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3 Short time existence

The goal of this chapter is to prove short time existence for the system (2.5)

∂tg(t) = −2Rc(g(t)) + 4du(t) ⊗ du(t) (3.1)

∂tu(t) = ∆g(t)u(t) (3.2)

with initial data g(0) = g̃ and u(0) = ũ for g̃ ∈ M(Σ) and ũ ∈ C∞(Σ). On closed manifolds
we obtain a solution on a time interval [0, T ) for some T > 0. To get existence on noncompact
complete manifolds we have to impose additional conditions on the initial data later on.

3.1 The boundary value problem

Since we consider noncompact manifolds Σ, we cannot directly invoke the theory of parabolic
systems to get a solution on the whole manifold Σ. Instead, we solve the boundary value problem
on a family of discs of increasing radius. This provides a sequence of local solutions. We prove
that a limit exists and is the desired global solution on the whole of Σ.

The system (3.1) and (3.2) is only weakly parabolic due to the diffeomorphism invariance of
the equations. The principal symbol of (3.1) is the same as the principal symbol of the Ricci
operator since the second term is independent of g, hence a lower order term. Therefore the
considerations in [Ham82, §4] concerning the Ricci Flow are also true for this system.

Fortunately we can overcome this difficulty using the methods that were developed for the Ricci
flow. In particular, we can find a strongly parabolic system which is equivalent to (3.1) and
(3.2) by the application of a diffeomorphism. This is referred to as DeTurck’s trick [DeT83].
In the noncompact setting this is carefully worked out in [Shi89] which we will strongly refer
to in the sequel. We first calculate the evolution equations for solutions pulled back by such a
diffeomorphism.

To this end let V ∈ X ([0, T ]×Σ) be a smooth time dependent vector field and denote the induced
1-parameter family of diffeomorphisms by ϕt. Then the diffeomorphisms satisfy at every x ∈ Σ
the following ordinary differential equation:

d

dt
ϕt(x) = V (ϕt(x))

ϕ0(x) = x .
(3.3)

Lemma 3.1 Suppose (ḡ, ū)(t) is a solution of (3.1) and (3.2) on [0, T ] × Σ and ϕt : Σ → Σ is
the 1-parameter family of diffeomorphisms generated by V . Then the pullbacks g(t) := ϕ∗

t ḡ(t)
and u(t) := ϕ∗

t ū(t) satisfy the following system of equations:

∂tgij = −2Rij + 4∂iu∂ju+ ∇iVj + ∇jVi (3.4)

∂tu = ∆gu+ du(V ) (3.5)

on [0, T ] × Σ where {Vi} is the associated 1-form to V . Furthermore, (g, u)(t) have the same
initial values as (ḡ, ū)(t):

(g, u)(0) = (g̃, ũ) . (3.6)
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Proof:

Denote by {yα}α=1...n the coordinates where ḡ and ū are represented by ḡαβ and ū. Define new
coordinates by xi := (y ◦ ϕ)i for i = 1 . . . n. We use the argument in [Shi89, §2] which goes
through since the extra term in the equation for the metric is simply

ϕ∗
t (dū⊗ dū)ij =

∂yα

∂xi
∂αū

∂yβ

∂xj
∂βū = ∂iu∂ju = (du⊗ du)ij

in the new coordinates {xi} and the rest of the calculation is unchanged. Moreover, the evolution
of u with respect to the new coordinates is given as follows:

∂tu(t, x) = ∂t(ū(t, ϕ(x)) =
∂

∂t
ū+

∂ū

∂yα
∂yα

∂t
= ∆̄ū+

∂ū

∂yα
∂yα

∂t

= ḡαβ∇̄α∇̄βū+
∂ū

∂yα
∂yα

∂xp
V p =

∂yα

∂xi
∂yβ

∂xj
gij

∂xi

∂yα
∂xj

∂yβ
∇i∇ju+

∂u

∂xp
V p

= ∆u+ du(V )

since we know from (3.3) that

∂yα

∂t
=
∂(ϕt(x)

α)

∂t
=
( d

dt
ϕt(x)

)α
=
(
V ϕt(x)

)α
= (Dϕt(V ))α =

∂yα

∂xp
V p . (3.7)

The initial data remain the same under this coordinate change since ϕ0 = id on Σ from (3.3)
which proves the lemma.

There is a suitable vector field V to make the system strictly parabolic. This is an idea from
[DeT83]. From now on, we will denote all derivatives with respect to the initial metric g̃ by ∇̃
which is time-independent.

Lemma 3.2 The choice of V i := gpq(Γipq − Γ̃ipq) makes the system (3.4) and (3.5) strictly
parabolic on [0, T ] × Σ.

Proof:

To see that the system is strictly parabolic, we rewrite the equations such that all derivatives are
with respect to the (fixed) initial metric g̃ and examine the leading order terms in coordinates.
We use the identity

Γkij − Γ̃kij = 1
2g
kl(∇̃igjl + ∇̃jgil − ∇̃lgij) (3.8)

to replace the Christoffel symbols of g by derivatives ∇̃g and work in normal coordinates for g̃
such that Γ̃kij = 0 at the base point. We compute the evolution equation for gij as in [Shi89,
Lemma 2.1]. The additional term 4du⊗ du is independent of the metric g, giving us altogether:

∂tgij = gab∇̃a∇̃b gij − gabgikg̃
klR̃jalb − gabgjkg̃

klR̃ialb + 4∂iu∂ju

+ 1
2g
abgkl

{

∇̃igka∇̃jglb + 2∇̃agjk∇̃lgib − 2∇̃agjk∇̃bgil − 2∇̃jgka∇̃bgil − 2∇̃igka∇̃bgjl

}

,

(3.9)
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containing only one term of second order and terms quadratic in the gradient of g. The equation
for u is computed similarly as follows:

∂tu = ∆gu+ du(V ) = gij∇i∇ju+ ∂kuV
k = gij

(
∂i∂ju− Γkij∂ku

)
+ ∂kuV

k

= gij∇̃i∇̃ju− gijΓkij∂ku+ ∂ku · gij(Γkij − Γ̃kij)

= gij∇̃i∇̃ju

(3.10)

where we used that Γ̃kij = 0. The principal symbol of the system in these coordinates is given
by the coefficient matrices of the second derivatives of g and u. These are the coordinate repre-
sentations of the inverse metric g−1, henceforth positive definite, making the symbol invertible
over all nonzero cotangent vectors. Therefore the system is strictly parabolic.

In the following, let D ⊂ Σ be an bounded open connected subset of Σ with compact closure.
The parabolic boundary Γ of [0, T ] ×D is defined by:

Γ :=
(
{0} ×D

)
∪
(
[0, T ] × ∂D

)
. (3.11)

We want to solve the initial/boundary value problem (3.1) and (3.2) on [0, T ] ×D with initial
and boundary data g̃ and ũ, that is

(g, u)|Γ = (g̃, ũ) .

3.2 Equivalence of the solution metrics

We prove that the evolving metric is equivalent to the initial metric at least for a short time.
This allows us to compare the unknown metric g(t) with the initial g̃. This shows in particular
that the system (3.1) and (3.2) is uniformly parabolic. Let in the following (Σ, g̃) be a complete
Riemannian manifold, ũ a smooth function and assume g̃, ũ satisfy the global bounds

|R̃m|20 ≤ k0, |∇̃ũ|20 ≤ c0 (3.12)

for some constants k0, c0 ≥ 0 on Σ where | · |0 is the norm associated with g̃. Let (g, u)(t) be
a solution to (3.4) and (3.5) on [0, T ] × D̄ with initial and boundary values (g̃, ũ). To prove a
lower bound for g(t) we use the same test function as in [Shi89, Lemma 2.2]:

Lemma 3.3 For an integer m > 0, define a test function ϕ on [0, T ] × D̄ as follows:

ϕ := ga1b1 g̃b1a2
ga2b2 · · · gambm g̃bma1

. (3.13)

Then ϕ satisfies:

∂tϕ ≤ gab∇̃a∇̃bϕ+ 2mn
√

k0 · ϕ1+1/m

ϕ|Γ ≡ n

where Γ is the parabolic boundary defined in (3.11) and n is the dimension of Σ.
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Proof:

Considering the boundary values (3.6), we compute on Γ:

ϕ = ga1b1 g̃b1a2
· · · gambm g̃bma1

= g̃a1b1 g̃b1a2
· · · g̃ambm g̃bma1

= g̃a1

a1
= n

after successive contractions over all indices. The evolution (3.9) of gij implies an evolution
equation for gij :

∂tg
ij =gab∇̃a∇̃bg

ij + gabgikgjlgkpg̃
pqR̃laqb + gabgikgjlgplg̃

pqR̃kaqb + gab∇̃ag
ipgjq∇̃bgpq

+ gabgip∇̃ag
jq∇̃bgpq − 4gikgjl∇̃ku∇̃lu

+ gabgpqgikgjl
(
∇̃agpl∇̃bgqk + ∇̃lgpa∇̃bgqk + ∇̃kgpa∇̃bgql − ∇̃agpl∇̃qgbk − 1

2∇̃kgpa∇̃lgqb
)
.

(3.14)

From now on we work in a normal coordinate system for g̃ where in addition g and g−1 are
diagonal in the pole: (This is possible because g is symmetric and positive definite.)

(
g̃ij
)

=








1 0
1

. . .

0 1








,
(
gij
)

=








λ1 0
λ2

. . .

0 λn








,
(
gij
)

=








1
λ1

0
1
λ2

. . .

0 1
λn








.

(3.15)
Here and in the following, we always contract with the metric g(t). Therefore a repeated lower
index q is always paired with a factor λ−1

q in contrast to Einstein’s convention. We have for
example:

gpqR̃ipjq =

n∑

q=1

1

λq
R̃iqjq .

To avoid misunderstandings, all summations will be explicit in the forthcoming calculations. In
the coordinate system introduced above we compute

∇̃ag
ij =

n∑

k,l=1

−δikλ−1
i δjlλ−1

j ∇̃agkl = − 1

λiλj
∇̃agij .

Together with other similar calculations, we get from (3.14) that

∂tg
ij =

n∑

a,b=1

gab∇̃a∇̃bg
ij +

n∑

k,l=1

(
1

λiλk
R̃ikjk +

1

λjλk
R̃jkik −

2

λkλlλiλj
∇̃kgjl∇̃kgil

)

− 4

λiλj
∇̃iu∇̃ju

+

n∑

k,l=1

1

λiλjλkλl

(
∇̃kgli∇̃kgil + ∇̃jglk∇̃kgil + ∇̃iglk∇̃kgjl − ∇̃kglj∇̃lgik − 1

2∇̃iglk∇̃jglk
)

.

(3.16)

The definition of ϕ in (3.13) implies at the base point

ϕ =

n∑

i=1

(
1

λi

)m

(3.17)
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which yields an evolution equation for ϕ:

∂tϕ =
∑

i

m

(
1

λi

)m−1

· ∂t
(
λ−1
i

)
= m

∑

i

(
1

λi

)m−1

· ∂tgii .

Using (3.16) and always summing all indices from 1 to n, we obtain

∂tϕ =
∑

i,a,b

m

λm−1
i

gab∇̃a∇̃bg
ii +

∑

i,k

2m

λmi λk
R̃ikik −

∑

i

4m

λm+1
i

∇̃iu∇̃iu

−
∑

i,k,l

m

λm+1
i λkλl

(

∇̃kgil∇̃kgil − 2∇̃iglk∇̃kgil + ∇̃kgli∇̃lgik + 1
2∇̃iglk∇̃iglk

)

=
∑

i,a,b

m

λm−1
i

gab∇̃a∇̃bg
ii +

∑

i,k

2m

λmi λk
R̃ikik −

∑

i

4m

λm+1
i

|∇̃u|20

−
∑

i,k,l

m

λm+1
i λkλl

|∇̃kgil + ∇̃lgik − ∇̃iglk|20

≤
∑

i,a,b

m

λm−1
i

gab∇̃a∇̃bg
ii +

∑

i,k

2m

λmi λk
R̃ikik .

On the other hand, we can calculate

∑

a,b

gab∇̃a∇̃bϕ =
∑

a,b

gab∇̃a∇̃b

(
n∑

i=1

(
1

λi

)m
)

=
∑

a,b

gab∇̃a

(

m
∑

i

(
1

λi

)m−1

∇̃bg
ii

)

=
∑

i,a,b

gab
m

λm−1
i

∇̃a∇̃bg
ii +

∑

i,j,a,b

mgab∇̃ag
ij∇̃bg

ij

(

λ
(2−m)
i + λ

(3−m)
i λ−1

j + · · · + λ
(2−m)
j

)

=
∑

i,a,b

gab
m

λm−1
i

∇̃a∇̃bg
ii +

∑

i,j,a

mλ−1
a

(

λmi λ
−2
j + λ

(1−m)
i λ−3

j + · · · + λ−2
i λmj

)

|∇̃g|20

≥
∑

i,a,b

gab
m

λm−1
i

∇̃a∇̃bg
ii .

We put both inequalities together and get

∂tϕ ≤
∑

a,b

gab∇̃a∇̃bϕ+
∑

i,k

2m

λmi λk
R̃ikik ≤

∑

a,b

gab∇̃a∇̃bϕ+
2m

√
k0

λ1 + · · · + λn
· ϕ

where we used (3.17) and the global curvature bound (3.12) for g̃. For all q = 1 . . . n we have

λ−1
q =

(
λ−mq

) 1

m ≤
(
λ−m1 + · · · + λ−mn

) 1

m = ϕ
1

m ,

and it follows that
∂tϕ ≤

∑

a,b

gab∇̃a∇̃bϕ+ 2mn
√

k0 · ϕ1+1/m

as required.

This lemma allows us to estimate g from below by g̃ in the following way:
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Lemma 3.4 Suppose (g, u)(t) is a solution of (3.4) and (3.5) on [0, T0]×D. Then for all δ > 0
there exists T = c(n, δ) · 1/

√
k0 > 0, independent of D, such that

gij(t, x) ≥ (1 − δ)g̃ij(x) ∀(t, x) ∈ [0, T ] ×D .

Proof:

Fix a δ > 0. Let ϕ be defined as in (3.13) and choose an integer m > 0 such that

ln 2n

ln(1/(1 − δ))
≤ m ≤ ln 2n

ln(1/(1 − δ))
+ 1

is satisfied. Since D̄ ⊂ Σ is compact, we can define the Lipschitz continuous function

ϕ̄(t) := max
x∈D̄

ϕ(t, x) .

The maximum principle on D̄ together with Lemma 3.3 implies

∂tϕ̄(t) ≤ 2mn
√

k0 · ϕ̄(t)1+1/m

ϕ̄(0) = n .

This allows us to compare ϕ with the solution of the corresponding ordinary differential equation.
Considering the definition of ϕ̄, we get for all x ∈ D̄:

ϕ(t, x) ≤ n

(1 − 2n1+ 1

m
√
k0t)m

.

If we choose T according to

T :=
1

2
√
k0

(
1

n

)1+ 1

m

[

1 −
(

1

2

) 1

m

]

= c(n,m)
1√
k0

,

we get for 0 ≤ t ≤ T and for all x ∈ D̄ in the coordinates (3.15) that

n∑

i=1

λ−mi = ϕ(t, x) ≤ 2n .

By the choice of m this implies

λi ≥
(

1

2n

) 1

m

≥ (1 − δ) ∀i = 1 . . . n .

Considering again the coordinates (3.15), we finally conclude

gij(t, x) ≥ (1 − δ)g̃ij(x) (t, x) ∈ [0, T ] × D̄ .

By definition T only depends on n,m,
√
k0 and m depends only on n and δ. Therefore T =

T (n, δ,
√
k0) is independent of D. More precisely we have T = c(n, δ) · 1/

√
k0.

Our aim is to show the equivalence of the initial metric and the evolving metric for a short time
interval. The last lemma showed that g is bounded from below by g̃. To obtain an upper bound
we need a bound for |∇̃u|20.
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Lemma 3.5 Suppose (g, u)(t) is a solution of (3.4) and (3.5) on [0, T ] × D̄ with initial data
(g̃, ũ) satisfying |∇̃ũ|20 ≤ c0 on Σ and g(t) ≤ (1 + ε)g̃ on [0, T ] for an ε > 0. Then

|∇̃u|2(t, x) ≤ (1 + ε)c0 ∀(t, x) ∈ [0, T ] × D̄ .

Proof:

Since |∇̃u|2 satisfies (2.11), we can apply the maximum principle on [0, T ] × D̄ to get

|∇̃u|2(t, x) ≤ max
Γ

|∇̃u|2(t, x) = max
D̄

|∇̃ũ|20 ≤ c0 .

Here we used (3.6) and the fact that | · |2 = | · |20 on Γ. The upper bound for g(t) implies that
we can estimate on [0, T ] × D̄:

|∇̃u|20(t, x) = g̃pq∂pu∂qu ≤ (1 + ε)gpq∂pu∂pu = (1 + ε)|∇̃u|2(t, x) ≤ (1 + ε) · c0 .

For the lemma we had to assume an upper bound on the metric which is what we wanted to
prove in the first place. Fortunately, we can show that this upper bound always exists.

Lemma 3.6 Suppose (g, u)(t) is a solution for (3.4) and (3.5) on [0, T0] × D̄ which satisfies
|R̃m|20 ≤ k0 and |∇̃ũ|20 ≤ c0. Then for all ε > 0 there exists T = c(n, ε) · 1/(

√
k0 + c0) such that

gij(t, x) ≤ (1 + ε)g̃ij(x) ∀(t, x) ∈ [0, T ] × D̄ .

Proof:

Let T1 ≤ T0 be the maximal time such that

max
x∈D̄

|∇̃u|20(t, x) ≤ 2c0 (3.18)

holds for all t ∈ [0, T1]. Since |∇̃u|20 is continuous, we know that T1 > 0. To be able to use this
estimate in the following reasoning, we will restrict ourselves to the time interval [0, T1]. Later
on we show that this places no restriction on the choice of T .

Using the coordinates (3.15), we can rewrite the evolution equation (3.9) for gij as follows:

∂tgij =
∑

a,b

gab∇̃a∇̃bgij −
∑

k,l

(
1

λjλk
R̃jkik −

1

λiλk
R̃ikjk +

1

2λkλl
(∇̃g ∗ ∇̃g)kl

)

+ 4∂iu∂ju

where (∇̃g ∗ ∇̃g)kl is just an abbreviation for the more complicated quadratic terms in (3.9)
summed over k and l. Following the ideas in [Shi89, Lemma 2.3], we define

F :=

(

1 −
[
λm1 + · · · + λmn

n+ σ

])−1

(3.19)
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on [0, T1] × D̄ for given σ > 0 and m ∈ +. By the choice of the boundary values in (3.6) we
have F|Γ ≡ (n+ σ)/σ. The evolution of F is given by

∂tF =

(

1 − 1

n+ σ

∑

k

λmk

)−2

· 1

n+ σ

∑

i

mλm−1
i ∂tgii

=
∑

i,a,b

F 2mλ
m−1
i

n+ σ
gab∇̃a∇̃bgii +

∑

i,k,l

F 2mλ
m−1
i

n+ σ

( −2

λiλk
R̃ikik +

1

2λkλl
(∇̃g ∗ ∇̃g)ikl + 4∂iu∂iu

)

.

We know from Lemma 3.4 that for all 0 < δ < 1 there is a T2 = T2(δ, n, k0) > 0 such that

gkk(t, x) ≥ (1 − δ)g̃kk(x) ∀(t, x) ∈ [0, T2] × D̄ .

This implies that in the same set λk ≥ 1 − δ holds for all k = 1 . . . n. Additionally, we can
assume F < ∞ (otherwise λmi ≤ n + σ from (3.19)). Since F is continuous and F (0) > 0 we
therefore get for all t ∈ [0, T2]:

1 − 1

n+ σ

∑

k

λmk > 0 ⇒ λm−1
i

n+ σ
< λ−1

i ≤ 1

1 − δ
(3.20)

for all i = 1 . . . n. This allows us to estimate

∑

i,k,l

mλm−1
i

n+ σ

(

− 2

λiλk
R̃ikik +

1

λkλl

(
∇̃g ∗ ∇̃g

)

ikl
+ 4∂iu∂iu

)

≤ m

(1 − δ)

(
2n2

(1 − δ)2
|R̃m|0 +

4

(1 − δ)2
|∇̃g|20 + 4|∇̃u|20

)

≤ m

(1 − δ)3

(

c+ 4|∇̃g|20
)

on [0,min{T1, T2}] × D̄ where we used the bounds (3.12), (3.18), and the fact that 1 − δ < 1.
Here c is a constant only depending on n, k0, c0. Returning to the evolution of F , we see

∂tF ≤ F 2
∑

i,a,b

mλm−1
i

n+ σ
gab∇̃a∇̃bgii +

mF 2

(1 − δ)3

(

c+ 4|∇̃g|20
)

. (3.21)

On the other hand we compute

∑

a,b

gab∇̃a∇̃bF =
∑

a,b

gab∇̃a

(
m

n+ σ
F 2
∑

k

λm−1
k ∇̃bgkk

)

=
∑

i,a,b

gab
mλm−1

i

n+ σ
F 2∇̃a∇̃bgii +

∑

i,a,b

2m2λm−1
i λm−1

j

(n+ σ)2
F 3gab∇̃agii · ∇̃bgjj

︸ ︷︷ ︸

≥0

+
∑

i,j,a,b

m

n+ σ
F 2
(
gab∇̃agij∇̃bgij

)(
λm−2
i + λm−3

i λj + · · · + λm−2
j

︸ ︷︷ ︸

m−1 terms

)

≥
∑

i,a,b

gab
mλm−1

i

n+ σ
F 2∇̃a∇̃bgii +

∑

i,j,k

m

n+ σ
F 2(m− 1)(1 − δ)m−2 1

λk
∇̃kgij∇̃kgij

≥
∑

i,a,b

gab
mλm−1

i

n+ σ
F 2∇̃a∇̃bgii +m(m− 1)

(
1

n+ σ

)1+ 1

m

F 2(1 − δ)m−2|∇̃g|20 .

(3.22)
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In this step we used (3.20) to estimate λ−1
a ≥ (n+ σ)−

1

m and λki ≥ (1 − δ)k.

We fix ε > 0, set σ := n, and choose m ∈ + according to

20n2 +
ln 2n

ln(1 + ε)
≤ m ≤ ln 2n

ln(1 + ε)
+ 20n2 + 1 .

From m ≥ 18n2 + 1 we conclude that

(m− 1)

(
1

2n

)2

≥ 9

2
≥ 4

(1 − δ)m+1

for some δ = δ(m) > 0. Therefore we can estimate

m(m− 1)

(
1

2n

)1+ 1

m

(1 − δ)m−2 ≥ 4m

(1 − δ)3
.

Putting together equations (3.21) and (3.22), this implies that

∂tF ≤
∑

a,b

gab∇̃a∇̃bF +
cF 2

(1 − δ)3
+ F 2|∇̃g|20

{

4m

(1 − δ)3
−m(m− 1)

(
1

2n

)1+ 1

m

(1 − δ)m−2

}

≤
∑

a,b

gab∇̃a∇̃bF +
cF 2

(1 − δ)3

where c = c(n, c0, k0). Considering the initial and boundary data (3.6), we know F|Γ ≡ 2. From
comparison to the appropriate ordinary differential equation we get that

F (x, t) ≤ 2

(

1 − ct

(1 − δ)3

)−1

for 0 ≤ t ≤ min{T1, T2}. Defining T := min{T1, T2,
(1−δ)3

2c }, we conclude that F ≤ 4 on [0, T ]×D̄.
This implies

λk ≤ (2n)
1

m ≤ 1 + ε ∀k = 1 . . . n

by the choice of m and shows the claim on [0, T ], assuming the bound |∇̃u|20 ≤ 2c0. If T 6= T1,
we are already finished, because T does not depend on T1 in this case. If T = T1, we apply
Lemma 3.5. Because of the equivalence of g and g̃ just proven, we have

sup
x∈D̄

|∇̃u|20(t, x) ≤ (1 + ε)c0

for all t ∈ [0, T1]. Therefore, T1 was not maximally chosen at the beginning. We conclude that
T does not depend on T1 and that T = min{T2,

1
2(1 − δ)3 · c(n)/(

√
k0 + c0)}, where T2 is from

Lemma 3.4 with T2 = c(n, δ)/
√
k0. This gives T > c(n, ε) ·1/(

√
k0+c0) since δ = δ(m) = δ(n, ε).

The combination of Lemma 3.4 and Lemma 3.6 shows that there is a short time interval such
that the evolving metric is equivalent to the initial one.



3.3 Higher order estimates 35

Theorem 3.7 Suppose that (g, u)(t) is a solution of (3.4) and (3.5) on [0, T0] × D̄ with initial
data (g̃, ũ) satisfying |R̃m|20 ≤ k0 and |∇̃ũ|20 ≤ c0. Then for any ε > 0 there is a time T =
T (n, ε, k0, c0) > c(n, ε) · 1/(

√
k0 + c0) independent of D such that

(1 − ε)g̃ij(x) ≤ gij(t, x) ≤ (1 + ε)g̃ij(x) ∀(t, x) ∈ [0, T ] × D̄ .

3.3 Higher order estimates

In order to prove short time existence for the modified flow (3.4) and (3.5), we need a priori
bounds for all derivatives of the solution (g, u)(t). Since we want to prove existence on complete
manifolds, we need estimates that are independent of the domain D.

For technical convenience we collect the coefficient functions gij of g together with u in a vector
that we call Ψ. In short

Ψ := (gij , u) i, j = 1, . . . , n . (3.23)

We use the abbreviation ∇̃Ψ for the collection of first covariant derivatives with respect to g̃ and
similar for higher derivatives. The norm of Ψ and its derivatives is computed pointwise with the
Euclidean vector norm. This gives the local description

|∇̃kΨ|20 = |∇̃kg|20 + |∇̃ku|20

for all k ≥ 0 in the chosen coordinate system. We prove the following gradient estimate:

Proposition 3.8 Let (g, u)(t) be a solution of (3.4) and (3.5) on [0, T ]× D̄ for D := Bγ+δ(x0)
the geodesic ball around x0 of radius γ + δ with respect to the initial metric g̃. Assume that on
[0, T ] × D̄ the metrics g(t) are equivalent to g̃ in the sense that

(1 − ε)g̃ij(x) ≤ gij(t, x) ≤ (1 + ε)g̃ij(x) (3.24)

for 0 < ε ≤ ε0 := 1/416000n10, and we have bounds |R̃m|20 ≤ k0 and |∇̃ũ|20 ≤ c0. Then there is
a constant C = C(n, g̃, c0, γ, δ) > 0 such that

|∇̃Ψ|20(t, x) ≤ C

holds on [0, T ] ×B(x0, γ + δ/2). In particular the bound is independent of the base point x0.

Proof:

Fix an ε in the designated range and comparable to 1/n10. We start with the computation of
the evolution of ∇̃g and compute from (3.9)

∂t∇̃kgij = ∇̃k∂tgij

= gab∇̃a∇̃b∇̃kgij + g ∗ ∇̃R̃m+ ∇̃g ∗ R̃m+ ∇̃u ∗ ∇̃2u+ ∇̃g ∗ ∇̃2g + ∇̃g ∗ ∇̃g ∗ ∇̃g
(3.25)
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where summation over a and b is understood. Consequently we get

∂t|∇̃g|20 = 2∇̃kgij · gab∇̃a∇̃b∇̃kgij + ∇̃g ∗ ∇̃R̃m+ ∇̃g ∗ ∇̃g ∗ R̃m+ ∇̃g ∗ ∇̃u ∗ ∇̃2u

+ ∇̃g ∗ ∇̃g ∗ ∇̃2g + ∇̃g ∗ ∇̃g ∗ ∇̃g ∗ ∇̃g,

from which we can deduce the following estimate for the time derivative of |∇̃g|20:

∂t|∇̃g|20 ≤ gab∇̃a∇̃b|∇̃g|20 − |∇̃2g|20 + c(g̃)|∇̃g|0 + c(g̃)|∇̃g|20 + 16n3|∇̃2u|0|∇̃u|0|∇̃g|0
+ 80n5|∇̃2g|0|∇̃g|20 + 144n6|∇̃g|40 ,

(3.26)

using (3.24) and counting carefully the number of terms. Here c(g̃) depends on derivatives of g̃
since we have to estimate ∇̃R̃m and R̃m on the compact set B̄γ+δ(x0). In addition, we computed

gab∇̃a∇̃b∇̃kgij = gab∇̃k(∇̃a∇̃bgij) + g ∗ ∇̃R̃m+ ∇̃g ∗ R̃m

and applied the Bochner formula

∇̃kgij · gab∇̃a∇̃b(∇̃kgij) = gab∇̃a∇̃b(∇̃kgij · ∇̃kgij) − 2gab∇̃a∇̃kgij · ∇̃b∇̃kgij

≤ gab∇̃a∇̃b|∇̃g|20 − g̃ab∇̃a∇̃kgij · ∇̃b∇̃kgij .

Using (3.10), the corresponding estimate for |∇̃u|20 is given by

∂t|∇̃u|2 ≤ gab∇̃a∇̃b|∇̃u|20 − |∇̃2u|20 + c(g̃)|∇̃u|20 + n3|∇̃2u|0|∇̃g|0|∇̃u|0 . (3.27)

Combining equations (3.26) and (3.27), we get an inequality for |∇̃Ψ|20:

∂t|∇̃Ψ|20 ≤ gab∇̃a∇̃b|∇̃Ψ|20 − |∇̃2Ψ|20 + 100n5|∇̃2Ψ|0|∇̃Ψ|20 + 144n6|∇̃Ψ|40 + c|∇̃Ψ|20 + c|∇̃Ψ|0 .

This can be simplified using Young’s inequality:

|∇̃2Ψ|0 · 100n5|∇̃Ψ|20 ≤ 1
2 |∇̃2Ψ|20 + 5000n10|∇̃Ψ|40 ,

and we get with c|∇̃Ψ|0 ≤ c|∇̃Ψ|20 + c:

∂t|∇̃Ψ|20 ≤ gab∇̃a∇̃b|∇̃Ψ|20 − 1
2 |∇̃2Ψ|20 + 5200n10|∇̃Ψ|40 + c|∇̃Ψ|20 + c . (3.28)

Again calculating in the coordinate system (3.15), we have from (3.24)

1 − ε ≤ λk ≤ 1 + ε, 1
2 ≤ λk ≤ 2 k = 1, . . . , n .

Following the ideas in [Shi89, §4], we define m := 41600n10 and a := 10400n10, and a function
ϕ on [0, T ] ×Bγ+δ(x0) as follows

ϕ(t, x) := a+

n∑

k=1

λmk . (3.29)

It satisfies the evolution equation

∂tϕ ≤ gab∇̃a∇̃bϕ+ C − m2

8
|∇̃Ψ|20 .
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The argument is similar to [Shi89, §4] where it is proven that

∂tϕ ≤ gab∇̃a∇̃bϕ+ Ĉ − m2

8
|∇̃g|20 .

We can add m2

8

(
2c0 − |∇̃u|20

)
> 0 on the right hand side to get

∂tϕ ≤ gab∇̃a∇̃bϕ+

(

Ĉ +
m2

8
· 2 c0

)

− m2

8

(

|∇̃g|20 + |∇̃u|20
)

in view of the bound on |∇̃u|20 in Lemma 3.5. Note that C depends only on n, g̃ and c0.
Combining the evolution equations, we get

∂t
(
ϕ · |∇̃Ψ|20

)
≤ gab∇̃a∇̃b

(
ϕ · |∇̃Ψ|20

)
− 2

∑

a,b

gab∇̃aϕ∇̃b|∇̃Ψ|20 −
ϕ

2
|∇̃2Ψ|20 + 5200n10ϕ|∇̃Ψ|40

+ cϕ|∇̃Ψ|20 + cϕ+ C|∇̃Ψ|20 −
m2

8
|∇̃Ψ|40 .

(3.30)

Our task now is to simplify this equation significantly. Calculating 5200n10ϕ ≤ m2

16 which holds
for all ε ≤ ε0 and using (3.29) we conclude

(
5200n10ϕ− m2

8

)
|∇̃Ψ|40 ≤ −m

2

16
|∇̃Ψ|40 . (3.31)

The cross term can be handled as follows:

−2gab∇̃aϕ∇̃b|∇̃Ψ|20 = −2gab∇̃a

( n∑

k=1

λmk

)

· ∇̃b|∇̃Ψ|20 ≤ −m
∑

k

λm−1
k · g̃ab∇̃agkk · ∇̃b|∇̃Ψ|20

≤ n ·mn(1 + ε)m−1|∇̃g|0 · 2n3|∇̃Ψ|0|∇̃2Ψ|0 ≤ 4mn5|∇̃Ψ|20 · |∇̃2Ψ|0
≤ ϕ

2
|∇̃2Ψ|20 +

1

2ϕ
16m2n10|∇̃Ψ|40

(3.32)

where we have used Young’s inequality in the last step and the fact that (1 + ε)m−1 < 2 for all
ε ≤ ε0. Because of ϕ ≥ a > 1, we can also estimate

C|∇̃Ψ|20 ≤ Cϕ|∇̃Ψ|20 . (3.33)

Collecting (3.31),(3.32), and (3.33) we get from (3.30) that

∂t
(
ϕ · |∇̃Ψ|20

)
≤ gab∇̃a∇̃b

(
ϕ · |∇̃Ψ|20

)
− m2

16
|∇̃Ψ|40 +

10m2n10

ϕ
|∇̃Ψ|40 + cϕ|∇̃Ψ|20 + cϕ .

There is the lower bound ϕ ≥ a > 320n10 from the choice of a, which allows us to estimate

10m2n10

ϕ
≤ m2

32
,
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giving us

∂t
(
ϕ · |∇̃Ψ|20

)
≤ gab∇̃a∇̃b

(
ϕ · |∇̃Ψ|20

)
− m2

32
|∇̃Ψ|40 + cϕ|∇̃Ψ|20 + cϕ . (3.34)

Now m ≥ 2[a+ n(1 + ε)m] (for all ε ≤ ε0) implies

m2

32
|∇̃Ψ|40 =

m2

32ϕ2
|∇̃Ψ|40ϕ2 ≥ m2

32[a+ (1 + ε)m]2
|∇̃Ψ|40ϕ2 ≥ 1

8
|∇̃Ψ|40ϕ2 .

An application of Young’s inequality

c · ϕ|∇̃Ψ|20 ≤ 4c2 + 1
16ϕ

2|∇̃Ψ|40
leads from (3.34) to

∂t
(
ϕ · |∇̃Ψ|20

)
≤ gab∇̃a∇̃b

(
ϕ · |∇̃Ψ|20

)
− 1

16ϕ
2 · |∇̃Ψ|40 + c+ cϕ .

The last term can be estimated for all ε ≤ ε0 as follows:

cϕ ≤ c[a+ (1 + ε)m] ≤ c[10400n10 + 3] ≤ c .

Defining φ := ϕ · |∇̃Ψ|20, we get in the end

∂tφ ≤ gab∇̃a∇̃bφ− 1

16
φ2 + c (3.35)

where c still only depends on n, c0 and the initial metric g̃.

The next step is to localize this equation. To this end we use the same cut-off function ξ on
Bγ+δ(x0) as in [Shi89, §4(38)] and define

F (t, x) := ξ(x) · φ(t, x) ∀(t, x) ∈ [0, T ] ×Bγ+δ(x0) .

We can compute in the same way that

F = ξ · ϕ · |∇̃Ψ|20 ≥ 0 on [0, T ] ×Bγ+δ(x0)

F ≡ 0 on [0, T ] ×
(
Σ \Bγ+3δ/4(x0)

)
.

In addition, there is a point (t0, x0) ∈ [0, T ] ×Bγ+3δ/4(x0) such that

F (t0, x0) = max
[0,T ]×Bγ+δ(x0)

F (t, x) . (3.36)

We would like to assume that t0 > 0, but there is a difference to Shi’s work here when considering
the initial value of F at time t = 0

F (0) = ξϕ(0)|∇̃Ψ|20(0) = ξϕ(0)|∇̃ũ|20
so we cannot be sure that the maximum does not occur at t = 0. However, this is not a problem
because of our initial bound on ∇̃ũ. If the maximum of F on [0, T ] ×Bγ+δ(x0) should occur at
t = 0, we easily get

ξ · ϕ(t) · |∇̃Ψ|20(t) ≤ ξ · ϕ(0) · |∇̃ũ|20
⇒ |∇̃Ψ|20(t) ≤

ϕ(0)

ϕ(t)
|∇̃ũ|20 ≤ a+ n

a+ n(1 − ε)m
· c0 = c(n, c0)
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and are already done. Otherwise, we deduce from (3.36) that

ξ(x0) · ∂tφ(t0, x0) = ∂tF (t0, x0) ≥ 0 .

Additionally, we get from (3.36) that

0 ≥ gab∇̃a∇̃bF (t0, x0) = ξ · gab∇̃a∇̃bφ+ φ · gab∇̃a∇̃bξ + 2gab∇̃aφ · ∇̃bξ .

Since ξ ≥ 0, we conclude from (3.35) that

1

16
ξφ2 ≤ cξ − φ · gab∇̃a∇̃bξ − 2gab∇̃aφ · ∇̃bξ .

This can be simplified since we know from (3.36) that

0 = ∇̃F (t0, x0) = ξ · ∇̃φ+ φ · ∇̃ξ ,

giving us
1

16
ξφ2 ≤ cξ − φ · gab∇̃a∇̃bξ + 2ξ−1φgab∇̃aξ · ∇̃bξ .

We have to use estimates on ξ to continue which are proven in [Shi89, §4(40),(45)]:

|∇̃ξ|20 ≤ 162

δ2
ξ, ∇̃a∇̃bξ ≥ −c(γ, δ, k0)g̃ab .

Using 0 ≤ ξ ≤ 1 and (3.24), we therefore get at (t0, x0) that

1

16
ξφ2 ≤ c+ cφ

which implies
1

16
F 2 ≤ c+ cF

and therefore
F (t, x) ≤ F (t0, x0) ≤ c(n, g̃, c0, γ, δ)

holds for all (t, x) ∈ [0, T ] ×Bγ+δ(x0). Since ξ ≡ 1 on Bγ+δ/2(x0), we have there

|∇̃Ψ|20 ≤ cϕ−1 ≤ c · a = c(n, g̃, c0, γ, δ)

from the definition of ϕ and φ as required.

Having established the bound for the first derivative of Ψ, we prove the boundedness of higher
derivatives by induction.

Proposition 3.9 Suppose (g, u)(t) is a solution as in Proposition 3.8 and ∇̃mΨ is constructed
as above. Then for any m ∈ +

0 there is a Cm = Cm(n, γ, δ, g̃, c0) independent of D such that

|∇̃mΨ|20 ≤ Cm

on [0, T ] ×Bγ+δ/(m+1)(x0) where | · |0 is the norm associated with g̃.
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Proof:

To start the induction argument, we need a global bound on the norm of ũ itself, not only on
∇̃ũ. We therefore make the additional assumption

|ũ|20 ≤ c0

on Σ. From (3.10) we get the evolution equation

∂t|u|20 = gab∇̃a∇̃b|u|20 − |∇̃u|20 ,

and an application of the maximum principle on [0, T ]×Bγ+δ(x0) proves the boundedness of u
also for later times. Thus we get for m = 0 on [0, T ] ×Bγ+δ(x0) that

|Ψ|20 = |g|20 + |u|20 ≤ 4|g̃|20 + |ũ|20 ≤ 4n+ c0 = C0(n, c0) . (3.37)

The case m = 1 is proven in Proposition 3.8.

Suppose that the statement is true for k = 0, . . . ,m−1. Then there exist constants C0, . . . , Cm−1

such that
|∇̃kΨ|20(t, x) ≤ Ck ∀(t, x) ∈ [0, T ] ×Bγ+δ/(k+1)(x0) . (3.38)

We want to prove the statement for k = m. Assume m ≥ 2 and calculate

∂t
(
∇̃mgij

)
= gab∇̃a∇̃b

(
∇̃mgij

)
+
∑

I

∇̃k1g ∗ · · · ∗ ∇̃km+2g ∗ Pk1k2...km+2
+
∑

J

∇̃l1u ∗ ∇̃l2u (3.39)

from (3.9). The sets of indices are defined as follows:

I :=
{
(k1, . . . , km+2) ∈ m+2 : 0 ≤ ki ≤ m+ 1 ∀i = 1, . . . ,m+ 2; k1 + · · · + km+2 ≤ m+ 2

}

J :=
{
(l1, l2) ∈ 2 : 1 ≤ li ≤ m+ 1 ∀i = 1, . . . ,m+ 2; l1 + l2 = m+ 2

}
.

We denote by Pk1k2...km+2
a polynomial in g, g−1, R̃m, ∇̃R̃m, . . . , ∇̃mR̃m. Then the formula can

easily be proven by induction. Analogously, we get from (3.10) that

∂t
(
∇̃mu

)
= gab∇̃a∇̃b

(
∇̃mu

)
+
∑

K

∇̃k1g ∗ · · · ∗ ∇̃kmg ∗ ∇̃lu ∗ Pk1...kml (3.40)

holds where in this case the set of indices is

K :=
{
(k1, . . . , km, l) ∈ m+1 : 0 ≤ ki ≤ m− 1; 1 ≤ l ≤ m+ 1; k1 + · · · + km + l ≤ m+ 2

}
.

We get an equation for ∇̃mΨ out of (3.39) and (3.40) as follows:

∂t
(
∇̃mΨ

)
= gab∇̃a∇̃b

(
∇̃mΨ

)
+
∑

I

∇̃k1Ψ ∗ · · · ∗ ∇̃km+2Ψ ∗ Pk1k2...km+2
(3.41)

where Pk1k2...km+2
again is a polynomial as above. From this we can deduce an evolution equation

for the norm squared of ∇̃mΨ:

∂t|∇̃mΨ|20 = gab∇̃a∇̃b|∇̃mΨ|20 − 2gab∇̃a

(
∇̃mΨ

)
· ∇̃b

(
∇̃mΨ

)

+
∑

I

∇̃k1Ψ ∗ · · · ∗ ∇̃km+2Ψ ∗ ∇̃mΨ ∗ Pk1k2...km+2
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which we can refine as before:

−2gab∇̃a

(
∇̃mΨ

)
· ∇̃b

(
∇̃mΨ

)
≤ −|∇̃m+1Ψ|20

|Pk1k2...km+2
|0 ≤ c(n,m, |g̃|C∞) ,

using the boundedness of the derivatives ∇̃kR̃m of the initial curvature on the compact set
B̄γ+δ(x0). Therefore c depends on the whole C∞-norm of g̃. Making use of the induction
hypotheses (3.38), we find on [0, T ] ×Bγ+δ/m(x0) that:

∂t|∇̃mΨ|20 ≤ gab∇̃a∇̃b|∇̃mΨ|20 − |∇̃m+1Ψ|20

+ C ·
{

|∇̃mΨ|0|∇̃m+1Ψ|0
(
1 + |∇̃Ψ|0

)
+ |∇̃mΨ|20

(
1 + |∇̃Ψ|20 + |∇̃2Ψ|0

)
+ |∇̃mΨ|0

}

(3.42)

where C = C(C0, . . . , Cm−1, n,m, |g̃|C∞ , c0, δ, γ). The first summand in parentheses corresponds
to the terms in the big sum that contain one factor of order m+1, the second to the terms that
contain one factor of order m and the third of all other terms that only contain factors of orders
less than m and can be dealt with by (3.38). We first consider the case m = 2:

∂t|∇̃2Ψ|20 ≤ gab∇̃a∇̃b|∇̃2Ψ|20 − |∇̃3Ψ|20

+ C ·
{

|∇̃2Ψ|0|∇̃3Ψ|0
(
1 + |∇̃Ψ|0

)
+ |∇̃2Ψ|20

(
1 + |∇̃Ψ|20 + |∇̃2Ψ|0

)
+ |∇̃2Ψ|0

}

≤ gab∇̃a∇̃b|∇̃2Ψ|20 − |∇̃3Ψ|20 + C ·
{

|∇̃3Ψ|0|∇̃2Ψ|0 + |∇̃2Ψ|30 + |∇̃2Ψ|20 + |∇̃2Ψ|0
}

.

We can estimate by Young’s inequality

C · |∇̃3Ψ|0|∇̃2Ψ|0 ≤ 1
2 |∇̃3Ψ|20 + 1

2C
2|∇̃2Ψ|20

C · (|∇̃2Ψ|0 + |∇̃2Ψ|20) ≤ C ·
(
|∇̃2Ψ|30 + 1

)

and get

∂t|∇̃2Ψ|20 ≤ gab∇̃a∇̃b|∇̃2Ψ|20 − 1
2 |∇̃3Ψ|20 + C · |∇̃2Ψ|20 + C .

The same reasoning applies in the case m ≥ 3, and we conclude that

∂t|∇̃mΨ|20 ≤ gab∇̃a∇̃b|∇̃mΨ|20 − 1
2 |∇̃m+1Ψ|20 + C · |∇̃mΨ|20 + C (3.43)

is valid for all m ≥ 2 on [0, T ] ×Bγ+δ/m(x0). Using (3.38) we compute:

∂t|∇̃m−1Ψ|20 ≤ gab∇̃a∇̃b|∇̃m−1Ψ|20 − 1
2 |∇̃mΨ|20 + C (3.44)

for all m ≥ 2 on [0, T ]×Bγ+δ/(m−1)(x0). We want to use (3.44) to cancel the bad term in (3.43).
To do that, we define a new test function

φ :=
(
λ+ |∇̃m−1Ψ|20

)
· |∇̃mΨ|20
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where the constant λ > 0 will be chosen later, again following the ideas of [Shi89, Lemma 4.2].
The evolution equation for φ is given as follows:

∂tφ = (∂t|∇̃m−1Ψ|20) · |∇̃mΨ|20 +
(
λ+ |∇̃m−1Ψ|20

)
· (∂t|∇̃mΨ|20)

≤ gab∇̃a∇̃b|∇̃m−1Ψ|20 · |∇̃mΨ|20 − 1
2 |∇̃mΨ|40 + C|∇̃mΨ|20

+ gab∇̃a∇̃b|∇̃mΨ|20 ·
(
λ+ |∇̃m−1Ψ|20

)
− 1

2 |∇̃m+1Ψ|20 ·
(
λ+ |∇̃m−1Ψ|20

)

+ C|∇̃mΨ|20 ·
(
λ+ |∇̃m−1Ψ|20

)
+ C · (λ+ |∇̃m−1Ψ|20

)
.

Collecting terms and using the induction hypotheses (3.38), we find

∂tφ ≤ gab∇̃a∇̃bφ− 2gab∇̃a|∇̃m−1Ψ|20 · ∇̃b|∇̃mΨ|20 − 1
2 |∇̃mΨ|40 − 1

2 |∇̃m+1Ψ|20 ·
(
λ+ |∇̃m−1Ψ|20

)

+ C|∇̃mΨ|20 + C

(3.45)

where C = C(λ) now also depends on λ. We estimate C|∇̃mΨ|20 ≤ 1
4 |∇̃mΨ|40 +C and use Kato’s

inequality
∣
∣∇|(·)|

∣
∣ ≤ |∇(·)| to control the cross term:

−2gab∇̃a|∇̃m−1Ψ|20 · ∇̃b|∇̃mΨ|20 ≤ 8gab|∇̃m−1Ψ|0∇̃a|∇̃m−1Ψ|0 · |∇̃mΨ|0∇̃b|∇̃mΨ|0
≤ 16c|∇̃mΨ|20|∇̃m+1Ψ|0 ≤ λ

2 |∇̃m+1Ψ|20 + 1
2λc

2|∇̃mΨ|40 .

Here c depends only on n and Cm−1. Together with (3.45) this implies

∂tφ ≤ gab∇̃a∇̃bφ+ ( 1
2λc

2 − 1
4)|∇̃mΨ|40 + C .

Choosing λ := 4(c2 + 1), we get

∂tφ ≤ gab∇̃a∇̃bφ− 1

8
φ2 ·

(
λ+ |∇̃m−1Ψ|20

)−1
+ C = gab∇̃a∇̃bφ− C̃φ2 + C

on [0, T ] × Bγ+δ/(m+1)(x0) where C and C̃ are constants only depending on C0, . . . , Cm−1,
n,m, δ, γ, |g̃|C∞ , c0. By an application of the maximum principle as in Proposition 3.8, we
finally get

|∇̃mΨ|20(t, x) ≤ Cm(C0, . . . , Cm−1, n, δ, γ, |g̃|C∞ , c0) = Cm(n, δ, γ, |g̃|C∞ , c0)

on [0, T ] ×Bγ+δ/(m+1)(x0) as required. This finishes the induction argument.

Given these a priori estimates, the theory of parabolic systems on compact domains provides the
existence of a solution to the modified system (3.4) and (3.5) on a finite time interval 0 ≤ t ≤ T
where T is determined by Theorem 3.7. We use the existence theorem for quasilinear parabolic
systems in [LSU68, Theorem VII 7.1] together with the remarks in [Shi89, chap. 3].

Theorem 3.10 Let Σ be a complete Riemannian manifold and D ⊂ Σ be a connected open sub-
set with compact closure. Then the system (3.4) and (3.5) together with smooth initial/boundary
data (g̃, ũ), satisfying |R̃m|20 ≤ k0 and |ũ|20 + |∇̃ũ|20 ≤ c0, has a unique smooth solution (g, u)(t)
on a time interval [0, T ] for some T = T (n, k0, c0) > c(n) · 1/(

√
k0 + c0).
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We note a direct corollary of these results in the case of closed manifolds:

Theorem 3.11 Let M be a closed Riemannian manifold and (g̃, ũ) ∈ M(M) × C∞(M) be
given. Then the initial value problem

∂tg = −2Rc(g) + 4du⊗ du

∂tu = ∆gu

with initial data g(0) = g̃ and u(0) = ũ has a unique smooth solution on a time interval [0, T )
for some maximal T > c(n) · 1/(

√
k0 + c0) where k0 := maxM |R̃m|20 and c0 := maxM |dũ|20.

Proof:

This easily follows from the fact that (3.4) and (3.5) form a uniformly parabolic system on a
compact domain without boundary as was proven in Theorem 3.7. Furthermore, the solution
of (3.4) has bounded curvature and the vector field V together with its first derivative ∇V
is smooth and bounded on M . This implies that the 1-parameter group of diffeomorphisms
generated by V exists and is smooth on [0, T )×M and that the pullback of the solution satisfies
the original system (2.5). A more detailed exposition is given for the complete case in the proof
of Theorem 3.22.

3.4 Short time existence on complete manifolds

The a priori estimates for Ψ in the last chapter enable us to prove the existence of a solution to
the initial value problem

∂tgij = −2Rij + 4∂iu∂ju+ ∇iVj + ∇jVi

∂tu = ∆u+ du(V )
(3.46)

on the whole space [0, T ] × Σ with initial values g(0) = g̃ and u(0) = ũ for a given smooth
Riemannian metric g̃ on Σ and function ũ ∈ C∞(Σ). To this end we fix a point x0 ∈ Σ and
choose a family of domains {Dk ⊂ Σ : k = 1, 2, 3, . . .} such that for each k

1. the boundary ∂Dk is a smooth (n− 1)-dimensional submanifold of Σ

2. the closure D̄k is compact in Σ

3. Bk(x0) ⊂ Dk

where Bk(x0) is a geodesic ball with respect to g̃ of radius k. This family exists since Σ is
complete. Theorem 3.10 shows the existence of a solution on each Dk for 0 ≤ t ≤ T where
T depends only on n and the initial data (g̃, ũ). Furthermore, Theorem 3.7 implies that these
solutions satisfy

(1 − ε)g̃ij(x) ≤ gij(t, x) ≤ (1 + ε)g̃ij(x) ∀(t, x) ∈ [0, T ] × D̄k

uniformly in k for an arbitrary fixed ε satisfying 0 < ε < ε0 := 1/(416000n10).
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In addition, we have for any integer l ≥ 1

Bl(x0) ⊂ Dk ∀k ≥ l .

Proposition 3.9 gives domain independent a priori estimates for these solutions

|∇̃mΨ(k, t, x)|20 ≤ Cm(n, l, g̃, c0) ∀(t, x) ∈ [0, T ] ×Bl(x0)

for all k > l where Cm and T do not depend on k. Therefore, all derivatives of Ψ(k) are uniformly
bounded on any compact subset of [0, T ] × Σ. Since we have

∞⋃

k=1

Dk = Σ ,

we can take the limit k → ∞ and get convergence of a subsequence of the solutions Ψ(k)(t) in
the C∞ topology on compact subsets of [0, T ]×Σ to a smooth solution (g∞, u∞)(t) on [0, T ]×Σ
by the theorem of Arzela-Ascoli. This proves

Theorem 3.12 Let (Σ, g̃) be a smooth, complete Riemannian manifold with bounded curvature
|R̃m|20 ≤ k0. Let ũ ∈ C∞(Σ) satisfy |ũ|20 + |dũ|20 ≤ c0 and V ∈ X ([0, T ]×Σ) be as in Lemma 3.2.
Then there is a time T = T (n, k0, c0) > c(n) · 1/(

√
k0 + c0) such that the initial value problem

∂tg = −2Rc+ 4du⊗ du+ LV g
∂tu = ∆gu+ LV u

on [0, T ] × Σ with initial data g(0) = g̃ and u(0) = ũ has a smooth solution (g, u)(t) satisfying

(1 − ε)g̃ij(x) ≤ gij(t, x) ≤ (1 + ε)g̃ij(x)

for all (t, x) ∈ [0, T ] × Σ and for all ε ≤ 1/(416000n10).

3.5 Global estimates for complete solutions

In order to construct a solution of the original system (3.1) and (3.2) from a solution of the
modified system, we have to prove the existence of the diffeomorphisms we want to use to pull
back the solution. To this end we need to assume the additional bound

sup
x∈Σ

|∇̃2ũ|20(x) ≤ s0 (3.47)

on the initial data from now on. The aim of this section is to prove global estimates for |Rm|,
|∇2u| and |∇V |.

Remark 3.13 We do not want to use the interior estimates in Proposition 3.9. Although these
indeed imply a global bound for the derivatives of (g, u)(t) on Σ, the constant depends on the
whole C∞-norm of the initial metric g̃. We want to prove an estimate that depends only on the
curvature of g̃.
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As a first step we prove a global bound on the first derivative of the solution (g, u)(t). This is
done in the following proposition.

Proposition 3.14 Let (g, u)(t) be a solution satisfying the assumptions in Theorem 3.12. As-
sume furthermore a bound |∇̃2u|20 ≤ s0 on Σ. Then there exists a constant c = c(n, k0, c0, s0)
such that

sup
[0,T ]×Σ

|∇̃Ψ|2 ≤ c(n, k0, c0, s0) .

Proof:

From Theorem 3.7 we know that for T = T (n, k0, c0) small enough all the approximating solu-
tions g(k, t) are equivalent to the initial metric g̃ independent of k in the sense that

(1 − ε)g̃ ≤ g(k, t) ≤ (1 + ε)g̃ (3.48)

for the same arbitrary fixed ε as in the theorem. Because of the uniform convergence g(k) → g
this also holds for the limit. Let Hij(t, x) := 1

ε (gij(t, x) − g̃ij(x)) and compute

∂tHij = gab∇̃a∇̃bHij +Aij on [0, T ] × Σ

Hij(0) ≡ 0 on Σ

where we define

Aij :=1
ε · (−gabgikg̃klR̃jalb − gabgjkg̃

klR̃jalb + 4∂iu∂ju)

+ εgabgkl
(

1
2∇̃iHka∇̃jHlb + ∇̃aHjk∇̃lHib − ∇̃aHjk∇̃bHil − ∇̃jHka∇̃bHil − ∇̃iHka∇̃bHjl

)
.

In addition, we get for w(t, x) := ε
(
u(t, x) − ũ(x)

)

∂tw = gab∇̃a∇̃bw +B on [0, T ] × Σ

w(0) ≡ 0 on Σ

where B := εgab∇̃a∇̃bũ. To estimate the coefficients of the differential operator, we calculate

−
(

8n
√
k0 + 2c0
ε

+ 20ε|∇̃H|20
)

g̃ij ≤ Aij(t) ≤
(

8n
√
k0 + 2c0
ε

+ 20ε|∇̃H|20
)

g̃ij .

Using (3.47), we can estimate

|B|0 = |εgab∇̃a∇̃bũ|0 ≤ 2ε|g̃ab|0|∇̃2ũ|0 ≤
√

4ns0 · ε

on [0, T ] × Σ. Furthermore, we can derive bounds on g(t) from (3.48):

−g̃ = 1
ε

(
(1 − ε)g̃ − g̃

)
≤ 1

ε (g(t) − g̃) = H(t) = 1
ε (g(t) − g̃) ≤ 1

ε

(
(1 + ε)g̃ − g̃

)
= g̃

which provides an estimate for the coefficients of the second derivatives

1

1 + ε
g̃ab ≤ gab(t) ≤ 1

1 − ε
g̃ab,
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implying

|∇̃ig
ab|20 ≤ ε2

(1 − ε)4
|∇̃H|20

on [0, T ] × Σ. In addition, we know from the smooth convergence u(k) → u that the bound
|u(k, t)|2 ≤ c0 for the approximating solutions on [0, T ] × Bk is preserved in the limit. This
implies that

|u|20(t) ≤ c0 ⇒ |w|20(t) ≤ ε2|u|20(t) + ε2|ũ|20 ≤ 2ε2c0

for all t ∈ [0, T ]. Then the arguments in [Shi89, §5] applied to the system (Hij , w) show that for
ε < ε0(n) small enough

sup
[0,T ]×Σ

(

|∇̃H|20 + |∇̃w|20
)

≤ c(n, k0, c0, s0) .

This yields

|∇̃u|20 ≤ |∇̃u− ∇̃ũ|20 + |∇̃ũ|20 ≤ ε−2 · c(n, k0, c0, s0) + c0 = c(n, k0, c0, s0)

since ε depends only on n. A similar estimate on |∇̃g|20 proves the proposition.

Having obtained the bound on the first derivatives of Ψ, we aim at an estimate for |∇∇̃Ψ|2. In
the following | · |, | · |0 denote the norms with respect to g(t), g̃ and dV , dV0 the corresponding
volume elements.

Lemma 3.15 Let (g, u)(t) be a solution as in Proposition 3.14 and Ψ be defined as in (3.23).
Then we have for any x0 ∈ Σ and any radius 0 < R <∞:

∫ T

0

∫

BR(x0)
|∇̃2Ψ|20 dV0 dt ≤ c = c(n, k0, c0, R) .

Proof:

The metrics g(t) on [0, T ] × Σ are equivalent in the following sense:

1
2 g̃ ≤ g(t) ≤ 2g̃ . (3.49)

Let ξ ∈ C∞
c (Σ) be a cutoff function satisfying |∇̃ξ|0 ≤ 8 and 0 ≤ ξ ≤ 1 on Σ, ξ ≡ 1 on BR(x0)

and ξ ≡ 0 on Σ \ BR+1/2(x0). From now on, c will always denote (different) constants only
depending on n, k0, c0, s0, R. Abbreviate Ω := BR+1(x0) and note that, in view of the curvature
bound, we can compare the volume of Ω with that of a ball in the model space of constant
sectional curvature by the volume comparison theorem of Bishop and Gromov [SY94, Theorem
1.3]. This implies that vol0(Ω) ≤ c holds for a constant c = c(n, k0, R) independent of the base
point x0. We will use that in the next sections without further comment.

Using the evolution equation (3.25) for ∇̃g, a calculation shows

∂t

∫

Ω
|∇̃g|20 ξ2dV0 = 2

∫

Ω
∇̃kgij · (∂t∇̃kgij) ξ

2dV0

= 2

∫

Ω
∇̃kgij · gab∇̃a∇̃b(∇̃kgij) ξ

2dV0 +

∫

Ω
∇̃g ∗ ∇̃R̃m ξ2dV0

+

∫

Ω
∇̃g ∗

(

∇̃u ∗ ∇̃2u+ ∇̃g ∗ ∇̃2g + ∇̃g ∗ R̃m+ ∇̃g ∗ ∇̃g ∗ ∇̃g
)

ξ2dV0 .
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We deal with all terms individually. Integrating by parts, we get for the first

2

∫

Ω
∇̃kgij · gab∇̃a∇̃b(∇̃kgij) ξ

2dV0

= −2

∫

Ω
∇̃b(∇̃kgij) · ∇̃a

(

gab∇̃kgij ξ
2
)

dV0

= −2

∫

Ω
gab∇̃b∇̃kgij · ∇̃a∇̃kgij ξ

2dV0 +

∫

Ω
∇̃2g ∗

(
∇̃g ∗ ∇̃g · ξ + ∇̃g ∗ ∇̃ξ

)
· ξdV0

≤ −
∫

Ω
|∇̃2g|20 ξ2dV0 + c

∫

Ω
|∇̃2g|0 ξdV0 .

This follows from the global bound on |∇̃g|0 in Proposition 3.14, the properties of ξ, and (3.49).
The second term is taken care of by an integration by parts

∫

Ω
∇̃g ∗ ∇̃R̃m ξ2dV0 = −

∫

Ω
R̃m ∗ ∇̃

(

∇̃g · ξ2
)

dV0 =

∫

Ω
R̃m ∗

(

∇̃2g · ξ + ∇̃g ∗ ∇̃ξ
)

ξdV0

≤ c

∫

Ω
(1 + |∇̃2g|0)ξdV0 ≤ c · vol0(Ω) + c

∫

Ω
|∇̃2g|0 ξdV0

where we also used |R̃m|20 ≤ k0. A similar reasoning implies for the last term:
∫

Ω
∇̃g ∗

(

∇̃u ∗ ∇̃2u+ ∇̃g ∗ ∇̃2g + ∇̃g ∗ R̃m+ ∇̃g ∗ ∇̃g ∗ ∇̃g
)

ξ2dV0

≤ c

∫

Ω

(
|∇̃2g|0 + |∇̃2u|0 + 1

)
ξ2dV0 ≤ c

∫

Ω

(
|∇̃2g|0 + |∇̃2u|0

)
ξdV0 + c ,

and we get altogether

∂t

∫

Ω
|∇̃g|20 ξ2dV0 ≤ −

∫

Ω
|∇̃2g|20 ξ2dV0 + c

∫

Ω
|∇̃2g|0 ξdV0 + c

∫

Ω
|∇̃2u|0 ξdV0 + c . (3.50)

Doing the same calculation for ∇̃u, we obtain

∂t

∫

Ω
|∇̃u|20 ξ2dV0 = 2

∫

Ω
∂iu · (∂i∂tu)ξ2dV0 = 2

∫

Ω
∂iu · ∇̃i(g

ab∇̃a∇̃bu)ξ
2dV0

= 2

∫

Ω
gab∂iu · ∇̃a∇̃b∇̃iu ξ

2dV0 +

∫

Ω

(
∇̃u ∗ ∇̃g ∗ ∇̃2u+ ∇̃u ∗ R̃m

)
ξ2dV0 .

An integration by parts gives for the first term

2

∫

Ω
gab∂iu · ∇̃a∇̃b∇̃iu ξ

2dV0

= −2

∫

Ω
gab∇̃a∇̃iu · ∇̃b∇̃iu ξ

2dV0 +

∫

Ω
∇̃u ∗

(

∇̃g ∗ ∇̃2u · ξ + ∇̃2u ∗ ∇̃ξ
)

ξdV0

≤ −
∫

Ω
|∇̃2u|20 ξ2dV0 + c

∫

Ω
|∇̃2u|0ξdV0

as before. The second term can be estimated in exactly the same way as above. Thus there is
the estimate:

∂t

∫

Ω
|∇̃u|20 ξ2dV0 ≤ −

∫

Ω
|∇̃2u|20 ξ2dV0 + c

∫

Ω
|∇̃2u|0 ξdV0 + c . (3.51)



48 3 SHORT TIME EXISTENCE

This allows us to combine (3.50) and (3.51). Using Young’s inequality, we estimate Ψ as follows:

∂t

∫

Ω
|∇̃Ψ|20 ξ2dV0 ≤ −

∫

Ω
|∇̃2Ψ|20 ξ2dV0 + c

∫

Ω
|∇̃2g|0 ξdV0 + c

∫

Ω
|∇̃2u|0 ξdV0 + c

≤ −
∫

Ω
|∇̃2Ψ|20 ξ2dV0 + 1

2

∫

Ω
|∇̃2g|20 ξ2dV0 + 1

2

∫

Ω
|∇̃2u|20 ξ2dV0 + c

≤ −1
2

∫

Ω
|∇̃2Ψ|20 ξ2dV0 + c .

Since we have at time t = 0 that
∫

Ω
|∇̃Ψ|20(0) ξ2dV0 =

∫

Ω
|∇̃g̃|20 ξ2dV0 +

∫

Ω
|∇̃ũ|20 ξ2dV0 ≤ 0 + c ,

we can integrate from 0 to T to find

∫

Ω
|∇̃Ψ|20(T ) ξ2dV0 =

∫

Ω
|∇̃Ψ|20(0) ξ2dV0 +

∫ T

0
∂t

∫

Ω
|∇̃Ψ|20(t) ξ2dV0 dt

≤ c− 1
2

∫ T

0

∫

Ω
|∇̃2Ψ|20(t) ξ2dV0 dt+ c

∫ T

0
dt .

Since T = T (n, k0, c0), we get the desired result

∫ T

0

∫

Ω
|∇̃2Ψ|20(t) ξ2dV0 dt+

∫

Ω
|∇̃Ψ|20(T ) ξ2dV0 ≤ c,

proving the lemma.

This estimate is still valid if we change to the time dependent norm and volume form.

Lemma 3.16 Let (g, u)(t) be a solution as in Proposition 3.14 on [0, T ] × Σ. Then, for any
x0 ∈ Σ and any radius 0 < R <∞, we can estimate

∫ T

0

∫

BR(x0)
|∇̃2Ψ|2dV dt+

∫ T

0

∫

BR(x0)
|∇∇̃Ψ|2dV dt ≤ c

where c = c(n, k0, c0, s0, R), and | · | is the norm associated to g(t).

Proof:

Because of the equivalence (3.49) for the metrics g(t), we can estimate |∇̃2Ψ|2 ≤ 16|∇̃2Ψ|20 and
dV ≤ 2n/2dV0 on the whole space [0, T ] × Σ. This proves the bound for the first term using
Lemma 3.15. For the second term we estimate

|∇∇̃Ψ|2 = |∇̃2Ψ + (∇− ∇̃)∇̃Ψ|2 = |∇̃2Ψ + ∇̃g ∗ ∇̃Ψ|2

≤ |∇̃2Ψ|2 + |∇̃2Ψ| · c|∇̃Ψ| + c ≤ 2|∇̃2Ψ|2 + c
(3.52)

in view of the bound for |∇̃Ψ|20, the equivalence (3.49) and Young’s inequality. Thus the bound-
edness of the second term follows from that of the first.
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The next step is to bound the norm of the vector field V and its gradient since we want to use V
for the construction of the pullback diffeomorphisms. It is convenient to simultaneously prove a
bound on |Rm|2, |∇2u|2, and |∇V |2. First we need to deduce evolution equations for Rm and
∇2u from the modified flow (3.46):

Lemma 3.17 Let (g, u)(t) be a solution to the modified flow (3.46) and assume V is given by
Vi := gijg

pq(Γjpq − Γ̃jpq). Then Rm, ∇2u, and ∇V satisfy the following evolution equations:

∂tRijkl = ∆Rijkl +Rm ∗Rm+ ∇2u ∗ ∇2u+Rm ∗ ∇V + ∇Rm ∗ V (3.53)

∂t(∇i∇ju) = ∆(∇i∇ju) +Rm ∗ ∇2u+ du ∗ du ∗ ∇2u+ ∇2u ∗ ∇V + V ∗ ∇3u+ du ∗ V ∗Rm
(3.54)

∂t(∇iVj) = ∆(∇iVj) +Rm ∗ ∇V + ∇V ∗ ∇V + du ∗ du ∗ ∇V + ∇2u ∗ ∇2u+ du ∗ ∇3u
(3.55)

+ ∇̃g ∗ (∇Rm+ du ∗ ∇2u+ ∇2V ) + ∇∇̃g ∗ (Rm+ du ∗ du+ ∇V )

Proof:

We already did most of the calculations in the proofs of Lemma 2.14, Lemma 2.7, and Lemma
2.6. The remaining terms are handled similarly. We also used the identity (3.8) for Γ − Γ̃.

Since we need integral estimates, we have to compute the evolution of the volume element.

Lemma 3.18 The volume element dV (t) :=
√

det(gij(t))dx
1∧ . . . dxn associated to the evolving

metric g(t) satisfies:

∂tdV =
(
−R+ 2|du|2 + div(V )

)
dV .

Proof:

This is a short calculation:

∂tdV = ∂t

(√

det(g)dx
)

=
1

2
√

det(g)
· det(g) · gpq(−2Rpq + 4∂pu∂qu+ ∇pVq + ∇qVp)dx

=
(
−R+ 2|du|2 + div(V )

)√

det(g)dx .

Using the integral estimate for |∇∇̃Ψ|2, we can prove:

Lemma 3.19 Let (g, u)(t) be a solution as in Proposition 3.14 on [0, T ]×Σ. Then we have for
any x0 ∈ Σ and any radius 0 < R <∞:

∫

BR(x0)

(
|Rm|2 + |∇2u|2 + |∇V |2

)
dV ≤ c

where c = c(n, k0, c0, s0, R) and V is defined as in Lemma 3.17.
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Proof:

Suppose ξ is given as in the proof of Lemma 3.15 and c is a changing constant depending only
on n, k0, c0, s0, R and Ω := BR+1(x0). Recalling the evolution equation (3.53), we compute

∂t

∫

Ω
|Rm|2 ξ2dV

= 2

∫

Ω
Rijkl · (∂tRijkl)ξ2dV +

∫

Ω
Rm ∗Rm ∗ (∂tg

−1)ξ2dV +

∫

Ω
Rm ∗Rm · ξ2(∂tdV )

= 2

∫

Ω
Rijkl · ∆Rijkl ξ2dV +

∫

Ω
Rm ∗

(
Rm ∗Rm+∇2u ∗ ∇2u+Rm ∗ ∇V +∇Rm ∗ V

)
ξ2dV

+

∫

Ω
Rm ∗Rm ∗

(
Rm+ du ∗ du+ ∇V −R+ 2|du|2 + div(V )

)
ξ2 dV

= 2

∫

Ω
Rijkl · ∆Rijkl · ξ2dV +

∫

Ω
Rm ∗Rm ∗ ∇V · ξ2dV

+

∫

Ω

(
∇Rm ∗Rm ∗ V + du ∗ du ∗Rm ∗Rm

)
ξ2dV

+

∫

Ω

(
Rm ∗Rm ∗Rm+ ∇2u ∗ ∇2u ∗Rm

)
ξ2dV .

We take care of the individual terms. Integration by parts yields for the first one:

2

∫

Ω
Rijkl · ∆Rijkl ξ2dV = −2

∫

Ω
gab∇bRijkl · ∇a(Rijkl · ξ2)dV

= −2

∫

Ω
|∇Rm|2ξ2dV +

∫

Ω
Rm ∗ ∇Rm ∗ ∇ξ · ξdV

≤ −2

∫

Ω
|∇Rm|2ξ2dV +

∫

Ω
|∇Rm|ξ · c|Rm|dV

≤ −3

2

∫

Ω
|∇Rm|2ξ2dV + c

∫

Ω
|Rm|2dV ,

since we can estimate |∇ξ| = |∇̃ξ| ≤
√

2|∇̃ξ|0 ≤ 12. Performing an integration by parts on the
second term gives in the same way as for the first

∫

Ω
Rm ∗Rm ∗ ∇V · ξ2dV =

∫

Ω
V · ∇

(
Rm ∗Rm · ξ2

)
dV

=

∫

Ω
V ∗ [Rm ∗ ∇Rm · ξ +Rm ∗Rm ∗ ∇ξ]ξdV

≤
∫

Ω
|∇Rm|ξ · c|Rm|dV + c

∫

Ω
|Rm|2dV

≤ 1

8

∫

Ω
|∇Rm|2ξ2dV + c

∫

Ω
|Rm|2dV

where we used that

|V |2 = gijV
iV j ≤ 2g̃ijV

iV j = 2|V |20 ≤ c|∇̃g|20 ≤ c|∇̃Ψ|20 ≤ c (3.56)

holds on [0, T ] × Σ. The third term is straightforward:
∫

Ω

(
∇Rm ∗Rm ∗ V + du ∗ du ∗Rm ∗Rm

)
ξ2dV ≤ 1

16

∫

Ω
|∇Rm|2ξ2dV + c

∫

Ω
|Rm|2dV .
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For the last terms we have to replace one occurrence of Rm by second derivatives of g as follows:

Rm = ∇̃2g + ∇̃g ∗ ∇̃g = ∇∇̃g + ∇̃g ∗ ∇̃g . (3.57)

Integrating by parts, this allows us to estimate:
∫

Ω
Rm ∗ (Rm ∗Rm+ ∇2u ∗ ∇2u)ξ2dV

≤ −
∫

Ω
∇̃g ∗ ∇(Rm ∗Rm+ ∇2u ∗ ∇2u · ξ2)dV + c

∫

Ω
|Rm|2dV + c

∫

Ω
|∇2u|2dV

≤ 1

16

∫

Ω
|∇Rm|2ξ2dV +

1

8

∫

Ω
|∇3u|2ξ2dV + c

∫

Ω
|Rm|2dV + c

∫

Ω
|∇2u|2dV .

Altogether we find

∂t

∫

Ω
|Rm|2ξ2dV ≤ −10

8

∫

Ω
|∇Rm|2ξ2dV +

1

8

∫

Ω
|∇3u|2ξ2dV + c

∫

Ω
|Rm|2dV + c

∫

Ω
|∇2u|2dV .

(3.58)

Similar computations for the Hessian of u using (3.54) yield:

∂t

∫

Ω
|∇2u|2ξ2dV ≤ −10

8

∫

Ω
|∇3u|2ξ2dV + c

∫

Ω
|∇2u|2dV + c

∫

Ω
|Rm|2dV . (3.59)

We use (3.55) to estimate ∇V in the same way:

∂t

∫

Ω
|∇V |2ξ2dV ≤ −

∫

Ω
|∇2V |2ξ2dV +

2

8

∫

Ω
|∇Rm|2ξ2dV +

1

8

∫

Ω
|∇3u|2ξ2dV

+ c

∫

Ω
(|Rm|2 + |∇2u|2 + |∇V |2)dV .

(3.60)

Combining (3.58), (3.59), and (3.60), we estimate altogether

∂t

∫

Ω

(
|Rm|2 + |∇2u|2 + |∇V |2

)
ξ2dV ≤ −

∫

Ω

(
|∇Rm|2 + |∇3u|2 + |∇2V |2

)
ξ2dV

+ c

∫

Ω

(
|Rm|2 + |∇2u|2 + |∇V |2

)
dV .

Since V (0) ≡ 0, we have at time t = 0:
∫

Ω

(
|R̃m|20 + |∇̃2ũ|20 + |∇̃V (0)|20

)
ξ2dV0 ≤ (k0 + s0 + 0)

∫

Ω
ξ2dV0 ≤ c .

Therefore we can integrate at every time τ ∈ [0, T ] and estimate:
∫

Ω

(
|Rm|2 + |∇2u|2 + |∇V |2

)
ξ2dV (τ)

≤ c+

∫ τ

0
∂t

∫

Ω

(
|Rm|2 + |∇2u|2 + |∇V |2

)
ξ2dV dt

≤ c−
∫ τ

0

∫

Ω

(
|∇Rm|2 + |∇3u|2 + |∇2V |2

)
ξ2dVdt+ c

∫ τ

0

∫

Ω

(
|Rm|2 + |∇2u|2 + |∇V |2

)
dVdt .

(3.61)
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Using the identities

Rm = ∇̃2g + ∇̃g ∗ ∇̃g, ∇2u = ∇̃2u+ ∇̃g ∗ ∇̃u, (3.62)

we obtain the estimate (using Young’s inequality)

∫ τ

0

∫

Ω

(
|Rm|2 + |∇2u|2

)
dV dt ≤

∫ τ

0

∫

Ω

(
|∇̃2g|2 + |∇̃2u|2

)
dV dt+ c

∫ τ

0

∫

Ω
dV dt

≤
∫ τ

0

∫

Ω
|∇̃2Ψ|2dV dt+ c ≤ c

in view of Proposition 3.14, Lemma 3.16, and τ ≤ T = T (n, c0, k0, s0). Since ∇V ' ∇∇̃g, the
last part can be dealt with by applying Lemma 3.16:

∫ τ

0

∫

Ω
|∇V |2dV dt =

∫ τ

0

∫

Ω
∇∇̃g ∗ ∇∇̃g dV dt ≤ c

∫ τ

0

∫

Ω
|∇∇̃g|2dV dt ≤ c .

Rearranging (3.61), we have

∫

Ω

(
|Rm|2 + |∇2u|2 + |∇V |2

)
ξ2dV (τ) +

∫ τ

0

∫

Ω

(
|∇Rm|2 + |∇3u|2 + |∇2V |2

)
ξ2dV dt ≤ c . (3.63)

Taking into account that the second integral is positive and that the right hand side does not
depend on time, we have

max
0≤τ≤T

∫

Ω

(
|Rm|2 + |∇2u|2 + |∇V |2

)
ξ2dV (τ) ≤ c = c(n, k0, c0, s0, R)

which is what we wanted to show.

To be able to prove supremum bounds, we need higher integrability. We simplify the notation
and define ψ = (Rijkl,∇p∇qu,∇rVs) from now on where all indices are running from 1 to n.
This is a useful collection since the evolutions of all parts have the same structure:

∂tRm = ∆Rm+ ψ ∗ ψ + ∇̃g ∗ ∇ψ
∂t∇2u = ∆∇2u+ ψ ∗ ψ + ∇̃g ∗ ∇ψ + du ∗ du ∗ ψ + du ∗ ∇̃g ∗ ψ
∂t∇V = ∆∇V + ψ ∗ ψ + ∇̃g ∗ ∇ψ + du ∗ ∇ψ + du ∗ du ∗ ψ + du ∗ ∇̃g ∗ ψ + ∇∇̃g ∗ ψ

+ du ∗ du ∗ ∇∇̃g .

Therefore the norm |ψ|2 satisfies the evolution equation:

∂t|ψ|2 = 2ψ ∗ ∆ψ + ψ ∗ ψ ∗ ψ + (du ∗ du+ du ∗ ∇̃g + ∇∇̃g) ∗ ψ ∗ ψ + (du+ ∇̃g) ∗ ψ ∗ ∇ψ
+ du ∗ du ∗ ψ ∗ ∇∇̃g .

By Young’s inequality and the Bochner formula, we can estimate

∂t|ψ|2 ≤ ∆|ψ|2 − 2|∇ψ|2 + ψ ∗ ψ ∗ ψ + c|ψ|2 + ∇∇̃g ∗ ψ ∗ ψ + 1
8 |∇ψ|2 + du ∗ du ∗ ψ ∗ ∇∇̃g
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in view of the global bounds on ∇̃u = du and ∇̃g from Proposition 3.14. In addition, we have
from (3.62) and ∇V ' ∇∇̃g the identity

ψ = ∇∇̃Ψ + ∇̃g ∗ ∇̃Ψ (3.64)

since we can compare

∇̃2Ψ = ∇∇̃Ψ + (∇̃ − ∇)∇̃Ψ = ∇∇̃Ψ + ∇̃g ∗ ∇̃Ψ .

Lemma 3.20 Let (g, u)(t) be a solution to (2.5) as in Proposition 3.14 on [0, T ]×Σ. Then for
any x0 ∈ Σ, any radius 0 < R <∞, and all m ≥ 1 we can estimate

∫ T

0

∫

BR(x0)
|ψ|2(m−1) ·

(

|∇ψ|2 + |∇∇̃Ψ|2
)

dV dt ≤ c

and

max
0≤t≤T

∫

BR(x0)
|ψ|2mdV ≤ c

where c = c(n,m, k0, c0, s0, R) and Ψ is defined in (3.23).

Proof:

We just give a short proof of this lemma since the techniques are exactly the same as in the last
one. We use the global bound |∇̃Ψ|2 ≤ c and the evolution inequality (3.28) to obtain:

∂t|∇̃Ψ|2 = ∂t|∇̃Ψ|20 + (∂tg
−1) ∗ ∇̃Ψ ∗ ∇̃Ψ ≤ gab∇̃a∇̃b|∇̃Ψ|2 − |∇̃2Ψ|2 + c .

Note that we have ∂tg
−1 ≤ c · ∇̃2g + ∇̃Ψ ∗ ∇̃Ψ ≤ 1

2 |∇̃Ψ|2 + c from (3.14). The proof is by
induction and the case m = 1 is proven in Lemma 3.15 and (3.63). To do the induction step,
we assume that the lemma is true for all s ≤ m− 1. We start the computation with

∂t

∫

Ω
|∇̃Ψ|2|ψ|2(m−1)ξ2dV =

∫

Ω
∂t|∇̃Ψ|2 · |ψ|2(m−1)ξ2dV +

∫

Ω
|∇̃Ψ|2 · ∂t|ψ|2(m−1)ξ2dV

+

∫

Ω
|∇̃Ψ|2|ψ|2(m−1)ξ2(∂tdV ) .

(3.65)

We will use Young’s inequality and the bound |∇̃Ψ|2 ≤ c frequently in the following calculations.
Integrating by parts, we have
∫

Ω

(
|ψ|2(m−1) · gab∇̃a∇̃b|∇̃Ψ|2

)
ξ2dV

= −
∫

Ω
gab∇̃a|∇̃Ψ|2 ·

{

∇̃b|ψ|2(m−1)ξ2 + |ψ|2(m−1)∇̃bξ · ξ
}

≤ c

∫

Ω

(
|∇̃2Ψ||ψ| · |∇̃ψ|

)
|ψ|2(m−2)ξ2 + |∇̃2Ψ||ψ|2(m−1)ξ dV

≤ 2

16

∫

Ω
|ψ|2(m−1) · |∇̃2Ψ|2ξ2dV + c

∫

Ω
|ψ|2(m−2)|∇ψ|2ξ2dV + c

∫

Ω
|ψ|2(m−1)dV .
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Here we used (∇̃ − ∇)ψ = ∇̃g ∗ ψ to estimate |∇̃ψ|2 ≤ |∇ψ|2 + c|ψ|2. Then the first term in
(3.65) comes down to:

∫

Ω
∂t|∇̃Ψ|2 · |ψ|2(m−1)ξ2dV

=

∫

Ω
|ψ|2(m−1)

{

gab∇̃a∇̃b|∇̃Ψ|2 − |∇̃2Ψ|2 + c
}

ξ2dV

≤ −7

8

∫

Ω
|ψ|2(m−1)|∇̃2Ψ|2ξ2dV + c

∫

Ω
|ψ|2(m−1)dV + c

∫

Ω
|ψ|2(m−2)|∇ψ|2ξ2dV .

Using ∇̃g ∗ ∇̃g ∗ψ ∗ψ ≤ c|ψ|2 and (1
8 − 2)|∇ψ|2 ≤ 0, we calculate for the second term of (3.65):

∫

Ω
|∇̃Ψ|2 · ∂t|ψ|2(m−1)ξ2dV = (m− 1)

∫

Ω
|∇̃Ψ|2|ψ|2(m−2) · ∆|ψ|2ξ2dV

+ c

∫

Ω
|ψ|2(m−2)

(
∇∇̃Ψ ∗ ψ ∗ ψ + c|ψ|2 + ψ ∗ ∇∇̃Ψ

)
ξ2dV .

(3.66)

A partial integration takes care of the Laplacian term:

(m− 1)

∫

Ω
|∇̃Ψ|2|ψ|2(m−2) · ∆|ψ|2ξ2dV

≤ −(m− 1)

∫

Ω

(

∇|∇̃Ψ|2|ψ|2(m−2) · ∇|ψ|2ξ2 + |∇̃Ψ|2∇|ψ|2(m−2)∇|ψ|2ξ2

+ |∇̃Ψ|2|ψ|2(m−2)∇|ψ|2∇ξ · ξ
)

dV

≤
∫

Ω

(
(
|∇∇̃Ψ||ψ| · c|∇ψ|

)
|ψ|2(m−2)ξ2 −(m− 1)(m− 2)|∇̃Ψ|2|ψ|2(m−3)

∣
∣∇|ψ|2

∣
∣2ξ2

︸ ︷︷ ︸

≤0

+ c|ψ|2(m−2)
(
|ψ| · |∇ψ|ξ

)
)

dV

≤ 1

16

∫

Ω
|ψ|2(m−1)|∇∇̃Ψ|2ξ2dV + c

∫

Ω
|ψ|2(m−2)|∇ψ|2ξ2dV + c

∫

Ω
|ψ|2(m−1)dV ,

and the remaining terms in (3.66) give

c

∫

Ω
|ψ|2(m−2)

(
∇∇̃Ψ ∗ ψ ∗ ψ + c|ψ|2 + ψ ∗ ∇∇̃Ψ

)
ξ2dV

≤ c

∫

Ω

(
|ψ|2(m−2)|∇∇̃Ψ||ψ|2 + |ψ|2(m−1) + |ψ|2(m−2) · |ψ||∇∇̃Ψ|

)
ξ2dV

≤ 2

16

∫

Ω
|ψ|2(m−1)|∇∇̃Ψ|2ξ2dV + c

∫

Ω
(1 + |ψ|2)|ψ|2(m−2)dV .

Using (3.52), we therefore get for the second term in (3.66):

∫

Ω
|∇̃Ψ|2 · ∂t|ψ|2(m−1)ξ2dV ≤ 3

16

∫

Ω
|ψ|2(m−1)|∇̃2Ψ|2ξ2dV + c

∫

Ω
|ψ|2(m−2)|∇ψ|2ξ2dV

+ c

∫

Ω
(1 + |ψ|2)|ψ|2(m−2)dV .
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It remains to estimate the third term in (3.65):
∫

Ω
|∇̃Ψ|2|ψ|2(m−1)ξ2(∂tdV ) ≤ c

∫

Ω
|ψ|2(m−1)ξ2(g−1 ∗Rm+ du ∗ du+ ∇V )dV

≤ c

∫

Ω
|ψ|2(m−1)|∇∇̃Ψ|ξ2dV + c

∫

Ω
|ψ|2(m−1)dV

≤ 1

16

∫

Ω
|ψ|2(m−1)|∇̃2Ψ|2ξ2dV + c

∫

Ω
|ψ|2(m−1)dV ,

using (3.64). Collecting terms, (3.65) therefore comes down to:

∂t

∫

Ω
|∇̃Ψ|2|ψ|2(m−1)ξ2dV ≤ −1

2

∫

Ω
|ψ|2(m−1)|∇̃2Ψ|2ξ2dV + c

∫

Ω
(1 + |ψ|2)|ψ|2(m−2)dV

+ c

∫

Ω
|ψ|2(m−2)|∇ψ|2ξ2dV ,

such that we can estimate for all τ ∈ [0, T ]:
∫

Ω
|∇̃Ψ|2|ψ|2(m−1)ξ2dV (τ)

≤
∫

Ω
|∇̃Ψ(0)|20|ψ(0)|2(m−1)

0 ξ2dV0 −
1

2

∫ τ

0

∫

Ω
|ψ|2(m−1)|∇̃2Ψ|2ξ2dV dt

+ c

∫ τ

0

∫

Ω
(1 + |ψ|2)|ψ|2(m−2)dV dt+ c

∫ τ

0

∫

Ω
|ψ|2(m−2)|∇ψ|2ξ2dV dt .

This is the same as
∫ τ

0

∫

Ω
|ψ|2(m−1)|∇̃2Ψ|2ξ2dV dt+

∫

Ω
|∇̃Ψ|2|ψ|2(m−1)ξ2dV (τ) ≤ c

in view of the induction hypotheses. Using (3.52), we obtain the first claim of the lemma
∫ τ

0

∫

Ω
|ψ|2(m−1)|∇∇̃Ψ|2ξ2dV dt ≤ c . (3.67)

This estimate allows us to prove all remaining inequalities at the same time. Integrating in time
and performing several integrations by part in space, we finally get in a similar way as before

∫

Ω
|ψ|2mξ2dV (τ) ≤ −m

∫ τ

0

∫

Ω
|ψ|2(m−1)|∇ψ|2ξ2dV + c

∫ τ

0

∫

Ω
|ψ|2mdV + c .

Because of (3.67), we can estimate further
∫ τ

0

∫

Ω
|ψ|2mdV ≤

∫ τ

0

∫

Ω
|ψ|2(m−1)|∇∇̃Ψ|2dV dt+ c

∫ τ

0

∫

Ω
|ψ|2(m−1)dV dt ≤ c ,

and the desired result
∫

Ω
|ψ|2mξ2dV (τ) +m

∫ τ

0

∫

Ω
|ψ|2(m−1)|∇ψ|2ξ2dV ≤ c

follows. This finishes the proof of Lemma 3.20.

We can now prove the supremum bounds:
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Proposition 3.21 Let (g, u)(t) be a solution as in Proposition 3.14 on [0, T ] × Σ. Then there
is a constant c = c(n, k0, c0, s0) such that

sup
[0,T ]×Σ

|ψ|2 ≤ c .

Proof:

We rewrite the evolution equations for Rm, ∇2u and ∇V in the same way as in [Shi89, Theorem
6.6] to collect the terms of equal order:

∂tRijkl = ∆Rijkl + ∇(g−2 ∗Rm ∗ ∇̃g) + (g−2 ∗Rm ∗Rm+ ∇2u ∗ ∇2u+ g−1 ∗Rm ∗ ∇V )

∂t(∇i∇ju) = ∆(∇i∇ju) + ∇(g−2 ∗ ∇2u ∗ ∇̃g)
+ (g−2∗Rm ∗ ∇2u+ g−1∗ du ∗ du ∗ ∇2u+ g−1∗ ∇2u ∗ ∇V + g−3∗ ∇̃g ∗Rm ∗ du)

∂t(∇iVj) = ∆(∇iVj) + ∇(g−2 ∗ ∇̃g ∗
[
Rm+ du ∗ du+ ∇V

]
+ g−1 ∗ du ∗ ∇2u)

+ g−2 ∗Rm ∗ ∇V + g−1 ∗ ∇V ∗ ∇V + g−1 ∗ du ∗ du ∗ ∇V .

We consider these equations as linear equations as follows:

∂tRm = ∆Rm+ ∇A1 +B1

∂t∇2u = ∆∇2u+ ∇A2 +B2

∂t∇V = ∆∇V + ∇A3 +B3

where ∇Ai, Bi are free terms defined accordingly. Choosing the radius R = 1
8(1/k0)

1/4, we get
from Lemma 3.20 that

max
t∈[0,T ]

∫

BR(x0)

(
|Ai|m + |Bi|m

)
dV ≤ c(n,m, k0, c0, s0)

for all m ≥ 1 and arbitrary x0 ∈ Σ. This is sufficient to apply [LSU68, Theorem III.8.1]. Using
the same arguments as in [Shi89, Theorem 6.6], we finally get the estimate:

sup
[0,T ]×BR/2(x0)

(
|Rm|2 + |∇2u|2 + |∇V |2

)
≤ c = c(n, k0, c0, s0) .

Since x0 ∈ Σ is arbitrary, the desired result follows.

These bounds allow us to translate the results for the solutions of the modified flow (3.46) to
the pulled back solutions of the original flow (3.1) and (3.2).

Theorem 3.22 Let (Σ, g̃) be a smooth complete noncompact n-dimensional Riemannian man-
ifold with bounded curvature |R̃m|20 ≤ k0. Additionally, let ũ ∈ C∞(Σ) be a smooth function
satisfying |ũ|20 + |∇̃ũ|20 ≤ c0 and |∇̃2u|20 ≤ s0, where | · |0 is the norm given by g̃. Then there
exists a constant T = T (n, k0, c0) > c(n) · 1/(

√
k0 + c0) such that the initial value problem

∂tḡ = −2R̄c+ 4dū⊗ dū

∂tū = ∆̄ū
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with initial values ḡ(0) = g̃ and ū(0) = ũ on Σ has a smooth solution (ḡ, ū)(t) on [0, T ] × Σ.
Moreover the solution satisfies

C−1g̃ ≤ ḡ(t) ≤ Cg̃ ∀ t ∈ [0, T ]

for some constant C = C(n, k0, c0, s0), and on [0, T ] × Σ there is a bound

|R̄m|2 + |ū|2 + |dū|2 + |∇̄2ū|2 ≤ c = c(n, k0, c0, s0) .

Proof:

We take the solution (g, u)(t) constructed in the proof of Theorem 3.12 and apply the inverse of
the diffeomorphisms ϕ(t) constructed in Lemma 3.1. The pullback metric ḡ := (ϕ−1)∗g and the
pullback function ū := (ϕ−1)∗u are solutions to the unmodified system (3.1) and (3.2) with the
desired properties. In more detail:

The infinitesimal generator of ϕ(t) was chosen to be the vector field

V k = gij
(
Γ̄kij − Γ̃kij

)

where Γ̄ is the Christoffel symbol of ḡ. Using coordinates x = {x1, . . . , xn} for g and defining
y := ϕ(x), the pointwise equations for the diffeomorphisms are given by (3.7) as follows:

∂

∂t
yα =

∂yα

∂xk
gij(Γ̄kij − Γ̃kij

)
, yα(0) = δαi x

i . (3.68)

This establishes a first order system of ordinary differential equations in t for yα(x), x ∈ Σ.
From (3.56) and Proposition 3.21 the smooth vector field V k = gklVl satisfies |V |2 + |∇V |2 ≤
c(n, k0, c0, s0) uniformly in x ∈ Σ. Therefore the theory of ordinary differential equations pro-
vides a unique smooth solution to (3.68) on [0, T ] × Σ. This implies that the diffeomorphisms
ϕ(t) are smooth as long as the solution (g, u)(t) exists. Then the pullbacks ḡ := (ϕ−1)∗g and
ū := (ϕ−1)∗u are well defined, smooth and satisfy the flow equations (2.5) together with the
right initial conditions since ϕ(0) = id from Lemma 3.1.

The bound on |ū|0 is obtained via the maximum principle as in (3.37). Furthermore we have
from the usual transformation formulas

|∇̄2ū|2ḡ = ḡacḡbd∇̄a∇̄bū∇̄c∇̄dū = gαγ
∂xa

∂yα
∂xc

∂yγ
gβδ

∂xb

∂yβ
∂xd

∂yδ
· ∂y

α

∂xa
∂yβ

∂xb
∇α∇βu

∂yγ

∂xc
∂yδ

∂xd
∇γ∇δu

= gαγgβδ∇α∇βu∇γ∇δu = |∇2u|2g ≤ c

on [0, T ] × Σ applying Proposition 3.21. Similarly we get for the curvature

|R̄m|2ḡ = |Rm|2 ≤ c .

Since we also have |dū|2ḡ = |du|2g ≤ c from Lemma 3.5, we can estimate further

|∂tḡ|2ḡ ≤ 4|R̄c|2 + 16|dū|2ḡ ≤ 4n2|R̄m|2 + c ≤ c .

Thus we get on [0, T ] × Σ analogously to Lemma 2.8 that

e−cT g̃ ≤ ḡ(t) ≤ ecT g̃,

finishing the proof of the theorem.


