The PPI-R consists of eight subscales. The majority of the contained scales form two 

higher-order factors—fearless dominance and self-centered impulsivity (see, e.g., Benning, 

Patrick, Hicks, Blonigen, & Krueger, 2003). The German version of the PPI-R has a satisfac-

tory internal consistency with a Cronbach’s alpha of .85 in a student sample (.72–.88 for the 

subscales; Alpers & Eisenbarth, 2008). The TriPM consists of three scales that attempt to 

measure the 3 phenotypic domains postulated by the triarchic model of psychopathy (Patrick 

& Drislane, 2014; Patrick et al., 2009): boldness, meanness, and disinhibition. The TriPM 

also has satisfactory internal consistency with Cronbach’s Alphas of .77 for boldness, .88 for 

meanness, and .84 for disinhibition in an US-American forensic sample (Stanley, Wygant, & 
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Sellbom, 2013). In the non-forensic, German-speaking sample of Study 3, Cronbach’s alphas 

were .78 for boldness, .72 for meanness, .81 for disinhibition, and .75 for the total score. 

An interesting feature of both measures is their focus on core personality traits com-

pared to the Psychopathy Checklist-Revised (PCL-R; Hare, 2003) that is commonly used in 

forensic contexts and which focuses somewhat less on personality but more on (criminal) 

behavior. Since the PCL-R is based on interview data and criminal records, it is not applica-

ble in community samples (where there are usually no criminal records), whereas the PPI-R 

and TriPM are. 

As mentioned before, affective-interpersonal features of psychopathy (e.g., the PPI-R 

higher-order factor fearless dominance and its subscales or TriPM boldness and meanness) 

were of particular interest for the study, because these traits have been associated with 

reduced fear reactivity (N. E. Anderson et al., 2011; Blair et al., 2004; López et al., 2013; 

Patrick et al., 2009) and are thus plausible moderators of the effect of incidental fear cues on 

loss aversion. 

3.5. Analysis of Choice Behavior 
We analyzed decision data in two ways—using a model-free approach (choice frequency 

analysis) and a model-based approach (structural regressions). 

3.5.1. Choice Frequencies 

Our first model-free approach was to analyze choice frequencies without assuming any latent 

component. This is the most basic measure of the influence of incidental emotions on risk 

attitudes. In fact, risk aversion has been solely defined by observable choices (e.g., as the 

tendency to prefer a sure outcome over a gamble of equal expected value; Wakker, 2010), 

although it coincides with the concavity of the utility function under Expected-Utility Theory, 

which is why this concavity itself is often termed risk aversion (see, e.g., Sokol-Hessner et 

al., 2009; Stancak et al., 2015)—in my view a misnomer if one considers that under non-

expected-utility theories like (Cumulative) Prospect Theory, risk aversion can also be 

explained by other constructs. A simple choice frequency analysis, however, provides limited 

information on latent components that are thought to drive risk preferences such as probabil-

ity weighting. 
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3.5.2. Behavioral Modeling: Structural Regression Models 

Our second model-based approach was estimating structural models of latent choice process-

es (see, e.g., Harrison & Rutström, 2008). This approach is particularly attractive for 

prospect-theoretic specifications, where several core parameters jointly characterize risk 

attitudes. In these structural regressions, expected utility (under Expected-Utility Theory) or 

expected subjective value (under Cumulative Prospect Theory) of lotteries is determined by 

the payoffs, probabilities, and preference parameters linked to them (e.g., curvature of the 

utility function, probability weighting parameters). A latent index that governs the difference 

in expected utility or expected subjective value of two lotteries in the RLP procedure (or 

between a lottery and the sure alternative €0 in the RMG procedure) is then mapped to the 

observed choices. 

In Study 1, we assumed a power utility function with constant relative risk aversion 

(CRRA), which is often used in economic modeling and also used in Cumulative Prospect 

Theory models (e.g., Tversky & Kahneman, 1992). Here, utility was defined as  

 

𝑢 𝑥; 𝜌 =  𝑥!!!, 

 

where ρ determines the curvature of the utility function, i.e., a larger ρ goes along with 

increased curvature of the utility function and—all other things equal—increased risk 

aversion. We also tried other specifications of the utility function, but power utility per-

formed best, consistent with a previous extensive model comparison (Stott, 2006). Notably, 

power specifications have also received early empirical support in psychophysical functions 

that link (changes in) objective stimulus intensities and subjective perceptions across several 

perceptual continua (Stevens, 1957). As mentioned above, changes in money could also be 

regarded in a psychophysical manner, which adds theoretical appeal to power functions. 

For the probability-weighting function, we used a popular two-parameter version 

(Prelec, 1998),  

𝑤 𝜌; 𝛼, 𝛽 = 𝑒𝑥𝑝 −𝛽 −𝑙𝑜𝑔 𝑝 ! . 
 

Here, w(p;α,β) is the decision weight, p is the objective probability, and α and β are the 

probability-weighting parameters. Two-parameter versions have received broad empirical 

support, in particular for explaining between-subjects heterogeneity, and are thought to 

reflect different psychological phenomena (see, e.g., Fehr-Duda & Epper, 2012; Gonzalez & 

Wu, 1999). The parameter α primarily influences the curvature of the probability-weighting 
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function (e.g., inverse S-shape) and reflects sensitivity to probability changes (with typical 

overweighting of small probabilities, underweighting of large probabilities, and decreased 

sensitivity to changes in the intermediate probability range). The parameter β primarily 

influences the elevation of the probability-weighting function and reflects the “attractiveness” 

of gambling (Gonzalez & Wu, 1999) or “optimism/pessimism” (Fehr-Duda & Epper, 2012; 

Fehr-Duda et al., 2011) in form of over- or underweighting across the probability range. For 

an illustration, see Figure 7. Since we investigated only risky decision making in the gain 

domain in Study 1, there was no need to include separate value-function and probability-

weighting parameters for losses or a loss aversion parameter, which facilitated the estimation 

process and interpretation. 
 

 
Figure 7. Two-parameter probability weighting. Panel A: Two nonlinear weighting functions that differ 
primarily in curvature. Relative to the black solid line, the red line reflects stronger overweighting of small 
probabilities, stronger underweighting of medium to large probabilities, and more strongly diminishing 
sensitivity to probability changes in the intermediate range. Panel B: Two nonlinear weighting functions that 
differ primarily in elevation. Relative to the black solid line, the green line reflects greater decision weights (i.e., 
“optimism”) across probability levels. All depicted functions deviate from linear weighting (dashed lines). 

 

In Studies 2 and 3, we were specifically interested in monetary loss aversion. Our design 

featured mixed gambles with equal probabilities (i.e., 50%) of potential gains and losses of 

small (to moderate) magnitude. Under an expected-utility framework, commonly observed 

degrees of risk aversion over small stakes would imply unrealistic degrees of risk aversion 

over large stakes and it has been argued that loss aversion (rather than the curvature of the 

utility function) is a more plausible account for risk aversion in small-stake mixed gambles 

(Rabin, 2000). There is also empirical evidence that loss aversion provides a complete 
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account for risky gambles with equal probabilities of gains and losses (Novemsky & 

Kahneman, 2005). Assuming a piecewise-linear utility function is therefore a common 

simplification in the literature, next to assuming identical probabilistic decision weights for 

gains and losses (see, e.g., De Martino et al., 2010; Tom et al., 2007). 

To estimate loss aversion, we fitted a logistic regression to all participants’ binary 

choice data (mixed-effects model in Study 2) or on the individual-participant level (Study 3). 

In this regression, the loss regressor l is associated with the coefficient λ, which allows 

estimating the weight of losses relative to gains (regressor g), i.e., the degree of loss aversion. 

In line with Prospect Theory (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992), λ 

captures differences in the slopes of a kinked value function (e.g., a steeper slope for losses 

than for gains). 

Decision making is not deterministic, but a stochastic process, as a decision maker 

usually does not make choices that are perfectly consistent with the assumed model. This is 

accounted for by a link function that maps the latent indices to observed choices, e.g., a logit 

or a probit link function, to name two commonly used specifications (see, e.g., Harrison & 

Rutström, 2008; Stott, 2006). In all three studies, we have used the logit link specification. 

This allowed us to estimate the stochastic component of decision making. To this end, we 

used the Fechner error specification that reflects the dispersion (flatness) of this link function 

and thus ranges from zero noise to random choice. Including a stochastic component can be 

of substantial theoretical importance, because inferences on risk preferences can also depend 

on the assumed error model. For instance, although there is evidence that lower cognitive 

ability is associated with greater risk aversion (Dohmen et al., 2010), this relationship might 

be spurious. Allowing for heterogeneity of decision noise in structural estimations, one study 

found that reduced cognitive ability was related to random decision making rather than to 

altered risk preferences (Andersson, Holm, Tyran, & Wengström, 2013). 

Emotional effects on preference and noise parameters were modeled via dummy re-

gressors that coded for music conditions (Study 1) or face conditions (Study 2) or by 

estimating parameters for each condition separately (Study 3). For instance, in Study 3 this 

can be formally expressed as 

𝑦!,!,! = 𝑓
𝑔!,!,! + 𝜆!,!𝑙!,!,!

𝜎!,!
+ 𝜀!,!,! , 

where y is the binary choice (accept vs. reject mixed gamble), f is the logistic link function, g 

is the gain regressor, l is the loss regressor, λ is the loss aversion parameter, c indexes the 
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experimental condition (i.e., neutral or fearful), s indexes subjects, and t indexes trials, and ϵ 

is the error term. 

Structural regression models were set up in MATLAB (The Mathworks, Inc.). (Non-

linear) maximum likelihood estimation was used to estimate the parameters of interest. 

Maximum likelihood estimation delivers parametric values for which the observed choices 

are the most probable given the model (see, e.g., Harrison & Rutström, 2008; Myung, 2003). 

3.6. Functional Magnetic Resonance Imaging (fMRI) 
In Study 3, we used fRMI to identify neural mechanisms of the influence of incidental fear 

cues on monetary loss aversion. This method allows for the indirect investigation of neural 

activity via changes of magnetic properties of hemoglobin due to oxygenation, i.e., changes 

in the so-called blood oxygen level dependent (BOLD) signal (for a review, see Logothetis, 

2008). BOLD signals are more strongly related to local field potentials than multi-unit 

spiking activity and thereby seem to reflect input and local processing rather than spiking 

output (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001). Functional MRI has some 

advantages over other neuroscientific methods (see, e.g., Huettel, Song, & McCarthy, 2009) 

such as a superior spatial resolution than EEG, which only allows for estimating neuronal 

sources via source modeling (e.g., Pascual-Marqui, 2002). Furthermore, fMRI is noninvasive 

in contrast to positron emission tomography (PET), which also offers high spatial resolution 

but necessitates the use of radioactive tracers. On the other hand, temporal resolution is 

inferior (seconds-resolution) compared to EEG (milliseconds-resolution) due to the lagged 

hemodynamic response, but superior than with PET. The improved temporal resolution 

relative to PET led to a methodological evolution from blocked designs that blended multiple 

events and processes towards event-related designs that allowed for flexible controlling of 

experimental manipulations and analysis of specific events (see, e.g., Dale & Buckner, 1997). 

This flexibility was also increasingly exploited in decision neuroscience in order to disentan-

gle different processes associated with valuation and choice. 

When fMRI is combined with an experimental manipulation of psychological pro-

cesses by presenting certain kinds of stimuli (e.g., emotional primes) and/or engaging the 

subjects in a certain task (e.g., decision making), one can infer that the associated psycholog-

ical processes caused observed stimulus- or task-dependent brain activity (Poldrack & Farah, 

2015). Two mechanistic levels can be effectively addressed by fMRI—neuronal-population 

and network mechanics (Poldrack & Farah, 2015). For instance, task-activation studies aim to 

identify neuronal populations based on the psychological processes that cause them to be 
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activated (or less activated). Population brain activity was assessed via a univariate fMRI 

analysis in Study 3. 

Participants were scanned at the Center for Cognitive Neuroscience Berlin (CCNB) at 

the Freie Universität Berlin, Germany, using a 3-Tesla Magnetom Trio scanner (Siemens 

Healthcare Diagnostics GmbH, Erlangen, Germany) and 12-channel head coil. Stimuli were 

presented on LCD goggles (Resonance Technology Inc., Northridge, California) and 

responses were recorded using the software package Presentation (Neurobehavioral Systems, 

Inc.). Anatomical images were acquired using a T1-weighted MP-RAGE protocol (256 × 256 

matrix, 176 sagittal slices of 1 mm thickness). Functional images were acquired as T2*-

weighted gradient-echo-planar images (repetition time = 2 s, echo time = 30 ms, matrix = 64 

× 64, flip angle = 70°, field of view = 192 mm, interslice gap = 0.6 mm). A total of 37 

oblique-axial slices (3 × 3 × 3 mm voxels) parallel to the anterior commissure–posterior 

commissure line were collected per volume. A total of 270 volumes were collected per 

functional run, with 2 runs per participant (each of approximately 9 min duration). 

Data were preprocessed and analyzed using FMRIB’s Software Library (FSL, v. 

5.0.7, Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012) on the High-Performance 

Computing system at Freie Universität Berlin (http://www.zedat.fu-berlin.de/Compute). The 

first preprocessing steps included: within-run motion correction to the middle volume 

(MCFLIRT, Jenkinson, Bannister, Brady, & Smith, 2002), slice-timing correction, brain 

extraction (BET, S. M. Smith, 2002), and spatial smoothing with a Gaussian kernel of 5 mm 

full-width at half-maximum (FWHM). 

Subsequently, we used an ICA-based strategy for automatic removal of motion arti-

facts (ICA-AROMA, Pruim, Mennes, van Rooij, et al., 2015). ICA-AROMA is a well-

validated procedure to correct for secondary effects of head motion. This toolbox performs 

data denoising in three steps: First, it runs an independent-component analysis (ICA), i.e., a 

multivariate exploratory decomposition into independent components (MELODIC, 

Beckmann & Smith, 2004); second, it classifies independent components into signals of 

interest or motion-related noise based on multiple criteria (i.e., high-frequency content, 

correlation with motion parameters, edge fraction, and cerebrospinal fraction); at last, it 

removes noise components from the data via FSL’s regfilt function. ICA-AROMA outper-

formed several other motion correction procedures, including a relatively sophisticated 

Volterra expansion with 24 motion parameters, in a recent validation study (Pruim, Mennes, 

Buitelaar, & Beckmann, 2015). 
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After ICA-based denoising, we performed high-pass temporal filtering with a cutoff of 100 s. 

Functional images were registered to each participant’s structural image using boundary-

based registration (BBR, Greve & Fischl, 2009) (Greve & Fischl, 2009)and then normalized 

to the Montreal Neurological Institute (MNI) space (resolution 2 × 2 × 2 mm3) via nonlinear 

registration with a warp resolution of 10 mm. 

To investigate task-related activations, we set up a general linear model (GLM) of the 

BOLD signal using 9 task-related regressors and their temporal derivatives, convolved with a 

double-gamma hemodynamic response function (HRF), and with local autocorrelation 

correction (Woolrich, Ripley, Brady, & Smith, 2001). The task-related regressors modeled 

prime-gamble trials per condition, gains and losses as parametric modulators per condition, 

prime-gender (discrimination) trials per condition, and missed trials. 

Individual contrast images were calculated and then submitted to a higher-level 

mixed-effects analysis using FMRIB’s Local Analysis of Mixed Effects tool in FSL (FLAME 

1 & 2). In our neuroimaging analysis, we first investigated neural responses to gain and 

losses as well as the previously observed asymmetry in loss and gain responses (Canessa et 

al., 2013; Tom et al., 2007) in the neutral condition, i.e., in the absence of emotional cues that 

enhance loss aversion. Then, we investigated condition-dependent changes in these respons-

es. On the group level, our model also included participants’ loss aversion parameters in the 

neutral condition (baseline loss aversion, λneutral) and emotion-dependent changes in loss 

aversion (λfearful − λneutral)—both derived from quantitative behavioral modeling—as behav-

ioral covariates of interest. 

Based on previous research on the neural basis of loss aversion, emotion and context-

dependent valuation (e.g., Canessa et al., 2013; Engelmann et al., 2015; Tom et al., 2007; 

Tovote et al., 2015), we focused on specific regions of interest (ROI), i.e., the amygdala, the 

striatum, the insula, and the vmPFC (6321 voxels in total), in our neuroimaging analysis. 

Here, a false-discovery rate (FDR) correction with p < .05 and a minimum cluster extent of 

15 voxels (k ≥ 15) was applied. In an exploratory whole-brain analysis, we used a cluster-

defining threshold of uncorrected p < .001 (i.e., z > 3.1) and a family-wise error (FWE) 

cluster correction with p < .05. 
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4. Summary of Empirical Studies and Specific Discussion 

4.1. Study 1: Music-Evoked Incidental Happiness Modulates Probability 
Weighting during Risky Lottery Choices  
(Schulreich et al., 2014, Frontiers in Decision Neuroscience). 

Background and Objective: As outlined in the introduction, previous research has 

shown that incidental emotional states can influence probability judgments (Johnson & 

Tversky, 1983; Wright & Bower, 1992) and there is also correlative and indirect evidence on 

such incidental emotional effects on probability weighting (Fehr-Duda et al., 2011; Kliger & 

Levy, 2008). To provide more direct evidence, we experimentally manipulated incidental 

affect and investigated its influence on risk taking and probability weighting in the gain 

domain. 

Method: Our final sample included 41 subjects (28 women; mean age, 27.37 years; 

SD = 7.83 years). The experiment featured a within-subject design consisting of four 

conditions in separate sessions (see Figure 5 above). In each condition, participants first 

listened to different kinds of auditory stimuli—“happy” music, “sad” music, or sequences of 

random tones—or experienced no auditory stimulation and completed a repeated pairwise 

lottery choice task over real monetary stakes (gains only) afterwards. We checked for the 

success of emotional manipulation via simple rating scales measuring basic emotional states 

(e.g., happiness) after musical stimulation and after decision blocks. 

We analyzed choice data in a twofold way: First, we analyzed choice frequencies as 

model-free measures of risk attitudes; Second, we modeled choice data with structural 

regressions based on Cumulative Prospect Theory (Tversky & Kahneman, 1992) and a two-

parameter model of probability weighting (Prelec, 1998). In addition, we also modeled time 

trends to analyze the time course of emotional effects with increasing temporal distance 

between musical stimulation and choice. 

Results: Affective manipulation checks revealed that the different manipulation con-

ditions evoked different degrees of happiness, i.e., listening to “sad” music and random tones 

significantly reduced happiness compared to “happy” music, with no music in-between (see 

Figure 8 below). 

These differences in affective state were accompanied by changes in decision behav-

ior. We found that participants chose the riskier lotteries significantly more often in the 

“happy” music and no music condition than in the “sad” music and random tones conditions; 

see Table 1). In addition, we observed time trends indicating a decreasing emotional 

influence on decision making as the distance between musical stimulation and risky choice 
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increased (see Table 1 and Figure 9—not included in the original research article), consistent 

with a fleeting emotional effect that was also indicated by affective ratings post-choices (see 

Figure 8). 

Behavioral modeling via structural regressions indicated that the observed changes in 

risk taking could be attributed to changes in the elevation parameter of the probability-

weighting function, i.e., higher decision weights of the larger outcomes in the “happy” 

condition compared to the “sad” music and random tones conditions (see Figure 10). 

Importantly, the elevation parameter also correlated positively with self-reported music-

evoked happiness between-subjects. 

 

 

 
Figure 8. Subjective happiness ratings across the four conditions. Darker bars illustrate the values immediately 
after musical stimulation (“post-music”); brighter bars illustrate the values after the lottery choice blocks (“post-
choice”). Error bars represent 95% confidence intervals. The scale ranged from 1 (not happy at all) to 9 (very 
happy). An asterisk indicates significant difference at the 5% level. Reprinted from “Music-evoked incidental 
happiness modulates probability weighting during risky lottery choices ” by S. Schulreich, Y. G. Heussen, H. 
Gerhardt, P. N. C. Mohr, F. C. Binkofski, S. Kölsch, & H. R. Heekeren, 2014, Frontiers in Psychology: 
Decision Neuroscience, 4, 981. Copyright [2014] by the authors. 
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Table 1. Random-effects linear probability models (LPMs) for the choice of the riskier lottery across the four 
conditions. Reprinted from “Music-evoked incidental happiness modulates probability weighting during risky 
lottery choices” by S. Schulreich, Y. G. Heussen, H. Gerhardt, P. N. C. Mohr, F. C. Binkofski, S. Kölsch, & H. 
R. Heekeren, 2014, Frontiers in Psychology: Decision Neuroscience, 4, 981. Copyright [2014] by the authors. 

 LPM 1 LPM 2 

Condition Average frequency 
(%) 

Average frequency 
(%) 

Initial frequency 
(%) 

Time trend  
(%) 

Happy music 47.40%tones, sad 47.48%tones, sad 50.50%tones, sad −0.12%0, tones, sad 

No music 46.48%tones, sad 46.43%sad 49.11%tones, sad −0.11%sad 

Random tones 44.20%happy, no 44.20%happy 43.12%happy, no +0.04%happy 

Sad music 43.72%happy, no 43.75%happy, no 40.27%happy, no +0.14%0, happy, no 

LPM 1 included only dummy regressors to detect differences between the conditions. In addition to that, LPM 2 also 
modeled the temporal distance from the last musical stimulation (as the number of trials completed since the last musical 
stimulation). The “time trends” column thus indicates by how much (in percentage points) the relative frequency at which 
the riskier lottery was chosen changed on average with each additional completed trial. t-tests were used to assess whether 
the parameter estimates are different from 0. 
Significance at p < 0.05 indicated via superscripts:  
happy significantly different from the “happy music” condition; no significantly different from the “no music” condition; tones 
significantly different from the “random tone sequences” condition; sad significantly different from the “sad music” 
condition; 0 significantly different from 0 (for the time trends).  
To account for individual differences in participants’ risk taking, individual random effects were included for the respective 
reference condition. 

 
Figure 9. Choice frequencies across trials and regression lines reflecting time trends. The effect of musical 
stimulation on choice declined over time. 
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Figure 10. Probability weighting functions in the four conditions. Greater elevation of the probability weighting 
function in the “happy” music condition compared to the random tones condition and “sad” music condition. 
Reprinted from “Music-evoked incidental happiness modulates probability weighting during risky lottery 
choices ” by S. Schulreich, Y. G. Heussen, H. Gerhardt, P. N. C. Mohr, F. C. Binkofski, S. Kölsch, & H. R. 
Heekeren, 2014, Frontiers in Psychology: Decision Neuroscience, 4, 981. Copyright [2014] by the authors. 

 
 

Discussion: Our findings complement previous studies on the effect of incidental 

emotions on probability judgments (Johnson & Tversky, 1983; Wright & Bower, 1992) and 

go beyond indirect and correlational data on the link between incidental emotions and 

probability weighting in risky choice (Fehr-Duda et al., 2011; Kliger & Levy, 2008). Our 

findings also address RQ1 and support H1 and H2: 

 

RQ1: Is there an influence of incidental emotions (e.g., incidental happiness) on probabil-

ity weighting? 
 

H1: Music-evoked incidental emotions are associated with changes in risk taking and 

probability weighting. Specifically, incidental happiness is positively related to the elevation 

of the probability-weighting function. 
 

H1 is supported by our data. By experimentally manipulating emotional states, we provide 

evidence in favor of a causal effect of incidental happiness on risk attitudes in the gain 

domain that can be explained by changes in probability weighting. Increased (decreased) 
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incidental happiness was associated with a higher (lower) elevation of the probability 

weighting function, which could be framed as a form of optimism (pessimism) in risky 

decision making. 

To note, while listening to “sad” music and random tones decreased self-reported 

happiness, “happy” music did not significantly increase happiness compared to no music. 

Difficulties in increasing positive affect have been repeatedly reported in the literature. For 

instance, Gasper (2004) let her participants write about happy, sad, and neutral events to 

induce different affective states, but the positive emotion induction did not increase positive 

affect. She argued that positive emotion induction could have been inefficient because 

individuals are usually by default mildly happy (Diener & Diener, 1996), thus making it 

difficult to amplify their positive feelings. A mildly happy default state was also observable 

in our data (i.e., a score about 6 on a scale from 1-9 [lowest to highest happiness] also in the 

no-music condition) and further increases in happiness might necessitate stronger induction 

techniques. Nevertheless, the observed positive relationship between the degree of self-

reported happiness and probability weighting indicates that not just decreases in happiness 

(e.g., caused by “sad” music), but also increases in happiness can have an influence on 

decision making. 

 

H2: The effect of music-evoked incidental emotions on decision making declines over time. 
 

H2 is supported by our data. The observed fleeting influence of musical stimulation on choice 

behavior over time (i.e., a decline within minutes) is consistent with previous observations of 

fleeting emotional effects (e.g., Andrade & Ariely, 2009; Isen & Gorgoglione, 1983) and 

corroborates an affective interpretation of the observed effects. 
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4.2. Study 2: Incidental Fear Cues Increase Monetary Loss Aversion  
(Schulreich, Gerhardt, & Heekeren, 2016, Emotion) 

Background and Objective: As outlined in the introduction, previous evidence sug-

gests a link between loss and fear processing (e.g., Crişan et al., 2009; Hartley & Phelps, 

2012), but the influence of incidental fear cues on loss aversion it thus far unclear. To close 

this gap, we designed two experiments to manipulate the affective context and investigate its 

influence on monetary loss aversion. Furthermore, we investigated whether such an influence 

is moderated by psychopathic personality, in particular fearless dominance, which has been 

associated with reduced fear reactivity (e.g., N. E. Anderson et al., 2011; Patrick et al., 2009). 

Method: In two experiments, we presented fearful and neutral faces during (Experi-

ment 1) or prior (Experiment 2) choices to accept or reject mixed gambles with equal 

probability (i.e., 50%) of winning or losing variable amounts of money. Potential gains and 

losses ranged from ±€5 to ±€14 in steps of €1 (10 x 10 = 100 gambles per face condition). 29 

participants (20 female; mean age, 26.79 years [SD = 5.23 years]) were included for analysis 

in Experiment 1, 24 participants (13 female; mean age, 24.29 years [SD = 5.31 years]) in 

Experiment 2. Decision data was analyzed in two ways: First, participant’s choices were 

analyzed as model-free measures of risk attitudes; Second, quantitative behavioral modeling 

via mixed-effects models allowed investigating emotional effects on loss aversion and 

decision noise (Fechner error specification), similar to previous studies (see, e.g., Tom et al., 

2007). Psychopathic personality was assessed via the PPI-R (Alpers & Eisenbarth, 2008, see 

Chapter 3.4.) and the higher-order factors fearless dominance and self-centered impulsivity 

were derived. This allowed us to include psychopathic personality traits as covariates and 

potential moderators in our models. 

Results: In both experiments, we found that the presentation of fearful faces, relative 

to neutral faces, increased risk aversion—an effect that could be attributed to increased loss 

aversion (see Figure 11, Panel a, for Experiment 1), whereas there was no significant 

emotion-induced change in choice consistency. Replication of the effect demonstrated its 

robustness. Moreover, we found that the influence of incidental fear cues on loss aversion 

was moderated by psychopathic personality such that the effect was practically absent in 

participants scoring high in fearless dominance (in particular social influence/potency) and 

highest in low-scoring participants (see Figure 11, Panel b, for Experiment 1). In contrast, 

self-centered impulsivity was not a significant moderator. Both psychopathic traits were not 

significantly associated with baseline loss aversion. 
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Figure 11. Experiment 1: Greater loss aversion in the fearful condition compared to the neutral condition. 
Fearless dominance attenuated emotion-induced effects on loss aversion. Panel a depicts individual estimates, 
based on the individual random effects included in the regression analysis, of the degree of loss aversion (λ) in 
the neutral-face and fearful-face condition; data points above the 45° line are associated with greater loss 
aversion in the fearful-face condition. Panel b depicts a scatterplot and a linear regression line that illustrates the 
inverse relationship between fearless dominance and the size of the effect of incidental fear cues on loss 
aversion (δλ). The graph also contains two dashed lines that intersect at 0 on both axes (i.e., average fearless 
dominance score [horizontal axis]; no change in loss aversion [vertical axis]) and that delineate four sectors into 
which the data points fall. For the lower half of fearless dominance scores, all the data points lie within the 
upper-left sector, indicating that those participants all showed higher loss aversion in the fearful-face condition. 
Reprinted with permission from “Incidental fear cues increase monetary loss aversion” by S. Schulreich, H. 
Gerhardt, & H. R. Heekeren, 2016, Emotion, 16(3), 402-412. Copyright [2015] by APA. 

 

Discussion: Our results highlight the sensitivity of loss aversion to the affective con-

text and provide further and direct evidence for a link between fear and loss processing, as 

suggested before (e.g., Camerer, 2005; Hartley & Phelps, 2012). Our findings also address 

RQ2a and RQ2b and provide support for H3 and H4: 

 

RQ2a: Is there an influence of incidental fear cues on loss aversion? 
 

H3: Incidental fear cues increase monetary loss aversion compared to neutral cues. 
 

H3 was supported by our data. In both experiments of Study 2, we observed significantly 

reduced risk taking when participants were primed with fearful faces compared to neutral 

faces. Importantly, this effect could be attributed to decreased loss aversion in the fearful-face 

condition, but not to differences in choice consistency (i.e., Fechner noise). 
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RQ2b: Is the influence of incidental fear cues on loss aversion moderated by psychopathic 

personality, in particular fearless dominance? 
 

H4: Psychopathic personality, in particular PPI-R fearless dominance (but not PPI-R self-

centered impulsivity) moderates the effect of incidental fear cues on loss aversion. Specifical-

ly, higher fearless dominance is associated with an attenuated effect of incidental fear cues 

on loss aversion. 
 

H4 is largely supported by our data. In both studies, we observed that the influence of 

incidental fear cues on loss aversion was moderated by psychopathic personality. To be 

specific, high fearless dominance (Experiment 1) and high social influence/potency (Experi-

ment 2)—a facet of fearless dominance—attenuated emotion-induced increases in loss 

aversion, consistent with deficient fear processing (e.g., N. E. Anderson et al., 2011; López et 

al., 2013; Patrick et al., 2009). The missing effect for the higher-order factor fearless 

dominance in Experiment 2 might be due to insufficient statistical power or genuine context-

related differences. In any case, high social influence/potency emerged as the most robust 

facet that showed a moderation effect, consistent with a study that found a specific associa-

tion between an interpersonal facet of psychopathy (i.e., an analogue of PPI-R social 

influence) and reduced amygdala activity when processing fearful faces (Carré, Hyde, 

Neumann, Viding, & Hariri, 2013). Importantly, the observed moderation effect corroborates 

an affective interpretation of the influence of incidental fear cues on loss aversion. 
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4.3. Study 3: Emotion-Induced Increases in Loss Aversion Are Associated With 
Shifts towards Negative Neural Value Coding 
(Schulreich, Gerhardt, Meshi, & Heekeren, submitted to Proc. Natl. Acad. Sci. USA) 

Background and Objective: In this neuroscientific study, we extend our previous 

behavioral study (Study 2) by investigating the neural mechanisms that give rise to emotion-

induced increases in loss aversion. Thereby, we also build upon previous studies on the 

neural basis of loss aversion in general (e.g., Canessa et al., 2013; Sokol-Hessner et al., 2013; 

Tom et al., 2007) as well as on emotional effects on loss aversion (Charpentier et al., 2015; 

Engelmann et al., 2015). Specifically, we investigated whether context-dependent changes in 

neural value processes mediate the influence of incidental fear cues on monetary loss 

aversion. 

Method: We analyzed data from 27 participants (15 female; mean age, 21.81 years 

[SD = 3.55 years]). All subjects participated in a decision-making task that we previously 

used in Study 2 and that we adapted for fMRI. In this task, participants decided to accept or 

reject mixed gambles while in the MRI scanner. Potential gains and losses ranged from ±€6 

to ±€20 in steps of €2 (8 x 8 = 64 gambles per condition) and were associated with identical 

probabilities, i.e., 50%. To manipulate affect, we briefly presented images of fearful (or 

neutral) faces before each lottery choice (also see Figure 6 above), as in Experiment 2 of 

Study 2. 

We analyzed gamble acceptance rates and used quantitative behavioral modeling to 

estimate loss aversion and emotion-induced changes in its magnitude. Neuroimaging data 

was preprocessed (including, e.g., ICA-based removal of motion-related noise, see Chapter 

3.6.) and analyzed in FSL (Jenkinson et al., 2012). Here, we set up a general linear model that 

included regressors for face-gamble trials as well as parametric modulators denoting gains 

and losses (per condition), among others, which were used to calculate contrasts of interest 

(e.g., contrasting loss-related brain activations in the fearful vs. neutral condition). Further-

more, behaviorally determined monetary loss aversion in the neutral condition as well as 

emotion-induced changes in loss aversion were included as covariates of interest in our 

group-level model. This allowed for investigating whether (changes in) neural value pro-

cessing mediated (changes in) behavioral loss aversion. Furthermore, we investigated the 

relationships between loss aversion and value processing with respect to psychopathic 

personality, measured with the TriPM (Patrick, 2010, see Chapter 3.4.), given the observed 

moderation effect of psychopathic personality on emotional influences on loss aversion in 

Study 2. 
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Results: At the behavioral level, we replicated the emotion-induced increase in mone-

tary loss aversion observed in Study 2. At the neural level, we observed an emotion-induced 

shift from positive to negative value coding in a distributed set of brain regions, including the 

amygdala. More precisely, we found that loss aversion following the presentation of neutral 

faces was mainly predicted by greater deactivations for losses relative to activations for gains 

(i.e., neural loss aversion), e.g., in the striatum and the amygdala (Figure 12). In contrast, 

emotion-induced increases in loss aversion were mainly predicted by greater activations for 

losses in the fearful condition, e.g., in the amygdala (Figure 13) and the vmPFC, which 

accompanied a general emotion-induced increase in bilateral amygdala activity following the 

presentation of fearful relative to neutral faces. In addition, we observed emotion-induced 

reductions of deactivations for losses (and neural loss aversion) in regions that displayed 

these responses in the neutral condition, e.g., the striatum (Figure 14). 

Furthermore, similar to Study 2, we observed a moderation effect of psychopathic 

personality on emotion-induced changes in loss aversion. However, instead of TriPM 

boldness, which is strongly overlapping with PPI-R fearless dominance (Patrick et al., 2009; 

Stanley et al., 2013) that displayed this effect in Study 2, we observed that a different 

affective-interpersonal facet, TriPM meanness, attenuated emotion-induced increases in loss 

aversion. Crucially, this effect was partially mediated by attenuated emotion-induced 

increases in amygdala activations for losses (Figure 15). 
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Figure 12. Neural loss aversion in the neutral condition. Panel A: Neural loss aversion, i.e., greater deactiva-
tions for losses relative to activations for gains (−βLoss, Neutral − βGain, Neutral > 0) in the striatum (blue). Neural loss 
aversion was also positively correlated with behavioral loss aversion, e.g., in the left caudate (green). Panel B: 
Parameter estimates for the gain and loss regressors for the left caudate cluster that displayed neural loss 
aversion. Panel C: Relationships between neural gain and loss responses and behavioral loss aversion in the left 
caudate (green cluster in Panel A). Greater deactivations for losses significantly predicted greater loss aversion, 
λneutral (partial regression plot, i.e., controlling for emotion-induced changes in loss aversion, λfearful − λneutral). 
Panel D: Neural loss aversion was positively correlated with behavioral loss aversion in the right superficial and 
centromedial amygdala (green). Panel E: Parameter estimates for the gain and loss regressors for the amygdala 
cluster. Panel F: Relationships between neural gain and loss responses and behavioral loss aversion in the 
amygdala cluster. Greater deactivations for losses significantly predicted greater loss aversion (partial regression 
plot). Note: All statistical tests were small-volume FDR-corrected with p < .05 and k ≥ 15. Error bars/lines 
represent 95% CIs (including between-subject variance). 
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Figure 13. Emotion-induced changes in amygdala activity and value coding. Panel A: Increased bilateral 
amygdala activity during gamble trials (onset: face presentation) in the fearful condition compared to the neutral 
condition (red-yellow). Panel B: Increased bilateral amygdala activations for losses in the fearful condition (red-
yellow), which were also associated with emotion-induced increases in loss aversion in the right superficial and 
centromedial amygdala (light-blue). Panel C: Parameter estimates for the gain and loss regressors per condition 
for the right superficial and centromedial amygdala (red-yellow cluster in Panel B). Panel D: Relationships 
between emotion-induced changes in gain and loss responses and changes in behavioral loss aversion in the 
right superficial and centromedial amygdala (light-blue cluster in Panel B). Greater emotion-induced activations 
for losses significantly predicted emotion-induced increases in loss aversion (partial regression plot, i.e., 
controlling for λneutral). Note: All statistical tests were small-volume FDR-corrected with p < .05 and k ≥ 15. 
Error bars/lines represent 95% CIs (including between-subject variance). 
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Figure 14. Emotion-induced changes in neural loss aversion. Panel A: Reduced neural loss aversion (i.e., 
−βLoss − βGain) in the bilateral striatum in the fearful condition compared to the neutral condition (red-yellow). 
Decreases in neural loss aversion were associated with emotion-induced increases in behavioral loss aversion in 
the left caudate (green). Panel B: Parameter estimates for the gain and loss regressors per condition for the left 
caudate (red-yellow cluster in Panel A). Panel C: Relationships between emotion-induced changes in gain and 
loss responses and changes in behavioral loss aversion in the left caudate (green cluster in Panel A). Descrip-
tively, increasing activations for gains and losses were associated with increasing loss aversion, but neither 
correlation was statistically significant (partial regression plot). Their combined effect, however, led to 
significant reductions in neural loss aversion, which is based on stronger deactivations (and not activations) for 
losses relative to activations for gains. Note: All statistical tests were small-volume FDR-corrected with p < .05 
(k ≥ 15). Error bars/lines represent 95% CIs (including between-subject variance). 

 
 

 
 

Figure 15. TriPM meanness attenuated emotion-induced increases in loss aversion, and this effect was partially 
mediated by attenuated emotion-induced increases in amygdala activations for losses. The mediation model 
illustrates total, direct, and indirect effects of TriPM meanness on emotion-induced changes in monetary loss 
aversion. β coefficients represent standardized regression coefficients while controlling for boldness, disinhibi-
tion and loss aversion in the neutral condition (not illustrated). βtotal is the total effect of meanness on emotion-
induced changes in loss aversion, βdirect is the direct effect after the mediator (i.e., emotion-induced changes in 
amygdala activations for losses) had been taken into account, and βindirect is the indirect effect, i.e., the effect of 
meanness on emotion-induced changes in loss aversion that was mediated by a change in amygdala activations 
for losses. For the indirect effect, bias-corrected bootstrapping (50,000 bootstrap samples) provided a 95% 
confidence interval that did not span 0, indicating a significant partial mediation. 
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Discussion: Our neuroscientific study extends previous behavioral reports (including 

Study 2) on emotion-induced changes in loss aversion by providing a neural mechanism that 

gives rise to such effects. Furthermore, our study also complements previous fMRI studies 

that provided mixed results on the neural basis of loss aversion in general (e.g., Canessa et 

al., 2013; Gelskov et al., 2015; Pammi et al., 2017; Sokol-Hessner et al., 2013; Tom et al., 

2007) or did not report value-related amygdala activity mediating emotion-induced changes 

in loss aversion (Charpentier et al., 2015; Engelmann et al., 2015). Our findings also address 

RQ3a and RQ3b and provide support for H5 and H6: 
 

RQ3a: What are the neural mechanisms that mediate emotion-induced changes in loss 

aversion? 
 

H5: Incidental fear cues enhance amygdala activity relative to neutral cues. This general 

increase is accompanied by altered value processing, i.e., emotion-induced increases in 

activations for losses in the amygdala and, possibly, shifts towards negative value coding in 

other regions as well (e.g., striatum, insula, vmPFC). These emotion-induced shifts in 

valuation mediate increases in behavioral loss aversion. 
 

H5 was supported by our data. Specifically, we observed a general emotion-induced increase 

in bilateral amygdala activity following fearful relative to neutral faces. This was accompa-

nied by a shift from positive to negative value coding in a distributed set of brain regions, 

including the amygdala, the striatum, insula and the vmPFC. While loss aversion was mainly 

predicted by stronger deactivations for losses relative to activations for gains (i.e., neural loss 

aversion) in the neutral condition, emotion-induced changes in loss aversion were mainly 

predicted by stronger activations for losses, i.e., negative neural value coding.  

RQ3b: How is the influence of psychopathic personality on emotion-induced changes in 

loss aversion mediated at the neural level? 
 

H6: The attenuating effect of affective-interpersonal psychopathic traits (e.g., TriPM 

boldness and meanness) on emotion-induced increases in loss aversion is mediated by 

attenuated emotion-induced increases in amygdala activations for losses. 
 

H6 was also largely supported by our data. Specifically, we observed that TriPM meanness 

(but not boldness and disinhibition) attenuated emotion-induced increases in loss aversion 

and that this effect was partially mediated by attenuated emotion-induced amygdala activa-

tions for losses at the neural level. 
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5. General Discussion 

5.1. Incidental Emotions and Prospect Theory 
Prospect theory has long been devoid of emotion, but it is increasingly acknowledged that the 

processes captured by this behavioral model are in fact intimately tied to emotion (e.g., 

Rottenstreich & Hsee, 2001; Suter, Pachur, Hertwig, et al., 2015). The present work extends 

previous research on the long-ignored link between emotions and Prospect Theory by 

providing causal evidence of incidental emotional effects on probability weighting and loss 

aversion. Specific links between prospect-theoretic components and emotions could contrib-

ute to our mechanistic understanding of emotional influences on decision making. In the 

following two chapters, I will discuss the links revealed in Studies 1 and 2 regarding 

probability weighting and loss aversion, respectively, and put these results in a broader 

theoretical context. In doing so, I will adopt both an emotional and a decision-related 

perspective. 

5.1.1. Incidental Happiness and Probability Weighting 

Going beyond previous indirect and correlational evidence on incidental emotional effects 

(Fehr-Duda et al., 2011; Kliger & Levy, 2008), Study 1 provides causal evidence that 

incidental emotions affect probability weighting. To be specific, varying degrees of incidental 

happiness were associated with an increased elevation (i.e., optimism for higher incidental 

happiness) or decreased elevation (i.e., pessimism for reduced incidental happiness) of the 

probability-weighting function, but not with the curvature parameter. These findings provide 

information regarding two important and interrelated issues in emotion and decision research: 

First, what are the critical functional components of emotions that interact with decision 

making? Second, what psychological processes are reflected by emotion-induced changes in 

probability weighting? 

With regard to emotional components, happiness-induced increases in risk taking are 

consistent with the appraisal-tendency framework proposed by Lerner and colleagues (see, 

e.g., Lerner & Keltner, 2000, 2001), which states that appraisal tendencies evoked by certain 

emotions can carryover to judgments or decisions when their central appraisal dimensions 

overlap. As far as risk evaluations are concerned, certainty and control are crucial dimen-

sions. Hence, emotions that are strongly characterized by high or low certainty and control 

are expected to have a large influence on risk evaluations and risky decisions. Lerner and 

colleagues demonstrated, for instance, that fear and anger—although of the same valence—

have opposite effects on risk perceptions and risky decisions, i.e., fear (high uncertainty, high 
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situational control) increased risk perceptions and reduced risk taking; anger (high certainty, 

high personal control) reduced risk perceptions and increased risk taking. Happiness is 

characterized by high certainty and a moderate sense of personal control (C. A. Smith & 

Ellsworth, 1985), and a carryover of appraisal tendencies to decision making could therefore 

explain increased risk taking. 

Emotions and underlying appraisals are also associated with specific motivational and 

action tendencies (Frijda, 2009; Lowe & Ziemke, 2011). For instance, happiness has been 

associated with an approach-tendency (Davidson, Ekman, Saron, Senulis, & Friesen, 1990; 

Frijda, 1987; Seidel, Habel, Kirschner, Gur, & Derntl, 2010), among others, which can 

explain the observed positive relationship with risk taking. Another motivational tendency 

that has received specific attention in early studies on affective influence on decision making 

is mood maintenance. Isen and colleagues (1988) have argued that positive affect is associat-

ed with a desire to maintain this positive state, which is consistent with their finding of 

increased negative subjective value of losses in elated subjects, as losses would interfere with 

positive affect. Another possible interpretation of their findings, however, is that the receipt 

of a small bag of candy (i.e., the experimental manipulation in their study) might not just 

evoke emotions but also appraisals of possession, which might have increased sensitivity to 

losses. In any case, our findings appear inconsistent with the mood-maintenance hypothesis, 

because increased happiness was associated with increased risk taking. However, Isen et al. 

(1988) noted that while mood maintenance could explain the observed effects in the loss 

domain, positive affect might be related with increased risk taking in the gain domain due to 

changes in probability weighting. Study 1 provided direct evidence for this conjecture. 

Importantly, our behavioral modeling results also provide indications of involved de-

cision-related processes. Given that the probability-weighting parameters were dissociable in 

our study, our findings suggest that two-parameter versions of the probability-weighting 

function (e.g., Prelec, 1998) might capture different underlying processes and are therefore 

recommended over one-parameter versions, consistent with prior work that found two-

parameter versions particularly suitable to explain heterogeneity in probability weighting 

(Fehr-Duda & Epper, 2012; Gonzalez & Wu, 1999). 

However, the underlying mechanisms are only poorly understood. In this regard, the 

mechanisms underlying emotion-evoked changes in the curvature of the probability-

weighting function are incompletely, but better understood than those underlying changes in 

the elevation parameter. Several theoretical accounts postulate that the probability weighting 

function, in particular its curvature, at least partly reflects emotions. As already outlined in 
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the introduction, the inverse S-shape of the probability weighting function can result from 

expected emotions such as elation and disappointment (Brandstätter et al., 2002) or integral 

emotions such as hope and fear. For instance, integral emotions are hypothesized to be 

stronger for affect-rich (e.g., a kiss) relative to affect-poor outcomes (e.g., money), leading to 

a more strongly S-shaped curvature for affect-rich outcomes (Rottenstreich & Hsee, 2001; 

Suter, Pachur, Hertwig, et al., 2015). In other words, affect-rich outcomes appear to be 

associated with increased sensitivity to changes from impossibility to possibility and from 

certainty to possibility, but decreased sensitivities to changes in probability in-between 

(Figure 16, Panel A).  

In fact, the evaluation of affect-rich outcomes might be even better described by prob-

ability neglect, i.e., the tendency to completely disregard probability when making risky 

decisions (Sunstein & Zeckhauser, 2010). For instance, there is evidence for a switch from an 

expectation-based calculus (i.e., an integration of outcome and probability, as modeled in 

Cumulative Prospect Theory) for affect-poor outcomes to heuristic decision modes character-

ized by ignorance of probabilities (e.g., minimax or maximax decision rules) for affect-rich 

outcomes (Pachur, Hertwig, & Wolkewitz, 2013; Suter, Pachur, & Hertwig, 2015; see Figure 

16, Panel A). This does not imply that Cumulative Prospect Theory was unable to explain 

changes in decision behavior. Choice over affect-rich outcomes could still be described in the 

framework of Cumulative Prospect Theory (Suter, Pachur, & Hertwig, 2015; Suter, Pachur, 

Hertwig, et al., 2015), but parametric changes would imply different psychological mecha-

nisms, i.e., changes in sensitivity to probabilities, rather than complete probability neglect 

implied by the better fitting heuristic models (Suter, Pachur, & Hertwig, 2015). 

Importantly, there is also data going beyond choice on this matter. Differential pro-

cessing of probabilities for affect-poor and affect-rich outcomes has also been observed at the 

neural level (Suter, Pachur, Hertwig, et al., 2015). For instance, brain activation in regions 

that correlated with decision weights was larger during affect-poor choices, indicating that 

processing of probabilities was more pronounced during affect-poor compared to affect-rich 

choices. In addition, process-tracing data on information acquisition showed that people pay 

less attention to probability information in affect-rich compared to affect-poor choices 

(Pachur et al., 2013), consistent with different modes of decision making.  

In contrast, the observed effects of incidental happiness in Study 1 are inconsistent 

with a decision mode characterized by insensitivity to probabilities, since changes in the 

elevation parameter imply changes in decision weights across the whole range of probabili-

ties rather than altered sensitivity to changes of these probabilities (Figure 16, Panel B). This 
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demonstrates that, although being a descriptive rather than a process model (Berg & 

Gigerenzer, 2010), Prospect Theory is able to narrow down potential mechanisms through 

their dissociable parameters. 

The exact nature of the putative probability-sensitive mechanisms underlying our ob-

servation, however, awaits further process-oriented investigation. On the one hand, happi-

ness-evoked changes in decision weights might reflect a direct effect on the processing of 

probabilities, which could be assessed by obtaining measures of brain activity in probability-

processing areas (e.g., supramarginal gyrus; Suter, Pachur, Hertwig, et al., 2015). For 

instance, larger decision weights might be the result of biased probability processing within 

these areas, reflecting optimistic probabilistic processing (e.g., due to appraisals of certainty). 

A neural overlap between brain areas that have been associated with probability weighting 

and with the experience of happiness, e.g., in the anterior cingulate cortex and striatum (see, 

e.g., Vytal & Hamann, 2010), might allow for such an integration of emotion and probability 

processing. On the other hand, changes in the elevation of the probability-weighting function 

might not be related to changes in the processing of probabilities per se, but might instead 

reflect changes in outcome processing, e.g., changes in attention to outcome values as 

discussed by Wu (1999). In line with that, happy participants have been found to display an 

increased attentional focus on rewards (Tamir & Robinson, 2007). Neuroimaging and 

process-tracing techniques like eye tracking or (computer) mouse tracking (see, e.g., Schulte-

Mecklenbeck et al., 2011) are promising methods to further investigate the processes that 

mediate (emotional effects on) probability and outcome processing. 

Another interesting question is whether incidental emotions operate through changing 

integral or expected emotions, which, in turn, influence probability weighting. For instance, 

Rottenstreich and Hsee (2001) noted that the elevation parameter might be subject to integral 

emotions such as savoring and dread (Loewenstein, 1987; Lovallo & Kahneman, 2000). 

Alternatively, Brandstätter and colleagues (2002) noted that increased sensitivity to disap-

pointment, but not elation, would be associated with more pronounced underweighting than 

overweighting (and vice versa), reflected in the elevation of the probability-weighting 

function and its inflection point. Given that we used moderate and only positive monetary 

outcomes in Study 1 that are unlikely to create strong positive or negative integral or 

expected emotions (compared to, e.g., kisses and electric shocks in the studies of 

Rottenstreich & Hsee, 2001), a direct effect of incidental emotions is plausible, but we cannot 

rule out an indirect channel via altered integral or expected emotions. 
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In sum, Study 1 has shown that incidental happiness is positively associated with the 

elevation parameter of the probability-weighting function. This finding extends previous 

research on the effect of expected and integral emotions on the curvature parameter and 

indicates that—instead of changes in sensitivity to probability or a switch to heuristic 

decision making characterized by probability neglect—the influence of incidental happiness 

on choice is likely mediated by a different, probability-sensitive mechanism. Neuroscientific 

and process-tracing techniques represent promising methods to explore this mechanism in 

future research. 

 

 
Figure 16. Different decision-related mechanisms involved in choices over affect-rich outcomes and in choices 
under incidental emotional influence. Panel A illustrates choices over affect-poor outcomes (e.g., money) on the 
left and over affect-rich outcomes (e.g., medical side effects) on the right. Choices over affect-poor outcomes 
can be adequately modeled with Cumulative Prospect Theory, consistent with an integration of subjective 
values and probabilities. While Cumulative Prospect Theory can also model choices over affect-rich outcomes 
in terms of an integrative mechanism with diminished sensitivity to probability changes (indicated via the red 
line in the probability-weighting function), heuristic models that ignore probabilities at all (e.g., minimax and 
maximax) often show a better model fit (Suter, Pachur, & Hertwig, 2015). To note, medical side effects were 
matched to monetary amounts to allow for behavioral modeling in that study. For simplicity, only a change in 
the curvature parameter (red line) is shown in the right probability-weighting function, because it illustrates 
changes in sensitivity to probability changes. (Suter et al., however, also observed changes in the elevation 
parameter, consistent with a focus on the most attractive among bad outcomes in heuristic processing). Panel B 
illustrates choices over affect-poor outcomes (i.e., money) on the left and choices over the same outcomes under 
incidental emotional influence (i.e., induced by music in Study 1) on the right. In contrast to choices over affect-
poor outcomes, our model-based findings (based on Cumulative Prospect Theory) indicated preserved 
sensitivity to probability (changes), but changes in the elevation of the probability weighting function (green 
line in the right probability-weighting function). Note: Euro image © European Central Bank. Vaccination 
image by Daniel Paquet, licensed under the Creative Commons Attribution 2.0. Generic license 
(https://creativecommons.org/licenses/by/2.0/deed.en) 
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5.1.2. Incidental Fear and Loss Aversion 

Despite a postulated link between fear and loss aversion (Camerer, 2005; Hartley & Phelps, 

2012), the influence of incidental fear on loss aversion had been unclear. In Studies 2 and 3, 

we found that the presentation of fearful relative to neutral faces—stimuli that signal 

potential threats—increased risk aversion and that this effect could be attributed to increased 

loss aversion. We also found that psychopathic personality traits related to diminished fear 

reactivity moderated this effect. Higher PPI-R fearless dominance (in particular social 

influence/potency) attenuated the influence of incidental fear cues on loss aversion—

corroborating an affective interpretation of the effect of facial cues on loss aversion (for a 

discussion of the contributions of our findings to the personality literature, see Chapter 5.3.). 

Our findings complement previous studies on incidental emotional effects on loss 

aversion. For instance, one early study found that elated participants displayed greater 

negative utilities of losses compared to controls (Isen et al., 1988). Another study found 

unpleasant odor to increase loss aversion compared to pleasant odor or clean air—an effect 

that could be attributed to odor pleasantness, but not intensity (Stancak et al., 2015), whereas 

incidental anger has been associated with reduced loss aversion (Campos-Vazquez & Cuilty, 

2014). Together with our findings, this body of literature provides important information on 

which functional components of emotions might interact with decision making and on 

potential psychological processes reflected by changes in loss aversion. 

Notably, a two-dimensional perspective of emotion with valence and arousal as cen-

tral dimensions (as postulated, e.g., by the circumplex model of affect; Russell, 1980), cannot 

fully explain the effects of incidental emotions on loss aversion reported above. First, because 

same-valenced contexts showed opposite directional effects on loss aversion (i.e., unpleasant 

odor and fearful faces increased loss aversion; induced anger decreased loss aversion), and 

opposite-valenced contexts showed the same directional effect on loss aversion (i.e., unpleas-

ant odor and elation both increased loss aversion). Second, the observations that odor 

pleasantness, but not intensity (i.e., a proxy for arousal), was associated with odor effects on 

loss aversion, and that incidental anger (high arousal) was associated with reduced loss 

aversion, appear inconsistent with the idea that loss aversion is mediated by arousal. This 

conjecture was recently put forward, based on observations that emotion regulation reduced 

peripheral-physiological arousal as well as loss aversion (Sokol-Hessner et al., 2009), and 

that pharmacological attenuation of arousal by the beta-blocker propranolol reduced loss 

aversion (Sokol-Hessner, Lackovic, et al., 2015). However, it is possible that loss aversion is 

at least partly determined by arousal in a neutral context, whereas the observed emotional 
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effects on loss aversion might be due to other mechanisms. For instance, fear-related effects 

have been related to certainty appraisals (high uncertainty) and control appraisals (situational 

control), which are crucially involved in mediating fear effects on risk taking (see, e.g., 

Lerner & Keltner, 2000, 2001). More generally, multiple mechanisms with similar or 

opposite directional effects might interactively determine loss aversion. In any case, it 

appears important to distinguish specific emotions and investigate the specific mechanisms 

underlying emotion-induced changes of loss aversion. 

As mentioned before, emotions and underlying appraisals are also associated with 

specific action tendencies. Some theories postulate that action tendencies associated with fear 

depend on the imminence of threat (e.g., Bracha, 2004; Bracha, Ralston, Matsukawa, 

Williams, & Bracha, 2004; Gray, 1988). Fearful faces signal a potential threat (and are 

therefore less threat-imminent compared to, e.g., an imminent attack of a conspecific or a 

predator). When the potential threat—in our case a monetary loss—is avoidable, people 

commonly do so (“flight” response). From this perspective, the observed emotion-induced 

increase in loss aversion reflects a facilitated avoidance response. Interestingly, the above 

mentioned effect of unpleasant odors on loss aversion has also been interpreted in terms of 

signaled threat or danger and defensive responses (Stancak et al., 2015), consistent with 

previous observations of augmented startle responses after the presentation of unpleasant 

odors (Ehrlichman, Brown, Zhu, & Warrenburg, 1995; Miltner, Matjak, Braun, Diekmann, & 

Brody, 1994). Fearful faces, however, are a more suitable experimental choice in order to 

draw such conclusions, because they represent more direct signals of potential threat. 

These fear models, however, also postulate other possible action tendencies such as 

defensive aggression (“fight” response) in case of imminent and unavoidable threats. 

Defensive aggression tendencies, in turn, might have different effects on loss aversion than 

avoidance tendencies. Specifically, the phenomenon of defensive aggression illustrates the 

intrinsic link between the fear and the anger/rage system (Panksepp, 1998). Thus, fear-

induced defensive aggression might have effects more closely resembling those of evoked 

anger, such as increased risk-taking (Lerner & Keltner, 2001) and reduced loss aversion 

(Campos-Vazquez & Cuilty, 2014), which represents an interesting subject for future 

research. Another open question is whether fear-related effects on decision making also 

depend on the specific source of threat, given that fear elicited by painful stimuli or condi-

tioned cues, predators, and aggressive conspecifics are processed in partly dissociable neural 

circuits (C. T. Gross & Canteras, 2012). 
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Behavioral modeling of loss aversion provides further indications of underlying decision-

related processes. Since loss aversion reflects the weight of losses relative to gains in risky 

choice, emotion-induced changes in loss aversion point towards either loss-specific effects or 

different weighting by integrative mechanisms. However, the exact processes underlying 

prospect-theoretic parameters are only poorly understood. To draw mechanistic conclusions, 

it will be indispensable to go beyond mere choice data. One possibility is to use behavioral 

process-tracing techniques to further investigate underlying processes (e.g., Schulte-

Mecklenbeck et al., 2011). For instance, just as probability weighting might reflect attention 

to probabilities, the loss aversion parameter might be associated with the relative attention 

paid to losses compared to gains (alternatively, losses might themselves induce attention, see, 

e.g., Yechiam & Hochman, 2013). Another possibility is to investigate neurobiological 

processes, which, in turn, can inform models of emotion-dependent changes in decision 

making. This was the aim of Study 3 of the present thesis. Hence, in the following, I will put 

the neuroscientific findings of that study in a broader context.  

5.2. A Neurocognitive Model of Emotion-Induced Changes in Loss Aversion 
Previous research on the neural basis of loss aversion in general and emotion-induced 

changes in loss aversion in particular have provided mixed results on the specific underlying 

value-related mechanisms. In the following, however, I propose a neurocognitive model of 

emotion-induced changes in loss aversion that aims to integrate previous observations and 

our own findings from Study 3. The model is illustrated in Figure 17 below. 

At the top, the model depicts the stimulus input level. Most neuroscientific studies in 

the field focused on decision-related processes following the presentation of mixed gambles 

(e.g., Canessa et al., 2013; Charpentier et al., 2015; Tom et al., 2007), i.e., gambles including 

both a potential gain and a potential loss (see upper block in Figure 17), while others focused 

on neural processes following singular gain- or loss outcomes (not depicted, see, e.g., 

Kokmotou et al., 2017; Sokol-Hessner et al., 2013). Most studies did not experimentally 

manipulate emotions (but see Charpentier et al., 2015; Engelmann et al., 2015). In contrast, 

we briefly presented fearful or neutral faces prior to the gambles to affectively prime decision 

making (right and left side of the upper block in Figure 17, respectively).  

In the central block, the model depicts putative neurocognitive processes that follow 

the stimulus input and which are critically involved in the generation of loss aversion. The 

key proposals are 1) that decision making rests on distinct valuation processes and 2) that 

these valuation processes are modulated by emotional context and personality.  
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The first proposal is based on previous research and our own findings. For instance, 

several studies observed that monetary loss aversion in a neutral context was associated with 

stronger neural deactivations for losses relative to activations for gains (neural loss aversion), 

e.g., in the striatum (Canessa et al., 2013; Charpentier et al., 2015; Pammi et al., 2017; Tom 

et al., 2007). In contrast to the other cited studies, Canessa et al. also observed the opposite 

pattern, i.e., activations for losses that predicted monetary loss aversion, e.g., in the amygda-

la. In Study 3, we also observed regions that displayed different types of value processing in 

the neutral condition. Specifically, we also found several regions that displayed stronger 

deactivations for losses relative to gains (neural loss aversion), which positively predicted 

monetary loss aversion. In contrast to Canessa et al., but in line with a recent study (Pammi et 

al., 2017), we also observed neural loss aversion in the right amygdala, which also predicted 

behavioral loss aversion (but not in Pammi et al., 2017). Furthermore, we also observed 

negative value coding in the neutral condition (e.g., activations for losses, deactivations for 

gains) in the vmPFC, left amygdala and insula. Taken together, these findings indicate that 

decisions on mixed gambles can evoke two distinct valuation systems—one displaying 

positive value coding via deactivations for losses (and activations for gains), and the other 

displaying negative value coding via activations for losses (and deactivations for gains). 

These systems are depicted on the left and right side of the central block in Figure 17, 

respectively. 

The second key proposal of the model is that these distinct valuation processes are 

employed in a context-dependent fashion and are subject to interindividual differences. Study 

3 provided evidence for both. For instance, we observed a general increase in amygdala 

activity following the presentation of fearful relative to neutral faces, accompanied by an 

emotion-induced shift from positive towards neural value coding (compare the left and right 

side of the central block in Figure 17). More precisely, while loss aversion following the 

presentation of neutral faces was mainly predicted by greater deactivations for losses relative 

to activations for gains (neural loss aversion), emotion-induced increases in loss aversion 

were mainly predicted by greater activations for losses. Interestingly, these context-

dependent shifts were partly observed in overlapping regions, e.g., in the right amygdala. 

Notably, we also observed emotion-induced reductions in deactivations for losses (and, thus, 

neural loss aversion), e.g., in the striatum (not depicted). Our findings are line with a recent 

study that investigated decision making under threat of shock and in a neutral context 

(Engelmann et al., 2015). Although this study did neither find emotion-induced changes in 

the degree of loss aversion nor in amygdala-related activity, the authors report a similar 
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context-dependent shift in valuation: increasing striatum and vmPFC activity to increasing 

subjective expected value (i.e., positive value coding) positively predicted gamble acceptance 

(thus, possibly, loss aversion) in the neutral context; increasing insula activity to decreasing 

subjective expected value (i.e., negative value coding) negatively predicted gamble ac-

ceptance in the threat-of-shock context, while positive value coding in the striatum and 

vmPFC was diminished. Although the authors did not investigate loss and gain responses 

separately, the observed shifts in value coding could have been mediated by a shift from 

deactivations for losses (and neural loss aversion) to activations for losses, as we have found 

in Study 3. In both studies, diminished positive value coding (e.g., in the striatum) may have 

resulted either from a compromised coding of losses in form of deactivations or from 

concurrent activations for losses (i.e., negative value coding) that would partially or fully 

cancel out deactivations in a summed fMRI signal. Taken together, both the findings of 

Engelmann et al. and our findings suggest that the emotional context is an important factor 

determining the employment of distinct valuation processes. 

The model also proposes interindividual differences as another factor that contributes 

to the differential involvement of valuation processes. Specifically, in Study 3, we observed 

that the psychopathic trait meanness attenuated emotion-induced increases in loss aversion 

and that this effect is partially mediated by attenuated emotion-induced increases in amygdala 

activations for losses. Hence, psychopathic personality moderated the emotion-induced 

employment of negative value processing (see the attenuation effect depicted in Figure 17). 
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Figure 17. Neurocognitive model of emotion-induced changes in loss aversion. The model proposes two 
different neural valuation mechanisms that are involved in the generation of behavioral loss aversion through 
inhibitory loss signals and excitatory loss signals, respectively. Crucially, incidental fear cues increase general 
amygdala activity as well as excitatory loss signals, and thereby loss aversion. Furthermore, psychopathic 
personality attenuates the effect of incidental fear cues on loss aversion via attenuated excitatory loss signals. 

 
On a more general level, the proposed neurocognitive processes are consistent with a 

growing body of evidence for two opposing neural loss (and gain) signals—inhibitory and 

excitatory—that have been related to distinct, but overlapping motivational systems (Brooks 

& Berns, 2013; Seymour et al., 2015). For instance, consistent with electrophysiological and 

optogenetic evidence in rodents (e.g., Beyeler et al., 2016; Gore et al., 2015; Shabel & Janak, 

2009), we found intermingled excitatory and inhibitory signals for losses in the human 

amygdala. As an extension to these previous accounts, the model introduces two specific 
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variables that modulate the relative contributions of excitatory and inhibitory loss (but also 

gain) signals—the incidental affective context and psychopathic personality. 

The bottom block of the model depicts the behavioral output level. Both excitatory 

and inhibitory loss signals determine behavioral loss aversion, though in different degrees in 

the neutral vs. affective context. Given that loss aversion in a neutral context was associated 

with positive value coding, characterized by neural loss aversion, it might be conceptualized 

as loss aversion based on (expected) reward omission (i.e., reductions or absence of positive 

value). By contrast, emotion-induced increases in loss aversion were associated with shifts 

towards negative value coding, and might be conceptualized as loss aversion based on 

(expected) punishment (i.e., presence of negative value). Hence, going beyond behavioral 

models of decision making that are mute to the sources of loss aversion, the neurocognitive 

model suggests that loss aversion is based on context-dependent involvement of distinct 

valuation processes. 

The aim of the proposed model is to provide a framework for future research on the 

role of the documented valuation processes and on their context-dependent employment. It 

includes two specific factors—incidental fear cues and psychopathic personality—that were 

found to modulate the proposed valuation mechanisms. However, it is likely that there are 

multiple factors that have such modulatory effects (e.g., the incentive structure of the 

decision making task, as hypothesized by Seymour et al., 2015). Notably, also conceptually 

related stimuli and contexts could induce different processes. For instance, pain-related 

processes might explain the greater shift towards negative value coding in the insula during 

threat of shock (Engelmann et al., 2015) than after fearful faces (Study 3), which more 

reliably enhance amygdala activity (Fusar-Poli et al., 2009). Hence, it will be important to 

systematically compare valuation processes across multiple contexts to gain further insights 

into their neural underpinnings as well as functional significance. In this regard, the model 

raises further important questions. For instance, it is possible that positive and negative value 

coding are mediated or modulated by different neurotransmitter systems. While reward-

related responses are typically associated with a dopaminergic mesotelencephalic circuit 

(e.g., Brooks & Berns, 2013; Schultz, Dayan, & Montague, 1997; Seymour et al., 2015), 

there is an ongoing debate on whether aversive signals are mediated by different neurotrans-

mitters (see, e.g., Boureau & Dayan, 2011). Another important issue will be to understand the 

interactions of multiple brain regions that display similar or distinct value coding, and the 

behavioral significance of such interactions. For instance, a recent study found that emotion-

induced changes in loss aversion were associated with increased amygdala-striatal functional 
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connectivity (Charpentier et al., 2015), consistent with previous evidence showing that 

amygdala signals to the striatum are crucial for generating avoidance behavior (e.g., 

Amorapanth et al., 2000; LeDoux & Gorman, 2001). Hence, future research would benefit 

from a greater emphasis on the functional interrelationships of the nodes that comprise 

distinct neural valuation networks.  

5.3. Psychopathic Personality 
Studies 2 and 3 also contribute to the literature on psychopathic personality by extending 

previous research on decision making in psychopathy, but also by favoring a certain class of 

structural models of psychopathy over others. 

Previous studies on decision making in psychopathy have repeatedly reported nega-

tive economic consequences. For instance, psychopathic male criminals failed to learn to 

avoid disadvantageous, risky options, which can result in a net monetary loss (Mitchell, 

Colledge, Leonard, & Blair, 2002) and undergraduates that score high in psychopathic traits 

displayed a larger preference for smaller immediate monetary rewards over larger delayed 

rewards in a hypothetical time discounting task (J. D. Miller & Lynam, 2003). 

However, psychopathic personality can also promote positive or mixed economic out-

comes. In the social domain, male criminal psychopaths, in particular those high in certain 

facets of PPI-R self-centered impulsivity, showed a higher proclivity for competitive, non-

cooperative behavior in a prisoner’s dilemma game compared to non-criminal controls, 

resulting in higher monetary gains (Mokros et al., 2008). College students with affective-

interpersonal psychopathic traits accepted more unfair offers of proposers in an Ultimatum 

Game compared to lower-scoring participants, which can increase monetary outcomes 

(Osumi & Ohira, 2010; but see Koenigs, Kruepke, & Newman, 2010). Readily accepting 

unfair offers, however, can also have negative consequences, since altruistic punishment (i.e., 

rejecting unfair offers at a personal cost) is an important factor in establishing—often 

fruitful— cooperation (see, e.g., Fehr & Gächter, 2002). In a similar vain, competitive and 

uncooperative behavior can undermine fruitful cooperation. 

Studies 2 and 3 extend this research by demonstrating another domain in which psy-

chopathic personality can lead to positive economic outcomes by attenuating incidental 

emotion-induced increases in loss aversion, which, on average, results in higher monetary 

outcomes. Taken together, these findings favor a context-dependent perspective (e.g., 

regarding the incentive or social structure of the task). 
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Importantly, our findings also contribute to a more general debate on the structure of 

psychopathy and its underlying etiological dimensions. As already mentioned, we found that 

PPI-R fearless dominance—in particular, social influence—diminished the effect of inci-

dental fear cues on loss aversion in Study 2, whereas PPI-R self-centered impulsivity did not 

moderate this effect. Although we did not observe a moderation effect of TriPM boldness 

(strongly overlapping with PPI-R fearless dominance) in Study 3, we observed the same 

moderation effect for TriPM meanness, which also captures affective-interpersonal features 

of psychopathy (Patrick et al., 2009). The differential effects of affective-interpersonal and 

impulsive-antisocial traits speaks against a unitary construct perspective, but favors instead 

multidimensional models of psychopathy (e.g., Fowles & Dindo, 2009; Patrick & Bernat, 

2009; Patrick et al., 2009). These models have already received considerable support from 

domains as diverse as emotion processing (e.g., Gordon et al., 2004), romantic attachment 

(Savard, Brassard, Lussier, & Sabourin, 2015), and neural performance monitoring (for a 

review, see Schulreich, 2016; and see Schulreich et al., 2013), among others.  

The observed moderator effect of affective-interpersonal psychopathic traits is con-

sistent with deficient fear processing as a core feature of psychopathy (Lykken, 1995; Patrick 

et al., 2009), but could also be explained by other affective-interpersonal mechanisms (e.g., 

reduced empathy, Stanley et al., 2013). The observed effects, however, could also be 

explained by an entirely different framework, which postulates that psychopathy is character-

ized by an impaired integration of contextual information due to an attention-related deficit 

(Baskin-Sommers & Newman, 2013; Newman & Lorenz, 2003). However, this framework 

does not offer explanations for differential effects of subcomponents of psychopathy. 

Together, while behavioral findings illustrate that affective-interpersonal psychopathic traits 

decrease the susceptibility to incidental fear cues in decision making, future research is 

needed to shed more light on the specific mechanisms that mediate this effect. One first 

endeavor in this regard was Study 3, which found that the moderation effect of TriPM 

meanness on emotion-induced changes in loss aversion was mediated by altered value 

processing in the amygdala, consistent with previous evidence of altered amygdala function-

ing in psychopathy (e.g., Gordon et al., 2004). 
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5.4. Methodological Limitations 
Both benefits and shortcomings lie in the experimental methods used in the empirical studies 

of this thesis, which I will discuss in this chapter. For instance, despite the use of well-

validated affective material (Koelsch et al., 2013; Pehrs et al., 2013), the strength of emotion-

al manipulation was moderate at best in Study 1 (and was not [Study 2] or only indirectly 

assessed via brain activity [Study 3], as discussed below). In Study 1, the musical stimuli 

successfully altered incidental happiness, although significant increases in happiness beyond 

the mildly positive default state (i.e., in the no-music condition) could not be achieved (as 

discussed above and also observed before; see, e.g., Gasper, 2004), and sadness was not 

significantly changed at all. Nevertheless, we could observe small to moderate emotion-

dependent changes in risk attitudes. Future research might benefit from more potent emotion 

induction techniques, e.g., well-validated video material (see, e.g., J. J. Gross & Levenson, 

1995; Rottenberg, Ray, & Gross, 2007). However, intense feelings, especially when being 

fully recognized, can result in attenuated emotional effects on decision making due to an 

enhanced ability to control emotional bias (Seo & Barrett, 2007). Hence, investigating the 

consequences of subtle, potentially cognitively less controllable, emotions is a highly relevant 

research subject. Their importance is further emphasized by the fact that many, if not most, 

emotional stimuli in everyday life are of small to moderate intensity (e.g., listening to 

background music or receiving a casual smile). 

Emotion measurements allow directly linking changes in emotions to changes in deci-

sion making. While some studies used emotion measurements to distinguish post-hoc 

between responders and non-responders to the emotion-elicitation procedure (e.g., Wacker, 

Heldmann, & Stemmler, 2003), we performed a regression analysis that predicted changes in 

probability weighting by each individual’s self-reported emotional state in Study 1. 

In Studies 2 and 3, this approach was not possible. As mentioned before, we deliber-

ately refrained from acquiring emotional ratings during the task in these studies in order not 

to interfere with affective priming. In Study 2, we accounted for individual differences by 

including a personality construct that has been related to emotional reactivity (i.e., fearless 

dominance) as a moderator variable, corroborating an affective interpretation of the observed 

effects. In Study 3, substantial loss of skin conductance data precluded an assessment of the 

success of emotional manipulation via peripheral-physiological measures. However, central-

physiological data were consistent with a successful emotional manipulation, as we found 

significantly increased amygdala activity after the presentation of fearful relative to neutral 

faces. An induced emotional state is plausible given the affective material used (Ebner et al., 
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2010), but other interpretations cannot be ruled out as the amygdala plays a central role in 

fear processing, but not exclusively so (see, e.g., Cunningham & Brosch, 2012). Optimally 

one would prefer a measure with high specificity (i.e., only related to a specific state or 

process such as a specific emotion, but not with others), but this desideratum is, at best, also 

only partially fulfilled by other emotion measures (e.g., peripheral-physiological data; for a 

review, see, e.g., Kreibig, 2010).  

Of course, specificity is not just a matter of measurement, but already of emotion elic-

itation, since manipulations might induce a blend of affective states rather than a single 

specific state (an observation already made early, see, e.g, Polivy, 1981). Constructive 

replications with different kinds of emotion elicitation and measurement procedures can 

therefore corroborate affective interpretations of the observed effects and might also offer 

additional insights into crucial emotional dimensions (e.g., appraisal dimensions). 

The decision-making tasks used also had some shortcomings. For instance, it is im-

possible to disentangle changes in the value function from changes in probability weighting 

from choice data on two-outcomes lotteries only (Wakker, 2010), unless one restricts both 

functions to specific parametric forms (in Study 1: power utility and Prelec two-parameter 

probability weighting). Specifically, reduced elevation of the probability weighting function 

is observationally equivalent to an increased curvature of the value function, i.e., both lead to 

increased risk aversion. Hence, our findings are consistent with changes in probability 

weighting, but we cannot rule out that the value function also captures the observed changes 

in risk taking. The use of a more complex option set that better discriminates prospect-

theoretic parameters as well as the use of process-tracing or neuroscientific methods could 

help to disentangle these possible effects. 

Regarding Studies 2 and 3, changes in risk aversion in the mixed-gambles tasks used 

were well reflected by changes in loss aversion (but not decision noise). However, future 

studies would benefit from including gain-only trials (see, e.g., De Martino et al., 2010; 

Sokol-Hessner et al., 2013) as well as loss-only trials to better disentangle unique effects on 

loss aversion from other risk-related effects (e.g., changes in the curvature of the utility 

function). Including only mixed-gamble trials also had one major advantage, i.e., keeping the 

experiments shorter. This helped to increase subjects’ attention to the task and to reduce 

potential habituation effects that are typically observed for emotional material (see, e.g., 

Breiter et al., 1996). Habituation effects would undermine behavioral modeling and statistical 

power to detect effects in general, because only a part of the decisions would then be affected 

by emotions. However, future studies might pilot/use different experiment lengths and 

81



 

compare habituation effects, thereby exploring the possibility to increase the length of the 

experiment by including additional informative trials (e.g., gain-only and loss-only trials). 

5.5. Future Directions 
Before closing, I would like to give a personal view on possible future directions in the field. 

I already outlined some specific open questions in the chapters above, but I would like to 

discuss possible general developments in two particular domains: behavioral modeling of 

decision making and neuroscientific analysis. 

Paradoxically, behavioral models like Prospect Theory have been developed to enrich 

economic models with insights from cognitive psychology, but should be better regarded as 

paramorphic or as-if models rather than process-oriented models (for a discussion, see, e.g., 

Berg & Gigerenzer, 2010). Instead of a true cognitive revolution, they resemble more the 

behaviorists’ paradigm by refraining from opening the “black box”, i.e., cognitive (and 

affective; Volz & Hertwig, 2016) processes that mediate the relationship between stimulus 

and response. Nevertheless, Prospect Theory can constrain possible mechanistic explana-

tions. For instance, the constant curvature parameter of the probability-weighting function 

across emotional conditions in Study 1 is inconsistent with decision modes that are character-

ized by probability neglect, and changes in the elevation parameter point to different 

mechanisms, as discussed above. However, without explicitly modeling underlying process-

es, our understanding of the observed behavioral effects will remain limited. 

As an alternative to traditional economic or behavioral economics models, process 

models have recently received increased attention (see, e.g., Johnson & Ratcliffe, 2014; 

Johnson et al., 2008). Process models attempt to describe and predict how people actually 

make decisions, e.g., by modeling steps that people take and what kind of information is 

processed in what way in each of these steps. In other words, the interest of process models 

does not just lie in the prediction of choice, but also in the qualitative nature of the decision 

algorithm. These specific process assumptions are testable with process-tracing data such as 

provided by eye tracking or computer-mouse tracking (for an overview, see, e.g., Schulte-

Mecklenbeck et al., 2011). In other words, process models require process data. These data 

allow for rejection of inadequate models and development of better models. 

This is exactly where neuroscience comes in, as neuroscientific data also provides in-

formation on underlying processes. Study 3 of the present thesis gives an illustrative exam-

ple. Going beyond previous behavioral models that are mute to the sources of loss aversion 

(such as Prospect Theory), we provide evidence that loss aversion and context-dependent 
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changes in its magnitude are based on the context-dependent involvement of distinct neural 

valuation processes. Future research will benefit from placing a greater emphasis on acquir-

ing process data to develop true process models of decision making. In the course of this, the 

development of such models will also benefit from a direct integration of emotional compo-

nents (see, e.g., Charpentier, De Neve, Li, Roiser, & Sharot, 2016), and such models will 

likely better explain choice behavior as well as underlying processes than traditional models 

that are devoid of emotion (Volz & Hertwig, 2016). 

6. Conclusion 
The present thesis provides causal evidence that incidental emotions have an influence on 

risky choice that can be attributed to prospect-theoretic components. Specifically, incidental 

happiness was associated with more optimistic probabilistic weighting in the gain domain, 

and incidental fear cues increased monetary loss aversion in mixed gambles. Although 

prospect-theoretic parameters give some indications on potential underlying processes, 

process data are required to develop true process models of decision making. Going beyond 

behavioral models that are mute to the sources of loss aversion, we found that emotion-

induced increases in loss aversion were mediated by a context-dependent shift in neural value 

processing. This illustrates that future research should place a greater emphasis on linking 

emotion, choice, and neurocognitive processes to arrive at a full mechanistic understanding 

of emotional effects on decision making. 
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We often make decisions with uncertain consequences. The outcomes of the choices
we make are usually not perfectly predictable but probabilistic, and the probabilities
can be known or unknown. Probability judgments, i.e., the assessment of unknown
probabilities, can be influenced by evoked emotional states. This suggests that also
the weighting of known probabilities in decision making under risk might be influenced
by incidental emotions, i.e., emotions unrelated to the judgments and decisions at
issue. Probability weighting describes the transformation of probabilities into subjective
decision weights for outcomes and is one of the central components of cumulative
prospect theory (CPT) that determine risk attitudes. We hypothesized that music-evoked
emotions would modulate risk attitudes in the gain domain and in particular probability
weighting. Our experiment featured a within-subject design consisting of four conditions
in separate sessions. In each condition, the 41 participants listened to a different kind
of music—happy, sad, or no music, or sequences of random tones—and performed
a repeated pairwise lottery choice task. We found that participants chose the riskier
lotteries significantly more often in the “happy” than in the “sad” and “random tones”
conditions. Via structural regressions based on CPT, we found that the observed changes
in participants’ choices can be attributed to changes in the elevation parameter of the
probability weighting function: in the “happy” condition, participants showed significantly
higher decision weights associated with the larger payoffs than in the “sad” and “random
tones” conditions. Moreover, elevation correlated positively with self-reported music-
evoked happiness. Thus, our experimental results provide evidence in favor of a causal
effect of incidental happiness on risk attitudes that can be explained by changes in
probability weighting.

Keywords: decision making, happiness, incidental emotions, music, probability weighting, prospect theory, risk,
risk aversion

INTRODUCTION
Making decisions under risk is an integral part of our lives: we
order meals that we have not tried yet, buy products that we
have never used before, and we decide how to invest money
for ourselves, for friends, or for customers. In both economics
and psychology, risk is often understood as a function of the
variability of outcomes. People’s attitudes toward this variabil-
ity differ substantially (see, e.g., Dohmen et al., 2011) and can
be characterized by their degree of risk aversion (or risk procliv-
ity, respectively). A risk-averse person prefers a sure outcome over
any gamble that has the same expected value; for a risk-loving per-
son, the opposite holds (Wakker, 2010, p. 52). For instance, a risk
averter prefers C5 for sure over the gamble that pays C10 with a
probability of 75% and −C10 with 25% probability.

In (cumulative) prospect theory (Kahneman and Tversky,
1979; Tversky and Kahneman, 1992), risk attitudes expressed

in people’s decisions are attributed to several constructs that
describe how the available options are subjectively evaluated. The
three constructs are (1) comparison of the objective outcomes
with a reference point, (2) transformation of the resulting gains
and losses into subjective values, and (3) transformation of the
objective probabilities associated with the possible outcomes into
subjective decision weights for those outcomes. The two subjec-
tive transformations are formalized by the value function and
the probability weighting function, respectively. Both functions
are thought to reflect the often observed psychophysical char-
acteristic of diminishing marginal sensitivity, i.e., less sensitivity
to changes in outcomes and probabilities, the farther they are
away from the respective reference points. This results in a convex
value function for losses and a concave value function for gains.
For gains and losses, the reference point can be, for instance,
the status quo (i.e., the current wealth level). For probability
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weighting, the extreme cases of impossibility (p = 0) and cer-
tainty (p = 1) are the two natural points of reference (Fox and
Poldrack, 2013). This results in an inverse S-shaped form of the
probability weighting function, reflecting the common empiri-
cal finding that small probabilities are overweighted and large
probabilities are underweighted.

Studies that used semiparametric (Abdellaoui et al., 2011) or
parametric (Fehr-Duda et al., 2010) specifications of the value
and the probability weighting function suggest that probability
weighting is more susceptible to situational influences than out-
come valuation. As a consequence, there is increasing interest in
the factors that determine the shape of the probability weighting
function—especially its two main characteristics, curvature and
elevation (see the discussion in Gonzalez and Wu, 1999).

One important factor that influences probability weighting
seems to be affect, as several theoretical accounts of the deter-
minants of probability weighting suggest. According to one
account, the commonly observed inverse S-shape of the prob-
ability weighting function results from anticipated elation or
disappointment regarding the future realization of an uncertain
payoff (Gul, 1991; Brandstätter et al., 2002; Walther, 2003). For
instance, one might anticipate disappointment from a failure to
achieve a highly probable gain. This in turn is thought to trans-
late into decision weights for high probabilities that are lower than
the actual probabilities.

In a similar vein, Rottenstreich and Hsee (2001) hypothesized
that the extent of probability weighting depends on the “affective
richness” of potential outcomes. Confirming their hypothesis, the
authors found that “affect-rich” outcomes—i.e., outcomes which
participants anticipate to elicit strong emotional reactions (such
as receiving an electric shock or a kiss)—were associated with
more pronounced probability weighting than less “affect-rich”
outcomes (such as receiving money). The authors speculated
that hope and fear generated by affect-rich outcomes give rise to
the shape of the probability weighting function. Although these
studies focused on the curvature of the probability weighting
function, it has been pointed out that also the elevation parameter
might capture an emotional influence (Rottenstreich and Hsee,
2001).

Importantly, not only emotions related to the decision out-
comes might be reflected in probability weighting. Even inci-
dental emotions, which are characterized by being unrelated to
the judgments and decisions at issue (Loewenstein and Lerner,
2003; Weber and Johnson, 2009), were found to have an influ-
ence on probability judgments, i.e., the assessment of unknown
probabilities. For instance, happy people made more optimistic
probabilistic judgments and sad people more pessimistic judg-
ments (Johnson and Tversky, 1983; Wright and Bower, 1992). It
is thus plausible that similar effects are observable in the subjec-
tive weighting of known probabilities in decision making under
risk. The elevation of the probability weighting function is thus
a promising target of affect, with greater elevation representing
more optimistic attitudes and reduced elevation more pessimistic
attitudes toward risky situations.

While there is a considerable body of evidence on the influence
of incidental emotions on decision making under risk, only a few
studies linked incidental emotions specifically to the constructs

postulated by cumulative prospect theory (CPT). For instance,
Isen et al. (1988) found that positive affect made participants
value losses more negatively, while it had no significant effect
on the valuation of gains. Thus, positive affect made participants
more loss-averse. The authors, however, restricted their design to
two-outcome lotteries with 50%/50% probabilities and did not
investigate the role of probability weighting. In a recent study,
Fehr-Duda et al. (2011) provided correlational evidence that they
interpreted as an effect of mood on the elevation of the probability
weighting function for both gains and losses in women, but not in
men. Women that regarded the current day to be more promising
than usual made decisions that are consistent with more opti-
mistic probability weighting. A similar link was also suggested in
another study that revealed a correlation between seasonal and
weather conditions and probability weighting, which the authors
also interpreted as mood effects (Kliger and Levy, 2008).

Studies without direct manipulation and measurement of
affective states leave open the question whether incidental emo-
tions are indeed the mediator of the effects mentioned above.
To answer this question, it is necessary to establish a causal
effect of incidental emotions on risk attitudes that is consistent
with probability weighting in particular. One way to prove a
causal effect is to experimentally manipulate incidental emotions,
record participants’ self-reported emotions, and investigate the
emotion-induced changes in probability weighting.

To this end, we employed a variant of the Random Lottery
Pairs procedure (Hey and Orme, 1994) and manipulated emo-
tions within-subject by playing different types of music to our
participants. They listened to happy and sad music as well as to
sequences of random tones or to no music at all.

To determine whether the emotion manipulation had an effect
on participants’ decision making, we compared the frequencies
with which they chose the riskier lotteries between conditions.
Furthermore, we estimated preference parameters via structural
regressions based on CPT and tested whether probability weight-
ing changed between conditions.

Based on the studies that established a link between inciden-
tal emotions and optimistic or pessimistic probability judgments
(Johnson and Tversky, 1983; Wright and Bower, 1992), we hypoth-
esized that probability weighting in decision making under risk
wouldbeaffectedinasimilarway. Specifically,wehypothesizedthat
participants in the “happy” condition exhibit increased probabilis-
tic optimism in the sense that they attach higher decision weights
to the larger outcomes. In contrast, listening to sad music should
lead to more pessimistic probability weighting, i.e., lower decision
weights associated with the larger outcomes. We expected this effect
to manifest itself also in a relationship between the self-reported
emotional state and the extent of probability weighting.

Because an increased elevation of the probability weighting
function implies a reduction in risk aversion (see Wakker, 2010,
chapter 5), it follows from these hypotheses that participants
should choose the riskier lottery more frequently after listening
to happy music than after listening to sad music.

Research has repeatedly demonstrated that the intensity of
evoked emotions gradually decreases over time (Isen et al., 1972;
Isen and Gorgoglione, 1983; Gard and Kring, 2007; Andrade
and Ariely, 2009). Thus, we hypothesized that music-evoked

Frontiers in Psychology | Decision Neuroscience January 2014 | Volume 4 | Article 981 | 2

98

http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience/archive


Schulreich et al. Incidental happiness modulates probability weighting

emotional effects on risk attitudes would be strongest at the
beginning and then diminish. This would corroborate an affective
interpretation of the effects on decision making.

MATERIALS AND METHODS
PARTICIPANTS
We recruited 46 participants through bulletin-board appeals at
Freie Universität Berlin and an e-mail mailing list to which
previous and prospective participants had subscribed. Four par-
ticipants had to be excluded from the analysis because they did
not participate in all sessions. One participant was dropped from
the analysis because she stated in the post-experimental ques-
tionnaire that she had chosen arbitrarily between the lotteries
presented. The remaining 41 participants (28 women; 13 men)
had a mean age of 27.37 years (SD = 7.832 years). All participants
gave written informed consent prior to the experiment.

PROCEDURE
Experimental design
In a within-subject design, participants were exposed to auditory
stimulation: (1) happy or (2) sad music or (3) sequences of ran-
dom tones, while (4) no music was played in the fourth condition.
Each of the four experimental conditions was tested in a sepa-
rate session. The order of the conditions was randomized, and
all sessions were one week apart. In three of the conditions, up
to four participants were present in the lab simultaneously. Each
participant sat in front of a computer equipped with headphones
and enclosed in cubicles to prevent eye contact with the other
participants during the experiment. All tasks were presented on
a computer screen (except the post-experimental questionnaires,
which were handed out on paper), and all data were recorded
using the software Presentation (Neurobehavioral Systems, Inc.).
Responses were made via a standard keyboard.

Theexperimenterhandedout instructionsandreadthemaloud.
Subsequently, participants answered a quiz on the instructions to
make sure that they had understood the lottery choice task. At the
beginning of the music conditions, participants shortly listened to
the musical pieces for familiarization. In the “no music” condition,
participants filled in the demographic questionnaires.

The main experiment started with the emotion evocation and
the emotional rating task (see below). In the “no music” condi-
tion, it started with the emotion rating task right away, while in
all other conditions, participants first listened to music for exactly
6 min via headphones. The subsequent block of pairwise lottery
choices lasted approximately 10 min, comprised 50 trials (plus five
initial learning trials), and was followed by the second emotion
rating task (see Figure 1). In each trial, participants were asked to
choose one of two lotteries within a time frame of 8 s. Participants
did not receive any feedback on earnings in-between trials. The
trials were separated by a variable interval (3–6 s), which served
as a short period of rest and as a means to minimize potential
anticipation effects and repetitive behavioral patterns. The entire
sequence was repeated—except for the familiarization phase and
the learning trials—so that each condition included two music
blocks, four emotion ratings tasks (two post-music, two post-
choice), and 100 lottery choices in total. The same set of 100
different lottery pairs (see Table A1 in the Appendix) was used
in each condition.

At the end of each session, participants filled in a questionnaire
concerningtheirchoicestrategiesandthoughtsontheexperiment’s
purpose. None of the participants mentioned any hypothesis
concerning an emotion-specific connection between the type of
music played and their level of risk aversion. After the final session,
participants learned their individual earnings and received them in
cash. These consisted of a randomly determined payoff according
to the gamble they had chosen in one randomly selected trial plus
the total attendance fee of C24 for all four sessions.

Musical stimuli
The musical stimuli were chosen to evoke (a) happiness, (b) sad-
ness, and (c) neither happiness nor sadness. The latter stimuli
we refer to as “random tones” (for the complete list of stim-
uli see Table A2). The happy pieces and random tone sequences
had been used in a recent study (Koelsch et al., 2013). Half of
the sad pieces were used by Pehrs et al. (2013), overlaid with an
acoustically identical electronic beat.

The happy pieces consisted of 12 instrumental excerpts of 30 s
duration each from various epochs and styles (classical music,
Irish jigs, jazz, reggae, South American, and Balkan music). Sad
pieces were classical and indie-pop pieces with a duration of 60 s
each, selected on the basis of features that have been shown to
evoke sad feelings, i.e., minor key, slow tempo, and low pitch vari-
ation (Juslin and Laukka, 2004; Lundqvist et al., 2009). The 12
random tone sequences featured acoustically changing stimuli of
30 s duration. These isochronous tones for which the pitch classes
were randomly selected from a pentatonic scale (see Koelsch
et al., 2013) were created with the help of the MIDI toolbox for
MATLAB (Eerola and Toiviainen, 2004).

The manipulation check revealed that the random tones were
not affectively neutral (see Results). Consequently, the “no music”
condition remains as the one condition in which the affective state
was not manipulated.

All stimuli were non-vocal pieces, edited with Praat (version
5.0.29, Boersma, 2002) to feature a 1.5-s fade-in and fade-out and
the same intensity (70 dB). The total duration of the sad music
pieces matched the total duration of the auditory stimulation in
the other conditions (i.e., 6 min).

Emotion rating
In the computerized, self-paced emotion rating task, participants
reported their current emotional state by indicating the degree
to which they agreed with three statements concerning happi-
ness (“I am happy”), sadness (“I am sad”), and calmness (“I
am calm”). The latter served as a reverse proxy for arousal. The
scale ranged from 1 (“I completely disagree”) to 9 (“I completely
agree”). These items correspond to those typically used to infer
basic emotions (e.g., in the Differential Emotions Scale, see Izard
et al., 1993). Basic emotions have proven to be more informative
than the concept of valence alone to study the effect of emotions
on risky choices (Lerner and Keltner, 2000, 2001).

To reduce potential experimenter demand effects (Orne, 1962)
and to obscure the objective of the emotion ratings from the
participants in the sense of “non-deceptive obfuscation” (Zizzo,
2010), seven additional ratings were acquired that were not
directly related to basic emotional states (e.g., “I slept well last
night”; for the complete list, see Table A3 in the Appendix).
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FIGURE 1 | The sequence of events forming one block in the experiment. Each condition consisted of two such blocks, separated by a short break.

Lottery choice task
For the lottery choice task, we used a variant of the Random
Lottery Pairs procedure (Hey and Orme, 1994). In each trial t,
participants were shown a lottery pair {At , Bt} out of a set of 100
lottery pairs (for the complete list, see Table A1 in the Appendix)
in pseudo-random order. The pseudo-random order differed per
session/condition and per subject.

Each lottery L consisted of two possible, strictly positive pay-
offs (xL,1, xL,2), denoted in euro, and the associated probabilities
(pL,1, pL,2) = (pL,1, 1 − pL,1). We limited our study to the gain
domain for the following reasons: first, neuroimaging and lesion
studies suggest that losses and gains are processed differently in
the human brain (Tom et al., 2007; De Martino et al., 2010).
Second, to increase the power for the detection of an effect, a
sufficient number of decision trials is needed. Third, mixed gam-
bles would have required the estimation of additional parameters,
making even more observations necessary. We therefore chose to
dedicate all our experimental trials to only one domain.

The payoffs and probabilities were visualized on screen by a pie
chart (see Figure 1), which is a common graphical representation
of lotteries in this type of experiments (Harrison and Rutström,

2008). Apart from some “catch trials,” we ensured that within
each pair, no lottery first-order stochastically dominated the other
lottery.

The lotteries differed from each other in their riskiness. A
lottery can be considered riskier than another lottery if it can
be expressed as a mean-preserving spread (MPS) of the other
lottery (Rothschild and Stiglitz, 1970). Since risk averters dis-
like the wider spread, making them choose the riskier lottery
requires adding some compensation for the wider spread—a “risk
premium”—to the riskier lottery. We denote this risk premium
by m. Within a lottery pair {At , Bt}, we thus call the lottery
At the riskier lottery if it has a wider spread than Bt , such that
At = MPS(Bt) + mt (mt being a sure payoff)1.

1We obtain qualitatively identical results if we consider variance as the risk
measure—i.e., if we take the presence of a mean–variance trade-off as the cri-
terion for one lottery (the one with the higher variance, but also the higher
average payoff) to be riskier than the other. A wider spread implies increased
variance, but not vice versa, so that the two measures coincide in many but
not all of our trials.
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The set of lottery pairs was designed to allow estimating pref-
erence parameters with relatively high precision in the range that
has been found in previous studies (see, e.g., the examples given in
Harrison and Rutström, 2008; Table 5 in Stott, 2006). That is, for
degrees of risk aversion usually observed in lab experiments, we
expected participants to sometimes choose the riskier and some-
times the less risky lottery. In addition, the payoffs of our lotteries
were associated with probabilities spanning 10 to 90% to cover
a broad enough range to reliably estimate the parameters of the
probability weighting function.

Positioning of the lotteries on screen was counterbalanced
within-subject: in some trials, the riskier lottery was presented
in the upper half of the screen, and sometimes in the lower one.
Moreover, we counterbalanced the position of the larger payoff
on screen between-subjects: for half of the participants, the larger
payoff was illustrated by the left side, and for the other half, by the
right side of the pie chart.

STATISTICAL ANALYSES
Emotion ratings
To check whether the experimental manipulation had the desired
emotional effects, we calculated repeated-measures ANOVAs
using the four conditions as the within-subject factor. As depen-
dent variables in these ANOVAs we used the ratings in three
affective dimensions (happiness, sadness, and calmness). For each
dimension, we analyzed the ratings obtained immediately after
the musical stimulation (“post-music ratings”). In these analyses,
we used the average of the two post-music ratings per condition
and per participant. We also calculated an ANOVA for the aver-
age post-choice ratings to investigate if emotional effects persisted
over time.

Lottery choices
Relative frequency with which the riskier lottery was chosen. We
analyzed how often the riskier of the lotteries included in a pair
was chosen in those trials in which one lottery is riskier than the
other according to the measure explained above. This is the most
basic measure of the influence of music-evoked emotions on risk
attitudes.

These choice frequencies were compared across the four con-
ditions. To establish whether there are significant differences
between the four conditions, we estimated linear probability
models (LPMs) 2. That is, we regressed choice of the riskier lot-
tery on condition dummies. Let us denote participant i’s choice
in trial t by ri,t , and set ri,t = 1 if the riskier lottery was cho-
sen by i in trial t, and ri,t = 0 otherwise. The regression equation
then is

ri,t = βhap,i + δβ,nomDnom,i,t + δβ,tonDton,i,t

+ δβ,sadDsad,i,t + εi,t .

βhap is the relative frequency at which the riskier lottery
was chosen in the “happy” condition (which here serves as

2Using a probit or logit model instead of the linear probability model yields
qualitatively identical results. However, the estimates obtained via an LPM are
easier to interpret.

the reference condition). δβ,nom captures the difference in
the choice of the riskier lottery in the “no music” con-
dition vis-à-vis the “happy” condition, while δβ,ton does
the same for the “random tone sequences” condition, and
δβ,sad for the “sad” condition. D is the respective condi-
tion dummy regressor, and εi,t is an error term with mean
zero. Our regression allowed for heterogeneity in risk aver-
sion in the reference category between subjects i via indi-
vidual random effects in the regression’s constant term, here
βhap,i.

A more versatile regression also included regressors di,t mea-
suring how many trials had passed since the last musical stimula-
tion. This was done to investigate whether the effect of the evoked
emotions on risk attitudes diminished over time. We denote the
associated coefficients by τβ,cond:

ri,t = βhap,i + τβ,hapdi,tDhap,i,t +
(
δβ,nom + τβ,nomdi,t

)
Dnom,i,t

+
(
δβ,ton + τβ,tondi,t

)
Dton,i,t

+
(
δβ,sad + τβ,saddi,t

)
Dsad,i,t + εi,t .

To simplify comparison of the more extensive model with the
reduced model, the regressor di,t was centered.

Participants failed to respond in only 72 out of 41 × 4 × 100 =
16,400 trials (0.439%), such that we had to omit these trials in
the analysis. In the LPMs, the number of observations is lower,
since not all trials featured a “risky–less risky” trade-off as defined
above via mean-preserving spreads; 70 out of the 100 lottery pairs
we used involved a trade-off of this kind (while others involved,
e.g., mean–variance trade-offs).

We compared several models, which differed in the number
of random effects—i.e., individual random effects were included
either only in the baseline risk aversion or also in the between-
condition changes and/or in the time trends. The two models
described in detail above yielded the lowest Bayesian Information
Criteria (BICs).

Structural regressions. To find out whether changes in partici-
pants’ choices between conditions can indeed be attributed to
changes in probability weighting, we estimated structural regres-
sion models (see, e.g., Harrison and Rutström, 2008, section 2.2;
Wilcox, 2011). These are based on cumulative prospect theory
(CPT). In CPT, monetary payoffs and the probability of receiv-
ing these payoffs are transformed into subjective values via a
value (utility) function u and a probability weighting function w,
respectively.

If participants assign a subjective value V to a lottery in line
with CPT, probability weighting is applied to the probability of
the larger payoff (see Tversky and Kahneman, 1992). That is, if
we denote the larger payoff in lottery L = (xL,1, pL,1; xL,2, pL,2)
by xL,1, the subjective value V is given by

V(L; θ) ≡ w
(
pL,1; θw

)
u

(
xL,1; θu

)
+

[
1 − w

(
pL,1; θw

)]
u

(
xL,2; θu

)
.

θ is a vector combining the parameter vectors θw and θu that
determine the shape of the probability weighting function and the
shape of the utility function, respectively. It is these parameters
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and their potential modulation by the emotional state that we are
interested in.

Regarding the transformation of the payoffs, we assume—in
line with many previous studies (e.g., Tversky and Kahneman,
1992)—a power utility function3, i.e.,

u (x; θu) = u(x; ρ) = x1 − ρ,

such that a larger ρ goes along with increased curvature of the
utility function—i.e., all other things equal, increased risk aver-
sion 4. For the probability-weighting function, we use a popular
two-parameter version (Prelec, 1998),

w
(
p; θw

)
= w

(
p; α, β

)
= exp{−β(− log p)α}.

Here, w(p; α, β) is the decision weight, p is the objective prob-
ability, and α and β are parameters. Two-parameter versions of
probability weighting have found broad empirical support due
to their ability to explain individual differences or differences
between choice domains (Gonzalez and Wu, 1999; Abdellaoui,
2000; Bleichrodt and Pinto, 2000; Abdellaoui et al., 2010; Capra
et al., 2012). Importantly, the two parameters are moreover
thought to reflect different psychological phenomena (see, e.g.,
Gonzalez and Wu, 1999). The parameter α primarily influ-
ences the slope of the probability weighting function: for β = 1,
α < 1 results in overweighting of small and underweighting of
large probabilities, with the consequence of relative insensitivity
[∂w(p; α, 1)/∂p < 1] in the intermediate range. The parameter
β primarily reflects the elevation of the weighting function and
can be interpreted as reflecting the “attractiveness” of gambling:
for α = 1, β > 1 results in an underweighting of all probabili-
ties [w(p; 1, β) < p]. That is, in CPT, a less elevated weighting
function assigns a lower decision weight to the higher outcome—
see the formula for V (L; ρ, α, β). This has also been interpreted
as a form of “pessimism” (in Fehr-Duda et al., 2011). Through
the reduced decision weight on the higher lottery outcome,
reduced elevation of the probability weighting function translates
to greater risk aversion.

Based on this, for each lottery pair {A, B}, the difference in
the subjective values, "V(A, B; θ) ≡ V(A; θ) − V(B; θ), is deter-
mined. A decision maker whose preferences can be represented
by the subjective value function V chooses A over B whenever the
subjective value of A is larger than that of B, i.e., "V(A, B; θ) > 0,
and vice versa. Of course, participants do not make choices that
are perfectly consistent with the assumed model. The most fre-
quently used binary-choice regressions—the logit and the probit
specification—account for this by mapping the difference in sub-
jective valuation, "V(A, B; θ), to choice probabilities via a strictly

3We tried different specifications of the utility function. All yielded compara-
ble fits, but power utility performed best (in line with the findings by Stott,
2006).
4To be precise, we used power utility of the form u(x; ρ) = (x1 − ρ − 1)/

(1 − ρ). This is completely equivalent to the often used u(x; r) = xr , with
r = 1 − ρ. The main advantage of using 1 − ρ as the exponent is the intuitive
meaning of ρ: an increase in ρ indicates an increase in risk aversion—whereas
for xr , a decrease in r indicates an increase in risk aversion.

increasing, symmetric (“sigmoid”) link function F. Formally,

Pr[A|{A, B}; θ, σ] = F["V(A, B; θ)/σ] and

Pr[B|{A, B}; θ, σ] = 1 − F["V(A, B; θ)/σ].

We use the logit specification, such that the link function F is the
logistic distribution function, F["V] = 1/[1 + e−"V ]5.

The parameter σ governs the dispersion (flatness) of the link
function. It is often called the Fechner noise parameter (see
Harrison and Rutström, 2008). The larger σ (i.e., the more noise),
the smaller the fraction gets, with the effect that σ → ∞ is equiv-
alent to random choice (i.e., F → ½). Conversely, σ → 0 means
that no noise is present in participants’ choices from the perspec-
tive of the model, and the choice probabilities converge to a step
function.

Based on both theoretical and econometric considerations, it
has been suggested to modify this common approach (Wakker,
2010, p. 85; Wilcox, 2011), because it suffers from the fact that
the utility assigned to a certain payoff in expected utility theory
or CPT is only unique up to an affine transformation (Wilcox,
2011, p. 90). However, the common approach effectively takes
the ordinal quantity subjective utility to be a cardinal quantity.
Wilcox (2011) shows that this has the consequence that being
“more risk-averse” in the theoretical sense (Pratt, 1964) and being
“stochastically more risk-averse” do not coincide: it is easy to find
pairs, e.g., of a lottery B and a sure payoff A = E[B] for which
the difference in subjective valuation, "V , approaches zero if
one increases the degree of risk aversion (ρ ↑). Consequently, the
predicted probability of choosing either alternative approaches
½—which is non-sensical, since greater risk aversion (ρ ↑) should
imply a predicted probability of choosing the sure payoff that
increases and approaches one.

A remedy to this problem is to replace the difference in subjec-
tive valuation, "V , by the difference between the certainty equiv-
alents of these valuations (Wakker, 2010, p. 85; Von Gaudecker
et al., 2011, p. 676)—i.e., sure amounts of money that carry the
same subjective value as the lotteries. Under power utility, the
certainty equivalent of a subjective value V is given by

CE(L; θ) ≡ u−1 [V(L; θ); ρ] .

=
{

[(1 − ρ)V(L; θ) + 1]1/(1 − ρ) if ρ ̸= 1

exp[V(L; θ)] if ρ = 1.

We can then define, for each lottery pair {A, B}, the difference in
the certainty equivalents, "CE(A, B; θ) = CE(A, θ) − CE(B, θ).
With this, the specification of the CPT-based latent-variable
model becomes:

Pr[A|{A, B}; θ, σ] = F["CE(A, B; θ)/σ].

Let Ct denote the lottery that was actually chosen in trial t, and
let 1At be the indicator function such that 1At (Ct) = 1 if At was

5Using a probit instead of a logit specification leads to negligible changes. Like
Stott (2006), we found the logit model to provide the best fit.
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chosen and 0 if Bt was chosen in t. The few trials in which par-
ticipants failed to respond (72 out of 16,400) are omitted from
the analysis. Let Dcond,t be a dummy regressor that equals 1
only in trials t belonging to the respective condition cond and
0 otherwise; for instance, when choosing the “happy” condition
as the reference condition, the dummy regressors would cover
cond ∈{“no music,” “random tones,” “sad music”}. T is the total
number of trials in the experiment.

Non-linear maximum likelihood estimation maximizes the
log-likelihood

ℓ(θ, !θ, σ, δσ) ≡
∑T

t = 1

{
1At (Ct) log F

[
"CE(At ,Bt ;θ + ∑

cond δθ,condDcond,t)
σ + ∑

cond δσ,condDcond,t

]
+

{1 − 1At (Ct)} log
{

1 − F
[

"CE(At ,Bt ;θ + ∑
cond δθ,condDcond,t)

σ + ∑
cond δσ,condDcond,t

]}}
.

That is, (θ̂, !̂θ, σ̂, δ̂σ) ≡ arg maxℓ(θ,!θ, σ, δσ). θ and σ are the
preference and noise parameters that describe behavior in the
reference condition. The matrix !θ and the vector δσ capture
the changes in θ and the changes in the Fechner noise parame-
ter σ, respectively, between the reference condition and the three
remaining conditions.

We compared a full model that permitted condition-wise
changes in both the value function parameter (ρ) and the prob-
ability weighting function parameters (α, β) with a more par-
simonious model that only allowed for changes in probability
weighting. To account for between-subject heterogeneity in the
valuation of outcomes and in probability weighting, these regres-
sions allowed for individual random effects in ρ, α, and β.
Allowing for changes in the curvature of the value function did
not significantly improve the model’s fit to the data, as assessed
by a likelihood-ratio test. Therefore, we report the parameter
estimates of the more parsimonious model in detail. F-statistics
were calculated, and individual coefficients were tested for signif-
icance.

Complementary structural regressions. We investigated the link
between incidental emotions and probability weighting in a com-
plementary way by using participants’ self-reported happiness
ratings as explanatory variables. Specifically, we calculated for
each participant the average of the four happiness ratings in
the “no music” condition and used this individual average as a
between-subject regressor. The average score of the “no music”
condition represents baseline happiness, as there was no experi-
mental manipulation of affect in this condition. We then calcu-
lated, for each participant, the deviation of the condition-specific
happiness ratings (i.e., one value per condition, calculated as
the average of the four ratings obtained per condition) from
his/her individual baseline happiness; this deviation served as a
within-subject regressor.

In other words, this regression allowed us to investigate (a)
whether participants who are happier in general exhibit more/less
pronounced probability weighting, and (b) whether the music-
evokedwithin-subjectvariationinreportedhappinessalsopredicts
the extent of probability weighting for the respective trials. Both the

curvature and the elevation of the probability weighting function
were modeled as depending on the condition-specific happiness
ratings, whereas the curvature of the value function was assumed
to be invariant across conditions. Our hypothesis was that both
the between-subject and the within-subject effect would point in
the same direction: the greater self-reported happiness, the lower
the degree of probabilistic pessimism. The same procedure was
used for the individual sadness and calmness ratings.

RESULTS
MUSIC-EVOKED INCIDENTAL EMOTIONS
To test whether participants’ emotional states were altered by
our experimental manipulation, we compared the self-reported
emotions between the conditions. As expected, participants’ self-
reported happiness was affected by the music that they had
listened to (see Figure 2). Immediately after musical stimulation
(“post-music”), participants’ self-reported happiness varied sig-
nificantly between conditions [F(3, 120) = 2.745, p = 0.046]. This
effect vanished until the second emotion rating at the end of
a block, approximately 10 min later [“post-choice”; F(3, 120) =
0.816, p = 0.487]. This is consistent with a diminishing intensity
of evoked incidental emotions over time.

As expected, pairwise comparisons revealed that immediately
after the musical stimulation, participants reported to be hap-
pier when they had listened to happy music than to sad music
[t(40) = 2.219, p = 0.032]. This also holds for the comparison
between happy music and random tone sequences [t(40) = 2.877,
p = 0.006]. Reported happiness for random tone sequences was
not significantly different from reported happiness for sad music
[t(40) = −0.047, p = 0.962]. Taken together, this indicates that
the “random tone sequences” condition was affectively more

FIGURE 2 | Subjective happiness ratings across the four conditions.
Darker bars illustrate the values immediately after musical stimulation
(“post-music”); brighter bars illustrate the values after the lottery choice
blocks (“post-choice”). Error bars represent 95% confidence intervals. The
scale ranged from 1 (not happy at all) to 9 (very happy). An asterisk
indicates significant difference at the 5% level.
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similar to the “sad” condition rather than being affectively neu-
tral. No other differences were significant (all p > 0.149).

Mirroring the lowest happiness ratings, sadness ratings were
highest in the “sad” condition. The within-subject effect for con-
dition was only marginally significant, however, for the ratings
taken directly after the musical stimulation [F(3, 120) = 2.190,
p = 0.093]. This trend toward significance might be due to a
difference between the “sad” and “no music” condition [t(40) =
2.41, p = 0.021], indicating that sad music was associated with
greater sadness than no experimental manipulation (no music).
The remaining comparisons were, however, not significant (all
p > 0.152). Differences in the post-choice ratings were also not
significant [F(3, 120) = 1.759, p = 0.159].

Calmness ratings, which we consider an inverse indicator
of arousal, did not show any significant post-music differ-
ences [F(3, 120) = 1.435, p = 0.236] or post-choice differences
[F(3, 120) = 1.251, p = 0.294].

In summary, ratings reveal that music differentially altered
the emotional state of happiness and that this effect dimin-
ished over time. Happy music was associated with greater hap-
piness, whereas sad music and random tone sequences were
associated with lower happiness compared to the “happy”
condition.

LOTTERY CHOICES
Choice of the riskier lottery
Participants chose the riskier lottery most often in the “happy”
condition and least often in the “sad” condition. The relative fre-
quencies of the riskier lottery being chosen in the four conditions
are visualized in Figure 3.

FIGURE 3 | Comparison of the frequencies with which the riskier
lottery was chosen across the four conditions in the first 25 trials of a
block following musical stimulation (1st half) and in the remaining 25
trials of a block (2nd half). (Please note that this chart is shown only for
illustrative purposes and is not used for statistical inference, because the
statistical analysis needs to account for both between-subject and
within-subject variation; see the description of LPM 1 and LPM 2 in the
“Materials and methods” section.)

Linear probability models (LPMs) were used to test whether
these differences are statistically significant. In contrast to LPM
1, LPM 2 not only allows for analyzing the average effect of the
conditions on choices, but it also permits analysis of the initial
effects—i.e., the estimated frequency at which participants chose
the riskier lottery immediately following musical stimulation—
and time trends.

F-tests for overall condition effects were significant for
both models [LPM 1: F(3, 11444) = 4.7725, p = 0.0025; LPM 2:
F(3, 11440) = 4.8329, p = 0.0023], indicating differences in risk
attitudes between the conditions. The results are presented in
Table 1. As hypothesized, the “happy” and the “sad” condition
were the two extreme conditions, with the riskier lottery being
chosen most often in the “happy” condition.

These two conditions differed from each other significantly
(p = 0.0013) in LPM 1. The “happy” condition also differed
significantly from “random tones” (p = 0.0053). In addition,
the “sad” (p = 0.0192) and the “random tones” condition (p =
0.0464) were associated with higher risk aversion than “no music.”

These results carry over to LPM 2, except that for the differ-
ence between “random tones” and “no music” there was only a
trend toward significance (p = 0.0509). In LPM 2, the estimated
initial effects—i.e., choice of the riskier lottery immediately after
having listened to the music—are even more pronounced than
the average effects in both LPMs.

The estimated time trends in LPM 2 show that participants
became more risk-averse over time when they started out with
relatively low risk aversion (i.e., in the “happy” and “no music”

Table 1 | Random-effects linear probability models for the choice of
the riskier lottery across the four conditions.

Condition LPM 1 LPM 2

Average Average Initial Time
frequency frequency frequency trend

(%) (%) (%) (%)

Happy music 47.40tones,sad 47.48tones,sad 50.50tones,sad −0.120,tones,sad

No music 46.48tones,sad 46.43sad 49.11tones,sad −0.11sad

Random tones 44.20happy,no 44.20happy 43.12happy,no +0.04happy

Sad music 43.72happy,no 43.75happy,no 40.27happy,no +0.140,happy,no

LPM 1 included only dummy regressors to detect differences between the con-
ditions. In addition to that, LPM 2 also modeled the temporal distance from
the last musical stimulation (as the number of trials completed since the last
musical stimulation). The “time trends” column thus indicates by how much (in
percentage points) the relative frequency at which the riskier lottery was chosen
changed on average with each additional completed trial. t-tests were used to
assess whether the parameter estimates are different from 0.
Significance at p < 0.05 indicated via superscripts:
happy significantly different from the “happy music” condition; nosignificantly
different from the “no music” condition; tonessignificantly different from the
“random tone sequences” condition; sad significantly different from the “sad
music” condition; 0significantly different from zero (for the time trends).
To account for individual differences in participants’ risk taking, individual random
effects were included for the respective reference condition.
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conditions), and they became less risk-averse over time when
starting out with relatively high risk aversion (i.e., in the “random
tone sequences” and “sad music” conditions). The time trends are
significantly different from zero for the two most extreme con-
ditions, i.e., the “happy” (p = 0.0256) and the “sad” condition
(p = 0.0130), and there was a trend toward significance for no
music (p = 0.0509). At the end of each block, there were no sig-
nificant differences in the choice frequencies between conditions
anymore (all pairwise p > 0.21). This is what one would expect
for a diminishing emotional influence over time. An F-test rejects
the hypothesis that time had no influence on choices [F(4, 11440) =
3.8951, p = 0.0037]. The estimates for several conditions differed
significantly from each other (see Table 1).

In summary, analysis of the relative frequency with which par-
ticipants chose the riskier lottery provides evidence in favor of an
influence of music-evoked incidental emotions on risk attitudes.

Structural regressions
To test our hypothesis that the influence of incidental emotions
on risk attitudes can be explained through changes in probabil-
ity weighting, we estimated preference parameters via structural
regression models. First, we estimated a full model that simulta-
neously allowed for between-condition changes in the curvature
of the value function (ρ) and in the probability weighting param-
eters (α, β). The full model revealed an overall (jointly) significant
effect of music-evoked emotions on the estimated preference
parameters [F(9, 16304) = 3.1268, p = 0.0009].

Allowing for between-condition changes in the value function
parameter (ρ) did, however, not significantly improve the model
fit compared to a reduced model that only allowed for changes
in the probability weighting parameters (log-likelihood ratio =
1.0159, p = 0.7974). This indicates that—as to be expected based
on theoretical considerations—changes in the curvature of the
value function do not explain additional variation in participants’
decisions beyond what is explained by changes in probability
weighting. As a consequence, we focused on the more parsimo-
nious model6.

According to this reduced model, there was a significant
effect of music-evoked emotions on the estimated preference
parameters [F(6, 16307) = 4.5233, p = 0.0001]. Changes in the
elevation parameter β were significant between the “happy”
and the “sad” and the “happy” and the “random tones” con-
dition, respectively (see Table 2), as well as between “sad” and
“no music” (−0.0614; p = 0.001) and “random tones” to “no
music” (−0.417, p = 0.0243)7. No between-condition changes in
the sensitivity parameter α reached significance (all p-values >

0.49). That is, listening to happy music was associated with a
significant increase in the elevation of the probability weight-
ing function—i.e., higher (more optimistic) decision weights of
the larger outcomes—compared to listening to random tone
sequences and to sad music. Listening to sad music and random

6We did not include time trends in this model, because this would have dou-
bled the already large number of probability-weighting–related parameters to
be estimated from 8 to 16.
7The between-condition changes in the elevation parameter β remain signifi-
cant also when not allowing α to vary between the conditions.

Table 2 | Structural regression model: estimates of preference
parameters—sensitivity and elevation of the probability weighting
function in the “happy music” condition as well as changes of the
parameters in the remaining conditions.

Condition Coefficient p-value

ρ: CURVATURE OF VALUE FUNCTION
Average over all conditions 0.2467 0.006
α: SENSITIVITY OF PROBABILITY WEIGHTING FUNCTION
Happy music (reference condition) 0.5476 <0.001 (H0: α = 1)
" No music +0.0035 0.864
" Random tones −0.0105 0.603
" Sad music +0.0017 0.934
β: ELEVATION OF PROBABILITY WEIGHTING FUNCTION
Happy music (reference condition) 1.3003 0.002 (H0: β = 1)
" No music +0.0154 0.392
" Random tones +0.0576 0.002
" Sad music +0.0769 <0.001
σ: FECHNER NOISE
Average over all conditions 0.6945 <0.001

Wald tests were used to assess whether the parameter estimates are different
from 0. While the benchmark for the curvature of the value function is 0 (ρ = 0 in
the case of a linear value function), it is 1 for the other two parameters (α = 1 and
β = 1 in the absence of probability weighting). Thus, except for α and β, each
statistical test reported here was calculated under the null hypothesis (H0) that
the coefficient equals 0. A decrease in α indicates a decrease in the sensitivity
to variation in probability; an increase in β indicates a decrease in the elevation
of the probability weighting function. Individual random effects were included
in α, β, ρ, and σ , but not in the between-condition changes. A logit regression
model was used. Please note that our results can be compared to studies that
used u(x; r) = xr by calculating r = 1 − ρ.

tones was also associated with lower (more pessimistic) decision
weights than not listening to any music. The respective probabil-
ity weighting functions are illustrated in Figure 4. A regression
in which we interacted the between-condition regressors with a
gender dummy revealed no significant difference in the effect of
emotions on the probability weighting of men and women.

To assess the magnitude of the observed effects, it is useful to
translate the changes in preference parameters into changes in
monetary units. Based on the estimated preference parameters—
including the individual random effects—and the estimated
between-condition changes in these parameters, it is possible
to calculate the (subjective) certainty equivalents of all the lot-
teries presented to the participants across trials. One can then
calculate the risk premium for each lottery, which is defined as
the difference between the expected value of a lottery and its
certainty equivalent. When averaging across lotteries and across
participants, we find that the mean risk premium implied by the
estimated parameters is C1.34 (14.05% of the mean expected
value) in the “sad” condition, while it is C1.24 (12.93%) in the
“happy” condition. This means that the average risk premium is
8.17% (1.12 percentage points) higher after listening to the sad
music compared to the happy music used in our experiment.

We further investigated the link between incidental emotions
and risk attitudes in a complementary fashion by estimating
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FIGURE 4 | Probability weighting functions in the four conditions based on the parameter estimates for the structural regression model reported
in Table 2.

participants’ probability weighting parameters as functions
of their individual happiness ratings (for the results, see
Table 3). Put differently, the regression included two explanatory
variables—between-subject differences in average happiness in
the “no music” condition and within-subject deviation from this
average resulting from the musical stimulation.

We found a significant relationship between the within-subject
regressor—i.e., the music-evoked variation in happiness—and
the elevation of the probability weighting function (p = 0.003).
Specifically, the happier participants were, the more elevated their
probability weighting function was, resulting in decreased risk
aversion with increasing happiness.

As expected, this pattern was also found for the between-
subject variation observed in the “no music” condition (although
here the associated coefficient did not reach significance, p =
0.143): participants who were happier in the “no music” condi-
tion tended to be less risk-averse, indicated by a more elevated
probability weighting function.

While the latter—between-subject—finding is correlational,
the former—within-subject—finding again supports the inter-
pretation that evoked emotions causally influence risk attitudes.

As far as calmness is concerned, we only found a trend toward
significance for participants who were overall less calm/more
aroused to have a more elevated probability weighting function
(p = 0.068). Importantly, we did not observe an analogous effect
for the music-evoked (within-subject) changes in arousal (p =
0.276). We also did not find any significant effect of self-reported
sadness on the elevation parameter of the probability weighting
function—neither for the between-subject regressor (p = 0.666)

nor for the within-subject regressor (p = 0.185). Hence, we found
happiness to be the only emotional experience that was related to
the elevation parameter of the probability weighting function at
the individual level.

In summary, the results of our structural regressions con-
firmed the observed differences in how often the riskier lottery
was chosen in the “happy” condition on the one hand and the
“sad” and “random tone sequences” conditions on the other
hand. Importantly, however, the structural regressions go beyond
that by showing that the changes in participants’ choices can be
explained through changes in how they convert objective prob-
abilities into subjective decision weights—in particular through
changes in the elevation parameter of the assumed probability
weighting function. The hypothesized affective nature of this link
is corroborated by our finding that both self-reported happiness
in the “no music” condition and music-evoked changes in hap-
piness were positively related to the elevation of the probability
weighting function and thus negatively related to risk aversion.

DISCUSSION
Cumulative prospect theory (CPT; Tversky and Kahneman, 1992)
is a theory of decision making under risk that is very prominent in
both psychology and economics. In this framework, risk attitudes
are understood as arising from an interplay between subjective
valuation of (monetary) outcomes and probability weighting.
Previous studies have demonstrated an affect-congruent influ-
ence of incidental emotions on the assessment of unknown prob-
abilities of potential events, for example, more optimistic judg-
ments in happy participants and more pessimistic probabilistic
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Table 3 | Structural regression model: estimates of preference parameters—sensitivity and elevation of the probability weighting function as
functions of the between-subject and within-subject variation in self-reported happiness.

Self-reported happiness Coefficient p-value

ρ: CURVATURE OF VALUE FUNCTION
Average over all conditions and participants 0.3418 <0.001
α: SENSITIVITY OF PROBABILITY WEIGHTING FUNCTION
Average in “no music” condition over all participants 0.5900 <0.001 (H0: α = 1)
Deviation of participants’ average in “no music” condition from cross-subject mean (between-subject regressor) +0.0093 0.683
Deviation of participants’ block-specific rating from “no music” condition (within-subject regressor) −0.0221 0.180
β: ELEVATION OF PROBABILITY WEIGHTING FUNCTION
Average in “no music” condition over all participants 1.1393 0.198 (H0: β = 1)
Deviation of participants’ average in “no music” condition from cross-subject mean (between-subject regressor) −0.0437 0.143
Deviation of participants’ block-specific rating from “no music” condition (within-subject regressor) −0.0853 0.003
σ: FECHNER NOISE
Average over all conditions and participants 1.0471 <0.001

Wald tests were used to assess whether the parameter estimates are different from 0. While the benchmark for the curvature of the value function is 0 (ρ = 0 in
the case of a linear value function), it is 1 for the other two parameters (α = 1 and β = 1 in the absence of probability weighting). Thus, except for α and β, each
statistical test reported here was calculated under the null hypothesis (H0) that the coefficient equals 0. A decrease in α indicates a decrease in the sensitivity to
variation in probability; an increase in β indicates a decrease in the elevation of the probability weighting function. The standard errors—and thus the associated
p-values—were adjusted for 41 clusters on the subject level. A logit regression model was used. Please note that our results can be compared to studies that used
u(x; r) = xr by calculating r = 1 − ρ.

judgments in sad participants (Johnson and Tversky, 1983;
Wright and Bower, 1992). We hypothesized that such an effect
would also exist on probability weighting in decision making
under risk.

We found experimental evidence in favor of a causal effect
of incidental emotions on risk attitudes that is consistent with
changes in probability weighting. To measure risk attitudes and
probability weighting, we employed a variant of the Random
Lottery Pairs procedure (Hey and Orme, 1994) and varied both
outcomes and probabilities of real monetary gambles in the
gain domain. Participants’ incidental emotions were manipulated
within-subject by listening to happy and sad music as well as
random tone sequences or no music at all, and evaluated by
self-reported emotional ratings.

Our two-step statistical analysis yielded that participants’ deci-
sions differed between conditions and that these differences can
be explained by changes in probability weighting. First, we com-
pared the choice frequencies between conditions. Risk aversion
decreased from the “happy” to the “random tones” and “sad”
conditions. Second, we allowed for emotion-dependent changes
in the probability weighting function in a structural regression
rooted in CPT. We found a significantly higher elevation in
the “happy” than in the “sad” and the “random tones” condi-
tion. That is, participants made decisions as if the probabilities
of the larger payoffs received a higher decision weight in the
“happy” condition and lower weights in the other two. This could
be regarded as a form of optimism or pessimism, respectively.
Listening to sad music and random tones was also associated with
more pessimism than not listening to any music. The sensitivity
parameter was not affected. Thus, affectively mediated changes
in risky choices do not seem to result from altered sensitivity to
probability changes but from a change in decision weights across
probabilities.

Several arguments support the claim that these effects can
be attributed to incidental emotions. First, the effects corre-
spond closely to differences in self-reported happiness between
these conditions. Happy music was associated with greater happi-
ness, whereas sad music and random tones were associated with
decreased happiness. Second, we found that the effect on deci-
sions diminished over time—just as the effect on self-reported
happiness. Third, music-evoked happiness correlated positively
with the estimated elevation of the probability weighting func-
tion: when happiness was greater, the larger payoffs received a
higher decision weight; when happiness was reduced, the larger
payoffs received a lower decision weight. Taken together, this evi-
dence is compatible with an effect of incidental emotions on the
elevation of the probability weighting function during decision
making under risk.

Our results are consistent with well-established effects of
incidental emotions on probability judgments reported in the
psychological literature. For instance, happy people make more
optimistic probabilistic judgments, while sad people make more
pessimistic judgments (Johnson and Tversky, 1983; Wright and
Bower, 1992). Extending this body of evidence, our results suggest
that not only judgments of unknown probabilities are altered, but
that also the weighting of known probabilities in decision making
under risk is affected by incidental emotions.

This is in line with indirect evidence that suggests an effect of
incidental emotions on probability weighting. In a correlational
study, Fehr-Duda et al. (2011) found that women that regarded
the current day to be more promising than usual made decisions
as if they weighted the larger payoffs more optimistically. This has
been interpreted as an effect of mood on the elevation of the prob-
ability weighting function in women. In a similar vein, weather
and seasonal effects on decision making were attributed to the
effect of bad mood on probability weighting (Kliger and Levy,
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2008)—importantly, however, without distinguishing between
sensitivity and elevation of the probability weighting function.

We complement this research in important ways by going
beyond correlational data and providing evidence in favor of a
causal effect of incidental emotions on risk attitudes that is consis-
tent with changes in probability weighting in particular. Critically,
we experimentally manipulated participants’ incidental emo-
tions. Moreover, we recorded participants’ self-reported emotions
to make sure that the experimental manipulation worked as
intended. Taken together, this is evidence in favor of a causal
effect of incidental emotions. Unlike Fehr-Duda et al. (2011), we
found significant effects for our whole mixed-gender sample and
no significant difference between men and women. Thus, gender
does not seem to be the major determining factor in the effect of
emotions on risk attitudes. Similar to the correlational evidence
reported in Fehr-Duda et al. (2011), increased baseline happiness
was associated with a more elevated probability weighting func-
tion, although not significantly so. This between-subject effect is
also in line with the finding that people with high life satisfaction
are more willing to take risks (German Socio-Economic Panel;
Dohmen et al., 2011).

At first glance, our results may seem inconsistent with the
findings of Isen et al. (1988). Isen et al. did not report a sig-
nificant effect of evoked positive affect on risk attitudes in the
gain domain. Their Figure 1 displays estimated utility functions
whose curvature is less pronounced in the gain domain for the
positive-affect than for the control participants. This would be
consistent with reduced risk aversion over gains resulting from
positive affect. However, no statistical test was performed to deter-
mine whether this difference was significant. Nevertheless, Isen
et al. speculated that in the gain domain there might be a tendency
for reduced risk aversion based on more optimistic probability
weighting in happy participants. Importantly, our study provides
empirical evidence for this very conjecture.

Previous research has already provided some theoretical
accounts on the affect sensitivity of the probability weighting
function. The inverse S-shape of the probability weighting func-
tion can result from the presence and integration of anticipatory
emotions—e.g., elation and disappointment—in the decision
process (Gul, 1991; Brandstätter et al., 2002; Walther, 2003).
For instance, Brandstätter et al. (2002) demonstrated that an
inverse S-shaped probability weighting function can be recon-
structed from a so-called surprise function that reflects par-
ticipants’ measured anticipated happiness with regard to the
outcome. In this framework, the anticipated disappointment that
might result from a failure to achieve a highly probable gain is
thought to translate into lower decision weights for high prob-
abilities. In line with this, probability weighting was found to
be more pronounced for outcomes believed to elicit stronger
emotional responses (Rottenstreich and Hsee, 2001). However, it
has been pointed out that anticipatory emotions could theoret-
ically also alter the elevation of the function at each probability
(Rottenstreich and Hsee, 2001). Our results indicate that not just
anticipatory, but also incidental emotions contribute to prob-
ability weighting and that this is reflected in the elevation of
the function. Incidental emotions might have a direct effect on
the processing of probabilities, leading to optimism/pessimism in

terms of decision weights. Alternatively, they might (also) operate
through changing anticipatory emotions that affect the eleva-
tion of the probability weighting function indirectly. Given that
we used very moderate and only positive monetary outcomes
that are unlikely to create strong positive or negative anticipa-
tory emotions—compared to stimuli used in other experiments,
like receiving a kiss or a painful electric shock (Rottenstreich and
Hsee, 2001)—we favor the former interpretation, but we cannot
rule out the latter, indirect, channel.

Our research has several implications for future research. We
have demonstrated that incidental emotions influence choices
between monetary gambles in a way that is compatible with
emotion-induced changes in the subjective weighting of known
probabilities. An important next step would be to explore the
underlying mechanism in greater detail. Process-tracing meth-
ods like eye tracking or (computer) mouse tracking might offer
deeper insights into the psychological processes that underlie
decision making (e.g., Schulte-Mecklenbeck et al., 2011) and
affective influences. For instance, it has been shown that happy
participants have a stronger attentional focus on rewards (Tamir
and Robinson, 2007). It is possible that probability weighting ulti-
mately reflects changes in attention to outcome values, as has also
been pointed out by Wu (1999).

Neural data are another promising source of information.
Different brain areas have been related to the processing of the
basic components of gambles, i.e., of reward magnitude and prob-
abilities (Tobler et al., 2007). Concerning probability weighting,
previous research has associated non-linear probability weight-
ing with non-linear neural responses in the striatum and anterior
cingulate cortex (Paulus and Frank, 2006; Tobler et al., 2008;
Hsu et al., 2009). Hence, if it is indeed probability weighting
that is affected by incidental emotions, we should see emotion
dependence of these neural responses. For instance, the striatum
and anterior cingulate cortex are also associated with experi-
encing happiness, as a meta-analysis of studies on emotional
processing revealed (Vytal and Hamann, 2010). A link between
rewards and emotions is also plausible, given the association
between activity in the striatum and anticipation of rewards
as well as self-reported happiness generated by these rewards
(Knutson et al., 2001). It is also possible that emotions not
related to the decision at hand—i.e., incidental emotions—have
an influence on reward processing in the striatum. It has been
suggested that conditioned and unconditioned stimuli—and this
would include a wide range of emotional stimuli evoking inci-
dental emotions—influence instrumental, reward-based behavior
via the ventral striatum (Cardinal et al., 2002). Recently, pleasur-
able music has been shown to facilitate reward-based learning,
and the observed effect seems to be linked to striatal activa-
tion (Gold et al., 2013). Thus, we would expect that incidental
emotions influence decision making, and probability weighting
in particular, by altering activity in these brain areas that show
such a functional overlap in reward and emotion processing. This
might reflect the direct integration of incidental emotions into the
decision process.

Obtaining neurobiological measures of emotion-induced
changes in probability weighting are highly promising for future
research, given that from the observation of choices alone, it is
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impossible to disentangle changes in the value function from
changes in probability weighting when using two-outcome lot-
teries only (Wakker, 2010, chapter 5)—unless one restricts the
involved functions to specific parametric forms (in our case,
power utility in combination with Prelec-style two-parameter
probability weighting). Specifically, reduced elevation of the
probability weighting function is observationally equivalent to
an increase in the curvature of the value function: both lead to
increased risk aversion. As a consequence, our findings (and those
of Fehr-Duda et al., 2011) are consistent with changes in probabil-
ity weighting and thus our hypotheses, but not exclusively so, since
the between-condition differences in our participants’ choices can
also be captured by the value function. The analysis of process or
neural data might help disentangling the two possible effects.

Apart from those implications for future research, there are
other methodological considerations and potential limitations
more directly related to our research approach. In contrast to
several previous studies on the influence of incidental affect on
decision making that used between-subject designs (see, how-
ever, e.g., Knutson et al., 2008; Guitart-Masip et al., 2010), we
employed a within-subject design because it has several advanta-
geous features. First, our within-subject design is an ecologically
more valid abstraction of the everyday decision environment of
a person that is confronted with the same decision or similar
decisions repeatedly while being in different affective states. In
contrast, a between-subject design looks at different persons who
make fewer decisions in only one affective state each. Second, a
within-subject design increases statistical power because it pre-
vents between-condition variance from being contaminated by
between-subject variance.

Although within-subject designs potentially introduce con-
founds (e.g., via learning/time trends across sessions), there
are reasons to believe that internal validity with respect to the
effects of interest to our study is ensured, given that learn-
ing would rather diminish than exacerbate between-condition
differences 8. Taken together, we think that the experimental
design that we used creates a balance between ecological and
internal validity.

Regarding the set of lottery pairs, we focused, as already
mentioned, on the gain domain for the following reasons: first,
neuroimaging and lesion studies suggest that losses and gains are
processed differently in the human brain (De Martino et al., 2010;
but see Tom et al., 2007). Second, to increase the power for the
detection of an effect, a sufficient number of decision trials is
needed. Third, mixed gambles would have required the estima-
tion of additional parameters, making even more observations
necessary. We therefore deliberately chose to dedicate all our

8When checking for time trends across experimental sessions, we found that
subjects became significantly more consistent over time (i.e., the Fechner
error, σ, exhibited a significantly negative time trend), but the estimated prob-
ability weighting parameters showed no significant time trends. Moreover, the
results did not differ qualitatively from those reported in Table 2. To address
potential order effects, we checked whether the initial condition had a last-
ing influence on risk attitudes—which was not the case: when averaging the
individual random effects depending on the condition that subjects first par-
ticipated in, the resulting order of the average random effects in the elevation
parameter for the four conditions corresponded in no way to the order of the
respective estimated condition differences.

experimental trials to only one domain. However, the neuroimag-
ing results just mentioned as well as evidence that probability
weighting might be different in losses (Abdellaoui, 2000) should
motivate future research to investigate the effects of incidental
emotions on decision making in the loss domain.

A final remark on our emotional manipulation procedure is
in order. While the music we used was able to evoke different
levels of happiness, at a small to medium-sized effect, sadness
was not reliably altered (which means that the sad music that
we used was associated with decreased levels of happiness rather
than greater sadness). Other emotion induction techniques might
be more potent and also promising for future research (Gross
and Levenson, 1995; Rottenberg et al., 2007). Alternatively, let-
ting participants bring their own personal music that they know
to evoke the desired emotional state might be a more potent form
of induction, although the use of non-standardized, highly vari-
able stimuli and inadvertently providing information about the
study design to participants in advance might introduce various
confounds.

Apart from this, different measures of emotional change—
for instance, visually supported assessment scales like the Self-
Assessment Manikin (Bradley and Lang, 1994) or psycho-
physiological measures (e.g., skin conductance response or facial
electromyography)—could be used, because participants might
find it difficult to report their affective states on a numbered scale.
In addition, one could focus on the underlying appraisal dimen-
sions of emotions (see, e.g., Lerner and Keltner, 2000, 2001). In
this regard, we have found preliminary evidence that arousal is
not the causal emotional dimension, since we did not find a sig-
nificant within-subject association between the calmness ratings
(our inverse proxy for arousal) and risk attitudes.

The type and strength of emotional manipulation in our study
is especially interesting given that everyday life is characterized by
the exposition to many emotional stimuli that are not extreme
in most cases (e.g., listening to music, being smiled at, or meet-
ing more or less liked colleagues; compared to, say, winning a
world championship, witnessing a terrorist attack, or losing a
loved one). Hence, our design has ecological validity with respect
to decision making occurring under standard affective contexts,
i.e., small to moderate emotional changes.

We consider this just as interesting as investigating the effects
of rather big, but uncommon, emotional changes. Intense feel-
ings, especially when being fully recognized, can result in reduced
emotional effects on decision making via an enhanced ability to
control emotional bias (Seo and Barrett, 2007). Even more intense
changes in emotion might result in avoiding making a decision
altogether and postponing it to less turbulent times. In contrast,
people may be relatively unaware of the influence of subtle emo-
tional changes on their decisions and hence may be unable to
regulate it. We therefore consider investigating the consequences
of subtle, but common changes in incidental emotions highly
relevant.

CONCLUSION
Our study investigated within-subject the effects of incidental
emotions on probability weighting by means of experimen-
tal manipulation and through measurement of changes in the
affective state. We thereby complement previous studies on the
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effect of incidental emotions on probability judgments as well as
previous—correlational—studies on the link between emotional
states and probability weighting in decision making under risk.
We found experimental evidence in favor of a causal influence of
incidental happiness on risk attitudes. Via structural regressions
based on CPT, we showed that these changes in risk attitudes can
be attributed to affectively mediated changes in the elevation of
the probability weighting function.
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APPENDIX

Table A1 | Set of lottery pairs.

No. Lottery A Lottery B

xA,1 xA,2 pA,1 xB,1 xB,2 pB,1

1 5 10 0.25 6 9 0.10
2 5 10 0.25 6 9 0.25
3 3 15 0.50 6 9 0.25
4 4 15 0.50 6 9 0.50
5 3 15 0.50 5 10 0.90
6 3 15 0.50 6 10 0.75
7 2 20 0.50 4 12 0.75
8 3 15 0.50 7 9 0.50
9 4 15 0.50 7 9 0.75

10 2 20 0.75 5 10 0.90
11 2 20 0.75 3 15 0.25
12 2 20 0.75 4 15 0.75
13 7 12 0.75 8 10 0.50
14 3 15 0.50 7 12 0.50
15 3 15 0.50 6 12 1.00
16 6 15 0.75 7 9 0.50
17 7 15 0.75 7 9 0.10
18 6 15 0.75 8 8 0.50
19 6 15 0.75 9 9 0.50
20 3 15 0.50 8 10 0.25
21 3 14 0.50 8 10 0.10
22 3 15 0.50 6 9 0.50
23 3 15 0.75 5 10 0.10
24 2 20 0.50 5 10 0.50
25 3 20 0.50 5 10 0.25
26 6 15 0.75 6 10 0.50
27 6 14 0.75 6 10 0.50
28 3 15 0.50 8 8 0.10
29 3 15 0.50 7 7 0.25
30 3 15 0.50 6 15 0.25
31 3 14 0.50 6 15 0.10
32 6 12 0.50 7 9 0.50
33 6 12 0.50 7 9 0.25
34 8 15 0.75 6 10 0.10
35 8 15 0.90 6 10 0.90
36 3 15 0.50 7 9 0.50
37 4 12 0.50 7 9 0.10
38 3 15 0.25 11 11 0.25
39 3 15 0.10 11 11 0.50
40 6 9 0.25 8 10 0.50
41 6 9 0.25 8 10 0.90
42 3 15 0.25 4 12 0.90
43 3 15 0.25 5 12 0.10
44 4 12 0.50 6 9 0.50
45 5 12 0.50 6 9 0.25
46 4 12 0.10 11 11 0.50
47 4 12 0.25 11 11 0.75
48 4 12 0.50 7 12 0.50
49 4 12 0.25 6 10 0.90

(Continued)

Table A1 | Continued

No. Lottery A Lottery B

xA,1 xA,2 pA,1 xB,1 xB,2 pB,1

50 4 12 0.25 6 11 0.10
51 3 15 0.50 6 9 0.25
52 4 15 0.50 6 9 0.25
53 3 15 0.50 7 9 0.50
54 6 12 0.50 6 9 0.90
55 6 12 0.50 6 9 0.75
56 6 12 0.75 6 9 0.75
57 2 20 0.25 13 13 0.50
58 4 20 0.25 13 13 0.75
59 3 15 0.50 7 12 0.90
60 3 15 0.50 7 13 0.25
61 4 12 0.25 8 15 0.75
62 4 12 0.25 8 16 0.50
63 2 20 0.10 17 17 0.50
64 2 20 0.10 16 16 1.00
65 2 20 0.50 7 9 0.50
66 2 20 0.50 7 9 0.10
67 4 12 0.25 9 13 0.50
68 4 12 0.25 9 13 0.50
69 4 12 0.25 5 10 0.25
70 4 12 0.25 5 10 0.10
71 2 20 0.50 7 12 0.50
72 2 19 0.50 6 9 0.10
73 2 20 0.50 6 9 0.50
74 3 15 0.10 13 13 0.25
75 3 15 0.10 13 13 0.50
76 5 10 0.25 7 9 0.50
77 5 10 0.25 7 9 0.10
78 2 20 0.50 3 15 0.25
79 2 20 0.50 3 14 0.25
80 3 15 0.50 4 12 0.10
81 3 15 0.50 5 12 0.50
82 2 20 0.50 4 12 0.25
83 2 20 0.50 4 11 0.10
84 3 15 0.75 4 15 0.90
85 3 15 0.75 5 15 0.50
86 5 10 0.10 9 13 0.10
87 5 10 0.10 9 13 0.25
88 6 10 0.10 9 13 0.50
89 6 11 0.25 4 7 0.50
90 6 12 0.75 4 7 0.90
91 6 11 0.50 3 8 0.90
92 6 11 0.75 3 8 0.10
93 6 8 0.50 3 5 0.50
94 6 9 0.75 4 9 0.25
95 5 9 0.50 4 8 0.50
96 5 5 1.00 3 5 0.75
97 5 7 0.50 4 6 0.50
98 4 6 0.25 3 5 0.90
99 5 8 0.10 5 8 0.75

100 5 7 0.50 4 6 0.75
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Table A2 | Musical stimuli.

Category Composer (Artist) Title

Happy Joel Francisco Perri El Canto de Mi Antara
Craobh Rua The Lucky Penny
Scotch Mist Shetland Tune
Alfredo de Angelis Pregonera
Romanian Folk Dance Batuta de la Adancata
Louis Armstrong St. Louis Blues

Niccoló Paganini Violin Concerto No. 1, 3rd
movement

Jonathan Richman Egyptian Reggae

Johann Joachim Quantz Concerto for Flute and
Orchestra, No. 256 in A Major –
allegro Di Molto

Franz Anton Hoffmeister Concerto for viola and orchestra
in D major: I. Allegro

Georg Friedrich Händel Arrival of the Queen of Sheba
(Sinfonia from the opera
Solomon)

Michael Praetorius Dances from Terpsichore:
6. Volte

Sad Samuel Barber Adagio for Strings

Goran Bregovic and Athens
Symphony Orchestra

Elo Hi (Canto Nero)

Himlar Örn Hilmarsson The Black Dog and the Scottish
Play

Frédéric Chopin
(1837)—Alfred Eschwé and
Razumovsky Sinfonia

Marche funebre from Piano
Sonata No. 2 in B Flat Minor,
Op. 35

The Cure Trust
The Cure Apart

Table A3 | Statements used in the emotion ratings.

German original English translation

Ich bin ruhig. I am calm.
Ich bin sehr neugierig. I am very curious.
Ich habe alles unter Kontrolle. I have everything under control.
Ich bin fröhlich. I am happy.
Ich bin traurig. I am sad.
Ich führe ein stressiges Leben. I lead a stressful life.
Ich fühle mich wohl. I am comfortable.
Ich bin entspannt. I am relaxed.
Ich fühle mich sicher. I feel safe.
Letzte Nacht habe ich gut geschlafen. I slept well last night.

THEORETICAL NOTE
We pointed out that for two-outcome lotteries, it is impossible in
the framework of CPT to dissociate the shape of the value (util-
ity) function from the shape of the probability weighting function
(see Wakker, 2010, chapter 5), unless one restricts the functions to
specific parametric forms.

To be precise, Wakker (2010) shows that the obser-
vational equivalence—or “data equivalence,” as he calls
it—between expected utility with a non-linear utility
function and rank-dependent utility (CPT in the gain
domain) with a non-linear probability weighting function
holds for two-outcome lotteries for which the lower out-
comes are zero. This can be easily extended, however, as
follows:

Let e be the certainty equivalent of a two-outcome lot-
tery that pays a high payoff xh with probability ph and a low
payoff xl, where xh > xl ≥ 0, with probability 1 − ph. Then,
for expected utility, we have u(e) = phu(xh) + (1 − ph)u(xl).
Normalizing u(xh) = 1 and u(xl) = 0, this reduces to u(e) = ph.
Under the assumption that u(x) is strictly increasing in x, this
can be rewritten as e = u−1(ph), where u−1 denotes the inverse
function of u.

Now consider the same certainty equivalent e to be instead
generated by cumulative probability weighting with weighting
function w(p) in combination with linear utility. This gen-
erates the equality e = w(ph)xh + [1 − w(ph)]xl. Rearranging
yields w(ph) = [e − xl]/[xh − xl] = [u−1(ph) − xl]/[xh − xl].
Since u−1(0) = xl and u−1(1) = xh, the w(ph) found in
this way ranges from 0 to 1 and is thus a perfectly valid
probability weighting function. It takes on the shape of the
inverse function of the utility function u(x), normalized in a
suitable way.

Thus, the observational equivalence between expected util-
ity with a non-linear utility function and rank-dependent utility
with a non-linear probability weighting function holds for arbi-
trary two-outcome lotteries—and not only for those whose lower
outcome is zero.

Disentangling the shape of the value (utility) function
and the probability weighting function based on observed
choices alone becomes possible when using lotteries that
consist of at least three outcomes. However, doing so will
still be hard statistically, since the parameters to be esti-
mated continue to be interdependent, albeit to a lesser
degree. For this reason, we suggest (see Discussion) to obtain
additional non-choice data such as process-tracing data or
neural data that might help to disentangle the underlying
processes.
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INCIDENTAL FEAR AND LOSS AVERSION 2 

Abstract 

In many everyday decisions, people exhibit loss aversion—a greater sensitivity to losses relative 

to gains of equal size. Loss aversion is thought to be (at least partly) mediated by emotional—in 

particular, fear-related—processes. Decision research has shown that even incidental emotions, 

which are unrelated to the decision at hand, can influence decision making. The effect of 

incidental fear on loss aversion, however, is thus far unclear. In two studies, we experimentally 

investigated how incidental fear cues, presented during (Study 1) or before (Study 2) choices to 

accept or reject mixed gambles over real monetary stakes, influence monetary loss aversion. We 

find that the presentation of fearful faces, relative to the presentation of neutral faces, increased 

risk aversion—an effect that could be attributed to increased loss aversion. The size of this effect 

was moderated by psychopathic personality: Fearless dominance, in particular its interpersonal 

facet, but not self-centered impulsivity, attenuated the effect of incidental fear cues on loss 

aversion, consistent with reduced fear reactivity. Together, these results highlight the sensitivity 

of loss aversion to the affective context. 

Keywords: decision making, loss aversion, incidental emotions, fear, psychopathy 
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INCIDENTAL FEAR AND LOSS AVERSION 3 

Incidental Fear Cues Increase Monetary Loss Aversion 

Many everyday economic decisions do not only involve potential gains, but also potential 

losses. In such decisions, the majority of people exhibit so-called loss aversion. That is, they 

show a greater sensitivity to potential losses relative to potential gains of equal size (Kahneman 

& Tversky, 1979; Tversky & Kahneman, 1992). For instance, people typically reject mixed 

gambles that offer a 50% chance of gaining money and a 50% risk of losing money, unless the 

potential gain is at least about one and a half times or twice as large as the potential loss (e.g., 

Gächter, Johnson, & Herrmann, 2010; Kahneman & Tversky, 1979). Loss aversion helps to 

explain widespread risk aversion (Kahneman & Lovallo, 1993) and is therefore an important 

concept both in judgment-and-decision-making research and in behavioral economics. 

Camerer (2005) hypothesized that loss aversion is an expression of fear. Indeed, two lines 

of evidence suggest that fear-related processes are crucially involved in loss aversion. First, 

neural systems mediating fear and anxiety are intertwined with those associated with the 

computation of value and choice in economic decision making (Hartley & Phelps, 2012). For 

instance, amygdala activity and physiological arousal (e.g., skin conductance responses) have 

been related to fear processing (LeDoux, 2003; Phelps, Connor, Gatenby, Gore, & Davis, 2001) 

as well as to the anticipation of financial losses (e.g., Hahn et al., 2010; Kahn et al., 2002) and 

loss aversion (Canessa et al., 2013; De Martino, Camerer, & Adolphs, 2010; Sokol-Hessner et 

al., 2009; Sokol-Hessner, Camerer, & Phelps, 2013). 

Second, there is behavioral evidence pointing toward fear-dependent changes in loss 

processing. For instance, carriers of the short version of a serotonin transporter polymorphism 

(5-HTTLPR), who also exhibited enhanced fear conditioning and trait anxiety, were more 

susceptible to the so-called framing effect (Crişan et al., 2009). To be specific, they were more 
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risk-seeking (i.e., chose a risky option over a sure option) when the alternative option was 

framed as a sure loss, consistent with changes in the processing of losses. Together, this evidence 

supports the hypothesis that fear-related processes play a role in loss processing and loss 

aversion.  

Importantly, not only emotions related to the evaluation of the decision options (i.e., 

potential outcomes and their probabilities) but even incidental emotions—which are unrelated to 

the decision at hand—can influence decision making (e.g., Isen, Nygren, & Ashby, 1988; 

Loewenstein & Lerner, 2003; Schulreich et al., 2014). Despite the postulated link between fear 

and loss processing, the influence of incidental fear on loss aversion is thus far unclear. 

Investigating this effect is important on the background of the oft-postulated hypothesis that real-

world economic behavior (e.g., investors’ decisions in financial markets) is partly due to the 

influence of the affective context on loss aversion. 

We designed two studies to experimentally manipulate the affective context and 

investigate its influence on loss aversion. Participants decided whether to accept or reject mixed 

gambles with potential gains and losses while they were simultaneously presented (Study 1) or  

primed beforehand (Study 2) with fearful or neutral face stimuli. 

We chose face stimuli to manipulate the affective context because faces have signaling 

value. Fearful faces warn conspecifics of nearby potential threat (Adolphs, 2002). They also 

prepare the organism for encountering a potential threat by, for example, increasing attention to a 

subsequent stimulus (Pourtois, Grandjean, Sander, & Vuilleumier, 2004; Taylor & Whalen, 

2014). Neurophysiologically, fearful faces preferentially activate the amygdala compared to, for 

instance, emotional scenes (Hariri, Tessitore, Mattay, Fera, & Weinberger, 2002) and other facial 

emotional expressions (Williams et al., 2005). Both studies also found that these effects extend 
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to peripheral physiological arousal indicated by skin conductance responses. Thus, fearful faces 

can be considered adequate signals to the defensive fear system—likely activating an emotion 

concept—which possibly facilitates defensive action such as avoidance. When it is possible to 

avoid a subsequent actual threat, e.g., by rejecting a potential loss, the organism will commonly 

do so (Bracha, Ralston, Matsukawa, Williams, & Bracha, 2004; Gray, 1988). Therefore, we 

predict higher loss aversion in the fearful-face than in the neutral-face condition. 

While we expect incidental fear cues to increase loss aversion on average, we also 

hypothesize that the magnitude of this effect will vary across subjects, depending on personality 

traits related to fear processing and reactivity. One such personality trait is psychopathy. At its 

high end, psychopathy is primarily characterized by deficits in affective processing (e.g., lack of 

empathy) and antisocial behavior (Cleckley, 1941; Hare & Neumann, 2008), but it is 

conceptualized as a dimensional trait (Marcus, John, & Edens, 2004), i.e., even a non-clinical 

and non-forensic sample will typically consist of people with different degrees of psychopathic 

traits. 

The psychopathic trait fearless dominance is a particularly plausible moderator of the 

influence of incidental fear cues on loss aversion. Fearless dominance has been conceptualized as 

a phenotypic expression of a dispositional fear deficit (e.g., Patrick, Fowles, & Krueger, 2009). It 

is expressed in psychophysiological indicators of deficient fear conditioning (López, Poy, 

Patrick, & Moltó, 2013) or inhibition of the fear-potentiated startle response (e.g., Anderson, 

Stanford, Wan, & Young, 2011) and deficits in the recognition of fearful faces (e.g., Blair et al., 

2004), among others. 

We predict that—due to their reduced fear reactivity—participants who score higher in 

fearless dominance will be (a) less loss-averse in general and (b) less susceptible to incidental 
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fear cues compared to lower-scoring participants. The latter moderation might be particularly 

pronounced and robust for social influence (i.e., low social anxiety and high social potency)—the 

most interpersonal component of fearless dominance—because this facet has been associated 

with reduced amygdala activity when processing fearful faces (Carré, Hyde, Neumann, Viding, 

& Hariri, 2013). The presence of a moderation effect would be further support for the hypothesis 

that the affective context influences humans’ degree of loss aversion. 

Study 1 

Methods 

Participants.  We recruited 29 participants (20 female, 9 male; mean age 26.79 years 

[SD = 5.233 years]) through bulletin-board appeals at Freie Universität Berlin and mailing lists. 

All participants gave written informed consent prior to the experiment, and the ethics committee 

at Freie Universität Berlin approved all procedures. 

Experimental procedure.  Prior to the experiment, participants received an initial 

endowment of €20 in cash, similar to previous experiments (e.g., De Martino et al., 2010). 

Participants were instructed to put the money into their wallets and were informed that it was 

already theirs. In the subsequent detailed instructions, participants were told that they would 

make decisions in multiple trials, that one trial would be randomly selected at the end of the 

session, and that the final payment would depend on their decision and the realized outcome in 

this particular trial (random incentive mechanism). This is a standard procedure in behavioral 

economics to encourage participants to evaluate each decision situation independently (Harrison 

& Rutström, 2008). It also ensures incentive compatibility through non-hypothetical decision 

making. The decision-making task (see below) was presented on a computer screen, using the 

software package Presentation (Neurobehavioral Systems, Inc.). After the decision-making task, 
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participants completed the German version of the Psychopathic Personality Inventory—Revised 

(PPI-R, Alpers & Eisenbarth, 2008, see below). At the end of the session, one decision trial was 

randomly selected. Any net amount from subjects’ endowment that remained after returning an 

eventual loss to the experimenter was theirs to keep, and any eventual gain was paid on top of 

the initial endowment. 

Decision-making task and affective priming.  Before the main experiment, participants 

were given five practice trials to familiarize themselves with the task. The main experiment 

consisted of a pseudo-randomized sequence of 200 trials. In each trial, we asked the participants 

to accept or reject a series of mixed gambles with equal (i.e., 50%) probability of winning or 

losing a variable amount of money. Potential gains and losses were presented numerically 

together with a reminder of the associated 50% probabilities on each side of the screen (see 

Figure 1). The positioning of the gains and losses on the left and right sides of the screen was 

counterbalanced between subjects. Each trial was uniquely and pseudo-randomly drawn from a 

symmetric gains/losses matrix, with potential gains ranging from +€5 to +€14 and potential 

losses from −€14 to −€5 in increments of €1 (100 gambles in total). Consequently, gains and 

losses as well as expected value and variance were orthogonal across trials. 

To encourage participants to reflect on the subjective attractiveness of each gamble rather 

than to rely on a fixed decision rule, we used four response categories rather than two, ranging 

from “accept” to “rather accept” to “rather reject” to “reject,” similar to Tom et al. (2007). 

Participants were informed that the first two response categories would be counted as an 

acceptance of the gamble, whereas the latter two would be regarded as a rejection. The four 

response categories were presented at the bottom of the screen with the labels “accept” and 

“reject” at their extremes. 
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Each gamble in the main experiment (but not in the training trials) was presented together 

with the image of a face located at the center of the screen. The face images served as emotional 

primes. In affective-priming experiments that used evaluative decision tasks with words as 

primes and targets, only short stimulus onset asynchronies (SOAs) in the range of 0 to 300 ms 

generated robust affective priming effects (Hermans, De Houwer, & Eelen, 2001; Hermans, 

Spruyt, & Eelen, 2003). Based on this, we used simultaneous priming (SOA = 0 ms) as a starting 

point. We expected this to result in a sufficiently strong overlap between the emotional activation 

that follows prime onset and decision-related processes so that effects of the incidental fear cues 

become observable. Each of the 100 gambles was presented twice (within-subject design): once 

paired with a neutral facial expression (neutral-face condition) and once paired with a fearful 

facial expression (fearful-face condition), so that the experiment consisted of 200 trials in total.  

The priming conditions were pseudo-randomized across trials per participant, so that any 

condition effects observed are likely due to transient emotional influences rather than to changes 

in longer-lasting states that could underlie observed effects in blocked or between-subject 

designs. The combinations of gamble and facial identity were also pseudo-randomized per 

participant, but identical in both conditions. We used faces of 25 young males and 25 young 

females from a standardized and well-validated face database (Ebner, Riediger, & Lindenberger, 

2010). Consequently, each face was presented twice per priming condition, and face identity was 

repeated four times in total. Face gender was counterbalanced across conditions. 

Each decision trial was presented for 3500 ms, and participants were required to respond 

within this time window via a key press. The last response in each trial was logged for analysis. 

Participants were informed that if no key was pressed within this time window, they would pay a 

penalty of €1 if this trial was randomly selected for the final payment. This was supposed to 
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incentivize subjects to always make a decision and to perform the task with sufficient 

concentration. The intertrial interval (ITI) was jittered and ranged from 1000 to 8000 ms (mean 

4000 ms). The sequence of events per trial is depicted in Figure 1. 

Psychopathic Personality Inventory—Revised (PPI-R).  The PPI-R (Alpers & 

Eisenbarth, 2008) is a self-report questionnaire for assessing psychopathic traits. The PPI-R 

consists of eight subscales, the majority of which form two higher-order factors, fearless 

dominance and self-centered impulsivity (Benning, Patrick, Hicks, Blonigen, & Krueger, 2003). 

Its internal consistency is satisfactory, with an overall reported Cronbach’s alpha of .85 and 

values ranging from .72 to .88 for the subscales (Alpers & Eisenbarth, 2008). 

We calculated the scores for fearless dominance and self-centered impulsivity similarly 

to previous studies (e.g, Benning et al., 2003; Carlson & Thái, 2010; Schulreich, Pfabigan, 

Derntl, & Sailer, 2013). The only difference to previous calculations is our treatment of the 

fearlessness subscale. In the original version of the questionnaire, the subscales social influence 

and stress immunity loaded most strongly on the fearless dominance factor. In contrast, although 

termed “fearlessness” subscale, it loaded less strongly on fearless dominance and also cross-

loaded substantially on self-centered impulsivity (Benning, Patrick, Blonigen, Hicks, & Iacono, 

2005). Moreover, only part of the respective items in the German translation load on a 

“fearlessness” subscale—which, however, seems to be better captured by sensation seeking 

(Alpers & Eisenbarth, 2008). For these reasons, we deliberately refrain from using the 

fearlessness subscale when calculating the fearless dominance score. It seems that social 

influence and stress immunity are more reliable phenotypic expressions of underlying 

dispositional fearlessness and that they also represent a social dimension that might be of 

relevance for the processing of facial stimuli. Thus, the mean of the z-transformed social 
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influence and stress immunity scores comprised the fearless dominance score, while the mean of 

the z-transformed blame externalization, rebellious nonconformity, Machiavellian egocentricity, 

and carefree nonplanfulness scores comprised the self-centered impulsivity score. The resulting 

higher-order scores were also z-transformed for statistical analysis. 

Results 

Participants failed to respond in only 1.069 trials (0.535%) on average (modal value: 0). 

The maximum number of missed trials was 8 (4%). Hence, participants completed the large 

majority, if not all, of the trials. Missed trials were omitted from further analyses. On average, it 

took subjects 1.56 seconds to reach a decision (1.56 seconds in the neutral-face condition and 

1.55 seconds in the fearful-face condition). 

There were no significant gender effects when we included gender in the following 

statistical models. We therefore only report the more parsimonious models without gender. 

Choice frequencies.  Participants’ choices were our objective measure of risk aversion 

(i.e., the tendency to prefer a sure outcome over a gamble of equal expected value; Wakker, 

2010). Although positive and negative expected values were symmetrical across all gambles, 

participants accepted less than 50% of the gambles. Across both conditions, the mean acceptance 

rate was 35.75%, which is significantly different from 50%, t(28) = −7.173,  p < 0.001, d = 

1.332, and consistent with risk-averse behavior.  

To measure the effect of incidental fear cues and psychopathic personality on risk 

aversion, we first analyzed participants’ mean acceptance rates in SPSS (Version 22, IBM 

Corporation). To compare acceptance rates between conditions, we used a Wilcoxon signed-rank 

test, which is nonparametric and thus makes fewer and weaker assumptions than its parametric 

counterparts. In the next step, we used the “general linear model” function in SPSS to estimate a 
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linear regression that comprised Prime (fearful-face vs. neutral-face condition) as a within-

subject factor and Fearless dominance and Self-centered impulsivity as between-subject factors.  

We observed effects of both incidental fear cues and psychopathic personality. First, we 

found a significant effect of incidental fear cues on decision behavior. As hypothesized, 

participants accepted fewer gambles in the fearful-face condition (34.78%) than in the neutral-

face condition (36.73%), with Z = −2.833, p = .003, d = −1.237 in the Wilcoxon signed-rank test 

and β = 0.02, SE = 0.0054, F(1, 26) = 11.553, p = .002, partial η2 = .308 in the linear regression. 

This is consistent with increased risk aversion when being primed with incidental fear cues. 

Second, we found that personality moderates this effect. Although fearless dominance 

was not generally associated with the choice frequencies (between-subject effect), β = −0.012, 

SE = 0.0203, F(1, 26) = 0.941, p = .341, partial η2 = .035, there was a significant Prime × 

Fearless dominance interaction, β = −0.017, SE = 0.0059, F(1, 26) = 8.09, p = .009, partial 

η2 = .237. This indicates that a higher fearless dominance score was associated with reduced 

susceptibility to incidental fear cues. In fact, the 7 participants scoring in the top 25% of fearless 

dominance accepted almost exactly the same percentage of gambles in the fearful-face (33.07%) 

as in the neutral-face condition (33%), Z = −0.271, p = .786, d = −0.206 in a Wilcoxon signed-

rank test. That is, in these high-scoring participants, the effect of incidental fear cues on 

participants’ choices was not significantly different from 0. This also means that we find no 

indication for a potential reversal of the priming effect (i.e., increased instead of decreased risk 

taking) in subjects who scored high in fearless dominance. In the bottom 25%, there was, as 

expected, a significant difference between choices in the fearful-face (34.82%) and in the 

neutral-face condition (39.68%), Z = −2.366, p = .018, d = −3.996. In contrast to Fearless 
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dominance, there was neither a significant between-subject effect of Self-centered impulsivity 

nor a significant interaction of this variable with Prime (all ps > .395) in the linear regression. 

In a subsequent analysis, we correlated the between-condition difference in the choice 

frequencies with the two subscales that comprise fearless dominance. Consistent with a previous 

finding of reduced amygdala activity in the interpersonal facet when processing fearful faces 

(Carré et al., 2013), we find that higher social influence scores were associated with a decreased 

influence of the incidental fear cues on the choice frequencies (r = −.41, p = .027). This 

relationship was also observed for stress immunity (r = −.438, p = .018). 

Loss aversion.  Going beyond the analysis of choice frequencies and risk aversion 

expressed in this measure, we used quantitative behavioral modeling as a complementary and 

more specific method to investigate the influence of incidental fear cues on decision making. 

Specifically, we assessed behavioral sensitivity to gains and losses by fitting a logistic regression 

to all participants’ binary choice data (accept vs. reject). This regression delivers an estimate of 

the degree of loss aversion, λ. λ represents the relative impact of losses on decisions compared to 

gains. λ > 1 indicates that the participant is loss-averse, λ = 1 indicates that the participant 

weighs gains and losses equally, and λ < 1 indicates that the subject weighs gains more strongly 

than losses. In line with prospect theory (Kahneman & Tversky, 1979; Tversky & Kahneman, 

1992), this parameter captures differences in the slopes of a kinked value function (e.g., a steeper 

slope for losses than for gains) and these differences in subjective valuation can explain risk 

aversion in mixed gambles. For simplification, we assumed linear instead of curvilinear utility 

due to the relatively small monetary stakes involved; we also assumed identical decision weights 

of .5 for gains and losses. Both simplifications are common in the literature (e.g., De Martino et 

al., 2010; Tom et al., 2007). The face conditions were included as a dummy-coded variable and 
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fearless dominance and self-centered impulsivity as covariates, so that we could estimate the 

change in loss aversion due to affective priming, psychopathic personality, and the moderation of 

the priming effect by psychopathic personality. Our regression model also included a Fechner 

noise parameter σ to account for the stochastic nature of decision making—a standard procedure 

in both experimental economics (see, e.g., Harrison & Rutström, 2008) and experimental 

psychology (see, e.g., Sokol-Hessner et al., 2009, 2013). Here, σ → ∞ is equivalent to random 

choice (i.e., the logistic link function f → .5), and σ → 0 means that no noise is present in 

participants’ choices from the perspective of the model. For details of the regression equation see 

footnote 1. 

The nonlinear mixed-effects model was set up in MATLAB (version R2015a), and 

nonlinear maximum likelihood estimation was used to estimate the preference and noise 

parameters. 

Parameter estimates of the nonlinear mixed-effects model are reported in Table 1. 

Baseline loss aversion in the neutral-face condition, λneutral, was significantly greater than 1, 

indicating that participants weighed losses more than gains of identical size (λneutral = 1.2203, SE 

= 0.0352, p < .0001). Hence, on average, participants exhibited loss-averse behavior. 

Importantly, this analysis confirms our main findings from the analysis of the choice 

frequencies and suggests that the observed risk aversion could be explained by loss aversion. 

First, as hypothesized, we found that incidental fear cues increased loss aversion (δλ = +0.0289, 

SE = 0.0128, p = .0238). To demonstrate that this result is not based on only few subjects 

exhibiting a large effect, we depict the individual estimates of the degree of loss aversion (λ) for 

both conditions in Figure 2 (Panel a). A solid majority of the participants (21 out of 29) showed 

greater loss aversion in the fearful-face than in the neutral-face condition. 
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Second, as in the analysis of the choice frequencies, psychopathic personality moderated 

the effect of incidental fear cues. Participants with higher fearless-dominance scores were less 

influenced by incidental fear cues than lower-scoring individuals (ψFD,  λ = −0.0404, SE = 0.0131, 

p = .0021). This is also illustrated by a scatter plot and a regression line that visualize the inverse 

relationship between fearless dominance and the effect of incidental fear cues (δλ) in Figure 2, 

Panel b. 

In contrast to this interaction effect, there were no other significant personality effects (all 

ps > .1112, see Table 1). Participants also showed no significant change between conditions in 

the Fechner error term σ (δσ = −0.0315, SE = 0.0602, p = .6012). 

Study 2 

In the second study, we aimed for a conceptual replication using forward priming (instead 

of simultaneous priming) and an independent sample of subjects.  

Method 

Participants.  We recruited 28 participants through bulletin-board appeals at Freie 

Universität Berlin and mailing lists. All participants gave written informed consent prior to the 

experiment, and the ethics committee at Freie Universität Berlin approved all procedures. Three 

participants had to be excluded from the analyses because they rejected all lotteries in one 

priming condition (two participants in the fearful-face condition, one participant in the neutral-

face condition; with nearly full rejection in the other condition). Because binary regression 

models, like the logit model we used, require variability in responses, loss aversion parameters 

could not be estimated for these participants. Another participant had to be excluded because she 

did not perform the gender identification task at all, raising doubts on whether she processed the 
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primes. This left 24 participants for the analyses (13 female, 11 male; mean age, 24.29 years [SD 

= 5.312 years]). 

Experimental procedure.  The experimental procedure was identical to Study 1 with the 

following exceptions: Instead of priming participants with fearful and neutral faces during the 

decision phase, we displayed the primes immediately beforehand with a duration of 250 ms, 

resulting in an SOA of 250 ms. This is within the range of SOAs (0–300 ms) that have been 

found to elicit robust affective priming effects in classical priming studies (Hermans et al., 2001, 

2003). 

We wanted to ensure that participants processed the primes attentively without being 

explicitly asked to evaluate the emotional category. Therefore, we framed the priming procedure 

as a gender recognition task, similar to a previous study that investigated priming effects on 

consumption behavior and value judgments (Winkielman, Berridge, & Wilbarger, 2005). 

Importantly, it has been shown that emotional faces embedded in a gender recognition task (i.e., 

implicit processing of facial expressions) activate the amygdala more strongly than faces 

presented in an explicit emotion identification task (Critchley et al., 2000), rendering this implicit 

task a particularly useful priming technique. Moreover, implicit emotion processing resembles 

everyday psychological processes, which are thought to be predominantly automatic or implicit  

(Bargh & Chartrand, 1999; Kliemann, Rosenblau, Bölte, Heekeren, & Dziobek, 2013). 

Participants were instructed to silently evaluate the gender of the displayed faces unless they 

were explicitly asked to respond. There were 20 randomly interspersed explicit gender 

recognition questions—“Gender?” with two response options, “male” and “female”—that were 

displayed after facial primes and instead of mixed gambles in these trials. In total, there were 220 

trials: 200 prime–gamble trials and 20 prime–gender question trials. Requiring responses to a 
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few randomly interspersed explicit gender questions ensures that the task is performed 

continuously while at the same time avoiding explicit responses in the majority of trials that 

could interfere with the subsequent decisions. All participants included in the analyses showed a 

minimal accuracy of 80% (modal value: 100%) in the gender recognition task, indicating that the 

primes were processed adequately. 

The 25 male and 25 female face stimuli were again pseudo-randomly paired with the 

decision trials as in Study 1. Ten of the male faces (5 neutral, 5 fearful) and ten of the female 

faces (5 neutral, 5 fearful) were used an additional time in the gender recognition trials. The 

lotteries in the decision trials were presented for 3250 ms during which the participants had to 

respond. The ITI was jittered and ranged from 2000 to 3000 ms (mean: 2500 ms). The sequence 

of events in a trial is depicted in Figure 3. 

Results  

Participants failed to respond in only 1.667 trials (0.833%) on average (modal value: 0). 

The maximum number of missed trials was 13 (6.5%). Hence, all participants completed the 

large majority, if not all, of the trials. Missed trials were omitted from further analyses. On 

average, it took subjects 1.38 seconds to reach a decision (1.39 seconds in the neutral-face 

condition and 1.36 seconds in the fearful-face condition). 

As in Study 1, there were no significant gender effects when we included gender in the 

statistical models. We therefore only report the more parsimonious models without gender. 

Choice frequencies.  As in Study 1, participants accepted less than 50% of the gambles 

across both conditions. The mean acceptance rate was 33.37%, which is significantly different 

from 50%, t(23) = −5.930, p < 0.001, d = 1.22, and consistent with risk-averse behavior. 
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Performing the same analyses as in Study 1, we found an effect of incidental fear cues on 

decision behavior. Participants accepted fewer gambles in the fearful-face condition (32.77%) 

than in the neutral-face condition (33.96%), with Z = −2.187, p = .027, d = −0.998 in the 

Wilcoxon signed-rank test and β = 0.012, SE = 0.0053, F(1, 21) = 4.118, p = .047, partial η2 = 

.174 in the linear regression. This suggests increased risk aversion in the fearful-face condition. 

Concerning personality, however, there were no significant between-subject effects or between–

within interaction effects (all ps > .349).  

Loss aversion.  We estimated a nonlinear mixed-effects model like in Study 1, including 

fearless dominance and self-centered impulsivity as covariates of interest. As in Study 1, 

participants were on average loss-averse in the neutral-face condition, λneutral = 1.2930, SE = 

0.0528, p < .0001. 

Again, we observed an effect of incidental fear cues on loss aversion. Consistent with 

Study 1 and the analysis of the choice frequencies, there was a marginally significant increase in 

loss aversion when participants were primed with fearful faces, δλ = +0.0209, SE = 0.0107, 

p = .0502. We found an increase in loss aversion in the majority of the participants (20 out of 

24). As far as personality is concerned, there was no significant effect of fearless dominance 

(although the point estimate had the expected direction), ψFD,  λ = −0.0171, SE = 0.0103, 

p = .1246. There were also no other significant personality effects (all ps > .3942). There was a 

trend toward significance for the effect of the priming condition on the Fechner error term σ 

(δσ = −0.1567, SE = 0.0855, p = .0670), indicating that the consistency in participants’ decisions 

may have been increased in the fearful-face condition. 

Although both subscales of fearless dominance—social influence and stress immunity—

were found to significantly moderate the effect of incidental fear cues on loss aversion in 
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Study 1, we initially hypothesized that in particular the interpersonal facet of fearless dominance, 

i.e., social influence which reflects low social anxiety and high social potency, might show the 

most robust effect. This is because social influence had been found to be associated with reduced 

reactivity to fearful faces in a previous study (Carré et al., 2013). Therefore, we estimated a 

different nonlinear mixed-effects model to analyze the specific influence of the subscales of 

fearless dominance— social influence and stress immunity. As can be seen in Table 2, estimated 

baseline loss aversion, the effect of incidental fear cues, and the estimated Fechner noise 

parameter were very similar to the model reported in the previous paragraph. The effect of 

incidental fear cues on loss aversion is also depicted in Figure 4, Panel a.  

We found that social influence significantly moderated the influence of incidental fear 

cues on loss aversion, ψSocInf,  λ = −0.0210, SE = 0.0107, p = .0484. Hence, participants higher in 

social influence showed smaller increments in loss aversion when primed with fearful faces, i.e., 

they were less susceptible to the incidental fear cues. This is consistent with reduced reactivity to 

fearful faces (Carré et al., 2013). In contrast, stress immunity did not emerge as a significant 

moderator in this study (p = .7155). This could also explain why the broader concept of fearless 

dominance was not a significant moderator in the analysis that included the higher-order factors, 

because the effect of social influence is statistically harder to detect when aggregated with 

another subscale that has no significant effect. The scatterplot and regression line in Figure 4, 

Panel b, illustrate the inverse relationship between social influence and the effect of incidental 

fear cues on loss aversion. The higher the social influence score, the more the effect vanishes.  

General Discussion 

A link between fear and loss processing has been postulated by various researchers (e.g., 

Camerer, 2005; Hartley & Phelps, 2012), but few empirical studies have tested this hypothesis. 
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In particular, the influence of incidental fear cues on loss aversion has not been demonstrated so 

far. We, therefore, designed two studies to experimentally manipulate the affective context and 

investigate its influence on loss aversion. As expected, we found that, on average, the 

presentation of fearful faces—stimuli that signal potential threats—increased risk aversion 

compared to the presentation of neutral faces, an effect that could be explained by increased loss 

aversion. We conceptually replicated this effect in an independent sample with a different 

priming sequence. 

Moreover, the effect on loss aversion was moderated by psychopathic personality. 

Participants higher in fearless dominance—in particular social influence (i.e., low social anxiety, 

high social potency)—were less influenced by incidental fear cues than participants lower in this 

psychopathic personality trait. This moderation effect of a fear-related personality construct 

corroborates the notion that loss aversion is influenced by the incidental affective context. 

Decision Making and Incidental Emotions 

A number of theories postulate that emotions are used to inform judgments and decisions 

(e.g., Bechara, Damasio, & Damasio, 2000; Loewenstein, Weber, Hsee, & Welch, 2001; 

Schwarz, 2012). These emotions can arise from the evaluation of the decision options in the form 

of integral or anticipatory emotions (e.g., fear at the thought of a stock’s potential loss), but they 

can also stem from dispositional as well as situational sources that are objectively unrelated to 

the decision itself (incidental emotions, e.g., elicited by emotional expressions of others or 

background music; Loewenstein & Lerner, 2003; Rick & Loewenstein, 2008). 

Our findings are consistent with reports that incidental affect influences decision making 

(e.g, Isen et al., 1988; Lerner & Keltner, 2001; Raghunathan & Pham, 1999; Schulreich et al., 

2014). For instance, experimentally evoked variations in incidental happiness have been shown 
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to cause changes in probability weighting in a recent study on risk attitudes (Schulreich et al., 

2014). Our study adds to this literature by providing evidence in favor of the hypothesis that 

another common and consequential decision phenomenon, loss aversion, is influenced by 

incidental fear cues. By experimentally manipulating the affective context, we also go beyond 

the majority of studies which provide only correlational data linking fear and anxiety to risky 

decision making (but see, e.g., Raghunathan & Pham, 1999). 

It is important to note that although changes in risk aversion in our mixed-gambles task 

were captured well by changes in loss aversion, future studies would benefit from including 

gain-only trials (see, e.g., De Martino et al., 2010; Sokol-Hessner et al., 2013) as well as loss-

only trials to better disentangle the specific effect on loss aversion from other, more general, 

risk-related effects. 

Concerning the neural mechanisms, recent fMRI studies indicated that the amygdala 

(Canessa et al., 2013; Sokol-Hessner et al., 2013) and the insula (Canessa et al., 2013) are 

involved in loss aversion. Both structures are thought to be central for affective processing, in 

particular, the processing of aversive emotional states such as fear and anxiety (Kim et al., 2011; 

LeDoux, 2003; Paulus & Stein, 2006; Phelps et al., 2001). Moreover, reduced amygdala activity 

during the processing of fearful faces was found to be related to the interpersonal facet of 

psychopathy (Carré et al., 2013). Therefore, the effects observed in the present study could well 

be mediated by these neural structures, possibly in interaction with other brain areas. For 

instance, the striatum is thought to integrate motivation with action values. In particular, input 

from the amygdala to the striatum that signals threat—as it is likely generated by fearful faces—

seems to be critical for avoidance actions (LeDoux & Gorman, 2001). Moreover, striatal 

activation and deactivation were related to loss aversion (Tom et al., 2007). Thus, a neural circuit 
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including the amygdala, the insula, and the striatum is a plausible candidate for mediating the 

observed behavioral effects—consistent with a multiple-systems perspective on decision making 

(Phelps et al., 2014).  

Functions of Fear and Associated Action Tendencies 

Our finding that incidental fear cues increase loss aversion also resonates well with 

psychological theories about the functions of fear and anxiety. Fear is associated with an evolved 

defense system whose function is to protect the individual from threats to survival—be it in the 

form of predators, aggressive conspecifics, dangerous features of the terrain, or natural disasters 

(Öhman & Mineka, 2001; Panksepp, 1998). In modern societies, however, threats and risks are 

not restricted to explicit life-threatening events. They also occur in evolutionarily rather new, but 

still consequential domains such as economic decision making. 

To fulfill its protective function in these domains, activation of the fear system is related 

to certain dispositions to actions (Bracha et al., 2004; Gray, 1988). The sequence of actions 

depends on the imminence of the threat. For instance, initial, less threat-imminent cues that 

signal a potential threat prime the organism to respond to subsequent immediate threats. When it 

is possible to avoid an actual threat, the organism will commonly do so (“flight” response). This 

is exactly the context given in our experiment. Participants were exposed to facial cues signaling 

a potential threat and were then asked whether they wanted to accept or reject (i.e., avoid) a 

combination of potential gains and losses (i.e., risks/threats). Our finding of increased loss 

aversion when being primed with incidental fear cues is consistent with an avoidance response as 

postulated by functional models of fear. 

These models, however, also postulate other possible action tendencies (e.g., “fight”) 

which depend on the perceived imminence of the threat and the possibility of avoidance (Bracha 
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et al., 2004; Gray, 1988). In future research, one could investigate more closely whether fear 

cues affect decision making in ways that depend on the specific action tendencies evoked by 

specific contexts, perceptions, and appraisals. For instance, in a previous study, incidental fear 

had differential effects on risk taking, depending on whether the uncertainty was generated by a 

random mechanism (risk aversion increased) or by the behavior of another person (risk aversion 

decreased; Kugler, Connolly, & Ordóñez, 2012). 

Psychopathic Personality and Its Relation to Loss Aversion 

Apart from the factors mentioned so far, personality traits also play an important role in 

determining behavior. Participants higher in fearless dominance—in particular, social influence 

(i.e., low social anxiety, high social potency)—were less susceptible to incidental fear cues than 

those lower in fearless dominance. In contrast, self-centered impulsivity was not a significant 

moderator of the influence of incidental fear cues on loss aversion. This is consistent with the 

notion that reduced fear reactivity is a core feature of psychopathy, in particular, of fearless 

dominance, and with models postulating dissociable psychopathic traits (e.g., Patrick et al., 2009; 

Schulreich et al., 2013). An open question for future research is whether fearless dominance, 

social influence in particular, moderates only the influence of facial (and possibly other social) 

signals of fear or generalizes to a variety of incidental cues of fear. Future studies might benefit 

from larger sample sizes to also clarify whether the differential effects of the fearless dominance 

facets we observed in Study 1 and Study 2 are indeed context-dependent effects, or if stress 

immunity did not emerge as a moderator in Study 2 due to insufficient statistical power. 

Although fearless dominance, in particular social influence, reduced susceptibility to 

incidental fear cues, it was not associated with loss aversion in general. This may, at first glance, 

appear inconsistent with the low-fear hypothesis of psychopathy because loss aversion has been 
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related to fear processing. However, potential losses might be more salient than the face stimuli 

because of their central task relevance. A less responsive fear system might still be capable of 

task-relevant loss-related processing but impaired at processing task-irrelevant fear cues. A 

different possibility is that, due to an attention-related deficit in psychopathy, it is only the 

processing of peripheral/contextual cues that is impaired (Baskin-Sommers & Newman, 2013), 

influencing all down-stream (e.g., fear-related) processes such as those related to loss aversion. 

To sum up, while our research demonstrates that fearless dominance, in particular, its social 

influence facet, decreases the susceptibility to incidental fear cues in decision making, future 

research is needed to shed more light on the specific mechanisms that mediate this effect. 

Conclusion 

In summary, our findings indicate that when individuals are presented with incidental 

fear cues that signal potential threat, loss aversion increases. Knowledge of such incidental 

effects and the moderating role of personality could enable us to make more specific and 

accurate predictions of economic behavior. Ultimately, making ourselves aware of the influence 

of the affective context on our financial decisions might help us overcome potentially 

disadvantageous decision biases. 
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Footnotes 

1 Formally, the regression equation can be expressed as 

As,t = f
gs,t + ls,t (λneutral,s +δλ,s Fs,t +γFD,λ FDs +ψFD,λ Fs,t FDs +γSCI,λSCIs +ψSCI,λ Fs,t SCIs)

σ neutral +δσ Fs,t

+εs,t

!

"
#

$

%
&.   

The variables’ meanings are as follows: (a) Indices: s is the subject ID, and t is the trial 

number. (b) Dependent variable: As,t is 1 if subject s accepted the gamble in trial t and 0 

otherwise. (c) Link function: f is the logistic function (logit regression model), f[x] = 

1 / [1 + exp(−x)]. (d) Regressors: gs,t is the gain that subject s could earn (with 50% probability) 

in trial t, and ls,t is the potential loss that subject s faced (with 50% probability) in trial t. Fs,t is the 

condition dummy that equaled 1 in the fearful-face condition and 0 in the neutral-face condition. 

FDs is the fearless-dominance score and SCI s the self-centered impulsivity score of subject s. 

(e) Regression coefficients: λneutral,  s is the degree of loss aversion in the neutral-face condition, 

and the coefficient δλ,  s captures the change between the fearful-face and the neutral-face 

condition. Both λneutral and δλ are indexed by s, since we included individual random effects in 

baseline loss aversion and the between-condition change in loss aversion. γFD,  λ and γSCI,  λ are the 

coefficients that capture the influence of fearless dominance and self-centered impulsivity on 

loss aversion (average loss aversion across the two conditions), respectively. ψFD,  λ is the 

coefficient on the interaction of the condition effect with the fearless-dominance score, and ψSCI,  λ 

is the coefficient on the interaction of the condition effect with the self-centered impulsivity 

score. σneutral is the Fechner error in the neutral-face condition, and δσ is the change of the Fechner 

error term between the fearful-face and the neutral-face condition. (f) Error term: εs,t is an error 

term with E[εs,t] = 0 and Var[εs,t] = 1. 
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Table 1 

Nonlinear mixed-effects model, Study 1: Estimates of the degree of loss aversion (λ) as a 

function of priming condition and psychopathic personality as well as estimates of the Fechner 

noise parameter (σ). 

 Coefficient SE p 

Degree of loss aversion (λ)    

λneutral: baseline loss aversion (in neutral-face condition) +1.2203 0.0352 < .0001 

δλ: change in loss aversion due to fearful-face condition +0.0289 0.0128 = .0238 

γFD,  λ: change in loss aversion due to fearless dominance +0.0572 0.0359 = .1112 

ψFD,  λ: interaction of condition effect and fearless dominance −0.0404 0.0131 = .0021 

γSCI,  λ: change in loss aversion due to self-centered 
impulsivity 

+0.0358 0.0359 = .3193 

ψSCI,  λ: interaction of condition and self-centered impulsivity −0.0001 0.0131 = .9967 

Fechner noise parameter (σ)    

σneutral: baseline Fechner noise (in neutral-face condition) +0.9896 0.0427 < .0001 

δσ: change in Fechner noise due to fearful-face condition −0.0315 0.0602 = .6012 

Note. Wald tests were used to assess whether the loss aversion parameter in the neutral-face 

condition significantly differed from 1 (i.e., no loss aversion and risk neutrality) and whether the 

other parameters differed from 0. Error degrees of freedom = 5757. Log-likelihood = −864.6636. 

RMSE = 0.2767. BIC = 1769.70. 
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Table 2 

Nonlinear mixed-effects model, Study 2: Estimates of the degree of loss aversion (λ) as a 

function of priming condition and psychopathic personality as well as estimates of the Fechner 

noise parameter (σ). 

 Coefficient SE p 

Degree of loss aversion (λ)    

λneutral: baseline loss aversion (in neutral-face condition) +1.2930 0.0523 < .0001 

δλ: change in loss aversion due to fearful-face condition +0.0208 0.0108 = .0538  

γSocInf,  λ: change in loss aversion due to social influence +0.0408 0.0580 = .4820 

ψSocInf,  λ: interaction of condition effect and social influence −0.0210 0.0107 = .0484  

γStrIm,  λ: change in loss aversion due to stress immunity −0.0577 0.0580 = .3199 

ψStrIm,  λ: interaction of condition effect and stress immunity +0.0042 0.0114 = .7155 

Fechner noise parameter (σ)    

σneutral: baseline Fechner noise (in neutral-face condition) +1.3484 0.0625 < .0001 

δσ: change in Fechner noise due to fearful-face condition −0.1490 0.0854 = .0811 

Note. Wald tests were used to assess whether the loss aversion parameter in the neutral-face 

condition significantly differed from 1 (i.e., no loss aversion and risk neutrality) and whether the 

other parameters differed from 0. Error degrees of freedom = 4748. Log-likelihood = −981.9752. 

RMSE = 0.2937. BIC = 2002.10. 
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Figure 1.  Sequence of events in a trial of Study 1. 
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Figure 2.  Study 1: Panel a depicts individual estimates, based on the individual random effects 

included in the regression analysis, of the degree of loss aversion (λ) in the neutral-face and 

fearful-face condition; data points above the 45° line are associated with greater loss aversion in 

the fearful-face condition. Panel b depicts a scatterplot and a linear regression line that illustrates 

the inverse relationship between fearless dominance and the size of the effect of incidental fear 

cues on loss aversion (δλ). The graph also contains two dashed lines that intersect at 0 on both 

axes (i.e., average fearless dominance score [horizontal axis]; no change in loss aversion [vertical 

axis]) and that delineate four sectors into which the data points fall. For the lower half of fearless 

dominance scores, all the data points lie within the upper-left sector, indicating that those 

participants all showed higher loss aversion in the fearful-face condition. 
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Figure 3.  Sequence of events in a trial of Study 2. 
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Figure 4.  Study 2: Panel a depicts individual estimates, based on the individual random effects 

included in the regression analysis, of the degree of loss aversion (λ) in the neutral-face and 

fearful-face condition; data points above the 45° line are associated with greater loss aversion in 

the fearful-face condition. Panel b depicts a scatterplot and a linear regression line that illustrates 

the inverse relationship between social influence, one of the two subscales of fearless 

dominance, and the size of the effect of incidental fear cues on loss aversion (δλ). The graph also 

contains two dashed lines that intersect at 0 on both axes (i.e., average social influence score 

[horizontal axis]; no change in loss aversion [vertical axis]) and that delineate four sectors into 

which the data points fall. For the lower half of social influence scores, all the data points lie 

within the upper-left sector, indicating that those participants all showed higher loss aversion in 

the fearful-face condition. 
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Human choice is often guided by emotions, even when these
emotions are incidental, i.e., unrelated to a particular decision.
For instance, incidental fear cues presented before or during a
lottery choice have been found to increase monetary loss aversion.
Here we investigate the neural mechanisms that mediate this
effect. Due to its role in fear processing and in the generation
of loss aversion, the amygdala is a candidate region to find such
mechanisms. However, its exact functional role in loss aversion
and in its context-dependent variability is not well understood. We
hypothesized that emotion-induced increases in amygdala activity
in response to monetary losses mediate emotion-induced increases
in loss aversion. While measuring brain activation via functional
magnetic resonance imaging, we presented 27 participants with
fearful or neutral faces before they made decisions about mon-
etary gambles involving both gains and losses. We replicated a
previously observed emotion-induced increase in loss aversion.
At the neural level, we observed an emotion-induced shift from
positive to negative value coding in a distributed set of brain
regions, including the amygdala. More precisely, we found that
loss aversion following the presentation of neutral faces was
mainly predicted by greater deactivations for losses (relative to
activations for gains). In contrast, emotion-induced increases in
loss aversion were mainly predicted by greater activations for
losses. Therefore, our results provide a neural mechanism for
emotion-induced changes in loss aversion via context-dependent
involvement of different valuation processes.

amygdala | value | emotion | loss aversion | decision making

Human choice is often guided by emotions (1, 2). For exam-
ple, financial investors may be gripped with fear during a stock
market crash and choose to sell large parts of their portfolios.
In this scenario, the emotion is related to the decision—fear is
evoked by the potential loss of stock value. However, emotions
that are unrelated to the decision at hand, called incidental
emotions, can also influence decision making (2–4).

A component of decision making that may be particularly
prone to emotional influences is loss aversion, characterized by a
greater sensitivity to potential losses compared to potential gains
of equal size (5). In a previous behavioral study, we found that
incidental fear cues (images of fearful faces) presented before or
during a lottery choice increased monetary loss aversion (4). It
remains unclear, however, how this emotional effect on choice
is mediated at the neural level. In particular, where and how do
emotions and deliberative decision making interact?

One key biological structure that is involved in both affective
processing and loss aversion is the amygdala. For instance, it is
well established that the amygdala is critical for threat processing
(6). At the same time, amygdala-lesioned patients exhibit substan-
tially reduced loss aversion compared to matched controls (7),
suggesting that the amygdala plays a causal role in the generation
of loss aversion. Given this functional overlap, the amygdala

is a plausible candidate for mediating the effects of incidental
emotions on loss aversion.

However, what are the specific mechanisms that give rise
to monetary loss aversion and emotion-induced changes in its
strength? According to recent accounts, two types of loss signals
are associated with distinguishable, but partially overlapping,
motivational systems (8, 9). The first type of system codes positive
value. This system generates inhibitory loss signals (i.e., reductions
in neuronal activity). It consists of a mesocorticolimbic circuit
that includes, e.g., the striatum (8–10). Within this circuit, greater
loss-related deactivations compared to gain-related activations—a
feature termed “neural loss aversion”—predict behavioral loss
aversion (11, 12). The second type of system codes negative
value. This system generates excitatory loss signals (i.e., increasing
activity to increasing losses) and also includes, e.g., the striatum
(8, 9). Notably, two studies found loss-related activations in the
amygdala, which also predicted behavioral loss aversion (12, 13).
However, other studies observed stronger amygdala deactivations
for losses relative to gain-related activations [i.e., neural loss
aversion (14)] or failed to find any loss-related amygdala activity
(11, 15). Taken together, the amygdalarmechanisms that generate
loss aversion are still far from clear.

Only two recent studies have investigated the influence of
incidental emotions on loss aversion at the neural level. Neither
reported value-related amygdala activity that predicted emotion-
induced changes in loss aversion. However, one of these studies

Significance

For scholars and laymen alike, the influence of incidental
emotions on decisions is puzzling. Moreover, the mechanisms
giving rise to these effects are currently not well understood.
Here, we show that emotion-induced changes in loss aversion
can be explained by shifts from positive towards negative
value coding—in particular from deactivations to activations
for losses—in a distributed set of brain regions, including the
amygdala. Therefore, our work goes beyond existing research
based on behavioral models that are mute to the sources of
loss aversion. Our results suggest that loss aversion is based
on a context-dependent involvement of distinct valuation
processes that represent losses in markedly different ways.
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Fig. 1. Trial sequence and behavioral results. (A) Images of faces (fearful
vs. neutral) were presented prior to mixed gambles (within-subject design
with 2 × 64 face-gamble trials). The priming procedure was embedded in a
gender discrimination task (for more details see SI Methods). Mixed gambles
included potential gains and losses ranging from ±€6 to ±€20 in steps of €2
(8 × 8 = 64 gambles per condition, also see Panel B), and in all gambles,
the two potential payoffs had identical probability (i.e., 50%). (B) Relative
frequencies of the lottery being chosen in the two conditions across gain-loss
combinations. (C) Estimates of the degree of loss aversion, λ, per condition.
Red data points above the 45° line indicate greater loss aversion in the fearful
condition (18 out of 28 participants, i.e., 66.67%); blue data points indicate
no change or decreased loss aversion.

found that enhanced amygdalar–striatal connectivity predicted
increases in loss aversion following the presentation of emotional
faces (16). The second study compared decisions under threat-
of-shock and in a neutral context (17). Surprisingly, while the au-
thors observed loss aversion across contexts, they did not observe
emotion-induced changes in its magnitude. However, choice be-
havior was predicted by brain activity in a context-dependent
manner. Specifically, increasing activity for increasing subjective
expected value (i.e., positive value coding) in the striatum and
the ventromedial prefrontal cortex (vmPFC) positively predicted
gamble acceptance in the neutral context, whereas increasing
insula activity for decreasing subjective expected value (i.e., neg-
ative value coding) negatively predicted gamble acceptance in
the threat-of-shock context. Greater loss-related activations are
one possible source of the observed shift towards negative value
coding. This possibility, however, has not been explored so far.

In line with most previous studies (11, 12, 16), we separately
analyzed loss and gain responses to identify more exactly the
mechanisms underlying potential emotion-induced changes in
valuation. Given the prominent role the amygdala plays in fear
processing (6) and given preferential processing of threat-related
relative to appetitive stimuli under fear-related affective states
(18), we hypothesized that excitatory loss signals in the amygdala
(12, 13, 19) can account for increases in loss aversion that are
induced by fear cues. Moreover, amygdala responses to fearful
movies have been found to enhance subsequent activation to
unrelated threat-signaling stimuli (20). Similarly, we expected a
general increase in amygdala activity after the presentation of
fear cues in combination with increased activation in response to
increasing monetary losses. The latter component would reflect
negative value coding. In fact, the amygdala might be part of a
broader, distributed network that displays an emotion-induced
shift from positive to negative value coding, which also includes
the striatum, vmPFC, and insula (17). Importantly, we tested

Fig. 2. Neural responses to gains and losses in the neutral condition. (A)
Activations for gains (βGain, Neutral > 0) and deactivations for losses (βLoss, Neutral
< 0) (whole-brain analysis; cluster-corrected with Z > 3.1 and P < 0.05).
Here, we depict whole-brain results because they overlap with ROI-based
results, except that these responses were also present in the vmPFC ROI (rACC
and paracingulate gyrus) and covered more voxels in the other ROIs. (B)
Activations for losses (βLoss, Neutral > 0) and deactivations for gains (βGain, Neutral
< 0) in the vmPFC/mOFC; deactivations for gains in the posterior insula, and
activations for losses in the left amygdala (ROI analysis; small-volume FDR-
corrected with P < 0.05 and spatial extent threshold of k ≥ 15 voxels).

whether such effects mediate emotion-induced increases in mon-
etary loss aversion. Alternatively, changes in loss aversion might
be mediated by a positive-value–coding mechanism via enhanced
deactivations for losses relative to activations for gains, e.g., in the
striatum (11, 12).

We collected and analyzed data from 27 participants (15
female; mean age, 21.81 years [SD = 3.55 years]; for more details,
see SI Methods). All subjects participated in a decision-making
task that we previously used in a behavioral study (4) and that
we adapted for functional magnetic resonance imaging (fMRI).
In this task, participants decided to accept or reject gambles
consisting of both a potential gain and a potential loss, while
in the MRI scanner. To manipulate affect, we briefly presented
images of fearful (or neutral) faces before each lottery choice
(for more information on the task, see Fig. 1 A and SI Methods).
We chose fearful faces as emotional primes, because they signal
potential threats and reliably enhance amygdala activity (21).
After the experiment, participants also completed a self-report
questionnaire on psychopathic personality (see SI Methods and
SI Results).

Results
Behavioral Loss Aversion Is Increased in the Fearful Condition.
Participants’ choices served as an objective measure of risk aver-
sion, i.e., the tendency to prefer a sure outcome over a gamble of
equal expected value (22). Given that potential gains and losses
were sampled from a symmetrical payoff matrix (see Fig. 1 B) and
had identical probability (50%), the average expected value of all
gambles was €0. Hence, a choice frequency of 50%would indicate
risk neutrality. Alternatively, a choice frequency of 50% could
indicate completely random choice; however, Fig. 1 B illustrates
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Fig. 3. Neural loss aversion in the neutral condition.(A) Neural loss aver-
sion, i.e., greater deactivations for losses relative to activations for gains
(−βLoss, Neutral − βGain, Neutral > 0) in the striatum (blue). Neural loss aversion
was also positively correlated with behavioral loss aversion, e.g., in the left
caudate (green). (B) Parameter estimates for the gain and loss regressors
for the left caudate cluster that displayed neural loss aversion. (C) Relation-
ships between neural gain and loss responses and behavioral loss aversion
in the left caudate (green cluster in Panel A). Greater deactivations for
losses significantly predicted greater loss aversion, λneutral (partial regression
plot, i.e., controlling for emotion-induced changes in loss aversion, λfearful −
λneutral). (D) Neural loss aversion was positively correlated with behavioral
loss aversion in the right superficial and centromedial amygdala (green). (E)
Parameter estimates for the gain and loss regressors for the amygdala cluster.
(F) Relationships between neural gain and loss responses and behavioral loss
aversion in the amygdala cluster. Greater deactivations for losses significantly
predicted greater loss aversion (partial regression plot). Note: All statistical
tests were small-volume FDR-corrected with P < 0.05 and k ≥ 15. Error
bars/lines represent 95% CIs (including between-subject variance).

that subjects’ choices varied systematically with the offered gains
and losses. In the neutral condition, the mean gamble acceptance
rate was 31.81% (SD = 13.92%). This is significantly lower than
50%, t(26) = −6.792, P < 0.001, and indicates risk aversion. In
the fearful condition, the mean acceptance rate was significantly
reduced to 30.79% (SD = 13.66%), t(26) = −1.880, P = 0.036
(one-tailed), indicating that incidental fear cues increased risk
aversion (Fig. 1 B).

Within the framework of Prospect Theory, loss aversion is
a major source of risk aversion for mixed gambles (22). Hence,
going beyond the analysis of choice frequencies, we used quan-
titative behavioral modeling as a more specific method to inves-

Fig. 4. Emotion-induced changes in amygdala activity and value coding.
(A) Increased bilateral amygdala activity during gamble trials (onset: face
presentation) in the fearful condition compared to the neutral condition
(red-yellow). (B) Increased bilateral amygdala activations for losses in the
fearful condition (red-yellow), which were also associated with emotion-
induced increases in loss aversion in the right superficial and centromedial
amygdala (light-blue). (C) Parameter estimates for the gain and loss re-
gressors per condition for the right superficial and centromedial amygdala
(red-yellow cluster in Panel B). (D) Relationships between emotion-induced
changes in gain and loss responses and changes in behavioral loss aversion
in the right superficial and centromedial amygdala (light-blue cluster in
Panel B). Greater emotion-induced activations for losses significantly pre-
dicted emotion-induced increases in loss aversion (partial regression plot,
i.e., controlling for λneutral). Note: All statistical tests were small-volume
FDR-corrected with P < 0.05 and k ≥ 15. Error bars/lines represent 95% CIs
(including between-subject variance).

tigate emotion-induced changes in loss aversion (see Methods).
In particular, we estimated each subject’s degree of loss aversion,
λ. Importantly, unlike simply calculating choice frequencies, this
method also assesses how noisy subjects’ choices are (via a Fech-
ner noise parameter, σ, see SI Results). A parameter value λ =
1 indicates loss neutrality, while λ > 1 indicates loss aversion. In
the neutral condition, participants were on average loss-averse,
λneutral = 1.43 (SD = 0.42), since the estimate was significantly
greater than 1, t(26) = 5.225, P < 0.001. Critically, incidental
fear cues significantly increased loss aversion when compared
to the neutral condition, λfearful = 1.46 (SD = 0.41), t(26) =
2.401, P = 0.024 (Fig. 1 C). Baseline loss aversion (λneutral) and
emotion-induced changes in loss aversion (λfearful − λneutral) were
not significantly correlated between-subjects, r = −0.24, P =
0.238. For an analysis of response times, see SI Results.

Behavioral Loss Aversion Is Related to Greater Neural Deac-
tivations for Losses in the Neutral Condition. In our neuroimag-
ing analysis, we first investigated neural activity in the neutral
condition, i.e., in the absence of incidental fear cues that enhance
loss aversion.We focused on the amygdala as an a priori region of
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Fig. 5. Emotion-induced changes in neural loss aversion. (A) Reduced neural
loss aversion (i.e., −βLoss − βGain) in the bilateral striatum in the fearful con-
dition compared to the neutral condition (red-yellow). Decreases in neural
loss aversion were associated with emotion-induced increases in behavioral
loss aversion in the left caudate (green). (B) Parameter estimates for the gain
and loss regressors per condition for the left caudate (red-yellow cluster in
Panel A). (C) Relationships between emotion-induced changes in gain and
loss responses and changes in behavioral loss aversion in the left caudate
(green cluster in Panel A). Descriptively, increasing activations for gains and
losses were associated with increasing loss aversion, but neither correlation
was statistically significant (partial regression plot). Their combined effect,
however, led to significant reductions in neural loss aversion, which is based
on stronger deactivations (and not activations) for losses relative to activa-
tions for gains. Note: All statistical tests were small-volume FDR-corrected
with P < 0.05 (k ≥ 15). Error bars/lines represent 95% CIs (including between-
subject variance).

interest (ROI), given its role in emotion processing (6) and loss
aversion (7, 12, 16). Further ROIs were the striatum, vmPFC, and
insula, given their role in (context-dependent) valuation (10, 17).
Our ROI analysis was complemented by an exploratory whole-
brain analysis.

First, we investigated parametric modulations of brain ac-
tivation by potential gains and losses. Consistent with previous
research (11, 12, 14, 16), we observed partially overlapping sets
of positive-value coding regions that showed activations for gains
(βGain, Neutral > 0) and deactivations for losses (βLoss, Neutral < 0),
including the bilateral striatum, ventral tegmental area, dorsal
anterior cingulate cortex (dACC), paracingulate gyrus, and ros-
tral ACC/vmPFC, among others (Fig. 2 A and Tables S1 for
ROI-based results and S2 for whole-brain results). Moreover,
we replicated a pattern previously termed “neural loss aversion”
(11), i.e., greater deactivations for losses relative to activations
for gains (−βLoss, Neutral − βGain, Neutral > 0), e.g., in the striatum and
paracingulate gyrus (Fig. 3 A and B and Tables S1 and S2).

We also observed opposite negative-value coding responses,
i.e., activations for losses (βLoss, Neutral > 0) and deactivations
for gains (βGain, Neutral < 0) in the medial orbitofrontal cortex
(mOFC)/vmPFC, as well as activations for losses in the left baso-
lateral amygdala and deactivations for gains in the left posterior
insula (Fig. 2 B and Table S1).

We also investigated whether neural value responses pre-
dicted behavioral loss aversion by including λneutral as a covariate
in our fMRI group-level analysis, and controlling for emotion-
induced changes in loss aversion (λfearful – λneutral). Here, we ob-
served that more loss-averse participants displayed greater neural
loss aversion (Table S1), e.g., in the bilateral caudate (Fig. 3 A),

which was mainly due to increasing deactivations for losses with
increasing behavioral loss aversion (Fig. 3 C and Tables S1 and 2).

On average, we did not find significant value responses in the
right superficial and centromedial amygdala (Fig. 3 E). Crucially,
however, we found that monetary loss aversion was positively
associated with the contrast estimate for neural loss aversion (Fig.
3 D) and negatively associated with the contrast estimate for
losses (Fig. 3 F) in this region. The latter correlation indicates
that, in contrast to the nonsignificant mean effect, more loss-
averse participants might have displayed deactivations to losses.
Checking this for the top quartile of λneutral values, we observed
deactivations for losses that were indeed marginally significantly
different from 0 (βLoss, Neutral = −1.81, SD = 1.97), t(6) = 2.427,
P = 0.051. Hence, greater loss aversion was associated with a
tendency towards greater deactivations for losses.

Regarding gains, we observed both increasing activations
(e.g., in the striatum) as well as deactivations (e.g., in the vmPFC)
with increasing behavioral loss aversion, though these responses
were spatially less extended than loss-related correlations (Table
S1).

Emotion-Induced Increases in Loss Aversion Are Associated
with Greater Neural Activations for Losses. In the previous
section, we described how loss aversion in the neutral condition
was mediated by positive value coding that displayed greater
deactivations for losses relative to activations for gains (i.e., neu-
ral loss aversion). In contrast, we hypothesized a shift towards
negative value coding in the fearful condition. Specifically, we ex-
pected that greater activations for losses would mediate emotion-
induced increases in loss aversion. Furthermore, we hypothesized
that this shift is triggered by amygdala reactivity to incidental fear
cues, which extends to the processing of monetary payoffs.

In line with this hypothesis, we observed a general increase in
bilateral amygdala activity following the presentation of fearful
faces compared to neutral faces (βGamble, Fearful − βGamble, Neutral >
0, see Fig. 4 A and Table S3), but this effect was not linked
to emotion-induced changes in loss aversion (λfearful − λneutral,
controlling for λneutral).

To detect shifts towards negative value coding and in loss
processing in particular, we calculated the contrast βLoss, Fearful −
βLoss, Neutral >0.We found that this contrast becomes significant in
a distributed set of regions (Table S3). Please note that this effect
could mean either increased activations for losses or reduced
deactivations for losses in the fearful condition relative to the
neutral condition. To differentiate between these possibilities,
we conducted conjunction analyses. First, we calculated a con-
junction of the thresholded maps for the contrast βLoss, Fearful −
βLoss, Neutral > 0 and for βLoss, Fearful > 0 with a spatial extent
threshold of k ≥ 5 voxels (Table S3). This revealed clusters for
which emotion-induced changes in loss responses were also asso-
ciated with absolute activations for losses in the fearful condition,
e.g., in the bilateral amygdala (Fig. 4 B and C) and putamen.
On average, these regions did not display significant loss-related
activity in the neutral condition. Crucially, we also observed
that greater emotion-induced activations for losses predicted
emotion-induced increases in behavioral loss aversion (Table S3),
e.g., in the right superficial and centromedial amygdala (Fig. 4 B
and D), vmPFC (Fig. S1), putamen, and insula. The amygdala
cluster overlapped with a cluster that displayed the opposite
effect in the neutral condition, i.e., a positive association between
neural loss aversion—deactivations for losses, in particular—and
behavioral loss aversion. The vmPFC cluster overlapped with a
cluster that already displayed activations for losses in the neutral
condition (see Fig. 2 B).

In contrast, several regions, including the bilateral striatum
(Fig. 5 A and B), paracingulate gyrus/vmPFC, and anterior in-
sula, displayed reduced deactivations for losses in the fearful
condition relative to the neutral condition, but on average, there
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was no change to activations for losses. This was revealed by a
conjunction of the thresholded maps for the contrast βLoss, Fearful
– βLoss, Neutral > 0, βLoss, Neutral < 0 and βLoss, Fearful ≤ 0, with k ≥ 5
(Table S3). This effect also translated into decreased neural loss
aversion in these regions, given that the strength of deactivations
for losses strongly contributed to this feature [i.e., (−βLoss, Fearful −
βGain, Fearful) − (−βLoss, Neutral – βGain, Neutral) < 0, Table S3]. Reduc-
tions in neural loss aversion were also associated with emotion-
induced increases in behavioral loss aversion, e.g., in the left
caudate (Fig. 5 A and C and Table S3).

Crucially, we did not observe any emotion-induced increases
in neural loss aversion, or enhanced deactivations for losses in
particular, across the whole brain, even at a very liberal threshold
(uncorrected P < 0.005 and k ≥ 20).

Regarding gains, we observed an emotion-induced switch to
deactivations for gains in the fearful condition (Table S3), e.g., in
the right superficial and centromedial amygdala (Fig. 4 C) and
bilateral putamen. We also found small clusters in the bilateral
putamen and frontal pole that displayed reduced activations for
gains relative to the neutral condition, but that showed no sig-
nificant deactivations in the fearful condition (Table S3). Similar
to the loss-related effects, these changes reflect shifts towards
negative value coding in the fearful condition. Emotion-induced
increases in loss aversion, however, were only associated with
greater activations for gains in the right caudate and left posterior
insula (Table S3).

Discussion

The neural underpinnings of the interactions between affective
processing and decision making have recently received increasing
attention in the literature (1, 16, 17). However, the neural mecha-
nisms that mediate emotion-induced changes in loss aversion are
currently not well understood. In the present study, we replicated
the finding that incidental fear cues increase monetary loss aver-
sion (4). At the neural level, we observed a context-dependent
employment of distinct valuation processes. Specifically, inciden-
tal fear cues induced a fundamental shift from positive towards
negative value coding—in particular, from deactivations towards
activations for losses—in a distributed set of regions including
the amygdala. Furthermore, this shift predicted emotion-induced
increases in behavioral loss aversion. Thereby, our study provides
a mechanistic explanation of how incidental emotional cues influ-
ence decision making.

In the neutral condition, we replicated a previously observed
feature termed neural loss aversion, i.e., greater deactivations for
losses relative to activations for gains in a set of regions such as the
striatum (11, 12, 14, 16). Neural loss aversion, and deactivations
for losses in particular, also predicted behavioral loss aversion.
We also observed this effect in the amygdala. This is in contrast
to the mixed results of some previous reports (11, 12, 15, 16)
but in line with a recent study that found neural loss aversion in
the amygdala, though unrelated to behavioral loss aversion (14).
We also found activations for losses in the left amygdala and in
the mOFC/vmPFC, consistent with previous observations (12, 13,
19, 23). However, in contrast to previous findings, loss-related
amygdala activations were unrelated to baseline loss aversion
(12, 13). Taken together, while we observed that a few brain
areas displayed negative value coding, a positive-value coding
circuit that exhibits stronger deactivations for losses relative to
activations for gains was the predominant source of behavioral
loss aversion in a neutral context.

In line with a previous meta-analysis (21), we observed in-
creased amygdala activity following the presentation of fearful
relative to neutral faces. Critically, a previous study found that
emotion-induced amygdala activity spills over to subsequent pro-
cessing of unrelated threat-related stimuli (20). We extend this
observation to the domain of decision making. Specifically, we

found that incidental fear cues induced negative value coding in
the amygdala, i.e., activations for losses as well as deactivations
for gains. Notably, while loss aversion was associated with greater
deactivations for losses in the neutral condition, emotion-induced
increases in loss aversion were predicted by stronger emotion-
induced amygdala activations for losses. We found these context-
dependent effects in the right superficial and centromedial amyg-
dala. Interestingly, the superficial amygdala was previously found
to show contextual shifts in the valence processing of famous
names, depending on current processing goals (24). We also
observed that emotion-induced increases in loss aversion were
predicted by emotion-induced increases in activations for losses
in the mOFC/vmPFC, which already displayed negative value
coding in the neutral condition. The vmPFC is both structurally
and functionally connected with the amygdala (25), and this con-
nectivity is critical for the integration of gains and losses during
decision making (19).

Remarkably, we did not observe any significant emotion-
induced increases in loss-related deactivations. Instead, we ob-
served reduced loss-related deactivations—that is, reduced pos-
itive value coding—in the striatum, insula, and vmPFC. These
regions were also associated with emotion-induced shifts in valua-
tion in a recent study (17). Specifically, threat of an electric shock
also reduced coding of positive subjective expected value in the
striatum and vmPFC but induced negative value coding in the in-
sula, relative to a neutral control condition. Our data indicate that
these effects might have been due to loss-related effects—a pos-
sibility not explored in the threat-of-shock study. Notably, in both
our and the threat-of-shock study, reductions in positive value
coding may have resulted from a compromised coding of losses
in the form of deactivations but also from concurrent activations
for losses (i.e., negative value coding) that would partially or fully
cancel out deactivations in a summed fMRI signal. Interestingly,
the threat-of-shock manipulation neither induced changes in loss
aversion nor changes in amygdala activity. A possible explanation
for this absence of an effect might be the involvement of different
processes, e.g., related to pain. Pain-related processes might also
explain the greater shift towards negative value coding in the
insula during threat of shock (17) than after fearful faces that
more reliably enhance amygdala activity (21). Taken together, our
study extends this line of research by linking emotion-induced
changes in value coding and loss aversion to (predominantly) loss-
related effects and to the amygdala.

More generally, our study adds to the growing body of evi-
dence for two opposing neural loss (and gain) signals—inhibitory
and excitatory—that have been related to distinct, but overlap-
ping motivational systems (8, 9). For instance, consistent with
electrophysiological and optogenetic evidence in rodents (26, 27),
we found intermingled excitatory and inhibitory signals for losses
in the human amygdala. We further extend these observations by
demonstrating a specific contextual variable that modulates the
relative contributions of excitatory and inhibitory loss (but also
gain) signals, namely, the presence of incidental fear cues.

We conclude that the amygdala, in concert with other regions,
provides a neural substrate for the interaction of incidental affect
and valuation. Our findings indicate that emotion-induced in-
creases in loss aversion can be explained by enhanced activations
for losses, i.e., a shift towards negative value coding. In contrast,
loss aversion in a neutral context was associated with stronger de-
activations for losses. Hence, by going beyond behavioral models
of choice that are mute to the sources of loss aversion, we provide
evidence that loss aversion is mediated by a context-dependent
involvement of distinct valuation processes.

Methods
Behavioral Modeling.We set up a two-parameter model—based on Prospect
Theory’s subjective-value function (5)—in Matlab (v. R2013a; The Math-
Works, Inc., Natick, MA, USA). Specifically, we assessed behavioral sensitivity
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to gains and losses by fitting a logistic regression with a piecewise-linear
value function per emotion condition (11, 12). In this regression, each
participant’s binary choice (accept vs. reject) is the dependent variable (y),
and the gain and loss values are the explanatory variables (G and L, respec-
tively). The loss regressor L is associated with the loss-aversion coefficient λ.
A value of λ > 1 indicates that the participant is loss-averse, λ = 1 indicates
that the participant weighs gains and losses equally, and λ < 1 indicates that
the subject weighs gains more strongly than losses. Formally,

yc ,s,t = f{[(Gc ,s ,t + λc,s Lc,s ,t) / σc ,s] + εc ,s ,t}, where f is the logistic link
function, c indexes the experimental condition (i.e., neutral or fearful),
s indexes subjects, t indexes trials, and ε is the error term. We modeled
a potential stochastic component in subjects’ choices via a Fechner noise
parameter σ (16, 28). Effectively, σ determines the dispersion of the link
function f : σ → ∞ is equivalent to completely random choice (f → ½), while σ →
0 means that no noise is present in participants’ choices from the perspective
of themodel (f approaches a step function). Preference and noise parameters
were estimated via maximum likelihood estimation. Crucially, the estimated
loss-aversion parameters from our behavioral modeling were included as
behavioral covariates in our neuroimaging analysis (see below).

fMRI Acquisition. We acquired functional T2*-weighted gradient-echo-
planar images and structural T1-weighted images, using a 3-Tesla Siemens
Magnetom Trio scanner and a 12-channel head coil. For more details, see SI
Methods.

fMRI Data Analysis. Data were preprocessed (see SI Methods) and
analyzed using FMRIB’s Software Library [FSL, v. 5.0.7. (29)] on the High-
Performance Computing system at Freie Universität Berlin. Statistical time
series analyses were performed using FMRIB’s improved linear model (FILM)
with local autocorrelation correction. We included 9 task-related regressors
and their temporal derivatives, denoting:

· face–gamble trials (βGamble, Neutral and βGamble, Fearful),
· parametric modulators representing gains (in euros; 6, 8, …, 20)

(βGain, Neutral and βGain, Fearful),
· parametric modulators representing losses (in euros; positively coded,

i.e., 6, 8,…, 20) (βLoss, Neutral and βLoss, Fearful),
· gender recognition trials per condition and for
· missed trials.
Each regressor was convolved with a double-gamma hemodynamic

response function (HRF), aligned with the onset of the events of interest,
i.e., from face onset or gamble onset (for the parametric modulators rep-
resenting gains and losses) until the end of the gamble or gender-question
presentation.

Statistical inference was performed with higher-level mixed-effects
(FLAME 1 and 2) comparisons of the first-level contrasts representing the
face–gamble onsets and parametric regressors per condition. Our group-
level model was informed by behavioral modeling, as we included baseline
loss aversion (λneutral) and emotion-induced changes in loss aversion (λfearful
− λneutral) as covariates.

For the ROI analysis, a false-discovery rate (FDR) correction with P < 0.05
and aminimum cluster extent of 15 voxels (k ≥ 15) was applied. For details on
the construction of our ROImask, see SI Methods. In ourwhole-brain analysis,
we used a cluster-defining threshold of uncorrected P < 0.001 (i.e., Z > 3.1)
and a family-wise error (FWE) cluster correction with P < 0.05.
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SI Methods 

Participants. We recruited 30 participants at Freie Universität Berlin. All partici-

pants were right-handed and had normal or corrected-to-normal vision. Eligibility 

was assessed with an fMRI safety and general health screening form. Three sub-

jects had to be excluded from the analysis: one was excluded because she did 

not understand the rules of the task (as assessed by a questionnaire) and two 

were excluded because they rejected all or nearly all lotteries, which made the 

parameter estimation in our behavioral modeling unreliable. Hence, the final 

analysis sample consisted of 27 participants (15 female; mean age 21.81 years 

[SD = 3.55 years]). All participants gave written informed consent prior to the ex-

periment, and the ethics committee at Freie Universität Berlin approved all pro-

cedures. Participants also completed a self-report questionnaire on psychopathic 

personality after the experiment (see below and SI Results). 

Decision-Making Task. Prior to the experiment, participants received an initial 

endowment of €20 in cash (7, 4) as well as detailed instructions about the exper-

iment and the incentive mechanism (see below). Subsequently, their understand-

ing was assessed through a brief questionnaire. Five training trials allowed sub-

jects to make themselves familiar with the subsequent decision-making task. 

The experiment consisted of a pseudo-randomized sequence of 128 gamble 

trials, distributed equally across two functional runs (i.e., 64 trials per run). In 

each trial, a different mixed gamble was presented in the form of a pie chart (Fig. 

1 A). Each gamble consisted of exactly two possible outcomes, one monetary 

gain and one monetary loss, that were associated with the same probability (i.e., 

50%). Each trial was uniquely and pseudo-randomly drawn from a symmetric 

gains/losses matrix that consisted of potential gains and losses ranging from ±€6 

to ±€20 in steps of €2 (8 × 8 = 64 gambles in total). To ensure a sufficient para-

metric range for subsequent statistical analysis, gains and losses were sampled 

from all four quadrants within the matrix per run (i.e., both low and high gains and 

low and high losses). The positioning of the gains and losses on the left and right 

sides of the pie chart was counterbalanced between subjects. Each decision trial 
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was presented for 3 seconds, and participants were asked to accept or reject the 

gamble offered by pressing one of two response buttons within this time window. 

Rejection implied choice of a sure payoff of €0, i.e., the status quo. The last re-

sponse within the 3-second time window was logged for analysis. At the end of 

the experimental session, one decision trial was randomly selected for payoff 

[random-incentive mechanism (28)]. 

Incentive Mechanism and Penalty for Missed Trials. Rejection of the gamble 

in the one decision trial that was randomly selected as the pay-off relevant one 

left the initial endowment of €20 unchanged. Acceptance of the respective gam-

ble could result in a loss that had to be paid/returned to the experimenter or a 

gain that was paid to the participant on top of the initial endowment. One of these 

two possibilities was probabilistically determined (i.e., each outcome had a prob-

ability of 50%). 

Prior to the experiment, participants were also informed that if no key was 

pressed within the time window of 3000 ms, they would pay a penalty of €1 if this 

trial was randomly selected for the final payment. This was supposed to incentiv-

ize subjects to always make a decision, thereby minimizing missed trials, and to 

perform the task with sufficient concentration. 

Affective Priming. Following the design of our previous behavioral study (4), 

each gamble in the experiment (but not in the training trials) was presented twice, 

once preceded by the image of a fearful face and once preceded by a neutral 

face. The face images served as an emotional or neutral prime, respectively. 

The images were taken from the well-validated FACES database (30). We 

used 64 face images  (32 young and middle-aged faces per gender) for priming 

of decision trials (another 4 male and 4 female faces were used for the gender 

recognition trials, see below). The combinations of gamble and facial identity 

were pseudo-randomized per participant and run, but identical in both conditions, 

i.e., only the emotional expression was manipulated for a specific gamble. Each 

face was presented once per priming condition (64 face-gamble trials per condi-

tion), and face identity was therefore repeated twice in total (within-subject de-

sign with 2 × 64 face–gamble combinations in total). Face gender was counter-

balanced across conditions. 
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We displayed the primes for a duration of 250 ms. This is within the 0–

300 ms range of stimulus onset asynchronies that has been found to elicit robust 

affective priming effects in classical priming studies (31). The priming procedure 

was framed as a gender recognition task. Participants were instructed to silently 

evaluate the gender of the displayed faces; in 16 pseudo-randomly interspersed 

explicit gender recognition trials, they were asked to indicate the gender via but-

ton press, instead of being shown the lottery choice task  (for more details, see 

below). In sum, there were 144 trials (72 per run): 128 face–gamble trials (64 per 

run) and 16 face–gender question trials (8 per run). The intertrial interval (ITI) 

was jittered and ranged from 2 to 8 s (Poisson-distributed; mean 4 s). The se-

quence of events per trial is depicted in Fig. 1 A. 

Gender Recognition Task. There are at least two rationales for the use of a 

gender recognition-framed task. First, processing of emotional faces embedded 

in a gender recognition task (i.e., relatively implicit emotion processing) has been 

associated with greater amygdala activation than processing of faces presented 

in an explicit emotion identification task (32). Second, implicit emotion processing 

in such a task resembles predominantly automatic or implicit processes in every-

day life (33) and thus has high ecological validity. 

The explicit gender recognition trials were a combination of a facial prime, 

followed by a gender-recognition question (i.e., “Gender?” with two response 

options, “male” and “female”, all presented in German) that was displayed in-

stead of mixed gambles in these trials. Requiring responses to only a few ran-

domly interspersed explicit gender questions ensured continuous performance of 

gender recognition and implicit emotion processing while at the same time avoid-

ing motoric responses in the majority of trials (i.e., gamble trials) that otherwise 

may interfere with the subsequent decisions. All participants included in the final 

sample showed a minimal accuracy of 87.5% (modal value: 100%) in the gender 

recognition task, indicating that the primes were processed adequately. 

Psychopathic Personality. Psychopathic personality was assessed via a 58-

item self-report questionnaire, the Triarchic Psychopathy Measure [TriPM (34), 

German translation by H. Eisenbarth] which was developed to operationalize the 

triarchic model of psychopathy (35). It consists of three scales that attempt to 
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measure the 3 phenotypic domains of psychopathy postulated by the triarchic 

model: boldness (19 items, e.g., “I’m afraid of far fewer things than most peo-

ple”), meanness (19 items, e.g., “How other people feel is important to me” [re-

verse-coded]) and disinhibition (20 items, e.g., “I often act on immediate needs”). 

Respondents are required to rate the degree to which each item applies to them 

using a 4-point Likert scale ranging from 0 (false) to 3 (true). 

The TriPM has good convergent and discriminant construct validity with re-

spect to other measures of psychopathy as well as conceptually relevant normal-

range and dysfunctional personality traits (36). It has also satisfactory internal 

consistency. For instance, the same study reported Cronbach’s alphas of .77 for 

boldness, .88 for meanness, and .84 for disinhibition in a forensic sample. In the 

present non-forensic, German-speaking sample, Cronbach’s alphas were .78 for 

boldness, .72 for meanness, .81 for disinhibition, and .75 for the total score. In 

the present sample, mean scores were 34.19 (SD = 5.71) for boldness, 12.41 

(SD = 5.20) for meanness, 15.19 (SD = 6.75) for disinhibition, and 61.78 (SD = 

10.28) for the total score. 

fMRI Acquisition. Scanning was performed at the Center for Cognitive Neuro-

science Berlin (CCNB) at Freie Universität Berlin, Germany, using a 3-Tesla 

Magnetom Trio scanner (Siemens Healthcare Diagnostics GmbH, Erlangen, 

Germany) and a 12-channel head coil. Prior to the experiment, a brief structural 

scan was used to adjust the acquisition planes along the anterior–posterior 

commissure line for the functional runs. During the experiment, functional images 

were acquired as T2*-weighted gradient-echo-planar images (repetition time = 

2 s, echo time = 30 ms, matrix = 64 × 64, flip angle = 70°, field of view = 192 mm, 

interslice gap = 0.6 mm). A total of 37 oblique-axial slices (3 × 3 × 3 mm voxels) 

parallel to the anterior commissure–posterior commissure line were collected per 

volume. A total of 270 volumes were collected per experimental run, with 2 runs 

per participant (each of approximately 9 min duration). Stimuli were presented on 

LCD goggles and responses were recorded using the software package Presen-

tation (Neurobehavioral Systems, Inc.). Following the experiment, detailed ana-

tomical images were acquired using a T1-weighted MP-RAGE protocol 

(256 × 256 matrix, 176 sagittal slices of 1 mm thickness) and served for registra-

tion in the preprocessing. 
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fMRI Preprocessing. Preprocessing included within-run motion correction to the 

middle volume, slice-timing correction, brain extraction, and spatial smoothing 

with a Gaussian kernel of 5 mm full-width at half-maximum (FWHM). Subse-

quently, we used an ICA-based strategy for automatic removal of motion artifacts 

[ICA-AROMA (37) see below for more details]. After denoising, we applied high-

pass temporal filtering with a cutoff of 100 s. Functional images were co-

registered to each participant’s structural image using boundary-based registra-

tion [BBR (38)] and then normalized to the Montreal Neurological Institute (MNI) 

space (resolution 2 × 2 × 2 mm3) via nonlinear registration with a warp resolution 

of 10 mm. 

ICA-AROMA. ICA-AROMA (37) is a well-validated procedure to correct for sec-

ondary effects of head motion. This toolbox performs data denoising in three 

steps: First, it runs an independent-component analysis (ICA), i.e., a multivariate 

exploratory decomposition into independent components [MELODIC (39)]; se-

cond, it classifies independent components into signals of interest or motion-

related noise based on multiple criteria (i.e., high-frequency content, correlation 

with motion parameters, edge fraction, and cerebrospinal fraction); at last, it re-

moves noise components from the data via FSL’s regfilt function. 

ICA-AROMA has been shown to outperform several other motion correction 

procedures, including a relatively sophisticated Volterra expansion with 24 motion 

parameters (40). 

ROI Mask. For the construction of our ROI mask, we used the Jülich histological 

atlas (41) to delineate the amygdala, which allows distinguishing between the 

basolateral, centromedial, and superficial amygdala. The Harvard–Oxford sub-

cortical and cortical structural atlases (42) were used to delineate the insula and 

striatum ROIs as well as for defining brain regions (other than the amygdala) in 

our whole-brain results. For these three ROIs, we included only voxels that had 

50% or greater probability of belonging to these structures. Given that the 

vmPFC is not consistently delineated in the literature, we used a meta-analytic 

vmPFC mask created by Wager et al. (https://canlabweb.colorado.edu/wiki/ 

doku.php/help/core/brain_masks). Specifically, it is based on a reverse-inference 
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map for “vmPFC” from the meta-analytic database “neurosynth” 

(http://www.neurosynth.org/). Wager et al. then thresholded the map at P < 

0.0001, after smoothing the Z-map with a 6 mm FWHM kernel and averaging Z-

scores across the left and right hemisphere to create a symmetrical map. In total, 

the complete ROI mask (i.e., amygdala, striatum, vmPFC, and insula) encom-

passed 50658 mm³, 6321 voxels. 
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SI Results 

Decision Noise Is Constant Across Conditions. Our regression model also 

included a parameter for decision noise (σ), which indicates the inconsistency of 

participants’ choices (see Methods). Decision noise did not differ significantly 

between the neutral (σneutral = 1.61, SD = 1.002) and the fearful condition (σfearful = 

1.64, SD = 1.003), t(26) = −0.257, P = 0.8. Thus, emotion-induced changes in 

risk aversion could not be explained by changes in decision noise. This supports 

our interpretation that the observed changes in risk aversion were due to chang-

es in loss aversion. 

Emotion-Induced Increases in Loss Aversion Are Related to Faster Re-
sponses. Mean response times did not differ significantly between the neutral 

(1190.16 ms, SD = 173.95 ms) and the fearful condition (1189.27 ms, SD = 

169.72 ms), t(26) = –0.082, P = 0.935. However, emotion-induced increases in 

loss aversion were associated with faster responses in the fearful relative to the 

neutral condition between-subjects, r = –.53, P = 0.004. Baseline loss aversion 

was also associated with faster responses in the neutral condition between-

subjects, r = –.49, P = 0.009. These findings could indicate a greater subjective 

clarity of the appetitiveness and aversiveness of the gambles with greater loss 

aversion. 

Psychopathic Personality Attenuates Emotion-Induced Effects on Loss 
Aversion via Altered Amygdalar Value Responses. Psychopathy, or psycho-

pathic personality, is characterized by a range of behavioral and affective-

interpersonal features such as antisocial behavior, impulsivity, callousness and 

lack of empathy (35). Psychopathy is often regarded as a multidimensional con-

struct. For instance, the triarchic model of psychopathy (35) proposes 3 do-

mains—boldness, meanness, and disinhibition—as phenotypic expressions of 

different etiological-developmental factors. There is strong empirical support for a 

multidimensional perspective. Several studies in both forensic and community 

samples found differential effects of psychopathic traits in diverse domains such 

as emotion processing (43), error monitoring and feedback processing (44, 45). 
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Using the Psychopathy Personality Inventory-Revised [PPI-R (46)], we found 

that psychopathic personality moderated the effects of incidental fear cues on 

loss aversion in our previous behavioral study (4). Specifically, participants scor-

ing high in fearless dominance (i.e., affective-interpersonal features such as so-

cial potency and stress immunity) displayed attenuated or even a lack of emo-

tion-induced increases in monetary loss aversion. By contrast, self-centered im-

pulsivity (i.e., impulsive-antisocial features) had no moderating effect.  

In the following analysis, we aimed to replicate this observation and explore 

whether the personality effect is mediated by altered value responses in the 

amygdala, given that affective-interpersonal features of psychopathy have been 

related to amygdala hypoactivation during emotion processing (43). Using the 

Triarchic Personality Measure [TriPM (34), see SI Methods], we hypothesized 

that in particular TriPM boldness and meanness attenuate the influence of inci-

dental fear cues on loss aversion, because boldness and meanness are both 

thought to reflect an underlying fear-reactivity deficit (35). Moreover, boldness 

strongly overlaps with PPI-R fearless dominance (35, 36) for which we observed 

the moderation effect in our previous behavioral study (4). Meanness reflects 

callousness and low empathy, among others (35, 36), also indicators of reduced 

affective reactivity and of disregard for others’ needs (signaled, e.g., in the face). 

At the neural level, we hypothesized that psychopathy-related attenuations of 

emotional effects on loss aversion are mediated by attenuations of emotion-

induced amygdala activations for losses. 

First, in a multiple regression, we regressed emotion-induced changes in 

loss aversion (λfearful − λneutral) on boldness, meanness, and disinhibition simulta-

neously. The overall model was significant, R = 0.545, R2
adjusted = 0.205, F(3,23) = 

3.233, P = 0.041. Emotion-induced changes in loss aversion were significantly 

predicted only by meanness, β = −0.57 (SE = 0.19), P = 0.007, which indicates 

attenuated or even absent emotion-induced increases in loss aversion in partici-

pants that scored higher in meanness (all other Ps > 0.182). By contrast, in an-

other model, psychopathic traits did not predict loss aversion in the neutral condi-

tion (overall model: P = 0.686). 

Next, in two separate multiple regressions, we regressed either emotion-

induced changes in amygdala activity to losses or to gains on all psychopathic 

traits simultaneously. For each participant, mean gain/loss-related parameter 
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estimates were extracted for the right superficial-centromedial amygdala cluster 

(peak: x = 22, y = −8, z = −8) that displayed a positive association between emo-

tion-induced increases in activations for losses and emotion-induced increases in 

monetary loss aversion. The overall model for loss responses was significant, R = 

0.578, R2
adjusted = 0.248, F(3,23) = 3.852, P = 0.023. Emotion-induced changes in 

loss aversion were significantly predicted only by meanness, β = −0.56 (SE = 

0.19), P = 0.006, which indicates attenuated or even absent emotion-induced 

increases in activations for losses in participants that scored higher in meanness. 

The other psychopathic traits were no significant predictors (both Ps > 0.115). 

The overall model for gain responses was not significant, P = 0.168, and neither 

were its predictors (all Ps > 0.073). Another model which regressed amygdala 

deactivations in the neutral condition (in the cluster displaying neural loss aver-

sion) on psychopathic traits was also not significant, P = 0.173, and neither were 

its predictors (all Ps > 0.098). 

To test whether attenuated emotion-induced changes in amygdala activa-

tions to losses mediated the negative relationship between meanness and emo-

tion-induced changes in loss aversion, we set up a mediation model using the 

PROCESS macro for SPSS (47) and model variant 4 (for visualizations of all 

available models, see http://afhayes.com/public/templates.pdf). Specifically, Z-

standardized meanness scores served as the independent variable and Z-

standardized emotion-induced changes in loss aversion (λfearful − λneutral) repre-

sented the dependent variable. For the mediator variable, we used the same 

mean loss-related parameter estimates for the right amygdala cluster from 

above, which displayed a positive association between emotion-induced increas-

es in activations for losses and emotion-induced increases in loss aversion. Fur-

thermore, we controlled for boldness, disinhibition, and baseline loss aversion 

(λneutral) by adding their Z-standardized values as covariates. Bias-corrected boot-

strapping (50,000 samples) was used to generate 95% confidence intervals. 

The results of the mediation model are depicted in Figure S2. Again, higher 

scores in meanness were associated with attenuated emotion-induced increases 

in loss aversion, βtotal = −0.67, SE = 0.18, P = 0.001. This effect was reduced, but 

still significant, when the mediator (i.e., changes in amygdala activations to loss-

es) was taken into account, βdirect = −0.42, SE = 0.18, P = 0.03. Crucially, the 

negative effect of meanness on emotion-induced increases in loss aversion was 
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partially mediated by a negative effect of meanness on emotion-induced increas-

es in amygdala activations to losses, βindirect = −0.24, SE = 0.15, 95% CI [−0.60, 

−0.02]. In other words, participants scoring higher in meanness had reduced 

emotion-induced increases in amygdala activations for losses and, in turn, re-

duced increases in loss aversion compared to lower-scoring participants. 

Our results are consistent with the notion that meanness is a phenotypic ex-

pression of deficient fear reactivity (35). Another possibility is that reactivity to 

fearful faces was reduced due to empathy deficits (35, 36) rather than a general 

fear deficit. Interestingly, we did not observe a moderation effect for boldness, 

although it is also thought to reflect reduced fear reactivity (35) and PPI-R fear-

less dominance (strong overlap with boldness) attenuated emotion-induced 

changes in loss aversion in our previous behavioral study (4). This difference 

might be the result of limited statistical power, given the moderate sample size. 

Alternatively, it might also reflect a true context-dependent effect (e.g., due to 

stressful scanner environment) or non-shared variance of the TriPM and PPI-R 

(36). By contrast, in neither study did we observe a moderation effect of TriPM 

disinhibition or related PPI-R self-centered impulsivity, consistent with their entire-

ly different affective profile [i.e., enhanced and not reduced emotional reactivity 

(35, 36)].  

With regard to the main analysis of the present paper, these findings corrob-

orate the interpretation that the observed effects of incidental fear cues on neural 

value processing and monetary loss aversion were indeed affective processes. 

Furthermore, the unique effect of meanness on emotion-induced changes in loss 

aversion and associated amygdala activations for losses, but not on loss aver-

sion and amygdala deactivations for losses in the neutral condition, provides fur-

ther support for the idea of context-dependent valuation mechanisms. 
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Fig. S1. Emotion-induced changes in vmPFC value coding (A) Emotion-induced increases in 
activations for losses were associated with emotion-induced increases in loss aversion in the 
vmPFC (green). (B) Parameter estimates for the gain and loss regressors per condition for the 
vmPFC cluster (C) Relationships between emotion-induced changes in gain and loss responses 
and changes in behavioral loss aversion in the vmPFC cluster. Greater activations for losses 
significantly predicted emotion-induced increases in loss aversion (partial regression plot, i.e., 
controlling for λneutral). 
Note: All statistical tests were small-volume FDR-corrected with P < 0.05 and k ≥ 15. Error 
bars/lines represent 95% CIs (including between-subject variance). 
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Fig. S2. TriPM meanness attenuated emotion-induced increases in loss aversion, and this effect 
was partially mediated by attenuated emotion-induced increases in amygdala activations for 
losses. The mediation model illustrates total, direct, and indirect effects of TriPM meanness on 
emotion-induced changes in monetary loss aversion. β coefficients represent standardized 
regression coefficients while controlling for boldness, disinhibition and loss aversion in the neutral 
condition (not illustrated). βtotal is the total effect of meanness on emotion-induced changes in loss 
aversion, βdirect is the direct effect after the mediator (i.e., emotion-induced changes in amygdala 
activations for losses) had been taken into account, and βindirect is the indirect effect, i.e., the effect 
of meanness on emotion-induced changes in loss aversion that was mediated by a change in 
amygdala activations for losses. For the indirect effect, bias-corrected bootstrapping (50,000 
bootstrap samples) provided a 95% confidence interval that did not span 0, indicating a significant 
partial mediation. 
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Table S1 
Neural responses in the neutral condition - ROI analysis 
(small-volume, voxel-wise FDR correction with P < 0.05 and spatial extent threshold of k ≥ 15 voxels): 
No. of voxels Brain region1 Hemisphere2 MNI (peak)  Z-value 

(peak) x y z 
        
Positive value coding: 
 
Activations for gains (βGain, Neutral > 0) 
265 Caudate, Nucl. Accumbens, Putamen R 8 8 2  4.36 
223 Caudate, Nucl. Accumbens, Putamen L -12 12 0  3.99 
120 Insular Cortex R 34 20 -4  5.36 
103 Paracingulate Gyrus R/L 4 54 2  3.54 
94 Insular Cortex L -36 18 -8  4.31 
26 Putamen L -28 6 -2  2.58 
20 Putamen R 28 -4 10  2.68 
        
Greater activations for gains with increasing loss aversion 
(Positive partial correlation between λNeutral and βGain, Neutral) 
106 Putamen, Nucleus Accumbens L -14 8 -6  3.14 
62 Putamen, Caudate R 22 14 -6  2.51 
48 Insular Cortex L -34 18 -8  2.77 
25 Putamen L -24 -2 4  2.81 
23 Caudate L -8 16 6  2.43 
20 Insular Cortex L -38 -6 8  2.46 
        
Deactivations for losses (βLoss, Neutral < 0) 
561 Caudate, Nucl. Accumbens, Putamen R 14 18 -4  5.63 
503 Caudate, Nucl. Accumbens, Putamen L -8 6 4  5.48 
276 Paracingulate Gyrus R/L 2 46 2  4.6 
189 Insular Cortex R 34 22 -4  4.86 
137 Insular Cortex L -32 20 -6  5.14 
        
Greater deactivations for losses with increasing loss aversion 
(Negative partial correlation between λNeutral and βLoss, Neutral) 
212 Caudate L -10 2 14  4.13 
120 Caudate R 8 8 2  3.74 
114 Amygdala (SF, CM, BL), Putamen R 24 -2 -10  4.06 
79 Insular Cortex L -40 16 -6  3.15 
67 Insular Cortex R 34 16 0  3.04 
61 Putamen L -24 4 -8  3.02 
23 Putamen L -22 6 10  2.41 
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Activations for gains + deactivations for losses  
(conjunction of βGain, Neutral > 0 and βLoss, Neutral < 0 with k ≥ 5)3 
210 Caudate, Nucl. Accumbens, Putamen R - - -  - 
207 Caudate, Nucl. Accumbens, Putamen L - - -  - 
115 Insular Cortex L - - -  - 
84 Insular Cortex R - - -  - 
81 Paracingulate Cortex, Frontal Pole R/L - - -  - 
9 Putamen L - - -  - 
        
Neural loss aversion  (−βLoss, Neutral − βGain, Neutral > 0) 
259 Putamen, Nucl. Accumbens, Caudate R 22 14 -6  4.04 
185 Nucl. Accumbens, Caudate, Putamen L -10 10 -12  2.89 
30 Insular Cortex R 42 -2 -8  2.47 
19 Insular Cortex L -38 10 0  2.26 
16 Insular Cortex R 36 14 0  2.49 
        
Greater neural loss aversion with increasing loss aversion 
(Positive partial correlation between λNeutral and −βLoss, Neutral − βGain, Neutral) 
104 Caudate L -10 2 14  3.25 
60 Amygdala (SF, CM), Putamen R 24 -4 -8  2.94 
33 Paracingulate Gyrus, Frontal Medial C. L/R -2 36 -14  2.7 
17 Insular Cortex R 38 16 2  2.63 
17 Paracingulate Gyrus R 10 54 -4  2.33 
15 Caudate R 12 18 10  2.43 
        
Negative value coding: 
 
Activations for losses (βLoss, Neutral   > 0) 
257 Frontal Pole, Frontal Medial Cortex L/R -2 58 -14  4.04 
16 Amygdala (BL) L -30 -4 -24  2.71 
        
Deactivations for gains (βGain, Neutral < 0) 
232 Frontal Pole, Frontal Medial Cortex R/L 0 56 -12  2.91 
17 Insular Cortex L -36 -16 10  2.87 
        
Greater deactivations for gains with increasing loss aversion 
(Negative partial correlation between λNeutral and βGain, Neutral) 
121 Paracingulate Gyrus, Frontal Med. C. R/L 10 52 -4  2.54 
29 Subcallosal Cortex, rACC R/L 0 26 -2  2.47 
        
Activations for losses + deactivations for gains  
(conjunction of βLoss, Neutral   > 0 and βGain, Neutral < 0 with k ≥ 5)3 
105 Frontal Pole, Frontal Medial Cortex R/L - - -  - 
6 Frontal Medial Cortex R/L - - -  - 
1 The second column lists the brain regions of all significant voxels based on the Jülich Histological Atlas 
for the amygdala and the Harvard-Oxford Cortical-Subcortical Atlases for all other regions. 
2 Hemispheric localization of the cluster. R = Right hemisphere, L = Left hemisphere. 3 Conjunctions for 
FDR-based statistics are merely the overlap of significant voxels. Here, peak statistics in the list are left 
empty, because there exist separate statistics for gain and loss effects. 
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Table S2 
Neural responses in the neutral condition – Whole-brain analysis 
(cluster-forming threshold of P < 0.001 and FWE-corrected with P < 0.05): 
No. of voxels Brain region1 Hemisphere2 MNI (peak)  Z-value 

(peak) x y z 
 
Positive value coding: 
 
Activations for gains (βGain, Neutral > 0) 
2054 Supramarginal Gyrus R 52 -36 56  4.89 
912 Lateral Occipital Cortex L -22 -64 40  4.34 
844 Paracingulate Cortex R/L 2 34 34  4.79 
576 Frontal Pole R 50 40 24  4.49 
330 Cerebellum L -42 -70 -42  4.34 
310 Insular Cortex R 30 24 8  4.38 
195 Frontal Pole R 44 52 10  4.38 
189 Lateral Occipital Cortex R 14 -78 54  4.22 
128 Posterior Cingulate Cortex R/L 0 -30 36  4.42 
124 Lingual Gyrus/Cerebellum L -8 -82 -22  4.07 
123 Middle Frontal Gyrus R 32 8 58  4.4 
108 Inferior Temporal Gyrus R 62 -60 -12  3.94 
96 Caudate R 8 8 0  4.05 
83 Occipital Pole R 28 -90 10  3.92 
83 Insular Cortex L -32 18 -10  3.97 
73 Occipital Pole L -10 -104 -8  4.11 
67 Inferior Temporal Gyrus L -54 -62 -14  4 
        
Deactivations for losses (βLoss, Neutral < 0) 
9379 Lateral Occipital Cortex R/L 32 -64 52  6.62 
1776 Paracingulate Gyrus R/L 2 22 40  5.99 
1418 Frontal Pole R 44 40 14  5.65 
617 Middle Frontal Gyrus L -48 10 32  5.31 
554 Occipital Fusiform Gyrus/Cerebellum L/R -14 -80 -20  4.33 
491 Middle Frontal Gyrus R 34 4 68  4.23 
465 Caudate R 14 18 -2  4.53 
461 Caudate L -8 10 0  4.48 
380 Insular Cortex L -30 24 0  4.84 
320 Frontal Orbital Cortex R 42 20 -10  4.9 
247 Thalamus R/L 12 -14 8  4.2 
231 Lingual Gyrus L/R -2 -82 0  4.25 
211 Posterior Cingulate Cortex R/L 4 -34 28  4.53 
181 Brain Stem R/L 2 -26 -20  4.17 
129 Cerebellum L 38 -62 -40  4.32 
111 Inferior Temporal Gyrus R 56 -54 -10  4.01 
90 Supracalcarine Cortex R 14 -62 14  3.91 
81 Superior Frontal Gyrus L -24 6 62  4.17 
76 Anterior Cingulate Cortex L/R -2 2 30  4.09 

173



	
16 

Greater deactivations for losses with increasing loss aversion 
(Negative partial correlation between λNeutral and βLoss, Neutral) 
1611 Cerebellum R/L 8 -80 -24  5.39 
525 Lateral Occipital Cortex R/L 12 -80 44  4.14 
444 Superior Parietal Lobule L -30 -54 48  4.26 
411 Lateral Occipital Cortex R 26 -64 56  4.27 
226 Frontal Pole R 44 42 14  4.5 
218 Paracingulate Gyrus L/R -6 28 32  4.56 
163 Lateral Occipital Cortex R 38 -88 0  3.99 
151 Cerebellum R 32 -64 -32  4.5 
138 Inferior Frontal Gyrus L -42 18 26  3.99 
120 Occipital Fusiform Gyrus L -28 -82 -12  4.24 
93 Caudate L -10 2 14  4.13 
75 Posterior Cingulate Gyrus L/R -2 -30 26  3.93 
        
Activations for gains + deactivations for losses  
(conjunction of βGain, Neutral > 0 and βLoss, Neutral < 0)3 
1628 Superior Parietal Lobule R 40 -44 52  5.46 
975 Supramarginal Gyrus L -46 -40 48  5.32 
667 Paracingulate Gyrus R/L 2 32 34  5.55 
285 Frontal Pole R 50 40 28  4.92 
229 Cerebellum L -40 -62 -42  4.59 
217 Lateral Occipital Cortex R 14 -78 54  4.5 
205 Frontal Orbital Cortex R 38 18 -12  4.72 
        
Neural loss aversion  (−βLoss, Neutral − βGain, Neutral > 0) 
126 Lateral Occipital Cortex L -10 -64 56  3.89 
 
1 The second column lists the brain regions of the peak voxels of significant clusters based on the 
Harvard-Oxford Cortical-Subcortical Atlases. 2 Hemispheric localization of the cluster. R = Right 
hemisphere, L = Left hemisphere. 3 We used the script easythresh_conj.sh for a cluster-based conjunction 
analysis (http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/scripts/fsl/) 
	

	 	

174



	
17 

Table S3 
Condition differences – ROI analysis 
(small-volume, voxel-wise FDR correction with P < 0.05 and spatial extent threshold of k ≥ 15 voxels): 
No. of voxels Brain region1 Hemisphere2 MNI (peak)  Z-value 

(peak) x y z 
        
Increased activity in prime-gamble trials in fearful condition relative to the neutral condition 
(βGamble, Fearful − βGamble, Neutral > 0) 
88 Amygdala (BL, SF) R 24 -2 -24  2.74 
49 Amygdala (BL) L -28 -6 -28  3.74 
28 Amygdala (SF) L -16 -6 -18  2.93 
24 Caudate R 10 16 8  2.46 
        
Emotion-induced shift towards negative value coding: 
        
Increased activations for losses in the fearful condition relative to the neutral condition 
βLoss, Fearful − βLoss, Neutral > 0 

267 Caudate, Putamen L -10 10 6  3.29 
203 Paracingulate Gyrus, rACC R/L 2 48 2  3.49 
180 Putamen, Amygdala (SF, CM, BL) R 20 12 -6  3.34 
76 Putamen, Amygdala (SF, CM) L -30 -6 2  2.47 
68 Caudate R 14 10 8  3.19 
62 Insular Cortex L -36 12 0  3.16 
38 Putamen R 30 -8 10  2.99 
37 Amygdala (BL) R 24 -6 -26  2.81 
26 Insular Cortex R 44 2 0  2.95 
20 Insular Cortex R 34 16 4  2.57 
16 Insular Cortex R 34 14 -16  2.82 
15 Amygdala (BL) L -24 -10 -24  2.5 

- Within these regions: 
a) Activations for losses in the fearful condition 
    (conjunction of βLoss, Fearful − βLoss, Neutral > 0 and βLoss, Fearful > 0 with k ≥ 5)3  

39 Putamen, Amygdala (SF, CM) L -30 -6 2  2.47 
34 Paracingulate Gyrus, Frontal Medial C. R/L 4 40 -10  2.5 
31 Putamen R 30 -8 10  2.99 
30 Amygdala (BL) R 24 -6 -26  2.81 
5 Amygdala (SF, BL) R 24 -8 -10  2.04 
5 Amygdala (BL) L -20 -10 -22  2.17 
        
b) Reduced deactivations for losses in the fearful condition relative to the neutral condition 
    (conjunction of βLoss, Fearful − βLoss, Neutral > 0, βLoss, Neutral < 0 and βLoss, Neutral  ≤ 0 with k ≥ 5)3   

237 Caudate, Putamen L -10 10 6  3.29 
149 Putamen R 20 12 -6  3.34 
128 Paracingulate Gyrus, rACC R/L 2 48 2  3.49 
68 Caudate R 14 10 8  3.19 
50 Insular Cortex L -36 12 0  3.16 
20 Insular Cortex R 34 16 4  2.57 
16 Insular Cortex R 34 14 -16  2.82 
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Emotion-induced increases in activations for losses associated with emotion-induced increases in loss 
aversion (Positive partial correlation between λFearful – λNeutral and βLoss, Fearful − βLoss, Neutral > 0) 
78 Frontal Medial Cortex R/L 6 38 -18  2.57 
25 Amygdala (SF, CM) R 22 -8 -8  2.53 
20 Frontal Pole R/L 2 58 -14  2 
18 Insular Cortex R 38 4 2  2.12 
16 Putamen R 26 -8 12  2.64 
        
Reduced activations for gains in the fearful condition relative to the neutral condition 
βGain, Fearful – βGain, Neutral < 0 

79 Putamen, Amygdala (SF, CM, BL) R 30 4 -6  2.65 
74 Frontal Pole R/L 2 58 2  3.02 
64 Putamen L -26 12 -4  2.98 
43 Putamen R 28 -2 10  3.15 
30 Putamen L -26 -2 14  2.37 
16 Insular Cortex L -38 -6 -2  2.97 
14 Putamen R 28 12 2  2.04 
        
- Within these regions: 
a) Deactivations for gains in the fearful condition 
    (conjunction of βGain, Fearful – βGain, Neutral < 0 and βGain, Fearful  < 0) with k ≥ 5)3  

40 Putamen, Amygdala (CM) R 30 4 -6  2.65 
27 Putamen L -26 12 -4  2.98 
26 Frontal Pole R/L 0 60 2  2.85 
18 Putamen L -26 -2 14  2.37 
15 Insular Cortex L -38 -6 -2  2.97 
14 Amygdala (SF, BL) R 20 -8 -12  2.1 
8 Putamen R 24 10 4  1.9 
5 Putamen L -18 12 -2  2.57 
        
b) Weaker activations for gains in the fearful condition relative to the neutral condition 
    (conjunction of βGain, Fearful – βGain, Neutral < 0 and βGain, Neutral  > 0 and βGain, Fearful  ≥ 0 with k ≥ 5)3   

29 Frontal Pole R/L 2 58 2  3.02 
19 Putamen R 28 -2 10  3.15 
15 Putamen L -28 8 -2  2.54 
9 Putamen L -18 10 0  2.33 
        
Emotion-induced increases in activations for gains associated with emotion-induced increases in loss 
aversion (Positive partial correlation between λFearful – λNeutral and βGain, Fearful – βGain, Neutral > 0) 
43 Caudate R 14 14 8  2.62 
20 Insular Cortex L -38 -16 8  2.55 
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Reduced neural loss aversion in the fearful condition 
[(−βLoss, Fearful − βGain, Fearful) − (−βLoss, Neutral – βGain, Neutral) < 0] 
122 Caudate L -8 6 4  2.77 
62 Putamen, Nucl. Accumbens, Caudate R 22 14 -6  2.74 
42 Paracingulate Gyrus, rACC R/L 0 48 4  3.28 
40 Caudate R 14 10 8  2.16 
29 Frontal Medial Cortex R/L 2 38 -16  2.91 
27 Cingulate Cortex L -40 14 -2  2.42 
19 Amygdala (BL) R 24 -6 -26  2.98 
        
Emotion-induced decreases in neural loss aversion associated with emotion-induced increases in 
behavioral loss aversion {Negative partial correlation between λFearful – λNeutral and 
[(−βLoss, Fearful − βGain, Fearful) − (−βLoss, Neutral – βGain, Neutral)]} 
30 Putamen L -32 -14 -6  2.43 
22 Insular Cortex L -38 -14 6  2.58 
22 Frontal Pole R 2 58 -4  2.37 
17 Insular Cortex R 36 -16 16  2.66 
15 Caudate L -12 14 12  2.37 
15 Putamen R 28 -8 12  2.63 
1 The second column lists the brain regions of all significant voxels based on the Jülich Histological Atlas 
for the amygdala and the Harvard-Oxford Cortical-Subcortical Atlases for all other regions. 
2 Hemispheric localization of the cluster. R = Right hemisphere, L = Left hemisphere. 3 Conjunctions for 
FDR-based statistics are merely the overlap of significant voxels. Here, we list peak statistics for the 
condition differences. 
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