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1 Preliminaries

1.1 Notation and conventions

In this section we introduce some symbols and conventions which will be used throughout the
whole paper without further comment.

We work on a smooth n-dimensional Riemannian manifold Σ or M , where M is always used to
specify a closed manifold, meaning that M is compact without boundary. While the tangent
bundle is denoted by TΣ and the space of smooth vector fields by X (Σ) respectively, we write
Ωp(Σ) := Ωp(Σ, ) for the vector space of smooth real valued differential forms of grade p on
Σ. Finally, the smooth functions on Σ will be denoted by C∞(Σ). We also make the following
definition:

Definition 1.1 Let Σ be a smooth Riemannian manifold. We define the space of smooth sym-
metric twice covariant tensors on Σ by

Sym2(Σ) := {v = {vij} ∈ Γ(T ∗Σ ⊗ T ∗Σ)|vij = vji}

and the space of smooth Riemannian metrics on Σ by

M(Σ) := {g = {gij} ∈ Sym2(Σ)|gij > 0} .

For a Riemannian metric g, we denote the Levi-Civita connection by ∇, the Christoffel symbols
of some coordinate system by Γ and its curvature tensor by Rm which can be either the (1, 3)
or the (0, 4) version, depending on the context. Its Ricci tensor is denoted by Rc, the scalar
curvature by R, and the volume element by dV . If it is important to make clear to which metric
these tensors belong, we write Rm(g) and so on. Furthermore, the exterior derivative of a form
is denoted by d. Recall that d is independent of the metric g. The Lie derivative of a tensor B
with respect to X ∈ X (Σ) is denoted by LXB.

Given some coordinate system {x1, . . . , xn}, we abbreviate ∂i := ∂
∂xi for the partial derivatives

with respect to the coordinates x, ∇i := ∇ ∂

∂xi
for the covariant derivatives associated to g, and

∂t for partial differentiation with respect to time. We denote the components of the Hessian
∇2 of some function u by ∇i∇ju := ∇2

iju and similar for higher derivatives. The components

of the metric g itself are given by {gij}, and the metric g−1 on the cotangent bundle T ∗Σ is
represented by {gij}. The Laplacian of a function u with respect to g is given by

∆gu = gij
(
∂i∂ju− Γkij∂ku

)
. (1.1)

The Riemannian metric g induces norms on the tensor bundles. In coordinates this norm is
given for a tensor B :=

{
Bj1...jl
i1...ik

}
by

|B|2 := gi1m1 · · · · · gikmk · gj1n1
· · · · · gjlnl

·Bj1...jl
i1...ik

·Bn1...nl
m1...mk

, (1.2)

where we use the Einstein summation convention, meaning that we sum over a repeated lower
and upper index from 1 to n. When computing in normal coordinates, the summation can be
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over two lower indices. The convention is used throughout this paper, and deviations are marked
explicitly. The Christoffel symbols of the Riemannian metric g are defined by

Γkij = 1
2g
kl
(
∂igjl + ∂jgil − ∂lgij

)
(1.3)

and we use the following formula for the construction of the components of the Riemann tensor:

Rkijl = ∂iΓ
k
jl − ∂jΓ

k
il + ΓkisΓ

s
jl − ΓkjsΓ

s
il . (1.4)

Furthermore, we contract the Riemann tensor as follows to get the Ricci curvature:

Rij = gklRkilj = Rkkij . (1.5)

For the interchange of covariant derivatives we have

∇i∇jωk −∇j∇iωk = glmRijklωm

∇i∇jv
k −∇j∇iv

k = Rkijhv
h

(1.6)

for ω ∈ Ω1(Σ), v ∈ X (Σ) and similar for more complicated tensors. This convention is from
[Ham82, §2]. Observe that the symmetry of the Christoffel symbols implies that the second
derivatives of a function u ∈ C∞(Σ) commute:

∇i∇ju = ∇j∇iu . (1.7)

We need several identities for the curvature tensor, in particular the second Bianchi identity
together with two contracted versions:

∇iRjkpq + ∇jRkipq + ∇kRijpq = 0 (1.8)

∇pRijpq + ∇jRiq −∇iRjq = 0 (1.9)

2∇pRpi −∇iR = 0 . (1.10)

To simplify and shorten the forthcoming calculations, there is the following convenient notation:
We write A ∗B for a linear combination of contractions of components of the two tensors A and
B when the precise form and number of these terms is irrelevant for the computation. In this
notation, factors g and g−1 are suppressed. For example, we could write equation (1.6) in the
form: ∇i∇jω −∇j∇iω = Rm ∗ ω.

1.2 Static vacuum solutions of the Einstein equations

The aim of this section is to give a short introduction to static vacuum solutions of the Einstein
equations. These equations play an important role in the motivation of the following work. For
this section we refer to [EK62, chapter 2] and [Wal84, chapter 6].

From a geometrical point of view, a Lorentzian manifold (L4, h) is said to be static, if there exists
a 1-parameter group of isometries with timelike orbits and a hypersurface Σ which is orthogonal
to these orbits and therefore spacelike. Physically this reflects the fact that the solutions are
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independent of time, therefore having a time translation and reflection symmetry. Equivalent is
the existence of a timelike, hypersurface orthogonal Killing vector field ξ.

A vacuum solution to the Einstein equations satisfies

Rc(h) ≡ 0 .

These solutions describe the gravitational field in a region of spacetime that does not contain
any matter.

Combining these two concepts we arrive at the notion of a static vacuum solution. The
Schwarzschild solution is the most important example in this class. It describes the gravita-
tional field in the exterior region around an isolated nonrotating spherically symmetric body
which could be a star or a black hole.

We give a technical description of these solutions: Arbitrary coordinates on the hypersurface Σ
can be extended to points in some spacetime neighborhood. For every p in such a neighborhood
there is a unique point q ∈ Σ, such that p and q are connected by one of the orbit curves of ξ. To
obtain coordinates for p, we attach the parameter of the orbit curve to the spatial coordinates of
q. One can then conclude that the metric components in these coordinates are independent of
the orbit parameter, and that all sets of spacetime points with the same “time” parameter are
also spacelike hypersurfaces orthogonal to the orbits. Consequently, the metric has the following
simple form:

h = −V 2(x1, x2, x3)dt2 +

3∑

i,j=1

gij(x
1, x2, x3)dxidxj ,

where {xi} are the coordinates on Σ, t denotes the coordinate along the orbits, V :=
√

−|ξ|2 is
the square root of the negative norm of the (timelike) Killing field ξ, and gij are the components
of a spatial Riemannian metric on Σ. Therefore the unknown Lorentz metric h is now given
by a function V on Σ, the Lapse function of the static spacetime, and a Riemannian metric g,
being the metric on the spatial slices. One can express the static Einstein vacuum equations in
terms of V and g on the hypersurface and finds

Rc(g) = V −1∇2V

V −1∆gV = 0 .
(1.11)

This is done in [EK62, 3.4-3.5]. Vice versa, a pair (V, g) satisfying (1.11) gives rise to a uniquely
determined static vacuum solution [EK62, Theorem 2-3.3]. In the following, we do not restrict
ourselves to dimension n = 4 (where Σ has dimension 3), but work with a manifold Σ of arbitrary
dimension n ≥ 3. However, we still use the physical description of such a spacetime in a formal
way to simplify the discussion.

We can apply these ideas to the above mentioned Schwarzschild solution. The Lorentz metric
of the Schwarzschild spacetime is given in spherical spatial coordinates (t, r, θ, φ) on × 3 by

h = −
(

1 − 2m

r

)

dt2 +

(

1 − 2m

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (1.12)
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where m is the mass parameter. One calculates that it satisfies (1.11) for V =
(
1 − 2m

r

)1/2
and

g the spatial part of h on the slices t = const.

Another example are solutions (g, u) on ×Mn where Mn is an n-dimensional Riemannian
manifold, g a Ricci-flat metric, and u ≡ const.

A very thorough and detailed discussion of static solutions is given in [BS99].

1.3 Conformal transformations

In the following, we consider conformally related metrics g and g̃, meaning that there exists
a smooth function φ ∈ C∞(Σ) such that g̃ = φ2 · g. We compute the relation between the
curvature of the two metrics:

Lemma 1.2 If g̃ := φ2 · g is conformally related to g, then the following equations hold:

g̃ij = φ−2 · gij

Γ̃kij = Γkij + φ−1gkl {∂iφ · gjl + ∂jφ · gil − ∂lφ · gij}
R̃ij = Rij − φ−1∆gφ · gij − (n− 2)φ−1∇i∇jφ+ 2(n− 2)φ−2∂iφ∂jφ− (n− 3)φ−2|dφ|2g · gij
R̃ = φ−2R− (n− 1)(n− 4)φ−4|dφ|2g − 2(n− 1)φ−3∆gφ

∆g̃f = φ−2∆gf + (n− 2)φ−3〈df, dφ〉g
dṼ = φndV ,

where all objects with a tilde correspond to g̃ and f is an arbitrary function.

Setting φ := e2αψ, the Ricci tensor is given in terms of ψ as follows:

Lemma 1.3 If g̃ := e2αψ · g holds for a function ψ ∈ C∞(Σ) and a constant α ∈ , then the
Ricci curvatures of g̃ and g are related in the following way:

R̃ij = Rij − (n− 2)α∇i∇jψ + (n− 2)α2∂iψ∂jψ − α∆gψ · gij − (n− 2)α2|dψ|2g · gij .

Let h be a solution to the static Einstein vacuum equations on a (n+1)-dimensional Lorentz
manifold L which is given by a pair (g, V ) satisfying (1.11). This system can be simplified
considerably by removing the second derivatives of V on the right hand side via a conformal
transformation. Defining u := lnV , we calculate

Rij = e−u∇i∇je
u = e−u∇i(∂jue

u) = ∇i∇ju+ ∂iu∂ju

0 = e−u∆geu = e−u∇i∇ie
u = ∆gu+ |du|2g .

(1.13)
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Using the conformal transformation g̃ := e
2

n−2
u · g, we get from Lemma 1.3 and (1.13)

R̃ij = Rij −
n− 2

n− 2
∇i∇ju+

n− 2

(n− 2)2
∂iu∂ju− 1

n− 2
∆gu gij −

n− 2

(n− 2)2
|du|2g gij

=
(
∇i∇ju+ ∂iu∂ju

)
−∇i∇ju+

1

n− 2
∂iu∂ju− 1

n− 2

(
∆gu+ |du|2g

)

︸ ︷︷ ︸

=0

gij

=

(

1 +
1

n− 2

)

∂iu∂ju =
n− 1

n− 2
∂iu∂ju .

(1.14)

Similarly we calculate

∆g̃u = e
−2

n−2
u∆gu+ (n− 2)e

−3

n−2
ugij

(
∂ie

1

n−2
u)∂ju = e

−2

n−2
u

(

∆gu+
n− 2

n− 2
|du|2g

)

= 0 .

Together we obtain the conformal system for (g̃, u):

R̃ij = n−1
n−2∂iu∂ju

∆̃u = 0
(1.15)

which is equivalent to Rc(h) = 0 for the Lorentz metric

h = −e 2

n−2
udt2 + e−

2

n−2
ugij dx

idxj (1.16)

on ⊗ n. It is proven in [EK62, Theorem 2-3.4] for n = 3 that every solution of the static
Einstein vacuum equations can be given that form. Note that after the conformal change of the
metric, we have R̃ = n−1

n−2 |du|2 instead of R = 0.

One solution to (1.15) is the conformal equivalent of the Schwarzschild metric (1.12). The spatial
metric on the slices t = const is given by

g̃ = dr2 + r(r − 2m)
(
dθ2 + sin2 θdφ2

)
,

while

u := lnV = 1
2

(
ln(r − 2m) − ln r

)

is the logarithm of the Lapse function.

1.4 Evolution of a Riemannian metric

We consider time dependent metrics g(t) satisfying an evolution equation like

∂tgij(t) = vij(t) (1.17)

for some tensor {vij(t)} ∈ Sym2(Σ) for all suitable t. This equation induces evolution equations
for all the curvature expressions related to g(t). Since these are well known, we just state them
for reference reasons:
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Lemma 1.4 Suppose g(t) is a solution of (1.17). Then the following evolution equations hold:

∂tg
ij = −gipgjqvpq

∂tΓ
k
ij = 1

2g
kl(∇ivjl + ∇jvil −∇lvij)

∂tR
k
ijl = 1

2g
ks
(
∇i∇lvjs + ∇j∇svil −∇i∇svjl −∇j∇lvis + gpq(Rijlpvqs +Rijspvlq)

)

∂tRijkl = 1
2

(
∇i∇kvjs + ∇j∇svik −∇i∇svjk −∇j∇kvis + gpq(Rijkpvqs +Rijspvkq)

)
+ vpkR

p
ijl

∂tRij = −1
2∆gvij − 1

2∇i∇jv + 1
2g
pq(∇p∇jviq + ∇p∇ivjq)

∂tR = −∆v + gpqgrs(∇p∇rvqs −Rprvqs)

∂tdV = 1
2v dV

where v = gijvij denotes the trace of vij computed with g.

Proof:

A proof is given in [CK04, §3.1].

An important technical tool to derive estimates for the solutions of parabolic partial differential
equations is the maximum principle. We state one form here for reference reasons.

Theorem 1.5 Let g(t) and X(t) be 1-parameter families of Riemannian metrics and vector
fields respectively on a closed manifold M for t ∈ [0, T ). Let f : [0, T ) × M → be a C2

function. If f(0) ≥ α and on [0, T ) ×M we have the inequality

(
∂t − ∆

)
f ≥ 〈X,∇f〉,

then f(t) ≥ α holds for all t ∈ [0, T ). If f(0) ≤ α and on [0, T ) ×M we have

(
∂t − ∆

)
f ≤ 〈X,∇f〉,

then f(t) ≤ α holds for all t ∈ [0, T ).

Proof:

The first part of the theorem is [CK04, Theorem 4.2] and the second is analogous.

One can also prove maximum principles for heat equations with linear and nonlinear reaction
terms on the right hand side. See for example [CK04, §4]. In the following, whenever we invoke
the maximum principle on closed manifolds, we will apply Theorem 1.5. A version on complete
manifolds is given by Theorem 6.10.


