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4 The monotonicity formula

An important tool to control solutions of evolution equations in general are monotone quantities.
Such a monotonicity formula also exists for the flow (2.5), which we will show for closed M in
this section. Although there is the monotone entropy F given by (2.1), it will turn out that this
is not sufficient for all our purposes.

We want to replace the entropy E by a scaling invariant integral and to this end introduce
explicitly a scale parameter 7 into the formula as it is done in [Per02, §3]. One should think
of 7 as backwards time, measured back from some fixed time. M will be a closed Riemannian
manifold for the rest of this section.

Definition 4.1 Let 7 € R be a positive real number. Then the entropy W of a configuration
(g,u, f,7) € M(M) x C°(M) x C°(M) x R

is defined to be

Wig,u, f,7) = /M [7(S+ |df[*) + f —n](4nT)"2e TaV . (4.1)

From this definition we see that W is scaling invariant in the following sense:

Lemma 4.2 Let a > 0 be a constant and ¢ be a diffeomorphism of M. Then the entropy W is
invariant under simultaneous scaling of g and T by « in the sense that

W(ag7u3 f?aT> = W(g7u7 f’T)
and invariant under diffeomorphisms

W(e g, " u, 0" f,7) = W(g,u, f,7) .

Proof:
This is a short computation:

W(ag,u, f,ar)
= / [ar (R(ag) — 2(ag) 0udju + (g) 0,0, f) + f — n)(4rar)”zef \/det(ag)dz
M

n

= / lar(@ 'R — 2o Hdul® + o |df|?) + f — nja”2(4rr)"ze fazdV
M
=W(g,u, f,7) .

The invariance under diffeomorphisms is clear since we are dealing with geometric quantities.
One can use coordinates induced by ¢ for a proof.

[
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We choose a variation vector (v,w,h,o) as we did for E and compute the first variation of W,
abbreviating (477)~2e~/dV by dm in the following. The first component gives:

Wlg,u, f,7](v,0,0,0) = / (T[éR(g)}(v) - 2Tvij6iu5ju + T’uijaifajf) dm
M
+/ [7(S + |df[*) + f — n](4nr) "2~ [8dV (9)](v)
M
= / T- (*A(tr U) + vivj"l}ij — Rijvij + 2vij8iu8ju — vlj&fajf) dm
M
# [ s+ 1)+ ] S
= / Vij * {_TSij - Tvivjf} + HTU ’ {QTAf - 27'|df|2}d”"b
M
+ /M [7(S + |df|*) + f —n] - Tdm
where we used that by partial integration
/ (—A(trv) + Vvaij) e~ fav = / [trv (Af — |df|2> + Uz‘j(aifajf — VN]f)] e~ fav
M M
holds. The variation of u is given by

oWlg,u, f,7](0,w,0,0) = /M —27[8|dul?](w)dm = /M(—2T - 20;wd;u)dm

B / drw - (Au — (du, df))dm = / Sw-{38u — 3{du, df}} dm
M M

and for f we find
(SW[Q, u, f) T] (07 07 h) O)

:/ (7[6|df|*](h) + h) dm+/ [7(S + [df[*) + f — n] (4n7) "2 [5e~T](h)dV
M M
:/ (7 - 20;h0; f + h) dm+/ [7(S + |df ) + f — n](—h)dm

M M

—/ (h-{=27Af +27[df|*} + h) dm+/ [7(S +|df|*) + f — n](—h)dm .
M M
Varying 7, we compute

W (g, u, £.71(0,0,0,0) = /M o (5 + |df|?)dm /M [7(S + |df[2) — f — n][b(dnr)"3)(0) TV

:/ a-{S+df|2}dm+/ [7(S + |df12) + f — ] - (—22) dm .
M M

Putting this together gives
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We will think of 7 as a backward time and therefore set the variation of 7 to be o = —1. In the
same way as for E, we can choose the variation of f such that the measure is kept fixed:

. trov n trv n o __
hi=% 42 = F -htzgp=0.

Fix f and choose h as above. In the same way fix 7 and choose o as above. Considering W as
a functional of g and u alone, we finally get:

Wlg,u, f,7)(v,w) = /M vij - {—=78i —TViVf} +w - 47{Au — (du, df )} dm

4.2
w [ |7 gt e —2an) h - - @2 am +
M T%/_/ e Vad

=0 =Af

Since on closed M the following identity for the Laplacian and the norm squared of df is true
0= (477)"2 / Ae ™l dV = / (Jdf)* — Af) (4r7)"2eFdV, (4.3)
M M

we can cancel one term in (4.2) and replace |df|?> by Af in the other. If we vary W along the
variation given by the following evolution equations

V=g = —28y — 2V?f
w = Oy 1= Au — (du, df)
hi=0f ="+ =—Af—-S+ L

0:=0:=—1,

(4.4)

we calculate that
W (g, u, f,7)(t) = / [27[Sy + V2 f? + 47| Au — (du, df)|* — 2Af — 25 + 3] dm .
M

Since
27|18y + V2 f — g|? = 27|Sy+ V2 fP + 27(% — 15— 1Af)

we finally conclude

6tW(g,u,f,T)(t):/ 2715y + V2 — Lgf? + drAu— (du, df)? dm .
M

Remark 4.3 Note that the following theorem is still true for a complete noncompact manifold
3 as long as the integrations by parts can be performed. This is possible for example by imposing
falloff conditions on (g, u, f).

So everything comes together to the following result:
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Theorem 4.4 Let M be a closed Riemannian manifold and assume that g, u, f and T satisfy
on [0,T) x M the evolution equations

Og = =25y

oru = Au

Of = —Af+|VP—S+ & (4.5)
o =—1.

Then the following monotonicity formula holds:
oW (t) = / {2T|Sy+ V2f — g + 47| Au — du(V f)[*|[dm > 0 . (4.6)
M

In particular, the entropy W is nondecreasing and equality holds if and only if the solution is a
homothetic shrinking gradient soliton. In this case (g, u, f,7)(t) satisfies at every t € [0,T):

Sy-I-VQf—ig:O and  Au—du(Vf)=0.

Proof:

We can apply the diffeomorphisms generated by V f(¢) to the system (4.4) in the same way as
we did for (2.3). Then the result follows from the preceding calculations, considering that W is
invariant under diffeomorphisms of M. Solitons have been introduced in Definition 2.2.

[

Applications for the monotonicity formula are the proofs of nonexistence of periodic shrinking
solutions and of the noncollapse of solutions to (2.5) at finite times.



