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2 Entropy and evolution equations

In this section we introduce an entropy functional E with the nice property that its stationary
points are precisely solutions to the static Einstein vacuum equations (1.15). Furthermore, we
construct a parabolic flow which, in some sense, is the gradient flow to E. In the following
we will work on a smooth Riemannian manifold Σ of dimension three for notational simplicity.
Nevertheless all the forthcoming arguments are also valid for dimensions n ≥ 3 with different
constants depending only on n. A sketch of this is given in section 2.3.

2.1 Entropy

We consider configurations (g, u, f) where g is a smooth Riemannian metric (corresponding to
the spatial part of the static Lorentz metric), u is a smooth function (such that e2u corresponds
to the lapse function), and f is a smooth function which can be viewed as a potential for suitable
diffeomorphisms. Given such a configuration, we define:

Definition 2.1 Let Σ be a smooth Riemannian manifold. Then the entropy of a configuration
(g, u, f) ∈ M(Σ) × C∞(Σ) × C∞(Σ) is defined as follows:

E(g, u, f) :=

∫

Σ

(
R− 2|du|2 + |df |2

)
e−fdV (2.1)

where R, | · |, and dV are with respect to g.

Since we are interested in the critical points of E, we compute the Euler-Lagrange equations.
Let (v, w, h) ∈ Sym2(Σ)0 × C∞

0 (Σ) × C∞
0 (Σ) be a variation of (g, u, f) with compact support.

We want to compute

δE[g, u, f ](v, w, h) := DE[g, u, f ](v, w, h) :=
d

dε
E(g + εv, u+ εw, f + εh)|ε=0

where DE is the Frechet derivative of E at the point [g, u, f ] in direction (v, w, h). We use the
abbreviation δ for this operation in the following. The first step of the calculation is

δE[g, u, f ](v, w, h) =

∫

Σ

(
δR− 2δ|du|2 + δ|df |2

)
e−fdV +

∫

Σ

(
R− 2|du|2 + |df |2

)
δ
(

e−fdV
)

.

We compute all variations individually and find, using the variation formula for R from Lemma
1.4 and some partial integrations, that

∫

Σ
(δR) e−fdV =

∫

Σ
(−∆(tr v) + ∇i∇jvij −Rijvij) e

−fdV

=

∫

Σ

(

−(tr v)∆e−f + vij∇i∇je
−f −Rijvije

−f
)

dV

=

∫

Σ

(
tr v
2 ·

{
2∆f − 2|df |2

}
+ vij ·

{
−Rij −∇i∇jf + ∂if∂jf

})
e−fdV .
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Using Lemma 1.4 again, the variation of the second term is given by
∫

Σ
(δ|∇f |2) e−fdV =

∫

Σ
δ
(
gij∂if∂jf

)
e−fdV =

∫

Σ
(−vij∂if∂jf + 2∂if∂ih) e

−fdV

=

∫

Σ

(
vij ·

{
−∂if∂jf

}
− h ·

{
2∆f − 2|df |2

})
e−fdV .

The third term yields in a similar way
∫

Σ
−2δ(|du|2) e−fdV =

∫

Σ
(2vij∂iu∂ju− 4∂iu∂iw) e−fdV

=

∫

Σ

(
vij · 2∂iu∂ju+ 8w ·

{
1
2∆u− 1

2〈du, df〉
})

e−fdV .

We calculate the variation of the volume form e−fdV and get again from Lemma 1.4:
∫

Σ
δ
(

e−fdV
)

=

∫

Σ

(
tr v

2
− h

)

e−fdV .

The idea now is to combine several terms in the variation of the integrand into a term where
we can pull out a factor

(
tr v
2 − h

)
as in the evolution of the volume form. Following an idea

of Perelman in [Per02, §1], we then define the variation of f such that these terms vanish. We
collect from above:

δE[g, u, f ](v, w, h) =

∫

Σ

(
vij ·

{
−Rij −∇i∇jf + 2∂iu∂ju

}
+ 8w ·

{
1
2∆u− 1

2〈du, df〉
})

e−fdV

+

∫

Σ

(
tr v
2 − h

)
·
{
2∆f − |df |2 +R− 2|du|2

}
e−fdV .

By defining h := (tr v)/2 (which fixes the volume form e−fdV and therefore couples the variation
of f to the variation of g) we finally arrive at

δE[g, u, f ](v, w) =

∫

Σ

(
vij ·

{
−Rij −∇i∇jf + 2∂iu∂ju

}
+ 8w ·

{
1
2∆u− 1

2〈du, df〉
})

e−fdV

(2.2)
where E is now a functional of g and u alone since f is determined by g and u. From this
expression we can extract the gradient flow equations for the pair (g, u). To this end we introduce
the following weighted scalar product on the configuration space H := M(Σ) × C∞(Σ) to be
able to define the gradient of E:

〈(g1, u1), (g2, u2)〉H :=

∫

Σ

(
〈g1, g2〉 + 8〈u1, u2〉

)
e−fdV

where 〈·, ·〉 denotes the pointwise Euclidean scalar product. Using the defining equation

DE[g, u](v, w) = 〈gradE(g, u), (v, w)〉H
for the gradient of E, we deduce the following flow equations from (2.2) and the definition of h

∂tgij := (grad1E)ij = −2Rij + 4∂iu∂ju− 2∇i∇jf

∂tu := (grad2E) = ∆u− du(∇f)

∂tf := h = tr v
2 = −∆f −R+ 2|du|2

(2.3)
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after a multiplication by 2 for convenience. Since we aim for a system for g and u alone, we
have to eliminate the terms involving the function f . A second glance at (2.3) shows that we
can rewrite the equations for g and u as follows:

∂tgij = −2Rij + 4∂iu∂ju− (L∇fg)ij
∂tu = ∆u− (L∇fu) .

Therefore these terms just describe the infinitesimal action of the 1-parameter family of dif-
feomorphism Φ(t) generated by the gradient vector field (∇f)(t) on g and u. Applying these
diffeomorphisms yields the equivalent system

∂tgij = −2Rij + 4∂iu∂ju

∂tu = ∆u

∂tf = −∆f + |df |2 −R+ 2|du|2
(2.4)

since L∇ff = df(∇f) = |df |2. This follows from the general formula

∂t(Φ
∗gij) = Φ∗ (∂tgij + (LXg)ij)

which in our case is given by

∂t(Φ
∗gij) = Φ∗ (−2Rij + 4∂iu∂ju− 2∇i∇jf + 2∇i∇jf) = −2Φ∗Rij + 4Φ∗ (∂iu∂ju) .

Here we use the linearity of the pullback and the formula for the Lie derivative of a Riemannian
metric (LXg)ij = ∇iXj +∇jXi with X = ∇f . Since the Ricci tensor is equivariant with respect
to the action of the diffeomorphism group of Σ and d commutes with pullbacks, we obtain

∂t(Φ
∗gij) = −2Rij(Φ

∗g) + 4∂i(Φ
∗u)∂j(Φ

∗u).

This is (2.4) in the coordinates induced by Φ(t). As u and f are functions, the application of Φ
to the other equations gives with a similar formula as above

∂t(Φ
∗u) = Φ∗ (∂tu+ (LXu)) = Φ∗(∆u− du(∇f) + du(∇f)

)
= (∆u) ◦ Φ

∂t(Φ
∗f) = (−∆f + |df |2 −R+ 2|du|2) ◦ Φ .

Now that we calculated the gradient flow, we can examine its stationary solutions which corre-
spond to critical points of the entropy E. The first two equations in (2.4) imply that a stationary
solution must satisfy

Rij = 2∂iu∂ju

∆u = 0 .

From (1.15) we know that these are the equations that characterize static Einstein vacuum
metrics given by (1.16).

Note that the results of this section are in perfect agreement with the work of Perelman in
[Per02] when we set u ≡ const.
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2.2 The flow equations

Motivated by the entropy E in the last section, we study the system

∂tg = −2Rc(g) + 4du⊗ du

∂tu = ∆gu
(2.5)

for a Riemannian metric g(t) and a smooth function u(t) where some initial data (g̃, ũ) ∈
M(Σ) ×C∞(Σ) is given. We want to consider manifolds Σ which either are closed or complete
and noncompact. Here du⊗ du is the tensor ∂iu∂ju dx

i ⊗ dxj ∈ Sym2(Σ).

In the following we switch between (2.5) and the gradient flow (2.4). This is fine since the two
systems are equivalent as proven in the last section. Moreover, the entropy is invariant under
diffeomorphisms. We have E(g, u, f) = E(Φ∗g, u◦Φ, f ◦Φ) for all diffeomorphisms Φ of Σ. This
allows us to use the variational structure on the one hand and to work with the easier to analyze
system (2.5) on the other hand.

We make the following general convention: Whenever in the following a pair (g, u)(t) is called
a solution then it will be a smooth solution to the system (2.5) for smooth initial data (g̃, ũ).

For convenience we introduce the symmetric tensor field Sy ∈ Sym2(Σ) and its trace S := gijSij :

Sij := Rij − 2∂iu∂ju and S := R− 2|du|2 .

The evolution of the metric can then be written as

∂tgij = −2Sij and ∂tg
ij = 2Sij .

Currently the following solutions are known to the author:

• If u ≡ c = const and g(t) is an arbitrary solution to Hamilton’s Ricci flow, then the pair
(g(t), c) solves (2.5).

• An arbitrary solution (g, u) of the static Einstein vacuum equations (1.15) is automatically
a stationary solution of the flow equations.

Special solutions of the system (2.5), where the geometry does not change substantially, are
called soliton solutions in the spirit of the definitions for the Ricci Flow [Ham95b, §2(e)].

Definition 2.2 A solution (g, u)(t) of (2.5) on [0, T ]×Σ is called a soliton solution, if it varies
only along a 1-parameter family of diffeomorphisms or by scaling. It therefore satisfies

∂tg(t) = LX(t)g(t) + c(t)g(t)

∂tu(t) = LX(t)u(t),
(2.6)

where X ∈ X ([0, T ]×Σ) is the generator of the diffeomorphisms and c : [0, T ] → is the scaling
factor, depending on time only. If X = ∇h is the gradient of a function h, the soliton is called
a gradient soliton. If c 6= 0, the soliton is a homothetic (gradient) soliton. For c < 0,= 0, > 0
the soliton is shrinking, steady or expanding respectively.
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Lemma 2.3 Let (g, u)(t) be a soliton solution to (2.5). Then at each time it satisfies the (in
general weakly elliptic) system

2Rij − 4∂iu∂ju = −∇iXj −∇jXi − cgij

∆u = du(X) .
(2.7)

Vice versa, we can construct a solution to (2.6) from a solution (g, u) satisfying (2.7) and a
given time dependent X(t) ∈ X ([0, T ] × Σ).

Proof:

The relation is given as follows. A solution (g, u)(t) to (2.6) satisfies at an arbitrary time t0

−2Rc(t0) + 4du(t0) ⊗ du(t0) = ∂tg(t)|t=t0 = LX(t0)g(t0) + c(t0)g(t0)

∆u(t0) = ∂tu(t)|t=t0 = LX(t0)u(t0),

which is (2.7) with g := g(t0), u := u(t0), X := X(t0) and c := c(t0).

On the other hand, assume X(t) is a given time dependent vector field and (g, u,X(0)) satisfy
(2.7). Setting g(t) := ϕ∗

t

(
(1 + ct)g

)
and u(t) := ϕ∗

tu, we can construct a solution to (2.6) on the
time interval [0, 1

−c) if c < 0, or on [0,∞) if c ≥ 0. Denoting by ϕt the one-parameter family of
diffeomorphisms generated by X(t) satisfying ϕ0 ≡ id, we compute:

∂tg(t) = ϕ∗
t

(
∂t[(1 + ct)g] + LX(t)[(1 + ct)g]

)
=

c

1 + ct
g(t) + LX(t)g(t)

∂tu(t) = ϕ∗
tu = LX(t)u(t),

which is (2.6) with c(t) = c
1+ct .

We will use both descriptions of soliton solutions in the following without further reference.

2.3 Entropy and evolution in arbitrary dimensions

Instead of specializing to dimension n = 3, we can write down a dimension dependent entropy
En for a Riemannian metric g on an n-dimensional manifold Σn and functions u, f ∈ C∞(Σn):

En(g, u, f) :=

∫

Σn

(

R− n− 1

n− 2
|du|2 + |df |2

)

e−fdV .

Repeating all calculations of the previous chapter and using the following dimension dependent
weighted scalar product on the configuration space Hn:

〈(g1, u1), (g2, u2)〉Hn :=

∫

Σn

(

〈g1, g2〉 +
4(n− 1)

n− 2
〈u1, u2〉

)

e−fdV ,

the gradient flow for En is given by:

∂tgij = −2Rij + 2(n−1)
n−2 ∂iu∂ju

∂tu = ∆u

∂tf = −∆f + |df |2 +
(
R− n−1

n−2 |du|2
)

.

Critical points of En satisfy the system (1.15) which was derived from the static Einstein vacuum

equations via the conformal transformation g̃ := e
2u

n−2 · g.
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2.4 Warped product flows

Since (2.5) looks similar to the Ricci Flow of a warped product, this section is committed to
show that there is no direct connection. Although we restrict to n = 3 here, the argument is
the same for dimensions n ≥ 3. At the end of the section we comment on the case of dimension
n = 2 where the situation is different.

Consider two compact Riemannian manifolds (B3, h) and (F 1, δ).

Given a smooth positive warping function ψ : B3 → , one can form the warped product
manifold M4 := B3 ×ψ F

1 with metric g = h+ ψ2δ. The Ricci tensor of g is given by

Rc(g) =







0
Rc(h) − ψ−1∇2

hψ 0
0

0 0 0 −ψ−1∆hψ







where the derivatives are with respect to h. Assume that g is a solution to

∂tg = −2Rc(g)

on M4. This induces the following coupled system for h and ψ on B3:

∂th = −2Rc(h) + 2ψ−1∇2
hψ

∂tψ = 2ψ−1∆hψ
(2.8)

which looks similar to the system (2.5). In fact, stationary solutions of this system can be
interpreted as solutions to the static Einstein vacuum equations [EK62, Theorem 2-3.3]. We
check if (2.8) and (2.5) are equivalent. Substituting ω := β−1 · lnψ with a constant β to be
determined, we get

∂th = −2Rc(h) + 2β∇2
hω + 2β2dω ⊗ dω

∂tω = 2e−βω
(
∆hω + β|dω|2h

)
,

considering that ω is time dependent. As in the elliptic case (1.14), we try to remove the Hessian
of ω by a conformal transformation. For a second constant α, we make the ansatz h̃ := e2αω · h
and get

∂th̃ = ∂t
(
e2αω · h

)
= e2αω∂th+ 2αe2αω∂tω · h

= e2αω
(
−2Rc(h̃) + (2β − 2α)∇2

hω + (2α2 + 2β2)dω ⊗ dω

+ (4αe−βω − 2α)∆hω + (4αβe−βω − 2α2)|dω|2h · h
)

.

We are forced to set α = β to eliminate the Hessian term. However, we are unable to get rid of
the last line since its vanishing would imply α = ln 2 · ω and that ω would have to be constant.
The equation for ω is given by

∂tω = 2e−αω
(
∆hω + α|dω|2h

)
= 2e−αω

(
e2αω∆h̃ω − e−αωh(∇eαω,∇ω) + α|dω|2h

)
= 2eαω∆h̃ω
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and we end up with the system

∂th̃ = −2e2αω
(
Rc(h̃) − 2α2dω ⊗ dω

)
+ e2αω(4αe−αω − 2α)(∆hω + α|dω|2h) · h

∂tω = 2eαω∆h̃ω .

This is different from (2.5). Clearly the time dependence of the conformal transformation does
not allow the manipulation we did in the static case.

In dimension n = 2 the conformal transformation h̃ := e
2

n−2
ω · h turning the Hessian term into

the squared gradient term does not exist. Therefore we cannot use this idea to show equivalence
of (2.5) and (2.8).

Since (2.8) is a Ricci flow though, it is possible to obtain an entropy for this system from
Perelman’s construction in dimension n = 4.

2.5 Evolution equations

The aim of the next two sections is to provide the evolution equations of all tensors related to
the solution (g, u)(t) which we are going to need later on. We begin with the scalar curvature:

Lemma 2.4 Let (g, u)(t) be a solution to (2.5). Then the scalar curvature of the evolving metric
g(t) satisfies the evolution equation

∂tR = ∆R+ 2|Rc|2 + 4|∆u|2 − 4|∇2u|2 − 8〈Rc, du⊗ du〉 .

Proof:

We use the variation formula from Lemma 1.4 to compute in normal coordinates

∂tR = −∆(−2R+ 4|du|2) + ∇i∇j(−2Rij + 4∂iu∂ju) −Rij(−2Rij + 4∂iu∂ju)

= 2∆R− 4∇i∇i(∂ju∂ju) − 2∇i∇jRij + 4∇i(∇j∇iu∂ju+ ∂iu∇j∇ju)

+ 2RijRij − 4Rij∂iu∂ju .

The contracted second Bianchi identity (1.10) implies −∇i(2∇jRij) = −∇i(∇iR) = −∆R. In
addition, we can commute the second derivatives of u from (1.7) and find:

∂tR = 2∆R− 8(∇i∇i∇ju∂ju+ ∇i∇ju∇i∇ju) − ∆R+ 4∇i∇i∇ju∂ju

+ 4∇j∇iu∇i∇ju+ 4∆u∆u+ 4∂iu(∂i∆u) + 2|Rc|2 − 4Rij∂iu∂ju

= ∆R− 4(∂i∆u)∂iu− 4Rjijp∂pu∂iu− 4∇i∇ju∇i∇ju+ 4|∆u|2 + 4∂iu(∂i∆u)

+ 2|Rc|2 − 4Rij∂iu∂ju

where we interchanged covariant derivatives using (1.6). Fortunately the third order terms in u
cancel. Remembering Rjijp = Rip from (1.5), we get the desired result.

We continue with the Ricci curvature:
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Lemma 2.5 Let (g, u)(t) be a solution to (2.5). Then the Ricci tensor with respect to g(t)
evolves according to

∂tRij = ∆Rij − 2RipRjp + 2Rpiqj
(
Rpq − 2∂pu∂qu

)
+ 4∆u∇i∇ju− 4∇p∇iu∇p∇ju .

Proof:

We use the variation formula

∂tRij = −1
2∆vij − 1

2∇i∇jv + 1
2g
pq(∇p∇jviq + ∇p∇ivjq)

for the Ricci tensor from Lemma 1.4 and compute:

−1
2∆(∂tgij) = ∆Rij − 2∆(∂iu∂ju) = ∆Rij − 2(∆∇iu)∂ju− 2∂iu(∆∇ju) − 4∇p∇iu∇p∇ju .

The second term gives

−1
2∇i∇j(g

pq∂tgpq) = ∇i∇jR− 2∇i∇j(∂pu∂pu) = ∇i∇jR− 4∇i∇j∇pu∂pu− 4∇p∇iu∇p∇ju .

For the next term we need the Bianchi identity (1.10) to find

1
2g
pq∇p∇j(∂tgiq) = −∇p∇jRip + 2∇p(∇j∇iu∂pu+ ∂iu∇j∇pu)

= (−∇j∇pRip −RpjiqRqp −RpjpqRiq) + 2∇p∇i∇ju∂pu+ 2∇i∇ju∆u

+ 2∇p∇iu∇p∇ju+ 2∂iu∇p∇p∇ju

= −1
2∇j∇iR−RpijqRpq −RjqRiq + (2∇i∇j∇pu∂pu+ 2Rpijq∂qu∂pu)

+ 2∆u∇i∇ju+ 2∇p∇iu∇p∇ju+ 2∂iu(∆∇ju)

where we also used (1.6). The same works for the fourth term

1
2g
pq∇p∇i(∂tgjp) = −1

2∇i∇jR−RpjiqRpq −RiqRjq + (2∇j∇i∇pu∂pu+ 2Rpjiq∂qu∂pu)

+ 2∆u∇j∇iu+ 2∇p∇ju∇p∇iu+ 2∂ju(∆∇iu) .

All but the following terms cancel:

∂tRij = ∆Rij − 2RipRjp − 2RpijqRpq + 4∆u∇i∇ju− 4∇p∇iu∇p∇ju+ 4Rpijq∂pu∂qu .

This proves the Lemma.

We also compute the evolution of the Christoffel symbols:

Lemma 2.6 Let (g, u)(t) be a solution to (2.5). Then the Christoffel symbols associated to g(t)
in a coordinate chart evolve according to

∂tΓ
k
ij = gkl (−∇iRjl −∇jRil + ∇lRij + 4∇i∇ju∂lu) . (2.9)
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Proof:

In normal coordinates the definition (1.3) and the variation formula for Γ from Lemma 1.4 yield:

∂tΓ
k
ij = 1

2g
kl (∂i∂tgjl + ∂j∂tgil − ∂l∂tgij)

= 1
2g
kl
(
∂i {−2Rjl + 4∂ju∂lu} + ∂j {−2Ril + 4∂iu∂lu} − ∂l {−2Rij + 4∂iu∂ju}

)

= gkl
(
−∇iRjl + 2∇i∇ju∂lu+ 2∂ju∇i∇lu−∇jRil + 2∇j∇iu∂lu+ 2∂iu∇j∇lu+ ∇lRij

− 2∇l∇iu∂ju− 2∂iu∇l∇ju
)

= gkl
(
−∇iRjl −∇jRil + ∇lRij + 4∇i∇ju∂lu

)
.

In the last step, several terms cancel because of (1.7).

The next thing to look after is the evolution of the norm of the derivative of u. This evolution
equation will turn out to be very important in the subsequent considerations.

Lemma 2.7 Suppose (g, u)(t) is a solution to (2.5). Then the following evolution equations
hold for the derivative of u:

∂t∂iu = ∆∂iu−Rip∂pu (2.10)

∂t|du|2 = ∆|du|2 − 2|∇2u|2 − 4|du|4 . (2.11)

In particular, the evolution of the norm does not depend on the curvature of g.

Proof:

Since u is a function, we can switch the time and space derivative and get

∂t∂iu = ∂i∂tu = ∇i∇p∇pu = ∇p∇p∇iu+Rippq∂qu = ∆∂iu−Rip∂pu .

Knowing this, we calculate

∂t|du|2 = (∂tg
pq)∂pu∂qu+ 2(∂t∂pu)∂pu = −(∂tgpq)∂pu∂qu+ 2(∆∂pu)∂pu− 2Rpq∂pu∂qu

= 2Rpq∂pu∂qu− 4∂pu∂qu∂pu∂qu+ (∆|du|2 − 2|∇2u|2) − 2Rpq∂pu∂qu

= ∆|du|2 − 2|∇2u|2 − 4|du|4 .

Here we used that

∆|du|2 = ∇q(2∇q∇pu∂pu) = 2(∆∂pu)∂pu+ 2|∇2u|2 .

As an application for (2.11), we can prove the equivalence of the metrics g(t) on closed manifolds
M as long as the curvature stays bounded.

Lemma 2.8 Let (g, u)(t) be a solution to (2.5) on [0, T ) ×M for closed M with initial data
(g̃, ũ). Define c0 := supM |dũ|20. Assume furthermore that the curvature satisfies |Rm|2(t) ≤ k0

for t ∈ [0, T ). Then all metrics g(t) are equivalent and we can estimate

e−CT g̃(x) ≤ g(t, x) ≤ eCT g̃(x) ∀(t, x) ∈ [0, T ) ×M

for a constant C = C(n, k0, c0) depending only on n, k0, c0. In fact C = 2n
√
k0 + 4c0.
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Proof:

The length of a time independent vector field V ∈ X (M), measured by g(t), satisfies the evolution
equation

∂t|V |2 = ∂tg(V, V ) = −2Sy(V, V ) .

From (2.11) we get |du|2(t) ≤ supM |dũ|20 = c0 for all t ∈ [0, T ) by the maximum principle since
M is closed. This implies the bound

|Sy| = |Rc− 2du⊗ du| ≤ |Rc| + 2|du|2 ≤ n|Rm| + 2|du|2 ≤ n
√

k0 + 2c0 ,

and we can estimate

|∂tg(V, V )| ≤ 2|Sy(V, V )| ≤ 2|Sy||V |2 ≤ 2n
√

k0 + 4c0g(V, V ) .

Using Gronwall’s inequality, this implies

e−CT g̃(V, V ) ≤ e−Ctg̃(V, V ) ≤ g(t)(V, V ) ≤ eCtg̃(V, V ) ≤ eCT g̃(V, V ) .

Therefore g(t)(V, V ) is uniformly bounded from above and below on [0, T ), and all metrics g(t)
are equivalent.

We continue with the computation of the evolution of the Hessian of u.

Lemma 2.9 Suppose (g, u)(t) is a solution to (2.5). Then the Hessian of u(t) satisfies the
evolution equation

∂t(∇i∇ju) = ∆(∇i∇ju) + 2Ripjq∇p∇qu−Rip∇j∇pu−Rjp∇i∇pu− 4|du|2∇i∇ju . (2.12)

Proof:

We calculate
∂t(∇i∇ju) = ∂t

(
∂i∂ju− Γkij∂ku

)
= ∇i∇j

(
∂tu
)
−
(
∂tΓ

k
ij

)
∂ku

and consider the two terms separately. The first comes down to

∇i∇j

(
∂tu
)

= ∇i∇j∇k∇ku = ∇i

(
∇k∇j∇ku+Rjkkp∂pu

)

= ∇k∇i∇k∇ju+Rikjp∇p∇ku+Rikkp∇j∇pu−∇iRjp∂pu−Rjp∇i∇pu

= ∇k∇k∇i∇ju+ ∇kRikjp∂pu+Rikjp∇k∇pu+Rikjp∇p∇ku−Rip∇j∇pu

−∇iRjp∂pu−Rjp∇i∇pu

= ∆(∇i∇ju) + ∇kRjpik∂pu+ 2Rikjp∇k∇pu−Rip∇j∇pu−∇iRjp∂pu−Rjp∇i∇pu

using (1.6), (1.5) and the symmetry of the Riemann tensor. We get for the second term:

−
(
∂tΓ

k
ij

)
∂ku = gkl

(
∇iRjl + ∇jRil −∇lRij − 4∇i∇ju∂lu

)
∂ku

= ∇iRjk∂ku+ ∇jRik∂ku−∇kRij∂ku− 4∇i∇ju|du|2 .

After some rearranging we obtain altogether

∂t(∇i∇ju) = ∆(∇i∇ju) + 2Ripjq∇p∇qu−Rip∇j∇pu−Rjp∇i∇pu− 4∇i∇ju|du|2
+
(
−∇kRjpki + ∇jRip −∇pRij

)
∂pu
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since two terms already cancel. Finally, due to the contracted Bianchi identity (1.9) the last
line vanishes. This proves the claim.

To compute the evolution of Sy, we also need the equation for du⊗ du.

Lemma 2.10 Let (g, u)(t) be a solution to (2.5). Then the symmetric tensor (du ⊗ du)(t)
satisfies the evolution equation

∂t(∂iu∂ju) = ∆(∂iu∂ju) − 2∇p∇iu∇p∇ju−Rip∂ju∂pu−Rjp∂iu∂pu .

Proof:

Since

∆(∂iu∂ju) = (∆∂iu)∂ju+ 2∇p∇iu∇p∇ju+ ∂iu(∆∂ju)

holds, we can use (2.10) to prove

∂t(∂iu∂ju) = (∂t∂iu)∂ju+ ∂iu(∂t∂ju) = (∆∂iu+Rippq∂qu)∂ju+ ∂iu(∆∂ju+Rjppq∂qu)

= ∆(∂iu∂ju) − 2∇p∇iu∇p∇ju−Rip∂iu∂pu−Rjp∂ju∂pu

as required.

We can now compute the evolution of Sy:

Lemma 2.11 Let (g, u)(t) be a solution of (2.5). Then the tensor Sy and its trace S evolve
according to

∂tSij = ∆Sij −RipSjp −RjpSip − 2RpijqSpq + 4∆u∇i∇ju (2.13)

∂tS = ∆S + 2|Sy|2 + 4|∆u|2 . (2.14)

Proof:

We combine Lemma 2.5 and Lemma 2.10 for the two parts of Sy to get

∂tSij = ∆Rij − 2RipRjp − 2RpijqRpq + 4∆u∇i∇ju− 4∇p∇iu∇p∇ju+ 4Rpijq∂pu∂qu

− 2∆(∂iu∂ju) + 4∇p∇iu∇p∇ju+ 2Rip∂ju∂pu+ 2Rjp∂iu∂pu

= ∆(Rij − 2∂iu∂ju) + 4∆u∇i∇ju−Rip(Rjp − 2∂ju∂pu) −Rjp(Rip − 2∂iu∂pu)

− 2Rpijq(Rpq − 2∂pu∂qu) .

Taking the trace of (2.13) with the inverse of the evolving metric, (2.14) follows.

This implies the following result on closed manifolds:

Lemma 2.12 Let (g, u)(t) be a solution of (2.5) on a closed manifold M . If S ≥ 0 holds at
t = 0 then also for all t > 0 as long as the solution exists.
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Proof:

Since S satisfies the evolution equation

(∂t − ∆)S = 2|Sy|2 + 4|∆u|2 ≥ 0 ,

an application of the maximum principle shows that S(t) is bounded from below by its initial
value for all t > 0 as long as it exists.

2.6 Monotonicity of the entropy

We prove in this section that the entropy E(t) of a solution is increasing in time. Furthermore, a
solution with constant entropy must be a special geometry as described in Definition 2.2. Note
that the following lemma is still true on a complete manifold Σ as long as the integration by
parts can be justified.

Lemma 2.13 Let (g, u, f)(t) be a solution to (2.3) for t ∈ [0, T ) on a a closed manifold M .
Then the evolution of the entropy is given by

∂tE(g, u, f)(t) = 2

∫

M

(
|Sy + ∇2f |2 + 2|∆u− du(∇f)|2

)
e−fdV ≥ 0 .

In particular the entropy is nondecreasing. Equality holds if and only if the solution is a gradient
soliton. In this case (g, u, f)(t) satisfies at all times t:

Sy + ∇2f = 0 and ∆u− du(∇f) = 0 .

Proof:

Using the variation formulas from Lemma 1.4, we compute

∂tE(t) =

∫

M

(
∂tR+ ∂t|∇f |2 − 2∂t|du|2

)
e−fdV +

∫

M

(
R+ |∇f |2 − 2|du|2

)
∂t( e

−fdV )
︸ ︷︷ ︸

=0

=

∫

M

(
−∆

[
gij∂tgij

]
+ ∇i∇j(∂tgij) −Rij(∂tgij) − ∂tgij∂if∂jf + 2∇i(∂tf)∂if

+ 2(∂tgij)∂iu∂ju− 4∇i(∂tu)∂iu
)
e−fdV .

Integration by parts gives

∂tE(t) =

∫

M

(
−(gij∂tgij)∆e

−f + ∂tgij∇i∇je
−f −Rij(∂tgij)e

−f − ∂tgij∂if∂jfe
−f

− 2∂tf(∆fe−f + ∂if∂ie
−f ) + 2(∂tgij)∂iu∂jue

−f + 4∂tu(∆ue
−f + ∂iu∂ie

−f )
)
dV .
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Inserting the evolution equations (2.3) yields

∂tE(t) =

∫

M

[

2(S + ∆f)(|df |2 − ∆f) − 2〈Sy, df ⊗ df〉 − 2〈∇2f, df ⊗ df〉 + 2〈Sy,∇2f〉

+ 2|∇2f |2 + 2|Rc|2 + 2〈Rc,∇2f〉 − 4〈Rc, du⊗ du〉 + 2〈Sy, df ⊗ df〉
+ 2〈∇2f, df ⊗ df〉 + 2(∆f + S)(∆f − |df |2) − 4〈Rc, du⊗ du〉 − 4〈∇2f, du⊗ du〉

+ 8|du⊗ du|2 + 4|∆u− du(∇f)|2
]

e−fdV

=

∫

M

[

2|Rc|2 + 2|∇2f |2 + 2|2du⊗ du|2 + 4|∆u− du(∇f)|2

+ 4〈Rc,∇2f〉 − 4〈Rc, 2du⊗ du〉 − 4〈∇2f, 2du⊗ du〉
]

e−fdV

= 2

∫

M

[
|Rc+ ∇2f − 2du⊗ du|2 + 2|∆u− du(∇f)|2

]
e−fdV .

This is what we wanted to prove.

2.7 Evolution of the curvature tensor

We take upon ourselves the task to compute the evolution of the Riemann tensor. Since the
calculation using Lemma 1.4 is lengthy, we rather use equation (1.4) and Lemma 2.6.

Lemma 2.14 Let (g, u)(t) be a solution to (2.5). Then the evolution of the curvature tensor as
a (1, 3)-tensor is given by

∂tR
k
ijl = gkr

(
∇i∇rRjl −∇i∇lRjr −∇j∇rRil + ∇j∇lRir + 4∇i∇ru∇j∇lu− 4∇i∇lu∇j∇ru

− gpq(RijlpRqr −RijrpRlq + 4Rijlp∂qu∂ru)
)

,

(2.15)

and as a (0, 4)-tensor by

∂tRijkl = ∆Rijkl + 2(Bijkl −Bijlk −Biljk +Bikjl) −RijplRkp +RijkpRlp +RpjklRpi +RipklRpj

+ 4(∇i∇ku∇j∇lu−∇i∇lu∇j∇ku) .

(2.16)

Here the tensor B = {Bijkl} is defined as Bijkl := gprgqsRpiqjRrksl. For its properties we refer
to [Ham82, §7] where it was first introduced.

Proof:

From (1.4) we find that in normal coordinates

Rkijl = ∂iΓ
k
jl − ∂jΓ

k
il
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holds. Using the evolution equation for the Christoffel symbols in Lemma 2.6, we compute

∂tR
k
ijl = gkr∂i

(
−∇jRlr −∇lRjr + ∇rRjl + 4∇j∇lu∂ru

)

− gkr∂j
(
−∇iRlr −∇lRir + ∇rRil + 4∇i∇lu∂ru

)

= gkr
(
−∇i∇jRlr −∇i∇lRjr + ∇i∇rRjl + 4∇i∇j∇lu∂ru+ 4∇j∇lu∇i∇ru

+ ∇j∇iRlr + ∇j∇lRir −∇j∇rRil − 4∇j∇i∇lu∂ru− 4∇i∇lu∇j∇ru
)

.

This is (2.15), taking into account that (1.6) implies

(
∇i∇j −∇j∇i

)
Rlr = RijlpRpr +RijrpRlp

(
∇i∇j −∇j∇i

)
(∂lu) = Rijlp∂pu .

To prove the equation for the (0, 4)-Riemann tensor, we contract with the metric to find

∂tRijkl = ∂t(gkpR
p
ijl) = (∂tgkp)R

p
ijl + gkp∂tR

p
ijl = −2RkpR

p
ijl + 4∂ku∂puR

p
ijl

+ (∇i∇kRjl −∇i∇lRjk −∇j∇kRil + ∇j∇lRik −RijlpRpk −RijkpRlp)

+ 4(Rijlp∂pu∂ku+ ∇i∇ku∇j∇lu−∇i∇lu∇j∇ku)

= ∇i∇kRjl −∇i∇lRjk −∇j∇kRil + ∇j∇lRik −RijplRkp −RijkpRlp

+ 4(∇i∇ku∇j∇lu−∇i∇lu∇j∇ku)

since we have the equalities

4Rpijl∂ku∂pu = 4Rijpl∂ku∂pu = −4Rijlp∂ku∂pu

−RkpRpijl = −RijplRkp = RijlpRpk .

Using the identity

∇i∇kRjl −∇i∇lRjk −∇j∇kRil + ∇j∇lRik

= ∆Rijkl + 2(Bijkl −Bijlk −Biljk +Bikjl) −RpjklRpi −RipklRpj

from [Ham82, Lemma 7.2] which is valid for an arbitrary Riemannian metric, the desired conclu-
sion follows. It should be noted that the right hand side of (2.16) only contains terms quadratic
in the curvature and the Hessian of u. This fact will be useful later.

Using the formula in this lemma, we we can deduce an evolution equation for the norm of the
curvature tensor as defined in (1.2).

Lemma 2.15 Let (g, u)(t) be a solution of (2.5). Then the norm of the Riemann tensor satisfies
the evolution inequality:

∂t|Rm|2 ≤ ∆|Rm|2 − 2|∇Rm|2 + C|Rm|3 + C|Rm||∇2u|2 + C|du|2|Rm|2 (2.17)

where C is a numerical constant depending only on the dimension.
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Proof:

We will use the notation A ∗B introduced earlier. Thus we can express (2.16) as

∂tRijkl = ∆Rijkl +Rm ∗Rm+ ∇2u ∗ ∇2u .

A computation in normal coordinates yields:

∂t|Rm|2 =
(
∂tg

ac
)
RabijRcbij + . . .+

(
∂tg

jl
)
RabijRabil + 2

(
∂tRabij)Rabij .

Note that we replaced g by δ as soon as it is not differentiated and used the symmetry properties
of Rm. The first term computes to

(
∂tg

ac
)
RabijRcbij =

(
2Rac − 4∂au∂cu

)
RabijRcbij = Rc ∗Rm ∗Rm+ du ∗ du ∗Rm ∗Rm

≤ C|Rm|3 + C|du|2|Rm|2

by the Cauchy-Schwarz inequality. The next three terms can be estimated analogously. The
last one comes down to

2
(
∂tRabij

)
Rabij = 2

(
∆Rabij

)
Rabij + 2

(
Rm ∗Rm

)

abijRabij + 2
(
∇2u ∗ ∇2u

)

abijRabij

= ∆|Rm|2 − 2|∇Rm|2 +Rm ∗Rm ∗Rm+ ∇2u ∗ ∇2u ∗Rm
≤ ∆|Rm|2 − 2|∇Rm|2 + C|Rm|3 + C|Rm||∇2u|2 .

Together these inequalities imply (2.17).

Doing a similar calculation for the Hessian of u we find:

Lemma 2.16 Let (g, u)(t) be a solution to (2.5). Then the norm of the Hessian of u satisfies
the inequality

∂t|∇2u|2 ≤ ∆|∇2u|2 − 2|∇3u|2 + C|Rm||∇2u|2 + C|du|2|∇2u|2 . (2.18)

Proof:

The proof is similar to the one of the previous lemma. A computation gives:

∂t|∇2u|2 =
(
∂tg

ik
)
∇i∇ju∇k∇ju+

(
∂tg

jl
)
∇i∇ju∇i∇lu+ 2

(
∂t∇i∇ju

)
∇i∇ju .

Using the evolution equation (2.12) for the Hessian

∂t(∇i∇ju) = ∆(∇i∇ju) +Rm ∗ ∇2u+Rc ∗ ∇2u+ |du|2 ∗ ∇2u ,

we conclude from the Bochner formula that

∂t|∇2u|2 ≤ Rc ∗ ∇2u ∗ ∇2u+ du ∗ du ∗ ∇2u ∗ ∇2u

+ ∆|∇2u|2 − 2|∇3u|2 + C|Rm||∇2u|2 + C|du|2|∇2u|2

holds as required.

As a first application we prove:
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Proposition 2.17 Let (g, u)(t) be a solution to (2.5) for t ∈ [0, T ) on a closed manifold M
with initial data (g̃, ũ). Assume that |Rm|2 ≤ k0 holds on [0, T ) ×M . Define c0 := maxM |dũ|20
and s0 := maxM |∇̃2ũ|20 where | · |0 and ∇̃ are with respect to g̃. Then there exists a constant
c = c(n) depending only on n such that the Hessian of u(t) satisfies:

|∇2u|2(t) ≤ s0 + c(n)
(√

k0 + c0)
)
· c0 ∀t ∈ [0, T ) .

Proof:

Recall from (2.11) that the exterior derivative of u satisfies the evolution equation

(
∂t − ∆

)
|du|2 = −2|∇2u|2 − 4|du|4 ≤ 0 .

Therefore, using the maximum principle, we can bound |du|2 by its initial value:

|du|2(t) ≤ |du|2(0) ≤ sup
M

|dũ|20 = c0 ∀t ∈ [0, T ) . (2.19)

Combining the evolution equations for |du|2 and |∇2u|2 from (2.18), we find that

(
∂t − ∆

)
(|∇2u|2 + λ|du|2) ≤

(
C1|Rm| + C2|du|2 − 2λ

)
|∇2u|2

for constants C1, C2 depending on n. Choose the constant 2λ bigger than C1|Rm| + C2|du|2 ≤
C1 ·

√
k0 + C2 · c0 using the curvature bound and (2.19). Then the right hand side is negative,

and by the maximum principle we conclude for all t ∈ [0, T ) that

|∇2u|2(t) ≤ |∇2u|2(0) + λ|du|2(0) ≤ s0 + λ(n, k0, c0) · c0 ≤ C(n, k0, c0, s0) .

To prove a priori estimates for solutions (g, u)(t) of (2.5) it is very useful to collect the component
functions of Rm(g) and ∇2u in a vector valued function Φ as follows:

Φ := (Rijkl,∇p∇qu), i, j, k, l, p, q = 1 . . . n . (2.20)

We estimate Φ using the Euclidean vector norm in a single point p ∈ Σ:

|Φ|2p := |Rm|2p + |∇2u|2p
which is the representation of the norm (1.2) in normal coordinates around p. Combining exactly
these two tensors is a result of examining the scaling properties of |Rm|2 and |∇2u|2 since both
scale like λ−3 under the scaling g̃(t) := λg( tλ). We extend these definitions accordingly to higher
derivatives of Rm and ∇2u. This construction simplifies further calculations significantly. Since
(2.17) and (2.18) have the same structure, we can combine them to an inequality for ∂t|Φ|2.

Lemma 2.18 Let (g, u)(t) be a solution to (2.5) and let Φ be defined as in (2.20). Then its
norm satisfies the inequality

∂t|Φ|2 ≤ ∆|Φ|2 − 2|∇Φ|2 + C|Φ|3 + C|du|2|Φ|2 (2.21)

where ∇Φ is the collection of first derivatives of Rm and ∇2u and C depends only on n.
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These results can be extended to higher derivatives of Φ. To this end we derive evolution
inequalities for the derivatives of Rm and ∇2u.

Lemma 2.19 Let (g, u)(t) be a solution to (2.5). Then the covariant derivatives of the curvature
tensor satisfy for all k ≥ 0 the evolution equations:

∂t∇kRm = ∆∇kRm+
∑

α+β=k

∇αRm ∗ ∇βRm+
∑

α+β=k

∇2+αu ∗ ∇2+βu

+
∑

α+β=k−1

du ∗ ∇2+αu ∗ ∇βRm+
∑

α+β+γ=k−2

∇2+αu ∗ ∇2+βu ∗ ∇γRm.
(2.22)

Proof:

We prove (2.22) by induction. The case k = 0 is proven in (2.16). Assume for the induction
step that the equation is already true for ∇kRm. We then proceed

∂t∇k+1Rm = ∇
(
∂t∇kRm

)
+ ∂tΓ ∗ ∇kRm

= ∇
(

∆∇kRm+
∑

α+β=k

∇αRm ∗ ∇βRm+
∑

α+β=k

∇2+αu ∗ ∇2+βu

+
∑

α+β=k−1

du ∗ ∇2+αu ∗ ∇βRm+
∑

α+β+γ=k−2

∇2+αu ∗ ∇β+2u ∗ ∇γRm

)

+ ∇Rm ∗ ∇kRm+ du ∗ ∇2u ∗ ∇kRm .

Here we used (2.9) to compute the evolution of the connection and interchanged derivatives:

∂t(∇A) = ∂t(∂A+ Γ ∗A) = ∇(∂tA) + ∂tΓ ∗A
∇(∆A) = ∇i∇p∇pA = ∇p(∇i∇pA) +Rm ∗ ∇A = ∆(∇A) + ∇(Rm ∗A) +Rm ∗ ∇A

= ∆(∇A) + ∇Rm ∗A+Rm ∗ ∇A .

These commutatation relations hold for an arbitrary tensor A. Using the product rule, we see
the correctness of (2.22) for ∇k+1Rm.

Lemma 2.20 Let (g, u)(t) be a solution to (2.5). Then the norms of the derivatives of Rm
satisfy for all k ≥ 0 the evolution inequalities:

∂t|∇kRm|2 ≤ ∆|∇kRm|2 − 2|∇k+1Rm|2 + C

{
∑

α+β=k

|∇αRm||∇βRm||∇kRm|

+
∑

α+β=k

|∇2+αu||∇2+βu||∇kRm| +
∑

α+β=k−1

|du||∇2+αu||∇βRm||∇kRm|

+
∑

α+β+γ=k−2

|∇2+αu||∇2+βu||∇γRm||∇kRm| + |du|2|∇kRm|2
}

.

(2.23)
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Proof:

Considering that

∂t|∇kRm|2 = (2Rc− 4du⊗ du) ∗ ∇kRm ∗ ∇kRm+ ∂t∇kRm ∗ ∇kRm ,

the lemma follows directly from the previous lemma and the Cauchy-Schwarz inequality.

Lemma 2.21 Let (g, u)(t) be a solution to (2.5). Then for all k ≥ 0 the evolution of ∇2+ku is
given by

∂t∇2+ku = ∆∇2+ku+
∑

α+β=k

∇2+αu ∗ ∇βRm+
∑

α+β=k−1

du ∗ ∇2+αu ∗ ∇2+βu

+
∑

α+β+γ=k−2

∇2+αu ∗ ∇2+βu ∗ ∇2+γu+ |du|2 · ∇k+2u .
(2.24)

Proof:

The idea is the same as above. We proof (2.24) by induction where the claim for ∇2+0u is proven
in (2.12). Plugging in the induction hypotheses for ∇2+ku, we compute

∂t
(
∇∇2+ku

)
= ∇

(
∂t∇2+ku

)
+ ∂tΓ ∗ ∇2+ku = ∆∇3+ku+ ∇Rm ∗ ∇2+ku+Rm ∗ ∇3+ku

+
∑

α+β=k

(
∇2+α+1u ∗ ∇βRm+ ∇2+αu ∗ ∇β+1Rm

)

+
∑

α+β=k−1

(
∇2u ∗ ∇2+αu ∗ ∇2+βu+ du ∗ ∇2+α+1u ∗ ∇2+βu

+ du ∗ ∇2+αu ∗ ∇2+β+1u
)

+
∑

α+β+γ=k−2

(
∇2+α+1u ∗ ∇2+βu ∗ ∇2+γu

+ ∇2+αu ∗ ∇2+β+1u ∗ ∇2+γu+ ∇2+αu ∗ ∇2+βu ∗ ∇2+γ+1u
)

+ ∇2u ∗ du ∗ ∇2+ku+ |du|2 · ∇3+ku .

This can be rearranged to yield the claim for ∇2+(k+1)u.

Using the Cauchy-Schwarz inequality again, we compute:

Lemma 2.22 Let (g, u)(t) be a solution to (2.5). Then the norms of the covariant derivatives
of u satisfy for all k ≥ 0 the inequality

∂t|∇2+ku|2 ≤ ∆|∇2+ku|2 − 2|∇2+k+1u|2 + C

{
∑

α+β=k

|∇2+αu||∇βRm||∇2+ku|

+
∑

α+β=k−1

|du||∇2+αu||∇2+βu||∇2+ku|

+
∑

α+β+γ=k−2

|∇2+αu||∇2+βu||∇2+γu||∇2+ku| + |du|2|∇2+ku|2
}

.

(2.25)
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Evidently, the equations (2.23) and (2.25) have the same structure. Therefore we can combine
them into an inequality for ∇kΦ.

Lemma 2.23 Let (g, u)(t) be a solution to (2.5) and ∇kΦ be as defined in (2.20). Then the
derivatives of Φ satisfy for all k ≥ 0 the inequality

∂t|∇kΦ|2 ≤ ∆|∇kΦ|2 − 2|∇k+1Φ|2 + C

{
∑

α+β=k

|∇αΦ||∇βΦ||∇kΦ| +
∑

α+β=k−1

|du||∇αΦ||∇βΦ||∇kΦ|

+
∑

α+β+γ=k−2

|∇αΦ||∇βΦ||∇γΦ||∇kΦ| + |du|2|∇kΦ|2
}

where C = C(n) is a constant depending only on the dimension.


