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3 Short time existence

The goal of this chapter is to prove short time existence for the system (2.5)

Org(t) = —2Rc(g(t)) + 4du(t) ® du(t) (3.1)
Ayu(t) = AIDuy(t) (3.2)

with initial data g(0) = g and «(0) = @ for § € M(X) and @ € C*°(X). On closed manifolds
we obtain a solution on a time interval [0,7") for some 7" > 0. To get existence on noncompact
complete manifolds we have to impose additional conditions on the initial data later on.

3.1 The boundary value problem

Since we consider noncompact manifolds X, we cannot directly invoke the theory of parabolic
systems to get a solution on the whole manifold X. Instead, we solve the boundary value problem
on a family of discs of increasing radius. This provides a sequence of local solutions. We prove
that a limit exists and is the desired global solution on the whole of X.

The system (3.1) and (3.2) is only weakly parabolic due to the diffeomorphism invariance of
the equations. The principal symbol of (3.1) is the same as the principal symbol of the Ricci
operator since the second term is independent of g, hence a lower order term. Therefore the
considerations in [Ham82, §4] concerning the Ricci Flow are also true for this system.

Fortunately we can overcome this difficulty using the methods that were developed for the Ricci
flow. In particular, we can find a strongly parabolic system which is equivalent to (3.1) and
(3.2) by the application of a diffeomorphism. This is referred to as DeTurck’s trick [DeT83].
In the noncompact setting this is carefully worked out in [Shi89] which we will strongly refer
to in the sequel. We first calculate the evolution equations for solutions pulled back by such a
diffeomorphism.

To this end let V' € X(]0,T] x %) be a smooth time dependent vector field and denote the induced
1-parameter family of diffeomorphisms by ;. Then the diffeomorphisms satisfy at every x € X
the following ordinary differential equation:

d

%‘Pt(x) = V(pt(r)) (3.3)

wo(z) =2 .

Lemma 3.1 Suppose (g,u)(t) is a solution of (3.1) and (3.2) on [0,T] x ¥ and ¢y : ¥ — X is

the 1-parameter family of diffeomorphisms generated by V. Then the pullbacks g(t) := ©;g(t)
and u(t) = pju(t) satisfy the following system of equations:

0vgij = —2R;j + 40;udju + V;V; + V;V; (3.4)

Oru = Au + du(V) (3.5)

on [0,T] x ¥ where {V;} is the associated 1-form to V. Furthermore, (g,u)(t) have the same

initial values as (g, u)(t):
(9,u)(0) = (g, 2) - (3.6)
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Proof:

Denote by {y*}a=1..n the coordinates where g and @ are represented by go3 and @. Define new
coordinates by z' := (yo )" for i = 1...n. We use the argument in [Shi89, §2] which goes
through since the extra term in the equation for the metric is simply

oy
87,

B
Y95t = udu = (du ® du);

o1 (da ® da);; Dati s

in the new coordinates {2’} and the rest of the calculation is unchanged. Moreover, the evolution
of u with respect to the new coordinates is given as follows:

o 0_  Ouoy* +_ Oudy”
ou(t, x) = O(u(t, p(x)) = i + o 0f Au+ — 9 of
aBe = - Ou oy“® oy® E)yﬁ 0zt Oxd ou
— o8 Il g P
3"V Vau + B0 8xPV D ﬁaﬂg 357 By ﬂV ;Viu+ pyes —V

= Au+ du(V)
since we know from (3.3) that

o _ dana)) _

a@t(fﬂ))a = (Veu(x))® = (Dee(V))* = 8y

P
Y o el (3.7)

The initial data remain the same under this coordinate change since ¢y = id on X from (3.3)
which proves the lemma.

L]

There is a suitable vector field V' to make the system strictly parabolic. This is an idea from
[DeT83]. From now on, we will denote all derivatives with respect to the initial metric g by V
which is time-independent.

Lemma 3.2 The choice of V' := gpq(F;q — f;q) makes the system (3.4) and (3.5) strictly
parabolic on [0,T] x .

Proof:
To see that the system is strictly parabolic, we rewrite the equations such that all derivatives are
with respect to the (fixed) initial metric § and examine the leading order terms in coordinates.
We use the identity

Y =T = 39" (Vigu + Viga — Vigis) (3.8)
to replace the Christoffel symbols of ¢ by derivatives Vg and work in normal coordinates for §
such that ffj = 0 at the base point. We compute the evolution equation for g;; as in [Shi89,
Lemma 2.1]. The additional term 4du ® du is independent of the metric g, giving us altogether:

Agij = 9"°VaVy gij — 9" 9ik ™ Rjai — 9°° 943" Riaty + 40;udju
+ %gabgkl {Vzgka@jglb + Q@agjk@zgib - Q@agjk@bgiz — 2@j9ka@bgiz - Q@igka@bgjl} ,
(3.9)
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containing only one term of second order and terms quadratic in the gradient of g. The equation
for u is computed similarly as follows:

Ou = Ay + du(V) = gijvivju + OpuVF = ¢V (aiaju — Ffjﬁku) + OpuVF
= gV, Vu — gijFi?j@ku + Opu - gij(Ffj - ff]) (3.10)
= gij @Z@ju
where we used that ffj = 0. The principal symbol of the system in these coordinates is given
by the coefficient matrices of the second derivatives of g and u. These are the coordinate repre-

sentations of the inverse metric g~—!, henceforth positive definite, making the symbol invertible
over all nonzero cotangent vectors. Therefore the system is strictly parabolic.

[

In the following, let D C 3 be an bounded open connected subset of 3 with compact closure.
The parabolic boundary T of [0,T] x D is defined by:

I':= ({0} x D) U ([0,T] x D) . (3.11)

We want to solve the initial/boundary value problem (3.1) and (3.2) on [0,7] x D with initial
and boundary data g and @, that is

(gau)|f‘ = (g,ﬂ) :

3.2 Equivalence of the solution metrics

We prove that the evolving metric is equivalent to the initial metric at least for a short time.
This allows us to compare the unknown metric g(¢) with the initial §. This shows in particular
that the system (3.1) and (3.2) is uniformly parabolic. Let in the following (3, §) be a complete
Riemannian manifold, % a smooth function and assume g, @ satisfy the global bounds

|Rm|3 < ko, Vil < ¢ (3.12)

for some constants kg, co > 0 on ¥ where | - |p is the norm associated with g. Let (g,u)(t) be
a solution to (3.4) and (3.5) on [0,7] x D with initial and boundary values (g, ). To prove a
lower bound for g(t) we use the same test function as in [Shi89, Lemma 2.2]:

Lemma 3.3 For an integer m > 0, define a test function ¢ on [0,T] x D as follows:

ai1by ~ azbs ambm

Y=g 9b1a9 g gbmal . (313)
Then ¢ satisfies:

Ao < gV Ve + 2mny/kg - 1 TH™

@lFEn

where T is the parabolic boundary defined in (8.11) and n is the dimension of .
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Proof:
Considering the boundary values (3.6), we compute on I':

a1b1 ~ Ambm = ~a1b1 ~ ~Ambm

©=9""Tbrar 9" Gomar = 9 Goras 9 " Gopar = ey =1

after successive contractions over all indices. The evolution (3.9) of g;; implies an evolution
equation for g%:

19”7 =g""Va Vg + 94" ¢ 91,37 Riagy + 909 67 9137 Ricagp + 9°°V a9 3"V p0pq
+ g% gV 0 g7V b gpq — 49" g7V iuVu

+ g7 9% G (Va9 Vogar + VigpaVedak + VidpaVida — VagpiVagok — VigpaVide)-
(3.14)

From now on we work in a normal coordinate system for § where in addition ¢ and ¢! are

diagonal in the pole: (This is possible because g is symmetric and positive definite.)

1 0 A1 0 /\% 0
- 1 A2 i 712
(9ij) = . (95) = , (97) =
0 1 0 An 0 =
(3.15)

Here and in the following, we always contract with the metric g(t). Therefore a repeated lower
index ¢ is always paired with a factor )\;1 in contrast to Einstein’s convention. We have for
example:

9" Rzmq—z)\ iqjq -
q=1

To avoid misunderstandings, all summations will be explicit in the forthcoming calculations. In
the coordinate system introduced above we compute

n

- . , . 1 -
ij_ ik y—15jly—1 _ ,
Vaug" = Z =0 )‘i ¢’ )\j Vagr = _T/\jvagzj
k=1
Together with other similar calculations, we get from (3.14) that
drg" = Z 9°VaVig” +Z Rkt + v Rjir — L@w 1Vigit | — : ViuVju
i )\ N )\ ! M AN i) !

a,b=1 k=1
n

1
+ -
kJZ_I Aidj AN (

Vi Vg + ViguViga + ViguVegi — VegiiVigie — 3VigeVig) -
(3.16)
The definition of ¢ in (3.13) implies at the base point

= ,: (;)m (3.17)

(2
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which yields an evolution equation for ¢:

o= () o) =2 (5) e

(2

Using (3.16) and always summing all indices from 1 to n, we obtain

+1
zab

idm ~ =~
8t<p Z NG 1gabv ng“ + Z )\m)\ lklk Z )\Tvzuvzu

i 7

- Z W (vkgz’lvkgil — 2Vigi Vg + VigiVigix + %@igmﬁigm)

i,k,l
aby i1
_Z N 19"V Vg +Z)\m)\ ikik — Z)\erllv ul
1ab % 7
- Z W|ngil + Vigir — Vigiklo
i,k,l
aby i1
<Zb w19 VaVig +Z)\m)\ ikik -

On the other hand, we can calculate

prsse-pren(§)) -5 (X))
o

i,a,b

/\"n‘l rVaVig" + 3 mg™Vag7Vig" <A( T AP +A§2_m)>
4,7,a,b

= Zg“b n’f‘ =VaVpg" + Zm)\ (A;HA;Z + Agl—muﬁ 4+ A;%gﬂ) Vgl
i,a,b ,5,a

>Zgab m & Ngn‘_

i,a,b

We put both inequalities together and get

S 2mv/k
Orp <Y g*"VaVip + Z N Rigir <Y 9""VaVip + vko

_— . (p
a,b a,b At
where we used (3.17) and the global curvature bound (3.12) for g. For all ¢ = 1...n we have
-1 —-m L —-m —m L 1
A = (g™ € (0 A =
and it follows that o
Op <Y §*"VaVip + 2mny/ko - T
a,b

as required.

[

This lemma allows us to estimate g from below by g in the following way:
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Lemma 3.4 Suppose (g,u)(t) is a solution of (3.4) and (3.5) on [0,Tp] x D. Then for all 6 > 0
there exists T = c(n,d) - 1/v/ko > 0, independent of D, such that

gij(t;x) > (1 =0)gij(x)  V(t,x) €[0,T] x D .

Proof:
Fix a 0 > 0. Let ¢ be defined as in (3.13) and choose an integer m > 0 such that

In2n In2n

(/0 =0) =" S ma/a=0)

is satisfied. Since D C ¥ is compact, we can define the Lipschitz continuous function

@o(t) := maxo(t,x) .
zeD

The maximum principle on D together with Lemma 3.3 implies
Op(t) < 2mn/ko - p(1) /™
p(0) =n .

This allows us to compare ¢ with the solution of the corresponding ordinary differential equation.
Considering the definition of ¢, we get for all x € D:

p(t,z) <

n

(1—2n'tm Rot)™

If we choose T according to

=) ()] e

we get for 0 <t < T and for all € D in the coordinates (3.15) that

n
Z)\;m =p(t,x) <2n.
i=1

By the choice of m this implies

1

A > (;)m >(1-6) Vi=1l...n.

n

Considering again the coordinates (3.15), we finally conclude
g¢j<t,$> >(1- (S)g@](ZE) (t,%) € [O,T] x D .

By definition T only depends on n,m,/kg and m depends only on n and §. Therefore T =
T(n, 6, vko) is independent of D. More precisely we have T = c¢(n,d) - 1/\/kq.
L]

Our aim is to show the equivalence of the initial metric and the evolving metric for a short time
interval. The last lemma showed that g is bounded from below by g. To obtain an upper bound
we need a bound for |Vul3.
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Lemma 3.5 Suppose (g,u)(t) is a solution of (3.4) and (3.5) on [0,T] x D with initial data
(g, @) satisfying |Va|2 < co on X and g(t) < (1+€)g on [0,T] for an € > 0. Then

|Vul?(t,2) < (1 +¢e)eg  Y(t,x) €[0,T] x D .
Proof:
Since |Vu|? satisfies (2.11), we can apply the maximum principle on [0, 7] x D to get

|Vu|?(t, z) < mﬁx[@uﬁ(t,x) = max |Vil2 < ¢ .
D

Here we used (3.6) and the fact that |- |>=1-]2 on I'. The upper bound for g(¢) implies that
we can estimate on [0,7] x D:

|Vuld(t,z) = §P10pudyu < (1 + &)gP10udyu = (1 + )| Vul*(t,2) < (14¢) - cp -

[

For the lemma we had to assume an upper bound on the metric which is what we wanted to
prove in the first place. Fortunately, we can show that this upper bound always exists.

Lemma 3.6 Suppose (g,u)(t) is a solution for (3.4) and (3.5) on [0,To] x D which satisfies
|Rm|3 < ko and |Vi|3 < co. Then for all e > 0 there exists T = c(n, ) - 1/(v/ko + co) such that

gij(t,x) < (1+¢)gij(z)  VY(t,z) €[0,T] x D .

Proof:

Let T7 < Ty be the maximal time such that
max |Vul3(t, ) < 2¢ (3.18)
xeD

holds for all ¢ € [0,T}]. Since |Vu|? is continuous, we know that 73 > 0. To be able to use this
estimate in the following reasoning, we will restrict ourselves to the time interval [0,77]. Later
on we show that this places no restriction on the choice of T

Using the coordinates (3.15), we can rewrite the evolution equation (3.9) for g;; as follows:
0i9ij = Zgab@ Vigij — Z L]:Zkk - L]'?k ik + L(@g « V) | +40udju
tYy " a ] — >\j>\k 7k Az)\k ik 2/\k/\l 1wy

where (Vg % Vg) is just an abbreviation for the more complicated quadratic terms in (3.9)
summed over k and [. Following the ideas in [Shi89, Lemma 2.3], we define

P (1 . [MD“ (3.19)

n—+o
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on [0,71] x D for given o > 0 and m € Z". By the choice of the boundary values in (3.6) we
have Fir = (n +0)/o. The evolution of F' is given by

1 2
OF =(1- A . A0, gss
! ( n+azk: ’“) n+az:mZ 19

M F PRI e +ZFZ’%W1 2 R+ —— (Vg * V)i + 40;udyu
—zab n+ bYii oy nto \ A ikik IAEN g 9)ikl .

We know from Lemma 3.4 that for all 0 < § < 1 there is a Ty = T5(, n, ko) > 0 such that

gee(t,z) > (1= 8)grr(z)  V(t,z) € [0,To] x D .

This implies that in the same set A\ > 1 — ¢ holds for all k = 1...n. Additionally, we can
assume F' < oo (otherwise A" < n + o from (3.19)). Since F' is continuous and F'(0) > 0 we
therefore get for all ¢ € [0, Ty):

At 1
1-— AP>0 = t <ANl< - 3.20
n+azk: k n—+o ¢ 1-946 ( )

for all 2 =1...n. This allows us to estimate

mA 2 1 -

m 2n? 4 - . m }
= (1-9) ((1 )2|Rm|0 + (1-— 5)2|v9|(2) +4|VU’(2)> < (1—75)3 (C+4|Vg|(2)>

on [0,min{Ty,T5}] x D where we used the bounds (3.12), (3.18), and the fact that 1 —§ < 1.
Here c is a constant only depending on n, kg, cg. Returning to the evolution of F', we see

A 1 2
o~ mEF ~
atF < FQZ abVQngii + m (C+ 4|Vg|(2)) . (321)

i,a,b

On the other hand we compute

D gV =) g?V, (FQZAm lvbgkk)

a,b a,b
oA m2 AP
2 ? J 3 v v
i,a, b i,a,b
>0
M -2 abg = -2 -3 -2
+ _Zb ol (7VagiiVogig) N AT A A N
27]70’7

m—1 terms

AT
>3 g e F2v aVgii

1.
- - 5)m_27kvk9ijvkgzj

i,a,b ’ij
1\ tm -
> Z‘; ab FQV «Vogii + m(m — 1) (n - J) F2(1— 8™ 2|Vgl2 .
2,a

(3.22)
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In this step we used (3.20) to estimate A\; ' > (n + 0)_% and \F > (1 — §)*.

We fix € > 0, set 0 := n, and choose m € Z* according to

In2n In2n

2 < — 120 +1.
mi+e) =" Shite T

20n° +

IN

From m > 18n2 + 1 we conclude that

(m—1) (;n)zgz(ljw

for some § = d(m) > 0. Therefore we can estimate

1+ m
m(m —1) (2172) 1—-6m"2> (14 ik

Putting together equations (3.21) and (3.22), this implies that

OF <Y gV VoF + el + F?|Vg|? _Am (m —1) S 1+%(14)’”*2
t _abg ot (1-26)3 9o (1—0)3 i 2n

cF?

< Zgab@a@bF + m

a,b

where ¢ = ¢(n, cp, ko). Considering the initial and boundary data (3.6), we know Fip = 2. From
comparison to the appropriate ordinary differential equation we get that

Fla,t) <2 <1 - ﬂfté)gyl

for 0 < ¢t < min{7Ty,T>}. Defining T := min{T}, T5, (155)3

This implies

}, we conclude that F' < 4 on [0, T]x D.

A< (@n)w <l4+e Vek=1..n

by the choice of m and shows the claim on [0, T], assuming the bound |Vu|? < 2¢p. If T # T1,
we are already finished, because T" does not depend on T} in this case. If T = T3, we apply
Lemma 3.5. Because of the equivalence of g and g just proven, we have

sup |@u\%(t,x) < (1+e¢)e
x€D

for all ¢ € [0,T1]. Therefore, 71 was not maximally chosen at the beginning. We conclude that
T does not depend on Ty and that 7' = min{T, 3(1 — §)* - ¢(n)/(v/ko + co)}, where T5 is from
Lemma 3.4 with T = ¢(n, 6)/v/ko. This gives T' > c(n,e)-1/(vko+co) since § = §(m) = d(n, €).

L]

The combination of Lemma 3.4 and Lemma 3.6 shows that there is a short time interval such
that the evolving metric is equivalent to the initial one.
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Theorem 3.7 Suppose that (g,u)(t) is a solution of (3.4) and (3.5) on [0, Tp] x D with initial
data (§,a) satisfying |Rm|3 < ko and |Va|3 < co. Then for any € > 0 there is a time T =
T(n,e, ko, co) > c(n,e) - 1/(vko + co) independent of D such that

(1 - 8)§lj(x) S gij(ta'/r) S (1 +€)§ij($) V(t,i‘) € [OvT] X D .

3.3 Higher order estimates

In order to prove short time existence for the modified flow (3.4) and (3.5), we need a priori
bounds for all derivatives of the solution (g, u)(t). Since we want to prove existence on complete
manifolds, we need estimates that are independent of the domain D.

For technical convenience we collect the coefficient functions g;; of g together with u in a vector
that we call ¥. In short
U= (g4, u) ,j=1,...,n. (3.23)

We use the abbreviation V¥ for the collection of first covariant derivatives with respect to § and
similar for higher derivatives. The norm of ¥ and its derivatives is computed pointwise with the
Euclidean vector norm. This gives the local description

IVRWIE = [VFgI3 + [VEul
for all £ > 0 in the chosen coordinate system. We prove the following gradient estimate:
Proposition 3.8 Let (g,u)(t) be a solution of (3.4) and (3.5) on [0,T] x D for D := B.s(x0)

the geod(isic ball around xqy of radius v + § with respect to the initial metric §. Assume that on
[0,T] x D the metrics g(t) are equivalent to g in the sense that

(1 — E)gw(.ﬁ) < gij(t,x) < (1 + 5)?]”(1') (324)

for 0 < e < gg :=1/416000n'°, and we have bounds |Rm|% < ko and |Vi|2 < co. Then there is
a constant C = C(n, g, co,7,0) > 0 such that

V[t 2) < C
holds on [0,T] x B(xo,vy + 0/2). In particular the bound is independent of the base point x.
Proof:

Fix an ¢ in the designated range and comparable to 1/ n'0. We start with the computation of
the evolution of Vg and compute from (3.9)

O Vrgij = Vidigij

= ¢V ViVigij + 9% VRm + Vg * Rm + Vux V2u + Vg * Vg + Vg x Vg * Vg
(3.25)
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where summation over a and b is understood. Consequently we get
|Vgl3 = Z@kgij . gab@a?b@kgzj + Vg« VRm+Vg*Vg* Rm+ Vg* Vux Vu
+Vg*Vg* V%94 Vg*VgxVgxVg,
from which we can deduce the following estimate for the time derivative of |@g|g:

0|Val§ < g"™*VaVi|Vgl§ — [V2915 + c(§)[Vglo + c(§)|Vgl§ + 16n°|V?ulo| Vulo| Vo

. 5 ~ (3.26)
+ 80n°|V?g|o|Vg|2 + 144n°|Vgls |

using (3.24) and counting carefully the number of terms. Here c(g) depends on derivatives of §
since we have to estimate VRm and Rm on the compact set B,5(xo). In addition, we computed

g“b@a@b@kgij = gab@k(@a@bgij) + g+ VRm + Vg* Rm
and applied the Bochner formula
Vigij - 9°VaVe(Vigis) = 9"°VaVi(Vrgij - Vigij) — 20" VaVigij - VoVigis
< g*Vo Vi Vals — §°VaVigii - VoVigij -
Using (3.10), the corresponding estimate for |Vu|? is given by
0| Vul* < g™V Vel Vul§ — [V2ulf + c(@)[Vulg +n°|[V2ulo| Vglo| Vulo - (3.27)
Combining equations (3.26) and (3.27), we get an inequality for |V¥|Z:
|V < gV V| VI2 — V22 4 1000° | V20| VI |2 + 14408 |V + | V|2 + | VT .
This can be simplified using Young’s inequality:
V20 - 100n°| VT3 < 3IV2T 2 + 50000 |V,
and we get with ¢|VU|g < ¢| VU2 + ¢
K VIR < g®V Vi | VU — L V2T + 520000 | VWG + ¢ VI +c. (3.28)
Again calculating in the coordinate system (3.15), we have from (3.24)
l—e< A <1+c¢ <A <2 k=1,...,n.
Following the ideas in [Shi89, §4], we define m := 41600n'° and a := 10400n'°, and a function

@ on [0,T] x By15(xo) as follows

n
p(t,x) =a+ Z ARt (3.29)
k=1
It satisfies the evolution equation

~ ~ 2 ~
Oup < gV Vi + C = S|V
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The argument is similar to [Shi89, §4] where it is proven that
b © N omP o
Oep < g"VaVip + 0 = —|Vylj -

We can add %2(200 — |@u|§) > 0 on the right hand side to get
b & ., m? m? / - -
D < g""VaVep + <C +t3 200> e (‘VQ% + |VU|3)

in view of the bound on |@u|% in Lemma 3.5. Note that C' depends only on n,g and cy.
Combining the evolution equations, we get

O IVE[) < g™VaVi(p- [VI[F) =2 g*VapVy| V|G — glw‘I’I% +5200n' 00| VI3

a,b
SaE SaE m® < 4
(3.30)

Our task now is to simplify this equation significantly. Calculating 5200n'%¢p < %2 which holds
for all € < gp and using (3.29) we conclude

(520000 — ”;2) VI3 < —TgW\mé : (3.31)
The cross term can be handled as follows:
—29%V 4oV | V|2 = —297°V, <zn: A’,;L) V| VE[S < =m Y AT GV agir - Vi VIS
k=1 k
<n-mn(l+¢e)™ 1 |Vglo - 203 V|| VEE|y < 4mn®|VT|3 - V2T,
< §|©2\1/|3 + 21@16m2n10|wf|3
(3.32)

where we have used Young’s inequality in the last step and the fact that (14 ¢)™ ! < 2 for all
e < ep. Because of ¢ > a > 1, we can also estimate

CIVU|]2 < Cp|VY|3 . (3.33)
Collecting (3.31),(3.32), and (3.33) we get from (3.30) that

10m2nt0

2
~ ~ o~ ~ m ~ ~ ~
(- IVU[G) < g""VaVi(p - [VH[]) = oIV + VO[5 + o VI[G + cp -

There is the lower bound ¢ > a > 320n'° from the choice of a, which allows us to estimate

10m?2nto m?
_— <,
%) - 32
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giving us ,
A+ [VU[R) < g™ VaVi (- V) = SV + o VU + o (3:34)

Now m > 2[a+ n(1 +¢)™] (for all € < g¢) implies

m2 2

322

m2 ~ ~ m
— |Vl VU[dp? >
371V ¥lo [V¥loy” > 32[a + (1 + )]

VI > LTl
An application of Young’s inequality
c VI < 4c® + f5* VO[5
leads from (3.34) to
(- IVU[G) < 9™VaVi(p - [VE[F) — 1507 - VUG +et+ep.
The last term can be estimated for all € < g as follows:

co < cla+ (14 ¢)™] < ¢[10400n1° 4+ 3] < ¢

Defining ¢ := ¢ - |@\II|(2), we get in the end
-~ 1
Nhd < "V, Vo — T6¢’2 +e (3.35)

where c still only depends on n, ¢y and the initial metric g.

The next step is to localize this equation. To this end we use the same cut-off function £ on
B 5(x0) as in [Shi89, §4(38)] and define

F(t,z) :=¢&(x) - o(t,x)  V(t,2) €[0,T] X Byys(xo) -
We can compute in the same way that

F=¢ ¢ |VIZ>0  on[0,7] x Byps(wo)

F=0 on [0,T] x (£\ Bys35/4(20)) -
In addition, there is a point (to, o) € [0,7] X By435/4(w0) such that

F(t = F(t,z) . .
(to, o) 0TI, ) (t,x) (3.36)

We would like to assume that tg > 0, but there is a difference to Shi’s work here when considering
the initial value of F' at time t =0

F(0) = £p(0)|VE[3(0) = £p(0)| Vg

so we cannot be sure that the maximum does not occur at ¢ = 0. However, this is not a problem
because of our initial bound on V. If the maximum of F on [0,7] x By4s(x) should occur at
t =0, we easily get

cCo = C(”v CO)
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and are already done. Otherwise, we deduce from (3.36) that
&(xo) - Orp(to, x0) = OeF (to, x0) > 0 .
Additionally, we get from (3.36) that
0> g**VaViF (to, 20) = & - §*°VaVid + ¢ - g"°Va Vil +2¢"Vag - Vi€ .
Since £ > 0, we conclude from (3.35) that
L, o absr abys =
1689 S &€ =097 VaVel = 297Vag - Vil -
This can be simplified since we know from (3.36) that
0= VF(to,z0) =& Vo +¢- VE ,
giving us
8 < b~ 6TV + 290 Va6 Vi
We have to use estimates on £ to continue which are proven in [Shi89, §4(40),(45)]:

16
52
Using 0 < ¢ <1 and (3.24), we therefore get at (tg,zo) that

|@£|g < 67 @aﬁbg > _0(7757 kO)gab .

1.

R <

16£¢ <c+co
which implies

1

—F?<c¢+cF

16 =cere

and therefore
F(t,z) < F(to, o) < ¢(n, g, co,7,9)

holds for all (¢,z) € [0,T] x Byys5(wo). Since { =1 on B, 5/2(x0), we have there
|@\Ij|(2) < 63071 <c-a= C(n>ga 007’775)

from the definition of ¢ and ¢ as required.

L]

Having established the bound for the first derivative of ¥, we prove the boundedness of higher
derivatives by induction.

Proposition 3.9 Suppose (g,u)(t) is a solution as in Proposition 3.8 and V™ is constructed
as above. Then for any m € Z§ there is a Cp, = Cpy(n, 7,6, §,co) independent of D such that

VU2 < Gy,

on [0, T] X By1s5/(m+1)(w0) where | - |o is the norm associated with §.
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Proof:
To start the induction argument, we need a global bound on the norm of @ itself, not only on
V. We therefore make the additional assumption

jal < co
on ¥. From (3.10) we get the evolution equation
Olulp = 9™ VaVolulf — [Vulg ,

and an application of the maximum principle on [0,T] x B,.5(xo) proves the boundedness of u
also for later times. Thus we get for m = 0 on [0,T] x B, 15(xo) that

15 = 115 + ulg < 41g[ + |al§ < 4n + co = Co(n, co) - (3.37)
The case m = 1 is proven in Proposition 3.8.

Suppose that the statement is true for £ = 0, ..., m—1. Then there exist constants Cy, ..., Cpn,_1
such that )
VR[St 2) <Cp  Y(t2) €[0,T] X Byys sy (o) - (3.38)

We want to prove the statement for k = m. Assume m > 2 and calculate
8t (@mgjj) = gab@a@b (@mgij) + Z @klg E I 3 @km‘”g * Pklkg...km+2 + Z @llu * @hu (3.39)
I J
from (3.9). The sets of indices are defined as follows:
Ii={(ki, ... kpy2) EN"2:0<k;<m+1 Vi=1,...,m+2; ki+ -+ knia <m+2}
Ji={(l1,) eN?*:1<L;<m+1 Vi=1,....m+2 i +lo=m+2} .

We denote by Py, k,..k,, ., @ polynomial in g, g 4 Rm, @Rm, . ,@mﬁm. Then the formula can
easily be proven by induction. Analogously, we get from (3.10) that

Oy (@mu) = ¢"V,V, (@mu) + Z VR g s oox VFmg s Vi % Pry o kel (3.40)
K

holds where in this case the set of indices is
Ki={(kt, ...k, ) EN"10<k; <m—1; 1<I<m+1 k14 +kn+l<m+2} .
We get an equation for V"W out of (3.39) and (3.40) as follows:
O (V™) = gV Vy (VM) + Y VR s oos VEm 2T s Py gy (3.41)
I

where Py, ,.. k., again is a polynomial as above. From this we can deduce an evolution equation
for the norm squared of V"W:

K|V = gV V| VO[G — 2970V o (VTT) -V, (VD)
+ Z VR 5o VFmt2 @ 5 VM 5 Py ke
I

m+2
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which we can refine as before:
—2g"V o (V™T) -V (V™) < — V"3
|Pklk2<--km+2|0 < C(n7m7 |§|C°°) )

using the boundedness of the derivatives V¥Rm of the initial curvature on the compact set

B,s5(x0). Therefore ¢ depends on the whole C*°-norm of §. Making use of the induction
hypotheses (3.38), we find on [0, 7] X B, 5/m(70) that:

O[S < gV V[V — [V
+C- {Wm‘l’lowmﬂ‘mo(l +[VPlo) + [V (1+[VE[F+ [V2[o) + |@m‘1’|0}
(3.42)

where C' = C(Cy, . ..,Cp—1,n,m,|g|cee, co,d,7). The first summand in parentheses corresponds
to the terms in the big sum that contain one factor of order m + 1, the second to the terms that
contain one factor of order m and the third of all other terms that only contain factors of orders
less than m and can be dealt with by (3.38). We first consider the case m = 2:

AUV < gV, T, V2[R — (VO
+C- {|@2q/|0|@3\p|0(1 +|VUo) + [V2UR(1+ VT + [V2P|o) + W?\mo}
<GV VPU[E — VS + O {|@3‘I’|0@2‘1’|0 + VAU + [VUE + |@2‘1’|O} :
We can estimate by Young’s inequality

C - |V30|o|V2Uy < L V303 4 102 V23U 2
C- (V2o + |[V2TF) < C- (V2T + 1)

and get
HVPU[S < gV V[ VAU — VA 4 O VR4 O

The same reasoning applies in the case m > 3, and we conclude that
VTR < gV V[ VTR - VTR O VT 4 O (3.43)
is valid for all m > 2 on [0, T] x B, s5/m(z0). Using (3.38) we compute:
O VTTIUR < g?V, V| VT - LV g 4 C (3.44)

for all m > 2 on [0, T] X B, 45/(m—1)(70). We want to use (3.44) to cancel the bad term in (3.43).
To do that, we define a new test function

¢ = (A+ |V"TG) - [V
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where the constant A > 0 will be chosen later, again following the ideas of [Shi89, Lemma 4.2].
The evolution equation for ¢ is given as follows:

O = (V" TIUIG) - VT[S 4 (A + [V - (0 V)
< gV VTIR[E - VTS — [V + CIVT
+ gV VU (A4 [VPTIR) - LV (4 [V R)
+ OV (A [V + O - (A + [V
Collecting terms and using the induction hypotheses (3.38), we find
09 < g""VaVid — 29" Vo VUG- V[ VT[S — 5IVT[G — GV (A + [V TIE)

+C|IV™U)2 +C
(3.45)

where C' = C(\) now also depends on A. We estimate C|V™¥2 <
inequality |V|(-)|| < |V(-)| to control the cross term:

|V W[4+ C and use Kato’s

>J>~\>—t

—2g""NV o[V TG - V| VO[S < 8P VT T [0V [V g - [V V[V
< 16¢| VU3V < SV + L Ve .

Here ¢ depends only on n and C,—;. Together with (3.45) this implies
016 < g""VaVid + (556" = DIV™U[+ C .

Choosing \ := 4(c? + 1), we get
. 1 . N . .
06 < g"VaVid — 0% (A [V TUR) T+ O = gLV — Co* 1 C

on [0,7] X Byis5/(m+1)(z0) where C' and C are constants only depending on Cy,...,Cp_1,
n,m, 9,7, |glcee,co. By an application of the maximum principle as in Proposition 3.8, we
finally get

|@m\11|(2)(t7x) S Cm(C(), .. '»Cm—17n75777 |g‘c°°700) = Cm(n’(;’ﬂ% |g|C°°7CO>

on [0,T] X By45/(m+1)(%0) as required. This finishes the induction argument.

[

Given these a priori estimates, the theory of parabolic systems on compact domains provides the
existence of a solution to the modified system (3.4) and (3.5) on a finite time interval 0 < ¢ < T
where T is determined by Theorem 3.7. We use the existence theorem for quasilinear parabolic
systems in [LSU68, Theorem VII 7.1] together with the remarks in [Shi89, chap. 3].

Theorem 3.10 Let X be a complete Riemannian manifold and D C X be a connected open sub-
set with compact closure. Then the system (3.4) and (3.5) together with smooth initial/boundary
data (§,1), satisfying |[Rm|% < ko and || + |Va|3 < co, has a unique smooth solution (g,u)(t)
on a time interval [0,T) for some T = T(n, ko, co) > c(n) - 1/(v/ko + co).
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We note a direct corollary of these results in the case of closed manifolds:

Theorem 3.11 Let M be a closed Riemannian manifold and (§,u) € M(M) x C®(M) be
given. Then the initial value problem

Org = —2Rc(g) + 4du ® du
Ou = AYu

with initial data g(0) = § and u(0) = @ has a unique smooth solution on a time interval [0,T)
for some mazimal T > c(n) - 1/(v/ko + co) where ko := maxys |[Rm|3 and cy := max,y |dil3.

Proof:
This easily follows from the fact that (3.4) and (3.5) form a uniformly parabolic system on a
compact domain without boundary as was proven in Theorem 3.7. Furthermore, the solution
of (3.4) has bounded curvature and the vector field V' together with its first derivative VV/
is smooth and bounded on M. This implies that the 1-parameter group of diffeomorphisms
generated by V exists and is smooth on [0, 7) x M and that the pullback of the solution satisfies
the original system (2.5). A more detailed exposition is given for the complete case in the proof
of Theorem 3.22.

L]

3.4 Short time existence on complete manifolds

The a priori estimates for ¥ in the last chapter enable us to prove the existence of a solution to
the initial value problem

0vgij = —2R;j + 40udju + V;V; + V;V;

3.46
Oru = Au+ du(V) (3.46)

on the whole space [0,7] x ¥ with initial values g(0) = ¢ and u(0) = @ for a given smooth
Riemannian metric § on ¥ and function @ € C*°(X). To this end we fix a point 9 € ¥ and
choose a family of domains {Dy, C ¥ : k =1,2,3,...} such that for each k

1. the boundary 0Dy, is a smooth (n — 1)-dimensional submanifold of ¥

2. the closure Dy, is compact in 3

3. By (:I,‘()) C Dg
where By(zg) is a geodesic ball with respect to § of radius k. This family exists since X is
complete. Theorem 3.10 shows the existence of a solution on each Dy for 0 < ¢t < T where

T depends only on n and the initial data (g, ). Furthermore, Theorem 3.7 implies that these
solutions satisfy

(1=2)gij(z) < gij(t,x) < (14 €)gij(z) V(t,z) € [0,T] x Dy,

uniformly in k for an arbitrary fixed e satisfying 0 < & < g := 1/(416000n'9).
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In addition, we have for any integer [ > 1
By () C Dy Vk>1.
Proposition 3.9 gives domain independent a priori estimates for these solutions
V™ (k, t, 2) |2 < C(n, 1, G, co) Y(t,x) € [0,T] x Bi(xo)

for all k > [ where C),, and T" do not depend on k. Therefore, all derivatives of (k) are uniformly
bounded on any compact subset of [0, 7] x ¥. Since we have

oo
Ubi=x,
k=1

we can take the limit £ — oo and get convergence of a subsequence of the solutions ¥(k)(t) in
the C'*° topology on compact subsets of [0, 7] X ¥ to a smooth solution (gec, tso)(t) on [0,7] x X
by the theorem of Arzela-Ascoli. This proves

T~heorem 3.12 Let (X, g) be a smooth, complete Riemannian manifold with bounded curvature
|Rm|3 < ko. Let @ € C°°(X) satisfy |u|3 + |di|3 < co and V € X([0,T] x X) be as in Lemma 3.2.
Then there is a time T = T(n, ko, co) > c(n) - 1/(v/ko + co) such that the initial value problem

Og = —2Rc+ 4du ® du + Ly g
Ou = ANu+ Lyu

on [0, T] x X with initial data g(0) = g and w(0) = @ has a smooth solution (g, u)(t) satisfying
(1= 2)gij(x) < gij(t,x) < (1+€)gij(x)

for all (t,x) € [0,T] x ¥ and for all ¢ < 1/(416000n'°).

3.5 Global estimates for complete solutions

In order to construct a solution of the original system (3.1) and (3.2) from a solution of the
modified system, we have to prove the existence of the diffeomorphisms we want to use to pull
back the solution. To this end we need to assume the additional bound

suIE) V2|2 (x) < s (3.47)
xe

on the initial data from now on. The aim of this section is to prove global estimates for |Rm|,
|V2u| and |VV].

Remark 3.13 We do not want to use the interior estimates in Proposition 3.9. Although these
indeed imply a global bound for the derivatives of (g,u)(t) on X, the constant depends on the
whole C'°°-norm of the initial metric g. We want to prove an estimate that depends only on the
curvature of g.
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As a first step we prove a global bound on the first derivative of the solution (g, w)(¢). This is
done in the following proposition.

Proposition 3.14 Let (g,u)(t) be a solution satisfying the assumptions in Theorem 3.12. As-
sume furthermore a bound |V?ul? < sg on ¥. Then there exists a constant ¢ = c(n, ko, co, So)
such that

sup |@\Ij|2 < C(”? k0700730) .
[0,T)x%

Proof:
From Theorem 3.7 we know that for 7" = T'(n, ko, co) small enough all the approximating solu-
tions g(k,t) are equivalent to the initial metric § independent of k in the sense that

(1—-e)g<g(kt)<(1+e)g (3.48)

for the same arbitrary fixed ¢ as in the theorem. Because of the uniform convergence g(k) — g
this also holds for the limit. Let H;;(t,z) := 1 (g;;(t, 2) — gij(z)) and compute

8tHij = gabﬁa?bHi]’ + Aij on [O,T] X X

Hij (O) =0 on X
where we define
Ay =1, (=9 9™ Rjatp — 9" 913" Rjarp + 40;udju)

+eg®g" (AN Hypo Vi Hip + Vo Hip NV Hyy — Vo Hi Ny Hy — NV jHg Vo Hy — ViHo Vi Hjp).
In addition, we get for w(t,z) := e(u(t, z) — u(z))
dw = gV, Vyw + B on [0,7] x ¥
w(0)=0 on X

where B := z—:g“b@a@bﬂ. To estimate the coefficients of the differential operator, we calculate

B <8n\/% + 2¢ 8nvko + 2¢o
€ £

+ 20€|@H|(2)> gij S Aij(t> S ( + 20€|@H|(2)) gij .

Using (3.47), we can estimate
|Blo = |eg®™VaVyitlo < 2¢|§%0|V2a|o < VAnsg - €
on [0,7] x ¥. Furthermore, we can derive bounds on ¢(t) from (3.48):
—g=2(1-97-9) < igt) =g =Ht)=1(9(t) —9) < (1 +e)g—3) =3
which provides an estimate for the coefficients of the second derivatives

L b L
- < a t <7a
1+sg =9 ()_1—59

)
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implying
2

Vig®l < 1 IVH[3

€
(1—-¢)
on [0,7] x ¥. In addition, we know from the smooth convergence u(k) — wu that the bound
lu(k,t)|> < co for the approximating solutions on [0,7] x By is preserved in the limit. This
implies that

ulgt) <co = |wl§(t) < 2Julg(t) +2falf < 2e%co

for all t € [0, T]. Then the arguments in [Shi89, §5] applied to the system (H;;,w) show that for
€ < g9(n) small enough

sup_(IVHR + [Vwff) < c(n, ko, co, s0) -
[0,T]x%

This yields
\Vul} < |Vu— Vil + |Val§ < e - e(n, ko, co, s0) + co = e(n, ko, co, 50)

since ¢ depends only on n. A similar estimate on |@g[% proves the proposition.

L
Having obtained the bound on the first derivatives of ¥, we aim at an estimate for [VV¥|2. Tn
the following | - |, | - |0 denote the norms with respect to g(t), ¢ and dV', dVj the corresponding

volume elements.

Lemma 3.15 Let (g,u)(t) be a solution as in Proposition 3.14 and U be defined as in (3.23).
Then we have for any xg € X and any radius 0 < R < oco:

T
/ / |V2U|2 dVydt < ¢ = c(n, ko, co, R) .
0 BR(I(])

Proof:
The metrics g(t) on [0,7] x ¥ are equivalent in the following sense:

39 <g(t) <27. (3.49)
Let £ € C°(X) be a cutoff function satisfying [VE|o < 8 and 0 < & < 1on X, £ = 1 on Bp(z)
and £ = 0 on X\ Bgyq/2(w0). From now on, ¢ will always denote (different) constants only
depending on n, ko, cg, So, R. Abbreviate 2 := Bpry1(xg) and note that, in view of the curvature
bound, we can compare the volume of ) with that of a ball in the model space of constant
sectional curvature by the volume comparison theorem of Bishop and Gromov [SY94, Theorem

1.3]. This implies that voly(£2) < ¢ holds for a constant ¢ = ¢(n, ko, R) independent of the base
point zg. We will use that in the next sections without further comment.

Using the evolution equation (3.25) for Vg, a calculation shows
3t/ Vgl5 €2avy =2/ Vigis - (0:Vigis) €dVy
Q Q
= 2/ Vigij - 9°°VaVi(Vigis) €2dVy +/ Vg« VRm&dvy
Q Q

+/@g*(@u*@2u+@g*@2g+@g*}?m+@g*@g*@g>§2dV0-
Q
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We deal with all terms individually. Integrating by parts, we get for the first
2/@1@9”‘ - 9"V aVi(Vigij) €dVo
Q
= —2/ Vs(Vigij) - Va <gab@k9ij €2> dVo
Q

= —2/ g“b@b@kgij . @a@kgij §2dV0 + / @29 * (@g * @g €4 @g * @f) - &dVp
Q Q

IN

- / 929[2 2dVp + ¢ / ¥2]0 £V .
Q Q

This follows from the global bound on |Vg|y in Proposition 3.14, the properties of &, and (3.49).
The second term is taken care of by an integration by parts

/ﬁg*ﬁémg%v&) - —/ Bm+V <@g-§2)d%:/}~%m* (62g-§+@g*65)5dvo
Q Q Q
< c/ﬂ(1 +[V2glo)édVp < ¢ volg(Q) + C/Q IV2glo £dVi
where we also used |15um\% < ko. A similar reasoning implies for the last term:
o (Fus V2ut g« T+ Vg« Fim+ g+ Ty V) €05
< c/Q(Wzglw V2ulp + 1)€%dVj < c/ﬂ(Wzglw IV2ulo)&dVp + ¢
and we get altogether
o [ 1Vahavi< — [ [Pgheavi+e [ [oedie [ [Fupedh e, @50)
Doing the same calculation for Vu, we obtain
o /ﬂ |Vul2 2dVy = 2 /Q Oiu - (9;05u)E2dVy = 2 /Q diu - Vi(g%V o Vyu)€2dVy
=2 [ g0 VSTl + [ (Fur V= T+ Fur hm)dvi
An integration by parts gives for the first term
2/§Zg“b3iu . @a@b@iu £2dVo
= -2 /Q gV, Viu - VyVu £2dVy + /Q Vu * (@g « V2u - & 4+ Viu 65) &dVy
< [ 19+ e [ 1ot

as before. The second term can be estimated in exactly the same way as above. Thus there is
the estimate:

at/ 2 2dVi < —/ W?ugg?dvow/ I72u]o €4V + ¢ . (3.51)
Q Q Q



48 3 SHORT TIME EXISTENCE

This allows us to combine (3.50) and (3.51). Using Young’s inequality, we estimate ¥ as follows:
o [ 1PuBEav < - [ [PuEEns o [ [Fgloed+e [ [Pulagavi+e
< _/Q |@2‘I’|3§2dVO + % /Q |@29|3 &dVy + %/Q |@2u\%§2dVo +c
< —;/Q IV2W2E2dVh + ¢ .
Since we have at time ¢ = 0 that
[ wvoen - [ [waean+ | Gifean<ote,

we can integrate from 0 to T" to find
T
[ vk eav = [[vupo) ave+ [ o [ ek eavia
Q Q 0 Q

T T
gc—;/o /Q|V2\If§(t)§2dvodt+c/o dt .

Since T' = T'(n, ko, cg), we get the desired result

T ~ ~
/ / 2 3(0) Vi de + / VUR(T) EdVp < c,
0 Q Q

proving the lemma.

This estimate is still valid if we change to the time dependent norm and volume form.

Lemma 3.16 Let (g,u)(t) be a solution as in Proposition 3.14 on [0,T] x X.. Then, for any
xo € 2 and any radius 0 < R < 0o, we can estimate

T T
/ / (V2 |2dVdt +/ / |VVU[2dVdt < ¢
0 JBRr(zo) 0 JBg(zo)

where ¢ = c(n, ko, co, S0, R), and | - | is the norm associated to g(t).

Proof:

Because of the equivalence (3.49) for the metrics g(t), we can estimate |V2¥|? < 16|V2¥|2 and
dV < 224V, on the whole space [0,T] x ¥. This proves the bound for the first term using
Lemma 3.15. For the second term we estimate

|VVU|? = |[V20 + (V= V)VT |2 = V2T 4 Vg« VI |2

- - - - 3.52
< |V2UP 4 [V2U[ - | V| + ¢ < 2/VEP + ¢ (352
in view of the bound for [VW¥|2, the equivalence (3.49) and Young’s inequality. Thus the bound-
edness of the second term follows from that of the first.

[
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The next step is to bound the norm of the vector field V' and its gradient since we want to use V'
for the construction of the pullback diffeomorphisms. It is convenient to simultaneously prove a
bound on |Rm|?, |V?ul?, and |[VV|2. First we need to deduce evolution equations for Rm and
V2u from the modified flow (3.46):

Lemma 3.17 Let (g,u)(t) be a solution to the modified flow (3.46) and assume V' is given by
V; i= gijg?!(Thq — Ihg). Then Rm, V?u, and VV satisfy the following evolution equations:

O Rijri = ARyjiy + Rm x Rm + Vu* VZu+ Rm +VV + VRm « V (3.53)
D (ViVju) = A(V;Vju) + Rm + V2u + du * du  Vu + V2us VV +V + V3u + du x V x Rm
(3.54)
(ViVj) = A(V;V;) + Rm * VV + VV *« VV + du x du x VV + Vu x VZu + du * V3u
(3.55)

+ Vg * (VRm + dux V2u + V?V) + VVg * (Rm + du * du + VV)

Proof:
We already did most of the calculations in the proofs of Lemma 2.14, Lemma 2.7, and Lemma
2.6. The remaining terms are handled similarly. We also used the identity (3.8) for I — I".

Since we need integral estimates, we have to compute the evolution of the volume element.

Lemma 3.18 The volume element dV (t) := \/det(g;;(t))dz' A...dz™ associated to the evolving
metric g(t) satisfies:
OdV = (=R + 2|dul® + div(V))dV .

Proof:
This is a short calculation:
1
8 dV = 8, (\/det(g)dx) woh det(g) - g(—2Rpg + 40,udyu + V,V, + Vo V,)da

= (=R + 2|du|?® + div(V)) /det(g)dz .

Using the integral estimate for [VV¥|2, we can prove:

Lemma 3.19 Let (g,u)(t) be a solution as in Proposition 3.14 on [0,T] x 3. Then we have for
any xg € X and any radius 0 < R < oo:

/ (|[Rm|* + |V2u|? + |[VV[}) dV < ¢
Br(wo)

where ¢ = c(n, ko, co, S0, R) and V is defined as in Lemma 3.17.
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Proof:
Suppose £ is given as in the proof of Lemma 3.15 and ¢ is a changing constant depending only
on n, ko, co, S0, R and Q := Br41(z0). Recalling the evolution equation (3.53), we compute

at/ |Rm|* £2dV
Q
=2 /Q Rijk - (OpRijin)€2dV + /Q Rm  Rm (0 1)E2dV + /Q Rm  Rm - £2(9,dV)
= Q/QRW.ARW §2dv+/QRm*(Rm*Rm+v2u*v2u+Rm*vv+VRm*V)gZdV
+ /QRm « Rm o+ (Rm + du* du+ VV — R+ 2|du|* + div(V)) £ dV
=2 /Q Rijil - ARjjp - €2dV + /Q Rm + Rm xVV - £2dV
+/Q(VRm*Rm*V+du*du*Rm*Rm)§2dV
+ /Q(Rm % Rm % Rm + VZu % Vu * Rm)§2dV .
We take care of the individual terms. Integration by parts yields for the first one:
Q/QRijkl c AR;j £2dV = —Q/QQGbeRijkl Va(Rij - €)dV
= —Q/Q |V Rm|?¢2dV + /ﬂ Rm + VRm % V& - £dV
< —2/Q |VRm|?€2dV + /Q |VRml¢ - ¢|Rm|dV
< —g /Q |VRm/[*€2dV + c/Q |Rm|?dV,

since we can estimate |V&| = |VE| < v/2|VE|g < 12. Performing an integration by parts on the
second term gives in the same way as for the first

/Rm*Rm*VV-§2dV:/V~V(Rm*Rm~§2)dV
Q Q
:/V*[Rm*VRm-§+Rm*Rm*V§]§dV
Q
g/ |VRm|§-cRm|dV+c/ |Rm|*dV
Q Q
1
< / |VRm2§2dV+c/ |Rm|*dV
8 O (9]
where we used that

V|2 = g VIV <25, VIVI = 2|V < ¢|Vg[3 < c|VI < ¢ (3.56)
holds on [0,7] x ¥. The third term is straightforward:

1
/(VRm*Rm*V+du*du*Rm*Rm)§2dV§ 16/ |VRm|2§2dV+c/ |Rm/|?dV .
Q Q )
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For the last terms we have to replace one occurrence of Rm by second derivatives of g as follows:

Rm =V?g+Vg«Vg=VVg+Vg*Vyg . (3.57)

Integrating by parts, this allows us to estimate:
/ Rm x (Rm x Rm + V?u x Vu)£2dV
Q

< —/ ?g*V(Rm*Rm+v2u*v2u-§2)dv+c/ |Rm|2dV+c/ |V2u|?dV
Q Q Q

1

1
< / |VRm|2£2dV+/ |V3u|2§2dV+c/ |Rm|2dV+c/ |V2ul2dV .
16 Jo 8 Ja Q Q

Altogether we find

1 1
at/ |Rm|?¢2dV < —0/ |VRm|2§2dV+/ |V3u|2§2dV+c/ |Rm|2dV+c/ |V2u|?dV .
Q 8 Ja 8 Ja Q Q

(3.58)

Similar computations for the Hessian of u using (3.54) yield:

1
at/ |V2u|?e2dV < —0/ |v3u252dv+c/ |V2u|2dV—|—c/ |Rm|?dV . (3.59)
Q 8 Ja Q Q
We use (3.55) to estimate VV in the same way:
2 1
at/ IVV 2V < —/ V2V [2dV + / [VRm/[*¢*dV + / |V3ul?dV

Q Q 8 Ja 8 Ja (3.60)

+ (;/Q(|1-2m|2 + V2> + |[VV[)dV .
Combining (3.58), (3.59), and (3.60), we estimate altogether
at/Q(Rm|2 + |V2ul? 4+ |VV[?)E2dV < — /Q(|VRm2 + |V3ul? 4+ |V2V|?)E2dV
+c/Q(|Rm|2 V2l 4 VY)Y
Since V(0) = 0, we have at time ¢ = 0:
[ (ol (9203 + [TV O)R)Edv < kot 50+ 0) [ <
Therefore we can integrate at every time 7 € [0, 7] and estimate:
/Q(|Rm|2 + V2l + |VV?)E2aV (7)
< c+/OT 8t/ﬂ(|Rm|2 +|V2u? + |VV[?)E2dV dt

< c/ /(|VRm|2+|V3u|2+ |V2V|2)£2dth+c/ /(IRm|2+|V2u2+|vv2)dth_
0 JQ o Jo
(3.61)
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Using the identities
Rm =V?g+ Vg« Vg, V2u = V2u+ Vg * Vu, (3.62)

we obtain the estimate (using Young’s inequality)

T T T
/ /(|Rm|2+|V2u|2)dth§/ /(|Vzg|2+|V2u2)dth+c/ /dth
0o JQ 0 JQ 0 JQ
g/ /WZ\IIZdth—&—cgc
0 JQ

in view of Proposition 3.14, Lemma 3.16, and 7 < T = T'(n, co, ko, so). Since VV ~ VVyg, the
last part can be dealt with by applying Lemma 3.16:

/ /|vv2dth=/ /v@g*v@gdvcﬁq/ /|V@g|2dvczt<c.
0 Q 0 Q 0 Q

Rearranging (3.61), we have
/(|Rm2—|—|V2u|2+VV|2)§2dV(T)+/ /(|VRm|2+|v3u|2+|v2V|2)§2dthg c. (3.63)
Q 0 Q

Taking into account that the second integral is positive and that the right hand side does not
depend on time, we have

max / (|Rm|2 + |V2ul? + |VV|2)§2dV(7') < ¢ = c(n, ko, co, 80, R)
0<7<T Jo

which is what we wanted to show.

L]

To be able to prove supremum bounds, we need higher integrability. We simplify the notation
and define ¢ = (Rjji, VpVqu, V.. Vy) from now on where all indices are running from 1 to n.
This is a useful collection since the evolutions of all parts have the same structure:

O Rm = ARm + 1 ¢ + Vg * V1

OV2u=AV2u—+ 1 xp + Vg Vo +dusdux +dux Vg

VYV = AVV + ¢ % + Vg« Vip + dux Vip + du * du % ¢ + dux Vg ) + VVg 1)
+duxduxVVyg .

Therefore the norm [|? satisfies the evolution equation:

Ou|Y)? = 20 % A+ h % % h + (du * du+ du x Vg + VVg) 1) % ¢ + (du + Vg) % * Vi
+du*du*w*V@g.

By Young’s inequality and the Bochner formula, we can estimate

O[> < AlY)? — 2|VY|> + 9« p * 1 + c|y]® + VVg 1) * 1)+ %|V¢\2 + dux du* 1 * VVg
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in view of the global bounds on Vu = du and Vg from Proposition 3.14. In addition, we have
from (3.62) and VV ~ VVyg the identity

Y =VVU + Vg VU (3.64)
Sil’lCQ we can compare

V2 = VVU + (V- V)V¥ = VVV + Vg VU .

Lemma 3.20 Let (g,u)(t) be a solution to (2.5) as in Proposition 3.14 on [0,T] x 3. Then for
any xg € X, any radius 0 < R < oo, and all m > 1 we can estimate

T
/ / |op| 21 (VW + |v@\1/|2>dvczt <c
0 BR(a?())

max / [WPmdV < c
0<t<T J By (o)

where ¢ = c(n, m, ko, co, S0, R) and ¥ is defined in (3.23).
Proof:

We just give a short proof of this lemma since the techniques are exactly the same as in the last
one. We use the global bound |[V¥|? < ¢ and the evolution inequality (3.28) to obtain:

VU = 0|V + (0971 * VI % VU < gV, V) |VE|? — V202 +¢ .

Note that we have d,g~' < ¢- V3¢ + VU % VU < %W\PP + ¢ from (3.14). The proof is by
induction and the case m = 1 is proven in Lemma 3.15 and (3.63). To do the induction step,
we assume that the lemma is true for all s < m — 1. We start the computation with

8, / VT2 2m=Ve2qy = / BV - [pPmVe2ay + / IVT|2 - 0|y De2av
Q Q Q

i (3.65)

+ / TP D20,V
Q

We will use Young’s inequality and the bound |@\If|2 < ¢ frequently in the following calculations.
Integrating by parts, we have

R R A R TR
Q
= - /Q gUVa VO {Vfp PR 1 Ve € )

: C/Q(W‘I’W' V) 2D 4 V2| P De av

2

< g5 [P TR e [ P Dvepedy e [ [P Day
Q Q Q
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Here we used (V — V)ip = Vg % ¢ to estimate |Vi)|2 < |Vip|2 + ¢[¢p|?>. Then the first term in
(3.65) comes down to:

[ v o ey
_ /Q W20 L, [T — (T2 ¢} v
< ¢ [P v ey e [ upe iy e [ upevepeay
Using Vg Vg1 *1p < ¢|t|? and (% —2)|V4|? <0, we calculate for the second term of (3.65):

[ IR0 0PNy — - 1) [ [FURECD AluPeay
Q Q ] i (3.66)
+ c/ 22D (VVE 5 ) %)+ c|p]? + 4« VV) 2V .
Q
A partial integration takes care of the Laplacian term:
(m=1) [ U2 AluPeay
Q
< —(m—1) / (V|W|2|w2<m2> VIOPE + VPV P2V Pe?
Q

PR Ve - s) av

IN

/Q ((IVWIWI | V) [P —(m — 1) (m — 2)[ VO[22

<0

R e (I |vw\£))dv

IN

1 .
16 [P DITTRREay o [ PPy e [ e va,
16 Jo Q Q
and the remaining terms in (3.66) give
c/ [ 2D (VT ) % )+ || + 1 x VV)E2dV
Q

<c /Q ([0 P=2IwV 0[] + [P 4 |22y | [V V )24V

2

< o [P OITTuREay e [ (1 ) Day
Q Q

Using (3.52), we therefore get for the second term in (3.66):
N 3 _
[vuraqupm ey < o [ uPr IRReEeav e [ e Aivuieay
Q Q Q

te / (1 + [P ay |
Q
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It remains to estimate the third term in (3.65):

/ UL D20,V < ¢ / D2 % Rin 4 du x du + VV)AV
Q Q

< c/ |¢|2<m—1)|vwf|§2dv+c/ o2 =D gy
Q Q

1

<L / 2D 2GRV 4 o / p2m Dy,
16 Jo Q

using (3.64). Collecting terms, (3.65) therefore comes down to:
o [ TRy < 5 [ WP DGREREAY e [ (R ay
+o [ WEOBIveREay.
such that we can estimate for all 7 € [0, T7:
[ euEiEeveavi)
< [ wvoROE e - g [ ] pregtepeava
+c/OT/Q(1+ z/)|2)|w|2<m—2>dth+c/0T/Q|¢|2<m—2>vw|2§2dth.

This is the same as
/ / |¢|2(mfl)|@2\p|2£2d‘/dt + / |@\I}|2|w|2(mfl)£2dv(7) <c
0 JQ Q
in view of the induction hypotheses. Using (3.52), we obtain the first claim of the lemma
T
[ [penorwsvieava <. (3.67)
0 JQ

This estimate allows us to prove all remaining inequalities at the same time. Integrating in time
and performing several integrations by part in space, we finally get in a similar way as before

[ spreavie < —m [ ' [ rwpmigupeay -+ /0 [wmav .

Because of (3.67), we can estimate further

/ /|¢|2de§/ /|w|2<m—1>|vwfzdvczt+c/ /|w|2(m_l)d\/dt§c,
0 Q 0 Q 0 Q

and the desired result
Jwkreaviycm [* [ ppernweigay <.
Q 0 Q

follows. This finishes the proof of Lemma 3.20.

We can now prove the supremum bounds:
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Proposition 3.21 Let (g,u)(t) be a solution as in Proposition 3.14 on [0,T] x X. Then there
is a constant ¢ = c¢(n, ko, co, o) such that

sup [Y)? <ec.
[0,T)x%

Proof:
We rewrite the evolution equations for Rm, V2u and VV in the same way as in [Shi89, Theorem
6.6] to collect the terms of equal order:

O¢Rijii = ARyjp + V(g_2 * Rm * @g) + (g_2 * Rm « Rm + V2ux V2u+ ¢~ « Rm * VvV)
O (ViVju) = A(V;Vju) + V(g2 % V2u* Vg)
+ (g7 2% Rm « V2u+ g Yx dux dux Vu+ g '+ V2u s VV 4+ g 3« Vg * Rm x du)
H(ViV;) = A(ViV;) + V(g2 % Vg * [Rm + duxdu+ VV] + g~ % du + V2u)
+ g 2« Rm«VV 4+ g '« VV«VV 4+ g txdusxduxVV .

We consider these equations as linear equations as follows:

O Rm=ARm+ VA +B
V2u = AV?u+ VAy + By
OVV = AVV + VAs + B

where VA;, B; are free terms defined accordingly. Choosing the radius R = %(1 Jko)'/*, we get
from Lemma 3.20 that

max / (|Al|m + \Bi|m)dV < ¢(n, m, ko, co, S0)
tE[O,T] BR(IQ)

for all m > 1 and arbitrary xg € X. This is sufficient to apply [LSU68, Theorem I11.8.1]. Using
the same arguments as in [Shi89, Theorem 6.6], we finally get the estimate:

sup (Rl + V2l + [VVE) < = c(nhoscor50)
[0,71xBr/2(z0)

Since zg € X is arbitrary, the desired result follows.

[

These bounds allow us to translate the results for the solutions of the modified flow (3.46) to
the pulled back solutions of the original flow (3.1) and (3.2).

Theorem 3.22 Let (X,3) be a smooth complete noncompact n-dimensional Riemannian man-
ifold with bounded curvature |Rm|% < ko. Additionally, let & € C®(X) be a smooth function
satisfying |ul2 + |[Valz < co and |V2ul3 < so, where | - |o is the norm given by §. Then there
exists a constant T = T (n, ko, co) > c(n) - 1/(vko + co) such that the initial value problem

0, = —2Rc + 4du @ du
O = A
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with initial values g(0) = g and w(0) = @ on X has a smooth solution (g,u)(t) on [0,T] x X.
Moreover the solution satisfies

Clg<gt)y<Cy  vte[0,T]
for some constant C = C(n, ko, co, So), and on [0,T] x X there is a bound

|Rm|* + |a)? + |dal* + |V2a|* < ¢ = ¢(n, ko, co, 50) -

Proof:

We take the solution (g, u)(t) constructed in the proof of Theorem 3.12 and apply the inverse of
the diffeomorphisms ¢(t) constructed in Lemma 3.1. The pullback metric g := (¢~ !)*g and the
pullback function @ := (¢~ 1)*u are solutions to the unmodified system (3.1) and (3.2) with the
desired properties. In more detail:

The infinitesimal generator of ¢(t) was chosen to be the vector field
k_ ij(pk _ Tk
VE=g" (T — 1)

where T is the Christoffel symbol of g. Using coordinates z = {z!,...,2"} for g and defining
y := p(x), the pointwise equations for the diffeomorphisms are given by (3.7) as follows:

0 , Oy

oY = ouk?
This establishes a first order system of ordinary differential equations in ¢ for y*(z), x € X.
From (3.56) and Proposition 3.21 the smooth vector field V¥ = gkV; satisfies |V|? + |[VV|? <
c(n, ko, co, so) uniformly in x € X. Therefore the theory of ordinary differential equations pro-
vides a unique smooth solution to (3.68) on [0,7] x ¥. This implies that the diffeomorphisms
©(t) are smooth as long as the solution (g,u)(t) exists. Then the pullbacks g := (¢~1)*g and
@ := (¢~ 1)*u are well defined, smooth and satisfy the flow equations (2.5) together with the
right initial conditions since ¢(0) = id from Lemma 3.1.

T -T5), v (0) =6’ (3.68)

The bound on |u]g is obtained via the maximum principle as in (3.37). Furthermore we have
from the usual transformation formulas

502 02 45 dzP 9z 8y oyP Vau oy I
9 gy ay’Yg B 9y°  Bxa ot Y P ge fad
= g*7¢"V,VsuV,Vsu = |V2u|§ <c

-V, Vsu

(V2|2 = §*g"'V o VitV V gt =

on [0,T] x ¥ applying Proposition 3.21. Similarly we get for the curvature
|[Rm|? = |Rm|* < c.
Since we also have |dﬁ|§ = |du|!2] < ¢ from Lemma 3.5, we can estimate further
|8t§|§ < 4|Re|® + 16|dﬂ|§ <4n* |Rmf*+c<c.
Thus we get on [0,7] x ¥ analogously to Lemma 2.8 that
el <gt) < ey,

finishing the proof of the theorem.



