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Introduction

Models for the dynamics of complex systems are used in a wide range of
scientific fields. Particularly in physical and chemical applications, nowadays
many systems of interest are of so high complexity that one tries to avoid
to model every single interaction within the system explicitly. Therefore, a
multitude of these models make use of stochastic descriptions. Then, the
evolution of the system is rather described by a stochastic process than by
a deterministic dynamical system. Without doubt time-continuous Markov
processes are most prominent under the stochastic processes considered not
only in a physical or chemical context, but also in economic sciences, biology,
meteorology, and other applications. On the other hand, Markov processes
resulting from models of complex systems are usually too complicated for
a direct analysis. In the last years, the size and complexity of the systems
has been growing tremendously, which has led to high-dimensional state
spaces for the associated Markov processes. Many systems exhibit multiscale
dynamics in addition.

There have been various approaches to dimension reduction and sim-
plification of Markov processes. One very successful class of such methods
is given by so called Markov State Models (MSM). For 15 years, Markov
State Models have been used as low-dimensional models for processes on
very large, mostly continuous state spaces exhibiting metastable dynamics.
This means that one can subdivide state space into metastable sets in which
the system remains for long periods of time before it exits quickly to an-
other metastable set. Here the words "long" and "quickly" mainly state that
the typical residence time has to be much longer than the typical transition
time so that the jump process between the metastable sets is approximately
Markovian. Then, the goal of Markov State Modeling is the approximation
of the original Markov process by a Markov chain on a small finite state
space. For this purpose, the transition probabilities of the Markov chain are
calculated from transition probabilities of the original process between the
subsets of state space. In the first section of Chapter 2 the construction of
Markov State Models is explained in detail.

Particularly in molecular dynamics, MSM have become popular as ap-
proximations of the conformational dynamics [72, 73, 84] of large biomole-
cules, which exhibits various timescales ranging from protein folding to fast
vibrations and oscillations within a molecular conformation. There, the
subdivision of the conformational state space has been usually achieved by
partitioning [56, 11, 15, 35, 39, 60, 64, 52, 71, 80, 81]. Since such Markov
State Models are defined by transition probabilities between sets, they can
be estimated from trajectories. That is, one can sample the probabilities by
many short and independent realizations of the Markov process. Usually,
the required length of these trajectories is not comparable to the timescales
of interest [58, 77]. This property attracted also the attention of computer
sciences and even large projects concentrating on the construction of MSM
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Introduction

from heavy parallelized simulation have been established [5].
Until 2005, the construction of MSM has been always based on so called

full partitions, i.e. sets that cover the whole state space. We will also refer
to this type of MSM as classical or Standard Markov State Models. Then,
in [19] a variant was introduced that used fuzzy affiliation functions instead
of sets in state space. Two years ago it was proposed in [11] to use a set
based approach again, but to construct a fuzzy MSM variant by defining
small disjoint sets in the most dominant metastable regions. We will also
call these sets core sets. Another approach that relies on milestoning [28]
and on core sets has been recently discussed in [70].

In this thesis, we will develop a mathematical theory for a general class of
approximations that will contain all these former MSM approaches. For this
purpose, we will use stochastic and functional analytic concepts, which will
require a higher level of abstraction. Since we know that Markov State Mod-
els are used very interdisciplinarily, we will carefully introduce in Chapter
1 the mathematical background that is needed to follow the argumentation
for the rest of the thesis.

Chapter 2 will introduce the framework of projected transfer operators.
That is, we will consider operators of the form QTQ, where T is the transfer
operator of the original Markov process and Q is an orthogonal projection
onto an appropriate space D. In Section 2.3 it will become clear how classi-
cal MSM and Markov State Models based on fuzzy affiliations are directly
related to this approach. Especially, the projection onto the space spanned
by the so called committors [24, 25] will turn out to be valuable. We will
show that the associated projected operator has a stochastic interpretation.
We will interpret the action of the operator QTQ to a density, explain under
which conditions it preserves probability and how one can estimate a matrix
representation from trajectories in terms of stopping times.

In Chapter 3 we will finally answer questions about the approximation
quality of Markov State Models by analyzing the associated projected trans-
fer operators QTQ. In Section 3.1 we focus on the issue that switching
processes between sets as they appear in Markov State Modeling are not
Markovian. Nevertheless, one uses a Markov chain on a small state space
to approximate the dynamics. We will analyze under which conditions this
approximation is reasonable. Then, Section 3.2 is about eigenvalues of the
transfer operator, i.e. the timescales of the Markov process (see Sec. 1.3),
and how they are reflected in the timescales of the MSM. We will find out
that a small projection error of the dominant eigenvectors to the subspace D
is an important criterion to guarantee a good quality in the sense of approx-
imation of the switching processes and reflection of the longest timescales
in the system. All these results will also be valid for the classical Markov
State Models or other methods that can be connected to projected opera-
tors. In [63], these results are used to provide a guideline for the generation
and validation of Standard Markov State Models. On the other hand, we
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will find that one does not necessarily have to approximate the dominant
timescales. We will show that it is theoretically also possible to pick certain
interesting eigenvalues of T and ensure that the projected operator will de-
scribe the dynamics on these timescales. This will also lead to a discussion
of a multilevel discretization of the Markov process. That is, one chooses
several different numbers of core sets to achieve better approximations of
different timescales. Section 3.3 will then discuss the consequences of the
abstract results for the developed core set approach. Here, the fundamental
question is how to choose the sets, i.e. the discretization, in order to build
a good Markov State Model. Throughout the analysis, projection errors of
eigenvectors with respect to the subspace D will turn out to be important.
On the other hand, these eigenvectors are usually unknown. Moreover, of-
ten one cannot compute the projection onto the subspace spanned by the
committors as well. So, we will have to gain insight into this projection error
and discuss under which conditions it will be small. We will prove that we
can estimate the projection error for every timescale from properties of the
sets, which measure the flow from and into the core sets compared to the
timescales of interest. From this we deduce how to define candidates for core
sets aiming at the approximation of a specific part of the spectrum of the
transfer operator. Finally, we construct an algorithm for the identification
of appropriate core sets and the estimation of the corresponding Markov
State Model from trajectories. We test the algorithm by approximating two
diffusions in a one dimensional and in a two dimensional potential, respec-
tively. The resulting Markov State Models that will be estimated completely
simulation based will turn out to match the theoretical results. This implies
that they will be superior to full partition methods for more complicated
processes. Moreover, we will show how the new Markov State Modeling
technique corresponds to fuzzy cluster methods in Section 3.5. It will turn
out that for finite Markov jump processes we can avoid the sampling prob-
lem in the algorithm that we developed in Sec. 3.4. This will provide a new
approach to fuzzy clustering, which has many advantages compared to other
methods. We will demonstrate its behaviour for a network example.

This will point out the broad impact and applicability of the developed
mathematical framework. We will start with Markov State Models, i.e.
discretizations for Markov processes on continuous state spaces, and using
the results from this analysis we will end with a proposal for fuzzy clustering
of networks.
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1
Fundamentals of Markov Theory

The goal of this chapter is to present the mathematical concepts which are
needed to follow the argumentation of the next chapters. Of course, there
are a lot of textbooks about elementary stochastics, stochastic processes,
and more specifically about Markov processes [10, 65, 27], but I wanted to
provide an introduction that exactly fits to this thesis. The intention is to
give understandable interpretations and motivations of the definitions and
formulas, from the very basic ones to more complicated concepts such that
one can quickly get an overview of the framework.

1.1 Probabilistic Framework

Probabilities

The very first definition in an elementary textbook about stochastics will
be most likely the probability space as a triple (Ω,A, P ). When I say "most
likely", I mean that if you took all elementary textbooks dealing with prob-
abilities, the number of textbooks which start with the probability space
would be much larger than the number of textbooks which define something
else first. Actually, this is already our objective view onto probability. When
we look at some experiment, e.g. take one of these probabilistic textbooks,
we want to talk about the probability that some event will happen, e.g. that
the triple (Ω,A, P ) will be the first definition in the book. The objective
interpretation of probability asks for the ratio how often this event would
happen if we ran this experiment more and more frequently, compared to
the total number of tries. In life there is also a subjective interpretation
of probability because sometimes one does not have the possibility to retry
an experiment. Even in situations like this one tries to estimate how likely
some event is although one can hardly validate this quantification. Math-
ematically we try to cover both of these understandings by following the
dominant number of textbooks and making the first definition.
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CHAPTER 1. FUNDAMENTALS OF MARKOV THEORY

Definition 1 (Probability Space) We call a triple (Ω,A, P ) probability
space if A is a sigma field over the arbitrary set Ω, that is, A is a collection
of subsets of Ω with

1. ∅,Ω ∈ A

2. A ∈ A ⇒ Ω \A ∈ A

3. A1, A2, ... ∈ A ⇒
∞⋃
i=1

Ai ∈ A

and P is a probability measure, i.e. it is a map P : A → [0, 1] fulfilling

1. P (Ω) = 1

2. P
( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai), for A1, A2, ... ∈ A, Ai ∩Aj = ∅, i 6= j.

So looking back at the motivation, what we try to model is the following.
We have some experiment or a situation with a random outcome, so maybe
we don’t have the tools, or the insight, or it is simply not possible to forecast
the result. The set Ω is the set of all elementary results that theoretically
can happen. One simple standard example is the dice with six faces. Here,
we could set Ω = {1, 2, 3, 4, 5, 6} which corresponds to the possible results
of one dice roll. Then we want to ask for probabilities, e.g. what is the
probability that the dice will show an even number? Here, the sigma field
A comes into play. The question we just asked can be reformulated in the
following way. Let us call the number the dice will show ω ∈ Ω, then what is
the probability for ω ∈ {2, 4, 6} =: A? So, asking questions about properties
of the result correspond one-to-one to questions of the form, is ω ∈ A for
subsets A ⊂ Ω. The sigma field A is nothing else than the collection of
these questions that are allowed to be asked or that we want to calculate
probabilities for, and the probability measure P assigns a number between
0 and 1 to every of these questions. For an experiment that we can repeat
under the same conditions several times, this number will represent the limit
of the ratio

N(A)
n
→ P (A), n→∞,

where N(A) is the number of runs of the experiment where the result was
in set A, and n is the total number of tries. This corresponds to the objec-
tive interpretation of probability, which is absolutely suitable for this thesis
because in our applications we concentrate on repeatable experiments.

Random Variables

We will see that the triple (Ω,A, P ) is very difficult to get access to directly,
in general. Often it is even anything but trivial to construct the probability
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1.1. PROBABILISTIC FRAMEWORK

space that should be a model for some application. So what we need is a
tool that can be used to filter information about the probability space, that
can be used for further analysis, or even for the construction of probability
spaces. This tool is given by

Definition 2 (Random Variable) A random variable on (Ω,A, P ) with
state space (E, E), where E is a sigma field on E, is a map X : Ω→ E, such
that

{ω ∈ Ω|X(ω) ∈ A} = X−1(A) ∈ A, ∀A ∈ E . (1.1)

In short, a random variable does nothing else than constructing a new prob-
ability space, namely (E, E , PX) where the probability measure PX is given
by

PX(A) = P (X−1(A)) ∀A ∈ E .

Therefore, we need the condition (1.1) because P is only defined on A,
so X−1(A) has to be an element of it. Usually the state space E will be
much simpler than the probability space Ω itself. Particularly two classes of
random variables will be important for the rest of the thesis.

1. Discrete random variable: E = {1, 2, ...}, where E is finite or denu-
merable.

2. Continuous random variable: E = Rn for some n ≥ 1.

In both cases we consider the canonical Borel sigma field on E.

Conditional Probability

Information can change probabilities. This might be the common slogan for
conditional probabilities. Take the following example. We throw the dice
such that we do not see the result, and we still ask the question: "What is the
probability for an even number?" Using A = {2, 4, 6} we can write and easily
calculate P (A) = 1/2 but things change if we have additional information.
Assume that somebody who knows the result tells us that it is a number
larger than or equal to 4. So, we have the information ω ∈ {4, 5, 6} =: B.
Because two out of these three numbers are even, the probability for an even
number changed to P (A|B) = 2/3. We write P (A|B) for the probability
that the result is in A under the condition that it is in B. In general, one
can calculate

Definition 3 (Conditional Probability) The conditional probability of
set A given set B is defined by

P (A|B) := P (A ∩B)
P (B)

for P (B) > 0.
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CHAPTER 1. FUNDAMENTALS OF MARKOV THEORY

In general, the conditional probability is undefined for events B with
P (B) = 0. At first sight, this does not seem to be an obstacle because
if B is an event with probability P (B) = 0, why should we explicitly think
about a probability for an event A in the case that event B happens? The
problem is that in applications, especially when dealing with stochastic pro-
cesses on continuous state space, the best information one will have access
to will be events B with probability P (B) = 0. One example are two ran-
dom variables X0, X1 on R. Assume that X1 = 2X0. If we are interested in
probabilities for X1, the best information we can get is the explicit value of
X0 because it should hold

P[X1 = 2x|X0 = x] = 1 P[X1 = y|X0 = x] = 0, y 6= 2x.

On the other hand, for a continuous random variable, i.e. a random variable
X0 on R, the event B = {X0 = x} will have zero probability P (B) = 0.
In the next Section 1.2 we will find a different way to define a conditional
probability that will overcome this problem, and that will fit better into the
theory of stochastic processes.
Of course, information does not always change probabilities.

Definition 4 (Independence) We call two events A and B independent
of each other if

P (A ∩B) = P (A)P (B),

which implies
P (A|B) = P (A) P (B|A) = P (B).

Moreover, we call two random variables X and Y independent if all pairs
of events X−1(A), Y −1(B) are independent, where A and B are elements of
the corresponding sigma fields of state space.

So, knowledge about A or B does not influence the probability for the other
event. For random variables it means that never any kind of knowledge
about one random variable can change the probability for events of the
other random variable.

1.2 Stochastic Processes

Let us straightforwardly define stochastic processes in the abstract way first
and afterwards discuss the definition.

Definition 5 (Stochastic Process) A stochastic process with index set I
and state space E is a family of random variables

(Xi)i∈I , Xi : Ω→ E ∀i ∈ I

defined on a probability space (Ω,A, P ).

14



1.2. STOCHASTIC PROCESSES

This definition looks very compact and not at all dangerous. We just have
a set of random variables which are defined on the same probability space
and which have the same state space. For example, we could consider the
space of the dice again, i.e. E = Ω = {1, 2, 3, 4, 5, 6}, and simply define
Xi(ω) = ω. This means that our process could have six outcomes, namely
where all of the random variables show the same value 1, 2, 3, 4, 5 or 6 of the
dice roll. First, the random variables are not independent because knowledge
about one random variable implies the same knowledge about every other
random variable. Second, it is not a very interesting process. The word
process suggests that the index set I has usually some interpretation as
time (I = R+) or as time steps (I = N), and that the random variables of
the process should depend on each other and develop in time.

Random Walk

Having this motivation in mind, we want to construct another stochastic
process on I = N = {0, 1, 2, ...} and E = Z that is called a random walk
on Z. We name the properties that our process, i.e. our random variables
(Xn)n∈N, should have.

1. For the initial random variable X0 it holds P[X0 = 0] = 1.

2. For every other random variable it holds Xj+1 = Xj + Zj , where
(Zj)j∈N are independent random variables with P[Zj = 1] = 1/2, and
P[Zj = −1] = 1/2.

The random walk does the following. It starts at X0 = 0 and in every step it
randomly and independently chooses to increase or decrease the actual value
by 1, where each option has the probability 1/2. This looks much more like
something we would call a stochastic process, but following the Definition
5 it is not clear that it is one, yet. The ingredients of a stochastic process
are a probability space (Ω,A, P ), an index set I, a state space E, and the
random variables (Xi). We have I = N and E = Z already but we have to
construct a suitable probability space and random variables that fulfill our
criteria. In this case we can use the random variables (Zj). We can define
the space Ω0 = {−1, 1} and a probability measure with P[Z0 = 1] = 1/2
and P[Z0 = −1] = 1/2. Now there is a well-known theorem that there
is a probability space (Ω,A, P ) which generates a sequence of independent
copies of Z0 that we call (Zj)j∈N. This is exactly the probability space we
are looking for because we can recursively define

Xi+1(ω) =
i∑

k=0
Zk(ω) = Xi(ω) + Zi(ω), i ∈ N

with X0(ω) = 1 ∀ω ∈ Ω.
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CHAPTER 1. FUNDAMENTALS OF MARKOV THEORY

Remark 1 As pointed out before, random variables can be used to construct
probability spaces. Here the sequence of random variables (Zi) have been the
tool to define the probability space for the random walk.

Different Perspectives

In the following we want to consider two classes of stochastic processes,
which differ in the choice of the index set I.

1. Time-discrete processes: I = N = {0, 1, 2, ...},

2. Time-continuous processes: I = R+ = [0,∞),

so we include the zero to the index sets. As mentioned above, these cases are
very natural and connected to the word process, but it also allows to change
perspective. By Definition 5 a time-discrete or time-continuous stochastic
process is a family of random variables with index set N or R+, respectively.
On the other hand, one could also think of a process as one random variable
X with a different state space, namely

X : Ω→ EI

X(ω)(i) = Xi(ω),∀i ∈ I.
(1.2)

For I = N the state space is EN, so the output of X would be a sequence
in E and for I = R+ X would deliver a function X(ω) : R+ → E. These
sequences or functions, which are the realizations of X, are also called paths
or trajectories. This point of view allows to ask different questions, e.g.
what is P[{ω|X(ω) : R+ → E is continuous}]?
Of course, the space of trajectories is a very rich state space for the analysis
of stochastic processes. In many cases one can even identify the space EI
with the probability space Ω itself, but particularly the probability measure
on this large state space is difficult to handle. For practical applications
like numerical simulation or statistical analysis one will also not be able to
generate one complete realization of such a trajectory in the infinite state
space EI . One can only sample sequences of finite length, that is, a random
variable Y

Y : Ω→ EJ

Y (ω)(j) = Xj(ω),∀j ∈ J,
(1.3)

where J ⊂ I is a finite subset of I. For many practical purposes this random
variable Y is the filter at hand for the probability space Ω because we can
generate and numerically analyze realizations of this random variable. Often
the finite set of time steps is chosen to be of the form J = {0, τ, 2τ, ..., Nτ},
that is, a uniform time-discretization with lag time τ > 0. Nevertheless,
even for this random variable Y the induced probability distribution on EJ
is often directly unaccessible for reasonable size of J . Moreover, it not clear
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1.2. STOCHASTIC PROCESSES

how we can answer questions targeting the space of trajectories by looking
at finite sequences only.
In this thesis we will not approach general stochastic processes. We will
restrict us to a certain class of processes, namely Markov processes. This
class is characterized by a very special dependency structure of the random
variables (Xi), but before we start to dive into the analysis of Markov pro-
cesses we have to fix one problem. The word dependency structure indicates
that we will need conditional probabilities to describe the essential property
of Markov processes, but as pointed out before we do not have a suitable
definition of conditional probability that can handle stochastic processes,
yet.

Conditional Probability Advanced

We have been able to define a probability of an event A under the condition
that event B happened already in Definition 3, but only assuming that
P (B) > 0. In the analysis of stochastic processes an essential information
is the evolution of a trajectory up to some time T , that is, we already know
the exact values of the random variables (Xi) for i ≤ T and are interested in
probabilities of further development. Sadly, this is a too precise background
information for which we have

P[Xi = xi, ∀i ≤ T ] = 0, xi ∈ E ∀i ≤ T.

For such events we have not been able to define a conditional probability,
yet. We will catch up now.

Definition 6 (Conditional Expectation) Let X be a random variable
on (Ω,A, P ) and let F ⊂ A be a sub-sigma field of A, i.e. a subset which
is a sigma field again. Then, a random variable Y = E[X|F ] is called
conditional expectation of X given the sigma field F if

• Y is F-measurable

• ∀A ∈ F it holds E[X1A] = E[Y 1A].

Remark 2 If E[X] < ∞ exists, the conditional expectation exists and is
unique almost surely.

The title of this section promised "conditional probability advanced". First,
we did not define a conditional probability, but rather a conditional expec-
tation. This is no restriction because one can always write for A ∈ A

P (A) = E[1A]⇒ P (A|F) = E[1A|F ].

Second, there are two more things that do not make sense immediately.
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CHAPTER 1. FUNDAMENTALS OF MARKOV THEORY

1. The conditional probability is taken with respect to a sigma field and
not with respect to a certain event.

2. The conditional probability is the random variable E[1A|F ] and not a
number between 0 and 1.

At least, we have that
P (A|F) : Ω→ [0, 1]

takes values in the interval [0, 1], as a probability should. So, instead of the
simple conditional probability P (A|B) ∈ [0, 1], we have P (A|F)(ω) ∈ [0, 1].
Actually, this is the secret which solves the problem with the conditional
probability depending on events. What we did is, we changed the order
of question and answer. P (A|B) has to define a probability a priori, that
is, how would we rate the probability for A if we experienced ω ∈ B? We
can hardly answer this question because we cannot imagine that ω ∈ B
will ever happen if P (B) = 0. P (A|F)(ω) approaches this task the other
way around. We first let ω happen and afterwards ask for a conditional
probability. Therefore, P (A|F)(ω) depends on ω. F defines which events we
want to monitor, e.g. F = {∅,Ω, B,Ω \B}. This defines which information
about ω we will have access to, i.e. somebody will tell us for every ω that we
randomly generate if ω ∈ F for all F ∈ F . Then, we ask for the probability
that also ω ∈ A holds.
For example, one can show that

∀F ∈ F , P (F |F)(ω) =
{

1, ω ∈ F
0, ω /∈ F.

This makes sense because for an event F ∈ F we can tell for sure if it
happened or not as soon as ω was generated.
This interpretation of conditional probability will be very useful in the next
section because it fits perfectly to the idea of stochastic processes.

1.3 Markov Processes

From now on we want to focus on a particular class of stochastic processes,
namely Markov processes. These processes have one characterizing property
that is called the Markov property. In short, one can say that these
processes are memoryless. At every point in time a Markov process is only
aware of its present state, but does not remember anything of the past.
Mathematically, this is a constraint on the dependency structure of the
random variables (Xi)i∈I . For discrete time, i.e. I = N, and discrete state
space we can write the Markov property as

P[Xn+1 = xn+1|Xn = xn, ...., X0 = x0] = P[Xn+1 = xn+1|Xn = xn]
∀xi ∈ E, i = 0, ..., n+ 1.

(1.4)
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1.3. MARKOV PROCESSES

(1.4) means that the conditional probability distributions of the value of the
process at time step n+1 given the complete history and given the previous
state only are not distinguishable.
Now, we want to give a similar formulation for a time-continuous Markov
process with continuous state space. As in (1.4), we have to use an equation
involving conditional probabilities which depend on complete observations
of a piece of trajectory {Xt, t ≤ s} until time s or just the value of the final
state Xs, respectively. In the previous section we have seen that these kind
of conditional probabilities can cause trouble because

P[Xt = xt, t ≤ s] = 0, (1.5)

that is, particular pieces of trajectories will have zero probabilities for un-
countable state spaces and/or continuous time, in general. We fixed this
by adapting the definition of conditional probabilities, which made use of
sigma fields. In order to apply this definition we have to construct a suitable
sigma field that monitors the trajectory (Xt) up to some time s. That is, it
has to consist of all events for which one can tell if they happened or not if
one has the concrete information of all values of Xt for t ≤ s. This sigma
field is given by

Fs = σ{X−1
t (A), t ≤ s,A ∈ E} ⊂ A. (1.6)

Obviously, it holds
Ft ⊂ Fs ⊂ A, ∀t < s. (1.7)

A family of sigma fields with this property is called filtration. Filtrations
often appear in the context of stochastic processes because they can be
used elegantly to define conditional probabilities with respect to history
information of trajectories in the sense of Def. 6. Using the filtration from
(1.6) we can define the Markov property in general.

Definition 7 A stochastic process (Xt) on state space E is called Markov
process if it holds

P[Xt ∈ A|Fs] = P[Xt ∈ A|Xs] ∀t ≥ s. (1.8)

Here, P[Xt ∈ A|Xs] is the abbreviated version of

P[Xt ∈ A|σ(Xs)], σ(Xs) = σ{X−1
s (A), A ∈ E} ⊂ Fs. (1.9)

Equation (1.8) is called Markov property.

Def. 7 delivers a proper definition of Markov processes for discrete and
continuous time and arbitrary state spaces. Moreover, the formulation (1.8)
of the Markov property is as short as possible. This is why filtrations and
the advanced conditional probability are so useful in this context. Again,
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the interpretation of (1.8) is that we want quantify how likely it is that
the process will be in a set A at time t, i.e. Xt ∈ A, and that we have
two different spies that provide us with some background information. Spy
number one is the sigma field Fs that can answer every question about the
process (Xi) for i ≤ s, and spy number two, which is the sigma field σ(Xs),
monitors only the last random variable Xs. (1.8) means that the additional
information that the sigma field Fs delivers does not change the conditional
probability. So it is sufficient to monitor the last state only.

Markov Processes on Discrete State Space

We already discussed that one can imagine a stochastic process as a random
variable on a very complicated probability space that generates points in a
suitable path space EI . That is, one realization of the random variable will
be a sequence or a function in state space E. The limitation from stochas-
tic processes in general to the class of Markov processes has one essential
advantage. One can avoid the direct analysis of the unhandy probability
measure in path space because it is possible to construct the Markov pro-
cess, i.e. the probability space and the probability measure, with the use of
simpler objects. First, we want to illustrate this in the case of discrete time
and state space, where we also call the Markov process a Markov chain.

Proposition 1
Let E ⊂ N and time I = N be discrete. Then, for any stochastic matrix P ,
i.e.

P (i, j) ≥ 0,
∑
j∈E

P (i, j) = 1 (1.10)

and any probability distribution ν, there exists a Markov process (Xn)n∈N
with

P[Xn+1 = j|Xn = i] = P (i, j), P (X0 = i0) = ν(i0). (1.11)

In equation (1.11), the transition probability P[Xn+1 = j|Xn = i] does
not depend on the actual time step n. Such a Markov process is called
homogeneous and the matrix P its transition matrix. We will only
consider this class of Markov processes in the following. Note that the state
space can be infinite but countable such that the matrix can have infinitely
many entries.

Remark 3 The random walk example of Sec. 1.2 is a homogeneous Markov
process with transition matrix P (i, i + 1) = P (i, i − 1) = 1/2 and initial
distribution ν(0) = 1.

Proposition 1 immediately guarantees the existence of a suitable probability
space and measure. Moreover, the so called finite dimensional distribu-
tions, which define the probability measure for the finite random variable
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Y from (1.3), can be computed by

P[X0 = i0, Xn1 = i1, ..., Xnk = ik] = ν(i0)P d1(i0, i1) · .... · P dk(ik−1, ik),
dj = nj − nj−1, j = 2, ..., k d1 = n1.

(1.12)
(1.12) gives the probability distribution of a finite subtrajectory at time

steps n1, ..., nk.

Transfer of probability The transition probabilities P (i, j) generate to-
gether with an initial distribution ν the probability space and the Markov
chain, but they also define a matrix and hence a linear operator P : l1 → l1

(Pv)(j) =
∑
i∈E

P (i, j)v(i), (1.13)

on l1 = {v : E → R|
∑
i∈E
|v(i)| <∞}. When E = {1, ..., n} is finite, l1 = Rn

but for infinite state spaces the restriction to l1 makes sure that the sum
in (1.13) converges such that P is well-defined. With the definition of the
operator P we enter an algebraic or functional analytic framework, but
applying the operator to probability distributions ν,

ν(i) ≥ 0,
∑
i∈E

ν(i) = 1, (1.14)

has still a stochastic interpretation. Assuming that ν is the initial distribu-
tion of the Markov chain we can compute

(Pν)(j) =
∑
i∈E

P (i, j)v(i)

=
∑
i∈E

P[X1 = j|X0 = i]P[X0 = i] = P[X1 = j].
(1.15)

Since the Markov chain is homogeneous we could also replace the time in-
dices 0 and 1 by any time steps k and k+1. Because of the Markov property
we also have

(Pkν)(j) = P[Xk = j]. (1.16)

So P propagates distributions in time i.e. it tells us how the Markov chain
will be distributed in later time steps if we start according to some initial
distribution.

Invariant measure and reversibility. (1.16) defines a discrete dynami-
cal system on probability distributions and when it comes to the analysis of
dynamical systems one of the first objects of interest are fixpoints. In our
case this would be a distribution µ which fulfills

Pµ = µ. (1.17)
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The interpretation of (1.17) is that if we generate the probability space for
our Markov chain with the transition matrix P and the initial distribution
µ, the random variables Xk will be identically (but not independently) dis-
tributed according to µ for all k ∈ N. If we do not explicitly provide a
different initial distribution, we will consider Markov processes in this equi-
librated probability space in the following.

From the definition of P it follows that µ is nothing else than a left
eigenvectors of the matrix P with respect to the eigenvalue λ = 1. Since
P1 = 1 we know that P has such an eigenvalue and therefore, (1.17) has a
non-trivial solution. On the other hand, for an infinite state space it does not
necessarily hold µ ∈ l1, but we assume that this is the case such that we can
also normalize µ to a probability distribution. In [76, 59], for example, one
can find exact statements for what kind of processes this assumption might
fail. Moreover, we assume in the following for the sake of simplicity that
the eigenvalue λ = 1 is simple (irreducibility) because then the probability
distribution µ satisfying (1.17) is unique. It is called invariant measure
or stationary distribution.

We will also concentrate later on a certain class of Markov processes that
is called reversible because it holds

µ(i)P (i, j) = µ(j)P (j, i). (1.18)

Equation (1.18) is also called detailed balance condition. The interpretation,
which is also responsible for the name reversibility, is simple. Assume that
we know that for a finite realization of the Markov chain X0, ..., Xn one of
the following two events had happened. We know that the Markov chain
visited the states a0, ..., an, but either we had

X0 = a0, ..., Xn = an or X0 = an, ..., Xn = a0. (1.19)

Now, for a reversible Markov process started in µ we get by using (1.18)
that

P[X0 = a0, ..., Xn = an|(1.19)] = P[X0 = an, ..., Xn = a0|(1.19)] = 1
2 .

So we cannot tell in which direction the process has visited the states
a0, ..., an. One also says that one cannot distinguish the process from its
time-reversed counterpart.

Transfer operator and spectral decomposition. In (1.13) we defined
the linear operator P that generates the probability distributions of all ran-
dom variables Xk from the initial distribution ν by propagation. We as-
sumed that the Markov process has a unique positive invariant measure µ
and therefore, we can also look at the propagation of a distribution v with
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respect to µ, i.e. a vector v with

v(i) ≥ 0,
∑
i∈E

v(i)µ(i) = 1. (1.20)

That is, (vµ)(i) := v(i)µ(i) is a probability distribution in the usual sense,
so we can apply P. On the other hand, P(vµ) will also be a usual probability
vector and not one with respect to µ as in (1.20), but we can simply fix this
by dividing P(vµ) entrywise by µ. Combining these steps we can describe
the propagation of probability distributions with respect to µ by the operator
T ,

(Tv)(j) = 1
µ(j)

∑
i∈E

P (i, j)v(i)µ(i). (1.21)

T is well-defined on the space l1(µ) = {v : E → R|
∑
i∈E
|v(i)µ(i)| <∞}. Nev-

ertheless, we want to use functional analytical tools for understanding prop-
erties of this operator by using a Hilbert space framework. For this purpose,
we will restrict the action of T to the Hilbert space
l2(µ) = {v : E → R|

∑
i∈E

v(i)2µ(i) < ∞} equipped with the scalar prod-
uct

〈v, w〉 =
∑
i∈E

v(i)w(i)µ(i). (1.22)

We call the operator T : l2(µ)→ l2(µ) from (1.21) transfer operator.
The question is why we make this effort to look at distributions in the

µ-weighted Hilbert space. The advantage is demonstrated best for reversible
Markov processes because if (1.18) holds one can compute directly that T
is a self-adjoint operator, i.e.

〈Tv,w〉 = 〈v, Tw〉. (1.23)

One useful consequence is that T has to have real eigenvalues and eigen-
vectors which form an orthonormal basis of l2(µ). In the following we will
always order them according to their magnitude, i.e. T has the eigenvalues
1 = λ0 > λ1 ≥ λ2 ≥ ... and associated eigenvectors u0, u1, u2, ... with

〈ui, uj〉 =
{

1, i = j,

0, i 6= j.
(1.24)

Note that u0 = 1 represents the invariant measure µ itself in l2(µ), and we
assumed that the eigenvalue λ0 = 1 is simple. Moreover, every v ∈ l2(µ)
can be represented as

v =
∞∑
i=0
〈v, ui〉ui, (1.25)
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which also implies

‖v‖2 =
∞∑
i=0
〈v, ui〉2. (1.26)

Particularly, the representation (1.25) of T kv yields the spectral decompo-
sition of T

T kv =
∞∑
i=0

λki 〈v, ui〉ui. (1.27)

Remember that for an initial distribution v, T kv is the distribution of the
random variable Xk. That is, if T does not have an eigenvalue λ = −1
(aperiodicity), for every initial distribution v (1.20) we find

‖T kv − 1‖ ≤ λk1 → 0, k →∞. (1.28)

So the distributions of the random variables Xk will converge towards the
stationary distribution and the speed of convergence is bounded by λk1. On
the other hand, this convergence speed can be achieved. Let us construct a
distribution ū1

ū1 = 1
m1

(u1 +m11), (1.29)

where
m1 = −min

i∈E
{u1(i)} > 0. (1.30)

Then, ū1 is a probability distribution with respect to µ and

T kū1 − 1 = 1
m1

(λk1u1 +m11)− 1 = 1
m1

λk1u1, (1.31)

which implies
‖T kū1 − 1‖ = 1

m1
λk1. (1.32)

Combining with (1.28) we see that m1 ≥ 1 and that for ū1 the convergence
speed to the invariant measure is given by λk1. Because there is no initial
distribution which yields a slower convergence according to (1.28) one also
speaks of the slowest process in the system. To imagine what this means
think of a very large number of trajectories starting distributed according
to ū1. Note that ū1 has the same maxima and minima as the eigenvector
u1 itself, so we will have many trajectories starting close to the maxima of
the eigenvector u1 and almost no trajectories around the minima. In the
process of equilibration, i.e. convergence to invariant measure, this has to
become balanced. So the trajectories have to go from regions in state space,
where the eigenvector u1 is large to regions where u1 is small. The larger the
associated eigenvalue λ1 is, the slower this balancing process can take place.
Of course, we can apply the same argumentation to the other eigenvalues
and associated eigenvectors and speak of slow processes for the largest
eigenvalues, and fast processes for eigenvalues close to 0.
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Continuous Processes

It is remarkable that things do not change a lot when we move from discrete
time and state space to a continuous setting. Note that the transition matrix
(1.11) defines for every fixed k ∈ N and i ∈ E a probability distribution
p(k, i, ·) on E

p(k, i, ·) := P k(i, ·) (1.33)

with

p(0, i, j) = δij p(k + l, i, j) =
∑
r∈E

p(k, i, r)p(l, r, j). (1.34)

This motivates a continuous analog, which also allows to construct a time-
continuous Markov process on E = Rn or another continuous state space
that is complete and separable.

Proposition 2
For every transition kernel or transition function, i.e. a function
p(t, x,A) on R+ × E × E, with

p(t, x, ·)is a probability measure on E, for all t ∈ R+, x ∈ E
p(0, x, ·) = δx

p(·, ·, A) is measurable on R+ × E for all A ∈ E

p(t+ s, x,A) =
∫
E

p(s, y, A)p(t, x, dy).

(1.35)

and an initial probability measure ν on E, there exists a Markov process on
E and its finite dimensional distributions are given by

P[X0 ∈ A0, Xt1 ∈ A1, ..., Xtn ∈ An]

=
∫
A0

· · ·
∫

An−1

p(tn − tn−1, yn−1, An)p(tn−1 − tn−2, yn−2, dyn−1) · · · p(t1, y0, dy1)ν(dy0).

(1.36)

A proof can be found in [27], for example. The last equation in (1.35) is
also known as the Chapman-Kolmogorov equation.

For the sake of simplicity we assume in the following that all introduced
measures have a density with respect to the Lebesgue-measure and we abuse
notation by calling for a measure ν also its density ν, i.e. we write

ν(A) =
∫
A

ν(x)dx. (1.37)

From the context it should not be difficult to distinguish since we take ν
with respect to a set A ⊂ E or a certain state x ∈ A, respectively. We can
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continue the derivation of the analog for the continuous setting by defining
the linear operator

(Ptν)(y) =
∫
E

p(t, x, y)ν(x)dx. (1.38)

If ν is the probability density which provides the initial distribution of X0,
Ptν will describe the distribution of Xt. Again, we assume that the Markov
process (Xt) has a unique positive invariant measure µ, i.e. Ptµ = µ and
define for every time t the transfer operator by

(Ttv)(y) = 1
µ(y)

∫
E

p(t, x, y)v(x)µ(x)dx Tt : L2(µ)→ L2(µ), (1.39)

where L2(µ) = {v : E → R|
∫
E
v(x)2µ(x)dx < ∞} is the Hilbert space

equipped with the scalar product

〈v, w〉 =
∫
E

v(x)w(x)µ(x)dx. (1.40)

(1.35) yields that the family {Tt}t∈R+ forms a semi-group, i.e.

Tt+s = TtTs, T0 = Id. (1.41)

Generator. In the time-discrete case we needed only one transfer operator
T to describe the whole semi-group of operators by Tk = T k. We will now
derive a similar feature for time-continuous Markov processes. We assume
that the semi-group is strongly continuous, i.e. lim

t→0
Ttv = v. Then, we define

the infinitesimal generator of the Markov process by

Lv = lim
t→0

Ttv − v
t

(1.42)

for all v ∈ L2(µ), where the limit exists. One can show [27] that if the limit
exists for a density v, it also converges for every density vt = Ttv, t > 0 and
we have

d

dt
vt = Lvt = TtLv. (1.43)

The solution to (1.43) is known to be

Ttv = vt = eLtv. (1.44)

This is why L is called generator because by (1.44) one can derive the whole
semi-group of transfer operators from the generator.
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Brownian Motion and Stochastic Integrals

In the last Section 1.2 we presented an example for a time-discrete Markov
chain which was called a random walk on Z. We first named the properties
the process should have and afterwards constructed a suitable probability
space. An important example for a continuous Markov process is Brownian
motion. It is named after the English botanist Robert Brown, who studied
the motion of pollen particles in a liquid. Later, this motion was described
by Einstein as a stochastic process (Bt)t∈R+ which should have the following
properties:
• B0 = 0 almost surely (the probability is one).

• the trajectory t→ Bt is almost surely continuous.

• for 0 = t0 < t1 < ... < tk the random variables Bti − Bti−1 , which are
called increments, are independent.

• the increments Bti − Bti−1 are normally distributed according to
N(0, (ti − ti−1)Id).

It is anything but trivial to verify the existence of a probability space and a
process (Bt), which have these properties, but it can be proven, for example,
using Kolmogorov’s extension theorem and continuity criterion. Details can
be found in [65].

Of course, the description of the Brownian motion by the properties
above is very abstract, so we are particularly interested in properties which
hold for almost every trajectory of the Brownian motion to get a feeling how
this process looks like. We know already that realizations of the Brownian
motion are almost surely continuous. On the other hand, one can prove that
one will never be able to draw such a trajectory because (Bt) is also nowhere
differentiable and has infinitely many zeros in every interval (0, ε), ε > 0.
That is, every path of Brownian motion is changing rapidly and therefore,
it is also not of finite variation almost surely, i.e. for every regular sequence
of subdivisions

∆n = {0 = t0 < t1 < ... < tn = T} |∆n| := max
i=1,...,n

|ti− ti−1| → 0 (1.45)

of the interval [0, T ],∆n ⊂ ∆n+1, we have

lim
n→∞

n∑
i=1
|Bti −Bti−1 | =∞. (1.46)

Equation (1.46) causes also problems in the theory of integration and it
was the starting point for the famous Ito-calculus. Usually, for a function
At : [0, T ]→ R with

lim
n→∞

n∑
i=1
|Ati −Ati−1 | <∞, (1.47)
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i.e. for a function At that is of finite variation one can easily define an
integral, for example, for f ∈ C(R)

T∫
0

f(As)dAs = lim
n→∞

n∑
i=1

f(Aξi−1)(Ati −Ati−1) <∞ (1.48)

where the limit does not depend on the choice of ξi−1 ∈ [ti−1, ti]. This is the
usual Riemann-Stieltjes-Integral. Moreover, if F is an antiderivative of
f , i.e. F ′ = f , and f ∈ C1(R), we can calculate the Taylor expansion

F (Ati) = F (Ati−1)+f(Ati−1)(Ati−Ati−1)+ 1
2f
′(Aξi−1)(Ati−Ati−1)2. (1.49)

This yields for all n ∈ N

F (AT )− F (A0) =
n∑
i=1

F (Ati)− F (Ati−1)

=
n∑
i=1

f(Ati−1)(Ati −Ati−1) +
n∑
i=1

1
2f
′(Aξi−1)(Ati −Ati−1)2.

(1.50)

Taking the limit n→∞ we get the fundamental theorem of calculus

F (AT )− F (A0) =
T∫

0

f(As)dAs, (1.51)

since
lim
n→∞

n∑
i=1

1
2f
′(Aξi−1)(Ati −Ati−1)2

≤ 1
2‖f

′‖∞
n∑
i=1
|Ati −Ati−1 | max

i=1,...,n
|Ati −Ati−1 |

≤ C max
i=1,...,n

|Ati −Ati−1 | → 0, n→∞.

(1.52)

This works for functions At of finite variation but trajectories of the Brow-
nian motion, for example, does not have this property. On the other hand,
assuming that at least the so called quadratic variation 〈A〉t of a function
At exists

〈A〉t = lim
n→∞

n∑
i=1

(Ati −Ati−1)2 <∞, (1.53)

we can calculate that

lim
n→∞

n∑
i=1

1
2f
′(Aξi−1)(Ati −Ati−1)2 = 1

2

T∫
0

f ′(As)d〈A〉s. (1.54)
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Because 〈A〉t is always an increasing function, it has to be of finite variation
and therefore, the integral in (1.54) exists in the Riemann-Stieltjes sense as
above independently of the points ξi−1. That is, we have generalized (1.51)
to

F (AT )− F (A0) =
T∫

0

f(As)dAs + 1
2

T∫
0

f ′(As)d〈A〉s. (1.55)

(1.55) is known as Ito’s formula, and since 〈A〉t ≡ 0 for functions A of
finite variation, it really extends (1.51) to the larger class of functions that
have finite quadratic variation. Here, it is crucial that f(Ati−1) is evaluated
at the left point of [ti−1, ti] in the Ito-Integral

T∫
0

f(Bs)dBs = lim
n→∞

n∑
i=1

f(Ati−1)(Ati −Ati−1). (1.56)

The limit at the right hand side is not independent of the point of evaluation
and other choices lead to different definitions of the integral [65].

Fortunately, the trajectories Bt of the Brownian motion have 〈B〉t = t
almost surely such that (1.55) reads

F (BT )− F (B0) =
T∫

0

f(Bs)dBs + 1
2

T∫
0

f ′(Bs)ds. (1.57)

Such stochastic integrals especially appear in the context of stochastic dif-
ferential equations [43, 4], which we will later consider as examples in the
most simple form where f ≡ σ is constant.
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2
Approximation of Markov Processes

From the previous chapter we have seen that the probability measure on the
path space EI of stochastic processes can be a very difficult object for direct
analysis. From a practical, numerical, or statistical point of view we can only
get few incomplete realizations on path space, that is, we can only simulate
the finite random variable Y . The question now is how to extract informa-
tion about the Markov process from these realizations. In Section 2.1 we will
introduce a well-known approach that is based on so called Markov State
Modeling. In Section 2.2 we will connect this method to the general frame-
work of projected transfer operators. We will also see other examples
of methods that fit into this framework, particularly another sophisticated
Markov State Modeling approach in Section 2.3. Chapter 3 will finally show
how powerful the interpretation in the projected transfer operator sense is.

2.1 Standard Markov State Models

Assume that we want to analyze a time-continuous Markov process (Xt)t∈R
on a continuous or very large discrete state space E. Then, the idea of
Markov State Modeling is to construct a Markov chain (X̂k)k∈N that lives
on a finite state space Ê = {1, ..., n} and that reproduces essential character-
istics of the original Markov process (Xt)t∈R. In this sense the Markov chain
(X̂k) can be considered to be an approximation of the continuous process.
Obviously, there are two discretizations needed, a discretization of time and
space. The time-discretization can be achieved very naturally because for
every lag time τ > 0 the time-discrete process (Xkτ )k∈N is again a Markov
process on state space E.
In Standard Markov State Modeling the construction of a finite state space
Ê is based on a full partitioning of state space, i.e. sets A1, ..., An with

n⋃
j=1

Aj = E Ai ∩Aj = ∅ ∀i 6= j, (2.1)

with "nice" sets Aj (e.g. with Lipschitz boundary).
Then, we introduce the discrete process (X̃k)k∈N on the finite state space
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Ê = {1, ..., n} by setting

X̃k = i⇔ Xkτ ∈ Ai. (2.2)

(X̃k) describes the snapshot dynamics of the continuous process (Xt) with
lag time τ between the sets A1, ..., An.
At first glance, the process (X̃k) seems to be a good candidate for our
approximating chain, but the problem is that this process (X̃k) is generally
not Markovian, i.e.

P[X̃k+1 = j|X̃k = ik, X̃k−1 = ik−1, ..., X̃0 = i0] 6= P[X̃k+1 = j|X̃k = ik].
(2.3)

As an illustration, why (X̃k) is not Markovian in general, we look at the
following example.
We take the continuous Markov process that is given by the stochastic dif-
ferential equation

dXt = −∇V (Xt)dt+ σdBt, (2.4)

where Bt denotes Standard Brownian Motion and the potential V is shown
in Fig. 2.1.
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Figure 2.1: potential V

Equation 2.4 is just the abbreviation of

Xt = X0 −
t∫

0

∇V (Xt)dt+ σBt. (2.5)

Note that the deterministic part X0 −
t∫

0
∇V (Xt)dt is the solution of the

gradient flow ẋ = −∇V (x). That is, the local minima will attract the
process, but noise will disturb this behaviour and eventually lead to jumps
between the wells.
The Fokker-Planck equation that governs the propagation of a function f
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by the diffusion process is given by ∂tu = Lu, u(t = 0, x) = f(x) and in the
weighted Hilbert space L2(µ) the generator reads

L = −∇V (x) · ∇x + σ2/2∆x, (2.6)

where ∇x denotes the first derivative wrt. x and ∆x the associated Lapla-
cian.
We now choose two sets A and B around the local minima that form a full
partitioning of state space. If we ask whether our two state switching pro-
cess between these sets (X̃k) has the Markov property, i.e. if (1.8) holds,
we have to look at the effect of memory. Let us simply consider a one step
memory and compare for a small lag time τ = 0.1 the two probabilities

P[X(k+1)τ ∈ A|Xkτ ∈ B], P[X(k+1)τ ∈ A|Xkτ ∈ B,X(k−1)τ ∈ A].

Because (Xkτ ) is a Markov process, we can calculate

P[X(k+1)τ ∈ A|Xkτ ∈ B] =
∫

x∈B

(PτvB)(x)dx,

P[X(k+1)τ ∈ A|Xkτ ∈ B,X(k−1)τ ∈ A] =
∫

x∈B

(PτvBA)(x)dx

where vB is the probability density of Xkτ under the condition Xkτ ∈ B,
and vBA is the probability density of Xkτ under the condition Xkτ ∈ B and
X(k−1)τ ∈ A. These distributions are shown in Fig.2.2.
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Figure 2.2: solid blue: vB, dashed red: vBA

If one thinks of an ensemble of trajectories, this picture indicates that
the knowledge of X(k−1)τ ∈ A implies that at time k most trajectories that
arrived in set B are still close to set A because the lag time τ is not too large.
That is, they are still inside of the transition region and not close enough
to the minimum in set B as it is the case if we only have the knowledge
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Xkτ ∈ B. Therefore, we have much more trajectories that will go back to
set A if they are distributed according to vBA rather than to vB. We see
this effect in Fig. 2.3.
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Figure 2.3: solid blue: PτvB, dashed red: PτvBA

This results in a difference of probability

P[X(k+1)τ ∈ A|Xkτ ∈ B] = 0.0049
P[X(k+1)τ ∈ A|Xkτ ∈ B,X(k−1)τ ∈ A] = 0.0994.

This issue is called recrossing problem because a transition back into
set B is much more likely when we introduce memory as above. There-
fore, the process (X̃k), which describes the switching dynamics between the
partitioning sets, is not memoryless and hence no Markov process.

However, Markov State Models attempt to approximate this process via
a discrete Markov chain (X̂k)k∈N on Ê = {1, ..., n} defined by the transition
matrix P̂ with entries

P̂ (i, j) = P[X̃1 = j|X̃0 = i] = P[Xτ ∈ Aj |X0 ∈ Ai]. (2.7)

One very essential feature is that one can estimate this matrix from a
realization of the process (Xt). Assume that we have a trajectory of N
datapoints that we call xk, k = 1, ..., N where xk is the realization of the
random variable Xkτ . Then we can estimate

P̂ ∗(i, j) = N(i, j)
n(i) , (2.8)

where n(i) = #{xk = i} is the number of time steps the process spent in
Ai, and N(i, j) = #{xk = i, xk+1 = j} is the number of time steps the
process made a transition from set Ai to set Aj . One can even show that P̂ ∗
is a maximum likelihood estimator for the transition matrix P̂ and further
analyze the statistical error ‖P̂ − P̂ ∗‖ [55, 66, 75, 48].
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Reference. Markov state models have been considered for processes that
have metastable dynamics [18, 73, 74, 7], especially in Molecular Dynam-
ics. Recently the interest in MSMs has drastically increased since it could be
demonstrated that MSMs can be constructed even for very high dimensional
systems [73] and have been especially useful for modeling the interesting slow
dynamics of biomolecules [56, 57, 58, 12, 11, 61] and materials [79] (there un-
der the name "kinetic Monte Carlo"). Their approximation quality on large
time scale has been rigorously studied, e.g., for Brownian or Glauber dynam-
ics and Ising models in the limit of vanishing smallness parameters (noise
intensity, temperature) where the analysis can be based on large deviation
estimates and variational principles [29, 84] and/or potential theory and ca-
pacities [8, 9]. In these cases the effective dynamics is governed by some
MSM with exponentially small transition probabilities and its states label
the different attractors of the underlying, unperturbed dynamical systems.
Other approaches tried to understand the multi-dimensional setting for com-
plex dynamical systems by generalization of Kramer’s approach, e.g., by
discussing asymptotic expansions based on the Wentzel-Kramers-Brillouin
approximation in semiclassical quantum dynamics, matched asymptotics or
similar techniques, see e.g. [46, 62]. Another rigorous approach to the con-
struction of MSM involves the exploitation of spectral properties. The rela-
tion between dominant eigenvalues, exit times and rates, and metastable sets
has been studied by asymptotic expansions in certain smallness parameters
as well as by functional analytic means without any relation to smallness
parameters [37, 14, 74, 7, 18]. In real applications with high-dimensional
state spaces asymptotic expansions are based on assumptions that typically
cannot be checked and often enough are not satisfied, involve quantities that
cannot be computed, and/or are rather specific for a certain class of pro-
cesses. Even if a smallness parameter can be defined we typically cannot
check whether we are in the asymptotic regime such that the theoretical
results cannot be used for error estimates.

We will follow later the functional analytic approach found in [72, 14, 74]
and use the framework of projected transfer operators to answer in Chapter
3 the following questions.

• The switching process between the partitioning sets from (2.2) is not
Markovian. Nevertheless, the Markov State Model considers a Markov
chain with the transition matrix (2.7). Under which assumptions is
this a valid approximation?

• Does this Markov chain reproduce the long-time behaviour of the orig-
inal process, that is, how well are the dominant eigenvalues of the
transfer operator Tτ approximated by the eigenvalues of P̂?
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2.2 Projected Transfer Operators

Markov processes have the useful property that the probability measure on
path space can be generated by a transition matrix in discrete time or a
transition kernel for a time-continuous process plus an initial distribution.
On the other hand, this transition matrix or transition kernel also defines a
semi-group of transfer operators. Many interesting properties of the Markov
process can be derived from properties of these linear, bounded operators,
particularly in the case of a reversible dynamics (see Sec. 1.3). Moreover,
the analysis of linear operators that act on vector spaces seems to be much
more feasible than the analysis of measures on abstract probability spaces
which are as complicated as the path space EI . Nevertheless, in practice a
transfer operator T := Tτ for some lag time τ > 0 is often still unavailable.
Here, unavailable can have two different meanings. First, we could not have
any analytical expression for T because we just do not have any equation
for the dynamics of the Markov process. For example, the process (Xt)
could be some natural experiment or even a computer experiment, where
we cannot formulate an equation for. Second, we could be able to write
down some expression for T , like in the case of some stochastic differential
equations with T = eLτ , where L is a differential operator, but it could be
still impossible to analytically or efficiently numerically compute the inter-
esting quantities of T , e.g. the eigenvalues. As T describes the evolution
of probability densities under the dynamics of the Markov process, it is an
operator on an infinite dimensional function space. That is, for a numerical
treatment it is immediately clear that some sort of finite approximation of
T is needed. The most natural way to achieve this is via restriction and
bestapproximation.

Definition 8 (Projected Transfer Operator) Let T be a transfer oper-
ator of a Markov process on state space E with unique invariant measure µ.
Then, we call any operator of the form

QTQ : D → D

projected transfer operator if Q is the orthogonal projection in L2(µ)
onto some subspace D with

D ⊂ L2(µ) 1 ∈ D.

This means that we are only looking at the propagation of densities v ∈ D
by the transfer operator T , so we restrict its domain. Because for v ∈ D
Tv = TQv will not belong to D, in general, we have to approximate the
result of propagation by another density in D. We simply choose the bestap-
proximation of TQv, that is QTQv. The constraint 1 ∈ D ensures that the
density of the invariant measure is part of the domain of the projected op-
erator and that QTQ1 = 1 as well.
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In Def. 8 we did not claim that D has to be finite dimensional. For the
purpose of a finite approximation that we also call discretization of T , as
mentioned above, we will make this additional assumption. On the other
hand, we will see later that the general concept of projected transfer op-
erators also connects to well known methods that do not reduce to finite
dimensional subspaces.

Note that for the semi-group of transfer operators (Tt) the family of as-
sociated projected transfer operators (QTtQ) does not form a semi-group
anymore. That is, they do not describe the ensemble dynamics of a Markov
process. We have observed such a Markovianity problem with approxima-
tions of Markov processes already in the last Section 2.1. There, the switch-
ing process (X̃t) between the partitioning subsets A1, ..., An of state space
was not Markovian. Actually, this is no coincidence.

Theorem 1
The MSM transition matrix P̂ from (2.7) is a matrix representation1 of
the projected transfer operator QTQ for

D = {1A1 , ...,1An}, (2.9)

i.e. the space of stepfunctions, which are piecewise constant on the par-
titioning sets A1, ..., An.

Proof. Let us take the basis (ψi)i=1,...,n of probability densities given by

ψi = 1Ai
µ(Ai)

. (2.10)

We can write the orthogonal projection Q as

Qv =
n∑
j=1

〈v,1Aj 〉
µ(Aj)

1Aj . (2.11)

By using the definition of T we get

QTQψi = QTψi =
n∑
j=1

〈Tψi,1Aj 〉
µ(Aj)

1Aj =
n∑
j=1

〈T1Ai ,1Aj 〉
µ(Ai)

ψj

=
n∑
j=1

( 1
µ(Ai)

∫
Ai

P[Xτ ∈ Aj |X0 = x]µ(dx)
)
· ψj .

(2.12)

1 Here and in the following, matrix representation means with respect to
multiplying the matrix from the right, so if v has the row vector
representation v̂, QTQv has the representation v̂P̂ .
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That is,

QTQψi =
n∑
j=1

P[Xτ ∈ Aj |X0 ∈ Ai] · ψj

=
n∑
j=1

P̂ (i, j)ψj .
(2.13)

Therefore, P̂ is a matrix representation of QTQ with respect to the basis
(2.10). �

Theorem 1 shows that through the linear operator glasses the discrete
approximation by Markov State Models is a special case of a projected trans-
fer operator approximation. The advantage of this point of view is that in
Chapter 3 several statements about approximation properties of projected
transfer operators will be made. These theorems will have direct conse-
quences for the quality of the corresponding approximation method. For
example, the question if the Markov chain of a Standard Markov State
Model captures the correct dominant timescales can now be investigated
by comparing the dominant eigenvalues of T and QTQ with D from (2.9).
We will answer this question in Sec. 3.2. Another question was if the ap-
proximation of the non-Markovian switching process (X̃kτ ) by a Markov
chain (X̂k) is reasonable. Now, Theorem 1 showed that the propagation
of the distributions of these processes is described by the operators QT kQ
and (QTQ)k, respectively. We will analyze the error ‖QT kQ− (QTQ)k‖ in
Sec. 3.1, which gives the maximal possible error between the distributions
of (X̃kτ ) and (X̂k) for any initial distribution.

We will see now and in the next section how other methods can be
translated into the framework of projected transfer operators.

Averaging Methods

One example for methods that correspond to projections onto infinite di-
mensional subspaces D are averaging methods. Let us consider for a lag
time τ > 0 the time-discretized Markov process (Xkτ )k∈N with transition
kernel p(x, y, η, ξ) on a state space E = Ex×Ey ⊂ Rd1 ×Rd2 . Its associated
transfer operator can be written as

Tf(η, ξ) = 1
µ(η, ξ)

∫
E

p(x, y, η, ξ)f(x, y)µ(x, y)d(x, y). (2.14)

Now, take the orthogonal projectionQ with respect to L2(µ) onto the infinite
dimensional subspace

D = {f ∈ L2(µ) : f(x, y) does not depend on y}. (2.15)
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Then, the orthogonal projection Q can be expressed as

Qf(x, y) = 1
µ̄(x)

∫
Ey

f(x, ξ)µ(x, ξ)dξ, µ̄(x) =
∫
Ey

µ(x, ξ)dξ. (2.16)

Indeed, one can calculate that for any v ∈ D, i.e. v(x, y) = v(x, ξ) for any
y, ξ, we have

〈Qf, v〉 =
∫
Ex

∫
Ey

(Qf)(x, y)v(x, y)µ(x, y)dydx

=
∫
Ex

∫
Ey

1
µ̄(x)

∫
Ey

f(x, ξ)µ(x, ξ)dξv(x, y)µ(x, y)dydx

=
∫
Ex

∫
Ey

1
µ̄(x)

∫
Ey

f(x, ξ)v(x, ξ)µ(x, ξ)dξµ(x, y)dydx

=
∫
Ex

∫
Ey

f(x, ξ)v(x, ξ)µ(x, ξ)dξ 1
µ̄(x)

∫
Ey

µ(x, y)dydx

=
∫
Ex

∫
Ey

f(x, ξ)v(x, ξ)µ(x, ξ)dξdx = 〈f, v〉.

(2.17)

Because Qf ∈ D does not depend on y,

f̄(x) := Qf(x, y) (2.18)

is well defined. We can now investigate a Markov process (X̄k) on state
space Ex that comes from averaging over the transition kernel, namely we
set

p̄(x, η) = 1
µ̄(x)

∫
Ey

∫
Ey

p(x, y, η, ξ)µ(x, y)dydξ. (2.19)

Then, p̄ is a transition function on Ex since it obviously inherits non-
negativity and∫

Ex

p̄(x, η)dη = 1
µ̄(x)

∫
Ey

∫
E

p(x, y, η, ξ)d(η, ξ)µ(x, y)dy

= 1
µ̄(x)

∫
Ey

µ(x, y)dy = 1.
(2.20)

Moreover, its invariant measure is given by µ̄ since∫
Ex

µ̄(x)p̄(x, η)dx =
∫
Ex

∫
Ey

∫
Ey

p(x, y, η, ξ)µ(x, y)dydξdx

=
∫
Ey

µ(η, ξ)dξ = µ̄(η).
(2.21)

39
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For example, such averaged transfer operators are considered in the context
of so-called Hybrid Monte Carlo methods, see [74, 73]. Using (2.18) the
transfer operator for the averaged Markov process (X̄k) can be interpreted
as the projected transfer operator QTQ because

1
µ̄(η)

∫
Ex

p̄(x, η)f̄(x)µ̄(x)dx

= 1
µ̄(η)

∫
Ex

∫
Ey

∫
Ey

p(x, y, η, ξ)f̄(x)µ(x, y)dydξdx

= 1
µ̄(η)

∫
Ey

∫
E

p(x, y, η, ξ)(Qf)(x, y)µ(x, y)d(x, y)dξ

= 1
µ̄(η)

∫
Ey

(TQf)(η, ξ)µ(η, ξ)dξ = (QTQf)(η, ξ′)

(2.22)

for arbitrary ξ′ ∈ Ey.
This means that we will be able to apply the framework of projected transfer
operators to analyze the Markov process on state space Ex which comes from
averaging of the transition kernel of the original Markov process (Xt). One
immediate consequence is the reversibility of the averaged process (X̄k) for
a reversible process (Xt) because QTQ is obviously self-adjoint if T is.
Before we start to use the projected transfer operator theory for analysis,
we derive in the next section another finite dimensional operator that will
turn out to be equivalent to a powerful Markov State Modeling technique
which is based on a milestoning approach.

2.3 Core Set Approach and Milestoning

In this section we introduce another approach for the discretization of trans-
fer operators. That is, we define another finite dimensional subspace D and
its associated projected transfer operator QTQ. In Sec. 2.1 it has been
presented how Standard Markov State Models relate to the subspace of
stepfunctions which are constant on the MSM partitioning A1, ..., An. The
projected transfer operator could then be characterized by the transition
matrix of the jump process between these sets. Therefore, it is possible to
estimate a matrix representation of QTQ from simulations or experiments.
We have to keep in mind that this is an essential feature of the subspace D
and the projected transfer operator for practical applications. So we will fol-
low the idea of a set oriented discretization of state space and a construction
of a suitable subspace D, but now we choose sets C1, ..., Cn ⊂ E

Ci ∩ Cj = ∅, i 6= j,
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which do not have to be a full partition of state space anymore and which
we call core sets in the following. We also define the region that is not
assigned to any core set

C = E \
n⋃
k=1

Ck. (2.23)

The next step in the construction of Standard Markov State Models has
been the definition of the switching process (X̃t) in (2.2). Obviously, this
process is not well defined anymore if our sets do not form a full partitioning.
Hence, we slightly adjust the definition to the new setting and consider the
process

X̃t = i⇔ Xσ(t) ∈ Ci, with σ(t) = sup
s≤t

{
Xs ∈

n⋃
k=1

Ck

}
, (2.24)

which is called milestoning process, cf. [28]. Equation (2.24) means that
the process (X̃t) stays in state i as long as the last core set that was visited
was Ci. Its transition behaviour is illustrated in Fig. 2.4.

C1
C2

Figure 2.4: Illustration of milestoning process

Now we can start with the construction of a subspace D, of a projected
transfer operator, and of a matrix representation that we can estimate from
simulations. The key object for this construction is the committor. As-
sume that the Markov process is in state x at some point in time t, i.e.
Xt = x ∈ E. Now, we are interested in the probability that the next core
set that the process Xt will enter will be a particular set Ci. We denote
this probability with q+

i (x). Moreover, we could ask for the last core set the
process came from. We denote the probability that is was set Ci by q−i (x).
These two objects, q+

i and q−i , are called forward and backward com-
mittor, respectively. There are some important facts about the committors
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that can be found in [49], for example. First, for a reversible Markov process
we have q+

i = q−i . This seems to be clear since reversibility means that the
process running backward in time is not distinguishable from the process
running forward in time, and since the backward committor is nothing else
than the forward committor for this reversed process. We will assume from
now on that the Markov process (Xt) is reversible if we do not explicitly
state differently and therefore, we will write only qi := q+

i = q−i and simply
talk about the committor.
The next, very useful property of the committor is that it solves a linear
system with boundary conditions. Here we have to distinguish between
continuous and discrete time. For a time-continuous process (Xt)t∈R+ the
committor solves the equation

(Lqi)(x) = 0, ∀x ∈ C,
qi(x) = 1, ∀x ∈ Ci,
qi(x) = 0, ∀x ∈ Cj , j 6= i,

(2.25)

where L denotes the generator of the Markov process (Xt). For a discrete
(Xn)n∈N with transfer operator T , qi fulfills

((T − Id)qi)(x) = 0, ∀x ∈ C,
qi(x) = 1, ∀x ∈ Ci,
qi(x) = 0, ∀x ∈ Cj , j 6= i.

(2.26)

Sometimes one also calls T − Id the discrete generator of (Xn).
On the other hand, it is also interesting if the equations (2.25) and (2.26)
define the committor, i.e. if they are uniquely solvable.

Theorem 2 (Solvability of committor equations)
If the Markov process has a unique invariant measure which is not van-
ishing on all core sets, then the equations (2.25) and (2.26), respectively,
have a unique solution.

Proof. We want to show that

(Aqi)(x) = 0, ∀x ∈ C,
qi(x) = 1, ∀x ∈ Ci,
qi(x) = 0, ∀x ∈ Cj , j 6= i

(2.27)

has a unique solution if A = L or A = T − Id. First, (2.27) is solvable if
and only if

ΘAΘqi = −ΘAΘ⊥qi = −ΘA1Ci (2.28)
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is solvable, where Θ is the orthogonal projection defined by

(Θv)(x) =
{
v(x), x ∈ C
0, else.

(2.29)

Now, Fredholm Alternative states that (2.28) and therefore, (2.27) has a
unique solution or

ΘAΘṽ = 0 (2.30)

has a non-trivial solution, which would imply for v = Θṽ

ΘAv = 0 on C,
v = 0, on E \ C.

(2.31)

Now, for A = T − Id this means that Tv = v on C and v = 0 on E \ C.
This yields that also Tv = 0 = v on E \C because otherwise we would have
‖Tv‖ > ‖v‖. That is, Tv = v on the whole state space E, which tells us
that v would be an invariant measure of the process that is vanishing on all
core sets. This is a contradiction to the assumption.
For A = L (2.31) can be written as

lim
t→0

Θ(Id− Ttv)
t

= 0 on C,

v = 0, on E \ C,
(2.32)

where Tt = eLt. Now, Lv 6= 0 on E \ C and (2.32) would imply that there
exists ε > 0 with

lim
t→0

∥∥∥∥∥Θ⊥Ttv
t

∥∥∥∥∥ = lim
t→0

∥∥∥∥∥Θ⊥(Id− Ttv)
t

∥∥∥∥∥ ≥ 3ε > 0. (2.33)

Because
∥∥∥Θ(Id−Ttv)

t

∥∥∥ ≥ ∥∥∥Θv
t

∥∥∥− ∥∥∥ΘTtv
t

∥∥∥ there will be a time t > 0, such that∥∥∥∥Θv
t

∥∥∥∥− ∥∥∥∥ΘTtv
t

∥∥∥∥ < ε. (2.34)

and ∥∥∥∥∥Θ⊥Ttv
t

∥∥∥∥∥−
∥∥∥∥∥Θ⊥v

t

∥∥∥∥∥ =
∥∥∥∥∥Θ⊥Ttv

t

∥∥∥∥∥ > 2ε. (2.35)

The last two equations combine to

‖Ttv‖ − ‖v‖ > εt > 0, (2.36)

which cannot be true. That is, Lv = 0 on E \C as well, which again implies
that v would be an invariant measure of the Markov process vanishing on
all core sets. Because this is not allowed by assumption, (2.25) has to have
a unique solution. �
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It is important to note one thing. We said that the committors solve
(2.26) for a time-discrete Markov process and (2.25) for a time-continuous
(Xt). On the other hand, for any lag time τ > 0 we could also consider
the discretized process (Xkτ )k∈N. The associated committors would then
be given by equation (2.26) with T = Tτ instead of (2.25). The difference
in interpretation of these committors, which depend on the lag time τ , is
the following. A committor qi always provides the probabilities of hitting
a certain core set Ci next rather than the others, but the time-continuous
committors and committors for a certain lag time τ have a different resolu-
tion of time when it comes to recognizing these hits. The committors from
(2.25) can use the whole continuous trajectory (Xt)t∈R+ to decide whether a
core set was hit or not. On the contrary, the committors from (2.26) see only
points at discrete time steps of the trajectory, i.e. the process (Xkτ )k∈N, and
they can not tell if the trajectory connecting these points has hit a core set.
They can just decide about reaching core sets by recognizing points inside
of core sets at time steps kτ . This behaviour is shown in Figure 2.5.

Figure 2.5: Different time-resolution for decision about hitting core sets

This is important because in practical applications we often cannot get
a continuous realization of a trajectory of the process (Xt). Therefore, we
are only able to talk about hitting core sets at some time-resolution. At this
point we will not stress this fact. For a continuous Markov process and n
core sets at hand we will assume that the associated committors q1, ..., qn
solve the continuous equation (2.25) but keep in mind that in praxis there
can also be a time-resolution involved.

Now, these committors are obviously linear independent because of the
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boundary conditions and we have

n∑
i=1

qi = 1. (2.37)

Therefore, the n-dimensional space spanned by the committors

D = {q1, ..., qn} (2.38)

fulfills 1 ∈ D and is an allowed space for the construction of a projected
transfer operator QTQ.
We will now try to understand the nature of QTQ in the case that Q is
the orthogonal projection onto our freshly created committor space D from
(2.38). In [21, 20] it was possible to show that one can at least compute
the eigenvalues of the operator QTQ from a generalized eigenvalue problem,
which involves two matrices T̂ andM . It was also stated that these matrices
have a stochastic interpretation, which allows again statistical estimation.
Nevertheless, for a time-continuous process the interpretation in [21, 20]
is only valid if we look at the discretized process. This means that the lag
time of the transfer operator and the time-resolution for the committors (see
discussion above) have to be identical, that is, we can only consider QTτQ,
where also the space D is spanned by the committors coming from equation
(2.26) with T = Tτ . For continuous committors, i.e. an infinitesimally small
time-resolution, this is not satisfying because

QTτQ→ Id on D, τ → 0. (2.39)

Hence, we will now get rid of this restriction.

Theorem 3 (Matrix representation of committor operator)
Let T be a transfer operator of a Markov process, Q the orthogonal projec-
tion onto the space spanned by committors D = {q1, ..., qn} with respect
to some core sets C1, ..., Cn. Then,

T̂M−1 T̂ij = 〈Tqi, qj〉
µ̂(i) Mij = 〈qi, qj〉

µ̂(i) (2.40)

with µ̂(i) =
∑
x∈E

qi(x)µ(x) is a matrix representation of QTQ.

Proof. Since the vectors qi are linear independent the symmetric matrix

Sij = 〈qi, qj〉 (2.41)
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is invertible and we can write the orthogonal projection Q onto subspace D
as

Qv =
n∑

i,j=1
S−1
ij 〈v, qi〉qj . (2.42)

For the matrix M from (2.40) we have

Mij = 1
µ̂(i)Sij ⇒M−1

ij = µ̂(j)S−1
ij . (2.43)

Now, take the basis {ψ1, ..., ψn} of D, ψi = 1
µ̂(i)qi. Then,

Qv =
n∑

i,j=1
M−1
ij 〈v, qi〉ψj . (2.44)

This implies

QTQψk = QTψk =
n∑

i,j=1
M−1
ij 〈Tψk, qi〉ψj

=
n∑

i,j=1
M−1
ij

〈Tqk, qi〉
µ̂(k) ψj =

n∑
i,j=1

M−1
ij T̂kiψj

=
n∑
j=1

(T̂M−1)kjψj .

(2.45)

That is, T̂M−1 is a matrix representation of QTQ with respect to the basis
{ψ1, ..., ψn}. �

Note that we did not use the fact that D is spanned by committors, so
Theorem 3 is also valid for any other subspace D which is spanned by a basis
{q1, ..., qn}. Now, the interesting question is if this matrix representation has
for the committor space a stochastic interpretation that provides insight into
the nature of QTQ.

Theorem 4
Let T := Tτ be a transfer operator of a continuous Markov process for
some lag time τ > 0. Let Q be the orthogonal projection onto the
space spanned by the continuous committors D = span{q1, ..., qn} solving
(2.25) with respect to some core sets C1, ..., Cn. Let T̂ and M be given
as in (2.40). Define for every t the stopping time

σt(A) = inf
s≥t
{Xs ∈ A}. (2.46)
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Then, with Bj =
⋃
k 6=j

Ck we have

Mij = P[σt(Cj) < σt(Bj)|X̂t = i], (2.47)

and
T̂ij = P[σt+τ (Cj) < σt+τ (Bj)|X̂t = i]. (2.48)

Proof. Bayes Theorem states that for

q̂i(x) = qi(x)µ(x)
µ̂(i) (2.49)

we have
P[Xt ∈ A|X̂t = i] =

∫
A

q̂i(x)dx, (2.50)

so q̂i is the probability density of Xt under the condition that X̂t = i. Since
(Xt) is Markovian and {X̂t = i} ∈ Ft, the law of total probability yields

P[σt(Cj) < σt(Bj)|X̂t = i] =
∫
E

P[σt(Cj) < σt(Bj)|Xt = x]q̂i(x)dx

∫
E

qj(x)q̂i(x)dx =
∫
E

qj(x)qi(x)µ(x)
µ̂(i) dx = Mij .

(2.51)

For the interpretation of T̂ we note first that
P[σt+τ (Cj) < σt+τ (Bj)|Xt = x]

=
∫
E

P[σt+τ (Cj) < σt+τ (Bj)|Xt+τ = y,Xt = x]P[Xt+τ ∈ dy|Xt = x]

=
∫
E

qj(y)P[Xt+τ ∈ dy|Xt = x].

(2.52)
This implies

P[σt+τ (Cj) < σt+τ (Bj)|X̂t = i]

=
∫
E

P[σt+τ (Cj) < σt+τ (Bj)|Xt = x]q̂i(x)dx

=
∫
E

∫
E

qj(y)P[Xt+τ ∈ dy|Xt = x]q̂i(x)dx

=
∫
E

qj(y)(Tτqi)(y)
µ̂(i) µ(y)dy = T̂ij .

(2.53)

�
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Remark 4 One could also use committors with respect to some time res-
olution h instead of continuous committors. Then the interpretation of the
stopping times (2.46) will change such that it has to be decided from the dis-
crete trajectory with time steps h if a set A has been hit or not. Of course,
it is possible to choose h different from τ , i.e. smaller.

This means that if we have the information that the milestoning process is
in state i at some time t, i.e. we know that the last core set that was visited
was Ci, Mij gives the conditional probability that Cj will be the next core
set that will be hit.
On the other hand, Tij also gives the probability that Cj will be the next
core set that will be reached, but with the additional rule that we do not
count hits in the time interval [t, t+ τ ]. This also gives an interpretation of
the mapping QTQ : D → D for a certain class of probability densities in D.
The space of probability densities in D is given by

D1 = {v ∈ D|v(x) ≥ 0 ∀x ∈ E,
∫
E

vdµ = 1}. (2.54)

Introducing probability vectors S = {r ∈ Rn|ri ≥ 0 ∀i = 1, ..., n,
n∑
i=1

ri = 1}

and the basis {ψi = qi
µ̂(i) , i = 1, ..., n} of D we can also write

D1 = {v ∈ D|v =
n∑
i=1

riψi, r ∈ S}. (2.55)

From Theorem 3 it follows immediately

Corollary 1
If v ∈ D1 has the property

v =
n∑
i=1

aiψi, a ∈ S ∃b ∈ S : MT b = T̂ Ta, (2.56)

then QTQv ∈ D1, i.e. it is a probability density again. Moreover, it has
the representation

QTQv =
n∑
i=1

biψi (2.57)

with b from (2.56).
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Proof.

QTQv =
n∑
i=1

ai(QTQψi) =
n∑

i,j=1
ai(T̂M−1)ijψj

=
n∑
j=1

ψj(M−T T̂ Ta)j =
n∑
j=1

ψjbj .

�

Corollary 1 answers the question about the interpretation of the pro-
jected transfer operator QTQ. This question is very natural because when
we moved from the probability space Ω, the path space EI , and its com-
plicated probability measure to linear transfer operators, at first sight we
entered a functional analytic framework that does not necessarily need to
be connected to stochastics anymore. We consider the transfer operator T ,
which is an operator on L2(µ), for example. That is, it can be applied to
any function v ∈ L2(µ), and the outcome Tv will be some function in L2(µ)
again. Neither the function v nor Tv need to have a stochastic meaning, but
for a certain class of densities in L2(µ), namely probability densities, they do.
Now, the same is true for our projected transfer operator QTQ. Corollary
1 means that we take two probability vectors a and b such that the proba-
bility to hit any core set Cj next under the initial condition P[X̂0 = i] = bi
is the same as the probability to hit core set Cj next under the condition
P[X̂0 = i] = ai with the additional rule that hits in the time interval [0, τ ] do
not count. Then, a and b are representations for v and QTQ, respectively.

Remark 5 From the definition of T̂ and M it follows immediately that both
matrices are stochastic. This implies that the matrix T̂M−1, which is the
matrix representation of QTQ, is at least pseudostochastic, i.e. its rows sum
to one. The non-negativity of its entries depends on the choice of core sets
and is not guaranteed, in general, but we will see in examples in the last
Section 3.3 that at least for some choices of core sets, T̂M−1 will form a
fully stochastic matrix.

Estimation from trajectories. Assuming that the Markov process is
ergodic, the stochastic interpretation allows to estimate the matrices T̂ and
M from trajectories. Assume that we have a realization of the process
(Xt) at some time resolution h that provides N datapoints xk, i.e. xk is
a realization of the random variable Xkh. According to Theorem 4 we can
approximate

M∗ij = Rij
ri
, (2.58)

where ri denotes the number of time steps where the last core set that was
hit was Ci, and Rij denotes the number of time steps where the process

49
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came last from Ci and the next core set that was hit was Cj . Moreover,

T̂ ∗ij =
Rτij
ri
, (2.59)

where Rτij denotes the number of time steps where the process came from
Ci, and the next core set that was visited was Cj with the additional rule
that hits in the time interval [0, τ ] did not count. Algorithmically, one can
perform both calculations in the same complexity class, where the effort
depends linearly on the length of the trajectory.
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3
Analysis of Projected Transfer

Operators

In the previous chapter we have seen in 2.1 and 2.2 how Standard Markov
State Models can be connected to projected transfer operators by taking a
projection onto a finite-dimensional subspace that is constructed from parti-
tioning sets of state space. Moreover, the averaging of the transition kernel
along some coordinates could have also been interpreted in terms of pro-
jected transfer operators with respect to an infinite-dimensional subspace.
In Section 2.3 we finally followed the idea of Standard Markov State Mod-
eling and we introduced another finite-dimensional subspace, namely the
space generated by committors. This subspace was also uniquely defined by
a finite number of sets in state space that we called core sets.
We will now exploit the abstract framework of projected transfer operators
to get insight into the methods by looking at them through linear operator
glasses.

3.1 Density Propagation

In Section 2.1 we encountered the problem of non-Markovianity of the
switching process (X̃k) from (2.2). Nevertheless, in Markov State Mod-
eling one still considers the Markov chain (X̂k) generated by the transition
matrix P̂ from (2.7)

P̂ (i, j) = P[X̃1 = j|X̃0 = i] = P[Xτ ∈ Aj |X0 ∈ Ai]

for some lag time τ > 0 and partitioning sets A1, ..., An.
In this section we want to analyze the question when the approximation of
the non-Markovian process (X̃k) by the Markov chain (X̂k) is reasonable.
Theorem 1 translated this question into the projected transfer operator lan-
guage. We could deduce that if we distribute X̃0 and X̂0 equally with an
arbitrary initial distribution, the maximal possible error between the distri-
butions of X̃k and X̂k after k time steps is given by

E(k) = ‖QT kQ− (QTQ)k‖. (3.1)
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So we will investigate under which assumption we can guarantee that this
error is small.
For this purpose we will not make a reversibility assumption on the Markov
process (Xt). Instead let us assume that T has m real eigenvalues
λ1, ..., λm ∈ R

λ0 = 1 > λ1 ≥ λ2 ≥ ... ≥ λm, (3.2)

with an orthonormal system of eigenvectors (uj)j=1,...,m, i.e.

Tuj = λjuj , 〈ui, uj〉 =
{

1, i = j

0, i 6= j
(3.3)

and u0 = 1. Furthermore we assume that the remainder of the spectrum
of T lies within a ball Br(0) ⊂ C with radius r < λm. In order to keep
track of the dependence of the eigenvalues on the lag time τ we introduce
the associated rates

λj = exp(−Λjτ), r = exp(−Rτ), r/λ1 = exp(−τ(R−Λ1)) = exp(−τ∆).
(3.4)

If Tτ = eLτ , for example, we have

Tu = eΛτu⇔ Lu = Λu. (3.5)

The spectral gap ∆ > 0 will play an essential role later on. We should em-
phasize that the notion "spectral gap" is usually used differently. It usually
designates a situation in which an entire interval of the real axis does not
contain any eigenvalues, whereas the intervals above and below show a sig-
nificantly denser population of eigenvalues. Despite the obvious difference
of our case, we will adopt the name spectral gap for ∆ since it plays a similar
role in finding upper bounds as usual spectral gaps.

Based on the above assumptions we can write

Tv = TΠv + TΠ⊥v =
m∑
j=0

λj〈v, uj〉uj + TΠ⊥v, (3.6)

where Π is the orthogonal projection onto U = span{u0, ..., um}

Πv =
m∑
j=0
〈v, uj〉uj (3.7)

and Π⊥ = Id−Π is the projection error with

‖TΠ⊥‖ ≤ r < λm, spec(T ) \ {1, λ1, ..., λm} ⊂ Br(0) ⊂ C. (3.8)

Furthermore, we assume that the subspace U and the remaining subspace
don’t mix under the action of T :

ΠTΠ⊥ = Π⊥TΠ = 0 (3.9)
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and therefore the dynamics can be studied by considering the dynamics of
both subspaces separately

T k = (TΠ)k + (TΠ⊥)k ∀k ≥ 0, (3.10)

where the operator TΠ is self-adjoint because of (3.3). Note that Π⊥TΠ = 0
in (3.9) is always true, but ΠTΠ⊥ = 0 is an assumption. For sure reversible
processes have this property (see Remark 6 below). Nevertheless, it is not
completely clear which other classes of processes might match the condition
(3.9).
In addition we also define the orthogonal projection Π0 as

Π0v := 〈v, u0〉u0 = 〈v,1〉1. (3.11)

According to the above we have the asymptotic convergence rate

‖T k −Π0‖ = λk1 for all k ∈ N. (3.12)

Remark 6 The assumptions (3.2), (3.3), (3.8), and (3.9) are definitely
satisfied if T is sufficiently ergodic and is self-adjoint (T is self-adjoint if
the underlying original Markov process (Xt) is reversible). But it may also
be sufficient if, e.g., (Xt) is sufficiently ergodic and has a dominant self-
adjoint part as it is the case for second-order Langevin dynamics with not
too large friction [33], or for thermostatted Hamiltonian molecular dynamics
or stochastically perturbed Hamiltonian systems [74, 17]. Reversible or not,
the property of being "sufficiently ergodic" seems to be central in any case.
We will now give sufficient conditions for a reversible process. These results
and their generalizations to non-reversible cases can be found in [36, 74].

• A reversible, and µ-irreducible process (Xt) is sufficiently ergodic if
one of the following scenarios holds:

(i) (Xt) is V-ergodic or geometrically ergodic, see [74].
(ii) The stochastic transition function p(t, x, ·) = pa(t, x, ·)+ps(t, x, ·)

associated with (Xt), where pa denotes the absolutely continuous
part and ps the singular part, satisfies the following two con-
ditions: (a) pa ∈ Lr(µ × µ), for some 2 < r < ∞, and (b)
Sv(y) =

∫
v(x)pa(t, x, y)µ(dy) satisfies ‖S‖2,µ > 0.

The above conditions mainly guarantee that the essential spectrum of
T is contained in some circle with radius strictly smaller than 1.

• There are many processes for which these conditions can be shown to
be valid; an example is a diffusion process in a smooth energy landscape
V with V →∞ for ‖x‖ → ∞ fast enough; in this case the spectrum is
known to be discrete and real-valued. Comparable results (discrete and
real-valued dominant spectrum) can be found in [33] for second-order
Langevin dynamics with not too large friction.
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The following Lemma shows the inheritance of first ergodicity properties.
Lemma 1
For every k ∈ N we have

‖(QTQ)k −Π0‖ ≤ ‖(TQ)k −Π0‖ ≤ λk1. (3.13)

Proof. Because of Π0Q = QΠ0 = Π0 and ‖T −Π0‖ = λ1 we have for k = 1:

‖TQ−Π0‖ = ‖(T −Π0)Q‖ ≤ λ1. (3.14)

Since furthermore TΠ0 = Π0, and TΠ is self-adjoint we find for arbitrary
v ∈ L2(µ):

Π0Tv = 〈Tv,1〉1 = 〈TΠv,1〉 1 + 〈TΠ⊥v,Π1〉1
= 〈v, TΠ1〉1 + 〈ΠTΠ⊥v,1〉1 = 〈v,1〉1 = Π0v,

(3.15)

where the identity before the last follows from (3.9). Therefore

Π0T = TΠ0 = Π0. (3.16)

From this and QΠ0 = Π0Q = Π0 it follows that (TQ− Π0)k = (TQ)k − Π0
and thus with (3.14)

‖(QTQ)k −Π0‖ = ‖Q(TQ)k −QΠ0‖ ≤ ‖(TQ)k −Π0‖
= ‖(TQ−Π0)k‖ ≤ ‖TQ−Π0‖k ≤ λk1,

(3.17)

which was the assertion. �

Lemma 1 immediately implies that the error (3.1) decays exponentially,

E(k) = ‖QT kQ− (QTQ)k‖ ≤ ‖QT kQ−Π0‖+ ‖(QTQ)k −Π0‖
≤ ‖Q(T k −Π0)Q‖+ ‖(QTQ)k −Π0‖ ≤ 2λk1,

(3.18)

independent of the choice of the subspace D, as long as 1 ∈ D. Since we
want to understand for a Markov State Model how the choice of the sets and
other parameters like the lag time τ influence the approximation quality we
have to analyze the pre-factor in much more detail.

Theorem 5
Let T = Tτ be a transfer operator for lag time τ > 0 with properties as
described above, in particular (3.2), (3.3), (3.8), and (3.9).
Let D ⊂ L2(µ) be a subspace with 1 ∈ D and define

‖Q⊥uj‖ =: δj ≤ 1 ∀j, δ := max
j=1,...,m

δj (3.19)
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where Q⊥ = Id − Q denotes the projection onto the orthogonal comple-
ment of D in L2(µ).
Furthermore set

η(τ) := r

λ1
= exp(−τ∆) < 1, with ∆ > 0. (3.20)

Then the error (3.1) is bounded from above by

E(k) ≤ min
[
2 ; C(δ, η(τ), k)

]
· λk1, (3.21)

with a leading constant of following form

C(δ, η, k) = (mδ + η)
[
Cspace(δ, k) + Cspec(η, k)

]
(3.22)

Cspace(δ, k) = m1/2(k − 1) δ (3.23)

Cspec(η, k) = η

1− η (1− ηk−1). (3.24)

In order to proof Theorem 5, we first observe that the error in (3.1) at
time k consists of the k− 1 projection errors that are propagated until time
k is reached, as direct calculation shows.

QT kQ− (QTQ)k =
k−1∑
i=1

QT iQ⊥(TQ)k−i. (3.25)

By this expression we can estimate the approximation error E(k) by ob-
serving that it consists of two different parts. Because of Q⊥Q⊥ = Q⊥ we
have

‖QT kQ− (QTQ)k‖ ≤
k−1∑
i=1
‖QT iQ⊥‖‖Q⊥(TQ)k−i‖. (3.26)

The first term ‖QT iQ⊥‖ describes the propagation of the projection error in
i steps and the second term ‖Q⊥(TQ)k−i‖ measures how large a projection
error can be in the (k − i)-th iteration of applying operator QTQ. So the
i-th summand explains the effect of propagation of error that is made in the
(k − i)-th iteration.

We will estimate the overall error by looking at both parts of error sep-
arately. Let us prepare this with the following lemma.
Lemma 2
For the first part of the error we have the upper bound

‖QT kQ⊥‖ ≤
√
mλk1δ + rk. (3.27)
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Proof. Let v be arbitrary with ‖v‖ = 1. Because u0 = 1 and Q⊥u0 = 0,

(TΠ)kQ⊥v = T kΠQ⊥v =
m∑
j=1

λkj 〈Q⊥uj , v〉uj , (3.28)

which leads to

‖(TΠ)kQ⊥v‖2 =
m∑
j=1

λ2k
j 〈Q⊥uj , v〉2

(3.19)
≤ mλ2k

1 δ
2. (3.29)

and therefore
‖Q(TΠ)kQ⊥‖ ≤

√
mλk1δ. (3.30)

Now we can estimate

‖QT kQ⊥‖
(3.10)
≤ ‖Q(TΠ)kQ⊥‖+ ‖Q(TΠ⊥)kQ⊥‖

(3.30)
≤
√
mλk1δ + ‖TΠ⊥‖k

(3.8)
≤
√
mλk1δ + rk.

(3.31)
�

Now we can proof Theorem 5.

Proof. First recall that the first argument 2 in the minimum taken in (3.21)
comes from (3.18). Moreover, recall (3.26), that is,

‖QT kQ− (QTQ)k‖ ≤
k−1∑
i=1
‖QT iQ⊥‖‖Q⊥(TQ)k−i‖. (3.32)

Because Q⊥Π0 = 0 we can write

‖Q⊥(TQ)k−i‖ = ‖Q⊥TQ(TQ)k−i−1‖ = ‖Q⊥TQ((TQ)k−i−1 −Π0)‖. (3.33)

Moreover

‖Q⊥TQ‖ ≤ ‖Q⊥TΠQ‖+ ‖Q⊥TΠ⊥Q‖ ≤ ‖Q⊥TΠQ‖+ r (3.34)

and for v with ‖v‖ = 1

‖Q⊥TΠQv‖2 =
m∑

i,j=1
〈Qv, ui〉〈Qv, uj〉λiλj〈Q⊥ui, Q⊥uj〉 ≤ m2λ2

1δ
2‖v‖2.

(3.35)
We use Lemma 1 to get

‖Q⊥TQ((TQ)k−i−1 −Π0)‖ ≤ (mλ1δ + r)λk−i−1
1 . (3.36)
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Inserting (3.36) and Lemma 2 into (3.26) yields

E(k) = ‖QT kQ−Q(TQ)k‖ ≤ (mλ1δ + r)
k−1∑
i=1

(
√
mλi1δ + ri)λk−i−1

1 . (3.37)

Now we have

k−1∑
i=1

(
√
mλi1δ + ri)λk−i−1

1 =
√
mδ(k − 1)λk−1

1 + λk−1
1

k−1∑
i=1

ηi (3.38)

and
k−1∑
i=1

ηi = 1− ηk

1− η − 1 = η − ηk

1− η = η

1− η (1− ηk−1). (3.39)

�

The theorem shows that the overall error can be made arbitrarily small
by making the factor [Cspace(δ, k)+Cspec(η, k)] small. In order to understand
the role of these two terms, consider for now k ≥ 2 to be fixed. It can then
be observed that:

1. The pre-factor Cspace depends on the choice of the subspace D only.
For a Standard Markov State Model this means that it depends on the
choice of sets A1, . . . , An where the projection error ‖Q⊥ui‖ measures
how well the eigenvector ui can be approximated by a stepfunction
on the partitioning sets. Therefore, it can be made smaller than any
tolerance by choosing the sets appropriately and the number of sets,
n large enough.

2. The pre-factor Cspec is independent of the set definition and depends
on the spectral gap ∆ and the lag time τ only. While the spectral
gap is given by the problem, the lag time may be chosen and thus
Cspec can also be made smaller than any tolerance by choosing τ large
enough. However, the factor Cspec will grow unboundedly for τ → 0
and k →∞, suggesting that using a large enough lag time is essential
to obtain an MSM with good approximation quality, even if the sets
are well chosen.

Note that there is a trade-off between the projection error δ and the
spectral part of the error that can be modulated by varying the number of
resolved eigenfunctions, m. Theorem 5 is valid for every number m, as long
as the assumptions on T are fulfilled, i.e. the first m eigenvalues have to be
real and the corresponding eigenvectors have to be orthogonal. That is, for
a reversible Markov process, for example, Theorem 5 provides a bound for
the error E(k) for every m ∈ N. When increasing m, more eigenvectors are
taken into account and the minimal projection error that can be obtained
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with a fixed number of stepfunctions, n, will increase. On the other hand,
the spectral part of the error will decrease, as growingm increase the spectral
gap ∆. This means that increasing m and thus ∆ will allow to decrease the
lag time τ without changing the spectral part of the error. Moreover, for
a reversible Markov process for any fixed τ > 0 we can make the bound
in Theorem 5 as small as possible by only refining our discretization. This
is clear since we have just discussed that for a reversible process we can
always choose a number m∗ that is large enough to make the spectral part
of the error smaller than any given threshold. Then, we have to choose our
partitioning sets A1, ..., An such that the projection error of the first m∗
eigenvectors is small enough. This also justifies algorithmic strategies that
finely partition state space by using clustering algorithms that have been
employed by several researchers in the field [42, 64, 57].

Metastability. [74] gives the following theorem in which smallness of the
projection error δ is related to the metastability of a subdivision A1, . . . , An
of state space:

Theorem 6
Let T be a self-adjoint transfer operator with lag time τ and proper-
ties as described above, in particular (3.2), (3.3), (3.8), and (3.9). The
metastability of an arbitrary decomposition A1, . . . , An of the state space
is bounded from below and above by

1 + (1− δ2
1)λ1 + . . .+ (1− δ2

n−1)λn−1 + c ≤
n∑
j=1

P[Xτ ∈ Ai|X0 ∈ Ai]

≤ 1 + λ1 + . . .+ λn−1
(3.40)

where, as above, δj = ‖Q⊥uj‖, and c = −r
(
δ2

1 + . . .+ δ2
n−1

)
.

This result tells us that the minimization of δ with n sets (for n eigenval-
ues) corresponds to identifying the subdivision with maximum joint metasta-
bility.

Example: Markov State Model for double-well potential

The results and concepts from above will first be illustrated on a one-
dimensional diffusion in a double-well potential. We consider the process

dXt = −∇V (Xt)dt+ σdBt (3.41)

with some σ > 0. The potential V and its unique invariant measure are
shown in Fig.3.1.
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Figure 3.1: (a) The potential V and (b) the associated invariant measure.

This process satisfies all necessary assumptions and by resolving only
the slowest process (m = 1), the following spectral values are obtained:

Λ1 = 0.201, R = 16.363, ∆ = 16.162.

The eigenvector u1 is given in the middle panel of Figure 3.2. It is seen that
it is almost constant on the two wells of the potentials and changes sign close
to where the local maximum is located. Now, we will build several different
Standard Markov State Models and discuss the approximation quality of
the switching process (X̃k) by the Markov chain (X̂k) with respect to the
results from above.

Projection error δ. Let us first choose the lag time τ = 0.1. Then
λ1 = 0.9801 and r = 0.1947. Fig. 3.2 shows the values of the projection
error δ for n = 2 and sets of the form A1 = (−∞; x] and A2 = (x; ∞)
depending on the position of the dividing surface, x.

One can see that it is optimal for the boundary between the two sets to
lie close to the local maximum of the potential, where the second eigenvector
is strongly varying. Next we want to decrease the projection error δ even
further and hence optimize the approximation quality of the Markov State
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Figure 3.2: Upper panel: Potential V . Middle panel: Eigenvector u1. Lower
Panel: Projection error δ for different sets A1 = (−∞; x] and A2 = (x; ∞)
plotted against x.

Model. We will compare two approaches. On the one hand, we choose
A1, ..., An simply as a uniform discretization of the interval [−1.5, 1.5] and
include the rest of state space, i.e. the intervals (−∞, 1.5) and (1.5,∞)
to the outer sets. On the other hand, we will consider a simple adaptive
refinement strategy. Here, for the case n = 2, the dividing surface is placed
so as to minimize the δ error (see Fig. 3.2). For n = 3, another dividing
surface is introduced at a point that minimized the resulting δ-error, and so
on. Fig. 3.3 shows the projection error δ for increasing number of sets.
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Figure 3.3: Projection error δ against number of sets n for uniform and
adaptive discretization.
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For the uniform discretization the projection error δ does not monotoni-
cally decrease with increasing n. This means that the approximation of the
switching process (X̃k) by a Markov chain can even get worse while uni-
formly refining the grid. This is why using a uniform discretization should
be avoided. The adaptive refinement strategy, although it does not yield
an optimal discretization for n > 2, guarantees that the error decreases
monotonically with increasing n. Fig.3.4 shows the bestapproximating step-
functions for both methods and the first non-trivial eigenvector u1 for n = 5.
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Figure 3.4: Galerkin approximationQu1 of second eigenvector. Upper panel:
uniform grid of n = 5 sets. Lower panel: adaptive grid with n = 5 sets.

The adaptive refinement is concentrated on the transition region between
the minima of the potential, since most of the projection error is made in
this region resulting from the strong variation of the eigenvector.

Effect of the lag time. Next let us study the effect of different lag times
τ . Fig. 3.5 shows the bound on the MSM approximation error E(t) from
Theorem 5 compared to the exact approximation error E(t) computed via
extensive direct numerical simulation for n = 3 adaptive sets. Here E(t) is
defined as E(k), where kτ = t. Upon increasing the lag time from τ = 0.1
to τ = 0.5 the bound from Theorem 5 becomes much sharper, see Fig. 3.6.
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Figure 3.5: Bound and exact error E(t) for τ = 0.1 on adaptive grid with
n = 3 adaptive sets.
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Figure 3.6: Upper panel: bound B(t) from Theorem and exact error E(t)
for τ = 0.5 on adaptive grid with n = 3. Lower panel: the quotient E(t)

B(t) .

The lower panel of Fig. 3.6 additionally shows that the exponential decay
of both, the real error E(t) and the upper bound B(t), does not hide some
strong discrepancy between E(t) and B(t) for growing t.
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Furthermore, Fig. 3.7 exhibits that the approximation quality of the
MSM becomes significantly better when the lag time is increased.
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Figure 3.7: Exact error E for different lag times (τ = 0.1 and 0.5) on
adaptive grid with n = 3.

Finally, Fig. 3.8 compares exact errors and bounds for n = 3 sets with
uniform and adaptive grid with lag time τ = 0.5 exhibiting a dramatic
advantage of the adaptive over the uniform discretization for longer lag
times.
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Figure 3.8: Exact error and bound for uniform and adaptive grid, n = 3, τ =
0.5.

Double well potential with diffusive transition region

In the last example we have learned that in order to decrease the projection
error δ we had to adaptively find a finer discretization of the transition region
between the two wells of the potential. Now we will consider another one-
dimensional diffusion (again equation 3.41) in a different potential with two
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wells that are connected by an extended transition region with substructure.
The new potential V and its unique invariant measure are shown in Fig.3.9.
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Figure 3.9: The potential V with extended transition region and the asso-
ciated invariant measure for σ = 0.8.

We observe that the transition region between the two main wells now
contains four smaller wells that will have their own, less pronounced metasta-
bility each. When considering the semigroup of transfer operators associated
with this dynamics we find the dominant eigenvectors as shown in Fig. 3.10.

The eigenvectors all are almost constant on the two main wells but are
non-constant in the transition region. The dominant eigenvalues take the
following values (in the form of lag time-independent rates as introduced
above):

Λ0 Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 Λ7
0 −0.0115 −0.0784 −0.2347 −0.4640 −0.7017 −2.9652 −3.2861

The main metastability has a corresponding timescale |1/Λ1| ≈ 87 related to
the transitions from one of the main wells to the other. Four other, minor
metastable timescales related to the interwell switches between the main
and the four additional small wells exist in addition.
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Figure 3.10: Invariant measure and eigenvectors uj , j = 1, . . . , 4 for Brown-
ian motion in the potential V with extended transition region from Figure
3.9 for σ = 0.8.

Adaptive subdivisions and projection error. Let us first fix
m = 2 because for this example it provides the smallest bound (for de-
tailed discussion see [68]), and lag time τ = 0.5 and study how the decay
of the projection error depends on the number n of sets in the respective
optimal adaptive subdivision. To this end we first observe that adaptive
subdivisions will have to decompose the transition regions finer and finer,
see Figure 3.11 for an example for n = 20.

The decay of the projection error δ with n is shown in Figure 3.12.
Figure 3.12 also includes the comparison of the decay of δ with n and the
decay of the total propagation error of the underlying MSMs. We observe
that the two curves decay in a similar fashion as suggested by our error
bound E(k) on the propagation error.

So, as in the previous example the discretization has to be refined because
the dominant eigenvectors are not constant in the transition region. In this
example we had to increase the number of sets dramatically to achieve a
small projection error δ. Especially, if we are dealing with higher dimensional
state spaces this property will be critical because the number of sets we have
to introduce will scale exponentially with dimension. Therefore, we will work
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on this issue in the next sections.
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Figure 3.11: Potential and eigenvectors uj , j = 1, 2 and their stepfunction
approximation Quj for n = 20 adaptive sets. The resulting projection error
is δ = 0.052.
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subdivision for m = 2.
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3.2 Timescales

The next question is how well the eigenvalues of the projected transfer op-
erator QTQ approximate the original eigenvalues of T . In this section we
will only consider reversible Markov processes again. Then, because of self-
adjointness of the transfer operator we can use the results from [40, 41] to
show

Theorem 7
Let 1 = λ0 > λ1 > ... > λm−1 be the m dominant eigenvalues of T , i.e.
for every other eigenvalue λ it holds λ < λm−1. Let u0, u1, ..., um−1 be
the corresponding normalized eigenvectors, D ⊂ L2(µ) a subspace with

1 ∈ D dim(D) =: n ≥ m (3.42)

and Q the orthogonal projection onto D.
Moreover, let 1 = λ̂0 > λ̂1 > ... > λ̂m−1 be the dominating eigenvalues
of the projected operator QTQ. Then

E(δ) = max
i=1,...,m−1

|λi − λ̂i| ≤ λ1(m− 1)δ2, (3.43)

where
δ = max

i=1,...,m−1
‖Q⊥ui‖

is the maximal projection error of the eigenvectors to the space D.

Proof. The eigenvector of T w.r.t. the trivial eigenvalue λ0 = 1 is known:
u0 = 1. Therefore

u0 ∈ D ⇒ Qu0 = u0. (3.44)
This implies that u0 is also eigenvector of QTQ w.r.t. its largest eigenvalue
λ̂0 = 1.
Now define

Π0v = 〈v, u0〉u0, (3.45)
set again Π⊥0 = Id−Π0, and consider the operator TΠ⊥0 = T −Π0. Since T
is self-adjoint, its eigenvectors u0, u1, ... are orthogonal, which implies that

TΠ⊥0 uj = Tuj −Π0uj = Tuj = λjuj ∀j > 0

and TΠ⊥0 u0 = 0, that is, the operator TΠ⊥0 has the same eigenvalues with the
same corresponding eigenvectors as T , just the eigenvalue λ0 = 1 changed
to a zero eigenvalue.
Moreover,

Π0TΠ⊥0 = 0, and therefore TΠ⊥0 = Π⊥0 TΠ⊥0 ,
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which implies self-adjointness of the operator TΠ⊥0 .
Now set U = span{u0, ..., um−1}, and let Π be the orthogonal projection onto
U . Then, the operator ΠTΠ⊥0 Π has exactly the eigenvalues λ1, ..., λm−1 and
an additional eigenvalue zero, that corresponds to the eigenvector u0.
From (3.44) it follows that QΠ0Q = Π0 and hence

QTΠ⊥0 Q = QTQ−Π0.

The same argument as above shows that the operator QTΠ⊥0 Q has the
same spectrum as QTQ, just the corresponding eigenvalue of u0 changed
from λ̂0 = 1 to zero.
Using the results from [40], we find for the error (3.43)

E(δ) = max
i=1,...,m−1

|λi − λ̂i| ≤ (λ1 − λmin(U+D)) max
i

sin2(θi(U,D)), (3.46)

with Θ = Θ(U,D) = {θ0, ..., θm−1}, a vector of principal angles between the
subspaces U and D. λmin(U+D) is the smallest eigenvalue of the operator
ZTZ, where Z is an orthogonal projection on the space U +D. In our case
this means λmin(U+D) = 0. Let σi(A) and Λi(B) denote the i-th singular
value of operator A and i-th eigenvalue of operator B, respectively. The
principal angles are defined as cos(θi) = σi(QΠ). Moreover, the definition
of singular values yields

σ2
i (QΠ) = Λi((QΠ)∗QΠ) = Λi(ΠQΠ), (3.47)

where (QΠ)∗ denotes the Hermitian transpose of (QΠ). We get

sin2(θi) = 1−cos2(θi) = 1−Λi(ΠQΠ) = Λi(Π−ΠQΠ) = Λi(ΠQ⊥Π). (3.48)

As in (3.47),
Λi(ΠQ⊥Π) = σ2

i (Q⊥Π) ≤ ‖Q⊥Π‖2. (3.49)
Now let v, ‖v‖ = 1 be arbitrary. If we define v̂ ∈ Rm−1 as

v̂j = 〈v, uj〉, j = 1, ...,m− 1,

it is well known for the usual p-norms on Rm−1

m−1∑
j=1
|〈v, uj〉| = ‖v̂‖1 ≤

√
m− 1‖v̂‖2 =

√
m− 1

m−1∑
j=1
〈v, uj〉2

1/2

≤
√
m− 1.

(3.50)
Since Q⊥u0 = 0,

‖Q⊥Πv‖ =

∥∥∥∥∥∥
m−1∑
j=1
〈v, uj〉Q⊥uj

∥∥∥∥∥∥ ≤
m−1∑
j=1
|〈v, uj〉|‖Q⊥uj‖

≤
m−1∑
j=1
|〈v, uj〉|δ ≤

√
m− 1 · δ.

(3.51)
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Combining (3.48), (3.49) and (3.51)

sin2(θi) ≤ ‖Q⊥Π‖2 ≤ (m− 1)δ2. (3.52)

Putting everything together gives (3.43). �

Remark 7 Inserting (3.5) into (3.43), we get the lag time depended eigen-
value estimate

E(τ, δ) = max
i=1,...,m−1

|λi − λ̂i| ≤ eΛ1τ (m− 1)δ2, (3.53)

where (λi) are the dominant eigenvalues of the transfer operator Tτ and (λ̂i)
the dominant eigenvalues of the projection QTτQ.
Since Λ1 < 0,

E(τ, δ)→ 0, for τ →∞. (3.54)

In the last Section 3.1 the same projection error δ of the dominant eigen-
vectors played already a key role. We have seen that the jumps of a Markov
process between partitioning sets A1, ..., An of state space can be well ap-
proximated by a Markov chain if this factor δ is small enough and the lag
time τ is chosen appropriately. For a reversible Markov process, as we con-
sider it in the next sections only, we could even get the approximation error
below every threshold for arbitrarily small lag time τ by taking care of the
projection error ‖Q⊥ui‖ for enough eigenvectors ui. Now, Theorem 7 shows
that this factor δ can also guarantee a good approximation of the origi-
nal longest timescales, i.e. the dominant eigenvalues of T , by the projected
transfer operator QTQ. For a Standard Markov State Model the eigenvalues
of QTQ would simply be the eigenvalues of the matrix P̂ from (2.7), which
describes the transition probabilities between the partitioning sets. On the
other hand, the diffusion example with the slightly more complicated poten-
tial with extended transition region (Fig. 3.9) revealed problems in finding
a discretization of state space in order to optimize the important δ. We
had to introduce many small sets inside of the transition region to guaran-
tee a small error. Therefore, we will now investigate the projected transfer
operator QTQ which was introduced in Section 2.3. This operator was
constructed with the use of the milestoning process (2.24) with respect to
core sets C1, ..., Cn. The subspace for projection D was then given by the
associated committors.

Our hope is that this subspace might not require a refinement of the
transition region because core sets do not need to form a full partition of
state space anymore. The plan that we have in mind is to introduce core
sets only at the deep main wells of the potential where the eigenvectors are
almost constant and leave the problematic transition region undefined. Note
that the projection of an eigenvector Qu with respect to the committors will
always be constant on the core sets, but in the undefined region C (2.23) it
will be the solution of a linear equation with boundary conditions.
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Extended transition region and committor approximation

We consider again the diffusion process

dXt = −∇V (Xt)dt+ σdBt (3.55)

with Bt denoting Brownian motion in the potential V (Fig. 3.9) with two
wells that are connected by an extended transition region with noise intensity
σ = 0.8.

Two core sets
In the following paragraphs we will compare the eigenvalues and ITS of the
original process to the ones resulting from different Markov State Models.
More precisely, we first choose a lag time τ and consider the transfer operator
Tτ . Because of (3.5) we can compute the implied timescale

|1/Λ1| = −
τ

ln(λ1,τ ) , (3.56)

where λ1,τ < 1 is the largest non-trivial eigenvalue of Tτ .
The minima in the two main wells are located at x1 = −1 and x2 = 6.62,
the respective local maxima that separate the main wells from the rest of
the landscape at x±1 = x1 ± 1, and x±2 = x2 ± 1, respectively.
We said that we want to choose two core sets of the form Cs1 = (−∞, x1 + s]
and Cs2 = [x2 − s,∞) for some parameter s around the deep main wells of
the potential. Then we compare the ITS from (3.56) to the one, which cor-
responds to the largest non-trivial eigenvalue λ̂i,τ of the projected operator
QTτQ

|1/Λ̂1| = −
τ

ln(λ̂1,τ )
. (3.57)

Since the process under investigation is just one-dimensional, we can com-
pute the committor functions from finite element discretization of L because
it is a differential operator (2.6), and very accurate approximations of T̂τ
and M from Theorem 3, which provide the matrix representation of QTτQ.
Figure 3.13 shows the dependence of the non-trivial eigenvalue and the pro-
jection error δ = ‖Q⊥u1‖ on the core set size s for τ = 1.

We observe that for small enough core sets the approximation of the
exact first non-trivial eigenvalue of Tτ , exp(τΛ1), is good, while for too
large core sets the approximation quality decreases. Moreover, Theorem
7 connected this error to the projection error ‖Q⊥u1‖ and Fig. 3.13 also
shows that this error behaves exactly like the approximation quality of the
eigenvalue.

For m = 2, that is, if we just consider the first non-trivial eigenvalue, we
can also study the relative error

Erel(τ, δ) = |λ1,τ − λ̂1,τ |
λ1,τ

(3.58)

70



3.2. TIMESCALES

−0.5 0 0.5 1 1.5
0.984

0.985

0.986

0.987

0.988

0.989

0.99

s

λ 1

lagtime τ=1

−0,5 0 0,5 1 1,5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

δ 
=

 ||
Q

⊥
 u

1||

s

Figure 3.13: Top: Non-trivial eigenvalues λs1,τ < 1 of QTτQ versus cores set
size parameter s for lag time τ = 1 in comparison to the exact first non-
trivial eigenvalue exp(τΛ1). Bottom: Projection error ‖Q⊥u1‖ dependent
on the size of core sets, i.e. the parameter s.

for different core set sizes s. Theorem 7 provides an upper bound by the
τ -independent square of the projection error δ = ‖Q⊥u1‖. In Fig. 3.14 we
observe that for small lag times the real relative error is significantly smaller
than δ2 but for larger lag times the upper bound and the real error are very
close. As to be expected from Fig. 3.13 (bottom) the error for good core
sets (s = 0.5) is two orders of magnitude smaller than the "not so good" core
sets for s = 2.

Estimation from data
The computation of the committor functions will only be possible via finite
element discretization of the generator, which is infeasible in higher dimen-
sions. Fortunately, Theorem 4 from Section 2.3 provided a possibility to
estimate the matrices T̂ and M , which form the matrix representation of
QTτQ, from realizations of the process.
Therefore, we study the milestoning process (X̂nτ ) on state space {1, 2}
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Figure 3.14: Relative error Erel(τ, s) versus lag time τ (dashed red line)
compared to the upper bound δ2 given by Theorem 7 (green solid line), for
s = 0.5 (top) and s = 2 (bottom).

induced by the time-discrete process given by Tτ and the cores sets Csi ,
i = 1, 2.

Then, we compute a very long trajectory x(t), t ∈ [0, tmax] of the dif-
fusion process (for example based on Euler-Maruyama discretization of the
SDE (3.55)). From this, we get discrete trajectories of the process Xnτ and
of the milestoning process X̂nτ , n = 0, . . . , Nτ with Nτ = btmax/τc. Here,
this was done based on a trajectory x(t) in the time interval [0, tmax] with
tmax = 50000. Then we can estimate T̂ and M by T̂ ∗Nτ and M∗Nτ respec-
tively as described in Sec. 2.3. In this example we also choose the time
resolution for the committors to be the lag time τ . The resulting non-trivial
eigenvalues λ̂∗1 of the generalized eigenvalue problem T̂ ∗Nτ r = λ̂∗M∗Nτ r, which
gives the eigenvalues of the matrix T̂ ∗NτM

∗−1
Nτ

, are compared to the ones of
T̂ r = λ̂Mr, where T̂ and M come from the finite element discretization,
and to the exact first non-trivial eigenvalue λ1 = exp(τΛ1) in Fig. 3.15.

We observe that the trajectory-based eigenvalues are overestimating the
"exact" eigenvalues of the generalized eigenvalue problem, and that the ap-
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Figure 3.15: Comparison of the non-trivial eigenvalues λ∗1 of the trajectory-
based generalized eigenvalues problem T̂ ∗Nτ r = λ̂M∗Nτ r (blue, dashed, stars),
the ones of T̂ r = λ̂Mr (red, solid line) and the exact first non-trivial eigen-
value λ1 = exp(τΛ1) (green, straight dashed line) in dependence on the core
size parameter s for different lag time τ = 1 (top) and τ = 5 (bottom).

proximation is getting worse for small values of s, especially for larger lag
times. This is not surprising since for s < 0 and sparse undersampling of
the trajectory for large lag times, we will miss events in which the process
stays close to the minima xi without entering the cores for some time which
is not long compared to the lag time.

Despite the good approximation quality of the trajectory-based general-
ized eigenvalues we should not forget that they are subject to an unknown
statistical sampling error resulting from the finiteness of the trajectory.

Comparison to full partition of state space Let us fix m = 2 and
observe how the relative eigenvalue error Erel as defined in (3.58) above
behaves in the case of a full partition of state space, especially how it changes
for different full subdivisions of the state space and different lag times. From
Theorem 7 we know that, as above, the bound on the relative eigenvalue
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error is given by the square of the projection error δ. First we choose n = 2
and the subdivision A1 = (−∞, x] and A2 = (x,∞). Figures 3.16 and 3.17
show the bound δ2 compared to the relative error Erel(τ, δ), for two different
subdivisions, i.e., different values of x. We can see that the error converges
to δ2 for increasing τ . Also, a better choice of the subdivision results not
only in a smaller relative error, but in its faster convergence to the bound.
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Figure 3.16: Relative error for eigenvalues and bound for τ = 0.5, n = 2
and x = 2.75
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Figure 3.17: Relative error for eigenvalues and bound for τ = 0.5, n = 2
and x = −0.35

Now we consider the full partition of a state space into n = 6 sets. The
sets are chosen in such a way that every well belongs to one set. This choice
of sets results in a smaller bound and faster convergence of the relative error
to this bound, which can be seen in Figure 3.18.
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Figure 3.18: Relative error for eigenvalues and bound for τ = 0.5 and n = 6
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If we finally compare the results for full subdivisions to the approxi-
mation via two core sets, we observe the following: Even the optimal full
subdivision into n = 2 sets cannot compete with the approximation qual-
ity of the approximation based on two "reasonable/good" core sets. Good
core sets result in an approximation error that is even better than the one
for the optimal full subdivision into n = 6 sets which already resolves the
well structure of the energy landscape. Thus, Markov State Models based
on fuzzy ansatz spaces resulting from appropriate core sets and associated
committor ansatz functions seem to lead to superior approximation quality
than comparable Standard full subdivision Markov State Models.

Projections on Infinite-Dimensional Subspaces

In Theorem 7, one important assumption on the subspace D is finite di-
mensionality. We have seen already that the projected transfer operator
approach might also be interesting for particular infinite-dimensional sub-
spaces D. In Sec. 2.2, for example, we connected an averaging method to
the subspace of functions which are independent of some variable. Theo-
rem 7 would not be directly applicable to this subspace and therefore, we
could not make a rigorous statement about the timescale approximation of
the underlying averaging method. We will now derive an analog of Theo-
rem 7, where the proof shows a quite general approach for the extension to
infinite-dimensional subspaces. In Section 3.3, this will be useful again.

Theorem 8
Let 1 = λ0 > λ1 > ... > λm−1 be the m dominant eigenvalues of T , i.e.
for every other eigenvalue λ it holds λ < λm−1. Let u0, u1, ..., um−1 be the
corresponding normalized eigenvectors. Assume that the state space E
has the form E = Ex×Ey and let D ⊂ L2(µ) be the infinite dimensional
subspace

D = {v(x, y) ∈ L2(µ)|v(x, y) = ṽ(x)}, (3.59)

that is, v ∈ D, if v does not depend on y.
Let Q be the orthogonal projection onto D and let 1 = λ̂0 > λ̂1 > ... >
λ̂m−1 be the dominating eigenvalues of the projected operator QTQ. Then

E(δ) = max
i=1,...,m−1

|λi − λ̂i| ≤ λ1(m− 1)δ2, (3.60)

where
δ = max

i=1,...,m−1
‖Q⊥ui‖.

is the maximal projection error of the eigenvectors to the space D.
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Proof. Let ε > 0 be arbitrary and û0, ..., ûm−1 be the normalized eigenvec-
tors of QTQ w.r.t. the eigenvalues 1 = λ̂0 > λ̂1 > ... > λ̂m−1. ûi ∈ L2(µ)
and since ui ∈ L2(µ), also Qui ∈ L2(µ), so there must be a compact set
Kx ⊂ Ex with∫
E\(Kx×Ey)

Qu2
i dµ ≤ ε

∫
E\(Kx×Ey)

û2
i dµ ≤ ε ∀i = 0, ...,m− 1. (3.61)

Qui and ûi can also be arbitrarily well approximated by stepfunctions and
because Qui(x, y), ûi(x, y) ∈ D, they do not depend on y, that is, there is a
partitioning Ax1 , ...., AxN of Kx, i.e.

Axi ∩Axj = ∅
N⋃
j=1

Axj = Kx,

such that∫
Kx×Ey

(Qui−PNQui)2dµ ≤ ε
∫

Kx×Ey

(ûi−PN ûi)2dµ ≤ ε ∀i = 0, ...,m−1,

(3.62)
where PN is the orthogonal projection onto the space

VN = span{1A1 , ...,1AN ,1E\K}

with
Ai = Axi × Ey K = Kx × Ey.

We obviously have
QPN = PN . (3.63)

This implies also

PN = P ∗N
(3.63)= (QPN )∗ = P ∗NQ

∗ = PNQ (3.64)

and

P⊥N ui = ui − PNui = ui −Qui +Qui − PNui = Q⊥ui +Qui − PNQui.

Because Q⊥Q = Q⊥PN = 0 we get

‖P⊥N ui‖2 = ‖Q⊥ui‖2 + ‖Qui − PNQui‖2. (3.65)

We now denote with λi(A) the ith largest eigenvalue of an operator A. Then
we have

|λi − λ̂i| = |λi(T )− λi(QTQ)| = |λi(T )− λi(PNTPN ) + λi(PNTPN )− λi(QTQ)|
≤ |λi(T )− λi(PNTPN )|+ |λi(PNTPN )− λi(QTQ)|
(3.63),(3.64)= |λi(T )− λi(PNTPN )|+ |λi(PNQTQPN )− λi(QTQ)|.

(3.66)
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As PN is a projection onto a finite dimensional subspace VN and 1 ∈ VN ,
we can apply Theorem 7 to get estimates for each of the summands. First,
for every i = 1, ...,m− 1

|λi(T )− λi(PNTPN )| ≤ λ1(m− 1) max
k=1,...,m−1

‖P⊥N uk‖2

(3.65)= λ1(m− 1) max
k=1,...,m−1

[
‖Q⊥uk‖2 + ‖Quk − PNQuk‖2

]
(3.61),(3.62)
≤ λ1(m− 1)( max

k=1,...,m−1
‖Q⊥uk‖2 + 2ε)

(3.67)

Using the same calculation for the second summand we get

|λi(PNQTQPN )− λi(QTQ)| ≤ λ̂1(m− 1) max
k=1,...,m−1

‖P⊥N ûk‖2

≤ λ̂1(m− 1)2ε.
(3.68)

Inserting (3.67) and (3.68) into (3.66) yields for every i = 1, ...,m− 1

|λi − λ̂i| ≤ λ1(m− 1)( max
k=1,...,m−1

‖Q⊥uk‖2 + 2ε) + λ̂1(m− 1)2ε.

Since this inequality holds for all ε > 0, it also holds for ε = 0, which gives
the proposition. �

Multiscale Core Set Approach

A natural problem that arises, when one tries to approximate the dynam-
ics of a continuous Markov process by a low-dimensional Markov State
Model, i.e. which has only few states, is the approximation of very different
timescales at the same time. As a motivation we consider again the diffu-
sion in the extended double-well potential. Assume we are now interested
in an approximation of the corresponding transfer operator T , which has for
a certain set of diffusion parameters and a lag time τ > 0 the dominating
eigenvalues

λ0 λ1 λ2 λ3 λ4
1.0000 0.9885 0.9247 0.7911 0.6289

As an approximation we want to find a projected transfer operator QTQ,
where Q denotes the orthogonal projection onto the subspace D of commit-
tor functions that belong to core sets C1, ..., Cn.

First eigenvalue. Let us first try to choose two core sets such that the first
non-trivial eigenvalue is well approximated by the only non-trivial eigenvalue
of QTQ.

Theorem 7 tells us that we just have to find core sets such that
δ = ‖Q⊥u1‖ is small. We have found such core sets already in the pre-
vious example. Fig 3.19 shows core sets that yield δ = 0.0164 and therefore
an eigenvalue error |λ1 − λ̂1| < 10−4.
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Figure 3.19: Two good core sets to approximate first timescale.
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Figure 3.20: Eigenvector u1 and its projection Qu1.

Another eigenvalue and a problem. Now assume that we also want to
approximate the second non-trivial eigenvalue λ2. From Theorem 7 we know
that we have to choose 3 core sets such that δ = max{‖Q⊥u1‖, ‖Q⊥u2‖} is
small. But even in this simple one-dimensional example we will see imme-
diately that it is problematic to simultaneously make ‖Q⊥u1‖ and ‖Q⊥u2‖
small. If we look at the shape of the first non-trivial eigenvector u1, we see
that we cannot introduce a large set inside of the transition region because
the eigenvector is varying in this region and its projection will be constant
on core sets. So, a larger core set in the transition region will definitely yield
a larger error for ‖Q⊥u1‖. This effect is demonstrated by comparing two
different sizes of a third core set as shown in the following figures.

For the small third core set we get

‖Q⊥u1‖ = 0.0339 ‖Q⊥u2‖ = 0.1024

and exactly the other way around for the large third core set

‖Q⊥u1‖ = 0.1302 ‖Q⊥u2‖ = 0.0444.
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Figure 3.21: Take a larger or smaller third core set?

The controversial effect can also be seen in Fig. 3.22.
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Figure 3.22: Controversial projection error when projecting eigenvectors.
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This is an issue because in both cases Theorem 7 cannot guarantee a
good approximation of the second timescale because max{‖Q⊥u1‖, ‖Q⊥u2‖}
is too large. Nevertheless, we look at the eigenvalues of the projected transfer
operators QTQ for both types of third core sets.

Small third core set: λ̂1 = 0.9883, λ̂2 = 0.9203
Large third core set: λ̂1 = 0.9847, λ̂2 = 0.9235

The larger third core set gives a more appropriate result for the second non-
trivial eigenvalue λ2, but we pay by losing accuracy in the approximation of
the slowest timescale. Theorem 7 can not explain this effect that the larger
third core set gives a better estimate for λ2 since max{‖Q⊥u1‖, ‖Q⊥u2‖} is
larger for this setting. Therefore, we need

Theorem 9
Let T be a self-adjoint transfer operator and Q the orthogonal projection
to a subspace D with 1 ∈ D. Let λ be an eigenvalue of T and u the
corresponding normalized eigenvector and set δ = ‖Q⊥u‖. Then there
exists an eigenvalue λ̂ of the projected transfer operator QTQ with

|λ− λ̂| ≤ λ1δ(1− δ2)−
1
2 .

Proof. For λ = 1 it is trivial, so λ < 1, u 6= 1. Since T is self-adjoint,
also QTQ is self-adjoint on a finite dimensional space. Therefore, we have
an orthonormal basis of eigenvectors û1, ..., ûn and real eigenvalues λ̂1, ..., λ̂n
and

QTQu =
n∑
i=1

λ̂i〈u, ûi〉ûi.

On the other hand we have

QTQu = QTu−QTQ⊥u = λQu−QTQ⊥u

= λ
n∑
i=1
〈u, ûi〉ûi −QTQ⊥u.

Putting both equations together we get

QTQ⊥u =
n∑
i=1

(λ− λ̂i)〈u, ûi〉ûi.
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Therefore,

‖QTQ⊥u‖2 =
n∑
i=1

(λ− λ̂i)2〈u, ûi〉2

≥ min
i=1,...,n

{(λ− λ̂i)2}
n∑
i=1
〈u, ûi〉2 = min

i=1,...,n
{(λ− λ̂i)2}‖Qu‖2

= min
i=1,...,n

{(λ− λ̂i)2}(1− δ2)

So, there exists an eigenvalue λ̂ with

(λ− λ̂)2 ≤ ‖QTQ⊥u‖2(1− δ2)−1.

Moreover,
‖QTQ⊥u‖2 ≤ ‖QTQ⊥‖2‖Q⊥u‖2 ≤ λ2

1δ
2,

since Q⊥u0 = Q⊥1 = 0. Taking the square root completes the proof. �

Theorem 9 gives us the opportunity to approximate each timescale com-
pletely separately from each other. Sadly, we do not get a second order
dependence on δ like in Theorem 7, in general, if we do not assume any-
thing on the projection error of other eigenvectors. On the other hand, in
the example above we could also use the following two core sets (Figure
3.23) in order to get the same projection error ‖Q⊥u2‖, when we just focus
on the timescale that belongs to λ2.
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Figure 3.23: Just two core sets to approximate the second timescale.

The projected transfer operator QTQ would have the two eigenvalues

λ̂0 = 1 λ̂1 = 0.9235.

An advantage of taking two-dimensional approximations is that in this spe-
cial case we come back to the second order dependence on δ.
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Theorem 10
Let T be a self-adjoint transfer operator and Q the orthogonal projection
to a two-dimensional subspace D with 1 ∈ D. Let λ be an eigenvalue of
T and u the corresponding normalized eigenvector and set δ = ‖Q⊥u‖.
Let the smallest negative eigenvalue of T be given by λ−.
Then for the non-trivial eigenvalue λ̂ of the projected transfer operator
QTQ it holds

|λ− λ̂| ≤ max{λ1 − λ, λ− λ−}δ2(1− δ2)−1.

Proof. From the proof of Theorem 9 we get

QTQ⊥u = (λ− λ̂)〈u, û〉û = (λ− λ̂)Qu,

where û is the eigenvector to the only non-trivial eigenvalue λ̂. On the other
hand,

〈Qu,1〉 = 〈u,Q1〉 = 〈u,1〉 = 0,

which means, that {1, Qu
‖Qu‖} is an orthonormal basis of D. Therefore,

QTQ⊥u = 〈TQ⊥u,1〉1+ 1
‖Qu‖2

〈TQ⊥u,Qu〉Qu = 1
‖Qu‖2

〈TQ⊥u,Qu〉Qu.

Combination with the first equation yields

λ− λ̂ = 1
‖Qu‖2

〈TQ⊥u,Qu〉 = 1
‖Qu‖2

〈Q⊥u,Q⊥TQu〉

= 1
‖Qu‖2

(〈Q⊥u,Q⊥Tu〉 − 〈Q⊥u,Q⊥TQ⊥u〉)

= 1
‖Qu‖2

(λ‖Q⊥u‖2 − 〈Q⊥u, TQ⊥u〉)

≤ 1
‖Qu‖2

(λ− λ−)‖Q⊥u‖2 = (λ− λ−)δ2(1− δ2)−1.

Moreover,

λ̂− λ = 1
‖Qu‖2

(〈Q⊥u, TQ⊥u〉 − λ‖Q⊥u‖2) ≤ (λ1 − λ)δ2(1− δ2)−1.

�

Statistically, when it comes to the estimation of a matrix representations
of the operator QTQ, there is also an advantage in joining the two outer core
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sets and considering a two-dimensional approximation. We namely have to
count transitions in the sense of milestoning between the core sets and on
one hand, we will simply observe more transitions between the two core sets
when we treat the outer sets as one core set, and on the other hand, we only
have to estimate two instead of six entries of the stochatic matrices T̂ and
M .
In general, if we were only interested in one particular timescale, i.e an eigen-
value λ and an eigenvector u, we would know already a perfect subspace D
with 1 ∈ D, which is only two-dimensional, namely D = {1, u}. Here is
δ = ‖Q⊥u‖ = 0, which implies that the projected transfer operator QTQ
would have the eigenvalues λ̂0 = 1, λ̂1 = λ. In the example above it was
possible to approximate the eigenvalue u well by two core sets and their cor-
responding committors but this was only possible because of the symmetric
nature of the potential. Therefore, u2 took the same values in the outer left
and outer right minimum. Of course, we cannot expect this in general.

3.3 Consequences for Markov State Modeling

In the last two sections we have discussed the approximation properties
of projected transfer operators QTQ. In Section 3.1 we focused on the
question if the discrete semi-group {(QTQ)k}k∈N is a valid simplification of
the family {QTkτQ}k∈N which is no semi-group. In Section 3.2 we analyzed
the inheritance of the longest timescales of the system by the projected
operator, i.e. we compared the dominant part of the spectrum of T with
the largest eigenvalues of QTQ. Both questions led to the projection error

δ = max
i=1,...,m

‖Q⊥ui‖ (3.69)

of the dominant eigenvectors to the subspace D. We have seen that inde-
pendently of the lag time τ > 0 it is essential that the subspace D is chosen
such that these first m eigenvectors can be well approximated by functions
in D. This has direct consequences for the projected transfer operators that
come from Markov State Modeling.

For a Standard Markov State Model we have to make sure that our sets
A1, ..., An, which have to partition, i.e. cover the whole state space, are
chosen such that the considered dominant eigenvectors are almost constant
on these sets. Now, this criterion is not very constructive because we do not
know how constant an eigenvector is on a certain set Ai because we cannot
compute them. Nevertheless, we have seen that for processes in potentials
which are not completely trivial we will most certainly not be able to find
only few large sets with this property. Particularly, a threshold on δ will
soon lead to exponential growth of the number of sets n with the dimension
of state space. Therefore, for processes in higher dimensional state spaces a
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construction of a Standard Markov State Model and the associated subspace
D can quickly become very costly.

In [82, 44, 83] a variant has been developed where

D = span{f1, ..., fn} = span{u0, ..., un−1} ⇒ Q = Π, δ = 0 (3.70)

with non-negative ansatz functions f1, ..., fn. In [19] it is also shown how to
optimally compute this basis. However, for this approach the eigenvectors
have to be known exactly.

Hence, we considered the subspace D spanned by committors with re-
spect to core sets. In our examples this method seemed to be superior than
Standard Markov State Modeling. For the double-well potential with ex-
tended transition region we needed only two sets around the main minima
to get δ ≈ 10−2. Of course, now we also have to answer the questions:
why does this happen, and how do we find core sets that lead to a good
approximation, in general? As for Standard Markov State Models our sub-
space D depends on the choice of these sets that not necessarily partition
the state space anymore. The answer that they have to be chosen such that
δ is minimized has become at first glance even more ridiculous. In contrast
to the full partition approach not only the eigenvectors are unknown but
we also cannot compute the committors, which form the subspace for pro-
jection. That is, the new core set approach and the δ criterion seem to be
a maximally unpractical combination because no object in ‖Q⊥ui‖ can be
computed.

Therefore, it is surprising that we can analyze ‖Q⊥ui‖ further to under-
stand under which conditions on the core sets this error will be small for the
dominant eigenvectors. We start with

Theorem 11
Let 1 = λ0 > λ1 > ... > λm−1 be the m dominant eigenvalues of T ,
i.e. for every other eigenvalue λ it holds λ < λm−1. Let u0, u1, ..., um−1
be the corresponding normalized eigenvectors and D ⊂ L2(µ) an infinite
dimensional subspace of the form

D = {v ∈ L2(µ)|v(x) = cj∀x ∈ Cj , cj ∈ R, j = 1, ..., n} (3.71)

for a finite number of arbitrary, but fixed disjoint sets Cj ⊂ E. That is,
v ∈ D, if v is constant on each set Cj.
Let Q be the orthogonal projection onto D and let 1 = λ̂0 > λ̂1 > ... >
λ̂m−1 be the dominating eigenvalues of the projected operator QTQ. Then

max
i=1,...,m−1

|λi − λ̂i| ≤ λ1(m− 1)δ2, (3.72)

84



3.3. CONSEQUENCES FOR MARKOV STATE MODELING

where

δ2 = max
i=1,...,m−1

‖Q⊥ui‖2 =
n∑
j=1

∫
Cj

ui − 1
µ(Cj)

∫
Cj

uidµ


2

dµ.

is the maximal projection error of the eigenvectors to the space D.

Proof. Let ε > 0 be arbitrary and û0, ..., ûm−1 be the normalized eigenvec-
tors of QTQ w.r.t. the eigenvalues 1 = λ̂0 > λ̂1 > ... > λ̂m−1. As ui ∈ L2(µ)
and ûi ∈ L2(µ) there must be a compact set K with C1, ..., Cn ⊂ K and∫

E\K

u2
i dµ ≤ ε

∫
E\K

û2
i dµ ≤ ε ∀i = 0, ...,m− 1.

Let us defineKC := K\
(

n⋃
j=1

Cj

)
. Then, because ui ∈ L2(µ) and ûi ∈ L2(µ),

these eigenvectors can be arbitrarily well approximated by stepfunctions,
that is, there is a partitioning A1, ...., AN of KC , i.e.

Ai ∩Aj = ∅
N⋃
j=1

Aj = KC ,

such that∫
KC

(ui − PNui)2dµ ≤ ε
∫
KC

(ûi − PN ûi)2dµ ≤ ε ∀i = 0, ...,m− 1,

(3.73)
where PN is the orthogonal projection onto the finite dimensional space

VN = span{1A1 , ...,1AN , 1C1 , ..., 1Cn ,1E\K}.

Moreover, for this projection we obviously have

QPN = PN , (3.74)

because a function v ∈ VN is always constant on the sets C1, ..., Cn and
therefore in D.
This implies also

PN = P ∗N
(3.74)= (QPN )∗ = P ∗NQ

∗ = PNQ, (3.75)
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We now denote with λi(A) the ith largest eigenvalue of an operator A. Then
we have
|λi − λ̂i| = |λi(T )− λi(QTQ)| = |λi(T )− λi(PNTPN ) + λi(PNTPN )− λi(QTQ)|

≤ |λi(T )− λi(PNTPN )|+ |λi(PNTPN )− λi(QTQ)|
(3.74),(3.75)= |λi(T )− λi(PNTPN )|+ |λi(PNQTQPN )− λi(QTQ)|.

(3.76)
As PN is a projection onto a finite dimensional subspace VN and 1 ∈ VN ,
we can apply Theorem 7 to get estimates for each of the summands. First,
for every i = 1, ...,m− 1
|λi(T )− λi(PNTPN )| ≤ λ1(m− 1) max

k=1,...,m−1
‖P⊥N uk‖2

= λ1(m− 1) max
k=1,...,m−1

[ n∑
j=1

∫
Cj

(uk − PNuk)2dµ+
∫
KC

(uk − PNuk)2dµ

+
∫

S\K

(uk − PNuk)2dµ

]

≤ λ1(m− 1) max
k=1,...,m−1

 n∑
j=1

∫
Cj

(uk −Quk)2dµ+ 2ε


= λ1(m− 1)( max

k=1,...,m−1
‖Q⊥uk‖2 + 2ε)

(3.77)
Using the same calculation for the second summand we get

|λi(PNQTQPN )− λi(QTQ)| ≤ λ̂1(m− 1) max
k=1,...,m−1

‖P⊥N ûk‖2

= λ̂1(m− 1) max
k=1,...,m−1

[ n∑
j=1

∫
Cj

(ûk − PN ûk)2dµ+
∫
KC

(ûk − PN ûk)2dµ

+
∫

E\K

(ûk − PN ûk)2dµ

]
≤ λ̂1(m− 1)2ε,

(3.78)
because PN ûk = ûk on the sets C1, ..., Cn, since ûk ∈ D.
Inserting (3.77) and (3.78) into (3.76) yields for every i = 1, ...,m− 1

|λi − λ̂i| ≤ λ1(m− 1)( max
k=1,...,m−1

‖Q⊥uk‖2 + 2ε) + λ̂1(m− 1)2ε.

As ε was arbitrary and

(Quk)(x) =


uk(x), if x /∈

n⋃
j=1

Cj ,

1
µ(Cj)

∫
Cj

ukdµ, if x ∈ Cj

the proof is complete. �
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We will further need the following

Lemma 3
Let v ∈ Ł2(µ) be the solution of

Av = 0, on C
v = g, on E \ C,

(3.79)

with A = L or A = Id− Tt and g ∈ L∞(µ), g 6= 0 on E \ C. Then,

‖v‖∞ := max
y∈E
|v(y)| ≤ max

y∈E\C
|g(y)|.

Proof. The linear system above is equivalent to

ΘAΘv = −ΘAΘ⊥v = −ΘAΘ⊥g (3.80)

with

(Θv)(x) =
{
v(x), x ∈ C
0, else.

(3.81)

As in the proof of Theorem 2 it has to be uniquely solvable because otherwise
we could construct an invariant measure that vanishes on E \ C.

Take now A = L. Dynkin formula [51] applied to the solution v yields
for x ∈ C and the stopping time τ = inf

t≥0
{Xt ∈ E \ C}

E[v(Xτ )|X0 = x] = v(x) + E[
τ∫

0

(Lv)(Xs)ds|X0 = x] = v(x)

because Xs ∈ C for all s ∈ (0, τ) and therefore (Lv)(Xs) = 0. On the other
hand, we have

Xτ ∈ E \ C ⇒ v(x) = E[v(Xτ )|X0 = x] = E[g(Xτ )|X0 = x].

Obviously, it holds

|E[g(Xτ )|X0 = x]| ≤ max
y∈E\C

|g(y)| ∀x ∈ C,

which proves the assertion.
For A = (Id − T ) we find with the discrete version of Dynkin formula

[50] and τ ∈ N

E[v(Xτ )|X0 = x] = v(x) + E[
τ−1∑
k=0

(−Av)(Xk)|X0 = x] = v(x)

and ‖v‖∞ ≤ max
y∈E\C

|g(y)| with the same reasoning as above. �
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Now we assume that we have some core sets C1, ...Cn and the corresponding
committors, that solve

Tqi = qi on C,
qi(x) = 1, on Ci
qi(x) = 0, on Ck, k 6= i.

The space spanned by the committors can be written as

D = span{q1, ..., qm} = {v | v is constant on each set Cj , T v = v on C}.

Then we can estimate the projection error ‖Q⊥u‖ for any eigenvector u.

Theorem 12
Take the setting from above, i.e. let D be the space spanned by committors
with respect to n core sets C1, ..., Cn. Denote with Q the orthogonal
projection onto D. Let λ be an eigenvalue of T and u the corresponding,
normalized eigenvector. Then

‖Q⊥u‖ ≤ p(u) + 2µ(C)pmax(u) + r(C)(1− λ)

∫
C

u2dµ

 1
2

with

r(C) = sup
‖v‖=1,

v=0 on E\C

 1∫
C

(v − Tv)2dµ


1/2

p(u) = ‖P⊥u‖
pmax(u) = ‖P⊥u‖∞

(Pu)(x) =


u(x), if x ∈ C,

1
µ(Cj)

∫
Cj

udµ, if x ∈ Cj .

(3.82)

Proof. Take the projection P onto the space V = {v ∈ L2(µ))|v(x) =
cj∀x ∈ Cj , cj ∈ R, j = 1, ..., n} of functions, which are constant on the core
sets.
First, ‖Q⊥u‖ = ‖u−Qu‖‖ ≤ ‖u− q‖ for every q ∈ D, as Qu is the bestap-
proximation. Take the interpolating q ∈ D, that is a solution of

Tq = q on C,
q = Pu, on E \ C.

(3.83)
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As q ∈ V we have Pq = q. Therefore (3.83) is equivalent to

PTPq = q on C,
q = Pu, on E \ C.

(3.84)

Moreover, for the projection Pu

PTPu = PTu− PTP⊥u = λPu− PTP⊥u.

Therefore the error e := Pu− q solves

(Id− PTP )e = (1− λ)Pu+ PTP⊥u on C,
e = 0, on E \ C.

This means, e ∈ EΘ = {v|v(x) = 0, x ∈ E \ C} ⊂ E fulfills

Θ(Id− PTP )Θe = (1− λ)ΘPu+ ΘPTP⊥u (3.85)

with

Θv(x) =
{
v(x), x ∈ C
0, x ∈ E \ C

.

Obviously it holds PΘ = ΘP = Θ. Thus, (3.85) is equivalent to

Re := Θ(Id− T )Θe = (1− λ)Θu+ ΘTP⊥u (3.86)

Now R has to be invertible on EΘ because if it was not, there would be some
v ∈ EΘ satisfying

Rv = 0,
which would imply

Tv = v on C,
v = 0, on E \ C.

But then it must hold Tv = 0 on E \ C, because otherwise we would have
‖Tv‖ > ‖v‖. This would imply Tv = v on E, which is a contradiction to
the unique, positive invariant measure.
So we can write

e = R−1(1− λ)Θu+R−1ΘTP⊥u.
R is self-adjoint, because T is, and therefore ‖R−1‖ = 1

κ , where κ is the
smallest eigenvalue of R, i.e. there is a vector v ∈ EΘ, ‖v‖ = 1 with

Θ(Id− T )Θv = κv.

Now we have
κ2 =

∫
E

(κv)2dµ =
∫
E

(Θ(Id− T )Θv)2dµ

=
∫
C

((Id− T )v)2dµ.
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This implies
‖R−1‖ ≤ 1

min
v∈EΘ,‖v‖=1

(∫
C

(v − Tv)2dµ

) 1
2
.

Moreover, ΘTP⊥ = Θ(Id− T )P⊥, which gives

‖R−1ΘTP⊥u‖ = ‖R−1Θ(Id− T )P⊥u‖ = ‖Θf‖,

where Θf solves

RΘf = Θ(Id− T )Θf = Θ(Id− T )P⊥u⇔ Θ(Id− T )(Θf − P⊥u) = 0.

That is, w := Θf − P⊥u is the solution of

(Id− T )w = 0 on C
w = −P⊥u on E \ C

Lemma 3 now implies that ‖w‖∞ = ‖P⊥u‖∞ and therefore

‖R−1ΘTP⊥u‖ = ‖Θf‖ ≤ µ(C)‖P⊥u+ w‖∞ ≤ 2µ(C)‖P⊥u‖∞.

So,

‖e‖ = ‖R−1(1− λ)Θu+R−1ΘTP⊥u‖ ≤ ‖R−1‖‖(1− λ)Θu‖+ ‖R−1ΘTP⊥u‖)

= r(C)(1− λ)

∫
C

u2dµ

 1
2

+ 2µ(C)‖P⊥u‖∞.

Further,

‖Q⊥u‖ = ‖u−Qu‖ ≤ ‖u− q‖ ≤ ‖u− Pu‖+ ‖Pu− q‖ = p(u) + ‖e‖.

Putting all together completes the proof. �

In Theorem 12 the committors are solutions of

Ttqi = qi on C,
qi(x) = 1, on Ci
qi(x) = 0, on Ck, k 6= i

where t denotes the time resolution at which we can see whether a core
set was hit or not. We can also formulate the theorem for time-continuous
committors.
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Theorem 13
Let L be the generator of the process and let D be the space spanned by
time-continuous committors with respect to n core sets C1, ..., Cn, i.e.

D = span{q1, ..., qn}

Lqi = 0 on C,
qi(x) = 1, on Ci
qi(x) = 0, on Ck, k 6= i

Denote with Q the orthogonal projection onto D. Let Λ be an eigen-
value of the generator L and u the corresponding, normalized eigenvector.
Then,

‖Q⊥u‖ ≤ p(u) + 2µ(C)pmax(u)− r(C)Λ

∫
C

u2dµ

 1
2

with

r(C) = sup
‖v‖=1,

v=0 on E\C

 1∫
C

(Lv)2dµ


1/2

p(u) = ‖P⊥u‖
pmax(u) = ‖P⊥u‖∞

(Pu)(x) =


u(x), if x ∈ C,

1
µ(Cj)

∫
Cj

udµ, if x ∈ Cj .

(3.87)

The proof is analog to the proof of Theorem 12.
Note that

(P⊥u)(x) =


0, if x ∈ C,
u(x)− 1

µ(Cj)
∫
Cj

udµ, if x ∈ Cj .

That is, the terms p(u) and pmax(u) measure how constant the eigenvector
on the core sets is. If the eigenvector is not bounded, i.e. u /∈ L∞, we
assume that we do not consider core sets, where the eigenvector is growing
unboundedly such that pmax(u) does not exist.
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Interpretation of the inequality

First, except for p(u) and pmax(u) the inequality consists of objects that
depend on the choice of

n⋃
i=1

Ci only, that is, it is important if a point in
state space belongs to any core set or not but the clustering, i.e. the specific
assignment to one core set, only enters into the error p(u) and pmax(u).

In order to achieve a small bound we have to make sure that the two
summands

−r(C)Λ

∫
C

u2dµ

 1
2

p(u) + 2µ(C)pmax(u) (3.88)

are small. Remember that for a Markov process which is distributed at time
t according to the measure with density vt we have

d

dt
vt = Lvt. (3.89)

If we start the process only distributed in the region C, there has to be an
infinitesimal change of probability because of the flow from C into the core
sets. Even if the process was perfectly equilibrated within C, this change in
probability distribution could not be avoided. This is exactly what the factor
r(C) measures. It will be small if the process leaves the region C "quickly
enough". Now, the first term in (3.88) tells us what quickly enough means.
It compares the attractiveness of the core sets r(C) with the eigenvalue of
the corresponding timescale that we want to approximate. So if we start
outside of the core sets, the timescale at which probability has to flow back
into the core sets should be shorter as the timescale of interest. This also
implies that the more timescales we want to approximate, the larger the
region of core sets has to be in order to increase the overall attractiveness.
Having found an appropriate set C we have to cluster the region E \C into
core sets C1, ..., Cn such that on each core set the dominant eigenvectors,
which we want to approximate, are almost constant in order to guarantee
small p(u) and pmax(u).

Theoretical considerations using diffusion examples

We want to think about the identification of core sets which have the prop-
erties that have been motivated by Theorem 13. As we have seen, we can
perform this identification in two steps. First, we have to split the state
space into sets C and E \ C, and second, we have to cluster the set E \ C
into core sets C1, ..., Cn. Note that once we sorted out the region C the
second clustering step should not be very difficult because the core sets will
always be dynamically well separated. So we will focus on the question
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which states do we have to include into core sets, and which states can be
considered as transition region.

Assume that we have a diffusion in an energy landscape with noise in-
tensity σ that we call "process 1". Now, we look at the same process with
increased noise intensity, e.g. where σ is multiplied with the factor

√
2, that

will be named "process 2". Sets which are metastable and attractive with
respect to process 2 are even more metastable and attractive with respect
to process 1. Moreover, if process 1 had the invariant measure with density
µ, the invariant measure of process 2 would be given by the density

µ∗(x) = 1
Z

√
µ(x), (3.90)

where Z is a normalization constant, in this example. The density µ∗ has
the same structure, e.g. the same local minima and maxima but it is less
peaked. So, if we take this density as initial distribution for process 1 and
let it propagate the ensemble, it will have to converge to invariant measure µ
again. The way how µ∗ is being propagated towards equilibrium will provide
the information we are looking for.

First, take the diffusion in the simple double-well potential from Fig.
3.1. We choose a time step α = 0.1 and look at the density µ∗ and its
propagation under T = Tα in the following figure.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 3.24: Blue: µ∗, Red: Tµ∗

The set
Cα = {x ∈ E, Tαµ∗(x) > µ∗(x)} (3.91)

obviously identifies the two regions around the wells of the potential. This
is not surprising because the ensemble distributed according to µ∗ is slightly
too uniform on state space and has to relax from the transition region to the
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minima. The transfer from the minima back to the transition region and
between the wells is very small on that timescale. So the set from (3.91)
would be a good candidate for E \C, i.e. core sets, because by construction
this set is attractive within the time step α.

Let us now consider the more comprehensive example of the double-well
potential with extended transition region as shown in Fig. 3.9. Again we
compare the density µ∗ to its propagation for a certain time step. The
results for three different time steps α = 1, 10, 20 are illustrated below.

−2 0.5 3 5.5 8
0
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0.004
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0.012

Figure 3.25: Blue: µ∗, Red: Tαµ∗, α = 1
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Figure 3.26: Blue: µ∗, Red: Tαµ∗, α = 10

For the shortest time step α = 1 all peaks of the invariant measure
are identified (Fig. 3.25). It is clear that this will always happen for short
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Figure 3.27: Blue: µ∗, Red: Tαµ∗, α = 20

enough time steps because locally the density µ∗ is too flat at peaks and will
increase on a very short timescale. In Fig. 3.26 and Fig. 3.27 we increase
the time step and as expected we see the effect of the larger timescales. For
α = 10 there is still some region in the middle of the potential that would
belong to the candidate for core sets as in (3.91) and for α = 20 only the
two main wells would satisfy equation (3.91) anymore.
Here the approach connects to our inequality from Theorem 13. We have
seen that the core sets should be attractive sets but this attractiveness was
relative to the timescale of interest (−r(C)Λ). So if we only want to ap-
proximate the slowest dynamics, the core sets must be attractive just on
a slower timescale than the one which is implied by Λ1. α = 20 would be
enough for this goal and the set {x ∈ S, Tαµ

∗(x) > µ∗(x)} with α = 20,
which gives the main wells, would be a good candidate for core sets. With
the obvious clustering of set Cα (3.91) into 2 core sets we can now compute
the eigenvalues of T and QTQ for time-continuous committors. The implied
dominant timescales are given by

−1/Λ1 = 86.7546 − 1/Λ̂1 = 86.3772.

The next implied timescale is −1/Λ2 = 12.49. In order to approximate this
timescale, too, we have to decrease the time step α in order to measure
attractiveness. We have seen already that for α = 10 a set in the middle
of transition region is introduced. This is reasonable because it is where
the maximum of the second non-trivial eigenvector u2 is located. Therefore,
this set becomes attractive on the shorter timescale which is recognized in
the sense of (3.91). For the shortest time step α = 1 we finally get core
sets which lead to a good approximation of the first five eigenvalues and the
implied timescales.
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−1/Λ1 −1/Λ2 −1/Λ3 −1/Λ4 −1/Λ5
T 86.75 12.76 4.26 2.15 1.42

QTQ 84.30 12.49 4.16 2.10 1.41
Note that we lose approximation quality again for the largest eigenvalue
compared to the two core sets (Fig. 3.27). Theorem 13 claims to assign
more states of state space to core sets for the approximation of shorter
timescales. On the other hand, eigenvectors have to be constant on every
core set and for the very dominant eigenvectors this will be a constraint
that introduces a larger error if we have too many or too large core sets.
We discussed this problem already in Section 3.2 and proposed to consider
different levels of discretization. That is, we could calculate the spectrum
of the operator QTQ for α = 1 with 6 core sets first, and then increase the
time step to α ≥ 20 in order to get an even better approximation of the
slowest process.

3.4 Simulation based Algorithm:
Building Markov State Models using Core Sets

Finally, we want to perform a complete analysis of the dominant timescales
of a Markov process based on simulation. That is, we want to identify
the region of core sets E \ C, cluster this region into n sets C1, ..., Cn, and
estimate a matrix representation of the projected transfer operator QTQ
with respect to the associated committors. We have seen already how we
can realize the last task for given core sets if we have a realization of the
process (Xkh), k = 1, ..., N at some time resolution h with N data points
that we call (xk). Then, we can estimate the matrices T̂ and M (2.40) as
described in Section 2.3. In order to develop an algorithmic approach for
the identification of the core sets, the first observation is that we only have
to tell for the data points (xk) if they belong to core sets or not. That is,
we do not have to split the whole state space E into C and E \ C if we
want to use the trajectory (xk) afterwards for the estimation of T̂ and M .
For this purpose, it would be equivalent to simply find out which pieces of
the trajectory (xk) lie in core sets and which do not. In the last Section 3.3
we formulated the properties core sets should have in order to imply a good
approximation result. In short, the cores of the most metastable regions
should be included and they have to be relatively attractive compared to
the timescales of interest. In principle, there are two possibilities how to
analyze which points of the trajectory (xk) fulfill these conditions. If we have
additional knowledge about the Markov process, we could try to analytically
gain insight into the dynamics around the points (xk). This will usually end
up in the construction of a network between the points (xk) which should
make it possible to measure metastability and attractivity in the sense of
Section 3.3. Here, we will follow a different approach. We do not even
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assume that we have an expression for the dynamics of the process that we
can analyze further. We rather assume that the Markov process (Xt) = (Xξ

t )
depends on a parameter ξ > 0, which controls the overall metastability of
the process, i.e. for smaller ξ the metastability should increase. Then, we
use the following algorithm for the identification of the core sets along the
trajectory (xk).

Algorithm 1: Principle Core Set Identification
Data: (xk), k = 1, ..., N ;α > 0;β ∈ N; ρ > 0
Result: T̂ ,M
yk := xkβ, k = 1, ..., N/β;
for k = 1 to N/β do

simulate zk := X
ξ/2
α with Xξ/2

0 = yk;
end
for k = 1 to N do

if #{zk ∈ Bρ(xk)} > #{yk ∈ Bρ(xk)} then
xk → E \ C;

else
xk → C;

end
end
cluster(E \ C);
estimate T̂ ,M as in Section 2.3;

So, we perform the identification in the following way. First, we take
some data points yk = xkβ, k = 1, ..., N/β for a fixed β ∈ N out of the
trajectory. Since we assume that the Markov process is ergodic, in the limit
N →∞ we have

µ(A) = lim
N→∞

#{yk ∈ A}
N/β

, (3.92)

for every measurable set A ⊂ E. Then, we consider points zk, k = 1, ..., N/β,
where zk is a realization of the process Xξ/2

α at time α > 0 and started in
yk. Again, in the limit N →∞ it holds

(T̃αµ)(A) = lim
N→∞

#{zk ∈ A}
N/β

, (3.93)

where (T̃t) is the semi-group of transfer operators for the process (Xξ/2
t ).

This process has an increased metastability compared to (Xt). Approxi-
mately we can tell for every data point xk and a small ball Bρ(xk) of radius ρ
around it if (T̃αµ)(Bρ(xk)) > µ(Bρ(xk)) by comparing the number of points
yk and zk in Bρ(xk). Therefore, we assume that a point xk for k = 1, ..., N
has to belong to the region of core sets under the condition

xk ∈ E \ C ⇔ #{zk ∈ Bρ(xk)} > #{yk ∈ Bρ(xk)}. (3.94)
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In this case, namely, these points became more attractive while increasing
metastability. Again, attractivity is measured relatively to a timescale of
interest, which enters the algorithm through α. We will make a remark
(Rem. 8) on the choice of α in the examples below. Often, one will choose
α < βh, which implies that the effort of core set identification is smaller
than the effort for the simulation of the trajectory (xk) itself. Having iden-
tified the region (E \ C) ∩ {xk} we have to split it into the final core sets
C1, ..., Cn. This task is usually less difficult than the identification because
a constantness of the dominant eigenvectors on core sets implies a very uni-
form dynamical behaviour inside of core sets, e.g. a small diffusion distance.
Without assuming anything, one can cluster the points {yk ∈ E \ C} first
by analyzing the milestoning process (2.24) with respect to their voronoi
tessellation [78], e.g. with spectral clustering methods like PCCA [81, 19].
Afterwards, one can include the xk ∈ E \ C with respect to the clustering
of the points yk in their neighbourhood.
In the end we estimate the matrices T̂ andM from the same trajectory (xk)
without additional sampling such that the overall effort is dominated by the
effort for simulating the trajectory (xk).

Numerical results for two examples

One dimension. In this subsection we will test the algorithm for two ex-
amples. Both examples will be diffusions in potentials. Here, the parameter
ξ := σ is given by the noise intensity. Then, the algorithm directly con-
nects to the theoretical considerations in Section 3.3. We start with our
main example, the one dimensional diffusion in the extended potential with
noise intensity σ = 0.8. Using the Euler-Maruyama scheme we simulate a
trajectory of length N = 5 · 106 at a time resolution h = 0.01.

Figure 3.28 shows the first 10.000 data points of the trajectory and the
data points which have been identified as core sets for different timescale
parameters α and β = 1000.
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Figure 3.28: Piece of trajectory (top) and data points that are identified as
core sets for α = 50(second figure), α = 30(third figure), α = 1(bottom). 99
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We observe that exactly the regions are identified that we had in mind
since the theoretical discussion above.

α = 50. With the largest parameter α we only get the two main wells as
core sets and the following estimates for the matrix representation of QTτQ,
where we choose τ = 1.

T̂ =
(

0.8719 0.1281
0.1388 0.8612

)
M =

(
0.8764 0.1236
0.1346 0.8654

)

T̂M−1 =
(

0.9939 0.0061
0.0057 0.9943

)
.

We have seen already that the matrix representation T̂M−1 will always be
a pseudostochastic matrix and that it has a stochastic interpretation for
a class of probability vectors. Here, T̂M−1 is even stochastic such that
the projected transfer operator will conserve the probability constraints for
every probability distribution v ∈ D.

Moreover, the spectrum of T̂M−1 is given by

λ̂0 = 1, λ̂1 = 0.9883.

We remember that the dominant eigenvalue of T was computed by a finite
element method as λ1 = 0.9885.
So we found a good 2 × 2 Markov chain that preserves nicely the slowest
dynamics of the original continuous Markov process. Although the example
is fairly simple this result would have been completely impossible to achieve
for a Standard Markov State Model as we have witnessed in Sec. 3.1. On
top of that, we can investigate how our results change with the lag time τ .
Figure 3.4 shows the first non-trivial eigenvalue of T̂M−1 plotted against
the lag time τ that enters T̂ ranging from τ = 0.1, which is almost as short
as possible with respect to the resolution of the numerical Euler scheme,
to τ = 20.1. It shows a perfect exponential decay over all lag times. This
yields that the implied estimates for the eigenvalues of the generator and
the implied timescales are very robust against the choice of the lag time.
Fig. 3.4 backs this up. Again, this is a very desirable property as the
original eigenvalues of the transfer operator T decay perfectly exponentially
but something that is hardly to achieve with a Standard MSM, except for
very fine discretizations.
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Figure 3.29: Logarithmic plot of the eigenvalue λ1 of T̂M−1 estimated from
the trajectory over lag time τ .
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Figure 3.30: Generator eigenvalue estimated from T̂M−1 over lag time τ .

α = 30, α = 1. With the additional core set in the middle of the transi-
tion region (α = 30) we find

T̂ =

0.9198 0.0802 0
0.1112 0.7711 0.1177

0 0.0767 0.9233

 M =

0.9342 0.0658 0
0.0902 0.8137 0.0961

0 0.0629 0.9371

 ,

T̂M−1 =

 0.9827 0.0193 −0.0020
0.0279 0.9432 0.0288
−0.0018 0.0184 0.9834


and the eigenvalues λ̂i compared to the finite element results λi

101



CHAPTER 3. ANALYSIS OF PROJECTED TRANSFER OPERATORS

i 0 1 2
λ̂i 1.0000 0.9849 0.9244
λi 1.0000 0.9885 0.9247

We notice that T̂M−1 is still almost stochastic but slightly negative
entries have been introduced. As expected, the approximation quality of
the second non-trivial eigenvalue is very good at the expense of the largest
timescale. Nevertheless, taking the two levels of discretization for α = 50
for λ1 and α = 30 for λ2 together would provide a precise insight into the
two dominant timescales of the underlying process.

Remark 8 The proposed identification algorithm is very compatible with
the multilevel idea. In order to find the core sets for a certain α we have to
realize the process Xξ/2

t up to time α. This means, that we have also realiza-
tions of random variables Xξ/2

t for 0 < t < α. That is, we have associated
point clouds zk already on different time levels α and therefore automatically
multiple core set proposals for multiple timescale approximations. One can
also start with an over- or underestimated α and learn from the estimated
timescales about the size of α, a posteriori.

Finally, for α = 1 all wells are resolved and we estimate

T̂ =



0.9465 0.0525 0.0010 0 0 0
0.1933 0.6395 0.1597 0.0074 0 0
0.0075 0.1635 0.6576 0.1647 0.0066 0

0 0.0069 0.1615 0.6569 0.1671 0.0076
0 0 0.0077 0.1652 0.6413 0.1858
0 0 0 0.0019 0.0458 0.9523



M =



0.9798 0.0202 0 0 0 0
0.0743 0.8785 0.0472 0 0 0

0 0.0491 0.8972 0.0537 0 0
0 0 0.0549 0.8916 0.0535 0
0 0 0 0.0542 0.8742 0.0716
0 0 0 0 0.0179 0.9821



T̂M−1 =



0.9631 0.0376 −0.0009 0.0001 0 0
0.1429 0.7169 0.1403 −0.0001 0 0
−0.0034 0.1461 0.7166 0.1416 −0.0011 0.0001

0 0.0003 0.1359 0.7196 0.1471 −0.0030
0 0 −0.0001 0.1414 0.7222 0.1365
0 0 0 0.0002 0.0326 0.9672


i 0 1 2 3 4 5
λ̂i 1.0000 0.9875 0.9230 0.7903 0.6187 0.4862
λi 1.0000 0.9885 0.9247 0.7911 0.6289 0.4957

102



3.4. SIMULATION BASED ALGORITHM

Two dimensions. The last example demonstrated that one can efficiently
identify few sets from simulation data which can be used in order to construct
small Markov chains that approximate the longest timescales of a continuous
Markov process very well. In one dimension. Interesting is how the effort
to reach similar results changes if we increase the dimensionality of state
space. If we want to achieve the same discretization level with a Standard
Markov State Model the number of sets usually grows exponentially with the
dimension of state space. Hence, one will need a large number of simulations
for reliable estimates of transition probabilities between these sets.

We will consider a diffusion in a two dimensional potential with noise
intensity σ = 1.1. A contour plot of the potential is shown in Fig. 3.4.

Figure 3.31: Three-well potential in 2D.

Now, we do not change the effort of our algorithm. We take again a
trajectory of length N = 5·106, computed with the Euler-Maruyama scheme
with resolution h = 0.01. We also set β = 1000 and τ = 1. Figure 3.32 shows
a piece of the trajectory and two results of the identification algorithm for
different parameters α.

For α = 10 we identify two core sets, which are located in the region of
the deepest local minima of the potential. For α = 2 another small core set
is introduced in the third less deep well.
Running the algorithm to the end we find the following estimates.

α = 10:

T̂ =
(

0.9257 0.0743
0.0820 0.9180

)
M =

(
0.9629 0.0371
0.0427 0.9573

)
,

T̂M−1 =
(

0.9596 0.0404
0.0427 0.9573

)
and

103



CHAPTER 3. ANALYSIS OF PROJECTED TRANSFER OPERATORS

Figure 3.32: First 10.000 sample points. top: α = 10 tracks the region
around the two deepest wells, bottom: α = 2 identifies a small region inside
of the less pronounced well.

i 0 1
λ̂i 1.0000 0.9169
λi 1.0000 0.9215

α = 2:

T̂ =

0.9282 0.0266 0.0452
0.3611 0.3185 0.3204
0.0476 0.0272 0.9252

 M =

0.9733 0.0141 0.0126
0.1890 0.6443 0.1667
0.0137 0.0142 0.9721

 ,

T̂M−1 =

0.9494 0.0199 0.0308
0.2738 0.4830 0.2432
0.0315 0.0207 0.9478


and

i 0 1 2
λ̂i 1.0000 0.9174 0.4627
λi 1.0000 0.9215 0.4569
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Again, we observe that for the very dominant timescales T̂M−1 is a
stochastic matrix, which implies that QTQ will always transfer probabil-
ity distributions. So, also in the two dimensional case it was possible to
estimate Markov chains on the state spaces Ê = {1, 2} and Ê = {1, 2, 3}
respectively, which approximate the slowest transition behaviour of the con-
tinuous Markov process well. Moreover, the effort that was needed to find
these results in two dimensions was not increased against the effort in one
dimension.

Note that the important idea is to identify the core sets just with respect
to the trajectory that we want to use in order to estimate T̂ andM later on.
This identification is realized by comparing the two measures µ and T̃αµ in a
small region along the trajectory. In continuous or large discrete state spaces
this will result in a sampling problem. If we just wanted to identify core sets
without having in mind that we want to estimate T̂ andM from a trajectory,
this could quickly cause problems in higher dimensions. Therefore, we first
start the sampling for T̂ and M , which cannot be avoided, and restrict our
analysis to the resulting trajectory. At the same time this trajectory serves
as a sample for µ in its own neighbourhood. This also implies that if the
Markov process lives on a lower dimensional manifold, for example, we will
automatically work on this manifold without complete identification of this
object. So, in order to find the core sets one has to overcome this sampling
problem, but with the proposed construction we can expect the effort to be
much smaller than the sampling effort to estimate the MSM itself.

In the next section, we will demonstrate the core set identification for
Markov jump processes on finite state space. In this case we do not have
to sample probabilities because we can compute all measures directly. This
will also underline that in continuous state spaces the core set identification
reduces mainly to the sampling problem. Moreover, we will recognize that
this Markov State Modeling technique will immediately lead to an interest-
ing new approach to fuzzy clustering problems of Markov chains and Markov
jump processes.

3.5 An Approach to Fuzzy Clustering

We start this section with the task to build a Markov State Model based
on milestoning for a Markov jump process (Xt)t∈R on finite state space
E = {1, ..., N}. We assume that (Xt) is reversible, has a generator L and a
unique positive invariant measure µ. In this case, L can be expressed by a
n× n rate matrix, i.e.

L(x, y) ≤ 0 ∀x 6= y L(x, x) = −
∑
y∈E
y 6=x

L(x, y) < 0. (3.95)
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We have briefly reviewed a result of [36] in Theorem 6. It states that
the construction of a Standard Markov State Model based on a full par-
tition with n sets corresponds to a metastable clustering problem. This
relationship between full partition Markov State Models, the projection er-
ror δ = max

i=1,...,n−1
‖Q⊥ui‖, and metastability has been exploited to develop

methods that cluster the state space with respect to metastability [18]. Nev-
ertheless, we have seen that from the MSM perspective it can be very useful
to refine the partition in transition regions, where eigenvectors are strongly
varying. This makes also sense from the clustering point of view because
for such states it is not totally clear to which cluster they should be as-
signed. Most of the time there is no satisfying answer to this question. On
the other hand, in the context of clustering one usually tries to avoid to
introduce many of such small cluster. A possible way out of this dilemma
is a so called fuzzy clustering. That is, we have to find for every cluster
i ∈ {1, ..., n} = Ê an affiliation function fi

fi : E → [0, 1],
n∑
i=1

fi(x) = 1 ∀x ∈ E. (3.96)

The properties in (3.96) imply that (fi(x))i∈Ê is a probability distribution
on the cluster space Ê. This allows for an interpretation of a fuzzy clustering
as a randomly generated normal clustering. That is, every state x will be
assigned to cluster i with probability fi(x) independently of the other states.
One can think of a fuzzy clustering as an ensemble of deterministic ones.
On the other hand, the word clustering claims that there should be some
structure in these randomly generated sets because the goal of clustering is
separation. That is, at least some states should always be separated, i.e. be
assigned to different cluster in all realizations. Therefore, we assume that
for every cluster i there should exist a set of states

Ci = {x ∈ E|fi(x) = 1}, (3.97)

which we call core of the cluster.
At this point we should notice an analogy. When we considered Markov

State Models based on milestoning instead of full partition MSM, we chose
a different subspace D for projection of the operator T . That is, instead
of the space span{1A1 , ...,1An} we introduced a subspace D spanned by
the committors D = span{q1, ..., qn}. Now, these committors are affiliation
functions (3.96), so they define a fuzzy clustering, and the cores of this
clustering would contain the core sets of the MSM. On the other hand,
enlarging the core sets to the sets (3.97) with respect to the committors
would not change the projection and provide an equivalent Markov State
Model. This means that we have a connection between core set MSM and
fuzzy clusterings as we had before between Standard MSM and deterministic

106



3.5. AN APPROACH TO FUZZY CLUSTERING

clusterings. Moreover, we have understood that the region of all core sets
E \C should be metastable and attractive on the dominant timescales. This
would justify the use of methods like PCCA+ [19], optimal fuzzy aggregation
[69], or other metastable fuzzy cluster approaches to identify the sets (3.97)
and therefore to construct a core set MSM.

The drawback is that fuzzy cluster problems are computationally much
harder to solve than deterministic problems, in general. However, we ap-
proached the task of the construction of a core set MSM already in the last
section. We still want to exploit the connection between Markov State Mod-
els and cluster problems but the other way around. The idea is not to use
a fuzzy cluster method to define a Markov State Model, but rather let the
construction of the MSM define a fuzzy cluster method. In Section 3.3 we
have seen that one can split the task of constructing a MSM into two steps.
First, we have to find the region E \C =

n⋃
i=1

Ci and second, we have to split
this region into the core sets C1, ..., Cn. The last Section 3.4 introduced an
algorithmical idea to solve the first issue for a parameter dependent Markov
process. In the case of a finite state space we even do not have to face the
sampling problem. We can take the invariant measure µ∗ of the process with
reduced metastability, calculate for α > 0 the set

Cα = {x ∈ E|(eLαµ∗)(x) > µ∗(x)}, (3.98)

and simply set E \ C = Cα. In the second step, we have to split E \ C
into n sets C1, ..., Cn. That is, the calculation of (3.98) transformed the
fuzzy cluster problem on the set E into a deterministic cluster problem
on the smaller set E \ C. Usually, this can be solved efficiently since the
problematic region C is not involved anymore. E \C should consist only of
states, which are dynamically well separated. For Markov jump processes,
we propose to study the dynamics of the embedded Markov chain w.r.t. the
original jump process in terms of milestoning, where we treat every state
in E \ C as single core set (cf. example below). Then, we can apply a
spectral deterministic clustering method, e.g. PCCA [18]. The advantage
is that this process between the states in E \ C does not depend on a lag
time τ > 0. Having clustered the set E \C, the core set MSM is defined. It
immediately implies a fuzzy clustering of the state space E by the associated
committors q1, ..., qn. Note that this type of affiliation is also very natural.
Once we know where the cores of the cluster (3.97) are, we have to define
a probability for all states in C to become assigned to one of these cluster.
Letting the committors define these affiliation functions means that we let
the dynamics of the Markov process itself decide. That is, for a state x and
a cluster i we simply choose the affiliation fi(x) to be the probability that
starting in x the Markov process will reach the cluster core Ci next.
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Application to Networks

We will now apply this method to an example. We consider a network, i.e. a
set of nodes V = {1, ..., N} and a set of edges with adjacency matrix a(x, y),

a(x, y) =
{

1, edge between nodes x, y exists
0, else.

(3.99)

The example network is illustrated in Fig. 3.33.

Figure 3.33: Example Network

This network consists of N = 200 nodes and 360 edges. It is well known
that there is a strong connection between networks and Markov processes.
We will follow the approach of [67] and define a class of random walks on
the network, namely continuous Markov jump processes with generators
Lξ, ξ ∈ N0

Lξ(x, y) =

−
1

d(x)ξ , x = y
a(x,y)
d(x)ξ+1 , x 6= y,

(3.100)

where
d(x) =

∑
y∈V

a(x, y) (3.101)

is the degree of a node x. One can directly compute that the embedded
Markov chain of these jump processes is given by the transition matrix

P (x, y) = a(x, y)
d(x) , (3.102)
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independently of the parameter ξ. Moreover, the processes are reversible
and have for connected networks the unique invariant measure

µξ(x) = 1
Zξ
d(x)ξ+1. (3.103)

If we look at the example network in Fig. 3.33, we notice that there are
some nodes which are strongly interconnected, and parts which have only
few edges. The family of random walks in (3.100) is constructed such that
the interconnected sets become metastable in the sense of the random walk.
Moreover, the expected waiting times of the random walk in each node is
given by −1/l(x, x) = d(x)ξ. That is, for increasing ξ the Markov process
will jump from node to node faster, relatively to the other jump rates, if
the nodes are only loosely connected. This means that we can apply our
algorithm to this class of parameter dependent Markov jump processes if we
are interested in computing a fuzzy clustering, where rather interconnected
nodes will become the cores of the cluster (3.97).

For our example, we take the generator L := L1. The spectrum of the
generator is shown in Fig. 3.34.
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−0.018
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−0.002
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Figure 3.34: First 12 eigenvalues of the generator L.

From this picture, we would guess for a spectral clustering method that
we should consider 7 or 8 cluster. On the other hand, we do not have to
decide on the number of cluster at this point. We will see that this is a big
advantage of the whole approach. At the moment, we only have to specify
an α in order to erase the transition region C.

Influence of α and cluster number. Let us start with α = 1000. Com-
pared to the implied timescales of the jump process, this is a rather large
choice because −1/Λ7 ≈ 1000. We know that larger α will only show core
sets, which are attractive on the long timescales. So with a large choice of α
we implicitly reduce the resolution of the clustering, i.e. we will get rather
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few cores in the clustering. The invariant measure of the less metastable
and less attractive jump process with generator L0 is given by

µ∗(x) = 1
Z
d(x) = 1

Z ′

√
µ(x), (3.104)

where µ is the invariant measure of our main Markov process. So, we com-
pute Cα as in (3.98), and as proposed above the lag time independent tran-
sition matrix Pα on Cα

Pα(x, y) =
∑
z∈V

P (x, z)qy(z), x, y ∈ Cα, (3.105)

where {qy}y∈Cα are the committors treating every node in Cα as single core
set Cy = {y}. That is, Pα(x, y) describes the probability that starting in
node x the next node that is reached will be y, ignoring the waiting times.
In our example, the spectrum of this matrix is visualized in Fig. 3.35.

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.35: First 12 eigenvalues of Pα for α = 1000.

It is not surprising that the gap in the spectrum after 8 eigenvalues
became much clearer because we expected the core sets on the dominant
timescales to be dynamically well separated. On the other hand, we fixed
the cores of the cluster but still did not decide on a cluster number. Now, this
is again a useful feature of this approach breaking down a fuzzy clustering
into these multiple steps. We can look at hierarchical structures inside of a
clustering for fixed cluster cores by simply choosing different cluster numbers
for the second deterministic cluster part. On page 114, we see the results
of the cluster analysis for the example network. First, we see the identified
region Cα for α = 1000 and a hierarchical splitting into 6,7, and 8 sets.
Then, we decrease α to a value of 150 and find the following spectrum of Pα
(Fig. 3.36).

Now, we could consider up to 10 cluster, although the last two eigenval-
ues indicate a lower metastability. On page 115, we immediately see where
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Figure 3.36: First 12 eigenvalues of Pα for α = 150.

this comes from. Because of the lowered α value another small, less intercon-
nected region was marked to be treated as a core set. Then, the spectrum
of the associated transition matrix Pα suggested to cluster them separately
rather than to merge them with existing cores.

The choice of a cluster number is usually one of the most challenging
tasks in cluster analysis. In many situations there is even no unique best
solution. Our approach handles this issue differently. One the one hand,
it tries to make the choice of the most interesting cluster number easier by
concentrating on the most separated sets. Therefore, the spectrum of the
matrices of the random walks becomes easier to interpret. For example,
usually one considers a random walk on the network that is described by
the Markov chain with transition matrix P (3.102). Its spectrum is shown
in Fig. 3.37, which does not at all display the structure we identified.
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Figure 3.37: First 12 eigenvalues of P (3.102).
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On the other hand, our method provides a high level of control and in-
terpretation to different layers of the clustering. That is, we can choose
between two types of hierarchical refinement of the cluster. For fixed α, we
can analyze different resolutions within the cluster cores, or we can decrease
the value of α in order to introduce new core sets, which will have to corre-
spond to less pronounced cluster. Finally, we should note that the effort to
compute such a fuzzy clustering boils down to the effort of the deterministic
cluster part w.r.t. the Markov chain described by Pα (3.105). Before that,
we have to compute Cα, which needs to evaluate eLαµ∗. Nevertheless, we
never use the matrix exponential again, so we can also use algorithms like
[3] to directly compute the action of eLα to µ∗. In the last step, we only
have to solve the linear equation (2.25) to achieve a full fuzzy clustering on
E.
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Reference to cluster methods

The literature contains many techniques targeting network partitioning.
First, one has to distinguish between deterministic and fuzzy cluster ap-
proaches. Deterministic clusterings are very popular and there are a lot
of different approaches, methods and variants. Some ideas are based on a
random walk approach [18, 47, 6, 22, 45, 23] and often use spectral decom-
positions. Others use measures directly on the graph like betweenness [30],
modularity [53], congestion [16], etc. On the other hand, in real applica-
tions one usually encounters some nodes, which do not belong to a certain
community but rather have an affiliation to several cluster. This is why
one often prefers fuzzy cluster approaches. There are several fuzzy versions
of deterministic cluster methods which analyze random walks like [19, 69].
We find techniques based on Gaussian mixture models [31, 32], Bayesian
network models [38], and many other fuzzy clustering algorithms [34]. Most
of these algorithms solve optimization problems with respect to a functional
that measures the quality of the clustering in some sense. For example, the
methods in [54, 13, 2, 26, 1] use a specific statistical model , i.e. they assume
that the associated graph of the network was constructed randomly with re-
spect to some parameterized probabilistic model. Then, they optimize the
likelihood with respect to the parameters.

We have seen that our approach is also connected to random walks, but
the analysis of the associated Markov process is performed very differently.
We do not assume that the graph is generated according to a particular
underlying model and we do not solve an optimization problem. We rather
use the Markov State Modeling technique to find the cores of the cluster
directly. Then, we analyze another random walk, who just lives on these
core sets, aiming at a deterministic clustering. Having erased the nodes
which have affiliation to different communities, the application of one of the
many available and fast deterministic cluster methods is reasonable again.

To avoid confusion we want to point out that our approach has nothing to
do with so called random networks, i.e. graphs that are generated according
to a probabilistic rule, which is also described by a transition matrix. As
mentioned above, some cluster methods are based on the assumption that
a network of interest is the realization of such a random network. Our
approach uses a probabilistic framework only in terms of a random walk on
a given network but does not analyze the stochastic generation of networks.
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Summary

For 15 years, so called Markov State Models (MSM) have been used suc-
cessfully to simplify large complex systems, which are described by Markov
processes. The goal of Markov State Modeling is the approximation of a
Markov process by a Markov chain on a small finite state space. Until
2005, Markov State Models have been always constructed via full parti-
tions of state space, i.e. sets that cover the whole state space. That is,
one calculated the transition probabilities for the approximating Markov
chain from the transition probabilities of the original Markov process be-
tween partitioning sets. We also called this class of methods classical or
Standard MSM. Then, [19] introduced the idea of rather using fuzzy affil-
iation functions instead of a deterministic clustering into sets. Two years
ago, in [11] an approach was proposed that avoided full partitions of state
space and constructed a fuzzy MSM variant by defining small disjoint sets
in the most dominant metastable regions. Recently, we introduced another
method, which is based on these so called core sets, in [70].

In this thesis, we developed a mathematical framework that is applicable
to all of these former MSM techniques. We used a general, functional ana-
lytic approach and understood Markov State Models as best approximations
of the original transfer operator in terms of discretization. For core set based
MSM this led to a new construction via conditional stopping times instead of
transition probabilities. From this point of view we could also prove several
statements about the approximation quality of the models, which are also
valid for classical MSM and other methods that refer to projected operators.
For example, we connected the reproduction of the dominant timescales of
the system by the Markov State Model to projection errors of the associated
eigenvectors. From error estimates for these projection errors, we further
understood how to choose the discretization, i.e. the core sets, in order to
ensure a good approximation quality. Moreover, we used these results to
construct an algorithm for the estimation of the MSM from a realization
of the original Markov process. One should emphasize that the estimation
of an appropriate discretization itself is also part of this method. Finally,
for finite state spaces we could connect the core set based MSM variant to
so called fuzzy cluster problems. That is, we used the construction of the
Markov State Model to develop a novel fuzzy clustering approach and we
demonstrated its properties by application to a sample network. We think
that this ending is very appealing because it shows the broad impact of
the developed mathematical framework. We started with MSM, i.e. dis-
cretizations for Markov processes on continuous state spaces, and using the
results from this analysis we ended with a proposal for the fuzzy clustering
of networks.
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Zusammenfassung

Seit 15 Jahren werden so genannte Markov State Modelle (MSM) erfolg-
reich eingesetzt um komplexe Systeme zu vereinfachen, die von Markovpro-
zessen beschrieben werden. Das Ziel eines MSM ist die Approximation ei-
nes solchen Markovprozesses durch eine Markovkette auf möglichst kleinem
Zustandsraum. Dabei werden die Übergangswahrscheinlichkeiten der Mar-
kovkette aus Übergangswahrscheinlichkeiten des ursprünglichen Prozesses
zwischen Teilmengen des Zustandsraums berechnet. Bis 2005 wurden hier-
bei immer vollständige Zerlegungen betrachtet, d.h. die Teilmengen über-
deckten den kompletten Zustandsraum. Solche Modelle nannten wir daher
auch klassische oder Standard MSM. Mit [19] kam die Idee auf, die Punkte
des Zustandsraumes nicht deterministisch in Mengen aufzuteilen, sondern
so genannte weiche/fuzzy Zuordnungen zu verwenden. Vor ungefähr zwei
Jahren wurde dann in [11] vorgeschlagen, ebenfalls vollständige Zerlegun-
gen zu vermeiden und eine fuzzy MSM Variante durch vereinzelte, disjunkte
Mengen in den Regionen der höchsten Metastabilität zu konstruieren. Auf
diesen so genannten Core Sets beruht auch der bisher letzte, von uns in [70]
vorgestellte Ansatz.

In dieser Arbeit ist nun ein mathematischer Rahmen entstanden, der
alle bisherigen MSM Methoden einschließt. Dazu wählten wir einen funktio-
nalanalytischen Zugang und verstanden Markov State Modelle als Bestap-
proximationen des ursprünglichen Transferoperators durch Diskretisierung.
In Bezug auf Core Set basierte MSM entstand daraus eine neuartige Kon-
struktion durch bedingte Stoppzeiten anstelle von einfachen Übergangswahr-
scheinlichkeiten. Wir erarbeiteten aus diesem Blickwinkel mehrere Resultate
über die Approximationsgüte der Methode, welche sogar für die klassischen
MSM und andere Verfahren gültig sind, die sich auf Projektionen von Ope-
ratoren zurückführen lassen. Wir konnten unter anderem zeigen, dass die
dominanten Zeitskalen des Markovprozesses durch das MSM korrekt wieder-
gegeben werden, falls die Projektionsfehler der dazugehörigen Eigenvektoren
klein genug sind. Fehlerabschätzungen für diese Projektionsfehler ließen so-
gar die Einsicht zu, wie ein solches Core Set basiertes Markov State Modell
zu konstruieren ist. Wir konnten dies nutzen, um einen Algorithmus zur
Schätzung des Modells aus einer Simulation des ursprünglichen Prozesses
anzugeben. Besonders hervorzuheben ist, dass die Methode auch die Schät-
zung der Core Sets, also der Diskretisierung selbst, beinhaltet. Für endliche
Zustandsräume konnten wir die Ideen zur Konstruktion der MSM nutzen um
einen neuartigen Ansatz zur Clusteranalyse herzuleiten. Die Methode wurde
dann an einem Netzwerkbeispiel verdeutlicht. Wir finden, dass dies ein har-
monisches Ende ist, da es die weitreichenden Einsatzmöglichkeiten des ent-
wickelten mathematischen Hintergrundes aufzeigt. Wir begannen mit einer
Analyse von MSM, d.h. Diskretisierungen von Markovprozessen auf konti-
nuierlichen Zustandsräumen, und nutzen die Resultate um die Arbeit mit
einem Vorschlag zu fuzzy Clusterverfahren abzuschließen.
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