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5 Nonexistence of periodic solutions

We want to exclude the possibility of periodic geometries on closed manifolds M and follow the
ideas in [Per02, §2,§3]. The technical description of such a solution is given by:

Definition 5.1 A solution of (2.5) is called a breather, if there exists t1, t2 ∈ [0, T ), t1 < t2 such
that g(t2) = α · (ϕ∗g)(t1) and u(t2) = (ϕ∗u)(t1) hold for a constant α ∈ and a diffeomorphism
ϕ. The cases α = 1, α > 1, α < 1 correspond to steady, expanding, and shrinking breathers.

We use the monotonicity of E given by Lemma 2.13 and the monotonicity of W from Theorem
4.4 to prove that the only existing breathers are soliton solutions. Defining

λ(g, u) := inf
f∈C∞(M)

{

E(g, u, f)

∣
∣
∣
∣

∫

M
e−fdV = 1

}

for (g, u) ∈ M(M)×C∞(M), we get that λ is attained by a smooth function f̄ . To see this, we
replace f by φ := e−f/2 and get a new functional:

Ẽ(g, u, φ) :=

∫

M

(
4|dφ|2 + Sφ2

)
dV .

This provides us with an equivalent definition for λ:

λ(g, u) = inf
φ∈C∞(M)

{

Ẽ(g, u, φ)

∣
∣
∣
∣

∫

M
φ2dV = 1

}

.

Thus λ is the first eigenvalue of the operator O(φ) := −4∆φ+ Sφ which has a smooth positive
minimizer φ̄. Since we will prove a similar statement for W in Proposition 5.8, we do not go
into details here. Going back to f̄ := −2 ln φ̄, we calculate that a minimizer f̄ for λ satisfies:

2∆f̄ − |df̄ |2 + S = λ . (5.1)

Moreover λ is invariant under diffeomorphisms since E is. We also prove that λ(t) is monotone
when evaluated on a solution to (2.4):

Lemma 5.2 Let (g, u)(t) be a solution to (2.5) on [0, T ) ×M . Then λ(t) := λ(g(t), u(t)) is
nondecreasing in t. If d

dtλ(t0) ≡ 0, the solution at time t0 is a gradient soliton satisfying

Sy + ∇2f = 0 and ∆u− du(∇f) = 0

where f is a minimizer for λ at time t0.

Proof:

Fix t0 and let f̄ be a minimizer for λ at time t0. Solving ∂tf = −∆f − S backwards in time
with initial data f̄ at t0, we conclude from Lemma 2.13 for all t < t0 that

λ(t) ≤ E(g, u, f)(t) ≤ E(g(t0), u(t0), f̄) = λ(t0) .
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Therefore λ(t) is nondecreasing in time. The equality case follows directly from the equality
case for E.

In the following, we identify a soliton solution g(t) on [0, T ) ×M with its representative g at
a fixed time, for example at time t = 0, and work with the corresponding elliptic equation as
described after Definition 2.2. We get from the above considerations:

Proposition 5.3 Let (g, u)(t) be a steady breather on a closed manifold M . Then it necessarily
is a steady soliton and, moreover, (M, g) is Ricci-flat and u is constant.

Proof:

The monotonicity of E (see Lemma 2.13) shows that λ(g(t), u(t)) is nondecreasing in time.
On a steady breather we have λ(t1) = λ(t2) for two times t1, t2 since λ is invariant under
diffeomorphisms. Therefore we can conclude from Lemma 5.2 that on [t1, t2]

Sy + ∇2f̄ = 0 (5.2)

∆u− du(∇f̄) = 0 (5.3)

holds where f̄(t) is a minimizer for λ(t). Thus the breather is a steady soliton solution. Taking
the trace in equation (5.2), we have

0 = S + ∆f̄ ,

and by (5.1) f̄ satisfies

λ = 2∆f̄ − |df̄ |2 + S = ∆f̄ − |df̄ |2 . (5.4)

Integrating, we get

λ · 1 =

∫

M
λe−f̄dV =

∫

M

(
∆f̄ − |df̄ |2

)
e−f̄dV = 0

by (4.3) such that we conclude from (5.4)

∆f̄ = |df̄ |2 .

Another integration shows that f̄ must be a constant. But then ∆u = 0 from (5.3), showing
that u is constant, too. Together this implies that Rc = 0.

To deal with expanding breathers, we define a scaling invariant quantity

λ̄(t) := λ̄(g, u)(t) := λ(g, u)(t) · V (g(t))
2

n

where V denotes the volume of M with respect to g(t).

Lemma 5.4 λ̄(t) is scaling invariant with respect to the scaling g̃ := α · g and f̃ := f + n
2 lnα

for all constants α > 0.
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Proof:

Observe that we also have to scale f since it still has to satisfy the normalization constraint

∫

M
e−f̃dṼ =

∫

M
e−feln(α−

n
2 )α

n
2 dV =

∫

M
efdV = 1

with respect to the new volume element dVg̃. Then we can calculate

R(g̃) = α−1R(g)

|df |2g̃ = g̃ij∂if∂jf = α−1gij∂if∂jf = α−1|df |2g
dVg̃ =

√

det(g̃)dx =
√

det(α · g)dx =
√

αn det(g)dx = α
n
2

√

det(g)dx = α
n
2 dV ,

giving us

λ̄(g̃, u) = V (g̃)
2

n · λ(g̃, u) =

[∫

M
dVg̃

] 2

n

· inf
f̃

{∫

M
(|df̃ |2g̃ +R(g̃) − 2|du|2g̃)e−f̃dVg̃

∣
∣
∣
∣

∫

M
e−f̃dVg̃ = 1

}

=

[∫

M
α

n
2 dV

] 2

n

· inf
f̃

{∫

M
α−1

(
|df |2g +R− 2|du|2g

)
α−n

2 e−fα
n
2 dV

∣
∣
∣
∣

∫

M
α−n

2 e−fα
n
2 dV = 1

}

= α
n
2
· 2
nV (g)

2

n · α−1λ(g, u) = V (g)
2

n · λ(g, u) = λ̄(g, u)

as required. Note that there is no difference taking the infimum over f or f̃ .

The quantity λ̄(t) is not monotone in general, but we only need to establish the following
monotonicity property:

Lemma 5.5 Let (g, u)(t) be a solution to (2.5). Then λ̄(t) is nondecreasing at times t where it
is nonpositive. If d

dt λ̄(t0) = 0 at a time t0, then the solution satisfies

|∇2f̄ + Sy + 1
n(S + ∆f̄)g|2 = 0

|∆f̄ − du(∇f̄)|2 = 0

∆f̄ + S = const

where f̄ is a minimizer for λ at time t = t0.

Proof:

Since λ̄ is Lipschitz continuous, the time derivative exists in the sense of forward difference
quotients. At a fixed time t, we assume λ̄(t) ≤ 0 and compute

d
dt λ̄(t) = d

dtV
2

n · λ+ V
2

n · ddtλ = 2
nV

2

n · V −1 · ddtV + V
2

n d
dtλ . (5.5)

Using Lemma 1.4, further calculations show

d
dtV (t) = ∂t

∫

M
dV =

∫

M

tr ∂tg

2
dV =

∫

M

(
−∆f −R+ 2|du|2

)
dV = −

∫

M
SdV .
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Setting f(t) := lnV (t), we obtain

E(g, u, lnV ) =

∫

M

(
S + |d(lnV )|2

)
e− lnV dV =

∫

M

(
S + 0

)
V −1dV = V −1

∫

M
SdV

since f(t) is independent of x ∈M . Furthermore, f is properly normalized

∫

M
e− lnV dV = V −1

∫

M
dV = V −1 · V = 1

and therefore an admissible function. From the definition of λ we conclude that

V −1

∫

M
SdV = E(g, u, lnV ) ≥ inf

f∈C∞(M)
E(g, u, f) = λ . (5.6)

Whenever λ ≤ 0, using (4.3) and (5.6), we compute

−λV −1

∫

M
SdV = |λ|V −1

∫

M
SdV ≥ |λ|λ = −|λ|2

= −
(∫

M
(S + |df̄ |2

)
e−f̄dV

)2

= −
(∫

M

(
S + ∆f̄

)
e−f̄dV

)2

where f̄ is a minimizer for E at time t. This gives an estimate for the first term in (5.5):

d
dtV

2

n (t) · λ ≥ − 2
nV

2

n

(∫

M

(
S + ∆f̄

)
e−f̄dV

)2

. (5.7)

The second term in (5.5) comes down to

V
2

n d
dtλ(t) = V

2

n · 2
∫

M
|∇2f̄ + Sy|2 + 2|∆u− du(∇f̄)|2 e−f̄dV

= 2V
2

n

∫

M
|∇2f̄ + Sy + 1

n(S + ∆f̄)g|2 + 2|∆f̄ − du(∇f̄)|2 + 1
n(S + ∆f̄)2 e−f̄dV

(5.8)

where f̄ is the same minimizer as above. We also used the equation for ∂tE in Lemma 2.13 and

|∇2f̄ + Sy + 1
n(S + ∆f̄)g|2 = |∇2f̄ + Sy|2 − 1

n(S + ∆f̄)2 .

The combination of (5.7) and (5.8) proves

d
dt λ̄(t) ≥ 2V

2

n

∫

M
|∇2f̄ + Sy + 1

n(S + ∆f̄)g|2 + 2|∆u− du(∇f̄)|2 e−f̄dV

+ 2
nV

2

n

{∫

M
(∆f̄ + S)2 e−f̄dV −

(∫

M
(∆f̄ + S) e−f̄dV

)2}

≥ 0

(5.9)

where the non-negativity of the second line is due to Hölder’s inequality. Therefore λ̄ is nonde-
creasing at time t. If d

dt λ̄(t) = 0, all individual terms have to vanish. Note that the second line
can only be zero if ∆f̄ + S ≡ const. This proves the lemma.
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Proposition 5.6 Let (g, u)(t) be an expanding breather on a closed manifold M . Then it nec-
essarily is an expanding gradient soliton and, moreover, (M, g) is an Einstein manifold and u
is constant.

Proof:

Assume there are times t1, t2 and α > 1 such that g(t2) = α · (φ∗g)(t1). We have λ̄(t2) = λ̄(t1)
since λ̄ is invariant under scaling and diffeomorphisms. Since α > 1, we know in addition that
V (t2) > V (t1), implying that there is a time t0 ∈ [t1, t2] such that

d
dtV (t0) = −

∫

M
SdV (t0) > 0 .

Therefore we can conclude at time t0:

λ̄ ≤ V
2−n

n

∫

M
SdV < 0

where we used (5.6) in the first step. Consider two cases: If λ̄(t1) ≥ 0, λ̄ can never decrease
below 0 again, in particular not at time t0. On the other hand, if λ̄(t1) < 0, then it has to
increase up to time t0 where it is still negative. Therefore it cannot decrease back to its old
value at time t2 as required. Lemma 5.5 then shows that λ̄(t) ≡ const for t ∈ [t1, t2]. This

implies dλ̄
dt = 0 on [t1, t2], and we get for a constant c ∈

Sy + ∇2f̄ − 1
n(S + ∆f̄)g = 0

∆u− du(∇f̄) = 0

S + ∆f̄ = c

(5.10)

because we have equality in (5.9). Since the minimizer f̄ satisfies (5.1), we get

2∆f̄ − |df̄ |2 + S = λ =

∫

M

(
S + |df̄ |2

)
e−f̄dV =

∫

M

(
S + ∆f̄

)
e−f̄dV = c ·

∫

M
e−f̄dV = c

where we used (4.3). This implies

∆f̄ − |df̄ |2 + c = c ⇒ ∆f̄ = |df̄ |2 .

Integrating as before, we know that f̄ is constant. Inserting this into (5.10) yields

Rc− 2du⊗ du− c
ng = 0

∆u = 0,

and we conclude that u has to be constant, too. This leaves

Rc− c
ng = 0,

and g has to be an Einstein metric on M .

The remaining case are shrinking breathers which we want to handle with help of the functional
(4.1) and its monotonicity proven in Theorem 4.4. We first give a definition:
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Definition 5.7 Let (g, u, τ) ∈ M(M) × C∞(M) × + be a configuration. Then we define:

µ := µ(g, u, τ) := inf
f∈C∞(M)

{

W (g, u, f, τ) :

∫

M
(4πτ)−

n
2 e−fdV = 1

}

.

Proposition 5.8 Let M be closed and connected. Then µ is attained by a smooth function
f̄ ∈ C∞(M) satisfying the normalization constraint.

Proof:

We adapt the method from [Rot81]. Replacing φ := e−f/2 as before, we equivalently can
minimize the integral

W̃ (g, u, φ, τ) :=

∫

M

[
4τ |dφ|2 + τSφ2 − φ2 lnφ2 − nφ2

]
(4πτ)−

n
2 dV

for functions φ ∈W 1,2(M). In the following, all Lp and W k,p spaces are be with respect to the
measure dm = (4πτ)−

n
2 dV . Analogously to Definition 5.7 we set for fixed (g, u, τ):

µ̃ := µ̃(g, u, τ) := inf
φ∈W 1,2(M)

{

W̃ (g, u, φ, τ) :

∫

M
φ2(4πτ)−

n
2 dV = 1

}

and show that W̃ is bounded below for φ ∈ W 1,2(M). Choose p := 2
n−2 . Using Jensen’s

inequality for the logarithm with respect to the measure φ2dm, we get
∫

M
φ2 lnφ2dm =

∫

M
φ2 ln

[

(φ2p)1/p
]

dm = n−2
2

∫

M

[
ln |φ|2p

]
φ2dm ≤ n−2

2 ln

[∫

M
|φ|2p+2dm

]

= n−2
2 ln

[

||φ||2p+2
2p+2

]

= n ln ||φ|| 2n
n−2

.

The Sobolev embedding W 1,2
0 (M) ⊂ L

2n
n−2 (M) for n > 2 is proven for example in [Aub82,

Theorem 2.20]. By the choice of ε we can estimate:

||φ|| 2n
n−2

≤ c(n)||φ||W 1,2 ,

such that together with the monotonicity of the logarithm we have
∫

M
φ2 lnφ2dm ≤ n−2

2 ln
[
c(n)||φ||W 1,2

]
.

Using the fact that S is smooth and the normalization
∫

M φ2dm = 1, we get altogether:
∫

M

(
4τ |dφ|2 − φ2 lnφ2 + φ2(τS − n)

)
dm

= 4τ

∫

M
|dφ|2dm+ 4τ

∫

M
|φ|2dm− 4τ

∫

M
|φ|2dm−

∫

M
φ2 lnφ2dm+

∫

M
φ2(τS − n)dm

≥ 4τ ||φ||2W 1,2 − 4τ − n−2
2 ln

[
c(n)||φ||W 1,2

]
+ τ min

x∈M
S(x)

∫

M
|φ|2dm− n · 1

≥ 4τ ||φ||2W 1,2 − n−2
2 ln ||φ||W 1,2 − n−2

2 ln c(n) − 4τ + τ min
x∈M

S(x) − n

≥ 4τ ||φ||2W 1,2 − n−2
2 ||φ||W 1,2 + C(n, τ, Smin)

≥ C(n, τ, Smin)
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independent of φ. Here we set Smin := minx∈M S(x) and used that f(x) = Ax2 −Bx ≥ −B2

4A on
+. Therefore W̃ is bounded below for φ ∈W 1,2(M).

In view of the Sobolev embedding, Hölder’s inequality, and the mean value theorem the func-
tional F : W 1,2(M) → given by

F (φ) :=

∫

M

(
(τS − n)φ2 − φ2 lnφ2

)
dm (5.11)

is continuous in Lp for all p > 2. Let us assume that φi ⊂ W 1,2(M) is a minimizing sequence
for W̃ such that W̃ (g, u, φi, τ) ≤ µ̃+ 1

i holds for all i ≥ 0. We calculate

∫

M
4τ |dφi|2 − φ2

i lnφ2
i + (τS − n)φ2

i dm

=

∫

M
2τ |dφi|2 − φ2

i lnφ2
i + ( τ2S − n)φ2

i dm+

∫

M
2τ |dφi|2dm+ τ

2

∫

M
Sφ2

i dm

≥ µ̃(g, u, φ, τ/2) +
τ

2
Smin + 2τ

∫

M

(
|dφi|2 + |φi|2

)
dm− 2τ

where Smin is defined as above. This implies that

||φ||W 1,2 ≤ 1

2τ

{

−µ̃(g, u, φ, τ/2) − τ

2
Smin + 2τ + W̃ (g, u, φi, τ)

}

≤ 1

2τ

{

−µ̃(g, u, φ, τ/2) − τ

2
Smin + 2τ + µ̃(g, u, φi, τ) +

1

i

}

≤ C

holds for a constant C independent of i. Therefore the sequence (φi) is uniformly bounded
in W 1,2(M) and converges weakly to a function φ̄ ∈ W 1,2(M). By the compactness of the
embedding W 1,2(M) ↪→ Lp(M) for all 1 < p < 2n

n−2 , n ≥ 3, we know that φi → φ̄ strongly in Lp

for p in this range. Since 2n
n−2 > 2, the functional F defined in (5.11) is continuous in Lp(M),

and we get

µ̃ = inf
φ
W̃ (g, u, φ, τ) = lim

i→∞
W̃ (g, u, φi, τ)

=

[

lim
i→∞

∫

M
4τ |dφi|2dm

]

−
∫

M
φ̄2 ln φ̄2dm+

∫

M
φ̄2(τS − n)dm .

The weak convergence in W 1,2(M) gives

lim
i→∞

∫

M
4τ |dφi|2dm ≥

∫

M
4τ |dφ̄|2dm ,

implying

µ̃ ≥
∫

M
4τ |dφ̄|2 − φ̄2 ln φ̄2 + (τS − n)φ̄2dm ,

and the infimum is indeed attained at φ̄. The strong convergence also implies that the limit
φ̄ satisfies the normalization condition. We can assume in addition that φ̄ ≥ 0. If (φi) is a
minimizing sequence, then also

(
|φi|
)

because we have ||dφi||L2 = ||d|φi|||L2 and ||φi||L2 = |||φi|||L2 .
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As a critical point of W̃, φ̄ satisfies the Euler-Lagrange equation

−4τ∆φ̄− 2φ̄ ln φ̄+ (τS − n− µ̃)φ̄ = 0 (5.12)

weakly in W 1,2. To be able to go back to the original functional W , it remains to show that φ̄
is smooth and positive. To this end we rewrite the equation:

∆φ̄ = − 1
2τ · φ̄ ln φ̄+ 1

4τ (τS − n− µ̃) · φ̄ = c · φ̄ ln φ̄+ ω(x) · φ̄ =: P

where ω(x) := 1
4τ (τ · S(x) − n − µ) is smooth. Since φ̄ ∈ W 1,2

0 (M) ↪→ L
2n

n−2 (M) by the
Sobolev embedding, and since φ̄ · ln φ̄ ∈ Lp−δ(M) for all δ > 0 whenever φ̄ ∈ Lp(M), we know

that P ∈ L
2n

n−2+ε for all ε > 0. Now the regularity result [GT98, Theorem 9.15] implies that

φ̄ ∈W 2, 2n
n−2+ε (M). Again by the Sobolev embedding we know that φ̄ ∈ L

2n
n−6+ε (M), proving that

P ∈ L
2n

n−6+2ε by the previous argument. After a finite number of iterations we get P ∈ Lp(M)
for some p > 2n. This implies that φ̄ ∈ Cα(M) for some α > 0 by [GT98, Theorem 8.22].

Since φ̄ therefore is continuous, we can prove that it is pointwise positive. We have the following
lemma from Rothaus which analogously holds in our situation:

Lemma 5.9 [Rot81, page 114] Assume φ̄ ∈ W 1,2(M) ∩ C0(M) is a nonnegative minimizer for
µ̃ and φ̄(p) = 0. Then there exists a neighborhood of p where φ̄ vanishes identically.

This shows that φ̄ is positive everywhere on M since defining

Ω :=
{
p ∈M

∣
∣φ̄(p) = 0

}
,

we see from the lemma that Ω is open. But it is also closed since φ̄ is continuous. Because M is
connected, there are only two possibilities, either Ω = ∅ and φ̄ > 0 on M , or Ω = M and φ̄ ≡ 0
which is impossible since ||φ̄||L2 = 1. Furthermore we know that φ̄ is uniformly bounded below
away from 0 since M is compact.

Using this information, we see that P = c · φ̄ ln φ̄ + ω · φ̄ is Hölder continuous for φ̄ ∈ Cα(M)
positive. This implies that φ̄ is a classical solution of (5.12) in C2,α(M) by [GT98, Theorem
9.19] and satisfies

∆φ̄ = c · φ̄ ln φ̄+ ω · φ̄
in the classical sense. Repeating this argument, we learn that φ̄ ∈ C∞(M). Since φ̄ is positive,
we can define f̄ := −2 ln φ̄ and f̄ is a smooth minimizer for µ as required.

Now that we have understood the variational problem, we can investigate the remaining case of
shrinking breathers. For the proof we are going to need the following lemma:

Lemma 5.10 Suppose (g, u)(t) is a solution to (2.5) on [0, T ) ×M where M is closed. Fix a
τ̄ ∈ [0, T ) and define τ(t) := τ̄ − t. Then µ(g, u, τ)(t) is nondecreasing in t. If d

dtµ(t) = 0 the
solution is a gradient shrinking soliton.



70 5 NONEXISTENCE OF PERIODIC SOLUTIONS

Proof:

Let f̃ be a minimizer of µ(t0) for t0 < τ̄ arbitrary. We can solve the equation for f backwards
in time with initial value f̃ at t = t0. The monotonicity (4.6) implies that W (g, u, f, τ)(t) is
nondecreasing in time. We get for t < t0:

µ(g, u, τ)(t) ≤W (g, u, f, τ)(t) ≤W (g, u, f, τ)(t0) = W (g(t0), u(t0), f̃ , τ(t0)) = µ(g, u, τ)(t0) ,

proving the lemma.

Proposition 5.11 Let (g, u)(t) be a shrinking breather on a closed manifold M . Then it nec-
essarily is a gradient shrinking soliton.

Proof:

The breather (g, u)(t) satisfies g(t2) = α · ϕ∗g(t1) and u(t2) = ϕ∗u(t1) for two times t1, t2 and a
constant α < 1. Define the reference time

τ̄ :=
t2 − αt1
1 − α

,

and set τ(t) := τ̄ − t. It follows that

α =
τ̄ − t2
τ̄ − t1

=
τ(t2)

τ(t1)
.

Using Lemma 4.2 and Lemma 5.10, we conclude that

µ(g, u, τ)(t2) = µ(α · ϕ∗g, ϕ∗u, ατ(t1)) = µ(ϕ∗g, ϕ∗u, τ(t1)) = µ(g, u, τ)(t1) .

By the equality case of the monotonicity formula, (g, u)(t) must be a gradient shrinking soliton.

We cannot draw further conclusions as we did for steady and expanding breathers since we
cannot use the Euler-Lagrange equation satisfied by the minimizer f̄ in the way we did for
minimizers of E.


