5 Nonexistence of periodic solutions

We want to exclude the possibility of periodic geometries on closed manifolds M and follow the ideas in [Per02, $\S 2, \S 3]$. The technical description of such a solution is given by:

Definition 5.1 A solution of (2.5) is called a breather, if there exists $t_{1}, t_{2} \in[0, T), t_{1}<t_{2}$ such that $g\left(t_{2}\right)=\alpha \cdot\left(\varphi^{*} g\right)\left(t_{1}\right)$ and $u\left(t_{2}\right)=\left(\varphi^{*} u\right)\left(t_{1}\right)$ hold for a constant $\alpha \in \mathbb{R}$ and a diffeomorphism φ. The cases $\alpha=1, \alpha>1, \alpha<1$ correspond to steady, expanding, and shrinking breathers.

We use the monotonicity of E given by Lemma 2.13 and the monotonicity of W from Theorem 4.4 to prove that the only existing breathers are soliton solutions. Defining

$$
\lambda(g, u):=\inf _{f \in C^{\infty}(M)}\left\{E(g, u, f) \mid \int_{M} e^{-f} d V=1\right\}
$$

for $(g, u) \in \mathcal{M}(M) \times C^{\infty}(M)$, we get that λ is attained by a smooth function \bar{f}. To see this, we replace f by $\phi:=e^{-f / 2}$ and get a new functional:

$$
\tilde{E}(g, u, \phi):=\int_{M}\left(4|d \phi|^{2}+S \phi^{2}\right) d V
$$

This provides us with an equivalent definition for λ :

$$
\lambda(g, u)=\inf _{\phi \in C^{\infty}(M)}\left\{\tilde{E}(g, u, \phi) \mid \int_{M} \phi^{2} d V=1\right\}
$$

Thus λ is the first eigenvalue of the operator $O(\phi):=-4 \Delta \phi+S \phi$ which has a smooth positive minimizer $\bar{\phi}$. Since we will prove a similar statement for W in Proposition 5.8, we do not go into details here. Going back to $\bar{f}:=-2 \ln \bar{\phi}$, we calculate that a minimizer \bar{f} for λ satisfies:

$$
\begin{equation*}
2 \Delta \bar{f}-|d \bar{f}|^{2}+S=\lambda \tag{5.1}
\end{equation*}
$$

Moreover λ is invariant under diffeomorphisms since E is. We also prove that $\lambda(t)$ is monotone when evaluated on a solution to (2.4):

Lemma 5.2 Let $(g, u)(t)$ be a solution to (2.5) on $[0, T) \times M$. Then $\lambda(t):=\lambda(g(t), u(t))$ is nondecreasing in t. If $\frac{d}{d t} \lambda\left(t_{0}\right) \equiv 0$, the solution at time t_{0} is a gradient soliton satisfying

$$
S y+\nabla^{2} f=0 \quad \text { and } \quad \Delta u-d u(\nabla f)=0
$$

where f is a minimizer for λ at time t_{0}.

Proof:

Fix t_{0} and let \bar{f} be a minimizer for λ at time t_{0}. Solving $\partial_{t} f=-\Delta f-S$ backwards in time with initial data \bar{f} at t_{0}, we conclude from Lemma 2.13 for all $t<t_{0}$ that

$$
\lambda(t) \leq E(g, u, f)(t) \leq E\left(g\left(t_{0}\right), u\left(t_{0}\right), \bar{f}\right)=\lambda\left(t_{0}\right)
$$

Therefore $\lambda(t)$ is nondecreasing in time. The equality case follows directly from the equality case for E.

In the following, we identify a soliton solution $g(t)$ on $[0, T) \times M$ with its representative g at a fixed time, for example at time $t=0$, and work with the corresponding elliptic equation as described after Definition 2.2. We get from the above considerations:

Proposition 5.3 Let $(g, u)(t)$ be a steady breather on a closed manifold M. Then it necessarily is a steady soliton and, moreover, (M, g) is Ricci-flat and u is constant.

Proof:

The monotonicity of E (see Lemma 2.13) shows that $\lambda(g(t), u(t))$ is nondecreasing in time. On a steady breather we have $\lambda\left(t_{1}\right)=\lambda\left(t_{2}\right)$ for two times t_{1}, t_{2} since λ is invariant under diffeomorphisms. Therefore we can conclude from Lemma 5.2 that on $\left[t_{1}, t_{2}\right]$

$$
\begin{align*}
S y+\nabla^{2} \bar{f} & =0 \tag{5.2}\\
\Delta u-d u(\nabla \bar{f}) & =0 \tag{5.3}
\end{align*}
$$

holds where $\bar{f}(t)$ is a minimizer for $\lambda(t)$. Thus the breather is a steady soliton solution. Taking the trace in equation (5.2), we have

$$
0=S+\Delta \bar{f}
$$

and by (5.1) \bar{f} satisfies

$$
\begin{equation*}
\lambda=2 \Delta \bar{f}-|d \bar{f}|^{2}+S=\Delta \bar{f}-|d \bar{f}|^{2} . \tag{5.4}
\end{equation*}
$$

Integrating, we get

$$
\lambda \cdot 1=\int_{M} \lambda e^{-\bar{f}} d V=\int_{M}\left(\Delta \bar{f}-|d \bar{f}|^{2}\right) e^{-\bar{f}} d V=0
$$

by (4.3) such that we conclude from (5.4)

$$
\Delta \bar{f}=|d \bar{f}|^{2}
$$

Another integration shows that \bar{f} must be a constant. But then $\Delta u=0$ from (5.3), showing that u is constant, too. Together this implies that $R c=0$.

To deal with expanding breathers, we define a scaling invariant quantity

$$
\bar{\lambda}(t):=\bar{\lambda}(g, u)(t):=\lambda(g, u)(t) \cdot V(g(t))^{\frac{2}{n}}
$$

where V denotes the volume of M with respect to $g(t)$.

Lemma $5.4 \bar{\lambda}(t)$ is scaling invariant with respect to the scaling $\tilde{g}:=\alpha \cdot g$ and $\tilde{f}:=f+\frac{n}{2} \ln \alpha$ for all constants $\alpha>0$.

Proof:

Observe that we also have to scale f since it still has to satisfy the normalization constraint

$$
\int_{M} e^{-\tilde{f}} d \tilde{V}=\int_{M} e^{-f} e^{\ln \left(\alpha^{-\frac{n}{2}}\right)} \alpha^{\frac{n}{2}} d V=\int_{M} e^{f} d V=1
$$

with respect to the new volume element $d V_{\tilde{g}}$. Then we can calculate

$$
\begin{aligned}
R(\tilde{g}) & =\alpha^{-1} R(g) \\
|d f|_{\tilde{g}}^{2} & =\tilde{g}^{i j} \partial_{i} f \partial_{j} f=\alpha^{-1} g^{i j} \partial_{i} f \partial_{j} f=\alpha^{-1}|d f|_{g}^{2} \\
d V_{\tilde{g}} & =\sqrt{\operatorname{det}(\tilde{g})} d x=\sqrt{\operatorname{det}(\alpha \cdot g)} d x=\sqrt{\alpha^{n} \operatorname{det}(g)} d x=\alpha^{\frac{n}{2}} \sqrt{\operatorname{det}(g)} d x=\alpha^{\frac{n}{2}} d V,
\end{aligned}
$$

giving us

$$
\begin{aligned}
\bar{\lambda}(\tilde{g}, u) & =V(\tilde{g})^{\frac{2}{n}} \cdot \lambda(\tilde{g}, u)=\left[\int_{M} d V_{\tilde{g}}\right]^{\frac{2}{n}} \cdot \inf _{\tilde{f}}\left\{\int_{M}\left(|d \tilde{f}|_{\tilde{g}}^{2}+R(\tilde{g})-2|d u|_{\tilde{g}}^{2}\right) e^{-\tilde{f}} d V_{\tilde{g}} \mid \int_{M} e^{-\tilde{f}^{2}} d V_{\tilde{g}}=1\right\} \\
& =\left[\int_{M} \alpha^{\frac{n}{2}} d V\right]^{\frac{2}{n}} \cdot \inf _{\tilde{f}}\left\{\left.\int_{M} \alpha^{-1}\left(|d f|_{g}^{2}+R-2|d u|_{g}^{2}\right) \alpha^{-\frac{n}{2}} e^{-f} \alpha^{\frac{n}{2}} d V \right\rvert\, \int_{M} \alpha^{-\frac{n}{2}} e^{-f^{2}} \alpha^{\frac{n}{2}} d V=1\right\} \\
& =\alpha^{\frac{n}{2} \cdot \frac{2}{n}} V(g)^{\frac{2}{n}} \cdot \alpha^{-1} \lambda(g, u)=V(g)^{\frac{2}{n}} \cdot \lambda(g, u)=\bar{\lambda}(g, u)
\end{aligned}
$$

as required. Note that there is no difference taking the infimum over f or \tilde{f}.

The quantity $\bar{\lambda}(t)$ is not monotone in general, but we only need to establish the following monotonicity property:

Lemma 5.5 Let $(g, u)(t)$ be a solution to (2.5). Then $\bar{\lambda}(t)$ is nondecreasing at times t where it is nonpositive. If $\frac{d}{d t} \bar{\lambda}\left(t_{0}\right)=0$ at a time t_{0}, then the solution satisfies

$$
\begin{aligned}
\left|\nabla^{2} \bar{f}+S y+\frac{1}{n}(S+\Delta \bar{f}) g\right|^{2} & =0 \\
|\Delta \bar{f}-d u(\nabla \bar{f})|^{2} & =0 \\
\Delta \bar{f}+S & =\text { const }
\end{aligned}
$$

where \bar{f} is a minimizer for λ at time $t=t_{0}$.

Proof:

Since $\bar{\lambda}$ is Lipschitz continuous, the time derivative exists in the sense of forward difference quotients. At a fixed time t, we assume $\bar{\lambda}(t) \leq 0$ and compute

$$
\begin{equation*}
\frac{d}{d t} \bar{\lambda}(t)=\frac{d}{d t} V^{\frac{2}{n}} \cdot \lambda+V^{\frac{2}{n}} \cdot \frac{d}{d t} \lambda=\frac{2}{n} V^{\frac{2}{n}} \cdot V^{-1} \cdot \frac{d}{d t} V+V^{\frac{2}{n}} \frac{d}{d t} \lambda . \tag{5.5}
\end{equation*}
$$

Using Lemma 1.4, further calculations show

$$
\frac{d}{d t} V(t)=\partial_{t} \int_{M} d V=\int_{M} \frac{\operatorname{tr} \partial_{t} g}{2} d V=\int_{M}\left(-\Delta f-R+2|d u|^{2}\right) d V=-\int_{M} S d V .
$$

Setting $f(t):=\ln V(t)$, we obtain

$$
E(g, u, \ln V)=\int_{M}\left(S+|d(\ln V)|^{2}\right) e^{-\ln V} d V=\int_{M}(S+0) V^{-1} d V=V^{-1} \int_{M} S d V
$$

since $f(t)$ is independent of $x \in M$. Furthermore, f is properly normalized

$$
\int_{M} e^{-\ln V} d V=V^{-1} \int_{M} d V=V^{-1} \cdot V=1
$$

and therefore an admissible function. From the definition of λ we conclude that

$$
\begin{equation*}
V^{-1} \int_{M} S d V=E(g, u, \ln V) \geq \inf _{f \in C^{\infty}(M)} E(g, u, f)=\lambda . \tag{5.6}
\end{equation*}
$$

Whenever $\lambda \leq 0$, using (4.3) and (5.6), we compute

$$
\begin{aligned}
-\lambda V^{-1} \int_{M} S d V & =|\lambda| V^{-1} \int_{M} S d V \geq|\lambda| \lambda=-|\lambda|^{2} \\
& =-\left(\int_{M}\left(S+|d \bar{f}|^{2}\right) e^{-\bar{f}} d V\right)^{2}=-\left(\int_{M}(S+\Delta \bar{f}) e^{-\bar{f}} d V\right)^{2}
\end{aligned}
$$

where \bar{f} is a minimizer for E at time t. This gives an estimate for the first term in (5.5):

$$
\begin{equation*}
\frac{d}{d t} V^{\frac{2}{n}}(t) \cdot \lambda \geq-\frac{2}{n} V^{\frac{2}{n}}\left(\int_{M}(S+\Delta \bar{f}) e^{-\bar{f}} d V\right)^{2} \tag{5.7}
\end{equation*}
$$

The second term in (5.5) comes down to

$$
\begin{align*}
V^{\frac{2}{n}} \frac{d}{d t} \lambda(t) & =V^{\frac{2}{n}} \cdot 2 \int_{M}\left|\nabla^{2} \bar{f}+S y\right|^{2}+2|\Delta u-d u(\nabla \bar{f})|^{2} e^{-\bar{f}} d V \\
& =2 V^{\frac{2}{n}} \int_{M}\left|\nabla^{2} \bar{f}+S y+\frac{1}{n}(S+\Delta \bar{f}) g\right|^{2}+2|\Delta \bar{f}-d u(\nabla \bar{f})|^{2}+\frac{1}{n}(S+\Delta \bar{f})^{2} e^{-\bar{f}} d V \tag{5.8}
\end{align*}
$$

where \bar{f} is the same minimizer as above. We also used the equation for $\partial_{t} E$ in Lemma 2.13 and

$$
\left|\nabla^{2} \bar{f}+S y+\frac{1}{n}(S+\Delta \bar{f}) g\right|^{2}=\left|\nabla^{2} \bar{f}+S y\right|^{2}-\frac{1}{n}(S+\Delta \bar{f})^{2}
$$

The combination of (5.7) and (5.8) proves

$$
\begin{align*}
\frac{d}{d t} \bar{\lambda}(t) \geq & 2 V^{\frac{2}{n}} \int_{M}\left|\nabla^{2} \bar{f}+S y+\frac{1}{n}(S+\Delta \bar{f}) g\right|^{2}+2|\Delta u-d u(\nabla \bar{f})|^{2} e^{-\bar{f}} d V \\
& +\frac{2}{n} V^{\frac{2}{n}}\left\{\int_{M}(\Delta \bar{f}+S)^{2} e^{-\bar{f}} d V-\left(\int_{M}(\Delta \bar{f}+S) e^{-\bar{f}} d V\right)^{2}\right\} \geq 0 \tag{5.9}
\end{align*}
$$

where the non-negativity of the second line is due to Hölder's inequality. Therefore $\bar{\lambda}$ is nondecreasing at time t. If $\frac{d}{d t} \bar{\lambda}(t)=0$, all individual terms have to vanish. Note that the second line can only be zero if $\Delta \bar{f}+S \equiv$ const. This proves the lemma.

Proposition 5.6 Let $(g, u)(t)$ be an expanding breather on a closed manifold M. Then it necessarily is an expanding gradient soliton and, moreover, (M, g) is an Einstein manifold and u is constant.

Proof:

Assume there are times t_{1}, t_{2} and $\alpha>1$ such that $g\left(t_{2}\right)=\alpha \cdot\left(\phi^{*} g\right)\left(t_{1}\right)$. We have $\bar{\lambda}\left(t_{2}\right)=\bar{\lambda}\left(t_{1}\right)$ since $\bar{\lambda}$ is invariant under scaling and diffeomorphisms. Since $\alpha>1$, we know in addition that $V\left(t_{2}\right)>V\left(t_{1}\right)$, implying that there is a time $t_{0} \in\left[t_{1}, t_{2}\right]$ such that

$$
\frac{d}{d t} V\left(t_{0}\right)=-\int_{M} S d V\left(t_{0}\right)>0
$$

Therefore we can conclude at time t_{0} :

$$
\bar{\lambda} \leq V^{\frac{2-n}{n}} \int_{M} S d V<0
$$

where we used (5.6) in the first step. Consider two cases: If $\bar{\lambda}\left(t_{1}\right) \geq 0, \bar{\lambda}$ can never decrease below 0 again, in particular not at time t_{0}. On the other hand, if $\bar{\lambda}\left(t_{1}\right)<0$, then it has to increase up to time t_{0} where it is still negative. Therefore it cannot decrease back to its old value at time t_{2} as required. Lemma 5.5 then shows that $\bar{\lambda}(t) \equiv$ const for $t \in\left[t_{1}, t_{2}\right]$. This implies $\frac{d \bar{\lambda}}{d t}=0$ on $\left[t_{1}, t_{2}\right]$, and we get for a constant $c \in \mathbb{R}$

$$
\begin{align*}
S y+\nabla^{2} \bar{f}-\frac{1}{n}(S+\Delta \bar{f}) g & =0 \\
\Delta u-d u(\nabla \bar{f}) & =0 \tag{5.10}\\
S+\Delta \bar{f} & =c
\end{align*}
$$

because we have equality in (5.9). Since the minimizer \bar{f} satisfies (5.1), we get

$$
2 \Delta \bar{f}-|d \bar{f}|^{2}+S=\lambda=\int_{M}\left(S+|d \bar{f}|^{2}\right) e^{-\bar{f}} d V=\int_{M}(S+\Delta \bar{f}) e^{-\bar{f}} d V=c \cdot \int_{M} e^{-\bar{f}} d V=c
$$

where we used (4.3). This implies

$$
\Delta \bar{f}-|d \bar{f}|^{2}+c=c \quad \Rightarrow \quad \Delta \bar{f}=|d \bar{f}|^{2} .
$$

Integrating as before, we know that \bar{f} is constant. Inserting this into (5.10) yields

$$
\begin{aligned}
R c-2 d u \otimes d u-\frac{c}{n} g & =0 \\
\Delta u & =0
\end{aligned}
$$

and we conclude that u has to be constant, too. This leaves

$$
R c-\frac{c}{n} g=0
$$

and g has to be an Einstein metric on M.

The remaining case are shrinking breathers which we want to handle with help of the functional (4.1) and its monotonicity proven in Theorem 4.4. We first give a definition:

Definition 5.7 Let $(g, u, \tau) \in \mathcal{M}(M) \times C^{\infty}(M) \times \mathbb{R}^{+}$be a configuration. Then we define:

$$
\mu:=\mu(g, u, \tau):=\inf _{f \in C^{\infty}(M)}\left\{W(g, u, f, \tau): \int_{M}(4 \pi \tau)^{-\frac{n}{2}} e^{-f} d V=1\right\}
$$

Proposition 5.8 Let M be closed and connected. Then μ is attained by a smooth function $\bar{f} \in C^{\infty}(M)$ satisfying the normalization constraint.

Proof:

We adapt the method from [Rot81]. Replacing $\phi:=e^{-f / 2}$ as before, we equivalently can minimize the integral

$$
\tilde{W}(g, u, \phi, \tau):=\int_{M}\left[4 \tau|d \phi|^{2}+\tau S \phi^{2}-\phi^{2} \ln \phi^{2}-n \phi^{2}\right](4 \pi \tau)^{-\frac{n}{2}} d V
$$

for functions $\phi \in W^{1,2}(M)$. In the following, all L^{p} and $W^{k, p}$ spaces are be with respect to the measure $d m=(4 \pi \tau)^{-\frac{n}{2}} d V$. Analogously to Definition 5.7 we set for fixed (g, u, τ) :

$$
\tilde{\mu}:=\tilde{\mu}(g, u, \tau):=\inf _{\phi \in W^{1,2}(M)}\left\{\tilde{W}(g, u, \phi, \tau): \int_{M} \phi^{2}(4 \pi \tau)^{-\frac{n}{2}} d V=1\right\}
$$

and show that \tilde{W} is bounded below for $\phi \in W^{1,2}(M)$. Choose $p:=\frac{2}{n-2}$. Using Jensen's inequality for the logarithm with respect to the measure $\phi^{2} d m$, we get

$$
\begin{aligned}
\int_{M} \phi^{2} \ln \phi^{2} d m & =\int_{M} \phi^{2} \ln \left[\left(\phi^{2 p}\right)^{1 / p}\right] d m=\frac{n-2}{2} \int_{M}\left[\ln |\phi|^{2 p}\right] \phi^{2} d m \leq \frac{n-2}{2} \ln \left[\int_{M}|\phi|^{2 p+2} d m\right] \\
& =\frac{n-2}{2} \ln \left[\|\phi\|_{2 p+2}^{2 p+2}\right]=n \ln \|\phi\|_{\frac{2 n}{n-2}} .
\end{aligned}
$$

The Sobolev embedding $W_{0}^{1,2}(M) \subset L^{\frac{2 n}{n-2}}(M)$ for $n>2$ is proven for example in [Aub82, Theorem 2.20]. By the choice of ε we can estimate:

$$
\|\phi\|_{\frac{2 n}{n-2}} \leq c(n)\|\phi\|_{W^{1,2}}
$$

such that together with the monotonicity of the logarithm we have

$$
\int_{M} \phi^{2} \ln \phi^{2} d m \leq \frac{n-2}{2} \ln \left[c(n)\|\phi\|_{W^{1,2}}\right]
$$

Using the fact that S is smooth and the normalization $\int_{M} \phi^{2} d m=1$, we get altogether:

$$
\begin{aligned}
\int_{M} & \left(4 \tau|d \phi|^{2}-\phi^{2} \ln \phi^{2}+\phi^{2}(\tau S-n)\right) d m \\
& =4 \tau \int_{M}|d \phi|^{2} d m+4 \tau \int_{M}|\phi|^{2} d m-4 \tau \int_{M}|\phi|^{2} d m-\int_{M} \phi^{2} \ln \phi^{2} d m+\int_{M} \phi^{2}(\tau S-n) d m \\
& \geq 4 \tau\|\phi\|_{W^{1,2}}^{2}-4 \tau-\frac{n-2}{2} \ln \left[c(n)\|\phi\|_{W^{1,2}}\right]+\tau \min _{x \in M} S(x) \int_{M}|\phi|^{2} d m-n \cdot 1 \\
& \geq 4 \tau\|\phi\|_{W^{1,2}}^{2}-\frac{n-2}{2} \ln \|\phi\|_{W^{1,2}}-\frac{n-2}{2} \ln c(n)-4 \tau+\tau \min _{x \in M} S(x)-n \\
& \geq 4 \tau\|\phi\|_{W^{1,2}}^{2}-\frac{n-2}{2}\|\phi\|_{W^{1,2}}+C\left(n, \tau, S_{\min }\right) \\
& \geq C\left(n, \tau, S_{\text {min }}\right)
\end{aligned}
$$

independent of ϕ. Here we set $S_{\text {min }}:=\min _{x \in M} S(x)$ and used that $f(x)=A x^{2}-B x \geq-\frac{B^{2}}{4 A}$ on \mathbb{R}^{+}. Therefore \tilde{W} is bounded below for $\phi \in W^{1,2}(M)$.

In view of the Sobolev embedding, Hölder's inequality, and the mean value theorem the functional $F: W^{1,2}(M) \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
F(\phi):=\int_{M}\left((\tau S-n) \phi^{2}-\phi^{2} \ln \phi^{2}\right) d m \tag{5.11}
\end{equation*}
$$

is continuous in L^{p} for all $p>2$. Let us assume that $\phi_{i} \subset W^{1,2}(M)$ is a minimizing sequence for \tilde{W} such that $\tilde{W}\left(g, u, \phi_{i}, \tau\right) \leq \tilde{\mu}+\frac{1}{i}$ holds for all $i \geq 0$. We calculate

$$
\begin{aligned}
& \int_{M} 4 \tau\left|d \phi_{i}\right|^{2}-\phi_{i}^{2} \ln \phi_{i}^{2}+(\tau S-n) \phi_{i}^{2} d m \\
& \quad=\int_{M} 2 \tau\left|d \phi_{i}\right|^{2}-\phi_{i}^{2} \ln \phi_{i}^{2}+\left(\frac{\tau}{2} S-n\right) \phi_{i}^{2} d m+\int_{M} 2 \tau\left|d \phi_{i}\right|^{2} d m+\frac{\tau}{2} \int_{M} S \phi_{i}^{2} d m \\
& \quad \geq \tilde{\mu}(g, u, \phi, \tau / 2)+\frac{\tau}{2} S_{\min }+2 \tau \int_{M}\left(\left|d \phi_{i}\right|^{2}+\left|\phi_{i}\right|^{2}\right) d m-2 \tau
\end{aligned}
$$

where $S_{\text {min }}$ is defined as above. This implies that

$$
\begin{aligned}
\|\phi\|_{W^{1,2}} & \leq \frac{1}{2 \tau}\left\{-\tilde{\mu}(g, u, \phi, \tau / 2)-\frac{\tau}{2} S_{\min }+2 \tau+\tilde{W}\left(g, u, \phi_{i}, \tau\right)\right\} \\
& \leq \frac{1}{2 \tau}\left\{-\tilde{\mu}(g, u, \phi, \tau / 2)-\frac{\tau}{2} S_{\min }+2 \tau+\tilde{\mu}\left(g, u, \phi_{i}, \tau\right)+\frac{1}{i}\right\} \\
& \leq C
\end{aligned}
$$

holds for a constant C independent of i. Therefore the sequence $\left(\phi_{i}\right)$ is uniformly bounded in $W^{1,2}(M)$ and converges weakly to a function $\bar{\phi} \in W^{1,2}(M)$. By the compactness of the embedding $W^{1,2}(M) \hookrightarrow L^{p}(M)$ for all $1<p<\frac{2 n}{n-2}, n \geq 3$, we know that $\phi_{i} \rightarrow \bar{\phi}$ strongly in L^{p} for p in this range. Since $\frac{2 n}{n-2}>2$, the functional F defined in (5.11) is continuous in $L^{p}(M)$, and we get

$$
\begin{aligned}
\tilde{\mu} & =\inf _{\phi} \tilde{W}(g, u, \phi, \tau)=\lim _{i \rightarrow \infty} \tilde{W}\left(g, u, \phi_{i}, \tau\right) \\
& =\left[\lim _{i \rightarrow \infty} \int_{M} 4 \tau\left|d \phi_{i}\right|^{2} d m\right]-\int_{M} \bar{\phi}^{2} \ln \bar{\phi}^{2} d m+\int_{M} \bar{\phi}^{2}(\tau S-n) d m
\end{aligned}
$$

The weak convergence in $W^{1,2}(M)$ gives

$$
\lim _{i \rightarrow \infty} \int_{M} 4 \tau\left|d \phi_{i}\right|^{2} d m \geq \int_{M} 4 \tau|d \bar{\phi}|^{2} d m
$$

implying

$$
\tilde{\mu} \geq \int_{M} 4 \tau|d \bar{\phi}|^{2}-\bar{\phi}^{2} \ln \bar{\phi}^{2}+(\tau S-n) \bar{\phi}^{2} d m
$$

and the infimum is indeed attained at $\bar{\phi}$. The strong convergence also implies that the limit $\bar{\phi}$ satisfies the normalization condition. We can assume in addition that $\bar{\phi} \geq 0$. If $\left(\phi_{i}\right)$ is a minimizing sequence, then also $\left(\left|\phi_{i}\right|\right)$ because we have $\left\|d \phi_{i}\right\|_{L^{2}}=\left\|d\left|\phi_{i}\right|\right\|_{L^{2}}$ and $\left\|\phi_{i}\right\|_{L^{2}}=\left\|\left|\phi_{i}\right|\right\|_{L^{2}}$.

As a critical point of $\tilde{W}, \bar{\phi}$ satisfies the Euler-Lagrange equation

$$
\begin{equation*}
-4 \tau \Delta \bar{\phi}-2 \bar{\phi} \ln \bar{\phi}+(\tau S-n-\tilde{\mu}) \bar{\phi}=0 \tag{5.12}
\end{equation*}
$$

weakly in $W^{1,2}$. To be able to go back to the original functional W, it remains to show that $\bar{\phi}$ is smooth and positive. To this end we rewrite the equation:

$$
\Delta \bar{\phi}=-\frac{1}{2 \tau} \cdot \bar{\phi} \ln \bar{\phi}+\frac{1}{4 \tau}(\tau S-n-\tilde{\mu}) \cdot \bar{\phi}=c \cdot \bar{\phi} \ln \bar{\phi}+\omega(x) \cdot \bar{\phi}=: P
$$

where $\omega(x):=\frac{1}{4 \tau}(\tau \cdot S(x)-n-\mu)$ is smooth. Since $\bar{\phi} \in W_{0}^{1,2}(M) \hookrightarrow L^{\frac{2 n}{n-2}}(M)$ by the Sobolev embedding, and since $\bar{\phi} \cdot \ln \bar{\phi} \in L^{p-\delta}(M)$ for all $\delta>0$ whenever $\bar{\phi} \in L^{p}(M)$, we know that $P \in L^{\frac{2 n}{n-2+\varepsilon}}$ for all $\varepsilon>0$. Now the regularity result [GT98, Theorem 9.15] implies that $\bar{\phi} \in W^{2, \frac{2 n}{n-2+\varepsilon}}(M)$. Again by the Sobolev embedding we know that $\bar{\phi} \in L^{\frac{2 n}{n-6+\varepsilon}}(M)$, proving that $P \in L^{\frac{2 n}{n-6+2 \varepsilon}}$ by the previous argument. After a finite number of iterations we get $P \in L^{p}(M)$ for some $p>2 n$. This implies that $\bar{\phi} \in C^{\alpha}(M)$ for some $\alpha>0$ by [GT98, Theorem 8.22].

Since $\bar{\phi}$ therefore is continuous, we can prove that it is pointwise positive. We have the following lemma from Rothaus which analogously holds in our situation:

Lemma 5.9 [Rot81, page 114] Assume $\bar{\phi} \in W^{1,2}(M) \cap C^{0}(M)$ is a nonnegative minimizer for $\tilde{\mu}$ and $\bar{\phi}(p)=0$. Then there exists a neighborhood of p where $\bar{\phi}$ vanishes identically.

This shows that $\bar{\phi}$ is positive everywhere on M since defining

$$
\Omega:=\{p \in M \mid \bar{\phi}(p)=0\}
$$

we see from the lemma that Ω is open. But it is also closed since $\bar{\phi}$ is continuous. Because M is connected, there are only two possibilities, either $\Omega=\emptyset$ and $\bar{\phi}>0$ on M, or $\Omega=M$ and $\bar{\phi} \equiv 0$ which is impossible since $\|\bar{\phi}\|_{L^{2}}=1$. Furthermore we know that $\bar{\phi}$ is uniformly bounded below away from 0 since M is compact.

Using this information, we see that $P=c \cdot \bar{\phi} \ln \bar{\phi}+\omega \cdot \bar{\phi}$ is Hölder continuous for $\bar{\phi} \in C^{\alpha}(M)$ positive. This implies that $\bar{\phi}$ is a classical solution of (5.12) in $C^{2, \alpha}(M)$ by [GT98, Theorem 9.19] and satisfies

$$
\Delta \bar{\phi}=c \cdot \bar{\phi} \ln \bar{\phi}+\omega \cdot \bar{\phi}
$$

in the classical sense. Repeating this argument, we learn that $\bar{\phi} \in C^{\infty}(M)$. Since $\bar{\phi}$ is positive, we can define $\bar{f}:=-2 \ln \bar{\phi}$ and \bar{f} is a smooth minimizer for μ as required.

Now that we have understood the variational problem, we can investigate the remaining case of shrinking breathers. For the proof we are going to need the following lemma:

Lemma 5.10 Suppose $(g, u)(t)$ is a solution to (2.5) on $[0, T) \times M$ where M is closed. Fix a $\bar{\tau} \in[0, T)$ and define $\tau(t):=\bar{\tau}-t$. Then $\mu(g, u, \tau)(t)$ is nondecreasing in t. If $\frac{d}{d t} \mu(t)=0$ the solution is a gradient shrinking soliton.

Proof:

Let \tilde{f} be a minimizer of $\mu\left(t_{0}\right)$ for $t_{0}<\bar{\tau}$ arbitrary. We can solve the equation for f backwards in time with initial value \tilde{f} at $t=t_{0}$. The monotonicity (4.6) implies that $W(g, u, f, \tau)(t)$ is nondecreasing in time. We get for $t<t_{0}$:

$$
\mu(g, u, \tau)(t) \leq W(g, u, f, \tau)(t) \leq W(g, u, f, \tau)\left(t_{0}\right)=W\left(g\left(t_{0}\right), u\left(t_{0}\right), \tilde{f}, \tau\left(t_{0}\right)\right)=\mu(g, u, \tau)\left(t_{0}\right)
$$

proving the lemma.

Proposition 5.11 Let $(g, u)(t)$ be a shrinking breather on a closed manifold M. Then it necessarily is a gradient shrinking soliton.

Proof:

The breather $(g, u)(t)$ satisfies $g\left(t_{2}\right)=\alpha \cdot \varphi^{*} g\left(t_{1}\right)$ and $u\left(t_{2}\right)=\varphi^{*} u\left(t_{1}\right)$ for two times t_{1}, t_{2} and a constant $\alpha<1$. Define the reference time

$$
\bar{\tau}:=\frac{t_{2}-\alpha t_{1}}{1-\alpha}
$$

and set $\tau(t):=\bar{\tau}-t$. It follows that

$$
\alpha=\frac{\bar{\tau}-t_{2}}{\bar{\tau}-t_{1}}=\frac{\tau\left(t_{2}\right)}{\tau\left(t_{1}\right)} .
$$

Using Lemma 4.2 and Lemma 5.10, we conclude that

$$
\mu(g, u, \tau)\left(t_{2}\right)=\mu\left(\alpha \cdot \varphi^{*} g, \varphi^{*} u, \alpha \tau\left(t_{1}\right)\right)=\mu\left(\varphi^{*} g, \varphi^{*} u, \tau\left(t_{1}\right)\right)=\mu(g, u, \tau)\left(t_{1}\right)
$$

By the equality case of the monotonicity formula, $(g, u)(t)$ must be a gradient shrinking soliton.

We cannot draw further conclusions as we did for steady and expanding breathers since we cannot use the Euler-Lagrange equation satisfied by the minimizer \bar{f} in the way we did for minimizers of E.

