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Chapter 1

Introduction

In classical analysis, the behaviour and time evolution of physical phenomena, such as sound,
heat, �ow, elasticity, etc., are described by partial di�erential equations (PDEs). These have also
found a place in areas such as product design and engineering, scienti�c computing, and ani-
mated �lm production. In this framework, PDEs are used to model a variety of real world prob-
lems. Due to the complexity of the problems described generally on sophisticated domains that
represent everyday objects, one has to rely on numerical methods for the computation of the
modal parameters. An essential approach to approximate the solution of PDEs on surfaces or
volumes are �nite elements, thereby, the problem is assembled piece by piece on smaller easier
to handle subdomains. On the other hand, the underlying discerning domains require a detailed
geometric description. From the beginning, two separate research areas have been managing the
geometry representation and the analysis tasks. Over the years, this has led to more barriers for
the data exchange, and, consequently, has slowed down the communication between both areas.

In recent years, isogeometric analysis is a rapidly growing research �eld that uni�es the con-
cepts of geometric design and numerical simulation. The focus of interest is an interoperabil-
ity system based on parametric surface representations for the �nite element approximations
of analysis problems. One set of basis functions is used for the representation of the geome-
try and the approximation of the solution space. The expensive data exchange between design
and analysis, and the associated data errors can be entirely eliminated. However, the choice of
the underlying geometry representation, originally prescribed by non-uniform rational B-splines
(NURBS), is the decisive point of the challenging problems to focus on.

Subdivision surfaces are a common geometry representation tool in geometric modelling,
especially in computer graphics and computer animation. For a long time, the re�nement based
construction of smooth surfaces has formed the key focal point of research in this area, i.e. one
has been interested in smooth surfaces obtained from repetitive re�nement operations on coarse
control grids. Due to the simplicity, �exibility and e�ciency, a range of di�erent schemes has
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been developed. For some of the schemes, the subdivision or, equivalently, limit surfaces, de�ned
by the surfaces in the limit of the corresponding subdivision operations, exhibit a closed para-
metric representation in addition to its high smoothness. In this regard, subdivision surfaces can
serve as a base framework for the construction of �nite element methods. The multiple capabil-
ities for applications, such as parameterization, modelling, simulation and manufacturing, make
subdivision surfaces to a universally usable processing tool.

This work focuses on quadrilateral control grids and the generalized bicubic B-spline sur-
faces of Catmull–Clark subdivision type. The basic subdivision algorithm is simple, however,
the properties of the limit surface may be quite complicated and di�cult to analyze. One may
have in mind the existence of extraordinary vertices that in�uences the smoothness of the sur-
faces. In [Stam, 1998], the �rst explicit parameterization of the limit surface has been introduced.
Owing to the so-called natural parameterization, the labour-intensive subdivision process can be
avoided and the limit surface can be generated without any explicit subdivision operation. Nev-
ertheless, the simpli�cation is not free of defects. At extraordinary vertices, the smoothness
of the limit surface de�ned in the classical manner has been lost. This work describes how to
rescue the parameterization by using the classical concept of the characteristic mapping. The
associated reparameterization is consistent with the classical de�nition of subdivision surfaces,
i.e. the smoothness of the limit surface at the singularities is retained. However, it is expensive
to compute, and therefore not applicable for CAD-systems.

Linking to isogeometric analysis, subdivision �nite elements become a fast-growing �eld of
research. Based on the subdivision basis functions, we describe a solid theoretical and algorith-
mic de�nition of subdivision �nite elements. We introduce the characteristic subdivision �nite
element for the discretization and study of PDEs on Catmull–Clark surfaces. The conversion
of the characteristic parameterization came up as an e�ective �nite element construction. The
reason for this, in the integral representation, the expensive inversion of the characteristic map
reduces to a scaling factor that depends on the valence of the extraordinary vertex. Furthermore,
we compare the results we achieve using the natural and the characteristic subdivision �nite
element approach solving the mean curvature �ow on curved surfaces. Despite good results, a
particular challenge is still an e�cient numerical integration of non-polynomial functions.

The classical examples of minimal surfaces include the helicoid, catenoid, Schwarz P surface,
Schwarz D surface, etc., where each section of the surface is again a minimal surface. Due to the
least area property, surfaces such as these are interesting for many natural sciences, engineering
and architectural applications. However, the standard minimal surface formulation cannot be
used in a custom implementation or simulation. To expand the applicability, algorithms are
needed to represent minimal surfaces accurately as a part of the design process. In order to
achieve this, we introduce the subdivision suitable analogon of minimal surfaces, i.e. the aim of
this work are minimal Catmull–Clark limit surfaces. Using the mean curvature �ow, minimal
Catmull–Clark surfaces are those surfaces, which are the critical points of the �ow on given
Catmull–Clark geometries, allowing for speci�ed boundary conditions. In this thesis, we focus
on periodic minimal surfaces that ful�l Schwarz’s re�ection principle. Accordingly, we describe
a set of symmetry preserving boundary constraints for subdivision surfaces. We establish the
relevant algorithm and present some examples of minimal Catmull–Clark surfaces.
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1.1 Summary of main achievements

The goal of this thesis is to establish the theoretical foundation of Catmull–Clark subdivision
surfaces for �nite element applications. To determine the reliability and operability of the frame-
work, we apply the corresponding �nite elements to the mean curvature �ow on curved subdi-
vision surfaces. The results are obtained over a step-by-step changing initial geometry. Further-
more, a framework for the construction of periodic Catmull–Clark limit surfaces of minimal area
is achieved. Broadly speaking, this thesis brings together the knowledge about the subdivision
surfaces, �nite element and numerical methods. The following summarizes our contributions to
the problem we consider:

• Based on Stam’s parameterization scheme, we give a detailed de�nition of the generating
splines of Catmull–Clark type in terms of the natural and the characteristic parameteriza-
tion over the characteristic domain. On the latter de�nition, we discuss in detail the for-
malism of the characteristic mapping in the context of Catmull–Clark subdivision surfaces.
Properties of the characteristic parameterization are presented relevant to the application
for constructing �nite element approaches.

• Based on the characteristic parameterization, we introduce a new subdivision �nite ele-
ment. Although the expensive characteristic parameterization is utilized, the computa-
tional complexity of the obtained �nite element approach is comparable to the previously
used natural approach. Owing to the pullback to the domain of the B-spline basis, we
show that the usage of the characteristic parameterization reduces to a scaling factor. This
is given by the subdominant eigenvalue of the subdivision matrix that corresponds to the
valence of the a�ecting extraordinary vertex. The advantage in comparison with the nat-
ural approach is that the characteristic �nite elements maintain the compatibility with
the classical de�nition of subdivision surfaces. The described H2-regularity of the basis
functions is preserved.

• Using the so far best integration method, i.e. applying Gauss quadrature to the regular
patches, and to the regular subpatches up to a prescribed number of subdivision levels on
the irregular element, we present a valence dependent option for the choice of the number
of levels for integration.

• Based on Schwarz’s re�ection principle, we construct symmetry conditions that get along
with subdivision surfaces. The conditions are applied to the control grid vertices and can
be used for the construction of symmetric limit surfaces. In that regard, we present a
framework to solve PDEs with symmetric boundary conditions on Catmull–Clark limit
surfaces using constrained optimization.

• We present the discretization of the mean curvature �ow on Catmull–Clark limit surfaces.
We give a detailed de�nition of the mass and sti�ness matrices using the two previously
described �nite element approaches. As an application, we calculate the �ow on curved
subdivision surfaces with and without boundary conditions. Furthermore, the calculation
is done on the step-by-step changing geometry. Considering this, we compare the charac-
teristic �nite element approach to the natural approach used in the literature.

• Finally, we introduce a framework to construct periodic Catmull–Clark limit surfaces of
minimal area. In particular, we study the relevance of limit surfaces corresponding to
the critical points of the mean curvature �ow for the approximation of minimal surfaces.
We consider an interoperability system between Catmull–Clark limit surfaces and Cat-
mull–Clark �nite elements.
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1.2 Publications

A part of this dissertation results in a scienti�c publication that will be published as a special
issue in the Computer-Aided Design Journal (Elsevier). In [Wawrzinek and Polthier, 2016], we
deal with the theoretical backgrounds for the integration of generalized B-spline functions on
Catmull–Clark limit surfaces close to singularities. Additionally, we will present this research
work on the "Symposium on Solid & Physical Modeling 2016" in June 2016.
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Chapter 2

Classical Theory of Subdivision

Subdivision surfaces are certain types of geometries, �rstly introduced in computer graphics, for
the representation of smooth surfaces starting from coarse piecewise linear polyhedral meshes,
called control grids. They allow a designer to specify and easily modify the desired shape of an
object. Subdivision surfaces can be described from two di�erent approaches at once, i.e. as the
limit of repetitive operations, and using local spline based parameterization over the control grid
as piecewise spline surfaces.

In this chapter, we provide a short introduction to the subdivision surface formalism. We
present the basic idea of subdivision, brie�y review the history and give a general overview of
the underlying structures. These have some crucial properties that we want present to the reader
for better understanding of its functional power. The classical, namely, the re�nement operation
based point of view is to the fore here. Using the subdivision map, we are able to evaluate the
subdivision surfaces pointwise, i.e. in the vertices of the control grid. However, a link to the
smooth subdivision surface function cannot be avoided. This emphasises the strong connection
between the two approaches of subdivision surfaces.

We start with the de�nition of a polyhedral mesh and consider some fundamental concepts,
which we will utilize in the next chapters. A subdivision control grid, described by a polyhedral
grid, can be viewed as the elementary combinatorial structure of the subdivision concept. It
gives the basic building block for the graph-theoretical patterns on which the evaluation of the
geometrical surface is described.

2.1 Combinatorial structure

The basic concept of subdivision surfaces is an algorithm that produces a series of increasingly
�ner geometries. The geometries are prescribed to be compact sets in the Euclidean space R3
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Figure 2.1: Combinatorial and polyhedral mesh. (a) An example of a combinatorial mesh and its elements:
a vertex v (blue points), an edge e (black lines) and a face f (blue quad). (b) A possible geometric realisation
the combinatorial mesh.

that ful�l given properties. In this section, we review the de�nition of a polyhedral mesh, in the
subdivision setting the so-called control grid. A polyhedral mesh is the most basic geometric
structure used for the representation of shapes in modelling and engineering systems. The main
feature of polyhedral meshes is the �niteness of its dimensionality. Therefore, a smooth surface
representation is expressed and visualized by a �nite set of vertices with the corresponding con-
nectivity that look as much smooth as desired by the designer. In this thesis, we restrict ourselves
to polyhedral meshes that are locally manifolds. Some elementary concepts are presented; the
following de�nitions are based on those described in [Andersson and Stewart, 2010].

2.1.1 Polyhedral meshes

A geometric model embedded in the Euclidean space Rn base on two preliminary descriptions,
the combinatorial and the geometrical description. The combinatorial description is characteriz-
ing the entities of the model, i.e. vertices, edges, faces, solids, etc., and the connectivity between
them. Each entity is bound by a set of entities of the lower dimension. Solids are bounded by
faces, faces are bounded by edges and edges are bounded by vertices. We assume that there are
no isolated vertices, i.e. vertices that are not part of an edge. Isolated edges or faces are also
not allowed, i.e. edges that are not part of a face and faces that are not part of a solid. The geo-
metrical description de�nes where the individual entities of the model are situated in the space
Rn. Combining both descriptions by applying geometric information to the underlying combi-
natorial structure is described as a mesh. Some might ask why separating combinatorics from
geometry would make sense? An advantage of doing this is that the entities of the mesh can
be immediately identi�ed by their vertices. Especially in the context of subdivision surfaces, the
answer is to be found in the fact that subdivision rules are solely described by the combinatorial
description of the mesh.

In this work, a geometrical model is described to be a two-dimensional mesh, i.e. we con-
sider the sets of vertices, edges and faces. We use alternating the term grid for the term mesh.
Moreover, the Euclidean space is considered here by R3. For the notation, we label the entities
of a mesh with small letters. A set of entities is notated with small "typewriter"-font or enclosed
within curly brackets "{ }". An ordered set is denoted by round brackets ( ). The adjacency
relation is represented by square brackets "[ ]".

We begin with the speci�cation of the combinatorial description. From this point of view, all
entities are abstract, this means of purely theoretical nature without an underlying space. Let be
given the �nite sets of vertices

v = {vi |i ∈ ZV = {0, 1, ...,V − 1}} ,
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unordered edges
e = {eij = {vi, vj} |i 6= j, i, j ∈ ZV }

that join two vertices, and faces f = {f}, such that a face f ∈ f is a �nite ordered tupel

f =
(
vi0 , vi1 , ..., viE−1

)
, ik ∈ ZV , k ∈ ZE ,

of E di�erent vertices, where ZE = {0, 1, ...,E − 1}. All told, sets obtained by cyclic permuta-
tion of each element of these are considered. A face f with E vertices is called an E-gon. For
each face f ∈ f, we require E ≥ 3. We assume that the vertices are arranged in a counter-
clockwise sequence; this determines a positive orientation of the face. Furthermore, given a face
f , we consider the corresponding set of unordered face edges

e [f ] =
{
ei0i1 , ei1i2 , ..., eiE−1i0

}
.

The size of the edge set e [f ] is equal to the number of vertices characterizing the face f , i.e.
|e [f ]| = E.

De�nition 2.1 (Combinatorial mesh). Let v = {vi}i∈ZV be a set of vertices. A combinatorial
mesh K is de�ned by a �nite set of faces f obtained from the set of vertices v and the corre-
sponding set of unordered edges e [f] = {e [f ] |f ∈ f}. Considering a face f ∈ K , its edges
are in K , where for each edge e ∈ K its vertices are in K . Two faces sharing an edge e ∈ K are
called neighbours.

We assume, there are no isolated vertices or edges inK . A combinatorial mesh is called pure,
if all faces are the same E-gons. For more precise de�nitions of a mesh and its entities we refer
to the books on algebraic topology, for example see [Munkres, 1984; Spanier, 1981]. An example
of a combinatorial mesh and its entities is given in Figure 2.1.

In addition, we will distinguish between meshes with or without boundary. We consider
therefore the concept of inner and boundary vertices, edges and faces, respectively.

De�nition 2.2 (Interior/boundary edge/vertex/face). An edge e is called interior edge if it is
shared by exactly two faces. If an edge belong to a single face, then it is called a boundary
edge. An interior vertex is a vertex v that is not contained in a boundary edge, otherwise it is a
boundary vertex. A face f is called boundary face, if at least one of the vertices of f is described
to be boundary vertex. An interior face is characterized by only interior vertices.

Hence, each edge of a mesh belongs to at least one and at most two faces f of the mesh. A
boundary is therefore de�ned as

De�nition 2.3 (Boundary and closed mesh). The boundary of a combinatorial meshK , denoted
by ∂K , is the set of all boundary edges. We describe a mesh to be closed or without boundary,
i� the boundary set is empty, otherwise the mesh has a boundary.

Additionally, a combinatorial meshes have to satisfy the following property

De�nition 2.4 (Local planarity). We call a combinatorial mesh locally planar if each edge is an
inner or boundary edge. Additionally, if for all vertices v ∈ K , the k+1 faces fi that coincide at a
vertex v can be ordered in such a way that fi meets fi+1 at an edge containing v , for i = 0, .., k−1.
For inner vertices v ∈ K , the face fk meets f0 along an edge. Non-consecutive faces do not share
a vertex apart from v.

According to this de�nition, a combinatorial mesh consisting of faces that meet only in a
single vertex is not locally planar. In Figure 2.2, allowed and not allowed cases are shown.
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(a) (b) (c)

Figure 2.2: Local planarity. Examples of: (a) a non-local planar mesh, (b) a local planar mesh with solely
boundary vertices and (c) a local planar mesh with one inner vertex.

In the subdivision literature, the concept of meshes with "arbitrary topology" is an often used
catchword. The "arbitrary topology" allows for di�erent connectivities of the mesh entities in
order to enhance the shape of the mesh. The local planarity of this mesh has to be ensured. Due
to this property, the combinatorics are not any more completely arbitrary.

At this point, we consider a mesh enclosed in the Euclidean space R3. We obtain an embed-
ding of the combinatorial mesh into the space R3. The vertices v ∈ K are therefore attached to
geometric positions in R3. We consider for each vertex v ∈ v a point c ∈ R3 that describes its
position. The embedded mesh is de�ned as follows

De�nition 2.5 (Polyhedral mesh). Let v = {vi}i∈ZV be a set of abstract vertices and K be an
combinatorial mesh on v. A polyhedral mesh C of the mesh K is given by the pair C = (K ,c),
where c = {ci}i∈ZV is the set of geometric points ci ∈ R3. The points ci describes the positions
of the corresponding abstract vertices vi ∈ v in the Euclidean space R3. A polyhedral mesh
is called a mesh without boundary if K is a mesh without boundary. Additionally, C is called
manifold if it describes a subspace of R3 and is locally planar.

Remark 2.6. Given an indexing of the vertices vi inK with |v| = V , V is the number of vertices.
There exist a isomorphism ϕ : K → C between the vertices vi ∈ K and the geometric positions
ci ∈ C, such that

ϕ (vi) = ci

is bijective and consequently |c| = V . It is easy to see that, if C′ = (K ,c′) is another polyhedral
mesh of K with the isomorphism ϕ′ : K → C′, then ϕ′ ◦ ϕ−1 : C → C′ is also an isomorphism.

Additionally, let C′ = (K ′,c′) be a polyhedral mesh, such that C′ ⊂ C. We call C′ a subgrid
of C.

Considering the above, the given isomorphisms maps vertices to vertices, edges to edges, and
faces to faces. Through the choice of the combinatorial mesh K and the geometric positions c,
we determine the shape of the polyhedral mesh in R3.

2.1.2 Mesh structures for subdivision

We consider a polyhedral mesh C = (K ,c) over the combinatorial mesh K with the set of
geometric positions c to use it for the construction of a subdivision surface. In this context, the
polyhedral mesh C specify the so called control grid and the geometric positions ci are called the
positions of the control vertex. Additionally, the faces of C are called elements of the grid. Thus,
the shape of the control grid is controlled through the change of positions of the control points.

De�nition 2.7 (Valence). The valence ν of a vertex v ∈ K is described by the number of edges
e incident in v .
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(a) (b) (c)

Figure 2.3: The neighbourhood of a vertex (orange vertex). Examples of: (a) an incomplete and (b) a complete
one-neighbourhood of a vertex of valence �ve, and (c) a two-neighbourhood of a vertex of valence �ve.

We take into account two types of vertices, ordinary and extraordinary vertices. The type is
determined by the valence of the vertices after performing some re�nement steps, i.e. it depends
on the applied re�nement rules. Therefore, an ordinary vertex is prescribed by the most appear-
ing vertex valence. The remaining vertices are called extraordinary. However, a regular tiling
of the plain with identical elements is a crucial factor for the re�nement rules. In the case of
triangular and quadrilateral tilings, it is common to de�ne rules that produce ordinary vertices
of valence six and four, respectively.

There are three fundamental types of grids to be distinguished by their combinatorics: the
regular, ν-regular and irregular mesh. The �rst type is characterized through the regular tiling
of the plain by identical elements with identical connectivities. The regular mesh is a pure mesh,
such that each vertex has the same valence. Purity of a grid concerns only the elements, i.e. the
grid is pure, if each element have the same number of edges, otherwise it is called nonpure.

At this point, we add one irregularity to the regular grid. By doing so, we obtain a grid,
such that the valence of one of the vertices is di�erent than the other. We consider the so called
ν-regular grid

De�nition 2.8 (ν-regular grid). A ν-regular grid is a pure grid for that all inner vertices has the
same valence except one vertex vc with the valence ν unequal to the dominant valence. We call
the vertex vc the central vertex of the ν-regular grid.

The ν-regular grid is a grid with a single vertex of extraordinary valence ν. In general, the
central vertex will be identi�ed with zero in the plane. For the last type, the valence of the vertices
is arbitrary; we distinguish between pure and nonpure irregular grids.

We consider two important submeshes of K that we will use more often in this work. For
the following de�nition, we examine the neighbourhood of a control vertex.

De�nition 2.9 (One-/n-neighbourhood). An one-neighbourhood of a vertex v ∈ K is the sub-
mesh of K consisting of all faces of the grid that have v as a vertex. A n-neighbourhood of
v is de�ned recursively as the union of all one-neighbourhoods of all vertices in the (n − 1)-
neighbourhood of the vertex v . A one-neighbourhood is called complete, if v is an interior vertex,
and incomplete, if v is a boundary vertex.

Examples of a complete and an incomplete one-neighbourhoods and a two-neighbourhood
of a vertex are shown in Figure 2.3.

Additionally, we examine the neighbourhood of a single element in the grid K and consider
the following de�nition:

De�nition 2.10 (One-/n-ring). An one-ring of a face f is the union of f and all faces sharing at
least one vertex with f . A n-ring of f is the union of the one-rings of all faces in the (n− 1)-ring

9



(a) (b) (c)

Figure 2.4: The ring of an element (blue quad). Examples of: (a) an incomplete one-ring, (b) a complete
one-ring and (c) a two-ring of an irregular element with one extraordinary vertex of valence �ve.

around f . The one-ring of a face f is complete if all vertices of f are interior in the one-ring.
Otherwise, the one-ring is called incomplete.

In Figure 2.4, di�erent n-rings of a quadrangular element are shown. Considering complete
one-rings, we distinguish between regular and irregular elements. An element f is called regular
if all of its vertices are ordinary. If at least one of the vertices is extraordinary, then the element
is called irregular.

2.1.3 Re�nement of meshes

Given a control grid C = (K,c) with the underlying combinatorial grid K and the set of vertex
positions c. A new grid K ′ based on the grid K is constructed by two steps. In the �rst step,
a new vertex set v′ is established by adding new vertices to the vertex set v of the mesh K .
Connecting appropriate vertices in v′ leads to a new grid K ′. This procedure is called a com-
binatorial re�nement of a control grid. It can be adopted directly by the control grid C leading
to a new control grid C′ over K ′. However, we ignore here the procedure of �nding geometric
positions of the new vertices.

Considering the connectivity of K and the resultant K ′, we distinguish between primal and
dual re�nement methods. The primal method produces meshes that can be seen as pure re�ned
versions of the considered mesh. In this context, we describe the splitting operation overK , that
is, the edges are split in two edges, and the elements into E elements, where E is the number
of edges of an element. Moreover, we add one vertex for each edge and one vertex for each
face, if necessary. We distinguish between prior, edge and face vertices in K ′, that corresponds
to vertices, edges and faces in K , respectively. We connect the vertices in K ′ according to the
following rule: each prior vertex has to be connected to the edge vertices of the edges incident
to the vertex in the grid K . If there are face vertices, each edge vertex has to be connected with
the face vertices of the faces sharing this edge in the grid K . Otherwise, the edge vertices are
connected among each other. An example of a primal re�nement is shown in Figure 2.5 (a).

Looking now at the dual method, the idea is to construct the dual meshK ′ of the given mesh
K . The mesh K ′ is a mesh that has a similar scaled face for each face of K and has one edge
whenever the corresponding endpoints of the parallel edges of two scaled faces are separated
from each other by an edge in K . Thus, each vertex has a corresponding dual face, whose edges
are the edges of the faces corresponding to the edges incident in the vertex. This operation
is known as corner cutting, whereby the illustrative construction is described as follows: we
�rst cut o� the vertices and then the edges of the K , such that the resulting edges meet in the
new vertices of the vertex cuto�s. This justifys the naming of the corner cutting operation. An
example of a dual method is shown in Figure 2.5(b).
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2.2 Subdivision schemes

One of the main challenges facing the area of computer graphics and applied mathematics is
the representation of smooth complex surfaces in the computer. Over the years, many di�erent
approaches to this topic have been constructed. The most common constructions are based on
parametric representations, as for example B-spline and NURBS surfaces. Moreover, these ap-
proaches are described using a control grid. This is, the corresponding smooth surface is created
as a weighted sum of the vertices of the grid, i.e. the surface is characterized to be a blend of
the vertices with the corresponding basis functions. The parametric approach o�ers a number
of decisive advantages, but it also has weaknesses. For example, it allows to construct complex,
high quality shapes that are directly evaluated over a coarse control grid. Therefore, we can start
with a rough idea of a shape, while at the same time operating with a smooth surface. How-
ever, the obtained shapes are restricted to a rectangular parameter space. More complex shapes,
such as spheres or geometries with handles, cannot be represented by a single surface patch.
Although, almost any closed surface has to be composed of more than one surface patch. The
smooth transition between the individual patches is very important for the representation, but
this can be very di�cult to achieve. Cases such as this are the reason why the goal would be
to �nd a surface representation that is compact and simple to manipulate, and allows for any
topological structure of the parameter space.

A very promising alternative is a concept called subdivision surfaces. It has been designed in
order to repair the major issues of the parametric representations known at that time. Subdivision
surfaces are piecewise smooth surfaces having no restrictions to the topology of the geometry. As
already mentioned, the classical underlying principle of subdivision surfaces is a scheme using
repeated subdivision of coarse control grids that allows for intermediate shape manipulation.
The schemes utilize subdivision rules for regular elements and generalize these for elements
with irregularities. The iterative process generates step by step a series of increasingly �ner
geometries. If the mesh series converges, we say that the subdivision scheme is well-de�ned,
and therefore results in a surface called subdivision or limit surface. The topology of the limit
surface is determined by the topology of the initial control grid. The shape and smoothness of
such a limit surface depend on the applied subdivision scheme.

In the following, we give a general view to the motivation behind subdivision surfaces. Addi-
tionally, the basic principles and an overview of the existing schemes are presented to the reader.

2.2.1 Brief overview of existing subdivision schemes

Subdivision surfaces have been �rstly introduced by Catmull and Clark [Catmull and Clark,
1978], and Doo and Sabin [Doo and Sabin, 1978] in 1978. At that time, due to the needs of the
industry, the two independent research groups presented their ideas on the subdivision scheme

(a) (b)

Figure 2.5: Re�nement of meshes. Illustrations of (a) the primal and (b) the dual re�nement. The initial grid
is shown in black. In the primal re�nement, the re�ned grid is given by all points, where the black vertices
are the adopted points from the previous mesh and the blue vertices are new. In the dual re�nement, the new
mesh is given by the blue vertices, the grey mesh represents the rejected old mesh.
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Year Algorithm Grid Surface Degree Class
1978 Catmull-Clark [Catmull and Clark, 1978] � approx bicubic C2

1978 Doo-Sabin [Doo and Sabin, 1978] � approx biquadratic C2

1987 Loop [Loop, 1987] ∆ approx quartic C2

1990 Butter�y [Dyn et al., 1990] ∆ interpol n/a C1

1996 Kobbelt [Kobbelt, 1996] � interpol n/a C1

1997 Simplest [Peters and Reif, 1997] � approx quadratic C1

1998 TURBS [Reif, 1998] � approx bi-(2k + 2) Ck

2000
√

3-Subdivision [Kobbelt, 2000] ∆ approx n/a C2

2001 4–8 - Subdivision [Velho and Zorin, 2001] ∆ approx sixtic C4

2001 Circle preserving [Morin et al., 2001] � approx cubic, trigonom. C2

2002 Ternary triangle [Loop, 2002] ∆ approx quartic C4

2003 Quad/triangle [Stam and Loop, 2003] ∆,� approx bicubic, quartic C2

2004 4–3 [Peters and Shiue, 2004] ∆,� approx quartic C2

2004
√

2-Subdivision [Li et al., 2004] � interpol sixtic C4

Table 2.1: Subdivision zoo. An overview of some of the existing subdivision algorithms, in a chronological
order. Additionally, some of their properties are given.

that has been used for the design of smooth looking object in the computer. The construction
of the so-called free-form surfaces has been invented. The underlying principle is the follow-
ing: the elements of an initially designed coarse control grid are divided into smaller elements
that better approximate the piecewise smooth limit surface [Schröder and Zorin, 1998]. Con-
sequently, smooth free-form surfaces are de�ned algorithmically as the limit of the recursive
process of subdivision. The two algorithms of the subdivision pioneers are generalizing bicubic
and biquadratic B-spline re�nement, respectively, producing quad meshes. The limit surfaces
are almost everywhere of the appropriate smoothness. Using this idea, subdivision schemes for
triangular meshes immediately followed by Loop’s [Loop, 1987] and the Butter�y subdivision
schemes [Dyn et al., 1990].

Over the years, various subdivision algorithms have been invented or adapted to meet spec-
i�ed quality requirements for applications. An example is the quad/triangle subdivision [Stam
and Loop, 2003]. The scheme combines Catmull–Clark’s with Loop’s subdivision. These are ap-
plied separately to the quad and triangular part of an arbitrary mesh, whereby for the connecting
elements new rules have been developed. Thus, along the connecting elements the limit surface
loses on quality and it is only C1- continuous. Since the Catmull–Clark subdivision by itself has
been designed for quad meshes and has an undesirable shape on triangular elements, its combi-
nation with Loops algorithm improves the overall surface quality and became more applicable.
Also the circle preserving algorithm of Morin et al. [Morin et al., 2001] has been designed to con-
struct an individual type of surfaces, i.e. surfaces of revolution are in the focus of this subdivision.
Therefore, using cubic polynomials, the subdivision is capable to reproduce circles and hyper-
bolic functions. A tension parameter is introduced that allows to obtain C2-continuous surfaces
everywhere except at extraordinary vertices, where it isC1-continuous. Further on, the simplest
subdivision [Peters and Reif, 1997], 4-8-subdivision [Velho and Zorin, 2001] and

√
3-subdivision

[Kobbelt, 2000] have been invented to lower the number of newly added vertices. Additionally,
a greater control over the size of the re�ned mesh is one of the most important aims. Notable
constructions are free-form splines [Prautzsch, 1997] and TURBS [Reif, 1998]. They support an
arbitrary degree of surface smoothness, even at the extraordinary vertices. Both subdivision
techniques are based on functions of bi-degree (2k+ 2) and describe a total Ck-continuous sur-
face. For a deeper survey of subdivision schemes we refer to [Zorin and Schröder, 2000; Peters
and Reif, 2008; Cashman, 2012; Ma, 2005].
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In summary, considering the existing subdivision zoo, all of the subdivision algorithms has
been constructed to produce almost everywhere quad or triangular meshes. Some of the schemes
follow the idea to interpolate the vertices of the initially used control grid, whereas others have
an interest in certain smoothness requirements producing approximate surfaces. Although sub-
division surfaces are de�ned by its algorithmic idea, for some of the algorithms an analytical
representation is known. Furthermore, there are many known subdivision surfaces with tan-
gent (C1-), curvature (C2-) and also higher continuity. All of the subdivision surfaces contain
some isolated points, called singularities. We describe with the term singularity individual points
where the general well-behaving di�erentiability fails. For example, the subdivision surface of
the Catmull–Clark scheme is C2-continuous everywhere except the limit positions of the ex-
traordinary vertices where the surface is only C1-continuous. A list of several well-known re-
�nement algorithms and their properties is given in Table 2.1.

2.2.2 Subdivision basics

The basic idea of subdivision has been summarized in [Zorin and Schröder, 2000] as follows:
"Subdivision de�nes a smooth curve or surface as the limit of a sequence of successive re�ne-
ments". Building on this, subdivision is an iterative process to generate increasingly �ner and
smoother looking control grids from an arbitrary control grid by applying a set of operations.
This is, each newly generated mesh has a larger number of vertices, edges and elements. We
understand the corresponding subdivision scheme as the underlying tool kit with the rules gov-
erning the operations. To �nd these rules, we start with the re�nement of regular grids and study
how the subdivision e�ects and what properties characterize the limit surface. The generaliza-
tion of these rules to an arbitrary grid determines the �nal subdivision scheme.

A subdivision scheme describes how to proceed in each level of the process. In general, each
level is obtained applying a similar set of operations, but it is not a necessity. Two operations
per level are speci�ed, the re�nement and the smoothing operation. In the re�nement operation,
we add new vertices to the control grid as has been described in Section 2.1.3. Applying the
smoothing operation, we assign the geometric positions to the new set of vertices. These are
derived from the vertex positions in the previous grid.

The repositioning rules of a newly added vertex are de�ned from vertex positions in a fairly
small neighbourhood of this vertex in the previous grid. The rules can be visualized using the
so-called subdivision masks.

De�nition 2.11 (Subdivision masks). A subdivision mask illustrates graphically the weightings
of the vertices in the old grid that are considered for the computation of the positions of a par-
ticular vertex in the new control grid obtained after one level of subdivision.

(a) (b) (c) (d)
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Figure 2.6: Subdivision masks of the Catmull–Clark subdivision scheme. The current grid is used to compute
the position of the newly added (a) face points, (b) edge points, and (c) regular and (d) irregular vertex points
(orange vertices), where ν is the valence of the central vertex. The weights are assigned to the corresponding
vertices (blue) of the current mesh.
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The subdivision masks provide an intuitive, index free representation of subdivision rules. If
the sum of the weights in the mask is one, the scheme is a�ne invariant. In Figure 2.6, subdivision
masks of the Catmull–Clark scheme are shown.

The scheme is called stationary if in each step the applied operations are identical. Otherwise,
the scheme is a dynamical scheme. Note that during the subdivision process the number of
extraordinary vertices is constant. It can increase insigni�cantly in the �rst level, if the mesh is
nonpure, but in the subsequent levels only ordinary vertices will be generated. This leads to the
isolation of the existing extraordinary vertices.

2.3 Fundamentals of subdivision surfaces

As already mentioned, the subdivision process is an iterative process generating a series of con-
trol grids. The progressively �ner grids have an exponentially growing number of entities. In that
sense, data storing is one of the accompanying challenges of using this concept. Additionally,
the computation of the following series member is described by a global change, i.e. it in�uences
the total control grid. Due to the locality of the subdivision rules, the global issue can be split
into a sequence of local re�nements that exhibits some important qualities. However, a partic-
ular challenge is to determine the limit surface and its properties. The properties of the arising
subdivision surface can be obtained by studying the local subdivision.

In the following, we review some strong conceptional and technical backgrounds to calcu-
late the limit surface. Additionally, we discuss elementary concepts that allow us to understand
subdivision surfaces as limits of iterative operations on control grids.

2.3.1 Subdivision process

Starting from scratch, let
C0 =

(
K0,c0 =

{
c0
i

}
i∈I0

)
be an arbitrary control grid described by the combinatorial mesh K0 together with the set c0 of
vertex positions c0

i in R3, where i ∈ I0 is the index of a vertex and I0 ⊂ N is the ordered vertex
index set of K0. We call C0 the initial control grid.

The subdivision is described by the repeated application of prescribed subdivision rules to
the control grid. The iterative process can be graphically represented as the chain

C0 → C1 → C2 → ...,

of successive control grids Ck, k ≥ 0, where "→" symbolizes one level of the process. Here, the
mesh Ck+1 is described over the mesh Ck and by an ongoing repetition of the procedure, we can
�nd its roots in C0. According to that, we consider the set

C [K0] :=

{
Ck
∣∣∣∣ Ck (Kk,ck =

{
cki

}
i∈Ik

)}
k∈N

(2.1)

of all increasingly �ner meshes over K0, i.e. the number of vertices is increasing and Ik ⊂
Ik+1. Furthermore, for each control grid Ck ∈ C [K0], we assign a control vertex matrix C∗k

T =(
ck0, ck1, ck2, ...

)T . The entries cki , i ∈ Ik, are the position vectors of the control vertices in Ck.
Corresponding to the averaging operation, the positions of the vertices in the re�ned mesh are
obtained from the vertex positions in the previous mesh. Moreover, the relation is linear. A
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subdivision scheme describes the following mapping

S∗ : Ck → Ck+1

C∗k+1 = S∗C
∗
k ,

with the adaptive matrix S∗, called the global subdivision matrix. The mapping S∗ corresponds
to the re�nement rules used to construct the combinatorial mesh Kk+1 from Kk. It assigns
spatial positions ck+1 to the vertices in Ck+1. It should be noted that S∗ is growing with each
following level according to the increased number of control grid vertices. As mentioned before,
we are able to rewrite C∗k back to the initial grid C0,. This is given as follows:

C∗k = S∗C
∗
k−1 = S2

∗C
∗
k−2 = ... = Sk∗C

∗
0 ,

where Sk∗ = S∗S
k−1
∗ = S∗S∗...S∗ is a product of matrices of increasing sizes. The matrices

are prescribed by the connectivity of the vertices and the subdivision masks. That is, the matrix
entries are prescribed by the weights used to obtain the newly added vertices distributed in such
a way that relation between the new and old vertices is ful�lled.

If a subdivision scheme is convergent, then the series

C0 → C1 → C2 → ...→ S∞C0,

converges to a smooth limit surface S∞C0. After all, applying S∗ in�nitely many times should
lead to the same limit surface, i.e.

S∞C0 = lim
k→∞

Sk∗C
∗
0 .

The question that is addressed in the upcoming section is: what does it mean to the scheme that
it is convergent?

2.3.2 Subdivision surface function

Considering an arbitrary initial control grid C0 and a given subdivision scheme S∗, let C [K0] be
the set of control grids over K0 generated by means of the subdivision process. Let the vertices
of two successive control grids be labelled in such a way that the old vertices keep their indices
and the new vertices get new indices. When applying subdivision, for a control point ckj ∈ Ck in
Ck ∈ C [K0], where j ∈ Ik. The set Ik ⊂ N is the ordered set of vertex indices of Kk in Ck. Let
ck+i
j be the position of ckj after i levels of subdivision, i ∈ N, i.e.

ck+i
j =

[
C∗k+i

]T
j

=
[
Si∗C

∗
k

]T
j
∈ Ck+i,

where ckj = [C∗k ]j . The term [ · ]j denotes the restriction of the control vertex matrix to the
position of the vertex ckj .

A subdivision scheme is called convergent if, for each vertex ckj ∈ Ck, and each k ∈ N, there
exists a continuous function S∞Ck ∈ C (Kk), such that

lim
i→∞

sup
i∈Ik

∣∣∣∣∣∣ck+i
j − S∞Ck

(
ckj

)∣∣∣∣∣∣ = 0. (2.2)

The function S∞Ck is called the subdivision or limit surface function.
For a given combinatorial mesh K , let C (K) = S∞C [K] be the space of all continuous

functions over K called the shape space over K . In the following, we denote by C [K] the set of
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all control grids over K . Furthermore, since the map S∗ is linear, the operator

S∞ : C [K]→ C (K) .

is linear. The subdivision surface function S∞C describes the limit surface of a given control grid
C = (K,c) over the mesh K and a prescribed set of geometric positions c.

SupposeKk with the setvk =
{
vki
}
i∈Ik

of abstract vertices is a k times re�ned combinatorial
mesh generated from an initial grid K0 by means of the subdivision process. Let S∞C [Kk]

be the space of subdivision surface functions over Kk. Considering the structure of S∞C [Kk]

underlying the �xed combinatorial mesh Kk, we may ask for a basis of the shape space S∞Ck.
An obvious choice of the basis is given by the knot basis

δki

(
vkj

)
=

{
1 if i = j

0 if i 6= j

for all i ∈ Ik. The union of all knot functions corresponding to Kk describes the set
{
δki
}
i∈Ik

of linear functions. Now, for each i ∈ Ik, we consider δkiKk to be an almost �at control grid
in C [Kk], where only the ith vertex is one higher than the others. The ith subdivision surface
basis functions Bk

i is therefore obtained by applying the subdivision surface function to the
control grid δkiKk, i.e. Bk

i = S∞δkiKk. Based on the locality of the subdivision scheme, the
basis function Bk

i is non-zero only in a closed neighbourhood corresponding to the vertex vki
in δkiKk. Consequently, for an arbitrary control grid Ck in C [Kk], the control points cki can be
written using the knot basis as cki = cki δ

k
iKk. The subdivision surface corresponding to Ck can

be obtained from the linear combination

S∞Ck =
∑
i∈Ik

ckiB
k
i .

Additionally, let Ck be obtained from an initial control grid C0 by applying k levels of a con-
verging stationary subdivision scheme, such that Ck ∈ C [K0]. For the subdivision surface S∞Ck,
we have

S∞Ck =
∑
i∈Ik

ckiB
k
i =

∑
i∈Ik

[
Sk∗C

∗
0

]T
i
Bk
i =

∑
i∈Ik

c0
i

(
Sk∗

)T
Bk
i .

Considering the initial control grid C0 and the associated subdivision surface basis
{
B0
i

}
i∈I0 , the

limit surface S∞C0 ∈ C (K0) is given by

S∞C0 =
∑
i∈I0

c0
iB

0
i .

IfB0
i =

(
Sk∗
)T
Bk
i , then S∞C∗0 = S∞C∗k is satis�ed. Consequently, this means, the limit surface

do not change during the subdivision. Hence, we observe the relation S∞C∗0 ⊂ S∞C∗k . For more
information on the stationary subdivision and the representation of subdivision surfaces, please
refer to [Cavaretta et al., 1991].

Finally, we establish an elementwise description of the subdivision surface. We consider an
element f in the control grid Ck; this is described by its vertices. Let

{
b
f
i

}
i∈Ik

be the set of pieces

of the subdivision basis functions
{
Bk
i

}
i∈Ik

corresponding to the element f. Assume, for all bfi
a parameterization over a common domain Ω ⊂ R2 is given, such that bfi : Ω → R. Due to the
subdivision basis functions, only a �nite number of local basis functions bfi is unequal to zero
in f. Let If be the set of indices of the basis functions with a non-zero support in f. The set
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{
b
f
i

}
i∈I fk⊂Ik

is called the generating spline of f. Moreover, it is the maximal set of basis functions

to parameterize the element f. The generating spline is consequently the set of all basis functions
needed to parameterize the limit surface over the appropriate control grid element f.

De�nition 2.12 (Maximal basis subgrid). Let f be an element of Ck and
{
b
f
i,
}
i∈I fk

its generating

spline. The set of corresponding control vertices describes a local subgrid Cf of Ck. We call the
subgrid Cf the maximal basis subgrid of f.

As a result, the surface S∞Ck can be parameterized elementwise. The limit surface patch
over each element f of the control grid can be described by

S∞Ck|f =
∑
i∈If

cki b
f
i (u, v) , (u, v) ∈ Ω,

where S∞Ck|f is the restriction of the limit surface S∞Ck to the element f. Nevertheless, an ex-
plicit parametric representation of the subdivision basis and the generating spline are not known.
An inverse construction is described in Section 3.2.5 for the Catmull–Clark subdivision surface.
Therefore, a parameterization of the subdivision surface basis functions is determined from a
certain parameterization of the generating spline.

2.3.3 Subdivision map and its eigenstructure

In practice, we do not need to handle the global subdivision and the corresponding matrix S∗
that grows with each subdivision step. Because of the locality of the subdivision scheme that, the
subsequent control grid Ck+1 can be generated by applying the subdivision rules piece by piece
to a portion of the control grid Ck. Let

CK0 =
(
K,
{
c0
i

}
i∈I

)
be a subgrid of the initial control grid C0, such that K ⊂ K0 is a combinatorial subgrid of K0

with a speci�ed ordering of vertices vKi ∈ K , for i ∈ I , where I is the local index set of K . The
ordering is given as follows: we select a central vertex vc = vK0 ∈ K . The vertex vc remains
�xed to the global index during the subdivision, whereby all the other local vertices will change
its global indices according to the re�nement of K .

De�nition 2.13 (Subdivision map). Given an initial subgrid CK0 ⊂ Cl over a speci�ed combina-
torial gridK . A control vertex matrixC0 is assembled based on the vertex positions

{
c0
i

}
i∈I . We

select an internal vertex vc ∈ K to be the central vertex. Let S be the local subdivision matrix
that determines the subdivision near the vertex vc, such that vc remains �xed. Additionally, the
matrix S is preserving the prescribed grid K . The mapping

S : CKk → CKk+1

Ck+1 = SCk

is called the subdivision map.

For all k ∈ N, the control grid CKk ⊂ Cl+k is a subgrid of Cl+k restricted to K . In the process,
a reordering of the vertices is obtained. This means, the local indices except the central vertex
will be assigned to the appropriate vertex indices in the global ordering.

The subdivision map is de�ned as a linear transformation of the neighbourhood CKk �xed
by K close to the central vertex vc. Due to the fact that the combinatorial structure before and
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after the local subdivision does not change, the matrix S remains unchanged for each subdivision
level. This means, the size of S depends on the subgridK and will not change during the process.
Moreover, the local matrix S is given by an appropriate clipping of the global matrix S∗ to the
subgrid K . In Figure 2.7, an example of a subdivision map of a given subgrid CK0 ⊂ Ck is shown.

The subdivision map plays an important role to prove the convergence and smoothness of the
subdivision process. For analysis purposes, such as convergence analysis of subdivision schemes
in irregular vertices, the choice of K is predetermined by the in�uence of the subdivision rules
and the in-depth investigation purpose, see [Andersson and Stewart, 2010] Chapter 5.5. Thus,
the converse problem has to be obtained: Consider a set of local subdivision masks, and the as-
sociated subdivision matrix for a given combinatorial mesh K . When applying the associated
subdivision, does this scheme de�ne a good-behaving surface? Note, the separation of the com-
binatorial mesh from its geometric positions is a signi�cant issue of the subdivision process that
we will make use of in this section.

In the following, we review some concepts from linear algebra that we will use for the study
of the local subdivision matrix, for more details see for example [Fischer, 2009]. Let B be an
arbitrary square m × m-matrix. The matrix B is called non-defective, if it is nonsingular and
has a complete basis of eigenvectors. If this is the case, then the matrix is diagonalizable and a
complete eigenstructure of the matrix is given by the set of its eigenvectors and the corresponding
eigenvalues. On the other hand, to each eigenvalue λi are associated exactly two eigenvectors
υri and υli, i = 0, ...,m− 1. These are called the right and the left eigenvector, respectively. We
de�ne the pair (Λ,V ), where Λ is a diagonal matrix de�ned by the ordered set of eigenvalues
{λi}, and V is an invertible matrix. We call the pair of matrices the eigenstructure of matrix B.
However, to determine the eigenstructure of the matrix B we have to solve one of the following
eigenproblems

BV R = VRΛ or VLB = ΛVL

where the ith eigenvalue corresponds to the right eigenvector in the ith column of the matrix
VR and the left eigenvector in the ith row of the matrix VL, respectively. Hence, the eigenstruc-
ture is determined by the considered eigenvalue problem, i.e. V is described by the right or
left eigenvectors, respectively. Now let υr be a right eigenvector to the eigenvalue λ. Because
(υr)T B =

(
BTυr

)T
= λ (υr)T , the left eigenvectors of B are just the right eigenvectors of the

transposed matrix BT . Consequently, the following relation holds VR = V −1
L = V .

For the given submesh CK0 over K , we assemble the control vertex matrix CT0 =
(
c0

0, c0
1, ...

)
,

where the entries c0
i ∈ Rn, i ∈ I , are position vectors of the vertices in CK0 . Let S be the local

(a) (b)

Figure 2.7: Local subdivision. The relation between the local and global indices and the reordering by means
of the local subdivision. We consider the subgrid CK0 ⊂ Ck . In Figure (a), the grid CK0 is shown with elements
and labels coloured in blue. The global labels are grey. Figure (b) shows the grid CK1 , the �rst subdivision of
the grid CK0 . The vertex vc = vK0 is the central vertex of the local grid, the vertex remains associated to the
same global vertex.
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subdivision matrix given as in De�nition 2.13. In the following, we examine the eigenstructure of
S. Due to the desired properties, all known subdivision schemes have a non-defective subdivision
matrix S. For schemes with defective matrix S, a similar analysis can be performed using Jordan
decomposition of S. Therefore, suppose S is a non-defective subdivision matrix. Let V a the
matrix, such that the columns of the matrix are described by the right eigenvectors υri , i =

0, 1, ...,m− 1, of S. Hence, the following equation holds

SV = V Λ, (2.3)

with the eigenvalue matrix Λ, where the eigenvalues λi, i ∈ I , describes the diagonal entries
of Λ. Let the eigenvalues λi be sorted in a non-increasing order, i.e. λ0 ≥ λ1 ≥ ... ≥ λm−1.
Thus, the ith right eigenvector υri corresponds to the eigenvalue λi and Sυri = λiυ

r
i , due to

Equation 2.3. Once we calculated the right eigenvectors, we can determine the left eigenvectors
by the orthogonality condition (

υlj

)T
υri = δij , (2.4)

where δij is the Kronecker delta.
As a consequence, the matrix C0 can be expressed uniquely in terms of the basis of eigen-

vectors. This is described by
C0 =

∑
i∈I

υri a
T
i , (2.5)

where ai, i ∈ I , are the corresponding n-dimensional coe�cient vectors. Applying an arbitrary
left eigenvector υlj to control vertex matrix C0 will result in(

υlj

)T
C0 =

(
υlj

)T∑
i∈I

υri a
T
i =

∑
i∈I

(
υlj

)T
υri a

T
i = aTj ,

due to Relation 2.4. Further, applying the subdivision matrix S to C0 will lead to the sum

SkC0 =
∑
i∈I

λki υ
r
i a
T
i .

Considering the limit con�guration for k →∞, we have

S∞CK0 = lim
k→∞

SkC0.

A subdivision algorithm converges, if λ0 = 1 > λ1, i.e. λ0 is a strictly dominant eigenvalue, in
the sense that all other eigenvalues are smaller than 1. For the proof, we refer to [Reif, 1995].
Additionally, we assume that a scheme is a�ne invariant. Therefore, the subdivision matrix S
is stochastic, i.e. the rows of the subdivision matrix S sum to one. Thus, the eigenvector υr0
associated with the eigenvalue λ0 = 1 is the m-dimensional vector υr0 = (1, 1, ..., 1)T .

Theorem 2.14. Given a control subgrid CK0 with a prescribed central vertex vc, where C0 is the
corresponding control vertex matrix. Let S be the associated non-defective subdivision matrix, such
that the eigenvalues λi, i = 0, ...,m − 1, ful�l λ0 = 1 > λ1 ≥ .... That is, λ0 is the dominant
eigenvalue. Additionally, we assume that the subdivision scheme de�ned through S converges. The
limit position of the vertex vc is given by

c∞ = CT0 υ
l
0 = a0. (2.6)

This follows from the fact that all other eigenvalues raised to a higher order become negligi-
ble. Considering the above mentioned approaches, the proof is straightforward.
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Proof. Let {υri } be an orthogonal basis given by the right eigenvectors of the subdivision matrix
S. The vertex position matrix C0 can be expressed as a combination of of these eigenvectors υri
of the form C0 =

∑m−1
i=0 υri a

T
i . Thus,

Ck = SkC0 =
∑
i

λki υ
r
i a
T
i .

If λ0 = 1 is the strictly dominant eigenvalue of S, then the transition k →∞ is of the form

C∞ = lim
k→∞

SkC0 = lim
k→∞

∑
i

λki υ
r
i a
T
i = υr0a

T
0

Assume S is a stochastic matrix with υr0 = (1, 1, ...1)T , where the left eigenvectors υli are given
as in Equation 2.4. On the other hand, from applying υl0 to the transition k →∞ follows

(
υ0
j

)T
C0 =

(
υl0

)T
υr0a

T
0 = aT0 ,

see Equation 2.5. Transposing the last result provides the assumption.

We assume the scheme is a standard subdivision scheme.

De�nition 2.15 (Standard subdivision scheme). A standard subdivision scheme is de�ned by a
convergent and stationary subdivision. For every valence ν, the distinct and ordered by non-
increasing magnitude eigenvalues λi of the subdivision matrix S are given according to the fol-
lowing:

• the dominant eigenvalue λ0 = 1,

• there are two equal second largest eigenvalues λ1 and λ2, i.e. λ = λ1 = λ2

• the other eigenvalues, λi for i > 2, are of magnitude strictly less than λ.

The double eigenvalue λ is called the subdominant eigenvalue of S.

The de�nition is taken from Peters and Reif [2008]. Assume, λ is real and positive, and the
geometric and algebraic multiplicity of λ is equal 2. Consequently, the two eigenvectors υl1 and
υl2 associated with λ are linearly independent eigenvectors of S. Moreover, the vectors

t1 = υl1C0 and t2 = υl2C0 (2.7)

describes the tangent plane of the limit surface at the point c∞. The unit normal vector of c∞
can be de�ned by

n∞ =
t1 × t2
|t1 × t2|

. (2.8)

The properties of the subdominant eigenvalue λ of S are shown in the work of Reif [Reif, 1995].
For example, the structure of S encodes the C1-smoothness of the subdivision surface in the
neighbourhood of the vertex c∞.

Summarizing the above, we consider the following aspect: the position and the normal of
the limit surface can be expressed explicitly in terms of the vertices of the control mesh. On the
other hand, even if the limit position and the tangent plane in each control point is given, the
surface might still not be unique in the singularities. The limit surface is therefore not single-
sheeted if the subdivision matrix does not ful�ls the prescribed conditions. Hence, a thorough
analysis of the convergence and smoothness in the neighbourhood of the irregular vertex have
to be executed. We do not want to delve into detail, important references on this topic are [Zorin,
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1998; Peters and Reif, 2008]. In the next section, we address the problem of single-sheetedness
to the exact choice of the parametric domain.

2.3.4 Characteristic map

Given a standard stationary subdivision scheme, we consider the following de�nition:

De�nition 2.16 (Characteristic map). Considering an element f in the control grid Ck, let Cf be
the maximal basis subgrid of f and

{
b
f
i

}
i∈I fk

be the corresponding generating spline. Let vc be

the central vertex of Cf and c∞ its limit position. Given the corresponding subdivision matrix S,
let {λi}i∈I fk be the ordered set of nonincreasing eigenvalues λi of S with the corresponding set
of eigenvectors {υi}i∈I fk . The continuous map

χ : Ω→ R2

χ (u, v) := V T
λ b

f,

is called the characteristic map. Thereby, bf is a vector with the basis functions bfi as entries. The
matrix Vλ = (υ1, υ2) is called the subdominant matrix. The columns υi, i = 1, 2, of Vλ are given
by the two eigenvectors of S corresponding to the subdominant eigenvalue λ. The map χ is
regular, if the Jacobian determinant of χ is unequal zero for all (u, v) ∈ Ω.

The characteristic map is a smooth mapping from the compact domain Ω to R2, that depends
only on the structure of the algorithm and not on the control grid data. It can be seen as the limit
surface of a control grid in R2, where its vertices are described by the rows of the matrix Vλ. The
important components of the characteristic map are the two eigenvectors υi, i = 1, 2. These
determine the local structure of the limit surface in the neighbourhood of the limit surface in
the neighbourhood of the vertex c∞, see Equation 2.7. In [Reif, 1995], the characteristic map
has been introduced for the analysis of the smoothness of subdivision schemes at extraordinary
vertices. The existence of the characteristic map is proven using its injectivity, see [Peters and
Reif, 1997].

A subdivision scheme generates surfaces that are locally manifolds close to the extraordi-
nary vertices, if its characteristic map χ is regular, to be more precise χ is bijective everywhere.
If this is the case, then the inverse map χ−1 exists everywhere. Moreover, the reversibility of
the characteristic map guarantees single sheetedness and C1-continuity of the surface, see [An-
dersson and Stewart, 2010]. The reparametrization of the subdivision surface by means of the
characteristic map provide a functional form for the parametric description of the surface. For a
more precise analysis of the characteristic map, we refer to [Schweitzer, 1996; Zorin, 1998].

The following corollary shows that the eigenvectors of the subdivision matrix S can be ex-
tended to a larger portion of the mesh surrounding the extraordinary vertex. Let S̄ be the en-
larged subdivision matrix corresponding to an extension of the maximal submesh Cf. The fol-
lowing relation between the non-zero eigenvalues of S and S̄ can be established

Corollary 2.17. Let λ be the eigenvalue associated with the subdominant matrix Vλ. Applying the
enlarged subdivision matrix S̄ to Vλ is equal to

S̄Vλ = λV̄λ,

where V̄λ is an extension of the eigenvectors of Vλ to the larger portion of the grid.

Proof. For any enlarged grid K ′ of the grid K surrounding the extraordinary vertex, we can
decompose the control grid CK̄ into CK and CK̄ \CK . The matrix S̄ is an extension of the subdi-
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vision matrix S to the larger portion of the grid CK given by CK̄ \CK . Due to the decomposition
of the control grid, the matrix S̄ has the following block structure:

S̄ =

(
S 0

∗ ∗

)
,

where ∗ corresponds to the CK̄ \CK portion of the grid. Note, an eigenvector of S can be given by
restricting eigenvalues of matrix S̄ to the smaller grid. Is λ the subdominant eigenvalue related
to matrix Vλ of S, then the columns of Vλ are part of the appropriate column of the matrix V̄λ.
Therefore, multiplying by the factor 1/λ will lead to the matrix V̄λ.

In short, the eigenvectors can be enlarged to a larger portion of the grid and have an self-
similar structure with respect to the associated subdivision matrix. The matrix S described in
De�nition 2.16 is the smallest subdivision matrix that allows to determine the characteristic map.
Thus, there exists a smallest subdivision matrix to determine the eigenstructure of all larger
subdivision matrices S̄. For more details, see [Arden, 2001].
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Chapter 3

Generalized B-Splines of
Catmull–Clark Type

As described in the previous chapter, there are many di�erent subdivision schemes, each with its
own valuable advantages. A homogeneous mesh construction or reasonable limit surface prop-
erties describe only some possible examples. In this work, we focus on the Catmull–Clark sub-
division surfaces. As provided by subdivision, it is used to produce smooth surfaces from coarse
control grids enabling an arbitrary topology. Additional to the inherited subdivision properties,
the Catmull–Clark scheme indicates some scheme speci�c characteristics. For example, they al-
low for a compact geometry encoding, have a quad structure good for texturing, and speci�c
surface qualities. Moreover, they are widely utilized in areas such as geometry processing, com-
puter graphics, animation and nowadays also in engineering. At each stage of the process, a
�ner quadrangular mesh is generated from the previous one. Using the classical re�nement idea,
the limit surface of a given control grid is C2-continuous everywhere except at the singularities
[Reif, 1995]. It is proven in [Reif and Schröder, 2001] that the limit surface isC1∪H2-continuous
at singularities.

Using Stam’s parameterization method [Stam, 1998], we can directly parameterize the limit
surface without explicitly applying the time consuming re�nement process to the control grid. At
the limit of the extraordinary vertices, this so-called natural parameterization shows a behaviour
that is undesirable for the prescribed high quality surface. This means, the surface quality is not
any more consistent with the quality given by the classical approach, i.e. the C1-continuity of
the surface at singularities related to the extraordinary vertices has got lost. In order to remedy
this, we consider a parameterization that preserves the continuity. It is based on the characteristic
map. Using this map, the characteristic parameterization is de�ned by a reparameterization of the
natural representation onto the characteristic domain, the image of the characteristic map. Due
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to the complexity of this framework, the computational e�ort to evaluate the surface becomes
very high.

This chapter serves as an introduction into the concept of Catmull–Clark subdivision sur-
faces. We consider both approaches, the repetitive operations on control grids and the limit
surface parameterization with piecewise B-spline functions. We start with the Catmull–Clark
subdivision concept concerning the rules to generate �ner quadrangular control grids. Based on
[Stam, 1998], the natural parameterization of Catmull–Clark subdivision surfaces is discussed.
We review the evaluation procedure and describe the so-called natural generating spline that
allow for an elementwise evaluation of the limit surface. Because of the lack of smoothness, the
closely linked characteristic parameterization is presented. We discuss the characteristic map in
the context of Catmull–Clark surfaces. At this point, we introduce the corresponding element-
wise parameterization called the characteristic generating splines, and discuss its properties.

3.1 Introduction to Catmull–Clark subdivision scheme

The Catmull–Clark subdivision scheme has been introduced in 1978 by Edwin Catmull and James
H. Clark [Catmull and Clark, 1978]. The scheme describes a generalization of the re�nement of
uniform bicubic B-spline surfaces to meshes of arbitrary topology. Given an initial control grid,
after one level of subdivision we obtain a fully quadrangular grid. Performing the correspond-
ing operations iteratively, a set of increasingly �ner quadrangular meshes is produced that con-
verges to the smooth Catmull–Clark limit surface. In the following, we review the rules of the
scheme describing one level of subdivision and, consequently, the whole process. In Figure 3.1,
a schematic illustration of some stages of the subdivision process are shown.

Figure 3.1: Subdivision process. A schematic illustration of the process is shown by some of the intermediate
stages: the initial control grid, the grid in the �rst and the second subdivision stage enclosed by the grid of the
previous stage (grey sca�old), and the corresponding limit surface enclosed by the initial grid are illustrated.
The limit surface is equal to the image of the subdivision surface function related to the initial control grid.

3.1.1 Subdivision rules

As known from the previous chapter, the subdivision process is an iterative process such that
at each level some speci�ed operations are applied to the control grid. Starting with the initial
control grid C0 =

{
K0,c0

}
, at each stage of the subdivision process we obtain a re�ned quad

grid Ck =
{
Kk,ck

}
, k ∈ N, by introducing new vertices and connecting them appropriately.

Considering the Catmull–Clark scheme, three types of new vertices are generated:

• face points: newly added vertices to the mesh Ck that corresponds to the faces of the mesh
Ck−1. The position of these vertices is given as the average of the vertices of the according
face.

• edge points: newly added vertices to the mesh Ck that corresponds to the midpoints of the
edges in Ck−1. The position of an edge point can be calculated as the average of the center
point of the considered edge and the new face points of the faces containing this edge.
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• vertex points: newly added points to the mesh Ck that can be seen as the repositioned
versions of the vertices in Ck−1. The new position of a vertex point is equal to a linear
combination of the positions of the adjacent faces, the midpoints of the adjacent edges, and
the position of the particular vertex in the mesh Ck−1. This is described by the formula:

cv̄ =
cf
n

+
2ce
n

+
(n− 3) cv

n

where cv̄ and cv are the new and old vertex position, respectively, of the vertex point. Let
ν describes the valence of the vertex cv . The average of the ν new faces is denoted by cf ,
ce is the average of the midpoints of the adjacent edges to vertex cv .

Now, the new control grid is generated by connecting the vertices in the following manner:
each face point and all adjacent edge points, as well as each vertex point and all adjacent edge
points are connected by an edge. The new elements are de�ned by surfaces within the connected
edges. The subdivision rules can be illustrated using subdivision masks. The masks related to
the element, edge and vertex points of a regular quad grid are the same as for bicubic B-splines.
Additionally, there are masks for extraordinary vertices, nonquadrilateral elements and edges
between nonquadrilateral elements. The standard masks are shown in Figure 2.6.

The Catmull–Clark scheme describes a primal subdivision. According to this, the re�nement
can be seen as a splitting of the elements of the grid Ck−1. The splitting of the element is given
by a "1 → |e [f ]|" rule. That means, the element f is divided into |e [f ]| new elements, where
|e [f ]| is the number of edges of f .

After the �rst subdivision step, an arbitrary control grid is subdivided into a fully quadrilat-
eral grid. Two steps are all that are needed in order to isolate the extraordinary vertices of a grid.
This means, each irregular element will contain exactly one extraordinary vertex. With each
following step, no new extraordinary vertices will be added into the control grid, only ordinary
vertices and regular elements will newly appear. The total amount of the irregular elements is
constant after the �rst step, but the ratio of the total number of irregular to the total number of
regular elements decreases. Four stages of the subdivision process of an arbitrary control grid
are shown in Figure 3.2.

Figure 3.2: Isolation of extraordinary vertices. The initial control grid and its �rst three subdivision stages.
The initial control grid with boundary is containing a nonquadrilateral element (red element) and an extraor-
dinary vertex (red vertex). The irregular quadrilateral elements are coloured orange, the regular elements are
coloured blue. The grey grid is illustrating the initial grid. A reduction of the boundary elements is obtained.

Within the classical subdivision theory, the generation of edge and vertex points on the
boundary has not been de�ned. Considering a control grid with boundary, we calculate all pos-
sible to determine vertices. Consequently, the boundary elements shrinks with each following
step in the subdivision process. Moreover, in the limit, the subdivision surface does not exist on
boundary elements. An example of a shrinking control grid with boundary is shown in Figure 3.2.

For a given control grid, using the Catmull–Clark subdivision process the series of subsequent
grids converges to a smooth limit surface. Thus, the resulting surface approximates the emerging
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control grids. Nevertheless, the concept permits to adapt the control grid during the subdivision
process to the individual requirements of the designer. This means, the limit surface will be also
adjusted to the shape of the new control grid. The altered control grid is therefore seen as a
new initial grid. However, the modi�ed and unmodi�ed control grids are based on the same
initial con�guration where the modi�cation is described by a linear operation on the control
grid. It may be that the limit surfaces of both grids are di�erent, but the shape space of both is
consequently the same. This �exibility makes subdivision surfaces particularly interesting for
applications where operations in the shape space are regarded.

In Section 2.3.3, a method to calculate the limit surface according the control grid vertices
have been reviewed. Therefore, to determine the limit position of a control grid vertex, an ap-
propriate subgrid CKk of the control grid Ck is taken into account. For the Catmull–Clark scheme,
the valuable subgrid CKk for this operation is described by the one-neighbourhood of the vertex
of which we want to calculate the limit position. The eigenstructure of the corresponding local
subdivision matrix S has to be calculated. The limit position of the vertex is de�ned by the dom-
inant eigenvalue and the corresponding eigenvector of S applied to the associated control vertex
matrix Ck. The same holds for the tangent vectors of the control vertex.

At this point, we are interested in the subdivision surface of the Catmull–Clark scheme. For
each vertex of the control grid Ck, we obtain a subdivision basis function. The non-zero support
of one function corresponds to the two-neighbourhood of the associated control vertex. The gen-
erating spline is described by the non-zero parts of the subdivision basis functions corresponding
to an element of Ck. This allows to parameterize the limit surface piece by piece over each el-
ement in the control grid, see Section 2.3.2. As aforementioned, the Catmull–Clark subdivision
describes the generalization of the re�nement of uniform bicubic B-splines. Due to the subdivi-
sion rules, the maximal subgrid of an element is given by its one-ring, see De�nition 2.12. Using
the one-ring, we distinguish between regular and irregular elements, see Figure 3.3. Therefore,
for a regular element, i.e. all vertices of the element have valence 4, the one-ring is given by a
3× 3 quad grid described by 16 vertices. The generating spline is de�ned by the 16 appropriate
bicubic B-spline basis function patches. If the element is irregular, i.e. at least one of the vertices
is an extraordinary vertex, the number of entities describing the one-ring depends on the irreg-
ularity. Consequently, the generating spline is not that simple any more. A closer look at the
subdivision process shows that in each subdivision stage the irregular element is being replaced
by one irregular element and three regular elements. This results in the partition of the irregular
element in series of regular elements that can be represented piece by piece by bicubic B-spline
patches except the extraordinary vertex. Thus, the generating spline is formed by an in�nite
decomposition into regular elements and the limit of the extraordinary vertex. The resulting
functions are prescribed to be a piecewise bicubic B-spline. The limit surface can be obtained
by a brute force repeated subdivision of the element. The given procedure has been proven to
be valuable and su�cient in the area of computer graphics. Therefore, the Catmull–Clark limit
surface is a C2-continuous surface except at �nitely many extraordinary vertices, where it is
at least C1-continuous. The smoothness of the Catmull–Clark limit surface has been proven in
[Peters and Reif, 1998].

3.2 Natural parametrization of the limit surface

So far, we have an idea of how we can calculate the limit surface element by element using the
generating spline. We distinguish between the regular and the irregular element of the control
grid. Consequently, the limit surface is established by bicubic and piecewise bicubic B-spline sur-
face patches, respectively. To avoid the time consuming subdivision process, a parameterization
of the surface patches can be determined, because of the properties of the underlying surface. A
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Figure 3.3: Elements one-rings. The one-rings of (a) a regular element and (b) an irregular element with
an extraordinary vertex of valence �ve are shown. Additionally, the orders of the vertices in the one-rings are
shown.

stable and e�cient scheme for the evaluation of the Catmull–Clark limit surface has been pre-
sented in Stam [1998]. Therefore, the limit surface can be exactly determined at any point on the
surface without explicitly subdividing the considered control grid.

In this section we review Stam’s algorithm that will be used for the elementwise represen-
tation of the Catmull–Clark limit surface. To use Stam’s algorithm, one essential requirement
has to be ful�lled: the control grid has to be a fully quadrilateral grid with isolated extraordinary
vertices. This means, each irregular element has to contain at most one extraordinary vertex.
For any arbitrary grid, this is easily satis�ed by subdividing the grid at most twice. However,
the theory can be easily extended to any desired control element avoiding the re�nement. From
the parametric description of the generating spline, we determine a suitable parameterization
of the subdivision surface functions called here the generalized B-spline basis functions of Cat-
mull–Clark type. The following notation has been inherited from [Stam, 1998] and adjusted to
our requirements.

3.2.1 Regular surface patch

Given an arbitrary control grid C, consider a regular element with its one-ring, see Figure 3.3 (a).
The limit surface of a regular element is parametrized by uniform bi-cubic B-spline functions.
We assemble the control vertex matrix

CT = (c0, ..., c15)

where the columns ci, i = 0, ..., 15, are given by the position vectors of the sixteen vertices in
the one-ring. The order of the vertices is equivalent to the order shown in Figure 3.3 (a). The
generating spline of a regular element is de�ned by

De�nition 3.1 (Regular generating spline). Let b (u, v) be the vector where the entries are given
by the 16 bi-cubic B-spline basis functions bi. The basis functions bi : [0, 1]2 → R are de�ned by
the formula

bi (u, v) := ni%4 (u)ni/4 (v) , i = 0, ..., 15, (3.1)

where "%" and "/" represents the remainder and the division operation, respectively. The func-
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tions nj (t), with t ∈ [0, 1], denote the four cubic basis polynomials:

n0 (t) : =
1

6
(1− t)3

n1 (t) : =
1

6

(
4− 6t2 + 3t3

)
(3.2)

n2 (t) : =
1

6

(
1 + 3t+ 3t2 − 3t3

)
n3 (t) : =

1

6
t3.

We call b the generating B-spline or the regular generating spline of the element.

The cubic B-spline functions ni, i = 0, .., 3, have the following properties:

• pointwise nonnegativity over the entire domain: ni (t) ≥ 0 for all t ∈ [0, 1],

• strong convex hull property,

• compact local support: ni (t) = 0 falls t /∈ (0, 1),

• partition of unity:
∑3

j=0 nj (t) = 1 for all t ∈ [0, 1],

• C2-continuity.

The properties are inherited directly by the tensor product functions bi. The functions ni can be
written as a linear combination of dilated and translated copies of itself. This principle has been
used for the de�nition of the subdivision rules. Additionally, considering a control grid with
only regular elements, the generating splines of the control grid elements are dilated and shifted
copies of itself.

The parametrization of the limit surface patch is de�ned by the linear combination of the
basis functions bi (u, v) weighted by the control vertices ci. This is given by the sum:

s(u, v) =
15∑
i=0

cibi (u, v) .

The equation can be rewritten into the product of the control vertex matrixC and the generating
spline b, i.e.

s(u, v) = CT b (u, v) , (u, v) ∈ [0, 1]2 .

The partial derivatives of the surface parameterization are obtained by the partial derivatives of
the bicubic B-splines. For example, we consider the partial derivative with respect to the �rst
variable u. The partial derivative of the surface is given by

∂

∂u
s (u, v) = CT

∂

∂u
b (u, v)

where the derivative of the vector b (u, v) has to be derived componentwise, i.e. for each entry
we have

∂

∂u
(bi (u, v)) = n′i%4 (u)ni/4 (v) , i = 0, ..., 15.

This means, the derivatives of the bicubic functions are described by the derivatives of the rel-
evant cubic basis functions n′j (·), j = 0, ..., 3. The same applies to the second variable, respec-
tively.
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3.2.2 Irregular surface patch

Given an arbitrary control grid C0, consider an irregular element and its one-ring, see Figure 3.3
(b). Let ν be the valence of the extraordinary vertex characterizing this element. The one-ring
is given by the subgrid CK0 , where K is the corresponding combinatorial grid. There are 2ν + 8

vertices in K . We assemble the control vertex matrix

CT0 =
(
c0

0, ..., c0
2ν+7

)
,

with the entries c0
i , i = 0, ..., 2ν+ 7 given by the positions of the vertices in the prescribed order

shown in Figure 3.3 (b). Actually, the order does not matter, but the given order simpli�es the
handling of the neighbourhood of the extraordinary vertex with di�erent valences. The index n
of the matrix Cn is used as the indicator for the level of subdivision.
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Figure 3.4: Global one-ring subdivision.
The order of vertices after one global sub-
division of an irregular element. The
resulting irregular and regular subele-
ments are coloured orange and blue, re-
spectively.

Considering the subdivision process, with each step
of subdivision the irregular element is replaced by an in-
creasing number of regular elements. Therefore, it can be
described by a piecewise bicubic B-spline everywhere ex-
cept at the extraordinary vertex. To determine the param-
eterization, we �rst take a look at the �rst stage of sub-
division of the one-ring. Here, the one-ring is needed to
determine the subdivision of the entire irregular element,
see Figure 3.5 (c). On the other hand, the one-ring is the
maximal basis subgrid of the element. Furthermore, the
subdivision is performed in two manners. One manner is
to obtain a local subdivision with the extraordinary vertex
being the central vertex, see Section 2.3.3. This provides
a control grid CK1 that is a scaled copy of the initial grid
CK0 , i.e. the grid CK1 is given by the irregular element and
its one-ring. A second manner is to subdivide the grid CK0
globally to obtain the larger grid CK∗1 . The grid CK∗1 is an
enlarged version of the grid CK1 , i.e. the combinatorial mesh K∗ is given by the mesh K and
an additional array of elements, see Figure 3.5. The grid CK∗1 consists of m = 2ν + 17 vertices.
Moreover, from the meshK∗ we recognise that the irregular element has been subdivided in one
irregular and three regular elements. Additionally, we can determine the one-rings of all four
subelements. The two subdivision manners are shown in Figure 3.5. The order of the vertices in
the enlarged grid K∗ is shown in Figure 3.4.

The limit surface of the three regular subelements can be parametrized via the regular gen-
erating spline as described in Section 3.2.1. For this purpose, we assemble the control vertex

(a) (b) (c)

Figure 3.5: Subdivision manners. We illustrate (a) the one-ring of an irregular element (orange), (b) the local
subdivision and (c) the global subdivision of the one-ring of an irregular element. The regular subelements
are coloured blue.
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matrices of the two subgrids related to the corresponding subdivision manner

CT1 =
(
c1

0, ...., c1
2ν+7

)
and C̄T1 =

(
CT1 , c1

2ν+8, ...., c1
m−1

)
,

where C1 corresponds to the grid CK1 and C̄1 to the enlarged grid CK∗1 . The entries c1
i , i =

0, ...,m − 1, are the position vectors of the corresponding vertices in the subgrids. Based on
the subdivision concept, the positions of the vertices in the subgrids CK1 and CK∗1 are given by
the linear combination of the vertex positions of the grid CK0 . We consider the two subdivision
equations: For the local subdivision we write

C1 = AC0,

with the quadratic subdivision matrix A, whereas the larger control grid is given by

C̄1 = ĀC0,

where Ā denotes the enlarged subdivision matrix. Both matrices are determined by the relevant
subdivision weights characterized by the subdivision masks. Due to the order of the vertices, A
has the following block structure:

A =

(
S 0

S00 S01

)
, (3.3)

where S is an (2ν + 1)×(2ν + 1)-matrix determined by the one-neighbourhood of the irregular
vertex. The matrix S is nondefective for all valences ν, i.e. S has 2ν + 1 linear independent
eigenvectors. Additionally, S has a single dominant eigenvalue equal one, and consequently
ful�ls the necessary and su�cient convergence condition. This is, at the extraordinary vertex,
the set of step-by-step subdivided control grids converges to a single point. We assume that the
corresponding eigenvector is a vector of ones, i.e. with a one in every entry. Thus, the entries
of every row of S sum up to one. The matrices S00 and S01 are de�ned by the subdivision
weights for the remaining vertices. A schematic de�nition of matrices S, S00 and S01 is given in
Appendix 7.

For the enlarged matrix Ā the following block structure is obtained:

Ā =

(
A

S10 S11

)
=

 S 0

S00 S01

S10 S11

 .

The blocks S10 and S11 correspond to the array of additional vertices in CK∗1 . For the assembling
of the matrices, see Appendix 7. Furthermore, the Catmull–Clark subdivision is stationary. We
can easily determine the positions of the vertices in any level of subdivision. In accordance
with the two resulting subgrids, the nth subdivision stage can be obtained by the following two
formulas:

Cn = ACn−1 = AnC0 and C̄n = ĀCn−1 = ĀAn−1C0, n ≥ 1.

Consequently, with each step of subdivision the irregular element shrinks more an more.

To parameterize the three regular elements in the following subgrids, we have to select the
relevant one-rings, see Figure 3.6. The order of the vertices has to be adjusted in accordance with
the order of the vertices in the one-ring of a regular element. For this purpose, we de�ne three
picking matrices Pk, k = 1, 2, 3. These are given as follows: in each row of matrix Pk every
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Figure 3.6: Picking of regular subelements. The order of the vertices in the one-ring of a regular subelement
before renumbering these for the calculation of the three bicubic B-spline patches in the submesh CK∗

n .

entry is zero except for the ones in the rows corresponding to the indices in the kth one-ring of
subelement shown in Figure 3.6. If m is an index of the kth subelement, for m = 0, .., 2ν + 16,
then in the mth row a one is located in the column corresponding to the index of the vertex
in accordance with the order shown in Figure 3.3 (a). In Figure 3.6, the indices of the one-ring
vertices of the three sub-elements are shown. Finally, the vertices of the kth subelement in the
nth subdivision level are obtained by

PkC̄n = Sk,nC0,

where Sk,n = PkĀA
n−1 describes the subdivision matrix providing the positions of the appro-

priate vertices from the initial grid C0.
The parameterization of the limit surface patch of the kth subelement in the nth subdivision

level is de�ned by the product of the positions of the control vertices selected by PkC̄n, and the
regular generating spline, i.e.

sk,n (u, v) = CT0 S
T
k,nb (u, v) , (u, v) ∈ [0, 1]2

Ω1
1

Ω1
2Ω1

3

Ω2
1

Ω2
2Ω2

3

Figure 3.7: Partition of Ω
into subdomains Ωnk .

where n ≥ 1 denote the index of the re�nement level and k = 0, 1, 2

is the index of the subelement in this level. Note, sk,n is a regular
B-spline patch.

Due to the continuity of B-splines and the subdivision properties,
the subdivision does not change the limit. Consequently, the param-
eterization of the limit surface over the irregular element is given by
collecting the individual surface patches. This is given by postponing
the domain of the subpatches to the relevant subdomain of the domain
of the irregular element. Let Ω = [0, 1]2 be the domain of the irregular
element. The given subdivision is de�ning a partition of the domain by
means of a topological re�nement, see Figure 3.7. Thus, we consider
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Ωn
k

tk,n

u

v

ũ

ṽ

[0, 1]2

Figure 3.8: Transformation of the regular subdomains. Mapping tk,n represents the transformation of the
subdomain Ωnk ⊂ Ω into the B-spline domain [0, 1]

2.

the partition of the domain Ω into the subdomains Ωn
k and the point (0, 0) corresponding to the

extraordinary vertex. In the nth subdivision level the three subdomains Ωn
k are characterized by

Ωn
0 =

[
1

2n
,

1

2n−1

]
×
[
0,

1

2n

]
,

Ωn
1 =

[
1

2n
,

1

2n−1

]
×
[

1

2n
,

1

2n−1

]
,

Ωn
2 =

[
0,

1

2n

]
×
[

1

2n
,

1

2n−1

]
.

The parameterization of the limit surface over the entire irregular element is given by a set
of B-spline subpatches and the limit position of the extraordinary vertex, i.e.

s (u, v) =

{
sk,n ◦ tk,n (u, v) for (u, v) ∈ Ωn

k

s∞ for (u, v) = (0, 0)
,

where the mapping tk,n corresponds to the transformation of the subdomain Ωn
k onto the unit

square [0, 1]2. For the nth subdivision level, the transformations are given as follows

t0,n (u, v) := (2nu− 1, 2nv) ,

t1,n (u, v) := (2nu− 1, 2nv − 1) , (3.4)
t2,n (u, v) := (2nu, 2nv − 1) ,

where we assume that the point (0, 0) corresponds to the extraordinary vertex of the element.
The limit surface of the extraordinary vertex can be calculated using the classical evaluation
scheme, see Section 2.3.3. For the computation, we consider the one-neighbourhood of the ex-
traordinary vertex and the corresponding subdivision matrix S, see Theorem 2.14.

At this point, the evaluation of the limit surface is still very expensive. For each of the subele-
ments in the nth level n−1 matrix multiplication of matrixA have to be performed. To simplify
the evaluation of the matrix powers, Stam introduced a decomposition of the subdivision matrix
A into its eigencomponents. We review this in the next section and give some details on it that
facilitate the calculation.

3.2.3 Eigenstrukture of the subdivision matrices

To investigate the eigenstructure of matrices, it is often inevitable to use numerical methods.
Unfortunately, the decomposition is numerically unstable. To avoid this, we will �rstly apply
spectral techniques to �nd an algebraic form for the eigenstructure of the subdivision matrix A,
i.e. the diagonal matrix Λ and the eigenvector matrix V are to be determined.
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The subdivision matrix A is de�ned to be a square and nondefective matrix. The eigenstruc-
ture of A is given by the pair (Λ,V ). Therefore, the following eigenvalue problem has to be
solved

AV = V Λ.

Due to the given order of the vertices, the matrix A is undistributed for an arbitrary valence ν of
the extraordinary control vertex. Considering the block structure ofA, the explicit representation
of the eigenstructure can be derived piece by piece. Therefore, we obtain the diagonal matrix Λ

to be of the following form:

Λ =

(
Σ 0

0 ∆

)
,

where the diagonals of Σ and ∆ are given by the eigenvalues of the matrices S and S01, respec-
tively. Moreover, it can be shown that the eigenvector matrix V has the form

V =

(
U0 0

U1 W1

)
.

Consequently, the eigenstructures of S and S01 are described by the pairs (Σ,U0) and (∆,W1),
respectively. The analytical calculation of these two structures is given in detail [Stam, 1998]. To
calculate the block U1 of the eigenvector matrix V that is determined by the equalityAV = V Λ,
i.e. (

SU0 0

S00U0 + S01U1 S01W1

)
=

(
U0Σ 0

U1Σ W1∆

)
we consider the following equality to be solved

S00U0 + S01U1 = U1Σ

with the unknown matrix U1. Using the eigenstructure of S01, to �nd U1 means to solve 2ν + 1

linear systems  σi − δ0 0
. . .

0 σi − δ6

 [U∗1 ].,i =
[
W−1

1 S00U0

]
.,i

,

where U∗1 = W−1
1 U1. The entries σi and δj are the entries of the diagonal matrices Σ and ∆,

respectively, for i = 0, ..., 2ν and j = 0, ..., 6. The term [·].,l denote the restriction to the lth
column of the considered matrix.

The matrix V is invertible. Based on the block structure, the inverse of V has the following
representation

V −1 =

(
U−1

0 0

−W−1
1 U1U

−1
0 W−1

1

)
,

where the inverse matrices of U0 and W1 can be explicitly speci�ed, see Appendix.

3.2.4 Natural parametrization

We consider the diagonalized representation of the subdivision matrix A. This is given by the
formula

A = V ΛV −1
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with the individual components Λ and V as stated above. The control points in the nth re�ne-
ment level can be calculated as follows

C̄n = ĀAn−1C0 = ĀV Λn−1V −1C0

with the important simpli�cation of the computation of the control vertices in thenth subdivision
level. This is, we just need to exponentiate separately the entries of the diagonal matrix Λ.
Consequently, the given representation will speed up the calculation.

The parameterization of the limit surface of a regular subpatch is described by

sk,n (u, v) = CT0 S
T
k,nb (u, v) , (u, v) ∈ [0, 1]2

where the matrix
Sk,n = PkSn (3.5)

is the subdivision matrix that localizes the kth subpatch in the nth subdivision level. The ma-
trix Sn = ĀV Λn−1V −1 is the product of the two subdivision matrices A and Ā. Using the
transformation from the individual patches to the domain of the irregular element, we obtain the
following de�nition

De�nition 3.2 (Natural parameterization). The natural parameterization s : Ω → R3 of the
limit surface patch of an irregular element is given by

s (u, v) =

{
sk,n ◦ tk,n (u, v) (u, v) ∈ Ωn

k

s∞ (u, v) = 0
(3.6)

where Ωn
k is the kth subdomain, k = 0, 1, 2, in the nth subdivision level, n ≥ 1, corresponding

to the partition of the domain Ω shown in Figure 3.7. The point s∞ denotes the limit position of
the extraordinary vertex.

Using Stam’s simpli�cation, the evaluation cost of the limit surface of the irregular element
is comparable to the evaluation cost using bicubic B-splines.

Over the domain Ω\(0, 0), the partial derivatives of the limit surface are obtained by di�eren-
tiating the basis functions over the subdomain Ωn

k . For example, the �rst partial derivative with
respect to u is described by

∂

∂u
s (u, v) |Ωnk = CT0 S

T
k,n

∂

∂u
b (tk,n (u, v))

= 2nCT0 S
T
k,n

(
∂

∂ũ
b (ũ, ṽ)

)∣∣∣∣
(ũ,ṽ)=tk,n(u,v)

where (u, v) ∈ Ωn
k . The partial derivatives of the corresponding B-spline basis functions are

described in Section 3.2.1. Due to the derivative of the transformation map tk,n (u, v), the factor
2n appears in the formula. Note that for the pth partial derivative of the surface, this results
in the factor 2pn. Considering a regular element, we are also able to evaluate the limit surface
using Stam’s method. Therefore, we have to treat one of the element vertices as an extraordinary
vertex. However, the representation converges to a bicubic B-spline surface patch as described
in Section 3.2.1. For reasons of simplicity, we will use the B-spline representation for the limit
surface evaluation on regular elements.

The parameterization is easy to use, but not fully compatible with the classical subdivision
surfaces. The natural representation is still C2-continuous everywhere except at the singulari-
ties corresponding to the extraordinary vertices in the mesh. However, the defect is noticeable
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in the surface continuity at the singularity, i.e. the parameterization provides there only a C0-
continuity. In order to obtain aC1-continuity, as in the classical concept, a suitable di�erentiable
structure has to be put on the domain, or, equivalently, a suitable reparameterization of the sur-
face patch has to be obtained.

3.2.5 Natural generating spline

Based on the natural parameterization of the subdivision surface, we are able to derive the set of
corresponding element-based basis functions called here the generating spline. Please note that
the basis functions are sensitive to the valence of the extraordinary vertex, i.e. its representation
have to be adapted to the valence. We consider the following de�nition:
De�nition 3.3 (Natural generating spline). Given an element Qc of the Catmull–Clark grid
CQ, we consider the set of basis functions

{
b∗j

}
, j = 0, ...,K − 1. The factor K = 2ν + 8,

describes the size of the set of vertices in the one-ring of Qc, where ν denotes the valence of
the extraordinary vertex. Let b (u, v) be a vector, where the entries bi, i = 0, ..., 15 are the
16 uniform bi-cubic B-spline basis functions de�ned over the unit square [0, 1]2. The natural
generating spline is given by the vector

b∗ =
(
b∗0, b∗1, ..., b∗K−1

)T
,

where the entry b∗j is the jth basis function corresponding to the jth vertex in the one-ring of
the element that are de�ned by

b∗j : Ω→ R

b∗j (u, v) =

{ [
STk,n

]
j,·
b ◦ tk,n (u, v) for (u, v) ∈ Ωn

k

b∞j for (u, v) = (0, 0) ,
(3.7)

for n ≥ 1 and k = 1, 2, 3. The matrix Sk,n = PkSn is given by the product of the subdivision
matrix Sn = ĀAn−1, n ≥ 1, and the picking matrix Pk, k = 1, 2, 3. For the parameter domain
Ω = [0, 1]2, we consider the in�nite partition of Ω into subdomains Ωn

k , as shown in Figure 3.7.
The function tk,n describes the transformation from Ωn

k to [0, 1]2, the parameter domain of the
B-spline functions. At the extraordinary vertex, the generalized basis function is described by
the value b∞j .

The term [·]j,· denotes the jth row of the matrix. In the regular case, one of the regular
vertices is treated as extraordinary. For the valence ν = 4, the 2ν + 8 = 16 basis functions of b∗
are equivalent to the bi-cubic B-spline basis functions bj . For simplicity’s sake, if we consider a
regular element, then we use the B-spline representation for the evaluation, see Formula 3.1. In
Figure 3.9, the generating spline of an irregular element with an extraordinary vertex of valence
5 is shown.

To calculate b∞j , we consider the classical limit surface evaluation scheme. Therefore, we
examine the one-neighbourhood of the extraordinary vertex and assemble the corresponding
subdivision matrix S. The one-neighbourhood is given by 2ν + 1 vertices. Note, the matrix S
is stochastic and nondefective, i.e. it has a complete basis of eigenvectors. For each vertex vj ,
j = 0, ..., 2ν, in the one-neighbourhood we set up a (2ν + 1)× 1 control vertex matrix Cj , such
that each entry is zero except for a one in the jth entry. Consider the eigendecomposition of the
subdivision matrix: The set Λ = {λk} of ordered eigenvalues is given such that λ0 = 1 > λ1 ≥
... ≥ λ2ν . Let {υrk} and

{
υlk
}

be the sets of right and left eigenvectors. The limit position of the
basis function is given by

b∞j = lim
n→∞

(SnCj)
T υl0 = CTj υ

l
0, (3.8)
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8 9 10 11
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16 17

Figure 3.9: Generating spline. The images of basis functions of an irregular element with an extraordinary
vertex of valence 5. The order of the functions is similar to the order of vertices shown in Figure 3.3 (b).
The images are oriented, such that the extraordinary vertex is in the lower corner. For visual reasons, in the
image 0 the extraordinary vertex is positioned in the opposite corner. Note, the basis function related to the
extraordinary vertex, i.e. image 0, is higher than the three functions related to the regular vertices of the
element shown in images 3, 4 and 5.
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where υl0 is the left eigenvector of S corresponding to the largest eigenvalue that by de�nition
is equal 1. For details see Section 2.3.3.

A closer look at the entries of the natural generating spline show that some of the basis
functions coincide with some of the bicubic B-spline basis functions. This is true in particular
for the basis functions corresponding to vertices in the one-ring of the element that are lying in
the outer layer of the two-neighbourhood of the extraordinary vertex of valence ν. Hence, the
seven basis functions

b∗2ν+1, ..., b∗2ν+7,

coincide with the uniform B-spline basis functions in the following order

b15, b11, b7, b3, b14, b13, b12. (3.9)

The remaining functions are compositions of bicubic B-splines as described above.
As mentioned before, considering the generating spline over a control grid element, every

basis function of the spline is describing a part of a subdivision basis function associated to one of
the vertices in the one-ring of this element. On the other hand, the global functions can be param-
eterized piece by piece by the relevant element based basis functions. Due to the Catmull–Clark
subdivision rules, the non-zero support of the global basis function Ba corresponding to the ath
control vertex is given by the two-neighbourhood of this vertex in the control grid CQ. Thus,
for an element Qc ∈ CQ in the two-neighbourhood of a vertex, let this vertex corresponds to
the jth vertex in the one-ring of Qc. The generating spline function b∗j of Qc describes then
the parameterization of the global basis function Ba associated with this vertex on the element
Qc. How to determine the relation between the local and the global indices is described in Sec-
tion 4.4.2. The subdivision basis functions Ba are called the generalized B-spline basis functions
of Catmull–Clark type. These are known to be bicubic polynomials on each regular patch or
regular subpatch of the irregular element apart from the extraordinary vertex. Using the global
basis, the total representation of the limit surface is given by the linear combination

s =
∑
a

caBa,

where ca is the vertex position of the ath vertex in the control grid CQ. Note, the global rep-
resentation looks similar to the subdivision function de�ned in Section 2.3.2. However, keep in
mind that the natural parameterization of the generalized B-spline basis is not consistent with
the smoothness of the classical subdivision basis functions.

Depending on the two-neighbourhood of a control vertex, we distinguish three possibly
emerging basis types. The basis types emerge from the following neighbourhood compositions:

• an extraordinary vertex, i.e. all vertices in the one-neighbourhood are regular, see Fig-
ure 3.10 (a). The element-based pieces of the subdivision basis function correspond to
piecewise B-splines in the one-neighbourhood of the extraordinary vertex, and appropri-

(a) (b) (c)
Figure 3.10: Generalized B-spline basis functions of Catmull–Clark type. The images of the functions cor-
responding to (a) an irregular vertex, (b) a regular vertex with at least one extraordinary vertex in its one-
neighbourhood, and (c) a regular vertex without extraordinary vertices in its one-neighbourhood. The last one
is equivalent to a uniform bicubic B-spline basis function.
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ate bicubic B-spline functions listed in Equation 3.9 on the remaining part of the two-
neighbourhood,

• a regular vertex with at least one extraordinary vertex in its one-neighbourhood, see Fig-
ure 3.10 (b). The element-based pieces of the subdivision basis functions are described by
piecewise B-splines in the one-neighbourhood of each extraordinary vertex, and an appro-
priate bicubic B-spline basis function on the remaining part of the 2-neighbourhood,

• and, a regular vertex without extraordinary vertices in its one-neighbourhood, see Fig-
ure 3.10 (c). The element-based pieces of the subdivision basis function corresponds to the
appropriate bicubic B-spline basis functions bi, i = 0, ..., 15.

Using the natural parameterization of the generalized B-splines, we illustrate examples of the
emerging function types in Figure 3.10. Just as a reminder, we restrict ourselves to control grids
with isolated extraordinary vertices, i.e. each element of the control grid has at most one ex-
traordinary vertex. Considering the global subdivision basis functions, it should be observed
that the limit position of a control grid vertex is in�uenced by 2ν + 1 global basis functions. In
particular, these are given by the basis functions that corresponds to the vertices lying in the
one-neighbourhood of this vertex. Note, the basis functions lying in the second neighbourhood
are equal zero for this vertex.

3.3 Characteristic surface parameterization

In the previous section, the natural parameterization of the limit surface has been explained in
more detail. It allows for a direct calculation of the limit surface. As mentioned before, it is
incompatible with the classical characterization of subdivision surfaces, i.e. the natural parame-
terization produces a lack of smoothness at the limit of the extraordinary vertices. To repair this
defect, a reparameterization has to be established that ensures the provided C1-continuity at the
limit of these vertices.

The characteristic map is an important concept of subdivision surfaces. The map is associ-
ated with the subdivision matrix close to extraordinary vertices and therefore depends on the
valence of these vertices. The characteristic map has been introduced in [Reif, 1995] for the
investigation of subdivision surfaces at singularities. It is very much linked to the regularity
properties of subdivision surfaces, see Section 2.3.4. In [Peters and Reif, 1998], it is shown that
a subdivision scheme generates C1-continuous surfaces that are locally manifold, if χ is regular
and injective (i.e. it has no vanishing Jacobian). Consequently, the concept can be used for the
parameterization of the limit surface. In this section, the so-called characteristic parameteriza-
tion is considered. This idea proves to be promising concerning the preservation of smoothness
of limit surfaces, see [Prautzsch, 1998]. In [Boier-Martin and Zorin, 2004], an algorithmic method
for the evaluation of the characteristic parameterization has been presented. Due to the complex-
ity of the method, the evaluation cost is enormous. Therefore, the applicability of this method is
limited.

In this section, we give a detailed construction of the characteristic parameterization and its
element based generating splines for Catmull–Clark subdivision surfaces. Using the natural pa-
rameterization, a reparameterization of the corresponding generating spline is described via the
transformation of the domain Ω into the characteristic domain Ων . The domain Ων is de�ned
as the image of the characteristic map. One goal of this section is to understand the impact of
the characteristic map on the representation of the limit surface close to singularities or, equiva-
lently, extraordinary vertices. We deduce a new concept of characteristic patches and describe its
properties. These turn out to be important to understand the di�erentiability properties of this
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Figure 3.11: Characteristic domains Ων for di�erent vertex valences ν. From left to right, the domains Ων
(blue domains) for the valence ν = 3, 4, 5, 6, 7, 8 are shown. The blue grid illustrate the characteristic map
of a ten by ten grid on the unit square with uniform spacing. The parts separated by the yellow, orange and
red boundaries are illustrating the characteristic domains Ω0,1

ν , Ω1,1
χ and Ω2,1

χ , respectively.

reparameterization. Our approach is based on Reif’s idea of characteristic mappings introduced
in [Reif, 1995] and continued in [Peters and Reif, 2008].

3.3.1 Characteristic mapping

Considering a convergent subdivision scheme, the ordered eigenvalues λi of the corresponding
subdivision matrix ful�l λ0 = 1 > |λ1| = |λ2| > ... . If the subdominant eigenvalue λ satis�es
λ = λ1 = λ2, then the limit position and the tangents of the given control vertex are related to the
eigenvectors corresponding to the �rst three eigenvalues λi, i = 0, 1, 2. Thus, the characteristic
map χ is de�ned by the two eigenvectors υ1 and υ2 associated with the subdominant eigenvalue
λ, see Section 2.3.4.

The Catmull–Clark scheme is convergent for each valence of the extraordinary vertex. Given
a control grid elementQc ∈ CQ and its one-ring, we consider the associated quadratic subdivision
matrix A, see Section 3.2.2. Due to the properties of A, we consider the following de�nition of
the characteristic map of the Catmull–Clark scheme.

De�nition 3.4 (Characteristic map). Given an element Qc of the control grid CQ. For the as-
sociated subdivision matrix A, let (Λ,V ) be the corresponding eigenstructure of A, where the
ordered set of eigenvalues {λi} ful�ls 1 = λ0 > λ1 = λ2 ≥ λ3 ≥ .... The characteristic map χ
of the Catmull–Clark subdivision scheme is therefore de�ned by

χ : Ω→ R2

χ (u, v) = V T
λ b
∗ (u, v) ,

where b∗ (u, v) denote the natural generating spline of Qc at the point (u, v) ∈ Ω. The subdom-
inant matrix Vλ = (υ1, υ2) is given by the two eigenvectors υi, i = 1, 2, associated with the
subdominant eigenvalue λ of A.

The characteristic map in�uences the behaviour of the limit surface close to the extraordinary
vertex over an element of the control grid. The image of the characteristic map de�nes a two-
dimensional spline domain in the plane. The domain changes according to the valence ν of the
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extraordinary vertex characterizing the irregular element. We denote the domain with Ων and
call it the characteristic domain. In Figure 3.11, the characteristic domains for di�erent vertex
valences are shown.

Ω1,1
ν

Ω2,1
ν

Ω3,1
ν

Ω1,2
ν

Ω2,2
ν

Ω3,2
ν

Figure 3.12: Partition of Ων
into sub-domains Ωk,n

ν .

Given the de�nition of b∗, a piecewise representation of the
characteristic map can be obtained. That is,

χ (u, v) =

{
χk,n ◦ tk,n (u, v) for (u, v) ∈ Ωn

k

(0, 0)T for (u, v) = (0, 0) ,
(3.10)

for

χk,n : [0, 1]2 → Ων

χk,n (u, v) = λn−1
(
PkĀVλ

)T
b (u, v) ,

where the mapping tk,n is the transformation from Ωn
k into the

B-spline domain [0, 1]2, see Equation 3.4. The piecewise repre-
sentation using the mappings χk,n describes a division of the characteristic domain Ων into
subdomains Ωk,n

ν , where Ωk,n
ν is the kth subpatch in the nth subdivision level of Ων . Thus, a

correlation with the partition of the parameter domain Ω arises, compare Figure 3.12 and Fig-
ure 3.7. Note, the characteristic domain Ων is equal Ω if the extraordinary vertex has valence
ν = 4, i.e. the corresponding element is regular.

χ1

χ2

χ3

χ1,1

χ2,1
χ3,1

Figure 3.13: Characteristic
mappings. The blue quad illus-
trates the characteristic domain
Ων . The characteristic patches
χ0, χ1 and χ2 are shown by the
yellow, orange and red quads,
respectively. The associated
subdomains of Ων described by
the scaling χk,n of mapping χk
is characterized by a frame of
the corresponding colour.

Moreover, for a �xed k and for n→∞ the subdomains Ωk,n
ν

can be seen as scaled copies of each other in conformity with the
origin (0, 0) ∈ Ωk,n

ν . Three independent mappings can be speci-
�ed.

Remark 3.5. Let χk,n be the mapping characterizing the subdo-
main Ωk,n

ν . Three mappings χk, k = 1, 2, 3, can be gained from
the following relation:

χk : [0, 1]2 → R2

χk (u, v) = λ−nχk,n (u, v) , (3.11)

where χk characterizes one of the three neighbouring domains of
the characteristic domain. The factor λ is given by the subdom-
inant eigenvalue and depends on the valence ν of the extraordi-
nary vertex.

Thus, the partition of the characteristic domain corresponds
to the scaling of the domain described by χk. Furthermore, the
mapping χk forms an elemental foundation for the partition of
Ων :

De�nition 3.6 (Characteristic patches). Using the natural parameterization, the characteristic
patches χk, k = 1, 2, 3, are de�ned by

χk (u, v) = V̄ T
λ P

T
k b (u, v) (u, v) ∈ [0, 1]2

where V̄λ = 1
λĀVλ describes an extension of the eigenvectors to the neighbouring elements of

the irregular element. The matrix Vλ = (υ1, υ2) is the subdominant matrix and Ā is the extended
subdivision matrix, see Section 3.2.2.

40



The image of the characteristic patches has no overlap with the characteristic domain except
for the common boundary, see Figure 3.13. Note, χk and χ are de�ned over the same domain, i.e.
Ω = [0, 1]2. The extension V̄λ of the eigenvectors relates to the extension of the characteristic
domain using the characteristic patches χk. Moreover, the images of the characteristic patches
χk can be seen as the parameter domain of the three neighbouring elements in the control grid
in the characteristic domain. The following relations between the characteristic mappings are
valid:

Remark 3.7. The characteristic map χ ful�ls the scaling relation

χ (u/2, v/2) = λ χ (u, v) .

The characteristic patches χk, k = 1, 2, 3, ful�l the scaling relation

λnχk (u, v) = χk,n (u, v) = χ|Ωk,n , (3.12)

where the restriction of the characteristic map χ to Ωk,n
ν is similar to the restriction of the domain

Ω to Ωn
k . Additionally, the neighbouring subpatches satisfy the relation

χk,n (u, v) = λχk,n−1 (u, v) . (3.13)

We write here
(
ξ̃, η̃
)

= χ (ũ, ṽ) for the coordinates of a point in the domain Ων and (ξ, η) =

χk (u, v) for the coordinates in the image of the characteristic patch χk. A schematic illustration
is shown in Figure 3.14. Furthermore, we choose a point

(
ξ̃, η̃
)

in Ων , such that
(
ξ̃, η̃
)

=

λn (ξ, η). Due to the scaling relation described in Remark 3.7, we know that such a point exists
for each n ≥ 1. Considering the transformation from Ων into the subdomains Ωk,n

ν , we obtain
some important properties. For the change of coordinates from Ων to Ωk,n

ν , we have:

χ−1
(
ξ̃, η̃
)

= χ−1 (λnξ,λnη) =
1

2n
χ−1
k (ξ, η) ,

where the scaling is proportional to the level of subdivision of the corresponding characteristic
patch χk. Using the mapping χ−1

k,n instead of χ−1 for the reparameterization means to substitute
(λnξ,λnη) where (ξ, η) ∈ χk,n (Ω).

(ξ, η)

λ (ξ, η)

χ (u, 0)

χ (0, v)

χ1 (u, 0)

χ1 (0, v)

Figure 3.14: Scaling relation. Schematic illustration of the relation between the characteristic patch χk and
the scaling χk,n. The blue and the yellow quad illustrates the characteristic domain Ων and the characteristic
patch χ1, respectively, for ν = 5.
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The Jacobian of the transformation is determined by

Jχ =
∂
(
ξ̃, η̃
)

∂ (ξ, η)
= λnI, (3.14)

where I denote the identity matrix. Note, the Jacobian is constant. In particular, the underlying
transformation is invertible. We consider the representation of the gradient∇χ over the domain
Ων = χ (Ω) restricted to the subdomain Ωk,n

ν = χk,n (Ω).

Remark 3.8. The gradient∇χ restricted to Ωk,n
ν can be represented in the local coordinates by

∇χ|Ωk,nν = λ−n∇χk,n ,

where ∇χk,n is the surface gradient in the coordinates of Ωk,n
ν .

The representation of the restriction is given by the change of coordinates, where scaling by
λ−n corresponds to the scaling of the characteristic patch χk (Ω) into the domain Ωk,n

ν . More-
over, the scaling relation of the characteristic patches provides the same result, see Formula 3.12.
For more detailed information about characteristic mappings we refer to Reif [1995]; Reif and
Schröder [2001]; Zorin [1998].

3.3.2 Characteristic generating spline

The characteristic map χ determines the behaviour of the limit surface close to the singularity
related to an extraordinary vertex in the corresponding control grid. As indicated in [Reif, 1995],
the map can be used to parameterize the limit surface, such that the smoothness of the surface
remains consistent to the classically de�ned subdivision surface. Due to the injectivity of the
characteristic map χ, we can think of the mapping χ−1 : Ων → Ω as a parameterization of the
domain Ω. Based on this, we de�ne a reparameterization of the natural representation of the
limit surface. More precisely, we apply the transformation of the element-based basis given by
the natural generating spline, see De�nition 3.3, onto the characteristic domain.

Remark 3.9. For an element Qc of the control grid CQ, we consider the associated generating
spline b∗. Let χ be the corresponding characteristic map and

Ων =
{

(ξ, η) ∈ R2| (ξ, η) = χ (u, v) , (u, v) ∈ Ω
}

be the associated characteristic domain. The basis functions b∗j de�ning the natural generating
spline can be reparametrized as follows

bχj : Ων → R

bχj (ξ, η) = b∗j ◦ χ−1 (ξ, η) (ξ, η) ∈ Ων (3.15)

where j = 0, ...,K − 1 corresponds to the index of a vertex in the one-ring of Qc. The basis
function bχj is at least C1-continuous for any (ξ, η) ∈ χ (Ω) [Reif, 1995].

The parameterization over the characteristic domain provides the desired compatibility with
the classical de�nition of the Catmull–Clark subdivision surfaces. In Zorin [1998], the character-
istic representation has been considered for the continuity investigation of stationary subdivision
surfaces. The author shows thatχ puts a di�erentiable structure on the domain Ω. The injectivity
of this parameterization is proven in [Boier-Martin and Zorin, 2004].

Based on the piecewise representation of the characteristic map χ, we de�ne the character-
istic generating spline.
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De�nition 3.10 (Characteristic generating spline). For an elementQc of the control grid CQ, let
b∗ be the associated generating spline. Let χ be the characteristic map described by the piecewise
representation as given in Equation 3.10. Using the corresponding partition of Ων into Ωk,n

ν , the
basis functions bχj can be parameterized by

bχj : Ων → R

bχj (ξ, η) =

{ [
STk,n

]
j,·
b ◦ χ−1

k,n (ξ, η) for (ξ, η) ∈ Ωk,n
ν

b∞j for (ξ, η) = (0, 0)
(3.16)

where the mappings bχj are the components of the characteristic generating spline

bχ =
(
bχ0 , bχ1 , ..., bχK−1

)T
.

The term [·]j,· denotes the restriction to the jth row of the matrix.

A closer look at the de�nition reveals that the transformation to the reference domain Ω

can be neglected. The piecewise basis function bχj is directly parameterized over the partitioned
characteristic domain Ων .

At this point, we establish the characteristic parameterization of the limit surface. Using the
characteristic generating spline, the limit surface can be described over Ων by

sχ (ξ, η) =

{
sk,n ◦ χ−1

k,n (ξ, η) for (ξ, η) ∈ Ωk,n
ν ,

s∞ for (ξ, η) = (0, 0)
(3.17)

where Ωk,n
ν is the kth subdomain in the nth subdivision level of the partitioned domain Ων .

Due to the fact that the evaluation of the inverse of the characteristic map χ−1 is nontrivial,
the evaluation of the surface using the characteristic parameterization is much more expensive
than the natural parameterization. In [Boier-Martin and Zorin, 2004], an algorithm for the eval-
uation has been introduced. As the authors report, the e�ciency of the assembly is low. Conse-
quently, using this parameterization in systems designed for parametric patches has limitations
in the application. For this reason, we use the natural parameterization for the evaluation of the
limit surface. Nevertheless, we will use the characteristic parameterization for the de�nition of
subdivision �nite elements.

3.3.3 Eigensplines

Considering the de�nition of the characteristic parameterization, a functional form for the limit
surface representation can be derived. This means, a set of functions can be derived that fully
depends on the subdivision process. In particular, considering the characteristic parameterization
of the limit surface, we can separate the components depending on the subdivision process from
the components prescribed by the mesh construction. These functions are called eigensplines.
Eigensplines play a fundamental role in the analysis of smoothness of subdivision surfaces. The
functions can also be alternatively used for the parameterization of the surface. In the following,
we derive an explicit representation of the Catmull–Clark eigensplines.

As described in Section 2.3.3, given a nondefective subdivision matrix, there exists a set of
appropriate right and left eigenvectors. For the Catmull–Clark scheme, the quadratic subdivision
matrixA that corresponds to the subdivision of the one-ring of an elementQc ∈ CQ is nondefec-
tive. The control vertex matrix C0, formed by the position vectors of the vertices in the one-ring
of Qc, can be uniquely expressed in terms of the right eigenvectors υrj of A. In particular, C0 is
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given by the sum

C0 =

K−1∑
j=0

υrja
T
j ,

whereK is the number of vertices in the one-ring. The vectors aj are the appropriate coe�cient
vectors that gives the subdivision independent part of the vertices. These can be seen as the
projections of the vertex positions into the eigenspace of the subdivision matrix. The basis of
the eigenspace is given by the mentioned set of eigensplines. Using the characteristic parame-
terization sχ = s ◦χ−1 of a limit surface patch, we consider a separation of the pure subdivision
related part of the parameterization from the part related to the control grid. Using the eigen-
decomposition of the matrix C0, the surface patches can by represented by an expansion of the
form

sχ (ξ, η) =
K−1∑
j=0

ajϕ
[
υrj
]

(ξ, η) , (3.18)

for (ξ, η) ∈ Ων . The functions ϕ
[
υrj

]
are the eigenspline functions. These are de�ned as follows:

De�nition 3.11 (Eigensplines). For the subdivision matrix A, let {υri }j=0,...,K−1 be the set of
right eigenvectors corresponding to the ordered set of eigenvalues 1 = λ0 > λ ≥ λ3 ≥ ...,
where λ = λ1 = λ2 denote the double subdominant eigenvalue of A. The eigensplines ϕ

[
υrj

]
,

j = 0, ...,K − 1, are described by the formula

ϕ
[
υrj
]

: Ων → R

ϕ
[
υrj
]

(ξ, η) =

{
λnj

(
ῡrj

)T
P Tk b ◦ χ

−1
k,n (ξ, η) for (ξ, η) ∈ Ωk,n

ν ,

δ0j for (ξ, η) = (0, 0)

where ῡrj = 1
λj
Āυrj is the extension of the jth eigenvector υrj .

Note, the functions are only de�ned for the eigenvectors υri of the subdivision matrix. A
linear functional form is considered. Further, the functions satisfy the following scaling relation:

Theorem 3.12. Is λj an eigenvalue of the subdivision matrixA, then the corresponding eigenvector
υrj determines the eigenfunction ϕj . The function ϕj satis�es the relation

ϕ
[
υrj
]

(ξ, η) = λjϕ
[
υrj
]( ξ

λ
,
η

λ

)
where λ is the double subdominant eigenvalue of A.

This means, applying one subdivision to the eigenspline, or equivalently, multiplying with
the subdivision matrix AT corresponds to the scaling of the domain Ων with the subdominant
eigenvalue λ. The scaling is also equivalent to the subdivision of the parameter domain Ων .
Hence, the behaviour of stationary schemes at extraordinary vertices can be reduced to a scaling
relation.

Proof. Due to the de�nition of the characteristic map χ and the corresponding partition of the
characteristic domain Ων , for (ξ, η) ∈ Ων there is a subdomain Ωk,n

ν such that (ξ, η) ∈ Ωk,n
ν .

Considering the mapping χk,n that describes the domain Ωk,n
ν , there exist a point (u, v) ∈ [0, 1]2,

such thatχk,n (u, v) = (ξ, η). Based on the scaling relation 3.13, multiplying the point (ξ, η) with
1
λ results in the point χk,n−1 (u, v) =

(
ξ
λ , ηλ

)
∈ Ωk,n−1

ν . Applying the subdivision matrix A to
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the eigenspline results in

ϕ
[
υrj
]

(ξ, η) = λnj
(
ῡrj
)T
P Tk b ◦ χ−1

k,n (ξ, η)
∣∣∣
Ωk,nν

The multiplication with λj is similar to applying the subdivision matrix AT , i.e. AT ῡrj = λj ῡ
r
j .

= λj · λn−1
j

(
ῡrj
)T
P Tk b ◦ χ−1

k,n−1 (ξ, η)
∣∣∣
Ωk,nν

The coordinates (ξ, η) correlate with the domain Ωk,n
ν , the dilation to Ωk,n−1

ν comply with the
scaled coordinates

(
ξ
λ , ηλ

)
.

= λj · λn−1
j

(
ῡrj
)T
P Tk b ◦ χ−1

k,n−1

(
ξ

λ
,
η

λ

)∣∣∣∣
Ωk,n−1
ν

= λj · ϕ
[
υrj
]( ξ

λ
,
η

λ

)

where (ξ, η) ∈ Ων .

The concept of eigenbasis functions has been introduced in [Warren, 1995] for the analysis of
the behaviour of subdivision curves. In [Warren and Weimer, 2001], a similar theorem to ours is
stated. However, we introduce the parametric formulation of the functions for the Catmull–Clark
scheme.
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Chapter 4

Isoparametric Catmull–Clark
Finite Elements

We consider a control grid together with the associated limit surface. Using the previously de-
�ned parameterizations, the surface can be described by a patchwork of glued together surface
patches corresponding to the elements of the control grid. Given an arbitrary PDE over a pre-
scribed domain. The elementwise representation is similar to the idea of �nite elements, where a
partition of the problem domain into a collection of smaller easier to handle subdomains is being
used. The global problem can be therefore rewritten into a set of local problems over the subdo-
mains. Assume that the problem domain is given by a subdivision surface. Using the subdivision
basis functions, a �nite element approach can be derived, where the same set of functions is
used for the representation of the unknown displacements and the construction of the geometry.
Based on this construction, we obtain an isoparametric �nite element approach.

In the case of the Catmull–Clark subdivision scheme, the basis functions are at leastC1∩H2-
regular [Reif and Schröder, 2001]. In the following, we want to make use of the high regularity
for the construction of �nite element methods, called subdivision �nite elements. Furthermore, a
conforming �nite element can be obtained for the approximation of partial di�erential equations
up to order four. Based on the two presented limit surface parameterizations, the natural and
characteristic �nite element approaches can be deduced by means of the isoparametric concept.
The underlying generating splines are taken as a basis framework for the construction of the
subdivision �nite elements. Consequently, a set of element-based shape functions is established
in relation to the generating splines associated with the elements of the control grid. Keep in
mind, the representation of the generating splines depends on the element type and, if appro-
priate, on the valence of the extraordinary vertex. Again, we distinguish between regular and
irregular surface patches. If the element is regular, the parameter domain is given by the unit
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square. Consequently, both �nite element representations are identical. The di�erence between
the two approaches lies in the treatment of the irregular element, that is, in the parameter do-
main of the corresponding parameterization. Compared to the natural parameterization de�ned
over the partitioned unit square, the domain of the characteristic parameterization is given by
the characteristic domain, where the latter one is established from the spectral properties of the
subdivision matrix and depends on the valence of the extraordinary vertex.

In this chapter, we specify the necessary requirements for the discretization and approxima-
tion of geometric partial di�erential equations on subdivision surfaces. Using the given param-
eterizations, the subdivision �nite elements will be here explored in more detail. Concerning
this, we introduce the characteristic �nite element that is compatible with the classical subdivi-
sion surfaces. Additionally, we derive the PDE speci�c integrals over subdivision surfaces. Here,
we focus on the Catmull–Clark scheme [Catmull and Clark, 1978] on quadrangular meshes, but
the presented ideas can be adopted to other subdivision schemes. These requires an identical
construction, i.e. a reparameterization onto the characteristic domain.

4.1 About the isoparametric concept

Since the beginning of using computer-aided computation, analysis and simulations for manu-
facturing, one is interested on more accurate and e�cient methods to solve real world problems
using the computer. For example, a variety of problems from rather diverse application areas
can be modelled by PDEs. The focus of solving PDEs is the investigation of speci�c material or
structural properties that have a compact geometric description and underlie certain loading con-
ditions. This can be very challenging, due to the corresponding equation, the associated initial
and boundary conditions, or the problem domain. To �nd an analytical solution of such problems
has turned out to be di�cult or even impossible. Current research has proven that simpli�cation
of the associated di�culties is much more useful and can be put on a level with the continuous
solutions. There are di�erent methods to deal with the PDE simpli�cation, for example, �nite
elements, �nite di�erences, methods of lines, etc. By now, the �nite element method became
more and more accurate and reliable compared to other methods.

4.1.1 Finite element method

The �nite element method has been developed in the 60’s in the �eld of structural engineering
and structural mechanics [Clough, 1960]. It has been adopted to analyse the behaviour of PDEs
on heterogeneous domains, for example, on di�erent shaped surfaces, for which the smooth
solutions cannot be found. Thus, an approximation of the continuum is obtained using Galerkin’s
method. Substituting the PDE by a weak formulation, a discretization of the global problem can
be obtained. As next, we provide an as good as possible partition of the domain into so-called
elements. Consequently, a �nite number of smaller, easier to handle problems have to be solved
on the individual elements. The elements are connected only at node points located at the corners
or at the element boundaries. The solution is represented as a patchwork of such elements,
unnecessary details are neglected. The smooth solution space is replaced by a �nite dimensional
subspace that is de�ned by a set of basis functions. It is crucial to restrict the support of the basis
functions to the disjoint elements that cover the domain. In general, polynomial functions on
polyhedral domains are used for the assembly. Thus, the converted problem can then be solved
using numerical methods. The approximated solution hopefully converge to the smooth solution,
if the discretization becomes increasingly �ner. For details on the �nite element method, please
refer to the book of [Ciarlet, 1978], [Hughes, 2000] and [Braess, 2007].
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4.1.2 Isoparametric elements

Choosing an appropriate �nite element method, there is one important choice to make: how to
represent the solution space? A signi�cant contribution to the �eld of �nite elements is given
by the isoparametric approach [Irons and Zienkiewicz, 1968]. The fundamental principle of this
approach is to prescribe a set of shape functions de�ned over the problem domain, such that the
same functions can be used to model the global solution space. Consequently, one set of shape
functions is required to represent the components of the solution space and the shape of the
underlying geometry.

(u, v)
Ω

x

p = x (u, v)

X

X (p)

Figure 4.1: Schematic il-
lustration of the isopara-
matric �nite element in
R3.

Before the isoparametric element can be de�ned, we consider the
so-called natural coordinates appropriate for quadrilateral elements. In
the �nite element theory, the natural coordinates are given by Carte-
sian coordinates (u, v) in the plane, called the reference domain. For
(u, v) ∈ Ω, where Ω is given by the unit square, Ω is describing a
quadrilateral element in the plane, called the reference domain. A map-
ping over the total domain Ω describes another quadrilateral element.
Considering higher order quadrilateral elements, the calculation is ob-
tained within each element. The results have to be linked to the nodal
degrees of freedom of the problem. We consider the transformation be-
tween di�erent elements, this de�nes the so called isoparametric map-
ping.

De�nition 4.1 (Isoparametric element). Let x : Ω→ Rn of the form

x (u, v) =

n∑
a=0

Na (u, v)xa

be a quadrilateral representation of a �nite element

Q = (Ω,N ,X ) ,

where N = {Na}a=0,...,n is the set of functions de�ned over Ω, and X
is the set of linear independent forms x overN . If the mappingX over
Q can be written as

X (p) =
n∑
a=0

Na ◦ x−1 (p)Xa

for p ∈ Q, and X (Q) is a closed subset of Rn with a non-empty interior, the element parame-
terization X is said to be an isoparametric �nite element.

A �nite element constructed on an other �nite element is called isoparametric. Respectively,
both elements are isoparametrically equivalent. For a schematic illustration, see Figure 4.1. Con-
sidering the de�nition, note that the shape functions Na, a = 0, ...,n, describing the mapping
x (u, v) also serves as the basis of the mappingX (p). Consequently, the elementQ = x (Ω) and
the mapping X (Q) are contained in the same space.

Remark 4.2. The mapping x has to ful�l the following conditions:

• x is one-to-one

• x is onto
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• Let x : Ω → Q be a di�erentiable mapping, i.e. the determinant of the derivative |J | =

det
(
∂x
∂u

)
called the Jacobian determinant ful�ls |J | > 0 for all u ∈ Ω.

The quality of the approximation depends on the properties of chosen �nite element ap-
proach. At least one, accuracy or e�ciency, can be easily achieved. For the e�ciency, the most
preferable shape functions are simple polynomials. Accuracy is obtained from the convergence
behaviour of the solution. This can be described by the following idea: as we increase the res-
olution of the mesh specifying the domain, the sequence of the approximated solutions should
converge to the exact solution. For more detailed information on isoparamtric �nite elements
see [Ciarlet, 1978].

4.1.3 Link to isogeometric analysis

Back to the beginning of computer-aided manufacturing, another powerful scienti�c sector has
been established, this is, Computer-Aided Design (CAD). The task of CAD is to develop a con-
cept for the design of su�ciently accurate models for production purposes. The exact geometry
description is of primary importance. Despite the frequent cooperation of the �nite element
and CAD sectors, throughout the years, each sector moves independently towards its own aims.
Consequently, gaps are emerging in the interworking of both sectors. One of the greatest con-
cerns is the exchange of data. Di�erent models for the representation of the geometry are used
for the �nite element analysis and CAD modelling technologies. Moreover, complex and time
consuming transformation processes become indispensable.

Recently, a new scienti�c area called Isogeometric Analysis (IgA) has been introduced in
[Cottrell et al., 2005, 2009]. The aim of IgA is an integrated system that combines the advan-
tages of �nite element analysis and CAD technologies. Hence, CAD tools for representing exact
geometrical shapes are used for the investigation of real world problems. One type of shape func-
tions is used for the representation of the geometry and the unknown solution space. However,
the idea of an uni�ed approach for the representation of form and function is not new. From
the �nite element side, the isogeometric approach builds on the isoparametric approach that is
founded on this idea. Considering the isoparametric and the isogeometric approach, the di�er-
ence is in the origin of the shape functions. In the isoparametric concept, the basis functions
result from the construction of the solution space. Thus, the choice of shape functions to ob-
tain a su�cient approximation quality of the unknown solution is prescribing the basis for the
geometry representation. In the isogeometric concept, the shape functions arise from the exact
representation of the geometry in the CAD system.

In the original concept, NURBS has been used for the construction. Nowadays, a variety
of geometry representation tools are circulating in the literature, for example, T-splines (an en-
hancement of NURBS) [Sederberg et al., 2003], subdivision surfaces (mainly used in the animation
industry), etc. All of these tools have the capability to describe smooth geometries and avoid the
e�ort of geometry conversion from CAD into a suitable �nite element mesh. Consequently, the
IgA concept looks very promising for the future of manufacturing.

4.2 Catmull–Clark �nite elements

Catmull–Clark subdivision surfaces describe a common tool used for the representation and de-
sign of geometric models. Using the locality of the subdivision, the global parameterization is
avoidable and we can think of generalized B-spline patches that piecewise describe the surface.
Considering the properties of the underlying basis functions, it is a natural consequence to intro-
duce the concept of Catmull–Clark subdivision surfaces into the area of �nite element analysis.
Combining the geometrical and analytical potential of this concept, a �nite element approach
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can be obtained that provide consistency for problems which require up toH2-regularity. More-
over, we are interested in solving PDE’s on arbitrary two-dimensional surfaces based on the
subdivision concept. Consequently, the concept exhibits a great robustness and �exibility of the
resulting models.

In this section, we introduce the concept of Catmull–Clark subdivision surfaces in the �eld of
�nite element analysis. Using the isoparametric approach, we de�ne subdivision �nite elements
of Catmull–Clark type. Two approaches will be established, the natural and the characteristic
�nite elements, that base on the natural and the characteristic parameterization, respectively.
The representation of the shape functions is described by the corresponding generating spline
that is used to calculate the limit geometry, element by element. Here, we present an alternative
concept to traditional �nite element techniques that allows for an interoperability concept. It
builds on subdivision basis functions for the approximation of the solution space.

4.2.1 Subdivision �nite element framework

Given an arbitrary control grid CQ = {K,c}, we obtain a unique Catmull–Clark limit surfaceQ.
Let the surfaceQ be immersed in R3 together with the control grid CQ. Moreover,Q is described
to be a generalized B-spline surface, i.e. a set of global basis functions is given that corresponds
to the set of control grid vertices. The underlying global basis is the set of generalized B-spline
basis functions Ba, described in Section 3.2.5. The limit surface can be therefore represented by

Q =
∑
a

caBa,

where ca ∈ c are the vertex positions of the vertices in the control grid CQ, a ∈ IQ is the index
of a vertex in CQ. In the following, we will restrict ourselves to closed limit surfaces, such that for
each control grid element the limit surface exists. Note, subdividing a control grid with boundary
leads to missing limit surface for the boundary elements, see Section 3.1.1).

Based on the fundamental ideas behind the limit surfaceQ, two parameterizations have been
described in the previous chapter. Using the natural and the characteristic parameterization, the
surface can be seen as a patchwork of glued together subdomainsQ ⊂ Q, called surface patches,
corresponding to the elements Qc of the control grid CQ. Therefore, each element Qc ∈ CQ is
associated with a surface patch Q ⊂ Q. The patches Q ⊂ Q characterize a decomposition of
the surfaceQ, i.e. we obtain the so called physical grid onQ. An interplay between two meshes
is described, the control grid and the physical mesh. The control grid is speci�ed by the control
vertices and can be seen as a sca�old of the physical mesh. Moreover, it has the look of a typical
�nite element mesh. The degrees of freedom are distributed on the vertices of the control grid
that stand for the �eld variables, as for example displacement, temperature, etc.

For each patch Q or, equivalently, each element Qc, a set of basis functions is described by
the associated generating spline. These element-based functions correspond to the vertices in
the one-ring of Qc. Let IQ ⊂ Z be the index set of the one-ring vertices. For simplicity’s sake,
we distinguish between regular and irregular elements. If the elementQc is regular, the B-spline
representation also called regular representation can be applied. Therefore, the corresponding
surface patch Q is described by the mapping sQ : [0, 1]2 → R3, i.e.

sQ (u, v) =
∑
j∈IQ

cjbj (u, v) , (u, v) ∈ [0, 1]2 ,

where cj is the position of the jth control vertex in the one-ring of the appropriate element
Qc ⊂ CQ. The surface sQ is therefore a uniform bicubic B-spline patch.

If Qc is an irregular element, the limit surface is a piecewise B-spline patch. Depending on
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the parameterization, the natural and the characteristic representations of the surface patch can
be used for the parameterization. By means of the natural parameterization, the surface patch Q
is de�ned by the mapping sQ : Ω→ R3 on the reference domain Ω. The mapping sQ is de�ned
by the weighted sum

sQ (u, v) =
∑
j∈IQ

cjb
∗
j (u, v) , (u, v) ∈ Ω,

where
{
b∗j

}
j∈IQ

is the natural generating spline basis, with the patchwise representation

sQ (u, v)|Ωnk = sk,n ◦ tk,n (u, v) (u, v) ∈ Ωn
k , (4.1)

where sk,n is a regular B-spline parameterization, see Formula 3.2.2. Using the characteristic
parameterization, the surface patchQ is given by a reparameterization of sQ over the associated
characteristic domain Ων of Qc. Thus, the mapping sQ ◦ χ−1 : Ων → R3 is described by the
weighted sum

sQ ◦ χ−1 (ξ, η) =
∑
j∈IQ

cjb
χ
j (ξ, η) , (ξ, η) ∈ Ων ,

with the characteristic generating spline basis
{
bχj

}
j∈IQ

. The patchwise representation is given
by

sQ ◦ χ−1 (ξ, η)
∣∣
Ωk,nν

= sk,n ◦ χ−1
k,n (ξ, η) (ξ, η) ∈ Ωk,n

ν , (4.2)

where the mapping χk,n describes the subdomain Ωk,n
ν of the partitioned characteristic domain.

b∗

b

bχ

bR, bN , bC

tk,n

χ

χ−1
k,n

reference
domain Ω

parameter
domain Ων

physical
domain Q

uniform B-splines
domain [0, 1]

2

Figure 4.2: Element based basis functions. Schematic illustration of the domains and the appropriate gener-
ating splines together with the shape functions.
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Using a parameterization, the limit surface Q is therefore given by the union

Q :=
⋃
Q⊂Q

Q

of all surface patches Q. Accordingly, if the control grid element Qc is regular, then all three
parameterization can be used for representation of the related limit surface patch. However, the
natural and the characteristic parameterizations are equivalent to the B-spline representation,
see Section 3.3.2. In the irregular case, the choice of parameterization has an essential in�uence
on the quality of the surface.

In the following, we consider di�erent notions of element based basis functions. Depending
on the representation and the domain, we distinguish between:

• the uniform B-spline basis b on [0, 1]2, see De�nition 4.3,

• the regular shape function bR on the surface patch Q ⊂ Q in the physical space R3 with
the reference domain [0, 1]2,

• the natural generating spline basis b∗ on the reference domain Ω =
⋃
k,n

Ωn
k = [0, 1]2, see

De�nition 4.4,

• the natural shape function bN on the surface patchQ ⊂ Q inR3 with the reference domain
Ω,

• the characteristic generating spline basis bχ on the characteristic domain Ων =
⋃
k,n

Ωk,n
ν ⊂

R2, see De�nition 4.5,

• and, the characteristic shape functions bC on the surface patch Q ⊂ Q in R3 with the
reference domain Ων .

The particular basis functions are illustrated in Figure 4.2. As imposed by the isoparametric
approach, the same basis functions are used for the de�nition of the solution space as for the
representation of the surface. The shape functions are characterized on the surface Q and can
be therefore de�ned by the pullback of the generating spline by the inverse of the associated
surface parameterization. In this context, it is important to remember that for a given surface
representation the generating splines represent the basis for the parameterization of the surface
Q, whereas the shape functions are de�ned on the surfaceQ and specify the basis of the function
space over Q.

Accordingly, we distinguish between the regular and irregular element. If the corresponding
control grid elementQc ofQ ⊂ Q is regular, the reference domain Ω of the natural representation
coincide with the characteristic domain Ων and the B-spline domain [0, 1]2. The generating spline
bχ = b∗ = b is given by the 16 bicubic B-spline basis functions bj , j = 0, ..., 15. Therefore, the
shape functions can be summarized by a single de�nition, that is, the shape functions for a regular
element are de�ned by

De�nition 4.3 (Regular �nite element). Given the regular representation sQ of a surface patch
Q ⊂ Q that is related to a regular element Qc ∈ CQ. The regular shape functions bRi : Q → R
on Q, i ∈ IQ, are de�ned as the push-forwards of the uniform bicubic B-spline functions bi, to
be precise

bRi (q) = bi ◦ s−1
Q (q) (4.3)
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for q ∈ Q, where i is the index of the ith vertex in the one-ring of the element Qc. The function
space over the patch Q is given by

V RQ =
{
xRQ ∈ span

{
bRi
}
| i ∈ IQ

}
, (4.4)

where xRQ is the regular �nite element on Q. The set IQ ⊂ Z is the one-ring index set of the
regular element.

If the given control grid element Qc of Q ⊂ Q is irregular, we consider the following de�ni-
tions:

De�nition 4.4 (Natural �nite element). Considering the natural parameterization sQ of the
patch Q ⊂ Q. The natural shape functions bNi : Q → R, i ∈ IQ, on Q are de�ned as the
push-forwards of the natural generating spline functions b∗i (see De�nition 3.3), i.e.

bNi (q) = b∗i ◦ s−1
Q (q) (4.5)

for q ∈ Q, where i ∈ IQ is the index of the ith vertex in the one-ring of the according control
grid element Qc. The function space over Q is given by

V NQ =
{
xNQ ∈ span

{
bNi
}
| i ∈ IQ

}
, (4.6)

where xNQ : Q → Rn is the natural �nite element mapping over the surface patch Q. The set
IQ ⊂ Z is the one-ring index set of element Qc.

Due to the continuity of the basis functions, the function space over the whole surface Q is
given by the union of all element function spaces. Considering the natural parameterization of
Q, the function space Vh is given by the set

Vh =
⋃
Q

V NQ =

xN =
⋃
Q

xNQ

∣∣∣∣∣∣xNQ ∈ V NQ
 .

However, if an element is regular, we will use the regular �nite element. Equivalently, the natural
shape space Vh can be described by

Vh =
⋃
Q reg

V RQ ∪
⋃

Q irreg
V NQ =

xN =
⋃
Q reg

xRQ ∪
⋃

Q irreg
xNQ

∣∣∣∣∣∣xRQ ∈ V RQ and xNQ ∈ V NQ

 .

The natural �nite element is a common approach appearing in the subdivision �nite element
literature. Nevertheless, a precise de�nition hasn’t been introduced to the community.

Finally, based on the characteristic representation, we introduce a new subdivision �nite
element approach.

De�nition 4.5 (Characteristic �nite element). We consider the reparameterization of sQ over
the characteristic domain given by sQ ◦χ−1. The characteristic shape functions bC : Q→ R over
surface patch Q ⊂ Q are de�ned as the push-forwards of the characteristic generating spline
functions bχi (see De�nition 3.10), i.e.

bCi (q) = bχi ◦ χ ◦ s
−1
Q (q) (4.7)

for q ∈ Q, where i ∈ IQ is the index of the ith vertex in the one-ring of the related control grid
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element Qc. The function space over the surface patch Q is given by

V CQ =
{
xCQ ∈ span

{
bCi
}
| i ∈ IQ

}
, (4.8)

where xCQ : Q→ Rn is the characteristic �nite element over the surface patch Q.

The de�nition of the element is based on the characteristic parameterization and therefore
consistent with the classical subdivision surfaces. The reference domain of an element is given
by the characteristic domain Ων that changes depending on the valence of the extraordinary
vertex. The function space over the surface Q is described equivalently to the natural function
space by

Vh =
⋃
Q reg

V RQ ∪
⋃

Q irreg
V CQ =

xC =
⋃
Q reg

xRQ ∪
⋃

Q irreg
xCQ

∣∣∣∣∣∣xRQ ∈ V RQ and xCQ ∈ V CQ

 ,

with respect to the regular representation xRQ on regular grid elements.

4.2.2 Subdivision �nite elements at a glance

The Catmull–Clark limit surface is aC2-continuous surface except at �nitely many extraordinary
vertices, where it is only C1 ∩ H2-continuous. It guarantees a high continuity of the approxi-
mation that is highly promising for the construction of �nite elements assuring an appropriate
regularity. Consequently, the Catmull–Clark subdivision provides a conforming �nite element
approach for PDEs up to fourth order.

The degrees of freedom, or the so-called nodal variables of the �nite element model, are
referring to the control vertices and the corresponding global basis functions given by the gen-
eralized B-splines. The generalized B-spline basis functions are not interpolating, unlike most
shape functions. Consequently, nodal variables can not be interpreted by themselves, but only
with reference to the basis functions. That is, the solution of a PDE is construed from a linear
combination of the nodal variables weighted with the appropriate basis function. However, the
support of each of the generalized B-spline basis function is spanned over the two-neighbourhood
of the related control vertex. Considering the physical mesh, the global functions can be handled
locally using the element-based shape functions. Here, the set of element-based functions is in-
�uenced by the valence of the element vertices. Additionally, the impact of the underlying basis
functions goes beyond the vertices of an element, i.e. the vertices in the one-ring of the element
are a�ected.

In contrast to the classical �nite theory, the framework of a subdivision �nite element does
not coincide with the boundary of the reference domain. Due to the fact that the whole one-ring
is a�ected by the set of element based basis functions, the subdivision �nite element approach
requires new concepts for surfaces with boundary, or, equivalently, for boundary value problems.
This is due to the fact that, given a surface with boundary, the boundary elements have an incom-
plete one-ring. A possible approach could be to establish new basis functions that are compatible
with the one-ring construction. However, in doing so, it is a non-trivial problem to determine
basis functions ful�lling prescribed boundary conditions. Another idea would be to extend the
control grid to complete the one-ring of the boundary element to satisfy the requirements for
the element based generating spline. The treatment of boundary constraints compatible with the
construction of subdivision surfaces is discussed in Chapter 5.
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4.2.3 Derivatives on surfaces

Here, we brie�y summarize some concepts relevant for the application of �nite elements for the
computation of integrals over curved surfaces. For the general de�nition, let Ω be an open set in
R2. We consider a mapping s : Ω → R3 from the reference domain Ω to the physical space R3,
such that

(u, v) 7→ s (u, v) .

The mapping s describes a regular surface Q in R3, i.e. s is a di�eomorphism. The Jacobian
matrix of s is a 3× 2 matrix de�ned by

Js = (s,1 s,2) ,

where the entries s,i, i ∈ {1, 2}, are column vectors given by the partial derivatives of the surface
mapping, i.e.

s,1 =
∂s (u, v)

∂u
and s,2 =

∂s (u, v)

∂v

describing the independent tangent vectors of the surface. By Gs = JTs Js we denote the �rst
fundamental form of s. Equivalently, we can write Gs as follows

Gs =

(
g11 g12

g21 g22

)
,

where gij = sT,is,j . The �rst fundamental form describes intrinsic measurements of the surface,
as length and area, that do not depend on the position of the surface in the ambient space. The
Jacobian determinant |Js| is de�ned by

|Js| =
√

det (Gs).

It describes the change of the area in the surface element. Under the change of coordinates, the
area element of s is de�ned by ds = |Js| dudv, where the change is given by the absolute value
of the Jacobian determinant Js. If Js is the Jacobian of s, such that Gs is invertible, then

J†s = G−1
s JTs , (4.9)

where the operator J†s is called the Moore–Penrose pseudo-inverse of Js. The inverse of Gs is
given by G−1

s =
(
gij
)
ij

, or, more precisely by

G−1
s =

1

det (Gs)

(
g22 −g12

−g21 g11

)
.

The pseudo-inverse describes the generalization of an inverse matrix for singular and non-quadratic
matrices.

The unit normal vector of s can be determined by

n =
s,1 × s,2

|s,1 × s,2|
.

If n is continuous over Ω, then the surface s is orientable. The second fundamental form has the
following matrix description

Hs =

(
h11 h12

h21 h22

)
,
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where the coe�cients can be computed by hij = n · s,ij . Thus, the vectors s,ij are the second
partial derivatives of s. The second fundamental form depends on the position of the surface
in the ambient space. It is used to describe di�erent curvature types of the surface. One of the
important curvatures is the mean curvature H , that measures the mean of the maximal and the
minimal curvature at each point on the surface. Using the �rst and the second fundamental form,
the formula describing H is given by

H =
h11g22 − 2h12g12 + h22g11

2
(
g11g22 − g2

12

) , (4.10)

where the symmetry of Gs and Hs have been used. The two extremes are the two principal
curvatures κ1 and κ2. The principal curvatures correspond to the two eigenvalues of the shape
operator, whereby the associated eigenvectors are the corresponding principal directions. The
shape operator is given in terms of the components of the �rst and second fundamental form,
i.e.

S = G−1
s Hs.

The shape operator de�nes a type of extrinsic curvature. Thus, the mean curvature is equal to

H =
κ1 + κ2

2
.

To deal with PDEs on surfaces, we consider the smooth function f : R3 → R de�ned over
the image of the mapping s. In order to handle f , a standard procedure is to transform f onto
the reference domain Ω of s. For this purpose, we consider the pullback of f by s through the
smooth function composition

f (q) = f ◦ s (u, v) ,

where q = s (u, v) ∈ Q for (u, v) ∈ Ω. The surface gradient ∇Q is de�ned as the tangential
part of the gradient ∇ of f in the physical space of s. It can be computed by the formula (see
do Carmo [1993])

∇Qf (q) =
(
J†s

)T
∇ (f ◦ s) (u, v) , (4.11)

for q = s (u, v) and (u, v) ∈ Ω and the gradient ∇ (f ◦ s) (u, v) of the function f ◦ s in the
reference domain. The gradient of f ◦ s in the reference domain is directly given by

∇ (f ◦ s) (u, v) =

(
∂ (f ◦ s) (u, v)

∂u
,
∂ (f ◦ s) (u, v)

∂v

)T
.

Note, the surface gradient ∇Q is similar to the conventional gradient ∇, i.e. the surface gradi-
ent ∇Q is the projection of the gradient ∇ onto the surface. The generalization of the Laplace
operator ∆ for operations on surfaces is described by the Laplace–Beltrami operator

∆Qf = divQ (∇Qf) ,

where divQ is the divergence operator on surface Q. The representation of the divergence of a
vector X is

divQX =
1√

detGs

(
∂

∂u
,
∂

∂v

)√
detGs J

†
s X.

Like the Laplace operator, the Laplace–Beltrami operator is de�ned as the divergence of the
gradient, where the gradient and the divergence operator in the context of surfaces are considered
to be the surface gradient∇Q and the divergence operator divQ. Hence, we obtain the following
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formula for the Laplace–Beltrami of the mapping f :

∆Qf =
1√

detGs

(
∂

∂u
,
∂

∂v

)√
detGs G

−1
s ∇ (f ◦ s) (u, v)

It describes the generalization of the Laplace operator ∆ to operate on arbitrary surfaces, for
instance, curved surfaces.

4.3 Integrals over subdivision surfaces

LetQ be a smooth subdivision surface immersed in R3. Furthermore,Q can be represented by a
piecewise generalized B-spline surface partitioned into patchesQ ⊂ Q. In this section, we derive
some �nite element concepts for solving PDEs de�ned on subdivision surfaces. This includes the
projection of a function onto the subdivision �nite element space Vh and the weak Laplacian of
a pair of functions over the surface Q. Considering the element based construction of the �nite
elements, both problems can be piecewise solved piece by piece over the patchesQ of surfaceQ.

4.3.1 Finite element projection

Let x : Q → R be a function described on the surfaceQ. The projection of x onto a �nite element
space Vh is given by the integral of the product of x with a test function v ∈ Vh, i.e.∫

Q
xv dQ.

We refer here to the subdivision �nite element space that is given by the union

Vh =
⋃
Q⊂Q

VQ

of the element based spaces VQ. Each of the subspaces VQ is �nite-dimensional and can be
determined by a basis {βi}i∈IQ , where IQ is the index set of the vertices in the one-ring of Q.
Thus, we consider the restriction x|Q = xQ of function x to an element Q ⊂ Q. Using the basis
functions βi, we may write xQ as the sum

xQ =
∑
i∈IQ

xQi βi, (4.12)

where xQi is the coe�cient of the expansion xQ associated with the ith basis function βi. By
setting the test function to be equal to the basis, i.e. v|Q = vQ = βj for each j ∈ IQ, the integral
can be rewritten as follows∫

Q
xβj dQ =

∫
Q
xQβj dQ =

∑
i

xQi

∫
Q
βiβj dQ,

where
MQ
ij =

∫
Q
βiβj dQ

is the integral of the product of basis functions βi and βj de�ned overQ. Moreover,MQ
ij describes

the ijth entry of the local mass matrix MQ on element Q. Considering the global problem, i.e.
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the integral over all surface patches Q ⊂ Q and all βj , j ∈ IQ, we obtain the formula

M =
∑
Q⊂Q

MQ =
∑
Q⊂Q

∑
i,j∈IQ

MQ
ij ,

where M is the global mass matrix. As can be seen, the assembling of the global mass matrix
M is done locally, whereby the sums of integrals over each individual patch Q ⊂ Q have to
be evaluated. Keep in mind, the local indices i and j of the element Q are related to the global
indices of the vertices of the entire surface Q. For each element, the local evaluation have to be
postponed to the appropriate entries of the global system.

In the following, letQ be the limit surface associated with the control grid CQ. For simplicity’s
sake, we distinguish between Qc ∈ CQ being a regular or an irregular control grid element. If
Qc is regular, then the surface patch Q ⊂ Q is speci�ed to be a B-spline surface patch. Without
the restriction to one of the two �nite element approaches, the reference domain of Q is given
by [0, 1]2, and even Ω = Ων = [0, 1]2. The pullback of the shape functions bRj : Q → R to the
reference domain [0, 1]2 is given by the composition

bRj (q) = bj ◦ s−1
Q (q) = bj (u, v) , (4.13)

where sQ is the parameterization of the surface patchQwith B-spline basis functions bj : Ω→ R,
j ∈ IQ. Using the change of coordinates, the ijth entry MQ

ij of the local mass matrix MQ can
be calculated from the formula:

MQ
ij =

∫
Q
bRi (q) bRj (q) dQ =

∫
[0,1]2

bi (u, v) bj (u, v) |JsQ | dω, (4.14)

where JsQ is the Jacobian of the surface mapping sQ and |JsQ | is the related Jacobian determi-
nant.

If the element Qc of the control grid CQ is irregular, then the surface patch Q ⊂ Q is deter-
mined to be a piecewise B-spline patch. We distinguish between the natural and the characteristic
�nite elements, where V NQ and V CQ are the corresponding function spaces. For the natural ap-
proach, the reference domain Ω remains the same, whereas the characteristic domain Ων depends
on the valence ν of the extraordinary vertex.

Considering the natural �nite elements, the shape function bNj is de�ned by the pullback of
the basis function b∗j (described in Formula 4.5) by the inverse of the surface parameterization,
i.e.

bNj (q) =b∗j ◦ s−1
Q (q) = b∗j (ū, v̄) , (4.15)

where sQ is the natural parameterization of the patch Q and q ∈ Q is given by q = s (ū, v̄).
Based on the partition of the domain Ω =

⋃
k,n Ωn

k , the basis functions b∗j : Ω → R can be
described by the composition

b∗j (ū, v̄)
∣∣
Ωnk

=
∑
k,n

[
STk,n

]
j,· b ◦ tk,n (ū, v̄)

∣∣∣
Ωnk

=
∑
k,n

[
STk,n

]
j,· b (u, v) ,

where Sk,n is the subdivision matrix that maps onto the kth subpatch in the nth subdivision
level described as sk,n. Note, sk,n is related to the subdomain Ωn

k ∈ Ω. The vector b is the regular
generating spline with the 16 B-spline basis functions as entries. We denote by

∑
k,n =

∑
n

∑
k

the double sum for k = 1, 2, 3 and n ≥ 1. The local mass matrix of the element Q can be
calculated as follows:
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Theorem 4.6. Let Q be a surface patch corresponding to an irregular control grid element. Using
the natural approach, the element mass matrixMQ is de�ned by the sum

MQ = lim
n→∞

∑
k,n

STk,nM
kn Sk,n (4.16)

of integrals over the domain [0, 1]2, where Sk,n = PkSn is the subdivision matrix that localizes the
kth subpatch in the nth subdivision level described by the mapping sk,n ⊂ Q. The matrixMkn is
the local mass matrix of the domain characterized by sk,n. The entries ofMkn are given by

Mkn
στ =

∫
[0,1]2

bσ bτ |Jsk,n | dω, (4.17)

where bγ is the γth uniform B-spline basis function, for γ = 0, ..., 15.

The matrix Mkn is a 16 × 16-matrix that corresponds to the vertices in the one-ring of an
element, which results from subdividing the element Qc with matrix Sk,n. Applying Sk,n to the
matrix Mkn will distribute the entries to the degrees of freedom of the patch Q corresponding
to the appropriate vertices in the one-ring of the element Qc.

Proof. Let bCi and bCj be two shape functions described over the surface patch Q. The integral of
the product of these functions over Q is de�ned by

MQ
ij =

∫
Q
bNi bNj dQ

The function bNi ful�ls the composition bNi (q) = b∗i ◦ s
−1
Q (q) for q ∈ Q, such that bNi (q) =

b∗i (ū, v̄) for (ū, v̄) ∈ Ω. Thus, it holds that

=

∫
Ω
b∗i b
∗
j

∣∣JsQ∣∣ dΩ

where JsQ = (sQ,1 sQ,2) (ū, v̄) is the Jacobian of the mapping sQ. Consider the in�nite partition
of Ω into Ωn

k , see Figure 3.7. Using the restrictions to the subdomains Ωn
k , we have

= lim
n→∞

∑
k,n

∫
Ωnk

(b∗i ◦ ιk,n)
(
b∗j ◦ ιk,n

) ∣∣JsQ∣∣ ◦ ιk,n

∣∣Jιk,n∣∣ dΩn
k

where ιk,n is the identity map transforming to the domain Ωn
k , with

∣∣Jιk,n∣∣ = 1. Using the
patchwise parameterization sQ|Ωnk = sk,n ◦ tk,n of the surface sQ, the restriction of the Jacobian
determinant results in

∣∣JsQ∣∣ ◦ ιk,n =
∣∣Jsk,n◦tk,n∣∣. For the basis functions, we obtain b∗i ◦ ιk,n =[

STk,n

]
i,·
b ◦ tk,n. Hence, we consider the following in�nite sum:

= lim
n→∞

∑
k,n

[
STk,n M

kn
Ω Sk,n

]
i,j
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with the matrix Mkn
Ω described over the domain Ωn

k . The term []i,j denotes the ijth entry of the
given matrix. The entries

(
Mkn

Ω

)
στ

are de�ned by(
Mkn

Ω

)
στ

=

∫
Ωnk

(bσ ◦ tk,n) (bτ ◦ tk,n) |Jsk,n◦tk,n | dΩn
k .

Now, given t−1
k,n, we transform Ωn

k to the B-spline domain [0, 1]2. Using the chain rule, we obtain
the formula

= lim
n→∞

∑
k,n

[
STk,nM

kn Sk,n

]
ij

with the matrix Mkn, where the entries Mkn
στ are given as in Equation 4.17.

As a result, the summands are characterized on the B-spline domain [0, 1]2.
Considering the characteristic �nite elements, the shape function bCj are de�ned by the pull-

back of the basis function bχj (see Formula 4.7) by the inverse of the surface parameterization,
this is

bCj (q) = bχj ◦ χ ◦ s
−1
Q (q) = bχj (ξ, η) , (4.18)

where sQ ◦ χ−1 is the parameterization of the surface patch Q described over the characteristic
domain Ων . The characteristic function χ and, equivalently, the characteristic domain Ων are
given depending on the valence of the extraordinary vertex. Using the partition of the domain
Ων =

⋃
k,n Ωk,n

ν , the basis functions bχj : Ων → R can be described by the composition

bχj (ξ, η)
∣∣∣
Ωk,nν

=
∑
k,n

[
STk,n

]
j,· b ◦ χ

−1
k,n (ξ, η)

∣∣∣
Ωk,nν

=
∑
k,n

[
STk,n

]
j,· b (u, v) ,

where Sk,n is the subdivision matrix specifying the kth subpatch in the nth subdivision level
described by the mapping sk,n. Thus, sk,n ◦ χ−1

k,n is described over the subdomain Ωk,n
ν ⊂ Ων .

The vector b is the regular generating spline. The local mass matrix MQ of element Q can be
calculated using the following theorem.

Theorem 4.7. Let Q be a surface patch corresponding to an irregular control grid element. Using
the characteristic approach, the element mass matrixMQ is given by the in�nite sum

MQ = lim
n→∞

∑
k,n

STk,nM
kn Sk,n (4.19)

where Sk,n = PkSn is the subdivision matrix that localizes the kth subpatch in the nth subdivision
level. The matrixMkn is the mass matrix of the subpatch sk,n ⊂ Q. The entries ofMkn are given
by

Mkn
στ =

∫
[0,1]2

bσ bτ |Jsk,n | dω, (4.20)

where bγ is the γth uniform B-spline basis function, for γ = 0, ..., 15.

Proof. Let bCi and bCj be two shape functions described over the surface patch Q. The integral of
the product of these functions on Q is de�ned by

MQ
ij =

∫
Q
bCi b

C
j dQ
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The function bCi ful�ls the composition bCi (q) = bχi ◦ χ ◦ s
−1
Q (q) for q ∈ Q, such that bCi (q) =

bχi (ξ) for ξ ∈ Ων . Using the chain rule
(
sQ ◦ χ−1

)′
(ξ) = s′Q

(
χ−1 (ξ)

) (
χ−1

)′
(ξ), it holds that

=

∫
Ων

bχi b
χ
j

∣∣∣JsQ◦χ−1

∣∣∣ dΩν

where JsQ◦χ−1 = JsQJχ−1 , with JsQ = (sQ,1 sQ,2)|χ−1(ξ), for Jχ−1 (see Eq. 3.14). Consider
the in�nite partition of Ων into the domains Ωk,n

ν (see Figure 3.12). Using piece by piece the
restriction to Ωk,n

ν , we have

= lim
n→∞

∑
k,n

∫
Ωk,nν

(bχi ◦ ιk,n)
(
bχj ◦ ιk,n

) ∣∣∣JsQ◦χ−1

∣∣∣ ◦ ιk,n

∣∣Jιk,n∣∣ dΩk,n
ν

where ιk,n is the identity map associated with the domain Ωk,n
ν , where

∣∣Jιk,n∣∣ = 1. Using the the
patchwise parameterization sQ|Ωnk ◦ χ

−1 = sk,n ◦ tk,n ◦ χ−1 of the surface sQ, the restriction to
Ωk,n
ν is given by sQ ◦χ−1 ◦ ιk,n = sk,n ◦χ−1

k,n. The restriction of the Jacobian determinant results
in
∣∣∣JsQ◦χ−1

∣∣∣ ◦ ιk,n =
∣∣∣Jsk,n◦χ−1

k,n

∣∣∣. For the basis functions, we have: bχi ◦ ιk,n =
[
STk,n

]
i,·
b ◦ χ−1

k,n.
Hence, we consider the in�nite sum:

= lim
n→∞

∑
k,n

[
Sk,n M

kn
χ Sk,n

]
i,j

with the local matrices Mkn
χ , where the entries

(
Mkn
χ

)
αβ

are de�ned by

(
Mkn
χ

)
αβ

=

∫
Ωk,nχ

(
bα ◦ χ−1

k,n

) (
bβ ◦ χ−1

k,n

)
|Jsk,n◦χ−1

k,n
| dΩk,n

ν .

Now, we transform Ωk,n
ν to the B-spline domain [0, 1]2 by χk,n. Using the chain rule, we have

= lim
n→∞

∑
k,n

[
STk,nM

kn Sk,n

]
ij

with the mass matrix Mkn, where the entries Mkn
αβ are given as in Equation 4.20.

The integrand is therefore transformed onto the B-spline domain [0, 1]2 by the reparameter-
izetion onto the parameter domain Ων , where we make use of the partition into the subdomains
Ωk,n
ν . Note, since the extraordinary vertex is just a null set, we do not pay attention to it calcu-

lating the integrals.
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4.3.2 Weak Laplacian

In the following, we examine the integral corresponding to the weak Laplacian of x and v, a pair
of mappings on the surface Q. This is given by∫

Q
∇Qx · ∇Qv dQ,

where ∇Q is the surface gradient described in Formula 4.11. As before, we consider the �nite
element space Vh described by the union of element-based subspaces VQ, i.e.

Vh =
⋃
Q⊂Q

VQ,

where each VQ is determined by the set of corresponding basis functions {βi}i∈IQ . For the
mappings x and v, the patchwise representations xQ and vQ on element Q are obtained as in
Equation 4.12. The global integral can be therefore rewritten into the sum of integrals over the
patches Q ⊂ Q. This is given by∫

Q
∇Qx · ∇Qv dQ =

∑
Q⊂Q

∑
i,j

xi

∫
Q
∇Qβi · ∇Qβj dQ vj ,

where
DQ
ij =

∫
Q
∇Qβi · ∇Qβj dQ (4.21)

is the weak Laplacian of the basis functions βi and βj over surface patch Q ⊂ Q. The change
of the Laplace–Beltrami operator ∇Q to ∇Q is here just a renaming. This is due to fact that we
consider the restriction of Q to the patch Q that is done without requiring any further change
of coordinates. The term DQ

ij is the ijth entry of the local sti�ness matrix DQ. Moreover, the
global problem given by the integral over the whole domain Q results in the global sti�ness
matrix described by

D =
∑
Q⊂Q

DQ =
∑
Q⊂Q

∑
ij

DQ
ij . (4.22)

We assemble the global matrix D by computing the local integrals over the subpatches Q ⊂ Q,
and postpone the results to the appropriate global matrix entries.

Given the limit surface Q together with the control grid CQ, we consider the element Qc ∈
CQ. Again, we distinguish between Qc being a regular or an irregular element. If Qc is regular,
the set of basis functions on Q is given by the set of regular shape functions

{
bRi
}
i∈IQ

based on
the regular B-spline basis bi, see Equation 4.13. By means of the change of coordinates, the ijth
entry of the local sti�ness matrix DQ is described by the formula

DQ
ij =

∫
Q
∇QbRi (q) · ∇QbRj (q) dQ =

∫
[0,1]2

(∇bi (u, v))T G−TsQ ∇bj (u, v) |JsQ | dω, (4.23)

where bi, i ∈ IQ, is the ith uniform B-spline basis functions. The term ∇bi is describing the
usual gradient of the function bi. Further, the term G−TsQ is the transposed inverse of the �rst
fundamental form GsQ of the surface mapping sQ ≡ Q.

If the elementQc is irregular, then we distinguish between the natural and the characteristic
�nite elements given by the set of basis functions

{
bNj

}
j∈IQ

and
{
bCj

}
j∈IQ

, respectively. For the

natural approach, the pullback of the functions bNj is de�ed as in Equation 4.15. Before specifying
the sti�ness matrix DQ, we �rstly consider the surface gradient ∇QbNj of basis function bNj .
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Theorem 4.8. Let Q be a surface patch corresponding to an irregular element Qc in the control
grid CQ. Considering the natural �nite element, the surface gradient ∇Q of the function bNi ∈ V NQ
can be transformed onto the B-spline domain [0, 1]2 by

∇QbNi
∣∣
sk,n

= 2n
([
STk,n

]
i,·∇b (u, v) J†sk,n

)T
(u, v) ∈ [0, 1]2

where |sk,n denotes the restriction to the subpatch sk,n ⊂ Q de�ned over [0, 1]2. The term∇b (u, v)

is given by the 16 × 2-matrix and characterize componentwise the gradients of the vector entries
bj (u, v), such that each row is equal to the 1 × 2 vector (∇bj)T . The term J†sk,n denotes the
Moore–Penrose inverse (see Formula 4.9) of the surface patch sk,n.

Thus, the surface gradient∇QbCi is determined piece by piece corresponding to the de�nition
of the natural basis functions b∗i . That is, the restriction of ∇QbNi to sk,n can be rewritten onto
the B-spline domain [0, 1]2.

Proof. For the basis function bNi , the surface gradient is given by

∇QbNi = ∇Q
(
b∗i ◦ s−1

Q

)
The function bNi ful�ls the composition bNi (q) = b∗i ◦ s

−1
Q (q) for q ∈ Q, such that bNi (q) =

b∗i (ū, v̄) for (ū, v̄) ∈ Ω. Using the chain rule, we have

=
(
J†sQ

)T
∇Ωb

∗
i .

This describes the transformation onto the reference domain Ω. The term JsQ denotes the
Moore–Penrose inverse of sQ. We consider the partitioned domain Ω =

⋃
Ωn
k . Using the re-

strictions to the subdomains Ωn
k , we have(

J†sQ

)T
∇Ωb

∗
i

∣∣∣∣
Ωnk

=
(
J†sQ

)T
◦ ιk,n∇Ω (b∗i ◦ ιk,n)

where ιk,n is the identity mapping, such that
∣∣∣J†ιk,n∣∣∣ = 1. Using the mapping tk,n, we can write

=
(
J†sk,n◦tk,n

)T
λ−n∇Ωk,n

([
STk,n

]
i,· b ◦ tk,n

)
Finally, the transformation onto the B-spline domain [0, 1]2 is described by

=

(
1

2

)−n (
J†sk,n

)T ([
STk,n

]
i,·∇b

)T
.

Due to the patchwise parameterization sk,n of the surface patch sQ, the restriction of ∇QbCi to
Ωk,n
χ is given by sk,n ◦ χ−1

k,n. The assumption is derived directly from this equality.

At this point, using the above determined surface gradient, the sti�ness matrixDQ is de�ned
as follows:

Theorem 4.9. Let Q be a surface patch corresponding to an irregular control grid element. Using
the natural approach, the integral of the product of the gradients of the shape functions bNi and bNj
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de�ned on Q can be computed over the B-spline domain [0, 1]2 using the equation

DQ = lim
n→∞

∑
k,n

4n STk,n D
kn Sk,n

where Sk,n = PkSn is the subdivision matrix that localize the kth subpatch in the nth subdivision
level. The matrix Dkn is the sti�ness matrix of the subpatch sk,n ∈ Q. The entries are de�ned by

Dkn
στ =

∫
[0,1]2

(∇bσ)T G−Tsk,n ∇bτ |Jsk,n | dω (4.24)

where ∇bγ is the gradient of the γth uniform B-spline basis function, for γ = 0, ..., 15. The term
Gsk,n denotes the �rst fundamental form of the subpatch sk,n.

Proof. We consider the ijth entry of the local sti�ness matrix DQ given by the weak Laplacian
of the basis functions bCi and bCj . This is given by

DQ
ij =

∫
Q

(
∇QbNi

)T ∇QbNj dQ

Using Theorem 4.8, we have

= lim
n→∞

∑
k,n

22n

∫
[0,1]2

[
STk,n

]
i,·∇b G

−T
sk,n

([
STk,n

]
j,·∇b

)T ∣∣Jsk,n∣∣ dω

The rows of∇b are given by the transposed gradients∇bγ , for γ = 0, ..., 15. Hence,

= lim
n→∞

4n
∑
k,n

[
STk,n D

kn Sk,n

]
ij

for the matrix Dkn, where the entries Dkn
στ are given as in Equation 4.24. To determine the local

matrix DQ, we have to compute the weak Laplacian for all i, j ∈ IQ. This coincides with the
assumption of Theorem 4.9.

Accordingly, we consider a similar procedure for the characteristic �nite elements
{
bCj

}
j∈IQ

(see Equation 4.18). The surface gradient∇Q can be determined by

Theorem 4.10. Let Q be a surface patch corresponding to an irregular control grid element. Let
λ be the subdominant eigenvalue of the subdivision matrix of the corresponding control element.
Considering the characteristic generating spline bχ, the surface gradient ∇Q of the function bCi can
be computed piece by piece over [0, 1]2, this is given by the formula

∇QbCi
∣∣
sk,n

= λ−n
([
STk,n

]
i,·∇b (u, v) J†sk,n

)T
(u, v) ∈ [0, 1]2

where |sk,n describes the restriction to the subpatch sk,n. The term∇b (u, v) be given by the 16×2-
matrix, that follows from the componentwise evaluation of the gradient of the vector entries bj (u, v),
such that each row is equal to∇bj (u, v) corresponding to the 1× 2-vector of the partial derivatives
of bj . The term J†sk,n denote the Moore-Penrose inverse of the surface patch sk,n.

Proof. We consider the surface gradient

∇QbCi = ∇Q
(
biχ ◦ χ ◦ s−1

Q

)
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The function bCi ful�ls the composition bCi (q) = bχi ◦ χ ◦ s
−1
Q (q) for q ∈ Q, such that bCi (q) =

bχi (ξ) for ξ ∈ Ων . Using the chain rule, we have

=
(
J†
sQ◦χ−1

)T
∇χbiχ

This is equal to the transformation onto the characteristic domain Ων . The term JsQ◦χ−1 is
the Moore-Penrose inverse of sQ ◦ χ−1 (see Formula 4.9). We consider the partitioned domain
Ων =

⋃
Ωk,n
ν . The restriction to the subdomain Ωk,n

ν is given by(
J†
sQ◦χ−1

)T
∇χbiχ

∣∣∣∣
Ωk,nν

=
(
J†
sQ◦χ−1

)T
◦ ιk,n∇χbiχ ◦ ιk,n

where ιk,n is the identity mapping, i.e.
∣∣∣J†ιk,n∣∣∣ = 1. Using Remark 3.8, we can write

=

(
J†
sk,n◦χ−1

k,n

)T
λ−n∇χk,n

[
STk,n

]
i,· b ◦ χ

−1
k,n

At this point, we consider the transformation onto the B-spline domain [0, 1]2, this is equal to

= λ−n
(
J†sk,n

)T ([
STk,n

]
i,·∇b

)T
.

Due to the patchwise parameterization sk,n of the mapping sQ, the restriction of∇QbCi to Ωk,n
ν is

given by sk,n◦χ−1
k,n, which by applying to the last equality coincide directly with the assumption.

Consequently, the element sti�ness matrix DQ is de�ned by the following theorem.

Theorem 4.11. Let Q be a surface patch corresponding to an irregular element in the control grid
CQ. Using the characteristic �nite elements, the integral of the product of the gradients of the shape
functions bCi and bCj over the surface patch Q can be transformed onto the B-spline domain [0, 1]2.
By means of the transformation, the element sti�ness matrix is de�ned by

DQ = lim
n→∞

∑
k,n

λ−2n STk,n D
kn Sk,n

where Sk,n = PkSn is the subdivision matrix that localizes the kth subpatch in the nth subdivision
level. The matrix Dkn is the sti�ness matrix of the subpatch sk,n ∈ Q. The entries Dkn

αβ are given
by

Dkn
αβ =

∫
[0,1]2

(∇bα)T G−Tsk,n ∇bβ |Jsk,n | dudv (4.25)

where ∇bγ is the gradient of the γth uniform B-spline basis function, for γ = 0, ..., 15. The term
Gsk,n denotes the �rst fundamental form of the subpatch sk,n.

Proof. We consider the ijth entry of the local sti�ness matrix DQ given by the weak Laplacian
of the basis functions bCi and bCj , i.e.

DQ
ij =

∫
Q

(
∇QbCi

)T ∇QbCj dQ
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Using Theorem 4.10, we have

= lim
n→∞

∑
k,n

λ−2n

∫
[0,1]2

[
STk,n

]
i,·∇b G

−T
sk,n

([
STk,n

]
j,·∇b

)T ∣∣Jsk,n∣∣ dω

The rows of ∇b are given by the transpose of the gradients ∇bγ of the B-spline basis function
bγ , for γ = 0, ..., 15. Consequently, we obtain

= lim
n→∞

λ−2n
∑
k,n

[
STk,n D

kn Sk,n

]
ij

where the entries Dkn
αβ of the sti�ness matrix Dkn are given as in Equation 4.25.

Considering the representation of the mass and the sti�ness matrix assembled by means of
the natural or the characteristic �nite element approach, we refer to the transformation of the
associated integrals onto the B-spline domain [0, 1]2 using the Jacobian and the Moore–Penrose
pseudo-inverse (see Formula 4.9). By means of these representations, to compute the mass and
the sti�ness matrices, we can easily make use of numerical methods.

Even through the complicated de�nition of the characteristic parameterization and, corre-
spondingly, the characteristic �nite elements, the computation of the integral representation is
comparable to using the natural approach. To be exact, the de�nitions of the mass matrices are
equal for both approaches.

Additionally, although the formulas of the sti�ness matrices look similar, considering the
surface gradients, there is a di�erence given by the emerging scalar factor. In the case of the
natural approach with the reference domain Ω, the factor is equal 1/2 and do not change for the
underlying element type. That is, no distinction is made between elements with extraordinary
vertices of di�erent valences. On the other hand, for the characteristic shape functions with the
reference domain given by the characteristic domain Ων , the factor λ emerge that depends on
the valence of the extraordinary vertex of the element, see Theorem 4.10. Keep in mind, λ is the
subdominat eigenvalue and therefore coincides with the scaling behaviour of the characteristic
mapping, see Section 3.3.1.

4.4 Assembly tasks

In this section, we are interested in the assembling of the matrices presented in the previous
section. The given matrices arise when applying subdivision �nite elements to the weak form of
various PDEs, as for example Poisson’s equation, the eigenvalue problem and the mean curvature
�ow. On the latter issue, we consider this geometric �ow in the following chapter.

We consider the mass and the sti�ness matrix described by the appropriate integrals over a
given subdivision surface, see Section 4.3.1 and 4.3.2. Because of the complexity of the problems,
in particular considering curved limit surfaces, it is inevitable to use numerical methods for the
computation of the integrals. Accordingly, the approximation of the integrals can be calculated
by applying the numerical quadrature. The following sections present some assembling details
that emerge in the context of computing the given PDE problems on Catmull–Clark subdivision
surfaces.

4.4.1 Numerical integration

As a general task of the previous section, an integral over the subdivision surface Q can be �rst
rewritten into a sum of integrals on the surface patches Q ⊂ Q describes the physical mesh
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on surface Q. Next, every summand is transformed onto the B-spline domain given by the unit
square [0, 1]2. Consequently, this representation can be used to compute the integrals using
numerical integration. In the following, we give an overall view on how to apply numerical
integration to the presented problems.

For a general function f : Q → R de�ned on the surface Q, we consider the partition of Q
into the set of subpatches Q and rewrite f into the sum∫

Q
f dQ =

∑
Q⊂Q

∫
Q
fQ dq,

where fQ is the projection of f over Q. In doing so, the function f is restricted piece by piece to
the surface patches Q ⊂ Q. Depending on whether type the element Q is, the integral over Q is
given by ∫

Q
f (q) dq =

∫
[0,1]2

(
f ◦ sQ

∣∣JsQ∣∣) (u, v) dudv,

if Q is regular, or ∫
Q
f (q) dq = lim

n→∞

∑
k,n

∫
[0,1]2

(
f ◦ sk,n

∣∣Jsk,n∣∣) (u, v) dudv

ifQ is irregular, for k = 1, 2, 3 and n ≥ 1. In particular, sQ and sk,n are the parameterizations of
the surface patches corresponding to a regular element and a regular subelement of an irregular
element, respectively.

Using a quadrature scheme, the domain of the integrals has to be adjusted to the quadrature
domain ωq . To be precise, ωq is here a quadrilateral domain in R2 that is prescribed by the
scheme. The corresponding transformation is done by using a classical change of variables g :

ωq → [0, 1]2. This is given by∫
[0,1]2

(f ◦ s |Js|) (u, v) dudv =

∫
ωq

(
f ◦ s ◦ g |Js|g |Jg|

)
(ũ, ṽ) dũdṽ,

where s ≡ sQ or s ≡ sk,n. We examine the Jacobian determinant |Js◦g| = |Js|g |Jg|, where
|Js|g means that the Jacobian determinant |Js| have to be calculated at the point g (ũ, ṽ) for
(ũ, ṽ) ∈ ωq . The Jacobian determinant |Jg| = C ∈ R of g is therefore constant. Furthermore, we
consider here quadrature schemes based on interpolating functions. For such a kind of schemes,
we can approximate the equation using the following formula:

∫
ωq

(
f ◦ s ◦ g |Js|g

)
(ũ, ṽ) dũdṽ ≈

G∑
q=1

wq

(
f ◦ s ◦ g |Js|g

)
(uq, vq) ,

where (uq, vq) ∈ ωq ∈ R2 are the so called quadrature points and wq are the corresponding
weights. This means that we can directly apply this to the mass and sti�ness matrices charac-
terized by integrals over the B-spline domain [0, 1]2. As an example, the global mass matrix M
of a regular control grid can be computed by the following formula

M ≈ C
∑
Q⊂Q

∑
i,j∈IQ

G∑
q=1

wq bi ◦ g (uq, vq) bj ◦ g (uq, vq)
∣∣JsQ∣∣g (uq, vq) . (4.26)

As a �rst result, to approximate an integral over a subdivision surface, we need to rewrite the
integral into a sum over a possible to handle subdomains. Therefore, a proper quadrature rule
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Rule Index q Quadrature points uq Quadrature weights wq
G = 1 1 0 2

G = 2
1 −

√
1
3 1

2
√

1
3 1

G = 3
1 −

√
3
5

5
9

2 0 8
9

3
√

3
5

5
9

G = 4

1 −
√

3
7 + 2

7

√
6
5

18−
√

30
36

2 −
√

3
7 −

2
7

√
6
5

18+
√

30
36

3

√
3
7 −

2
7

√
6
5

18+
√

30
36

4

√
3
7 + 2

7

√
6
5

18−
√

30
36

Table 4.1: Gaussian quadrature. Quadrature points and weights for G = 1, 2, 3, 4 evaluation knots in the
one-dimensional case.

have to be found in order to obtain an adequate approximation.
Within the framework of this thesis, the numerical integration is done using the Gaussian

quadrature. The Gaussian quadrature is an interpolation function based quadrature method
known for the exact integration of univariate polynomial functions up to a prescribed degree.
For bivariate functions on square elements that are described by tensor products of appropriate
one-dimensional formulas, the same can be applied to the integration rules, i.e. a tensor product
quadrature method can be used for the approximation. Here, we use the 2D Gauss quadrature.
The notation "G2" that means we apply G points in each variable of the to be integrated func-
tion. This provides G2 evaluation points for the total integral over a regular element. For the
quadrature in one-dimension, we obtain the Gauss–Legendre-integration with the quadrature
domain [−1, 1], where the quadrature points uq , q = 1, ...,G, and the weights wq are prescribed
by the choice of evaluation points. According to that, we get an exact result for polynomials of
degree 2G − 1 or less by using a suitable choice of points uq and weights wq . In Table 4.1, the
quadrature points and weights for di�erent number G of evaluation knots are given. For the
two-dimensional quadrature, the integration domain is given by [−1, 1]2. The quadrature points
(uq1 ,uq2) are given by all possible permutations of two quadrature points in one-dimension. The
corresponding weights wq are therefore given by the products wq = wq1wq2 .

4.4.2 Index �nding routine

Given an arbitrary subdivision surface together with its control grid, we want to calculate inte-
grals over the surface described in the Section 4.3. The size of the global matrices is prescribed
by the number of the vertices in the control grid. This is due to the fact that for each control
vertex, a global basis function is described by the appropriate generalized B-spline basis func-
tion, see Section 3.2.5. The support of a generalized B-spline is equal to the two-neighbourhood
of the corresponding vertex. To assemble the problem matrices using the global basis, the loop
through all the pairs of basis functions has to be performed. In doing so, we make the e�ort to
integrate functions on the surface, for which we know that their support do not overlap, and,
consequently, the integral is equal zero. In Section 4.3.1 and 4.3.2 was shown that using the ele-
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ment based �nite elements the e�ort can be reduced, i.e. the global problem is given by a set of
local integrals de�ned over the patches of the surface. Consequently, instead of assembling the
global matrix by passing through all pairs generalized B-spline functions, as it is indicated by
the global matrix formulation, we run through all elements and all pairs of the generating spline
functions, and construct local matrices.

Q

Figure 4.3: Correlation array. An example
of the correlation array of elementQ: ΠQ =
(2, 20, 82, 17, 90, 23, 12, 24, 19, 21, 10, 22,
16, 57, 74, 14, 41, 15). The black numbers
are the global indices of the control grid,
the grey numbers are the vertex indices in
the one-ring of element Qc corresponding
to surface patch Q.

The local matrix is obtained through the restriction
of the global integral to a given surface patch. The size
of a local matrix depends on the one-ring of the ele-
ment. Let K describe the number of vertices in the
one-ring. Keep in mind, K is changing due to the va-
lence of the extraordinary vertex. Considering the def-
inition of the local mass and sti�ness matrices intro-
duced in Section 4.3, the local matrices are K × K-
matrices. For a given pair βi and βj of local basis func-
tions, i, j ∈ {0, ...,K − 1}, and a given quadrature
point (uq, vq) ∈ R2, the evaluation returns the value of
the integrals with respect to the physical coordinates.
The local matrix is obtained through the calculation of
all the index pairs (i, j) of the basis functions in all
quadrature points of the quadrature method, where the
assemblies have to be added to the appropriate matrix
entry. The advantage of the local evaluation is taken
in order to reduce the amount of assembling work. For
each element we obtain a dense local matrix, i.e. all el-
ement based integrals are non-zero. Given a fully vali-
dated local matrix, this have to be transferred into the
appropriate entries of the global matrix. This is done by
means of the local-global index correspondence is describing the ordering of the indices in the
global grid restricted to the local ordering. Considering the local-global index correspondence,
we construct a correlation array that links the local numbering described by the order of the
vertices in the one-ring, with the global numbering of the vertices in the total control grid. For a
surface patch Q, let Qc ∈ CQ be the associated control grid element together with its one-ring.
Let IQ = 0, 1, ...,K − 1 be the index set with the prescribed order of the vertices in the one-ring
of element Qc. The ordering of the vertices in the one-ring of an element is shown in Figure 3.3.
The correlation array ΠQ is given by the tuple

ΠQ = (π0, ...,πK−1) ,

where πi ∈ IQ, i ∈ IQ, is the global index corresponding to the ith vertex in the one-ring of Q.
K is the number of vertices in the one-ring and the set IQ is the set of global indices. Next, given
a local index i, the corresponding global index a is described by

a = [ΠQ]i = πi.

On the other hand, let a be a global index. Firstly, we have to �nd the elements in CQ that contains
a in the one-ring. Is the element Qc one of these elements, the local index of a is therefore given
by

ΠQ (a) = i,

where i is the position of the a in the local array ΠQ. An example of an correlation array is given
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Figure 4.4: Matrix sparsity plots. On the example of the closed control grids of increasing resolution shown in
Figure 4.5 with 16, 64 and 256 vertices, the plots illustrate the non-zero entries (blue dots) of the corresponding
mass matrices. The control grids are regular, this means, for each vertex at most 49 entries are non-zero.

in Figure 4.3. Note, the size of the correlation array is adjusted to the changing element one-ring.
Given a fully calculated local matrix of element Q, each matrix entry can be added to the

appropriate entry in the global matrix that is assembled by the means of the correlation array.
This is, for the ijth entry there is a global entry ab described by

a = [ΠQ]i and b = [ΠQ]j ,

for i, j ∈ IQ and a, b ∈ IQ, The assembling of the global matrix is given by adding up the
series of local assemblies. In the end, each entry of the global matrix is given by the sum of the
corresponding local entries. In this way, we only take non-zero integrals into the calculation.
Note, the global matrix is sparse, due to the size of the two-neighbourhood support of the global
basis. Therefore, the patches Q that contribute to the assembling of the global entry lie in the
intersection of the two-neighbourhood of the vertices with the indices a and b. For a �xed vertex
a, the support of the intersection with a second basis is non-zero, if the corresponding vertex b
belongs up to the three-neighbourhood of vertex a.

Compared to classical element-based �nite elements, the larger support of the subdivision
basis functions result is an increased bandwidth of the global matrix. For example, for a basis
function that is related to a regular vertex, such that all vertices in its two-neighbourhood are
regular, we obtain overlaps with 49 neighbouring basis functions. This means, the degree of free-
dom of this vertex is a�ected by 49 non-zero entries in the corresponding row of the matrix. As a
visual reinforcement, sparsity plots of the mass matrices for the geometries shown in Figure 4.5
are shown in Figure 4.4.

(a) (b) (c) (d)

Figure 4.5: Regular control grids. Illustration of the control grids used in the experiment: (a) the initial grid:
Torus 1, (b) its �rst subdivision: Torus 2, and (c) its second subdivision: Torus 3. Due to the properties of the
subdivision concept, the image of limit surface is identical for all grids. The limit surface is shown in (d). It is
coloured by its mean curvature. Note, although the vertices of the initial grid are lying on a torus, the limit
surface is not a well-formed torus any more.
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4.4.3 Appropriate quadrature rule

In the following, we want to �nd a su�ciently accurate quadrature method to solve the presented
integrals numerically. A closer look at the integrands shows that if the surface is curved the func-
tions are non-polynomial, i.e. the functions to be integrated are products of B-spline functions
and/or its derivatives. Although B-splines are simple polynomials, the integrands are rational
functions. The reason for this is the non-constant Jacobian determinant |J | or the inverse G−1

of the �rst fundamental form. Both appear because of the transformation of variables from the
surface patch onto the parameter domain [0, 1]2. On the other hand, due to Strang’s Lemma, an
exact integration is not needed to obtain the optimal convergence rate of �nite element solu-
tions, see Strang and Fix [1973], Ch. 4. In particular, the quadrature error has to preserve the
interpolation error. However, a necessary task for the future is to �nd a numerical integration
scheme for non-polynomial functions.

In the following, although all known quadrature schemes are unsuitable for nonpolynomial
functions, we will use the Gaussian quadrature. In [Cottrell et al., 2009], the authors has stated
that the choice of evaluation points for the Gaussian quadrature can be made according to the
degree of the basis functions. In our case, the basis functions are bicubic polynomials and their
derivatives are biquadratic. Thus, a 32- or 22-point quadrature should be su�cient. Because of
the fact that the integrands are non-polynomial, this argumentation is inappropriate. Thus, an
exact result cannot be achieved using Gaussian quadrature. However, this method seems to be
very e�ective, see [Nguyen et al., 2014; Jüttler et al., 2016]. To determine a su�cient choice of
the quadrature, i.e. the number of quadrature points and the subdivision depth in the case of
irregular elements, we perform a bunch of research to make a reasonable decision.

Due to the di�erent requirements on the presented integrals, we distinguish between reg-
ular and irregular elements. Given a regular element, we can use two di�erent �nite element
discretizations. That is, a discretization based on the regular approach that can be used only for
regular elements, see Formula 4.3, and the piecewise approach. The latter is applicable especially
to irregular elements, but can be used also for a regular element. Using the regular approach,
the shape functions bR are given by polynomials of bi-degree three. In this case, the evaluation
of the integral is done in one go. For the piecewise approach, one of the vertices of the element
has to be treated as extraordinary. Moreover, we consider two piecewise representations, the
natural and characteristic representation described in Formula 4.5 and 4.7, respectively. Note,
for a regular element, both approaches are equal. This is because of the fact that the subdom-
inant eigenvalue λ of the subdivision matrix of a regular element is equal 1/2. Furthermore,
the corresponding shape functions bN and bC are piecewise polynomials of bi-degree three. The
integration of piecewise polynomials leads to a set of integrals over the regular pieces of the sur-
face patch. Consequently, we have to apply the Gaussian quadrature to each of the summands,
see Section 4.3.1 and 4.3.2. Due to the in�nite sums, we have to be satis�ed with an another
approximation applying Gaussian quadrature up to a chosen subdivision level. We assemble the
mass matrix and the sti�ness matrix for both types of �nite elements using 22-, 32- and 42-point
Gaussian quadrature. To verify the results, we calculate the Frobenius norm and the row-sum
norm of the matrices.

In the following, we are aiming to �nd the appropriate number of quadrature knots for the
integration on regular elements. In the experiment, we consider control grids with only regular
elements, where the initial grid is given by a closed grid its points lie on a torus, see Figure 4.5.
Due to the B-spline representation, the limit surfaces is not a torus any more. For comparison,
we consider meshes with an increased number of vertices obtained by subdividing the initial
grid two times, see Figure 4.5. Moreover, considering the piecewise approach, the quadrature
has been done up to di�erent subdivision levels. In table 4.3 and 4.4 the row-sum norms and
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Figure 4.6: Ratio of regular subpatches. The characteristic domains Ων for di�erent valences ν =
3, 4, 5, 6, 7, 8 of the extraordinary point are illustrated. Note the changing ratio of the three regular sub-
domains Ωk,1

ν all together (orange frame), k = 1, 2, 3, to the remaining part of Ων .

the Frobenius norms of the mass matrices are shown, respectively. Additionally, in Table 4.5
and 4.6 the row-sum norms and the Frobenius norms of the sti�ness matrices are shown (see
end of this chapter). Comparing the results, the more quadrature knots are used, the better the
results seems to be. That is, for the piecewise approach, the norms seems to converge to the
norm using the regular approach with 42 quadrature points. Consequently, for regular elements,
we decide to use the regular approach, including a 42-point Gaussian integration. Considering
the piecewise approach, a closer look at the results shows that the 32- and 42-point Gaussian
quadrature produces comparably similar results for each of the presented levels of subdivision.
In order to minimize the evaluation cost, we relay on a 32-point Gaussian quadrature for the
piecewise approach. Additionally, we take the 9th subdivision level as a reference for the inte-
gration on regular elements. This provides for the mass and sti�ness matrices over an regular
element anO

(
10−6

)
Frobenius norm convergence to the reference value of the regular approach

using 42-point Gaussian quadrature.

Considering integrals on irregular elements, thus only the piecewise approaches are relevant
for the representation of the surface. Related to this, the natural and the characteristic approach
is represented by an in�nite sum of integrals. In [Nguyen et al., 2014], the authors are con�dent
with an evaluation up to level seven in terms of the natural approach. Keep in mind that this
approach does not pay attention to the valence of the irregularity. That is, the reference domain
of each irregular element is given by the partitioned domain Ω, whereby in our approach the
reference domain changes accordingly. In the following, we want to �nd an appropriate num-
ber of subdivision levels for a su�cient approximation of the in�nite sum of integrals over the
corresponding subelements. For the characteristic approach, we additionally take care about the
changing reference domain, according to the valence of the extraordinary vertex. According to
this, we determine a valence dependent condition for the choice of subdivision levels for the
integration on irregular elements with di�erent irregularities.

At this point, let Qc be an irregular element with an extraordinary vertex of valence ν. For
the associated characteristic domain Ων , we obtain the partitioned representation of the domain
Ων =

⋃
k,n Ωk,n

ν , see in Section 3.3.1, where Ωk,n
ν is the kth subdomain in the nth subdivision

level of Ων . For this purpose we assume that the area of Ων is equal∫
Ων

dξdη = 1.

We denote byAn the area of the three subdomains Ωk,n
ν , k = 1, 2, 3, in the nth subdivision level.

In Figure 4.6, we show the domain of the three subdomains Ωk,1
ν . According to the valence of the

extraordinary vertex, note the considerable change of the ratio of the joint domain of the three
subdomains to the total characteristic domain Ων . The area of the characteristic domain Ων can
be therefore rewritten in

1 = (1−A1)+A1 = (1−A1−A2)+A1 +A2 = ... = (1−A1− ...−An)+A1 +...+An = ....
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3 4 5 6 7 8

Error (%)
λ

0.410097 0.5 0.549988 0.579682 0.598510 0.611117

1 · 10−5 7 9 10 11 12 12
5 · 10−6 7 9 11 12 12 13
1 · 10−6 8 10 12 13 14 15

Table 4.2: Subdivision levels for integration. Number of subdivision levels depending on the valence ν that
is su�cient to integrate over the characteristic domain Ων except for a prescribed area error.

Due to the scaling property, the area after subtracting A1 is given by

1−A1 =

∫
λΩν

dξdη = λ2

∫
Ων

dξdη = λ2,

and, consequently, we consider the formula 1 − A1 − ... − An = λ2n for the remaining area
of the characteristic domain Ων after n subtractions. Now, to integrate at least over a speci�ed
portion Aν of the characteristic domain, we consider the formula:

Aν < 1− λ2n, (4.27)

where 1− λ2n =
∑n

i=1Ai is prescribed by the number of subdivision levels. Therefore, we can
decide for a precise number of subdivision levels for the integration. As stated above, for the
regular element we pick the 9th subdivision level as a reference. This means, we do not integrate
over around λ2n = 0.518 < 5 · 10−6% of the area of the unit square. This value describes an
area error. It corresponds to the area of the portion of Ων close to the extraordinary vertex over
that we do not integrate. Based on the area error for the regular element with valence ν = 4,
we determine the number of subdivision levels for arbitrary valences. In Table 4.2, we show the
results for di�erent area errors and valences ν = 3, 4, 5, 6, 7, 8.
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Torus 1 Torus 2 Torus 3
Lvl 22 32 42 22 32 42 22 32 42

3 2.231020 2.231744 2.231756 0.641268 0.641265 0.641265 0.170561 0.170561 0.170561
5 2.263691 2.264415 2.264427 0.652192 0.652188 0.652189 0.172805 0.172805 0.172805
7 2.265726 2.266450 2.266462 0.652879 0.652876 0.652877 0.172944 0.172945 0.172945
9 2.265853 2.266577 2.266589 0.652922 0.652919 0.652920 0.172953 0.172953 0.172953
11 2.265861 2.266585 2.266597 0.652925 0.652922 0.652922 0.172953 0.172954 0.172954
Rgl 2.263683 2.265468 2.266603 0.653083 0.652904 0.652924 0.172946 0.172955 0.172954

Table 4.3: Evaluation of the row-sum norm of the mass matrices using the 22-, 32- and 42-point Gaussian
quadrature. We consider the regular approach (Rgl) and compare this with the piecewise approach where we
apply the quadrature up to a prescribed subdivision level (Lvl).

Torus 1 Torus 2 Torus 3
Lvl 22 32 42 22 32 42 22 32 42

3 2.474550 2.475921 2.475905 1.247064 1.246974 1.246976 0.626446 0.626381 0.626382
5 2.510169 2.511538 2.511522 1.265854 1.265763 1.265765 0.635919 0.635854 0.635855
7 2.512383 2.513752 2.513736 1.267032 1.266941 1.266943 0.636514 0.636448 0.636450
9 2.512522 2.513890 2.513875 1.267106 1.267015 1.267017 0.636551 0.636486 0.636487
11 2.512530 2.513899 2.513883 1.267110 1.267020 1.267022 0.636553 0.636488 0.636489
Rgl 2.502769 2.512307 2.514004 1.271519 1.266799 1.267027 0.639064 0.636386 0.636490

Table 4.4: Evaluation of the Frobenius norm of the mass matrices using the 22-, 32- and 42-point Gaussian
quadrature. We consider the regular approach (Rgl) and compare this with the piecewise approach where we
apply the quadrature up to a prescribed subdivision level (Lvl).

Torus 1 Torus 2 Torus 3
Lvl 22 32 42 22 32 42 22 32 42

3 7.315856 7.340588 7.340447 2.313356 2.318608 2.318599 0.630258 0.631582 0.631581
5 7.380651 7.405383 7.405242 2.330065 2.335316 2.335307 0.639797 0.641120 0.641120
7 7.384340 7.409072 7.408932 2.330995 2.336247 2.336238 0.640382 0.641706 0.641705
9 7.384570 7.409301 7.409161 2.331053 2.336305 2.336296 0.640418 0.641742 0.641742
11 7.384584 7.409315 7.409175 2.331057 2.336308 2.336300 0.640421 0.641745 0.641743
Rgl 6.799427 7.420669 7.409264 2.217221 2.337085 2.336314 0.613206 0.641814 0.641748

Table 4.5: Evaluation of the row-sum norm of the sti�ness matrices using the 22-, 32- and 42-point Gaussian
quadrature. We consider the regular approach (Rgl) and compare this with the piecewise approach where we
apply the quadrature up to a prescribed subdivision level (Lvl).

Torus 1 Torus 2 Torus 3
Lvl 22 32 42 22 32 42 22 32 42

3 8.960035 8.977788 8.977728 4.398076 4.405576 4.405576 2.228604 2.232251 2.232253
5 9.066537 9.084199 9.084140 4.451415 4.458884 4.458884 2.255917 2.259549 2.259551
7 9.072966 9.090622 9.090562 4.454651 4.462117 4.462117 2.257577 2.261207 2.261210
9 9.073367 9.091022 9.090963 4.454852 4.462318 4.462319 2.257680 2.261310 2.261313
11 9.073392 9.091047 9.090988 4.454865 4.462331 4.462331 2.257687 2.261317 2.261319
Rgl 8.745034 9.090202 9.091336 4.311921 4.462149 4.462367 2.189318 2.261111 2.261333

Table 4.6: Evaluation of the Frobenius norm of the sti�ness matrices using the 22-, 32- and 42-point Gaussian
quadrature. We consider the regular approach (Rgl) and compare this with the piecewise approach where we
apply the quadrature up to a prescribed subdivision level (Lvl).
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Chapter 5

Boundary Conditions for PDEs

So far, we know how to handle closed limit surfaces. The corresponding control grids are closed
too, the limit surface is thereby determined for each control grid element. In doing so, we are able
to specify a complete one-ring structure (see Section 2.1.2) for each control grid element, this is
needed for the evaluation of the limit surface or basis functions over the element. However, we
do not want to limit ourselves to closed surfaces. In particular, we are interested in handling of
surfaces with boundaries for our applications. Given a control grid with boundary, the one-ring
of a boundary element in incomplete, see De�nition 2.10. That is, elements are missing in the one-
ring of such an element that are needed to assign the associated element based and, equivalently,
subdivision basis functions. On the other hand, using the common subdivision method, there is
no hierarchical subdivision of elements on the boundary, see Figure 3.2. This means, in order to
handle the limit surface on the boundary, concepts to compensate this defect have to be found.

In this chapter, we present concepts to parameterize subdivision surfaces on boundary ele-
ments. We describe the required mathematical tools to construct surfaces with periodic bound-
aries, i.e. that can be re�ected along the boundary, such that the extended surface ful�ls the
general smoothness given by the subdivision scheme, that is, the surface is C2-continuous ev-
erywhere except at the extraordinary vertices. Additionally, we review the boundary conditions
for PDE problems known from the literature. As a result, based on the periodic boundary con-
struction, we introduce boundary conditions within the subdivision �nite elements that are suit-
able for the construction of periodic minimal surfaces. Regarding this, the proposed framework
allows to reduce the evaluation of the total surface to an adequate symmetrical component. Ad-
ditionally, our framework does not impose any combinatorial requirements upon the control
mesh. It even allows for extraordinary vertices at the boundary.
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5.1 Subdivision boundary issue

A general problem with B-spline based geometries is the handling of control grids with bound-
aries. The reason for this is that the boundary part of the surface is shrinking more and more in
the course of subdivision, i.e. there are missing conditions to describe a hierarchical subdivision
of the boundary elements. Considering the parameterization concept, the boundary elements
are lacking of a complete one-ring structure too. Owing to missing information, the concept of
generating spline cannot be used.

In the literature, di�erent approaches have been proposed to get rid of the individual bound-
ary issues, for instance, new subdivision rules, an extension of the control grid by an additional
set of elements at the boundary, and sub-implicit pointwise boundary constraints. In general, all
approaches require appropriate conditions to the boundary curve and the outer-pointing normal.
By the outer-pointing normal we mean the vector in the tangent space of a point on the surface
at the boundary that is perpendicular to the velocity vector of the boundary curve. However,
each approach make use of additional elements along the boundary. It is noteworthy that the
use of additional elements allows for extra freedom in de�ning and readjusting of the geometric
boundary conditions.

Concerning the issue of new subdivision rules on the boundary, these are given by prescrib-
ing new masks for the repositioning of vertices along the boundary. For example, masks that
meet the cubic endpoint interpolation rules for B-splines. This approach has been �rstly pre-
sented in [Halstead et al., 1993; Biermann et al., 2000]. Thus, it allows for connecting additional
surface patches without gaps and even for combining them with other surface representations
supporting B-spline boundaries. However, this concept leaves too little �exibility. Every small
change of constraints requires the complete recalculation of the subdivision rules.

In the second approach, additional elements along the boundary of the control grid have
to be attached in order to complete the one-ring of the boundary elements. The newly added
components are called arti�cial or ghost vertices and elements. The ghost components are treated
as an extension of the control grid and have to be included in all calculations with respect to
the boundary elements. Moreover, the extended geometry, called ghost geometry, is seen as a
supplementary geometry of the original geometry.

In the literature, ghost elements have been introduced and used to handle thin shell boundary
problems in [Schweitzer, 1996; Cirak et al., 2000]. The construction rules have been determined to
be compatible with prior approaches in the engineering and the applied sciences area. Generally,
the position of a newly added vertex is speci�ed by means of point symmetry at the boundary.
Consequently, the positions and the gradients at the boundary are �xed by the boundary and
the ghost elements. In [Barendrecht, 2013], this standard boundary approach has been used to
de�ne boundary B-spline functions to avoid the construction of additional elements. A negative
aspect of this idea is that we are anchored to only one kind of boundary constraints. Although
the attachment of missing vertices and elements on the boundary can be a cumbersome and
tedious procedure, we can use the common set of subdivision rules. The boundary elements
can be therefore treated as any other element in the grid. Additionally, we gain an increased
�exibility, due to the fact that changing the position of the vertices is providing a direct change
of the boundary conditions, and vice versa.

Finally, the concept of so-called sub-implicit pointwise constraints has been �rstly described
in [Green, 2003] and used for solving boundary value problems on thin-shell structures. It is
based on a minimization technique that also make use of the other two approaches. A ghost
geometry is constructed, but in contrast to the previous concepts, the conditions can be applied
to any point on the boundary of the surface. In doing so, conceptual similarities with the ghost
geometry approach can be found, i.e. additional vertices will be taken into account to determine
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the limit surface positions at the boundary. The conditions describing the positions, tangents
and normals of points on the boundary base on the classical theory of subdivision surfaces. That
is, the eigenvectors of the subdivision matrix are used to specify the points on the limit surface.

5.1.1 Point re�ection

Boundary constraints obtained by adding new points and elements that are using point re�ection
along the boundary have been presented in [Cirak et al., 2000; Smith et al., 2004; Lacewell and
Burley, 2007]. Consider a control grid with boundary, there are two possible con�gurations of
the boundary element in the control grid. By that we mean that either one or rather two adjacent
edges of a boundary element are boundary edges. In this manner, we distinguish between the
so-called boundary or corner elements, respectively. Both con�gurations are shown in Figure 5.1.
We require that after extending the control grid with ghost elements, the boundary points are
regular points. Therefore, the non-boundary vertices are re�ected through the boundary and the
corner elements need a special treatment. As a result, constructing the ghost geometry by this
convention causes the boundary of the limit surface to be a cubic B-spline curve.

Given a boundary element, we consider the incomplete one-ring. We will complete it as
shown in Figure 5.1 (a). Therefore, the vertices of the boundary elements that are not contained
in the boundary polygon will be re�ected through the boundary vertices that share an edge with
these vertices. The positions of the ghost vertices ci, for i ∈ {0, 1, 2, 3} can be generated due to
the formula

ci = 2ci+4 − ci+8. (5.1)

The boundary curve is parametrized by the curve s (u, 0), u ∈ [0, 1], along the boundary of the
surface. Moreover, the boundary curve corresponding to this element is equivalent to the limit
curve of the boundary polygon described by the vertices ci+4, for i ∈ {0, 1, 2, 3}.

(a) (b)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2

3 4 5

6 7 8

Figure 5.1: Illustration of (a) a boundary element and (a) a corner element in a control grid (blue) with
boundary (orange line). The two corresponding elements are coloured in dark blue, whereas the existing
geometry is shown by the blue quads. The newly added ghost elements are coloured in white. The order of the
vertices in the complete one-ring (black indices) and the order for the calculation of the boundary functions
(orange indices) is presented.

Given a corner element, we follow a similar approach. That is, we complete the one-ring of
the corner element, in such a way that the two boundary edges are cubic B-splines. In doing
so, for the vertex contained in both boundary edges, called corner vertex, it is required to be
regular in the ghost geometry. The initial one-ring (coloured in blue) and the completed one-ring
(all elements) of a corner element (coloured in dark blue) is shown in Figure 5.1 (b). After the
extension, we obtain again a corner element in the ghost geometry. For all new ghost vertices
except the ghost corner vertex, we calculate the position of the vertices ci for i = 1, 2, 3 by
ci = 2ci+4 − ci+8 and for i = 4, 8, 12 by ci = 2ci+1 − ci+2. The position of the corner vertex is
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computed by
c0 = 4c5 + c10 − 2c6 − 2c9. (5.2)

The boundary curves are two bicubic B-spline curves described by the vertices c1, c5, c9, c13 and
c4, c5, c6, c7. Both curves can be also determined using the surface parameterization, whereby,
either the �rst or the second argument is �xed to be zero, i.e. s (0, v) or s (u, 0) for all u, v ∈ [0, 1],
respectively. The limit position of the corner vertex is given by the surface point s (0, 0).

Due to the linearity of the constraints, we can assign a set of boundary functions. These
can be used to parameterize the boundary element without explicitly adding new vertices or
elements. The set of boundary functions is determined in correspondence to the vertices in the
incomplete one-ring of the boundary element. In the following, we assume that all boundary
vertices have valence two or three. In this way, the one-ring of the boundary and the corner
element is described by 12 and 9 control vertices, respectively. Consider the blue elements in
Figure 5.1, where the dark blue element illustrates one of the described cases. For the boundary
element, the control vertex matrix corresponding to the vertices in the incomplete one-ring is
given by

CT = (c0, ..., c11) ,

where the order is descried by the orange coloured numbers in Figure 5.1 (a). For the completed
one-ring we have

CTg = (cg0, ..., cg15) ,

the order is described by the black coloured numbers in Figure 5.1 (a). Using the linearity of the
constraints describing the relation between the newly added ghost vertices and the vertices in
the original geometry, see Formula 5.1, we consider the following equation

Cg = RbC (5.3)

where the matrix Rb is determined by the weights given in the formula. Hence, the parameteri-
zation of the surface patch for the boundary element is described by

s (u, v) = CTg b (u, v) = CTRTb b (u, v) , (u, v) ∈ [0, 1]2 .

In doing so, using this relation the construction of ghost vertices can be avoided. For the com-
putation of the limit surface on boundary elements, new basis functions bb (u, v) = RTb b (u, v)

are de�ned by

bbi (u, v) =


2bi (u, v) + bi+4 (u, v) for i = 0, ..., 3

−bi−4 (u, v) + bi+4 (u, v) for i = 4, ..., 7

bi+4 (u, v) for i = 8, ..., 11

.

Using the B-spline basis function de�nition, see Formula 3.1, we can rewrite these equations in

bbi (u, v) =


ni%4 (u) (2n0 (v) + n1 (v)) for i = 0, ..., 3

ni%4 (u) (−n0 (v) + n2 (v)) for i = 4, ..., 7

ni%4 (u)n3 (v) for i = 8, ..., 11

,

where the cubic boundary basis functions are given by

nb0 (t) = 2n0 (t) + n1 (t)

nb1 (t) = −n0 (t) + n2 (t)

nb2 (t) = n3 (t)

. (5.4)
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We obtain a reduced number of basis functions in the v-component of the bivariate functions
bi (u, v). The functions nbj are given by a linear combination of the cubic B-spline functions ni.
We consider the linear dependency nb (t) = (Rcb)

T n (t), with the matrix Rcb given by

Rcb =


2 −1 0

1 0 0

0 1 0

0 0 1

 .

The vector n denotes the vector of cubic B-spline basis functions (see Formula 3.2). The vector
nb replace the regular basis in the bivariate functions on boundary elements, where the one-ring
of the element is incomplete. For the bivariate boundary basis functions we have

bbi (u, v) = ni%4 (u)nbi/4 (v) , for i = 0, ..., 12.

Now we consider the same idea to determine the boundary basis of the corner element. Without
loss of generality, we follow a similar approach and replace the matrix Rb by matrix Rc that
describes the relation between ghost vertices and geometry vertices for the corner element. In
this case, the control vertex matrix C is given by the 9 vertices in the one-ring of the corner
element. A closer look at the corner element reveals that the corresponding bivariate boundary
basis functions can be de�ned by the basis functions nbj , i.e.

bci (u, v) = nbi%3 (u)nbi/3 (v) , for i = 0, ..., 9,

where the order of the vertices is shown by the orange coloured vertices in Figure 5.1. Con-
sequently, the surface patches corresponding to the boundary and the corner elements can by
parametrized by using the following representation

s (u, v) = CT bb (u, v) and s (u, v) = CT bc (u, v) ,

for (u, v) ∈ [0, 1]2, respectively. The vectors bb and bc are describing the generating spline
of a boundary and a corner element with respect to the described boundary conditions. The
matricesC describe the position of the control vertices in the incomplete one-ring of this element.
Therefore, the boundaries are pure B-spline curves de�ned by the vertices on the boundary. Keep
in mind, here we consider speci�ed boundary conditions based on point re�ection. Due to the
simplicity of the construction, a similar idea independently has appeared in [Barendrecht, 2013].

5.1.2 Pointwise constraints

On the basis of the classical subdivision surface theory, the limit positions, the tangent vec-
tors and the normal vector of the control grid vertices can be uniquely determined using the
eigenstructure of the subdivision matrix, see Section 2.3.3. Thus, the dominant and subdominant
eigenvalues together with the associated eigenvectors ensure the position of the limit surface in
the control grid vertices.

For the construction of pointwise limit surface constraints, a reversed problem has been es-
tablished. This is, knowing the combinatorial structure of the control grid, we are able to de-
termine the positions of the control grid vertices from its limit positions. This approach has
been introduced in [Halstead et al., 1993] for the construction of an interpolating subdivision
scheme based on the Catmull–Clark subdivision that, by de�nition, is an approximating scheme.
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Figure 5.2: Limit interpolation
mask for a vertex of valences ν.
The central vertex, its limit po-
sition we want to calculate, is
weighted by α, β is the weight of
the vertices vertices connected by
an edge and γ for the remaining
vertices in the one-neighbourhood
of the central vertex. The weights
depend only on the valence of the
central vertex, see Equation 5.6.

The given assumption leads to a linear system

Kx = b (5.5)

where the vector x corresponds to the unknown positions of the
control grid vertices. The left-hand side vector b is given by the
predetermined limit features of the control vertices, i.e. the limit
positions and normals, if required, of the control vertices that
we want to interpolate. The matrix K is determined by the con-
nectivity of the control grid, where the entries are described by
vertex weights. For a given control vertex the entries in the re-
lated row of K are zero except for the entries corresponding to
the vertices in the one-neighbourhood of this vertex. If we want
to interpolate the limit positions, then the non-zero entries are
given by the relevant entries of the eigenvector corresponding to
the dominant eigenvalue λ0 = 1 related to the subdivision ma-
trix. Given the one-neighbourhood of a control vertex, a mask
can be assigned, using the fact that the eigenvector just depends
on the valence ν of the considered vector. The mask together
with the interpolation weights is illustrated in Figure 5.2. The
weights for the interpolation of the limit positions of a control
vertex with valence ν are given by

α =
ν

ν + 5
βi =

4

ν (ν + 5)
γi =

1

ν (ν + 5)
(5.6)

Note, the weights depends only on the valence of the vertex.
The given constraints ensure, that the limit surface associated with the computed control

grid interpolates the input limit positions. However, it is not guaranteed that the new surface
will be similar to the limit surface used as input. This is because the behaviour of a surface cannot
be encoded just on prescribing its positions. Additionally, the tangent plane have an important
impact on the preservation of the surface properties. To assign this, we have to constrain addi-
tionally the normals of the control grid, if these are known. Again, this can be characterized by
using an interpolation mask. To constraint the normals, the weights are characterized by the two
eigenvectors associated with the subdominant eigenvalue. The limit masks with respect to the
Catmull–Clark scheme are described in detail in [Halstead et al., 1993]. In doing so, the linear
system has to be enlarged accordingly. In some cases, the matrix K is singular or non-square.
If this is true, a least-squares solution has to be calculated. However, a signi�cantly improved

(a) (b) (c) (d) (e) (f)

Figure 5.3: Interpolation of a geometry. We start with an triangular grid (a) and the corresponding Quad-
Cover grid (b). This grid is used for the calculation of limit position interpolation (c), and limit position
and normal interpolation control grid (e). The corresponding limit surfaces are shown in �gure (d) and (f),
respectively. The colouring is given by the its mean curvature.
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result can be achieved using the method presented in [Halstead et al., 1993].
We implemented and tested the interpolation of limit positions and normals to have an un-

derstanding of the presented constraints, while the construction of our boundary conditions for
PDEs. An example of the pointwise constraint is shown in Figure 5.3. The original control grid
is obtained by the QuadCover algorithm [Kälberer et al., 2007], where the control grid positions
lie on the very �ne and detailed resolved input geometry. We use this control grid to obtain a
new control grid of the same connectivity that can be used as the Catmull–Clark control grid,
i.e. the limit surface of the new control grid interpolates the control grid vertices of the original
grid. We compare the resulting control grids achieved by constraining just the limit positions, or
the limit positions together with the corresponding normal vectors. In determining the positions
and the tangent planes, we obtain a more homogeneous control grid and, conequently, the limit
surface better approaches the original surface.

5.2 Symmetry constraints

In this section, we introduce a new construction of boundary constraints for geometries that
follow a periodic manner in the space. The construction is adopted into the subdivision surface
framework. Due to the problems with the non-existing limit surface on boundary elements, we
construct a ghost geometry of the control grid by adding new elements at the boundary in order
to obtain complete one-rings for the boundary elements. As mentioned before, an extended
control grid allows for extra freedom in modelling of subdivision surfaces along the boundary.

The aim is to construct a ghost geometry which guarantees that the limit surface close to
the boundary meets a smooth symmetric behaviour. A model class of surfaces that is built on
this behaviour is represented by triply periodic minimal surfaces. Triply periodic means that
the surfaces describe a fascinating crystalline structure, in the sense of repeating themselves in
three dimensions. The symmetric behaviour of these surfaces is characterized by the Schwarz
re�ection principle. On the other hand, a direct consequence of the principle is that new valid
minimal surfaces can be constructed from pieces of existing minimal surfaces. Therefore, one of
the following properties has to be ful�lled: the boundary of the minimal surface is prescribed
by a straight line or the surface meets a plane orthogonally on its boundary. In the �rst case,
the minimal surface can be extended to a smooth minimal surface by rotating the surface by
180° about the straight line. The extended minimal surface contains this line as a symmetry line.
In the second case, the extension is generated by re�ecting the surface through the plane to a
smooth minimal surface with this curve contained in its interior.

In the following, we adopt Schwarz’s principle to the construction of periodic boundary con-
straints. This procedure ensures the imposed symmetric behaviour of the corresponding limit
surface close to the boundary.

5.2.1 Rotation by 180◦

Considering Schwarz’s re�ection principle, if the boundary of a minimal surface is a straight line,
then it can be extended to a new valid minimal surface by rotating the surface by 180◦ about this
line. In the following, we want to transform the given surface behaviour onto the control grid.
Due to the fact that the limit position of a control vertex depends only on the vertices in its one-
neighbourhood, we achieve the speci�ed behaviour of the limit surface by adjusting the control
grid appropriately. Namely, the adjustment is done by adding new elements that are equivalent
with the rotated copies of the boundary elements along the boundary edge. For the construction,
we add new vertices as rotated copies of the element vertices that do not lie in the boundary edge
and, as a next step, connect the vertices accordingly.
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Figure 5.4: Schematic illustration of (a) the 180◦ rotation of a vector c around line ρ of direction tρ and (b)
the re�ection of vertex c through the plane Σ with the normal vector nΣ. The blue element shows a geometry
element and the grey element the resulting ghost element.

To perform a rotation of a point about a given axis in the Euclidean space R3 we make use of
a rotation matrix. Given a straight line ρ through the origin, let tρ = (tx, ty, tz) be a unit vector
that de�nes its direction and orientation. To perform a rotation by an angle of ϕ about the axis
ρ in the direction of tρ, the rotation matrix R is given by

Rϕ =

 cosϕ+ t2x (1− cosϕ) txty (1− cosϕ)− tz sinϕ txtz (1− cosϕ) + ty sinϕ

txty (1− cosϕ) + tz sinϕ cosϕ+ t2y (1− cosϕ) tytz (1− cosϕ)− tx sinϕ

txtz (1− cosϕ)− ty sinϕ tytz (1− cosϕ) + tx sinϕ cosϕ+ t2z (1− cosϕ)

 .

For the prescribed rotation angle ϕ = 180◦, the matrix reduces to

R =

 2t2x − 1 2txty 2txtz
2txty 2t2y − 1 2tytz
2txtz 2tytz 2t2z − 1

 . (5.7)

The rotation of an arbitrary point c around the straight line ρ can be therefore calculated by

Rotρ (c) = Rc, (5.8)

where c is a vector through the origin. The rotation Rc will be counter-clockwise related to the
right-hand rule, where the right thumb is pointing in the direction of the vector tρ. The curled
�ngers determine the rotation direction.

5.2.2 Householder transformation

In terms of the second Schwarz re�ection principle, if the minimal surface meets a plane or-
thogonally on its boundary, then it can be extended to a new valid minimal surface by re�ection
about the given plane. Considering the normal vector of the extended surface, we can observe
that the normal is contained in the re�ection plane. Here, the aim is to achieve the prescribed
limit surface behaviour by constructing an appropriate ghost geometry. Thus, a re�ection of the
boundary elements through the prescribed re�ection plane will lead to the required outcome, if
the boundary vertices lie in the re�ection plane. For the construction, we add new vertices that
resemble the re�ected copies of the element vertices and, as a next step, connect the vertices
accordingly.

A re�ection is an isometry from a Euclidean space to itself. Therefore, a hyperplane, called
re�ection plane, is given as a set of �xed points with a speci�ed origin. To describe a re�ection
through a plane that contains the origin, we use the Householder transformation, see House-
holder [1958]. Let Σ be the re�ection plane through the origin determined by the vector nΣ that
is orthogonal to the plane, see Figure 5.4. The re�ection is de�ned by a linear transformation.
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This is described by the matrix:

H = I − 2

〈nΣ,nΣ〉
nΣ ⊗ nΣ, (5.9)

where I is the identity matrix. The matrixH is called the Householder-matrix. The denominator
〈nΣ,nΣ〉 is the scalar product and nΣ ⊗ nΣ is the dyadic product of nΣ with itself. The matrix

1

〈nΣ,nΣ〉
nΣ⊗nΣ describes the orthogonal projection in the direction of nΣ. Is the vector nΣ of

unit length, i.e. 〈nΣ,nΣ〉 = 1, the formula can be simpli�ed to

H = I − 2nΣ ⊗ nΣ.

The re�ection of a vector c in the plane Σ is then given by

RefΣ (c) = Hc = c− 2 〈nΣ, c〉nΣ.

The term 〈nΣ, c〉 corresponds to the Euclidean distance of the vertex c to the plane Σ. For a
graphic illustration of the re�ection see Figure 5.4.

5.2.3 Construction issue

Given an arbitrary control grid with a boundary that ful�ls the mentioned symmetry conditions.
For the construction of the ghost geometry, we again distinguish between boundary and corner
elements. To obtain a valid ghost geometry, the one-rings of the boundary elements have to
be completed by adding missing elements that meets the prescribed boundary conditions. A
particular attention is required for corner elements its to boundary edges are constrained by two
di�erent boundary requirements.

In general, the rotation axis ρ and the re�ection plane Σ do not need to go through the origin.
If this is the case, we choose a vertex cO of ρ or, respectively, in Σ that mimic the origin locally.
For the rotation or re�ection of an arbitrary vertex c, the position of the new vertex related to
c is calculated by using the rotation or re�ection of the vector (c− cO). Hence, postponing the
origin to cO means that afterwards we have to add cO to determine the position of the new ghost
vertex in the ambient space. The position of the new vertex Rotρ (c) is obtained from the rotation
of the vertex c. This can be computed by using the formula:

Rotρ (c) = R (c− cO) + cO = (I −R) cO +Rc, (5.10)

where (c− cO) is an vector that starts in the local origin cO . The same can be used for the

(a) (b) (c) (d)

Figure 5.5: Symmetric surfaces. If the initial geometry (a) is symmetric, then a fundamental cell (b) can be
obtained for the calculation. The ghost geometry is constructed based on the re�ection of the corresponding
boundary element vertices. The limit surface of the fundamental cell (c) is again used to construct by re�ection
the whole limit surface (d).
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re�ection of a vector c through the plane Σ. The formula is given by

RefΣ (c) = H (c− cO) + cO = (I −H) cO +Hc. (5.11)

Given a boundary element, the missing part of the one-ring is obtained by the rotation or
re�ection of the non-boundary vertices of the boundary elements. Depending on the boundary
of the control grid, the completed one-ring of the element has at least one symmetry axis. The
parameterization of the limit surface of a boundary element, can now be computed by using one
of the presented parameterizations.

As aforementioned, because of the varying boundary constraints for the boundary edges, the
corner elements need a special treatment. When thinking of minimal surfaces, it seems not so
unlikely to have to handle two boundaries with two di�erent boundary conditions that coincide
in a point. If this is the case, the ghost elements result from the sequential execution of di�erent
constraints that can be re�ections or rotations, or re�ection and rotation simultaneously. For
this purpose, the task to complete the ghost geometry is highly nontrivial. As an example, let the
corner vertex be described by an extraordinary vertex. This can happen when more than two
symmetry planes meet at the corner vertex. The corner vertex determines the combinatorics
of the one-ring of the corner element. For the construction, only a complete one-ring can be
used to parametrize the surface of an element, i.e. the boundary constraints have to be chosen,
such that the one-neighbourhood of a corner vertex does not lead to any overlap. In Figure 5.5,
an example of a symmetric geometry construction is shown. Given the initial control grid, the
ghost geometry is constructed in accordance with the three symmetry planes perpendicular to
each coordinate direction.

As a result, the boundary curve of a limit surface can only be determined by using the sur-
face parameterization on the corresponding boundary element. This is due to the nontrivial
construction of the ghost geometry.

5.3 Conditions for PDEs

In this section, we are interested in determining boundary conditions for PDEs on subdivision
surfaces. A PDE has in general in�nitely many solutions. By prescribing constraints, we specify
the problem more precisely, whereby for a well-posed problem, a unique solution exists that
ful�ls the corresponding conditions. Nevertheless, the considered problems can be so complex
that only numerical methods can be used to �nd an approximation of its analytic solution. In
this thesis, we use the �nite element method. However, constraints are generally a problem in
�nite element applications. In order to address this problem, the choice of �nite elements with
su�cient freedom is of crucial importance.

The Catmull–Clark subdivision �nite element is known to beH2-regular. Nevertheless, there
is a price to pay for it. Unlike traditional �nite elements, the in�uence of the element spreads
over the its neighbourhood, beyond the vertices of the element. In other words, considering a
surface patch, the degrees of freedom describing the limit surface of the patch are distributed
to the vertices in the one-ring of the related element. This means, the boundary of the �nite
element and the boundary of the parameter domain do not coincide. Moreover, the �nite ele-
ment basis functions depend on the element combinatorics. The one-ring of an element provides
information about the associated basis functions. Concerning this matters, the concept of bound-
ary constraints within the subdivision �nite element needs to be treated carefully. Reasonable
boundary conditions are required.

In this section, we discuss how to enforce constraints for subdivision �nite elements. A re-
view of di�erent boundary conditions described in the literature is given. Most of these have
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Figure 5.6: Compatibility conditions: (a) �xed translation and rotation, (b) �xed translation and free ro-
tation, (c) free translation and rotation, and (d) free translation and �xed rotation. The blue coloured parts
represent the actual geometry with exemplary elements, the white quads represent the ghost elements. The
orange vertices correspond to ghost vertices.

been used for thin shell problems, but, due to their general validity, the conditions can be ap-
plied to other PDEs. Furthermore, we give a precise description how to apply our symmetric
constraints for solving periodic boundary value problems. As an application we will consider in
the next chapter the construction of periodic minimal surfaces by means of the mean curvature
�ow. Moreover, our boundary conditions do not impose any requirements on the combinatorial
structure of the control grid.

5.3.1 Compatibility conditions

The most common conditions in mechanics restrict either the displacement or rotation, or both,
along the boundary of the domain. In other words, the solution or its derivative have to meet
speci�ed values at the boundary. The subject of the so-called compatibility constraints are trans-
lations and rotations in the neighbourhood of the boundary. The naming of the constraints fol-
lows from the compatibility with the boundary constraint known from the literature, i.e. Dirich-
let or Neumann boundary constraints.

In the framework of subdivision surfaces, compatibility conditions have been presented in
[Cirak et al., 2000] and [Schweitzer, 1996] for thin shell problems on triangular meshes. An
extension to quadrangular control grids have been described in [Wawrzinek, 2011]. Thus, the
constraints can be obtained using a ghost geometry. Based on the point re�ection principle
described in Section 5.1.1, a set of displacement con�gurations of the control vertices can be
speci�ed that cover all possible motion laws at the boundary.

In Figure 5.6, the compatibility constraints for the Catmull–Clark �nite elements are shown.
The conditions are speci�ed for a boundary element based on Formula 5.1. Similar relations hold
for a corner element in accordance with Formula 5.2. Consequently, the boundary curve is equal
to the limit curve of the boundary edge polygon. On the other hand, we do not need to generate
the ghost geometry explicitly. If the boundary is prescribed to meet the compatibility conditions,
then we can use boundary basis functions for the computation, see Section 5.1.1.

Summarizing, the compatibility constraints are simple to implement. Additionally, they can
be applied to geometries with curved boundaries. Unfortunately, the rate of convergence of the
subdivision �nite element method for thin shells is quite low, see [Cirak et al., 2000]. The reason
for this is that the conditions involve locking of surface features, as for example, deformation
involving derivatives of higher order, or in-plane deformation modes. This leads to vanishing of
in-plane forces. Consequently, natural deformations are violated. In Figure 6.1, an example of a
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(a) (b) (c) (d)

Figure 5.7: Pointwise constraints. An initial grid with the corresponding ghost geometry (a), the control grid
after the �rst time step of the �ow with the corresponding re�ection planes (b) and with the resulting ghost
geometry (c) are shown. Additionally, the limit surface with the re�ection planes is illustrated (d).

solution of the mean curvature �ow with compatibility boundary constraints is shown. Consider
the poor quality of the approximation in the neighbourhood of the boundary.

5.3.2 Pointwise constraints

As described in Section 5.1.2, the limit position and the associated tangent space of a control
vertex can be easily obtained using limit masks. The masks refer to the vertices in the one-
neighbourhood of a control vertex. The underlying concept can also be used for the construction
of boundary conditions for PDEs. The so-called pointwise conditions have been introduced in
[Green, 2003] to enforce boundary constraints for thin shell problems in the framework of Loop
subdivision �nite elements on triangular control grids. In the following, we review the conditions
determined to enforce di�erent types of boundary constraints on the limit surface. For details,
please refer to [Green, 2003].

Let wT = (w0,w1,w2, ...,w2ν) = (α,β1, γ2, ..., γ2ν) be the vector with the interpolation
weights, see Section 5.1.2. The displacement of a limit surface point can be described in the form

u∞ = w · u =
2ν∑
i=0

wiui, (5.12)

where u = (u0,u1, ...,u2ν) is the vector corresponding to the unknown displacements of the
vertices in the one-neighbourhood. To enforce the vertices from moving in a given direction d,
we require that

u∞ · d =
2ν∑
i=0

wi (ui · d) = 0.

To clamp the position of a vertex, we have to �x its translation and rotation. To assign a given
translation, Formula 5.12 is used, where u∞ determine the provided translation. The rotation
can be �xed by constraining the normal vector through some �xed direction r. The required
condition is of the form

r · n = r · (t1 × t2) ∼=
2ν∑
i=0

ui ·
(
wi1 (t1 × r) + wi2 (r × t2)

)
= 0,

where n, t1 and t2 are tangent space elements of the deformed surface, and wi1 and wi2 are the
limit weights of the tangent vector interpolation.

The constraints are very �exible and do not require any symmetry of the neighbourhood.
They can be applied directly to the limit surface, not necessarily at the control grid vertices. That
is, using Stam’s evaluation technique, the pointwise constraints can be applied to any point on
the surface. A second order approximation for the pointwise constrain is achieved, for details, see
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[Green, 2003]. However, based on the experience in the application, the proposed construction
leads easily to an over-determined problem. As pointed out by the author, to �nd an appropriate
set of constraints can be a quite crucial issue.

Moreover, in [Green, 2003], the constraints are applied to the H2-regular thin shell prob-
lem. However, pointwise constraints applied toH1-regular problems may not be strong enough.
Considering the trace operator, a single restriction of the problem function cannot be used to
meaningfully prescribe a general solution, how it has to behave along the total boundary curve
[Braess, 2007]. An example of an application to theH1-regular mean curvature �ow is considered
in Figure 5.7.

5.3.3 Symmetry conditions

In this thesis, we are interested in the construction of symmetric boundary conditions for the fol-
lowing reason: periodic minimal surfaces, their construction is considered in the next chapter, are
characterized by symmetry properties. These surfaces are characterized by a symmetry group,
i.e. the group of all translations under which the surface is invariant. In doing so, a unit cell can
be speci�ed, that determines the total surface by means of the symmetry operations. Using this
idea, the computation of periodic minimal surfaces can be reduced to a symmetric patch. On the
other hand, the critical points of the mean curvature �ow provide minimal surfaces. In other
words, an aim of the next section is to solve a mean curvature �ow with symmetric boundary
conditions.

In the framework of subdivision surfaces, a symmetry at the boundary can be obtained by
the extension of the surface using the symmetry constraints described in Section 5.2. According
to the boundary representation, i.e. the boundary can be given by a straight line, or an arbitrary
curve that is contained in a plane, the ghost vertices are constrained to comply with a rotation or
a re�ection obligation of the boundary elements. Again, we distinguish between boundary and
corner elements.

Given a control grid and the corresponding ghost geometry constructed by means of symme-
try conditions. An adequate set of constraints needs to be applied to the ghost vertices. Addition-
ally, to avoid locking of surface features, we allow boundary vertices to move along the speci�ed
rotation axis or re�ection plane. Let ρ be a straight line, called rotation axis, determined by a part
of the boundary polygon of a control grid. The displacement ug of the ghost vertices is restricted
to ful�l the rotation properties by

ug = Rotρ (ui)

where ui describes the displacement of the associated control vertex. Let tρ = (tx, ty, tz) be the
vector describing the direction and orientation of the line ρ. The displacement ub of the boundary
vertices contained in ρ can be described by

ub = αtρ,

where α gives the scaling of the vector tρ.
Let Σ be a re�ection plane containing a part of the boundary of the control grid. The dis-

placement ug of the ghost vertices that are constrained using re�ection properties is described
by the formula

ug = RefΣ (ui) ,

where ui gives the displacement of the corresponding control vertex. Again, to avoid locking
of surface features, we allow boundary vertices to move along the curve or the re�ection plane.
Let tρ = (tx, ty, tz) be the vector describing the direction and orientation of the line ρ. For the
re�ection plane Σ, the normal nΣ of Σ be pointing in the outer direction of the control grid. The
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displacement ub of the boundary vertices in Σ is restricted to ful�l

nΣ · ub = 0,

or alternatively
ub = αt1 + βt2,

if t1 and t2 are the tangential vectors of plane Σ.
Given a corner vertex, we have to take care of the coincidence of two di�erent boundary

conditions. Moreover, the ghost geometry has to be constructed such that the consecutive con-
ditions can be achieved. Hence, the corner vertex can be �xed to a point, or allowed to move
freely along a straight. That is, a corner vertex is not allowed to move, if one of the boundary
edges is constrained by a rotation and the other by a re�ection condition, or both edges have to
meet rotation conditions. The displacement of the corner vertex is therefore equal to zero, i.e.
uc = 0. If the two boundary edges of the corner element are contained in di�erent re�ection
planes Σ1 and Σ2, the corner vertex is located on the intersection line of Σ1 and Σ2. The vertex
is allowed to move along this line. The displacement of the corner vertex can be characterized
by

uc = αt12,

where the vector t12 describes the direction and orientation of the intersection line. Additionally,
considering the corner element, some of the ghost vertices emerge from the rotation or re�ection

Figure 5.8: An illustration of a geometry (blue) together with the ghost elements (transparent) and the
corresponding re�ection planes (grey). The geometry vertices (blue) are unconstrained. The boundary vertices
(red) are constrained as follows: the red arrows show the allowed movement direction of the corner vertices, i.e.
the direction is prescribed by the intersection line of at least two re�ection planes. The remaining boundary
vertices are allowed tomove along the re�ection plane in which these are contained. The ghost vertices (orange)
are constrained as follows: the ghost vertices are rotations or re�ections of the geometry vertices. For example,
the blue arrows show the connection of the geometry and the ghost vertices based on the re�ection constraint.
The orange arrows show a re�ection constraint that is consecutively executed around a corner. That is, all the
corresponding ghost vertices are constrained by consecutive re�ections of a single geometry vertex.
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of the boundary vertices of the corner element. In accordance with the nonrigid boundary poly-
gons, these vertices are allowed to move along a rotated copy of the curve ρ or a re�ected copy
of the re�ection plane Σ. The displacement of the associated ghost vertices can be described by

ug = Rotρ (ub) = αRotρ (tρ)

or
ug = RefΣ (ub) = αRefΣ (t1) + βRefΣ (t2) ,

respectively, in connection with the suitable rotation axis or re�ection plane. The conditions
preserve the minimal surface periodicity. Thus, the corresponding limit surface can be extended
to a smooth minimal surface containing the boundary curve. In Figure 5.8, an example of a
geometry together with the associated ghost geometry and the imposed constraints is shown.

An object in the three-dimensional space has six degrees-of-freedom. Three of them are
translations along axes, and the other three are the rotations around these axes. Thus, the pre-
sented constrains allow for an explicit calculation of the needed constraints or, equivalently,
degrees of freedom.

5.4 Constrained optimization

In this section, we want to integrate the set of speci�c boundary constraints given by the posed
problem into the �nite element construction describing a system of linear equation. Due to
the fact that B-spline basis functions do not interpolate the associated degrees of freedom, the
presented boundary constraints can be resolved using constrained optimization. Moreover, the
constraints are linear and �nite dimensional. In the following, we consider a set of geometric
constraints imposed on the vertices of the control grid. The constraints are intended to ensure
to be compatible with the overall �nite element system.

Consider a geometric constrained optimization problem. A general representation may be
written as follows:

min f (u)

subject to gi (u) = ci

where f (u) is the objective function which is to be minimized and gi (u) = ci for i = 1, ...,n

are the set of equality constraints. It is required for the so-called hard constraints to be satis�ed
with in full. To solve the problem numerically, the problem functions can be restricted to the
following standard form

f (u) =
1

2
uTAu+ bTu+ c (5.13)

gi (u) = Cu− d

where A is a symmetric matrix. The matrices C given by the required conditions do not need
to be quadratic. This construction implies that the problem to solve is ensured to be a quadratic
objective function with linear constraints.

There are two methods that can be applied: reduction of unnecessary degrees of freedom or
addition of extra degrees by means of Lagrange multipliers. This is handled as follows: letAx = b

be the �nal system to be solved, this is given by the gradient of the quadratic Equation 5.13. The
compatibility constrains can be resolved by the �rst method. Therefore, the entries of the problem
matrix A needs to be modi�ed in such a way that the required conditions are ful�lled. For
example, considering �xed translations and rotations, the rows of the matrix of the corresponding
vertices will be set to zero except the one in the column related to the considered vertex. To that
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e�ect, the entry of the left hand side vector b will also be set to zero.
By contrast, using the second method, we have to extend the problem matrixA in accordance

with the prescribed conditions. This construction preserves the dynamic of the system by adding
additional constrained functions. In doing so, this allows us to enforce the constraints described
in Section 5.1.2 and 5.3.3.

5.4.1 The method of Lagrange multipliers

Let f (u) be the function to be extremized, and at the same time be subject to the conditions
gi (u). To put the extremum conditions together with the constraints, we add a new variable λ
to the problem. We write down the so called Lagrangian function

L (u,λ) = f (u) + λT g (u) ,

that is a function of the variables u and newly added variable λ. Now, we look for the critical
points ∇L (u,λ) = 0 of the Lagrangian function. Extremizing L with respect to u and λ yields
the multiplier form

∂L
∂u

= Au+ b+ λTC = 0,

∂L
∂λ

= Cu− d = 0

where the partial derivatives are set to zero. This can be rewritten into the block matrix form(
A CT

C 0

)(
u

λ

)
=

(
−b
d

)
, (5.14)

where A is the sti�ness matrix of the system and C is the matrix of constrained derivatives with
respect to the displacement u. The sti�ness matrixA, called the bordered sti�ness matrix, is said
to be bordered with C and CT . Solving the system provides a solution for the unknown u and λ,
where u describes the displacements of the vertices. The variable λ can be interpreted as a force
of constraint in the following sense: a removed constraint can be replaced by a system of forces
characterized by λmultiplied by the constraint coe�cients. More precisely, the constraint forces
are equal to −CTλ.

The method of Lagrange multipliers poses a rigorous justi�cation of the problem within the
framework of variational calculus. It appears to be the most elegant method for a general-purpose
�nite element tool that is supposed to work as a "black box" by minimizing guesses and choices
from its users. The method enforces the constraints exactly, at the cost of adding one additional
variable for each constraint to be enforced. The method provides directly the constraint forces,
which are of interest in many applications. On the other hand, the assembling of the extended
problem matrix is not simple and highly expensive. Special care should be exercised in detecting
singularities and losing the positive de�niteness of the bordered sti�ness on equation solvers.
Due to the B-spline properties, the singularities may occur due to the continuity of the con-
straints. An initial reduction of the constraint matrix A to a set of independent rows must be
performed, because of the fact that the method is sensitive to the degree of linear independence
of the constraints. To perform a least-squares �t to the constraint, we consider the normal ma-
trix ATA and take its independent rows as our constraints. All in all, the method of Lagrange
multipliers has the advantage of being exact.
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Chapter 6

Catmull–Clark Limit Surfaces of
Minimal Area

Minimal surfaces describe an important class of surfaces in theory and practice, in the area of
natural sciences, architecture and art. The interest on minimal surfaces comes from the fact that
these surfaces describe an ideal solution to various real world problems. An example of common
objects modelled using minimal surfaces are shapes taken by soap �lms. These objects minimize
surface area with respect to their boundaries. According to this, minimal surfaces are those
surfaces that have local least surface area of all surfaces enclosed by the same boundary. Minimal
area means minimal use of material, minimal amount of material means, in turn, minimal cost
of the building material. On the other hand, the minimization is related to mean curvature and
therefore provide an e�ective smoothing method. Moreover, the surface tension is in equilibrium
at each point of the minimal surface. All these properties taken together make minimal surfaces
very attractive for light weight and yet extremely stable constructions.

Of crucial importance for the construction of minimal surfaces is the following law: given
an arbitrary boundary curve, there is a surface of minimal area that �lls up the boundary. In
practice, to �nd a surface that ful�ls the conditions, numerical methods have to be applied. A
minimization problem can be de�ned that bases on the mean curvature �ow. In this framework,
at �rst, an initial geometry has to be constructed. In doing so, we obtain an arbitrary mesh that
�ts into the given boundary construction.

Considering the state of the art modelling tools, such as used in CAD systems, the design
of real world objects is made using smooth surface representations. By reason of easy handling,
the most common representations are NURBS, B-spline surfaces or subdivision surfaces. These
�exible, but also sophisticated approaches provide a uni�ed framework for the representation
and processing of smooth surfaces, and for analytical investigations of the PDE problems. This
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is a new approach that is supported by the so-called isogeometric analysis systems. However,
the mean curvature �ow for the construction of periodic minimal surface problem has not yet
been studied.

In this chapter, we give an insight into the construction and design of subdivision limit sur-
faces that approximate minimal surfaces. We start with a short view on what minimal surfaces
are and how these can be constructed. Next, we discuss the mean curvature �ow, and derive
the corresponding minimization problem and a discretized representation of it. By linking the
variational representation of the problem with discrete surface representations, a mathematical
framework is established for the computation of discrete minimal surfaces enclosed by prescribed
boundaries. Using the framework of subdivision surfaces, minimal Catmull–Clark surfaces will
be introduced to the reader. The chapter is rounded o� with a set of experiments. A particular
focus is laid on the construction of periodic Catmull–Clark surfaces of minimal area.

6.1 Perspectives on minimal spline surfaces

The study and computation of surfaces of minimal area have a long history, where in the course
of time various models have been determined for its realisation. Minimal surfaces have been and
still are one of the main topics in di�erential geometry, calculus of variations, complex analysis
and other �elds of mathematics. They are used to model physical phenomena, as for example
soap �lms, black holes, protein foldings, etc. Many of these fundamental key issues have been
solved, whereby new perspectives in di�erent scienti�c and even industrial areas have opened up.
At present, minimal surfaces are a powerful tool that connects various scienti�c and industrial
areas.

This section describes the foundations of the minimal surface theory linking to the construc-
tion of spline based approximations of minimal surfaces. We review some representations of the
simple but challenging surfaces that have evolved over the course of history. We review some
key results of discrete minimal surfaces with a closer look on spline based constructions. Thus,
for the classical theory we refer to [Lawson, 1980; Dierkes et al., 1992; Osserman, 2002].

6.1.1 What is a minimal surface?

One can de�ne a minimal surface from di�erent points of view, perfectly showing the richness
of this concept. From the classical theory, as the name suggests:

A surfaceM ⊂ R3 is minimal, if each point on the surface has a neighbourhood which is the
surface of least area with respect to its boundary.

The least-area property is local, surfaces may still exist that better minimize area within the same
boundary.

The history of minimal surfaces goes back to J.L. Lagrange who is one of the founders of
calculus of variations. In his famous work [Lagrange, 1761], Lagrange developed an algorithm
for the calculation of minimal surfaces, also in higher dimensions. In this work the author intro-
duces the today known as the Euler-Lagrange equation that is a second-order partial di�erential
equation for solving optimization problems related to minimal surfaces. The name of the equa-
tion comes from the fact that in 1741, before Lagrange, Euler found the �rst minimal surface:
the catenoid. The catenoid is a surface which minimizes area among surfaces of revolution after
prescribing boundary values from the generating curves (in Figure 6.1, an approximation of the
catenoid is shown).

In 1776, Meusnier discovered the following geometric interpretation

A surfaceM ⊂ R3 is minimal if and only if its mean curvature vanishes identically.
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Figure 6.1: Catmull–Clark catenoid. Two cylindrical control grids and the corresponding grids and limit
surfaces of the critical points of the mean curvature �ow are shown. The used boundary conditions are given
by compatibility conditions for �xed translation and free rotation of the boundary control vertices (see Sec-
tion 5.3.1). The colouring of the limit surfaces is given by its mean curvature. The colour bar shows the
distribution of the curvature.

By means of this discovery, Meusnier veri�ed that the catenoid has zero mean curvature. Addi-
tionally, he found that a right helicoid is a minimal surface. Not counting the plane, the catenoid
and the helicoid are the �rst minimal surfaces that have been discovered. The catanoid and the
halicoid have a one-parameter group of symmetries. It means, one can make a continuous and
isometric deformation of a catenoid to a helicoid such that every member of the deformation
family is minimal. A direct implication of this de�nition is that every point on the surface is a
saddle point with equal and opposite principal curvatures.

It took almost ninety years until a further minimal surface has been explored. In 1835, Scherk
[Scherk, 1835] unsuccessfully tried to determine all ruled minimal surfaces that contain a straight
line through each point of the surfaces. Nevertheless, his great success are the two Scherk sur-
faces named after himself. The so-called singly and doubly periodic Scherk’s surfaces describe
two of the few known complete embedded minimal surfaces. Additionally, these are the �rst two
known periodic surfaces. In 1867 B. Riemann found a one-parameter family of complete embed-
ded singly-periodic minimal surfaces with an in�nite number of foliated by circles and lines in
parallel planes.

The connection between minimal surfaces and harmonic functions is the following

If the surface is given by a conformal immersion x = (x1,x2,x3) : M → R3 of a Riemannian
surface into space, then the surface is minimal, if the components xi, i = 1, 2, 3, of x are harmonic

functions onM . This is, ∆Mxi = 0, where ∆M is the Laplace–Beltrami onM .

As a consequence of this de�nition and the maximum principle for harmonic functions, there
are no compact complete minimal surfaces in R3.

From a physical point of view, the di�erence between the pressure at the two sides of a mem-
brane is equal, up to a non-zero multiplicative constant, to the mean curvature of a homogeneous
surface separating two materials. Consequently, the membrane has zero mean curvature, if the
pressure di�erence is zero. In 1870, the Belgian physicist J. Plateau observed that minimal sur-
faces can be physically realized as soap �lms. From Plateau’s experimental observations is known
that the surface area of soap �lms is a relative minimum among nearby surfaces with the same
boundary. The soap �lm corresponds to a physically stable local minimum of the total energy.
This means, surfaces that are local minimums to energy are also local minimums to the area and
vice versa. As a result, we obtain the following boundary value problem known as the Plateau
problem: �nd the surface of least area which is spanned in a given boundary.

In 1865, H.A. Schwarz derived a representation of minimal surfaces in isothermal coordi-
nates. Isothermal coordinates are local coordinates on a Riemannian manifold their metric is
conformal to the Euclidean metric. The minimal surface is the solution to the corresponding
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Plateau’s problem, where the conditions are �xing the boundary to a polygon consisting of four
edges of a tetrahedron. Schwarz’s surface is a building block to create a complete minimal surface
that is periodic and has a symmetry group containing a three-dimensional lattice of translations.
Therefore, the Schwarz primitive triply periodic surface describes a crystallographic cell or space
tailing. A fundamental cell exists that �ll the whole cube caused by re�ection. Conversely, us-
ing Schwarz’s re�ection principle, a triply periodic minimal surface can be divided into identi-
cal patches with geodesic boundaries that ful�l prescribed symmetry conditions. This property
makes minimal surfaces even more attractive in the area of material science, crystallography,
biology, etc. For more information about periodic minimal surfaces, see [Meeks and Rosenberg,
1989, 1993].

A minimal surface is the two-dimensional generalization of a straight line in the plane: any
piece of a straight line is the unique curve of minimal length connecting its boundary points.
On the other hand, while the straight lines in the plane are essentially the same, the set of all
minimal surfaces takes a wide range of surfaces - including those that have not yet been found.
The minimal surface can be described as a surface within a given boundary curve that either
minimizes or even is a critical point for the mean curvature �ow.

A conformal immersion x : M → R3 is minimal, if it is a critical point for the mean curvature
�ow.

∂tx (u, t) = −2H (u)nt (u)

We consider an evolutionary motion of surfaces by their mean curvature. This motion allows
for a scheme to �nd minimal surfaces using numerical calculation methods. The �rst numerical
approximation of Plateau’s problem have been done by Douglas [Douglas, 1927], Wilson [Wilson,
1961] and Tsuchiya [Tsuchiya, 1986, 1987]. An extended construction problem of this problem
is described in [Stahl, 1994]. The author introduces the problem of the mean curvature �ow for
immersions with Neumann free boundary conditions. In the following, we will use the presented
de�nitions for the construction and investigation of Catmull–Clark surfaces of minimal area.

6.1.2 Overview on minimal spline surfaces

In the framework of surfaces minimizing area, the area of a surface is directly minimized by
letting the surface �ow in the direction of the surface normal with the magnitude of the mean
curvature of the surface. Consequently, the mean curvature �ow is the most natural approach to
compute minimal surfaces upon a boundary enclosing a domain. Considering numerical meth-
ods for solving the given problem, various discrete minimal surfaces bounded by a number of
boundary curves can be derived as approximations of its smooth complements. In the following,
we give a list of related works on the topic of mean curvature �ow and discrete minimal surfaces.

The mean curvature �ow has been studied by many authors through di�erent approaches.
Investigations on the classical form of the �ow have been done in Huisken et al. [1990] and Ecker
[2004] where using geometric analysis and PDE techniques regularity properties of the �ow
are studied. Additionally, unique evolution problems has been solved and families of surfaces
constructed under geometric restrictions on the initial surface. Based on geometric measure
theory, a general result of the existence and a deep regularity theorem are proven in Brakke
[1978]. Therefore, in the setting of varifolds, which describe the generalization of di�erentiable
manifolds in measure theory, a generalized approximate solution is constructed for all speci�ed
times. Additionally, geometric properties of the evolution of surfaces has been summarized. In
[Dziuk, 1991], the mean curvature �ow is used for the computation of stable minimal surfaces
using �nite elements on surfaces. To reduce numerical di�culties in the construction of the
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Laplace operator, Dziuk uses the current surface discretization as the conformal parameter space,
that is, the triangles of the mesh de�ne the local surface metric.

Since the 90’s, a great deal of interest is being focused on the problem of the mean curvature
�ow with free boundary conditions. It has started with the work of Stahl [Stahl, 1994], where the
author presents his results of the investigations on the geometric �ow of immersions. A short
time existence result has been shown by writing the evolving hypersurfaces as graphs over the
initial hypersurface. The mean curvature �ow with free boundary conditions on smooth surfaces
is discussed in Buckland [2005]. In particular, the interest of this work is focused on singularities
of the mean curvature �ow. Thus, singularities are de�ned as points, where the derivatives do not
exist. An introduction to regularity theory for the free-boundary problem is given in [Koeller,
2007].

The concept of discrete minimal surfaces have been established in recent years. In [Bobenko
et al., 2006], a non-linear view on discrete mean curvature is provided that allow for �nding
discrete minimal surfaces arbitrarily close to its smooth analogue. A method to approximate a
harmonic map using the �nite element method based on linear elements is considered in [Pinkall
and Polthier, 1993; Polthier et al., 2002]. Using this approach, various piecewise linear minimal
surfaces have been constructed. The construction of discrete minimal surface on PQ meshes
is described in [Wallner and Pottmann, 2008]. The integral of the square length of the mean
curvature gradient with respect to the to the surface measure has been minimized in [Xu and
Zhang, 2007].

The problem of �nding a minimal surface have been a big research issue in the area of com-
puter aided design. The �rst ideas that use CAD tools for the construction of minimal surfaces
has been considered in [Cosin and Monterde, 2002] for Bézier surfaces. Corresponding to the
approaches of Cosin and Monterde, Bézier control grids have to satisfy certain conditions to
be suitable for the construction. As a result, using bicubic Bézier surfaces, the authors have
shown that all minimal surfaces are pieces of the Enneper surface, except for their a�ne trans-
formations. In the context of Bézier surfaces, an equivalent problem to Plateau’s problem is the
so-called Plateau–Bézier problem that has been studied in [Monterde, 2004]. For the calculation
of Bézier surfaces of minimal area, the author consider the Dirichlet functional as an equivalent
for the area functional. Therefore, the extremes of the functional can be determined by solv-
ing a linear problem. In [Arnal et al., 2003], methods based on the Plateau–Bézier problem are
examined for the approximation of triangular Bézier minimal surface with prescribed bound-
ary. Parametrized minimal surfaces bounded by NURBS curves are investigated in [Lian and
Lutai, 2005]. The construction of minimal Catmull–Clark subdivision surfaces with prescribed
�xed boundaries is discussed in [Pan and Xu, 2010]. An overview on recent results on minimal
surfaces and the mean curvature �ow is given in [Colding et al., 2011].

6.2 Mean curvature �ow

Mean curvature plays a special role among characteristics of surfaces and their dynamics. An
example is the mean curvature motion of a manifold, which describes the most natural geometric
evolution problem in physics and mathematics. The research into the mean curvature �ow is of
particular interest in the area of analysis, di�erential geometry and geometric measure theory.
First investigations on this topic has been presented in the pioneering work of Brakke [Brakke,
1978]. Analogously, in this thesis, we study the motion of parametric surfaces in R3 with the aim
to achieve surfaces of minimal area.

Let M0 be a regular surface in R3. To perform an evolution of M0 by its mean curvature,
we consider the two principal curvatures κ1 and κ2 at each point p ∈ M0. These curvatures
measure how the surface bends in di�erent directions at the point, i.e. it measures the maximal
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and minimal bending at p ∈ M0. The mean curvature H of M0 is the function H : M0 → R
de�ned by the average of the two principal curvatures given by the formula

H (p) =
κ1 (p) + κ2 (p)

2
,

see Section 4.2.3. For a �xed orientation of the normal vector n0, the mean curvature vector H0

of M0 is de�ned by H0 = 2Hn0. The evolution of the surface M0 by the mean curvature can be
therefore described by

−H0 = ∂tx0 (6.1)

where x0 : R2 → R3 is the immersion representing M0. We consider an evolution of M0 by the
mean curvature �ow.

In the sense of the parametric approach, the solution of the geometric �ow de�nes a one-
parameter familyM := {Mt, t ≥ 0} of immersed manifolds Mt in R3. This family evolves in
time according to the mean curvature vector that describes the velocity of the �ow at each point of
the surface. Here, the metric and the immersion is changing during the evolution. Moreover, the
�ow can be seen as the gradient �ow of the area functional on the surface. The stationary points
of this extrinsic �ow correspond to critical points of the functional. Considering appropriate
boundary conditions, in the limit, this is as time goes to in�nity, the evolving immersion emerges
as a minimal surface. Furthermore, the surface is characterized by having zero mean curvature
everywhere.

In this section, we consider the construction of the mean curvature �ow as a geometric par-
tial di�erential equation on curved surfaces. By assigning appropriate constraints to the �ow,
various phenomena of evolving surfaces can be obtained. As mentioned before, it can be used
to determine minimal surfaces, this is, surfaces having least area among all surfaces spanned by
a prescribed boundary. Nevertheless, an initial value problem will lead to a family of shrinking
surfaces that degenerate after a �nite time.

6.2.1 Motion by mean curvature

For a starting time t = t0, we consider a connected non-empty subset M0 of the space R3.
We assume that M0 is a compact two-dimensional embedded surface. The surface can be locally
represented by aC2-continuous isometric immersion x0 : Ω→ R3, where Ω ⊂ R2 and x0 (Ω) ⊂
M0. The function H : M0 → R be the mean curvature function of the immersion x0. The mean
curvature H (p) in a point p := x0 (u), u ∈ Ω, of the surface M0 is an extrinsic measure for
how curved is M0 in the neighbourhood p. Let n0 : M0 → S2 ⊂ R3 be the Gauss map of x0

such that n0 (p) is a unit vector orthogonal to x0 at point p, i.e. n0 is the normal vector to x0

at p. Following the conventional notation, we can abbreviate the function H ◦ x0 and n0 ◦ x0

to H and n0. Thus, H (u) and n0 (u), u ∈ Ω, will denote the value of the mean curvature and
the normal vector at x0 (u), respectively. Suppose that each point p ∈ M0 of the surface moves
in the normal direction n0, this is perpendicular to the surface, with a speed proportional to
the magnitude of the mean curvature H0 at that point. This action is called motion under the
in�uence of curvature.

For a time t ∈ R, we can de�ne a map xt : Ω → R3 by mapping each p ∈ Mt to the point
obtained by following for time t the mean curvature vector Ht. The mean curvature vector Ht

is de�ned by Ht = 2Hnt, where nt is the normal vector and H is the mean curvature of the
surfaceMt at p ∈Mt. This means, the point p is moving in the direction of the normal vector nt.
Furthermore, the tangential velocity does not play a role. LetM := {Mt : x (Ω, t) ⊂Mt t ≥ 0}
be the one-parameter family of smooth orientable immersions x (·, t) in R3, obtained by the
motion of M0 under its mean curvature. Thus, the surface Mt is described by the map x (·, t) :
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Ω → R3, such that x (u, t) ∈ Mt is a point of the surface Mt for the spatial variable u ∈ Ω

and the time variable t ∈ R. For t = 0 we apply x0 (·) = x (·, 0). The mean curvature �ow is
therefore de�ned by

De�nition 6.1 (Mean Curvature Flow). Let x0 : Ω → R3 be a smooth immersion of a two-
dimensional manifold without boundary in the Euclidean space R3. The mean curvature �ow of
x0 is a family of smooth immersions x (·, t) : Ω→ R3 for t ≥ 0 such that setting x (·, t) = xt (·)
the map x : Ω× R→ R3 is a smooth solution of

∂tx (u, t) = −2H (u)nt (u)

where H (u) and nt (u) are the mean curvature and the unit normal of the surface Mt at the
point p = x (u, t) ∈Mt, u ∈ Ω, respectively. The term ∂t = ∂

∂t denotes the time derivative.

We call M0 = x0 (Ω) the initial surface. Consequently, the mean curvature �ow is a �ow in
the space of embeddings starting from the �xed surface M0. Since the curvature can be either
positive or negative, some parts of the surface move outwards while others move inwards, based
on the orientation of the surface. The points at which the mean curvature is zero will do not
move under such a �ow. On the other hand, the mean curvature �ow is the gradient �ow of the
area functional on manifolds. The area reduction stops when H = 0. We assume that the family
M has a limit M∞ as t → ∞. The surface M∞ is a minimal surface. This is characterized by
having zero mean curvature everywhere.

From di�erential geometry point of view, the mean curvature vectorHt = 2Hnt corresponds
to the invariant Laplacian of the position vector xt, i.e.

2H (u)nt (u) = −∆Mtx (u, t) (6.2)

where ∆Mt describes the Laplace–Beltrami operator on Mt induced by the immersion xt. The
Laplace–Beltrami operator is the geometric counterpart of the Laplacian ∆ on smooth surfaces
in the Euclidean space. In coordinates, the Laplace–Beltrami is given, like in the Laplacian, by
the divergence of the gradient of a function de�ned on a manifold, see Section 4.2.3. Note, ∆Mt

is associated with the metric. Consequently, it is a linear operator, which maps functions into
functions. For more detailed examination of the mean curvature in the scope of di�erential
geometry see [do Carmo, 1993; Kühnel, 2008].

Providing the restriction of the Euclidean metric in R3 to surface Mt, we can write the mean
curvature �ow as a geometric di�usion. That means, the �ow equilibrates spatial variation of
the surface. This is given by the formula

∂x

∂t
(u, t) = ∆Mtx (u, t) (6.3)

with the Laplace–Beltrami operator ∆Mt on surface Mt. As a result, successively smoother sur-
faces Mt will be obtained. Here, the mean curvature �ow can also be seen as a heat �ow for
manifolds. Moreover, it shares many characteristics with other geometric �ows such as the har-
monic map �ow and the Ricci �ow. For example, self-shrinking and formation of singularities
are common features of these geometric �ows. Additionally, the Formula 6.3 is a second order
weakly parabolic partial di�erential equation for the local embedding map of the evolving sur-
face. In the case of a minimal surface the equation turns out to be elliptic, i. e. ∆Mtx = 0. It
can be shown that this parabolic problem has a unique solution for a small time interval. On
the other hand, due to the fact that the Laplace–Beltrami operator is developing together with
the surface at time t, the mean curvature �ow is not identical to the heat equation, where the
operator remains inalterable. Moreover, the Laplace–Beltrami operator degenerates as soon as
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Analysis ↔ Geometry

Elliptic Harmonic equation Minimal surface
∆f = 0 ∆Mx = 0

l

Parabolic Heat �ow Mean Curvature �ow
∆f = ∂tf ∆Mx = ∂tx

Table 6.1: Schematic illustration of the accompanying connection of the mean curvature �ow as a parabolic
problem in geometry with the heat �ow in analysis. The transition to an elliptic representation leads to
minimal surfaces ant the harmonic equation, respectively.

zero eigenvalues are achieved. In Table 6.1, a schematic representation of the mean curvature
�ow and the heat �ow is given.

Finally, as a concluding result, we are able to directly derive an initial value problem. In doing
so, the following model problem of moving closed surfaces have to be solved

Remark 6.2. LetM0 be a compact orientable two-dimensional surface without boundary smoothly
embedded in R3. Let mapping x0 : Ω → R3 describes M0 locally. The family of surfaces
M =

{
Mt|x (Ω, t) ⊂Mt, x : (·, t) Ω→ R3, t > 0

}
is said to be evolving by the mean curva-

ture �ow, if
∂x
∂t (u, t) = ∆Mtx (u, t) (u, t) ∈ Ω× (0,T )

x (u, 0) = x0 (u) , u ∈ Ω
(6.4)

for some T > 0, where ∆Mt describes the Laplace–Beltrami operator on Mt.

Here, we consider the identity x (·, t) := idMt . The problem describes a nonlinear parabolic
system, which is not de�ned at points (u, t) where the �rst fundamental form is G (u) ≡ 0. The
familyM is therefore described by a set of successively smoother and shrinking surfaces. In the
following, in order to obtain more interesting surfaces, we extend this problem to surfaces with
boundary.

6.2.2 Initial-boundary value problem

Considering the mean curvature �ow, the initial condition is described by the initial surface
M0. In the following, let the initial surface M0 be a surface with boundary. To obtain the mean
curvature �ow on M0, a set of additional constraints has to be assigned to handle the boundary
of M0. We require, for the familyM of evolving surfaces to satisfy problem speci�c boundary
constraints. Consequently, the problem to be solved is an initial-boundary value problem. In the
following, suitable conditions are described to guarantee the realization of the corresponding
physical model.

A soap �lm is characterized to be a surface of minimal area for constraints caused by the
surrounding environment in a prescribed boundary. The soap �lm describes a stable equilibrium
state. Neglecting the environmental constraints, the boundary of soap �lms satisfy one of the
two naturally present boundary models. These are given as follows: the soap �lm is �xed in a
�ne wireframe, or it is allowed to slip along a glass surface. For each model a set of compatible
boundary conditions can be determined.

Firstly, we consider the model of a soap �lm enclosed in a �xed wireframe. The geometrical
model is given by a surface with a boundary curve conform to the wireframe. Hence, a �xed
boundary curve is the basic principle for the Dirichlet boundary conditions. A reverse prob-
lem formulation is given by: starting with an arbitrary, �exible surface included in a prescribed
boundary, adjust the surface so that the �nal surface is of minimal area. The surface remains
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bounded by the same boundary curve during the movement. We consider the following formu-
lations of the initial-boundary value problem:

De�nition 6.3 (Mean curvature �ow with Dirichlet boundary conditions). Let M0 be an initial
surface, where x0 : Ω→ R3 is the smooth embedding describing M0 that satis�es

∂M0 = x0 (∂Ω) .

Let the mappings
x (·, t) : Ω→ R3

be a one-parameter family of smooth embeddings for all t ∈ [0,T ). The family of resulting
surfacesM = {Mt}, where Mt = x (Ω, t), is said to be evolving by mean curvature �ow with
Dirichlet boundary conditions, if

∂tx (u, t) = ∆Mtx (u, t) (u, t) ∈ Ω× (0,T )

x (u, 0) = x0 (u) u ∈ Ω

x (u, t) = x0 (u) (u, t) ∈ ∂Ω× (0,T )

(6.5)

where ∆Mt is the Laplace–Beltrami operator of the embedding of Mt.

The mean curvature �ow problem together with the Dirichlet boundary conditions is known
as Plateau’s problem. The problem has been initially raised by Joseph-Louis Lagrange [Lagrange,
1761]. However, it is named after Joseph Plateau who experimented on this problem with soap
�lms to show the existence of minimal surfaces. The stationary solutions of the Plateau problem
are minimal surfaces within the given boundary. Over the time, solutions of various examples
have been discovered. The general existence proof has been presented in [Douglas, 1927]. As a
consequence of the boundary conditions, the surface cannot vanish. Moreover, the mean curva-
ture H has to satisfy

H (u,T ) = 0, for all u ∈ Ω,

for a T ∈ R.
In the second model, the soap �lm is allowed to move along a smooth surface, called contact

surface. Besides the fact that the boundary of the soap �lm is lying on the contact surface, it
is also perpendicular to the contact surface. This boundary principle can be modelled using the
Neumann free-boundary conditions. For the geometrical model, we consider the contact surface
Σ to be a smooth surface �xed in the Euclidean space. Again, we start with an arbitrary, �exible
surface attached to the prescribed contact surface. The boundary conditions can be de�ned in a
purely geometric manner by requiring a vertical contact angle between the unit normal �eld nt
of the immersions x (·, t) and the given contact surface Σ. The mean curvature �ow is therefore
de�ned by

De�nition 6.4 (Mean curvature �ow with Neumann free-boundary conditions). Let M0 be an
initial surface, where x0 : Ω→ R3 is a smooth embedding satisfying

∂M0 = x0 (∂Ω) = M0 ∩ Σ,

〈n0,nΣ ◦ x0〉 (u, t) = 0 ∀u ∈ ∂Ω,

for unit normal �elds n0 and nΣ to M0 and Σ, respectively. Σ is the contact surface given by an
arbitrary smooth surface �xed in the space. Let

x (·, t) : Ω→ R3
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be a one-parameter family of smooth embeddings for all t ∈ [0,T ). The family of surfaces
M = {Mt}, whereMt = x (Ω, t), is said to be evolving by mean curvature �ow with homogenous
Neumann free-boundary conditions, if

∂tx (u, t) = ∆Mtx (u, t) (u, t) ∈ Ω× (0,T )

x (u, 0) = x0 (u) u ∈ Ω

x (u, t) ∈ Σ (u, t) ∈ ∂Ω× (0,T )

〈nt,nΣ ◦ x〉 (u, t) = 0 (u, t) ∈ ∂Ω× (0,T )

(6.6)

where ∆Mt is the Laplace–Beltrami operator of the embedding of Mt. The vector �eld nt is the
unit normal vector �eld of the immersion x (·, t).

Here, we assume that Σ has no boundary or the surface Mt keeps away from ∂Σ. How-
ever, even if the initial surface has a parametrized representation, the existence of a solution
is guaranteed only for a short time, as the surface may develop knots and other singularities.
The problem has been introduced by Stahl in [Stahl, 1994, 1996]. The author present a short
time existence of a unique solution to any initial-boundary value problem. In [Buckland, 2005],
the problem of singularity formulation on the free-boundary is studied in detail. Additionally,
the author presents a classi�cation of the limiting behaviour of boundary singularities for mean
convex evolving hypersurfaces.

Finally, we consider a soap �lm its boundary is partly �xed to a wireframe and partly allowed
to move along a contact surface. This corresponds to a mixed boundary value problem. The mean
curvature �ow on surfaces with appropriate boundary conditions is described by:

De�nition 6.5 (Mean curvature �ow with mixed boundary conditions). Let M0 be an initial
surface, where x0 : Ω → R3 is the smooth embedding describing locally M0 that satis�es the
following boundary characterization

∂M0 = x0 (∂Ω) u ∈ ∂ΩD,

∂M0 = x0 (∂Ω) = M0 ∩ Σ u ∈ ∂ΩN , ,

〈n0,nΣ ◦ x0〉 (u, t) = 0 u ∈ ∂ΩN ,

for unit normal �elds n0 and nΣ to M0 and Σ, respectively. Σ is the contact plane given by an
arbitrary smooth surface �xed in the space. Let

x (·, t) : Ω→ R3

be a one-parameter family of smooth embeddings for all t ∈ [0,T ). The family of surfaces
M = {Mt}, where Mt = x (Ω, t), is said to be evolving by mean curvature �ow with mixed
boundary conditions, if

Flow equation ∂tx (u, t) = ∆Mtx (u, t) (u, t) ∈ Ω× (0,T )

Initial condition x (u, 0) = x0 (u) u ∈ Ω

Dirichlet condition x (u, t) = x0 (u) (u, t) ∈ ∂ΩD × (0,T )

Contact condition x (u, t) ∈ Σ (u, t) ∈ ∂ΩN × (0,T )

Neumann condition 〈ν, νΣ ◦ x〉 (u, t) = 0 (u, t) ∈ ∂ΩN × (0,T ) .

where ∆Mt is the Laplace–Beltrami operator of the embedding Mt. The vector �eld nt is the
unit normal vector �eld of the immersion Mt. Here ∂ΩD denotes the Dirichlet boundary part
and ∂ΩN denotes the Neumann-free boundary part.

For a given embedding x (·, t) we assume that the exterior unit normal to Σ coincide with
the unit inner normal of the boundary ∂Mt at all intersection points. The choice of normal will
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by always obtained from an exterior normal �eld to Σ. Note, the Dirichlet and the Neumann-free
boundary problem are direct implications of the mixed problem. It can be achieved by neglecting
the opposite boundary part in the de�nition.

In the following, we continue with the mixed boundary problem. For the initialization of
a given problem, the boundary of the initial surface has to ful�l the boundary condition of the
corresponding problem. At this point, we are left with the objection that the topology of the
solution surface of the problem is restricted to the topology of the initial surface.

6.2.3 Weak formulation

Due to the complexity of the mean curvature �ow problem, we can only relay on numerical meth-
ods to solve the problem. For this purpose, the problem has to be appropriately reformulated. As
a �rst step, we have to �nd a weak formulation of the problems. This simpli�ed representation
of the problem imply that the solution is contained in a suitable subspace of the initial solution
space.

The classical discretization method for time-space problems is built on a time stepping method
coupled with a spatial discretization technique. As already initiated in Chapter 4, for the spatial
discretization, we will make use of the �nite element method. There are two methods to solve a
given time-space problem: the vertical method of lines and the horizontal method of lines, also
called Rothe’s method. The basic idea of the vertical method of lines is to discretize �rst in space
and then in time, see [Thomée, 1984]. Here, we replace the spatial derivatives with algebraic
approximations, such that only the initial value problem remains to be solved. This gives an
ordinary initial value problem for the time discretization where the dimension for the degrees of
freedom is very large. The obtained problem is a sti� initial value problem. For a correct solu-
tion, an implicit or linear-implicit method should be used. The advantage of this method is that
standard methods for the time discretization can be used. The disadvantage is that the spatial
discretization is �xed, this means that local time-dependent re�nements are not allowed.

Considering Rothe’s method the time variable is discretized at �rst by one of the common
time-di�erencing schemes that deal with sti� initial value problems. This gives at each time step
an elliptic boundary value problem that can be solved by a spatial discretization method, as for
example the �nite element method. The advantage of this method is that we can adaptively re�ne
the grid during the calculation, but the implementation is much more expensive than using the
previous approach. In the classical Rothe’s method the time-discretization scheme is kept �xed
and only the size of the time step may vary. According to that, Rothe’s method appear to be the
appropriate discretization technique for our purposes.

To get rid of the coupled time-space problem, �rstly, we replace the time derivative with an
approximation. Here, we use the implicit Euler method. In doing so, there is no restriction in the
choice of time steps. Let τ > 0 denote a discrete time step. The kth point in time is then given by
tk := t0 + τk, k ∈ N ∪ {0}, and τ = tk − tk−1. Let xk denote the approximation of the original
solution x

(
·, tk
)

: Ω→ R3 at time t = tk. For every k ∈ N, Mk = xk (Ω) be parametrized over
Ω. The time derivative ∂tx is replaced by xk+1−xk

τ . Therefore, a semi-discrete problem using the
mapping xk can be obtained.

Problem 6.6. Based on Rothe’s approximation, the problem is given by

xk+1 (u)− τ∆Mk
xk+1 (u) = xk (u) u ∈ Ω (6.7)
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with the set of initial and boundary constraints

x0 (u) = x0 (u) u ∈ Ω

xk (u) = x0 (u) u ∈ ∂ΩD

xk (u) ∈ Σ u ∈ ∂ΩN〈
ν, νΣ ◦ xk

〉
(u) = 0 u ∈ ∂ΩN .

for the unknown mapping xk+1, k > 0.

The di�culty of this task lies in the fact that the Laplace–Beltrami operator ∆Mk
is applied

to the unknown map xk+1 that is de�ned over Ω ⊂ R3. Fortunately, the operator ∆Mk
is still

de�ned by the known surface Mk. We can avoid the di�culty, if we do not use the local param-
eterization over the domain Ω, but instead consider a global parameterization of Mk+1 over the
previous manifold Mk. Thus, Mk+1 =

{
xk+1 : xk → R3

}
and M0 = x0 (Ω). The non-linear

di�erential equations convert therefore into a sequence of linear equations. Nevertheless, for
small time steps these elliptic problems are perturbed problems, where under suitable assump-
tions the solution xk at the previous time step provides a good initial approximation for xk+1.
Note, the existence of a solution for this problem is hard to show.

A weak solution allows one to avoid some of the high smoothness requirements. If we allow
for a less smooth solution, we can rewrite the problem into the corresponding weak formulation.
In the process, we multiply Equation 6.7 with a test functionw ∈ C∞ (Mk) and integrate by parts
over the domain Mk. Thus, the second order problem can be reduced to solving the following
equation:∫

Mk

xk+1w ds+ τ

∫
Mk

(
∇Mk

xk+1
)T
∇Mk

w ds =

∫
Mk

xkw ds ∀w ∈ C∞ (Mk) ,

where ∇Mk
is the surface gradient on Mk, see Formula 4.11. Here, the surface gradient takes

e�ect along the surface. It is tangential to the surface. This means, the component normal to the
surface is neglected. The gradient can be seen as the orthographic projection of the conventional
gradient onto the surface. Further, the corresponding solution space of the model equation is
H1 (Mk). Due to the fact that C∞ (Mk) is dense in H1 (Mk), we take as test functions w ∈
H1 (Mk). Using this assumption, we consider the following problem formulation

Problem 6.7. For k ≥ 0, �nd a mapping xk+1 ∈ H1 (Mk) that is a solution of∫
Mk

xk+1w ds+ τ

∫
Mk

(
∇Mk

xk+1
)T
∇Mk

w ds =

∫
Mk

xkw ds ∀w ∈ H1 (Mk) (6.8)

and ful�ls the following set of initial-boundary constraints

x0 (u) = x0 u ∈ Ω

xk (u) = x0 u ∈ ∂ΩD

xk (u) ∈ Σ u ∈ ∂ΩN〈
νk (u) , νkΣ ◦ xk (u)

〉
= 0 u ∈ ∂ΩN

where ∇Mk
denote the tangential gradient on surface Mk. The mappings vk and vkΣ are the

normal vectors of the solution and the contact plane Σ, respectively.

Consequently, this formulation of the problem is well suited for a �nite element approxi-
mation. By neglecting all boundary constraints, we obtain the problem formulation for closed
surfaces. The same applies to the individual boundary conditions, i.e. by omitting the relevant
conditions, the mean curvature �ow with Dirichlet or Neumann-free boundary conditions can
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be achieved. Nevertheless, the di�culty is now to appropriately adapt the boundary constraints
to the problem equation.

6.3 Discretization using subdivision �nite element

The main goal of this chapter is to derive a �nite element formulation of the approximation for
the mean curvature �ow using Catmull–Clark �nite elements. One has again allow for weaker
requirements on the solution. For the approximation of Problem 6.7, we replace the solution
space H1 (Mk) by the �nite dimensional subspace Vh that consists of appropriate subdivision
basis functions. Based on the weak formulation, an associated matrix representation can be
described. Therefore, we will use the comprehensive previous preparations.

As mentioned before, the Catmull–Clark subdivision splines are H2-regular. Using the sub-
division �nite elements, we consider a conforming discretization of the mean curvature �ow, i.e.
the space of Catmull–Clark splines is a subspace of the space H1 (Mk) provided by the prob-
lem. Considering the �nite-dimensional solution space, in contrast to the classical �nite element
theory, the Catmull–Clark solution space is already prescribed by the connectivity of the initial
Catmull–Clark geometry used for the representation of the problem domain. As a rule, the limit
surface should represent the smooth domain su�ciently accurate. The Catmull–Clark geometry
is given by the limit surfaceQ and the appropriate control grid CQ. For surfaces with boundary,
an appropriate ghost geometry have to be constructed. Hence, the �nite element decomposition
is prescribed by the physical mesh with the surface patches Q ⊂ Q related to the control grid
elements Qc ∈ CQ. Note that the choice of the discretization or, equivalently, of the basis func-
tions for the calculation a�ects not only the quality of the results, but also the computational
e�ort.

As next, we consider the associated subdivision �nite element space Vh (Q) ⊂ H1 (Q) de-
scribed as follows:

Vh (Q) =
⋃
Q

VQ =

x =
⋃
Q

xQ

∣∣∣ xQ ∈ span {βi}i∈IQ ∈ VQ, ∀Q ⊂ Q, IQ ⊂ Z

 ,

where IQ is the one-ring index set of elementQ. The space Vh (Q) is given by the set of subspaces
VQ corresponding to the surface patches Q. Each of the element-based spaces VQ is determined
by the appropriate set of subdivision shape functions {βi}i∈IQ is given by the relevant set of
the shape functions. The choice of shape functions βi ∈

{
bRi , bNi , bCi

}
, i ∈ IQ, depends on the

underlying one-ring of elementQ and the type of �nite element approach, where we can choose
between the natural and the characteristic approach, see Section 4.2.1.

Given a mean curvature �ow problem together with an initial Catmull–Clark limit surfaceQ0

and the corresponding control grid CQ. LetQ0 be a suitable Catmull–Clark surface representing
the discrete analogon of the smooth surface M0. Considering Problem 6.7, we want to �nd
a family {Qk} of Catmull–Clark subdivision surfaces Qk described on the basis of the initial
surface Q0. For k ≥ 0, let xk+1 ∈ Vh (Qk) be the unique solution of the discrete problem. That
is, the mapping xk+1 de�ned over the surface Qk determine the parameterization of surface
Qk+1. Using the basis expansion

xk =
∑
Q∈Q

∑
i∈IQ

xki βi

for k ≥ 0, with coe�cients xki ∈ R, i ∈ IQ, we are able to rewrite Equation 6.8 into the linear
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system
(M + τD)Xk+1 = MXk,

whereXk
j = xkj , j ∈ IQ, is the jth entry of the coe�cient vector in R|IQ|. The set IQ denotes the

set of global indices, i.e. the indices of the vertices in the geometry or ghost geometry according
to the problem treated here. The matrices M ∈ R|IQ|×|IQ| and D ∈ R|IQ|×|IQ| are the mass
matrix and the sti�ness matrix on Qk, respectively, described in Section 4.3. The discrete mean
curvature �ow is given by the following problem.

Problem 6.8. For k ≥ 0, �nd the family of mappings {xk+1 ∈ Vh (Qk)} solving the equation

(M + τD)Xk+1 = MXk, ∀βi ∈ VQ ⊂ Vh (Qk) ,∀Q ⊂ Qk, (6.9)

where Xk+1
i = xk+1

i , i ∈ IQ, and ful�lling the set of initial and boundary constraints

x0 (u) ≡ Q0 u ∈ Ω

xk (u) = x0 u ∈ ∂ΩD

xk (u) ∈ Σ u ∈ ∂ΩN〈
νk (u) , νkΣ ◦ xk (u)

〉
= 0 u ∈ ∂ΩN

where ∇Qk denote the surface gradient on surface Qk. Thus, the solution xk+1 is given by the
expansion

xk+1 =
∑
Q∈Q

∑
i∈IQ

xk+1
i βi ∈ Vh (Qk)

de�ned over the surface Qk, k ≥ 0. The mappings vk and vkΣ are the normal vectors of the
solution and the contact plane Σ, respectively.

Note, in each step of the �ow, the calculation is done over the surface that has been evolved
in the previous step. This means we parameterize Qk+1 over Qk.

Summarizing, the above described problem will be studied in the following section. Existence
and uniqueness of the discrete solution xk+1 is ensured, if the right-hand side matrix M + τD

is positive de�nite. The boundary constraints have to be adjusted immediately after each step as
they do constitute a major input to the solution. At this point, if needed, we use the Lagrange
multipliers to apply the constraints to the problem equation.

6.4 Implementation and experimental results

We have made all preparations that are necessary to set up an algorithm to solve a mean cur-
vature �ow on curved surfaces using Catmull–Clark subdivision surfaces. Given a mean cur-
vature �ow problem, we distinguish between the initial value problem for closed surfaces and
the initial-boundary value problem for surfaces with boundary. We consider a suitable reference
Catmull–Clark limit surface Q0 ⊂ R3 that approximate the smooth initial surface. Our aim is
to construct Catmull–Clark geometries Q1,Q2,Q3..., such that Qi is an approximation of the
smooth solution at this time. The algorithm is described by

Algorithm 6.9. Input: Let Q0 be the initial discrete surface
If needed, generate an appropriate ghost geometry, such thatQ0 ful�ls the boundary conditions
For all k=0,1,2,... de�ne

Vh (Qk) =

{
xk =

⋃
xkQ

∣∣∣∣ xkQ ∈ span
{
βki

}
i∈IQ

∈ VQ, IQ ⊂ Z, ∀Q ⊂ Qk
}

,
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where βki ∈
{
bRi , bNi , bCi

}
corresponds to the used �nite element approach on Q ⊂ Qk (see

Section 4.2.1) and proceed with:

1. Assemble the mass matrix M and the sti�ness matrix D

2. Construct the system:

if initial value problem for closed surfaces

(M + τD)Xk+1 = MXk (6.10)

if initial-boundary value problem with speci�ed constraints(
M + τD CT

C 0

)(
Xk+1

λ

)
=

(
MXk

Y

)
(6.11)

where CXk+1 = Y are the corresponding boundary constraints

3. Solve the system

4. Generate the new surface

Qk+1 =
{
xk+1 (p) |p ∈ Qk

}
∈ Vh (Qk)

Note, the system deal with three degrees of freedom for each coe�cient xki corresponding to
the position of the control vertices. Consequently, the problem matrix is obtained as one system
for the triple amount of degrees of freedom. Considering an initial value problem, the matrix
can be decoupled into three equations, and that the problem matrix is the same for these three
equations. In the case of a boundary constrained problem, the system is coupled and cannot be
disassembled their individual components. To solve the system, we use a solver based on Jacobi
preconditioned conjugate gradient method for symmetric linear systems.

(a) (b) (c)
Figure 6.2: The mean curvature �ow of a spherical grid (white) with extraordinary vertices of valence 3 and
5. The �ow geometries at time (a) t1, (b) t5 and (c) t10 for the time step size τ = 0.1 are shown for the
characteristic shape functions (blue) and the natural shape function (orange).
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6.4.1 Evolution of closed surfaces

In the �rst experiment, we consider a control grid, which points lie on a sphere. The control grid
is derived from a twice subdivided icosahedron, where the control points of the grid have been
projected to the unit sphere (symmetrically to the centre of gravity). Because of the properties
of the Catmull–Clark scheme, the limit surface of a spherical grid only approximates a sphere.
The used control grid has extraordinary vertices of valence 3 and 5. We compute the mean
curvature �ow on the limit surface by solving the linear system described in Equation 6.10 for
a sequence of equidistant time steps τ . The evaluation is done using two Catmull–Clark �nite
element approaches, this is, the natural and the characteristic �nite elements. In Figure 6.2, we
illustrate the resulting behaviour of the control grid under the impact of the mean curvature �ow
for the two �nite element approaches.

t1 t3 t5 t10

characteristic 1.01050 1.00552 1.00314 1.00099
natural 1.01791 1.01650 1.01228 1.00520

Table 6.2: Comparison of the ratio of the maximal radius to the minimal radius of the limit surface at time
t1, t3, t5 and t10 of the mean curvature �ow using characteristic and natural shape functions. For comparison,
the ratio of the limit surface of the initial grid is 1.01568.

Additionally, we examine the limit surface of the control grids emerging during the �ow.
Considering the �ow impact, each point of the surface is moving in the mean curvature direction
that decreases the absolute value of its curvature. This is, for a convex control grid, the limit
surface becomes step-by-step more spherical. Considering the control grid in a given time step,
the Catmull–Clark limit surface is an approximation of a sphere with an unknown radius. To
get an impression of the deviation from this sphere, we calculate the ratio of the maximal to the
minimal radius. In Table 6.2, we show the ratios of the limit surface for a number of time steps.
The evaluation of the limit surface has been done using a grid of ten by ten equidistant evaluation
points over each element. In both cases, the limit geometry is more and more approaching a
sphere. However, in the �rst step of the natural approach the ratio increases. In Figure 6.3,
the mean curvature of the initial limit surfaces and the limit surfaces for both shape function
approaches at time t10 is shown. In order to obtain comparable curvature values, we scaled the
initial grid to a su�ciently equal size. The colour coding illustrates the distribution of the mean
curvature. It can be seen by the curvature distribution that for the characteristic approach the

(a) (b) (c)

1 1.5
Figure 6.3: Comparison of the mean curvature of the limit surfaces of (a) the initial grid (scaled by 0.8),
(b) the grid at time t10 using characteristic shape functions and (c) the grid at time t10 using natural shape
functions. The colours correspond to the values in the range [1, 1.5]. The distribution of the colour is shown
by the colour bar. The evaluation of the surfaces is done via the natural parameterization.
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t1

t2

t3

t4

t5

Figure 6.4: The evolution of a singularity on Grayson’s dumbbell. We compare the impact of the character-
istic and natural subdivision �nite elements. In the �rst row, the initial mesh with its limit surface containing
vertices of valence 3 (blue) and 8 (orange) is shown. In the left and right column, the results for the character-
istic and the natural approach, respectively, have been shown for a number of time steps ti, i = 1, ..., 5. The
limit surfaces and the control grids are illustrated. The range of the curvature describing to the colouring of
the limit surfaces is changing with each step. A singularity appear at time t5, for τ = 1.

limit surface is more spherical than with the natural approach.
In the next experiment, we consider a non-convex dumbbell-shaped control grid. The corre-

sponding mean curvature �ow problem is called Grayson’s dumbbell problem. By de�nition, any
closed surface becomes spoiled in �nite time. This means that the �ow can only be continued
smoothly for some �nite. As observed by Grayson, the presented set must develop a singularity
when its evolution is not yet reduced to a point. In doing so, before the set become singular, topo-
logical changes should be applied, i.e. split of the set in two separate pieces. If the initial surface
is embedded, then it remains embedded under the mean curvature �ow, we do not consider any
geometry splitting. The considered control grid has a large number of extraordinary vertices of
valence 3 and 8. In Figure 6.4, the evolution of the surface using the natural and the character-
istic approach is shown. After �ve steps the singularity occurs. Here, a singularity is obtained
by a self-intersection of the control grid. We compare the control grids and the limit surfaces of
the two approaches. Considering the natural approach, the control grids show a disproportional
deviation from the initial grid. On a closer look, this results in signi�cantly undulation of the
limit surfaces. A more resistant behaviour is obtained by using the characteristic approach.
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t1

t3

t5

t7

t8

Figure 6.5: Comparison of the impact of the characteristic and natural subdivision �nite elements for the
mean curvature �ow on a non-convex surface with genus two. In the �rst row, the initial grid and its limit
surface are shown. In the left and right column, the characteristic and the natural approaches, respectively,
have been shown for a number of time steps ti, i = 1, 3, 5, 7, 8. The range of the curvature corresponding to
the colouring is changing with each step. Singularities appear at the handles, at time t7 for the natural, and
at time t8 for the characteristic approach.

In the last experiment, we examine the behaviour of a non-convex initial surface with genus
two under the impact of the mean curvature �ow. The control grid has four extraordinary vertices
with valence 6. The impact of the �ow for a number of steps is shown in Figure 6.5. We compare
the control grids and the limit surfaces of the two approaches. The surfaces are coloured by its
mean curvature, this allow the investigation of the behaviour of limit surfaces in more detail.
In both cases, the surface degenerates at the handles. However, using the natural elements the
control grid di�ers from the initial grid and destroys more and more in the course of time. The
distribution of the mean curvature on the handles indicates a perturbed surface behaviour. In
contrast to this, the characteristic approach provides a non-destructive grid behaviour and a uni-
form shrinking of the surface. On the latter point, consider the even shrinking and, equivalently,
the uniformly distributed curvature at the handles.

As the experiments show, the characteristic approach leads to better mesh behaviour. The
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reason for this can be obtained by comparing both approaches. The di�erence is due to a factor
in�uencing the calculation. The factor accompanies the pullback onto the domain of the �nite
element method. It emerges as the scaling factor λ of the partitioned domain (see Figure 3.14) and
in�uence the surface gradient de�ned in Section 4.3.2. For the natural �nite element approach
based on the natural generating spline, the factor is the same, regardless of the valence of the
extraordinary vertex, i.e. λ = 1/4 for all valences. Whereas for the characteristic approach
λ is changing depending on the extraordinary vertex valence. Keep in mind that λ is here the
subdominant eigenvalue of the subdivision matrix and closely connected with the characteristic
map.

6.4.2 Periodic minimal surfaces

The main focus of this section is on periodic minimal surfaces given by critical points of the
mean curvature �ow. We begin with a more elementary example of a symmetric surface. We
consider Grayson’s dumbbell problem reduced to a symmetric part of the control grid. In Fig-
ure 5.5, a schematic construction of the symmetrical problem is illustrated. Due to the problem
construction, the surface pieces shrinks in the coarse of the evolution and remains symmetric
to the symmetry plains of the total control grid. As shown previously, it results in a singularity.
The minimization of the dumbbell piece is shown in Figure 6.6. We compare the results using
the natural and the characteristic approach. As known from the previous section, the surface be-
haviour using the characteristic �nite elements is signi�cantly better than by using the natural
approach. We test here the behaviour of our symmetry conditions along the boundary. It can be
seen that the results are promising, i.e. the construction do not a�ects the solution close to the
boundary, as it is the case for the compatible constrains (see Figure 6.1).

Figure 6.6: The evolution of a singularity on a symmetric piece of Grayson’s dumbbell. The construction
is shown in Figure 5.5, whereby three symmetry planes perpendicular to the coordinate directions determine
the symmetric piece. First four steps using characteristic (middle row) and natural subdivision �nite elements
(bottom row) are shown. The range of the curvature describing the colouring of the limit surfaces is changing
with each step.
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(a) (b)

(c) (d)

Figure 6.7: Construction of the Schwarz P problem. An (a) initial grid is constructed, and (b) �tted into the
fundamental cell that describes the symmetry conditions for the construction of the ghost. Consider (c) the
tilling of the unit cell in the re�ected pieces of the fundamental cell and (d) the associate surface.

Now, we consider the construction of periodic minimal surfaces based on Catmull–Clark
subdivision surfaces. The approximation of the smooth models is initialized on an arbitrary
quad grid for that the limit surface ful�ls the initial conditions. Based on the principle of the
mean curvature �ow, a Catmull–Clark minimal surface is de�ned by

De�nition 6.10 (Catmull–Clark minimal surfaces). The limit surface of a control grid that is
a critical point of the mean curvature �ow, i.e. no single control grid vertex can be moved to
decrease the area of the corresponding limit surface, is called a Catmull–Clark minimal surface.

(a) (b)

(c) (d) (e)
−0.15

0.15

Figure 6.8: Schwarz P surface. The evolution of a surface piece resulting in an approximated Schwarz P
surface piece that is used for the construction of the total surface. We use Schwarz re�ection to establish a
complete smooth surface. The (a) initial Catmull–Clark geometry, and the geometries at time (b) t5, (c) t10

and (d) t15 are shown. The mean curvature �ow limit is used for the construction of the total surface (e).
The colouring of the limit patches is described by the mean curvature distribution, it changes according to the
time. For the �ow limit, the distribution of curvature is shown by the colour bar.
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−0.1

0.1

Figure 6.9: The limit of the mean curvature �ow for the Schwarz P problem on meshes with increasing reso-
lution using the characteristic approach. The limit surfaces and the corresponding control grids are illustrated.
The colouring of the surfaces is given by the distribution of the mean curvature in the range of (−0.1, 0.1).

From the point of view of local geometry, a minimal surface can be also taken as the surface
which has the zero average mean curvature at each surface point, e.g. each point is a saddle
point. However, the Catmull–Clark surfaces are at most C2-continuous. The limit surface is an
approximate solution of the real minimal surface in the space of C1 ∪H2-continuous surfaces.
Additionally, due to the wiggly nature of spline surfaces, the mean curvature of the limit surface
can therefore di�er from the ideal H = 0 state.

To picture the construction process, as an example, we consider the underlying structure of
the initial-boundary value problem of the Schwarz P surface shown in Figure 6.7. We consider the
symmetry conditions of a fundamental patch for the construction of the total surface. Given an
initial Catmull–Clark geometry that �ts into an appropriate fundamental cell. Thus, the contact
surfaces are equal to the faces of the fundamental cell. Based on the symmetries of the cell,
the ghost geometry is constructed using the symmetry conditions along the boundary of the
geometry. The initial control grid is the crucial characteristic that speci�es the solution space.
In Figure 6.8 (a), the initial limit surface of the Schwarz P patch is shown. In general, the limit
surface boundary does not interpolate the boundary polygon of the control grid and is not equal
to the B-spline curve described by the polygon.

The problem to be solved is described in Equation 6.11. The boundary conditions are estab-
lished in accordance with the symmetry conditions described in Section 5.3.3. In Figure 6.8, a
couple of intermediate steps of the evolving limit surface are shown. Using the resulting con�g-
uration, we construct the total limit surface shown in Figure 6.8 (e) . The colouring describes

−0.1

0.1

Figure 6.10: The limit of the mean curvature �ow for the Schwarz P problem on meshes with increasing
resolution using the natural approach. The limit surfaces and the corresponding control grids are illustrated.
The colouring of the surfaces is given by the distribution of the mean curvature in the range of (−0.1, 0.1).
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−0.1 0.1

Figure 6.11: Schwarz D surface. Two constructions of the minimal surface (top) are illustrated. The impact
of the mean curvature �ow on increasingly �ner control grids is shown below: the initial meshes (left), and the
�nal limit surfaces (right) coloured by the mean curvature in the range of (−0.1, 0.1). The colour distribution
is prescribed by the colour bar. Considering the initial grids, the red line describes the boundary part contained
in a rotation axis and the orange line the part allowed to move along the corresponding re�ection plane.
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0.1

Figure 6.12: Schwarz D surface. Consider two di�erent initial meshes that have been used for the calcula-
tion and construction. The resulting minimal surfaces completed by the Schwarz re�ection of the minimized
fundamental patch are illustrated. The colouring describes the behaviour of the mean curvature of the limit
surface. Additionally, the ghost geometry of the control grid (bounded by the orange curves) associated with
the fundamental patch is shown.

the mean curvature of the limit surface. The distribution of the mean curvature is shown by the
colour bar. For the �nal geometry, the range of the mean curvature is given by (−.015; 0.15).
The distribution of the colours in the range has been illustrated by the colour bar. For the other
geometries wider ranges of the mean curvature have been used, then for the �nal surface. The
behaviour of the Catmull–Clark limit surface under the impact of the mean curvature �ow on
increasingly �ner meshes is illustrated in Figure 6.9 for the characteristic approach and in Fig-
ure 6.10 for the natural approach. For both approaches, the solutions show a symmetric be-
haviour, where the �ner resolution provides a better approximation of the solution. Note, the
ideal solution is here a surface of zero mean curvature. However, as can be seen from the �gures,
the curvature is very sensitive. Its deviation indicates imprecisions related to the control grid.
Thus, the irregular element has a big impact on its neighbourhood. Nevertheless, comparing the
two approaches, the characteristic approach provides a homogeneous behaviour of the control
grid, whereas for the natural approach the mesh distortion close to the irregular vertex is enor-
mous. Although, up to the two-ring of the irregular element, a relatively small distortion can be
noticed in the former case.

In contrast to the Schwarz P problem, where all boundary curves are allowed to move freely
along the corresponding re�ection surface, the fundamental patch of the Schwarz D surface is
constrained to ful�l re�ection and rotation constraints along prescribed parts of the boundary,
as shown in Figure 6.11. For the computation, we consider control grids of increasing �ner
resolution, see Figure 6.11, and di�erent combinatorial structure, see Figure 6.12. Meshes of
increasing resolution meet the underlying principle of �nite element, i.e. �ner meshes leads to
better approximations. The undesirable e�ects of the mean curvature improves, the �ner meshes
are considered. However, the deviations remains attached to the neighbourhood of the irregular
elements with extraordinary vertices of valence 3 and 8.

In Figure 6.12, the triangle shaped mesh contains extraordinary vertices of di�erent valences,
i.e. of valence 3, 6 and 8, whereby the quadrangular mesh has only one extraordinary vertex of
valence 6. At the same time, the vertex of valence 6 behaves di�erently in every con�guration,
even while being situated in the same place on the surface. Comparing with the classical Schwarz
D surface, the boundary of the triangle shaped control grid coincides with the curved symme-
try lines, such that the grid is able to deal with the elastic deformation under the variations of
surface pressure along the line. Thus, the boundary of the quad shaped grid coincides with the
asymptotic lines, such that the boundary control vertices are allowed to move along these lines.
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−0.1 0.1

Figure 6.13: Schwarz CLP surface. The impact of the mean curvature �ow on increasingly �ner control grids
is shown: the initial control grids (top), and the deformed control grids together with the �nal limit surfaces
(bottom). The colouring of the �nal surfaces is described by its mean curvature. Considering the initial grids,
the red line describes the boundary part contained in an appropriate rotation axis and the orange line the
parts allowed to move along the corresponding re�ection plane.

Accordingly, as can be seen by the curvature behaviour, the control grid is too sti� to follow the
requirements, the surface behaves rigidly.

In the next example, we deal with the construction of the Schwarz CLP surface. We consider
a symmetric fundamental patch that is mostly based on regular elements. The initial control grid
used for the calculation contains one extraordinary vertex of valence 8 at the intersection of a
re�ection plane and a rotation axis, see Figure 6.13. Two of the boundary curves are contained
in a rotation axis and two are free to move along a corresponding re�ection plane. Therefore,
three corners are �xed and one is allowed to move along an intersection line. Additionally,
we compare two di�erent control grids shown in Figure 6.14. As the distribution of the mean
curvature shows, the undesirable e�ect of the curvature a�ect at most the neighbourhood of
the extraordinary vertex. However, a closer look at the neighbouring regular elements shows
that the defects are the greatest up to the �ve-ring of the extraordinary vertex. That is to say,
considering the two-ring support of the basis function corresponding to the extraordinary vertex,
a non-zero mass integral is obtained for functions up to the three-ring. The basis function in the
third ring has again a two-ring support. Consequently, disturbances up to the �ve-ring are the
consequence of the approximate integration over the irregular element.

The last example is showing the construction of Sherk’s surface, see Figure 6.15. Considering
the initial mesh, the elements are rectangles, stretched in one direction. Three of four boundary
parts are contained in an appropriate rotation axis and one is allowed to move along a re�ection
plane. All corner vertices are �xed. The results are similar to the previous one, undesirable e�ects
close to the extraordinary vertex are obtained. The shape of the elements is of second importance
since the curvature of the limit surface related to the regular elements are behaving as for the
square elements. However, the deviation extends accordingly to the shape of the grid elements.

Considering the minimal surface de�nitions, a minimal surface is de�ned to be the surface of
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Figure 6.14: Schwarz CLP. Two di�erent minimized grids (bounded by the orange boundary) and its ghost
geometries (black grid) obtained for the construction of the Schwarz CLP surface. The �rst one contains an
extraordinary vertex of valence 8 at the boundary. In the second one, an internal extraordinary vertex of
valence 5 is obtained.

least area with respect to its boundary. On the other hand, based on the �nite element approach,
an increasingly �ner mesh leads to a better result. In Table 6.3, the relation between the area
value and the �ner mesh is presented. For the considered examples, the area of the resulting
limit surfaces of the presented initial control grid and its two subdivisions is computed. We
calculate the area integral over the individual element patches adding all results together. For the
extraordinary element, we consider the in�nite partition of the patch and perform the calculation
up to the 40th, 39th and 38th subdivision level for the initial grid, the 1st and 2nd subdivided mesh,
respectively. As can be seen, an area minimization is described, whereby a good approximation
is already given for the coarse grid. Considering the di�erent constructions of the initial control
grid of one type of surface, the area results are more or less similar. Compare the results on the
example of the Schwarz D and the Schwarz CLP surfaces.

Summarizing, the usage of the mean curvature �ow for the construction of periodic minimal
surfaces has a limitation. That is, only stable minimal surfaces can be constructed. A stable min-
imal surface is described (where possible) by a soap �lm when the pressure is equal on each side
of the surface. The Schwarz P, Neovius and I-Wp minimal surfaces are unstable, i.e. solving the
corresponding mean curvature �ow problems for an in�nite time leads to degenerations. How-
ever, in the �rst minimal surface example, we constructed a Schwarz P surface using the property
that a straight (asymptotic) line connects the extraordinary and the corner vertex located along
the diagonal of the control grid.

When looking at the results, the introduced boundary conditions allow to reduce the problem
to a symmetric fundamental patch. Although, the construction of the ghost geometry and the
corresponding boundary constraints have to be carefully executed. In doing so, the approach is
compatible with the given H1 problem. Nevertheless, we also have studied the problem using
pointwise constraints, see Section 5.3.2. However, it was not straight forward to �nd a set of
suitable constraints in order to avoid overdetermining the system. In Figure 5.7, an example
of one step of the mean curvature �ow is shown. We constrained the limit positions of the
boundary vertices of the shown control grid to ful�l the Neumann free-boundary constraints.
The outcome shows that the resulting control grid does not �t in the fundamental cell and the
ghost geometry is disturbed, but the constrained limit surface vertices do ful�l the constrains.
That is, the constrained vertices are attached to the re�ection planes, and the surface normals
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−0.1 0.1

Figure 6.15: Sherk surface. The impact of the mean curvature �ow on increasingly �ner control grids is
shown: (top) the initial control grids, and (bottom) the deformed control grids together with the �nal limit
surfaces. The colouring of the �nal surfaces describes the mean curvature of the limit surface. Considering
the initial grids, the red lines described the boundary part contained in a rotation axis and the orange line the
parts allowed to move along the corresponding re�ection plane.

are contained in the re�ection planes. In the presented example, the normals at the corners
rotates. We succeeded and rescue the problem by applying our symmetry constraints to the
ghost vertices. Consequently, the result is similar to the result shown in Figure 6.9.

In summary, using the Catmull–Clark �nite elements to solve the mean curvature �ow pro-
vide already a good approximation for coarse control grids. However, as shown in the experi-
ments, the highest variation of mean curvature on the subdivision limit surface is detected close
to the extraordinary vertices. Consequently, the operations on irregular elements are very sen-
sitive. Please bear in mind that the presented results arise from evolving control grids, and,
equivalently, from evolving integral approximation errors. The characteristic approach provides
a much better result than the natural approach, but still the integration requires further improve-
ments.
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Minimal surface Initial 1st subdivision 2nd subdivision

Schwarz P 0.1954255193 0.1954252611 0.1954252497

Schwarz D 5.1171073274 5.1170527144 5.1170479040

Schwarz D 1.2792754920 1.2792624760 1.2792616227

Schwarz D 1.2794327124 1.2792919632 1.2792643118

Schwarz
CLP 0.0515740189 0.0515718827 0.0515713660

Schwarz
CLP 0.1031434178 0.1031427515 0.1031427381

Sherk 5.4814088101 5.4807817036 5.4806784368

Table 6.3: Area minimization of di�erent Catmull–Clark geometries. The initial control grid with the ghost
geometry is shown. We calculated the area of the minimized initial control grid, its �rst and second subdivi-
sions. Considering the evaluation on the irregular elements, we calculated the area up to the 40th, 39th and
38th subdivision level, respectively. The blue coloured numbers show the position from when the area changes.
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Chapter 7

Conclusions

Through this thesis, starting from the classical subdivision theory, we have gained the under-
standing of the Catmull–Clark subdivision surfaces with the aim to develop a new approach
that integrate these into a corresponding �nite element method. Although the Catmull–Clark
subdivision scheme is not a novelty, its power has still not been completely explored. A �rst
idea on Catmull–Clark subdivision �nite elements has been introduced in our previous works
[Wawrzinek, 2011; Wawrzinek et al., 2011], however, this work gives a deeper insight into the
principles and needs of the underlying basis functions, called here the generalized B-splines of
Catmull–Clark type. We present two associated parameterizations, the natural and the charac-
teristic, and look more closely at its properties. In doing so, one can realize the high correlation
between the classical subdivision theory and the emergent parametric representation.

Considering the parametric representation of the generalized B-splines, the natural conse-
quence is to aim for �nite element methods to solve PDEs on surfaces. Using the expensive
characteristic parameterization, we have newly introduced a �nite element construction that is
compatible with the classical subdivision surfaces. We have shown that the inversion of the char-
acteristic map is done only implicitly, i.e. in the integral representation, the used map reduces
to a valence dependent scaling factor. In this connection, the evaluation cost for our approach
is comparable to the natural �nite element approach known from the literature. This makes our
approach equally practicable for PDE applications, as the natural approach is. However, due to
the complexity of the problem, an e�cient numerical integration method is still an open prob-
lem. In doing so, the main crucial issue is the computation of integrals on irregular elements,
further developments have to be done in this direction. Using the so far best integration method,
i.e. by evaluating the regular subpatches up to a prescribed subdivision level, experimental in-
vestigations on the integration requirements on irregular elements has been done. Additionally,
we give an valence dependent option for the choice of the number of levels for the integration.
That is, we consider a maximal number of levels for a given valence of the extraordinary vertex
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corresponding to a prescribed portion of the to be integrated domain.
One of the goals of this thesis is to show our experience regarding the application of subdi-

vision �nite elements for PDEs on curved surfaces. In the focus of interest is the mean curvature
�ow. We describe in detail a conforming discretization of the mean curvature �ow using the
Catmull–Clark �nite element. To understand the behaviour of the method close to singulari-
ties, we examine the repeated application of the subdivision �nite element method. That is, the
computation is done on limit surfaces, changing under the impact of the �ow. The problem of
evolutionary surfaces in the context of subdivision surfaces has been discussed for the �rst time
in this thesis. In this regard, experimental investigations on closed surfaces and surfaces with
boundaries have been performed.

Considering the task of evolving surfaces, an important application of the mean curvature
�ow is the construction of periodic minimal surfaces. In this context, we present an algorithm to
generate periodic Catmull–Clark minimal surfaces as an approximate analogon of the analytical
solutions. A set of appropriate symmetric boundary conditions has been constructed that ful�l
Schwarz’s re�ection principle. On the basis of this, we introduce new boundary conditions for
PDEs on subdivision surfaces. However, due to the number of di�erent conceptual aspects that
must be taken into account, the assembly of the problem has to be handled very carefully.

In summary, the major bene�t of using the subdivision �nite element method is that it allows
simultaneously for a suitable geometry representation. The results of the experiments show that
the introduced characteristic �nite elements describe a promising approach for the approxima-
tion of PDEs on surfaces. The undesirable e�ects of the mean curvature close to the irregular
vertices are probably due to the fact that the numerical integration on irregular elements leads
to a successive increase of the resulting error. Further improvements related to the treatment of
irregular elements need be established. Additionally, the main disadvantage of subdivision �nite
elements is the signi�cantly higher computational cost compared to the classical �nite elements.
Moreover, using the mean curvature �ow for the minimal surface problem has a limitation. That
is, only stable minimal surfaces can be constructed. For future works, it will be important to
address the investigation of convergence behaviour of the presented �nite element method. Ad-
ditionally, the implementation into traditional numerical codes is essential to get stability.
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Appendix

We consider the contraction of the subdivision matrices A and Ā described in Section 3.2.3.
Here, we use the same notation as derived in Stam [1998]. For the precise derivation of the listed
matrices we refer to Stam.

For a valence ν of an extraordinary vertex, the subdivision matrix S associated with the
one-neighbourhood of the vertex is described by the form

S =



aν bν cν bν cν bν . . . bν cν bν cν
d d e e 0 0 . . . 0 0 e e

f f f f 0 0 . . . 0 0 0 0

d e e d e e . . . 0 0 0 0

f 0 0 f f f . . . 0 0 0 0
...

...
...

...
...

... . . . ...
...

...
...

d e 0 0 0 0 . . . e e d e

f f 0 0 0 0 . . . 0 0 f f


,

where
aν = 1− 7

4ν
, bν =

3

2ν2
, cν =

1

4ν2
, d =

3

8
, e =

1

16
, f =

1

4
.

Note, the order of the entries is prescribed by the vertex ordering given in Figure 3.3 (b).

We consider the eigenstructure (Σ,U0) of S with the diagonal matrix

Σ = diag (1,µ1,µ2,µ3,µ3, ...,µν+2,µν+2) ,
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with

µ0 = 1, µ1,µ2 =
1

8ν

(
−7 + 3ν ∓

√
49− 30ν + 5ν2

)
µl+2,µl+3 =

1

16

(
5 + cos

(
2πl

ν

)
∓ cos

(
πl

ν

)√
18 + 2 cos

(
2πl

ν

))
,

l = 1, ..., ν − 1, and the corresponding eigenvectors

u0 =



1

1

1
...
1

1


, u1 =



16µ2
1 − 12µ1 + 1

6µ1 − 1

4µ1 + 1
...

6µ1 − 1

4µ1 + 1


, u2 =



16µ2
2 − 12µ2 + 1

6µ2 − 1

4µ2 + 1
...

6µ2 − 1

4µ2 + 1


,

u2l+1 =



0

4µl+2 − 1

1 + Cγ(l)

(4µl+2 − 1)Cγ(l)

Cγ(l) + C2γ(l)
...

(4µl+2 − 1)C(ν−1)γ(l)

C(ν−1)γ(l) + 1


, u2l+2 =



0

0

Sγ(l)

(4µl+2 − 1)Sγ(l)

Sγ(l) + S2γ(l)
...

(4µl+2 − 1)S(ν−1)γ(l)

S(ν−1)γ(l)


,

that forms the columns of the eigenvector matrix U0, whereby l = 1, ..., ν2, ν2 = ν − 1 if ν is an
odd and ν2 = ν − 2 if ν is an even number. The term γ (l) is equal to γ (l) = (l + 1) /2 if l is an
odd and γ (l) = l/2 if l is an even number. Additionally, the term Ck is given by the function

Ck = cos

(
2πk

ν

)
und Sk = sin

(
2πk

ν

)
.

Is ν even, then the last two vectors are equal to

uT2ν−1 = (0, 1, 0,−1, 0, 1, 0, . . . ,−1, 0) und
uT2ν = (0, 0, 1, 0,−1, 0, 1, . . . , 0,−1) .

.

The remaining block matrices of the subdivision matrix A follow directly from the B-spline
subdivision, i.e. the given entries correspond to the B-spline subdivision weights. Therefore

S00 =



c 0 0 b a b 0 0 0

e 0 0 e d d 0 0 0

b 0 0 c b a b c 0

e 0 0 0 0 d d e 0

e 0 0 d d e 0 0 0

b c b a b c 0 0 0

e e d d 0 0 0 0 0


, S01 =



c b c 0 b c 0

0 e e 0 0 0 0

0 c b c 0 0 0

0 0 e e 0 0 0

0 0 0 0 e e 0

0 0 0 0 c b c

0 0 0 0 0 e e


,
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where
a =

9

16
, b =

3

32
, c =

1

64
.

For ν = 3 the vertex c7 do not exists, i.e. (c7 = c1). Due to this, the second column of S00 have
to be replaced by the vector (0, 0, c, e, 0, c, e)T . Furthermore, we are interested in the eigenstruc-
ture of the matrix S01 given by the pair (∆,W1). Due to the de�nition, this can be calculated
manually. The diagonal matrix is given by

∆ = diag
(

1

64
,
1

8
,

1

16
,

1

32
,
1

8
,

1

16
,

1

32

)
with the corresponding eigenvalue matrix

W1 =



1 1 2 11 1 2 11

0 1 1 2 0 0 0

0 1 0 −1 0 0 0

0 1 −1 2 0 0 0

0 0 0 0 1 1 2

0 0 0 0 1 0 −1

0 0 0 0 1 −1 2


.

For the enlarged subdivision matrix Ā, the remaining block matrices are given by

S10 =



0 0 0 0 f 0 0 0

0 0 0 0 d e 0 0

0 0 0 0 f f 0 0

0 0 0 0 e d e 0

0 0 0 0 0 f f 0

0 0 0 e d 0 0 0

0 0 0 f f 0 0 0

0 0 e d e 0 0 0

0 0 f f 0 0 0 0


, S11 =



f f 0 0 f 0 0

e d e 0 e 0 0

0 f f 0 0 0 0

0 e d e 0 0 0

0 0 f f 0 0 0

e e 0 0 d e 0

0 0 0 0 f f 0

0 0 0 0 e d e

0 0 0 0 0 f f


.
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Zusammenfassung
Unterteilungs�ächen sind in dem Bereich der geometrischen Modellierung und Comput-

eranimation weit verbreitet. Sie stellen ein rechnerunterstütztes Werkzeug für die Konstruk-
tion von glatten Ober�ächen dar, basierend auf der wiederholten Verfeinerung von groben Git-
tern. Für manche dieser Konstruktionen lässt sich die Grenz�äche, die als Grenzwert einer
solchen Verfeinerung de�niert wird, mittels einer Parametrisierung beschreiben. Infolge der
Parametrisierung wurde in den letzten Jahren eine neue Klasse von Finite-Elemente-Methoden
eingeführt. Die hohen Regularitätseigenschaften, die die sogenannten Unterteilungs-Finite-Ele-
mente-Methoden implizieren, sind von besonderem Interesse für die Lösung von partiellen Dif-
ferentialgleichungen höherer Ordnung. In Bezug darauf genügen die �niten Elemente den Stetig-
keitsbedingungen der Lösung. Allerdings ist dieses Konzept, das auf einem grundsätzlich ein-
fachen Unterteilungsverfahren basiert, noch nicht vollständig analysiert worden. Im Vergleich
zu den klassischen Finite-Elemente-Methoden stellt sich ein wesentliches Problem im Hinblick
auf die recht komplexe zugrunde liegende Struktur der enthaltenen irregulären Elemente.

Mit der Entwicklung einheitlicher Finite-Elemente-Methoden beschäftigt sich ein neues, rasch
wachsendes Gebiet der sogenannten Isogeometrischen Analysis. Ein wesentlicher Vorteil dieser
Methoden gegenüber den bislang bekannten �niten Elementen liegt in der Interoperabilität zwis-
chen Systemen des computergestützten Designs und Fertigung (CAD und CAM) und der Finite-
Elemente-Simulation. Mittels einheitlicher Basisfunktionen kann die Kluft zwischen der Darstel-
lung von geometrischen Formen und Finite-Elemente-Ansatzräumen überbrückt werden. Der
kostenaufwendige und fehleranfällige Datenaustausch zwischen Design- und Analysesystemen
kann dadurch übergangen werden.

In dieser Arbeit beschäftigen wir uns mit der Untersuchung von Unterteilungs-Finite-Elemen-
te-Methoden für die Lösung von Di�erenzialgleichungen auf gekrümmten Flächen basierend auf
den Catmull–Clark Unterteilungs�ächen. Im Mittelpunkt stehen Vierecksnetze und die charak-
teristische Parametrisierung der Grenz�ächen. Diese werden mittels den generalisierten B-Spline-
Basisfunktionen vom Catmull–Clark Typ beschrieben. Insbesondere präsentieren wir einen neuen
Finite-Elemente-Ansatz, der mit der klassischen De�nition der Unterteilungs�ächen kompatibel
ist. Im Gegensatz zu den bisher verwendeten natürlichen �niten Elementen bleibt die Form der
Gitter und somit die Beständigkeit der Grenz�äche bestehen. Dieses kann erreicht werden, da die
charakteristischen �niten Elemente die Stetigkeitseigenschaften der durch Gitterverfeinerung
erzeugten Unterteilungs�ächen vererben.

Für die numerische Analyse der Catmull–Clark-Finite-Elemente-Methode wird als Modell-
problem der mittlere Krümmungs�uss betrachtet. Der mittlere Krümmungs�uss wird durch eine
geometrische Evolutionsgleichung de�niert, die die die zeitliche Änderung von Flächen im drei-
dimensionalen Raum beschreibt, dabei wird die Richtung und die Geschwindigkeit der Änderung
von dem Normalenvektor und der mittleren Krümmung der Fläche vorgegeben. Weiterhin ist
darauf hinzuweisen, dass unter der Vorgabe einer Randkurve die kritischen Punkte des Krüm-
mungs�usses eine Minimal�äche beschreiben. Minimal�ächen zeichnen sich dadurch aus, dass
sie den lokal kleinsten Ober�ächeninhalt haben, im Vergleich zu allen von der vorgegebenen
Randkurve umschlossenen Flächen. Aufgrund dieser Eigenschaft sind diese Flächen außeror-
dentlich interessant für viele Anwendungen im Bereich der Architektur, Kunst, Molekulartech-
nik, Materialwissenschaft und Werksto�technik. Diese Arbeit beschäftigt sich insbesondere mit
der Approximation von periodischen Minimal�ächen. Wir beschreiben ein Verfahren zur Kon-
struktion von stabilen periodischen Catmull–Clark Grenz�ächen mit minimalem Ober�ächenin-
halt. Das Verfahren basiert auf dem numerischen Evolutionsmodell einer gegebenen Fläche unter
dem mittleren Krümmungs�uss. Unter Verwendung des Schwarzschen Spiegelungsprinzips be-
schreiben wir eine Konstruktion für die Assemblierung der entsprechenden Randbedingungen,
die im Einklang mit den Unterteilungs�ächen ist.
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