Der Regulationsmechanismus des Tetrazyklin-Repressors

Inaugural-Dissertation zur Erlangung der Doktorwürde

vorgelegt dem Fachbereich Chemie der Freien Universität Berlin

> von Peter Orth aus Berlin

Gutachter: Prof. Dr. W. Saenger
Gutachter: Prof. Dr. H. Hartl

Eingereicht am 5. 5. 1998 Tag der mündlichen Prüfung: 10. 9. 1998

Die vorliegende Arbeit wurde in der Zeit von September 1994 bis April 1998 unter der Anleitung von Prof. Dr. W. Saenger am Institut für Kristallographie der Freien Universität Berlin im Fachbereich Chemie durchgeführt.

Meinem Betreuer Prof. Dr. W. Saenger möchte ich für das interessante Thema und die hervorragenden Arbeitsbedingungen danken.

Mein Dank gilt Prof. Dr. H. Hartl für die freundliche Übernahme des Koreferats.

Dr. W. Hinrichs danke ich für die Zusammenarbeit am gemeinsamen Projekt und die Organisation der Meßreisen.

Ganz herzlich möchte ich mich bei allen bedanken, die zum Gelingen der vorliegenden Arbeit beigetragen haben. Mein besonderer Dank gilt dabei

- Claudia Alings für die unermüdlichen Anstrengungen, immer neue Kristallformen zu fabrizieren;
- Gerd Schluckebier und Karsten Theis für die Einführung in die Welt der Proteinkristallographie und für so manche lebensbereichernde Gespräche;
- Heike Roscher für die "fachfrauliche" Unterstützung im Labor;
- Dirk Schnappinger für die großzügige Unterstützung bei meinen Aufenthalten in Erlangen und die molekular-biologischen Experimente zum Projekt;
- den Mitarbeitern der AG Hillen für die Hilfsbereitschaft und die anregenden Diskussionen;
- Katrin Geßler und Petra Jekow für die Anregungen und Kommentare bei der Korrektur dieser Arbeit;
- Dr. Norbert Krauß, Wolf-Dieter Schubert und Jan Tebbe für die gemeinsame Bewältigung kristallographischer Probleme;
- Frau Krems für die Erledigung zahlreicher bürokratischer Formalitäten;
- Carsten Jakob und Edwin Rümenapf für ihr technisches Geschick;
- und nicht zuletzt meiner Frau und meiner Familie für die Unterstützung in allen Lebenslagen.

Zusammenfassung

Im Rahmen der vorliegenden Arbeit konnte mittels Kristallstrukturanalyse der Regulationsmechanismus für den Tet-Repressor der Klasse D (Tet \mathbb{R}^D) aufgeklärt werden. Tet \mathbb{R}^D ist der mit dem Antibiotikum Tetrazyklin (Tc) aktivierbare Schalter einer Tetrazyklinresistenzform, die auf dem aktiven Efflux des Antibiotikums aus der Zelle basiert. Das Ausschleusen des Antibiotikums wird durch membrangebundene Resistenzprotein TetA gewährleistet.

Im normalen Zustand bindet TetR^D an ein sequenzspezifisches DNA-Fragment, den tet-Operator, welcher sich in der Promotor/Operator-Region der Gene tetA und tetR befindet. Die Produktion der beiden Proteine TetA und TetR wird verhindert, da die RNA-Polymerase die entsprechenden Gene nicht transkribieren kann. In Gegenwart von Tc binden zwei Komplexe [Mg Tc]⁺ an TetR^D und induzieren diesen, das heißt TetR^D verändert seine Struktur und ist nicht mehr in der Lage an die DNA zu binden. Als Folge dessen wird das Gene tetA exprimiert, das Protein TetA in die Zellmembran eingebettet, so daß die Resistenz gegenüber Tc gewährleistet ist.

Für die Bestimmung des Regulationsmechanismus von TetR wurden die folgenden Proteine und Proteinkomplexe kristallisiert und ihre Strukturen analysiert:

- 1. das freie TetR^D -Protein und ein chimeres Protein aus TetR^D und TetR^B ,
- 2. fünf $Tet R^D/DNA$ -Komplexe,
- 3. die Komplexe von ${\rm Tet}{\rm R}^D$ mit sieben verschiedenen Tetrazyklin/Kation-Liganden und
- 4. zwei nicht induzierbare $Tet \mathbb{R}^{D}$ -Varianten.

Entsprechend diesen Strukturen wurde ein Induktionsmechanismus ermittelt, der von den bisher bekannten Regulationsmechanismen abweicht. Tet \mathbb{R}^D , ein Homodimer, besitzt zwei DNA-bindende Domänen mit je einem Helix-Turn-Helix-Motiv, die voneinander unabhängig die DNA-gebundene bzw. die "induzierte" Position einnehmen können. Die Bewegung jeweils einer Domäne wird über eine Pendelbewegung der vier N-terminalen Helizes gegenüber dem übrigen Protein gewährleistet. Der C-Terminus von Helix 4 ist mit dem Proteinkern verbunden, der Mittelteil dieser Helix wird von der Helix 6 in verschiedene Positionen gebracht und der N-Terminus bewirkt die Bewegungen der DNA-bindenden Domäne. Während des Induktionsprozesses wird die Helix 6 um 1.5 Å verschoben und verursacht eine Rotation der Helix 4 um ihren C-Terminus um 5°. Dabei wird das DNAbindende Motiv parallel zur großen Furche der DNA verschoben, so daß sich der Abstand zwischen beiden Erkennungshelizes um 3 Å vergrößert, wodurch die Affinität zur Operator-DNA sinkt.

Mit der Analyse der Strukturen der Mg^{2+} -freien und Mg^{2+} -halbbesetzen $TetR^D/Tc-$ Komplexe gelang die Klärung des Bindungsmechanismus von $[MgTc]^+$. Für die tunnelähnliche Bindungstasche des Induktors konnten die Öffnung zum Einschleusen des Induktors sowie der "Ausgang" für das verdrängte Wasser eindeutig identifiziert werden. Tc bildet in seiner Bindungstasche zuerst Wasserstoffbrücken zu vier Aminosäuren. Daraufhin gehen sieben Aminosäuren mit dem Tc hydrophobe Kontakte ein und bewirken das Schließen der Bindungstasche. Der letzte Schritt der Induktorkoordinierung ist die Translation der Helix 6 und die Entwindung der C-Terminalen Schleife dieser Helix. In diesem, den Repressor induzierenden, Schritt wird das zweiwertige Kation (Mg^{2+}) des Induktorkomplexes oktaedrisch koordiniert. Nicht das Tc, sondern das Tc-gebundene Kation überträgt das Induktionssignal.

Die verwendeten, unterschiedlich derivatisierten Tc unterscheiden sich in ihrer relativen Lage innerhalb der Bindungstasche. Die größten Übereinstimmungen liegen im Bereich der Tc-Protein-Wasserstoffbrücken am Tc-Ring A. Die größten Unterschiede findet man am Tc-Ring D, der hauptsächlich hydrophobe Kontakte zum Protein ausbildet.

Anhand der Strukturen von Komplexen zwischen dem Protein und verschieden langen Operator-DNA-Fragmenten (13 bis 17 bp) konnte gezeigt werden, daß die DNA in einer überwundenen B-DNA-Form vorliegt, wenn TetR^D in zwei aufeinanderfolgende große Furchen der Doppelhelix bindet. An den Basenpaaren 2 der palindromischen Operatorsequenz knickt die DNA vom Protein weg. Zwischen den Basenpaaren 3 bis 8 wird die DNA hingegen zum TetR^D hin gebogen. Im Kristallgitter von vier der fünf analysierten Protein/DNA-Komplexe bilden die DNA-Doppelstränge eine unendliche Helix, deren Anordnung in einer (der hexagonalen) Kristallform superhelikal ist. Der Komplex mit der 13mer-DNA erlaubte die Diskussion der von Packungseffekten unbeeinflußten DNA-Deformationen. Bei dieser Form findet man die DNA-Doppelstränge im Kristall getrennt voneinander. Abgesehen von einem $\text{TetR}^D/\text{DNA-Komplex}$, bei dem die DNA an den Enden keine Basenpaarung eingeht, werden in den untersuchten Komplexen innerhalb der Fehlergrenzen identische Wechselwirkungen zwischen Protein und DNA gefunden.

In dem hier vorgestellten Modell der Promotor/Operator-Region der Resistenzdeterminante der Klasse D binden die beiden TetR^D-Dimere unabhängig voneinander und befinden sich auf entgegengesetzten Seiten der fast linearen DNA. Eine Kooperativität hinsichtlich der DNA-Bindung kann damit ausgeschlossen werden.

Inhaltsverzeichnis

Einleit	ung		1
1.1	Antibi	iotika	1
1.2	1.2 Das Antibiotikum Tetrazyklin		
1.3	Regula	ation des Efflux-Mechanismus in Enterobakterien	3
1.4	Regula	atorische Funktion des Tetrazyklin-Repressors	8
1.5	Induk	tionsmechanismen bakterieller Repressoren	11
1.6	Zielset	zung	14
Materi	alien ı	und Methoden	15
2.1	Mater	ialien	15
	2.1.1	Plasmide und Zellstämme	15
	2.1.2	Pufferlösungen	15
	2.1.3	Nährmedien für die Zellanzucht	15
	2.1.4	Chemikalien	15
2.2	Bioche	emische Methoden	16
	2.2.1	Fermentation und Zellaufschluß	16
	2.2.2	Proteinreinigung	16
	2.2.3	Herstellung von TetR/Tetrazyklin-Komplexen $\ldots \ldots \ldots \ldots$	17
	2.2.4	Konzentrationsbestimmung	17
	2.2.5	Reinigung von Oligodesoxyribonukleotiden	18
	2.2.6	Herstellung von Doppelstrang-DNA	19
	2.2.7	Herstellung von TetR-Operator-Komplexen	19
	2.2.8	Kristallisation	19
2.3	Krista	Kristallographische Methoden	
	2.3.1	Messung von Röntgen-Diffraktionsdaten	21
	2.3.2	Strukturlösung	22
	2.3.3	Verfeinerung und Modellbau	23
	2.3.4	Koordinatenanalyse und Abbildungen	24
Ergebr	nisse		25
3.1	Das E	xpressionssystem	25
3.2	Kristallisation		
	3.2.1	Länge und Sequenz der eingesetzten DNA	28
	3.2.2	Kristallformen des $\text{TetR}^D/\text{DNA-Komplexes}$	30
3.3 Messung von Beugungsdaten		ng von Beugungsdaten	31

	3.4	Strukturlösung mit molekularem Ersatz		
	3.5	Kristal	llographische Verfeinerung	. 35
St	ruktı	ıranaly	yse	40
	4.1	Hauptkettenverlauf und Temperaturfaktoren des freien TetR^D		
	4.2	Kristal	llpackungen	. 46
		4.2.1	TetR^D ohne DNA	. 46
		4.2.2	$\operatorname{Tet} \mathbf{R}^D$ mit DNA	. 46
	4.3	Unters	chiede in den Sekundärstrukturen	. 50
	4.4	Strukturvergleich von freiem und induziertem Tet R $\ .$. 50
	4.5	Strukturvergleich von freiem TetR und Tet $\mathbb{R}^D/15$ mer-DNA		
	4.6	Beweg	lichkeit entlang der Dimerisierungsfläche	. 61
	4.7	Die Ine	duktorbindungstasche	. 62
		4.7.1	Vergleich der $\text{TetR}^{D}[\text{MTc}]_{2}$ -Komplexe	. 63
		4.7.2	Eingang der Tetrazyklin-Bindungstasche	. 69
		4.7.3	Der Kanal für verdrängtes Wasser	. 69
		4.7.4	Strukturänderung bei Induktorbindung	. 71
	4.8	Die Ma	agnesiumskoordinationsstelle	. 71
		4.8.1	Der Magnesium-freie Repressor	. 75
		4.8.2	Die Tetrazyklinposition	. 75
		4.8.3	Der halbinduzierte Repressor	. 77
	4.9	Strukt	uranalyse von Punktmutanten	. 78
		4.9.1	Die Struktur von Pro105Thr	. 78
		4.9.2	Die Struktur von Asp178Gly	. 81
	4.10	$\mathrm{Tet}\mathbf{R}^D$	im Komplex mit 4 epiTc und 2nitriloTc \hdots	. 83
	4.11	Repres	sor/Operator-Kontakte	. 87
	4.12	Die St	ruktur der Operator-DNA	. 93
		4.12.1	$Experimentelle \ Vorarbeiten \ \ . \ . \ . \ . \ . \ . \ . \ . \ . $. 93
		4.12.2	Theoretische Vorhersagen zur DNA-Biegung der Operator-DNA $$.	. 94
		4.12.3	Struktur der Operator-DNA im Kristall	. 97
	4.13	Orient	ierung des HTH-Motivs zur DNA	. 113
	4.14	Strukt	urmodell der DNA-Kontrollregion der Resistenzdeterminante D	. 114
\mathbf{M}	odell	des Ir	nduktionsmechanismus	116
	5.1	Der In	formationsweg des Induktionssignals	. 116
	5.2 Die drei $[MTc]^+$ -bindenden Gruppen			. 117
5.3 Der "Fa		Der "F	Palltür"-Verschluß der Bindungstasche	. 118

5.4	Das "katalytische Zentrum" - die Helix 6	120			
5.5	Der "Hebel" - die Helix 4	122			
5.6	Die "Federn" - die Helizes 5, 7 und 8 \ldots	123			
5.7	Orientierung und Abstände der DNA-Bindungsmotive	125			
Abkürz	Abkürzungsverzeichnis 127				
Literat	ur	128			
Lebens	Lebenslauf				
Veröffe	entlichungen	138			

Abkürzungsverzeichnis

Å	: 0.1 nm
Abb.	: Abbildung
bp	: Basenpaare (doppelsträngiger DNA)
CAP	: catabolite activating protein
DNA	: Desoxyribonukleinsäure
EDTA	: Ethylendiamintetraessigsäure
FIS	: Faktor für Inversionsstimulierung
HTH-Motiv : Helix-Turn-Helix-Motiv	
М	: mol/l
NMR	: Kernmagnetische Resonanz (nuclear magnetic resonance)
OD	: Optische Dichte
PEG 4000	: Polyethylenglycol (mittlere Molmasse 4000 g/mol)
rms	: Wurzel des mittleren Quadrates (root mean square)
Tab.	: Tabelle
Тс	: Tetrazyklin
TetA	: Tetrazyklin Effluxprotein
TetO	: tet Operator
TetR	: Tetrazyklin Repressor
TetR	: Gen für TetR
Tn	: Transposon
Tris	: Tris(hydroxymethyl)-aminomethan
Tris-HCl	: Durch Zugabe von Salzsäure auf einen bestimmten pH-Wert
	eingestellte Lösung von Tris
UpM	: Umdrehungen pro Minute
UV	: ultraviolett
% (v/v)	: Konzentrationsangabe (Volumen des Stoffes bezogen auf das
	Volumen der fertigen Lösung)
% (w/v)	: Konzentrations angabe (n % (w/v) heißt n Gramm des Stoffes
	pro 100 ml fertige Lösung)

Lebenslauf

Vor- und Zuname	Peter Orth 23.8.1969 Berlin verheiratet		
Geburtsdatum			
Geburtsort			
Familienstand			
1975 - 1988	Schulbildung		
Juni 1988	Abitur an der Erweiterten Oberschule "Käthe Kollwitz" in Berlin		
1988 - 1989	Wehrdienst		
1989 - 1994	Chemiestudium an der Lomonossow-Universität in Moskau (Rußland)		
Juli 1994	Abschluß als Diplom-Chemiker; Titel der Diplom-Arbeit: "Domänenorganisation der δ -Endotoxine aus Bacillus thuringiensis" angefertigt im Institut WNII Genetika, Moskau Betreuung Prof. Dr. V. M. Stepanov		
seit Semptember 1994	Arbeit an der vorliegenden Doktorarbeit		

Veröffentlichungen:

C. Krafft, W. Hinrichs, **P. Orth**, W. Saenger and H. Welfle. Interaction of Tet repressor with operator DNA and with tetracycline studied by infrared and raman spectroscopy. *Biophysical J.*, **74**:63–71, 1998.

C. Krafft, W. Hinrichs, **P. Orth**, W. Saenger and H. Welfle. Raman spectroscopic analysis of Tet repressor - operator DNA interaction deuterium oxide. *Cell. Mol. Biol.*, **44**:239–250, 1998.

P. Orth, C. Alings, D. Schnappinger, W. Saenger and W. Hinrichs. Crystallization and preliminary X-ray analysis of the Tet-Repressor/operator complex. Acta Cryst., D54:99– 101, 1998.

P. Orth, F. Cordes, D. Schnappinger, W. Hillen, W. Saenger, and W. Hinrichs. Tetracycline trapping and induction mechanism of the Tet repressor. J. Mol. Biol., 279:439–447, 1998.

W. Hinrichs, **P. Orth**, K. Kisker, D. Schnappinger, W. Hillen and W. Saenger. Tetracycline repressor acts as a molecular switch regulated by tetracycline binding. In *Current Challenges on Large Supramolecular Assemblies*. Editor G. Tsoucaris, Kluwer Academic Publishers, Dortrecht, The Netherland, pp. 349–266, 1998.

R. Menssen, **P. Orth**, W. Ziegler and W. Saenger. Docamer-like conformation of a nonapeptide bound to HLA-B*3501 due to nonstandard positioning of the C-terminus. *J. Mol. Biol.*. Angenommen.

P. Orth, D. Schnappinger, P.E. Sum, G.A. Ellestad, W. Hillen, W. Saenger W. Hinrichs. Crystal structure of the Tet repressor in complex with a novel tetracycline, 9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxy-tetracycline. *J. Mol. Biol.*. Angenommen.

P. Orth, W. Saenger and W. Hinrichs. Tetracycline chelated Mg²⁺-ion initiates unwinding for Tet repressor induction. Eingereicht.

P. Orth, P. Jekow, J.C. Alonso and W. Hinrichs. Proteolytic cleavage of gram-positive β recombinase is required for crystallization. Eingereicht.

VORTRÄGE

Jahrestagung der Deutschen Gesellschaft für Kristallographie, Karlsruhe, 3.3 - 4.3.1998, Induktion mechanism of Tet repressor.