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Chapter 1

Introduction

1.1 Multivalency, an important concept in nature

Figure 1.1: A burr – an example for large-scale multivalency in nature. Photo by
Christian Fischer.

Multivalency is a key principle in nature. By means of multivalency, nature is

able to create interactions that are both strong and reversible. A well known

botanical example is the burdock, which, by displaying a great number of microscopic

hooks on its prickly seed capsules (called burrs), manages to achieve firm attachment

to the fur of animals or the clothing of men, thus providing an excellent mechanism

for seed dispersal. As was recently pointed out by Haag et al. [1], man has copied

this principle in order to create Velcro R©, where firm and reversible attachment of two

opposing textile surfaces is achieved by presenting a very large number of tiny hooks on

the one component, and an equally large number of tiny loops on the other component.

When the two components meet, the hooks catch in the loops, and the two pieces fasten

(or bind) temporarily. While the interaction between a single hook and a single loop is

1
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negligibly weak, the strength of this connection is achieved only by the high number of

simultaneously interacting sites – by multivalency.

In nature, this principle is observable not only on the macroscopic, but also on the

molecular level. In a biological context, the tiny hooks and loops are represented by

highly specific and complementary ligands and receptors.

The human immune system, for example, depends on multivalent interactions in order

to route leukocytes to sites of tissue damage or injury, a fact that has been pointed

out by Whitesides and coworkers [2]: During an inflammatory response, stimuli such as

histamine and thrombin cause endothelial cells to mobilize selectin molecules (a family

of receptors that mediate cell adhesion) from stores inside the cell to the cell surface. As

the leukocyte rolls along the blood vessel wall, the lectin-like domain of the endothelial

selectin binds to sialyl-LewisX (sLeX) carbohydrate groups presented on proteins on the

leukocyte, which slows the cell and allows it to leave the blood vessel and enter the site of

infection. The low-affinity nature of selectins is what allows the characteristic “rolling”

action attributed to leukocytes during the leukocyte adhesion cascade. In order to slow

down the leukocyte at the right position and initiate firm adhesion and transmigration

of the leukocyte into the injured tissue, the multivalent presentation of both selectin

receptors and carbohydrate ligands is a key factor (Figure 1.2).

Figure 1.2: The leukocyte adhesion cascade, a fundamental biological process that
is dependent on multivalent interactions [2]. (1) By expression and display of E- and
P-selectins on the surface of nearby endothelial cells, a leukocyte is directed to a site
of injury. (2) Through sLeX, the leukocyte interacts polyvalently with the E- and P-
selectins on the endothelial surface. In addition, sLeX moieties on the endothelial cell
interact with L-selectins expressed on the surface of the leukocyte. (3) The shape of the
leukocyte flattens, which increases the number of interaction sites. (4) The migration of
the leukocyte through the endothelial surface and extravasation into the injured tissue
is mediated by integrins. Figure taken from [2], reprinted with kind permission of John

Wiley and Sons.

Not only the immune system, but also its assailants make use of multivalency. The

influenza virus, for instance, attaches to its host cells on the bronchial epithelial surface



Chapter 1. Introduction 3

via multiple copies of the hemagglutinin molecule at the same time (Figure 1.3). Hemag-

glutinin binds to sialic acid, a terminal sugar that is presented on many glycoproteins of

the cell surface. As hemagglutinin itself is a trimer with three sialic acid binding sites,

the valency of the interaction is increased further. Once a firm attachment between

cell surface and virus is achieved, the virus is engulfed by a portion of cell membrane

and thus enters the cell via endocytosis. Once inside the host cell, the virus induces a

sequence of steps in order to release its contents, including the viral RNA genome, into

the host cell’s cytoplasm [2].

a) b) c) 

Figure 1.3: Schematic representation of influenza virus entering a cellular host [2]. a)
The virus attaches to the cell surface through polyvalent interactions of viral hemag-
glutinin and cellular sialic acid sugars. b) The virus is engulfed and endocytosed by the
cell. c) After endocytosis, acidification triggers the fusion of the viral envelope with the
endosomal membrane, upon which the viral RNA genome and replication machinery is
released into the cytoplasm. Figure taken from [2], reprinted with kind permission of

John Wiley and Sons.

The latter example shows that multivalency in nature is not only a means to enhance the

binding potency of individually weak interactions, but is also used in order to preorganize

and control geometries on length scales that surpass the size and range of individual

ligands and receptors by several orders of magnitude. In this case, the multivalent array

of hemagglutinin molecules on the virus surface promotes the formation of a very large

molecular architecture, namely the endosome that will engulf the virus and transport it

into the cell [1].

1.2 Synthetic multivalency

The purposeful use of multivalent chemical compounds for different applications sug-

gests itself. Directly related to the example of the importance of multivalency for viral

infection strategies, Whitesides and coworkers conducted a comparison between mono-

and multivalent inhibition of influenza virus [3, 4]. The authors presented a polymeric

inhibitor containing 20 % sialic acid on a polyacrylamide backbone with a very low in-

hibition constant of only 600 pM, compared to an inhibition constant of 2 mM for its

monomeric counterpart.
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In 2000, Kitov et al. developed a pentavalent, water-soluble carbohydrate ligand for the

inhibition of Shiga-like toxin [5]. Shiga toxins circumvent their low binding affinity by

binding simultaneously to five or more cell-surface carbohydrates. In vitro, the pen-

tameric inhibitor named STARFISH reached a subnanomolar inhibitory activity with

an IC50 value of 0.24 nM, a ten million-fold increase compared to the monovalent ligand

(IC50 = 0.21 mM).

More recently, Schwefel et al. investigated the binding of a tetravalent neoglycopeptide

ligand to the plant protein wheat germ agglutinin (WGA) [6]. For this compound,

consisting of four N -acetylglucosamine (GlcNAc) moieties tethered to a cyclic peptide

backbone at distances tailored in order to fit the binding sites of the protein, they re-

ported an IC50 value of 0.9 µM, which corresponds to a 6400-fold increase in inhibitory

activity per GlcNAc unit.

The above examples show that bridging adjacent protein binding sites by multivalent

scaffolds can transform low-affinity ligands into potent inhibitors – a finding that opens

up new perspectives (and challenges1) for drug design. In a way, the rise of therapeu-

tic monoclonal antibodies (“biologics”) in the recent years may also be a vehicle for

transfering the concept of multivalency into everyday pharmaceutical applications [7].

Figure 1.4: Schematic representation of a) a virus binding to a cell surface prior to
infection, in the presence of b) a conventional monovalent inhibitor and c) a multiva-
lent inhibitor using a dendritic scaffold. By interacting with multiple viral receptors
simultaneously, the multivalent compounds form a screening around the viral surface
that forestalls binding to the cell surface. Figure taken from [1], reprinted with kind

permission of John Wiley and Sons.

Apart from the obvious applications in medicine and biochemistry, the concept of mul-

tivalency shows great promise for the structurally defined construction of new func-

tional molecules in supramolecular chemistry [8] and in material sciences [9]. Multiva-

lent molecular systems might serve as a starting point for the directed self-assembly of

increasingly complex structures (e.g. functional “molecular machines”), or a chemical

structuring of surfaces on the nanometer scale [10].

1The challenges are, for example, to create biocompatible and, if necessary, cell-penetrating spacers
and scaffolds
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Current synthetic multivalent systems are not on par with the diversity and functionality

of biological multivalent systems. Nonetheless, small synthetic multivalent host-guest

systems that are being studied are providing helpful insights into the mechanisms of

multivalent binding [11]. In contrast to biological systems, the systematic variation of

synthetic structures is typically easier to realize, allowing for the study of very spe-

cific, structure-related effects based on larger series of compounds. Furthermore, the

quantitative analysis of synthetic systems is facilitated by the fact that the number of

interacting sites is controllable. Last but not least, the spacer and scaffold structures

that are used to connect, present and preorganize the binding moieties can be varied

and modified [1], which leads to one of the main topics of this thesis, namely the design

of successful architectures for the multivalent presentation of ligands.

1.3 Architecture and design of multivalent compounds

Typically, a monovalent ligand is reducible to structural elements that are directly in-

volved in binding to its receptor binding site, be it a highly specific enzymatic binding

site, or a rather promiscuous, non-enzymatic binding site on a cell surface receptor. The

design of multivalent ligands, by contrast, involves that multiple binding moieties (or

“ligands” in the original sense) are tethered to a molecular spacer or scaffold. The task

of the spacer is to connect the binding moieties and to present them at more or less

defined distances. A scaffold serves the same purpose as a spacer, but offers additional

levels of organization or architecture, based on its structural properties (Figure 1.5).

The linkage between binding moiety and spacer or scaffold, in turn, is denoted as linker.2

While in the most basic case, the linker consists of a single chemical group that remains

from the linkage reaction, it can also have a more elaborate structure that is meant to

serve a certain purpose, such as enforcing a certain distance or angle of presentation

between spacer and binding moiety. Obviously, unlike the chemically or enzymatically

labile linkers used for applications in drug delivery, the linkage between spacer and

tethered binding moiety is required to be stable under the given conditions [12, 13].

The rational design of multivalent compounds has to encompass the choice of binding

moiety (known monovalent binders are an obvious choice), the choice of spacer tethering

position and linkage group (often dictated by what is feasible from the perspective of

synthetic chemistry), and the choice of spacer or scaffold structure. The latter two are

largely responsible for how the binding moieties are presented to the receptor, and thus

represent a key factor for the realization of multivalent binding. Depending on their

2The nomenclature in the literature is somewhat misleading, as linear spacers are frequently denoted
as linkers, too. In the course of this thesis, the term linker will refer only to the linkage between binding
moiety and a higher unit of organization, such as the spacer.
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Figure 1.5: Schematic of different types of spacers and scaffolds for presenting multi-
ple ligands: a) Linear polymeric spacer (flexible), b) Linear polymeric spacer/scaffold
(rigid), and c) spherical dendritic polymer scaffold (nanoparticle-like). Ligand moieties

are shown in blue, linkers in red.

structural properties, different parameters of ligand presentation can be adjusted. A

flexible chain-like spacer will restrict the spacing of binding moieties to a certain dis-

tance range. A rigid nucleic acid spacer will also restrict the angle of presentation. If,

for instance, the binding moieties are presented on a spherical dendritic polymer such as

hyperbranched polyglycerol (hPG) [14, 15], the size of the polymer will determine the

lateral density of presented binding moieties and the curvature of the binding interface.

The adjustment of ligand presentation parameters opens up a wide range of possibilities

of optimizing and tailoring the spacer or scaffold system with regard to its target recep-

tor(s), given that the corresponding structural information is available. In fact, one can

find many examples in the literature where even subtle changes in the spacer or scaffold

structure were connected to very distinct changes in binding affinity [6, 16, 17].

Of course, the degree of preorganization that can be achieved also has to be related to the

scale and valency of the interacting entities. If the goal is to create a high-affinity bivalent

ligand for a dimeric protein such as estrogen receptor, preorganization and spacer design

on the Ångström scale is meaningful (and probably necessary, as will be discussed in

Chapters 4 and 5). If, however, the target is a undefined number of mobile receptors on

the cell surface, or a multitude of interaction sites on the glycocalix, preorganization has

to resort to a coarser level of architecture, e.g. the choice of shape and curvature of the

functionalized nanoparticle to be used, and/or the density of ligands to be presented.

A lack of structural knowledge can be compensated either by systematic screening (e.g.

different spacer lengths, or different polymeric scaffolds) or by allowing for increased

variability in the presentation of the binding moieties. The latter can be implemented

by using very flexible spacer or scaffold structures, which however increases the entropic

penalty of binding (to be discussed in Chapter 2) and possibly evokes certain side effects

that can be difficult to control (to be discussed in Chapter 4). Interestingly, multivalent

architectures can also create new possibilities of gaining structural information about a

given receptor. Chapter 5 will elaborate on an approach devised by Seitz and coworkers

[18], where linear nucleic acid scaffolds equipped with multiple copies of a ligand are
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used for screening the distance between the binding sites of a dimeric protein. Results

obtained by this comparatively inexpensive method of screening can be used as a basis

for further optimization, even in the absence of a crystal structure.

Using methods of molecular simulation, this thesis will make an effort to (i) contribute

to the process of designing spacers and scaffolds for multivalent chemical systems and

(ii) investigate the mechanisms of multivalent enhancement, possibly by finding traces

of a cooperative effect within the binding process.

The first scientific goal, (i), is addressed in Chapters 4 and 5, respectively, where the

results of a number of studies on flexible and rigid spacer and scaffold structures are

presented. These studies, conducted in close cooperation with experimental scientists,

attempt to enhance the understanding of the dynamics of spacer and scaffold struc-

tures and their interactions with ligand moieties as well as the receptor by means of

conformational analysis. The computational results are related to “wet” experimental

measurements whereever possible. It will become clear that spacer and scaffold struc-

tures represent “more than innocent spectators” [1] in the process of multivalent binding.

Based on the findings, certain guidelines for the design of spacers and scaffolds for the

multivalent presentation of ligands are suggested.

Chapter 6, in turn, will focus on (ii), the more general mechanisms of multivalent binding

by analyzing the molecular simulation of a bivalent host-guest binding process in explicit

solvent – to the best knowledge of the author, the first one that is being reported. A

large part of Chapter 6 will deal with the technical difficulties that are connected with

the sampling of binding processes by means of molecular simulation. The ZIBgridfree

algorithm, reimplemented, enhanced and validated in the course of this thesis, is in-

troduced as a tool for tackling some of these difficulties. In summary, Chapters 4–6

represent the “applied” part of this thesis.

The applied part of this thesis is complemented by a theoretical part, constituted by

Chapters 2 and 3. First, Chapter 2 will provide the theoretical background on multiva-

lent interactions – i.e. the “chemical theory” of this thesis – addressing the theoretical

concepts that are available for describing the subtle effects that are at work in multivalent

ligand-receptor systems, followed by Chapter 3, providing a theoretical background on

molecular simulation, with a focus on statistical ensembles and a selection of algorithms

necessary for mimicking experimental conditions in simulations.

The next section will feature a very brief introduction on the field of molecular simula-

tion, also addressing the questions if molecular simulation is able contribute to the study

of multivalent systems in the first place, as well as how and where it might complement

the use of “wet” experimental methods in a meaningful manner.
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1.4 Molecular simulation of multivalent systems

A new discipline between theory and experiment

According to Schmidt, Weber, Noé et al. [19], the aim of molecular simulation is the

calculation of macroscopic quantities, or observables, in order to interpret or predict

the outcome of experiments. The observables can be divided into static (equilibrium)

and dynamic (non-equilibrium) properties. The static observables encompass structural

quantities (e.g. structural parameters of proteins) and thermodynamic quantities (e.g. in-

teractions energies, surface tension, or phase equilibria). The dynamic, non-equilibrium

properties range from classic observables of fluids such as heat transmission, diffusion

or viscosity to highly elaborate problems such as the prediction of protein folding, a

notorious challenge for science in the 21st century.

The massive use of computers in quantum chemistry began as early as the 1960s, and

shaped the field of theoretical – or computational – chemistry. The application of com-

putational methods to biochemical systems, became possible only with the advance of

microprocessor technology that was brought about by the 1970s and 1980s, and led to the

emergence of computational biology and molecular simulation, the latter in particular

directed at the challenge of computational drug design by means of molecular modeling

[19]. While the most daring promise of molecular modeling, the purely in silico design

of novel drug molecules, could not be fulfilled3, the field has since then brought forth

many valuable tools for the study and design of molecular systems, in particular when

combined with the power of structure determination, X-ray crystallography and nuclear

magnetic resonance (NMR) spectroscopy. The emergence of bioinformatics in the last

decade has further facilitated the use of computational resources in the life sciences,

in particular by creating and crosslinking comprehensive genomic, (bio)chemical and

structure-based databases. The RCSB Protein Data Bank is a prime example for this

development [21]. In summary, it is safe to state that molecular simulation has become

an established tool, and has gained some renown even by non-theoretical scientists.

Today, molecular simulation, favored by further advancements in single-processor per-

formance and the wide availability of parallel computing architectures, is applied to in-

creasingly large and complex systems. One notable example in this respect is the 50 ns

all-atom molecular dynamics (MD) simulation of satellite tobacco mosaic virus (STMV)

in explicitly modeled solvent, conducted by Schulten and coworkers [22]. At the same

time, recent developments such as cloud computing and the adaption of MD simula-

tion code for use on highly parallel (and yet inexpensive and energy-efficient) graphics

3It can be argued that this is not in particular due to imperfect molecular modeling methods, but
more so caused by a lack of understanding of the principles that govern ligand-receptor binding. The
static “lock and key”-principle, for example, has been proven as a too naive view on this problem [20].
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processing units (GPUs) are raising the appeal of molecular simulation for smaller re-

search facilities, where large computing clusters are usually not maintainable: While the

cost of computer hardware is ever decreasing, the cost of running and maintaining a

large computing cluster is becoming increasingly incalculable due to rising energy costs.

Despite the fact that technical innovations and theoretical progress (e.g. novel efficient

algorithms for calculating non-bonded atomic interactions, cp. Chapter 3.1.1) have in-

creased the applicability of molecular simulation to relevant systems (“relevant” often

is equivalent to “complex”), the field is still facing certain limitations. The most severe

limitation of molecular simulation is the so-called sampling problem.

All observables in molecular simulation are calculated as the expected values of a rep-

resentative statistical ensemble4. In order to obtain meaningful values for the desired

observables, a thorough sampling of the underlying statistical ensemble is necessary, a

sampling that has to be obtained by stepwise numerical propagation of the dynamics

of the system. The dynamics of molecular systems, in turn, is governed by small but

very fast processes, such as the oscillations of chemical bonds and torsion angles. The

timescale of these processes is of femtoseconds (1 fs = 10−15 s), and they have to be

propagated correctly in order to describe the molecular processes on any other timescale

(the computational cost of calculating even a single one femtosecond time step of MD

can be significantly high). Many relevant molecular processes, however, only begin to be

observable in the upper nanosecond regime, and more often take place in the timescale

of microseconds, and above. Consequently, the sampling problem is rooted in the mul-

tiscale nature of molecular systems [19].

Currently, the temporal limits for MD simulations of “large” (biological) systems are in

the microsecond range. More simulation performance can be “bought” by using implicit

solvent models or coarse-grained approaches5, at the expense of precision and validity

of the simulation outcome. Simulations including explicitly modeled solvent, in turn,

require significant computing power, and generate large amounts of (highly redundant)

data that is tedious to handle and to analyze. In summary, molecular simulation is still a

developing field that requires further innovations in order to live up to the expectations

of experimental scientists with regard to its predictive capability.

Application to multivalent systems

In order to study the properties of multivalent systems, a variety of “wet” experimental

methods is available (Table 1.1). The measurements cover thermodynamic quantities

4The notion of statistical ensembles is elaborated in chapter 3.1.2.
5In contrast to all-atom force fields, e.g. Amber [23], coarse-grained (CG) force fields such as MAR-

TINI [24] merge groups of several atoms in terms of larger “beads” in order to reduce the overall number
of particles. The approach is successful in particular for large and hydrophobic molecules such as lipids.
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such as equilibrium constants and binding free energies (including separate terms for

the change of enthalpy and the change of entropy), structural parameters such as ag-

gregate size and shape, and kinetic parameters such as rate constants. In addition to

purely observational studies, it is possible to directly interact with multivalent systems

by methods such as atomic force microscopy (AFM), and thus to derive certain quanti-

ties, e.g. the binding force of a multivalent compound to a functionalized surface [1].

The availability of various methods for deriving quantitative information about multiva-

lent interactions directly from experiments gives rise to the question in how far the use of

computational methods, and in particular molecular simulation (given its limitations),

are meaningful for studying multivalency.

Method Measured quantity Measure for multivalency

surface plasmon resonance
(SPR) spectroscopy

refraction index changes
upon ligand-receptor interac-
tion (mass-dependent)

association constant
IC50

kinetics

NMR spectroscopy diffusion coefficient from
DOSY measurements

size information for detecting
multivalently induced com-
plex formation

NMR integrals or shifts as
a function of ligand-receptor
ratio or NMR titration

free energy of binding
temperature-dependent mea-
surements: binding enthalpy
and entropy
activation parameters ∆G‡,
∆H‡, ∆S‡ (e.g. by line-shape
analysis)

isothermal titration calorime-
try (ITC)

heat as a function of the
ligand-receptor or host-guest
ratio

association constant
binding enthalpy
binding entropy
free energy of binding

atomic force microscopy
(AFM)

pulling force as a function of
the intermolecular distance

binding force

transmission electron mi-
croscopy (TEM)

number of (multivalent)
nanoparticles per aggregate

degree of aggregation induced
by multivalent functionaliza-
tion

visualization of individual
bindings in a multivalent
complex

stability against aggregation
as a function of multivalent
functionalization

high performance liquid chro-
matography (HPLC)

difference in retention as a
function of polarity, molecu-
lar size or binding affinity

determination of equilibrium
constants by competitive
measurements

Table 1.1: A selection of “wet” measurement methods for quantifying multivalent
interactions as compiled by Haag et al. [1]. For a complete list, including examples and

references, refer to the original Ref. [1].

In fact, there are various reasons that justify the use of modeling and simulation ap-

proaches in this context: (i) Experimental methods typically yield macroscopic, averaged
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values that give no immediate information about the microscopic processes in the sys-

tem.6 Modeling of the microscopic processes, in turn, may help to test a hypothesis that

was put forward and can facilitate the interpretation of experimental results. Moreover,

the mere visualization of a given system on the molecular level may suffice to provide

deeper insights and spark new ideas. (ii) Performing molecular simulation prior to ex-

periments can help to narrow down the number of compounds that have to be tested,

e.g. by filtering out candidates that are structurally inapt, saving both time and costs.

(iii) By molecular simulation, it is possibly to estimate quantities that are not directly

derivable from current experimental methods, e.g. the conformational entropy change

upon binding in different parts of a small multivalent ligand.

The latter point can be a double-edged sword, as the outcome of a simulation should in

some form be verifiable by experiment. In summary, however, the benefits of studying

multivalency by means of molecular simulation are evident, in particular as it is a phe-

nomenon where subtle and evasive microscopic effects play an important role. This is

elaborated in detail in the next chapter.

While molecular simulation of multivalent compounds is worthwhile, it is also challeng-

ing. This is mainly due to two reasons: Obviously, (i) multivalent systems are larger than

comparable monovalent systems (if available), and (ii) current modeling and simulation

methods are tailored for small, drug-like7 molecules. Drug-like molecules tend to have

rather rigid structures with a high content of aromatic groups, a property that facilitates

the use of computational high-throughput approaches such as molecular docking.

The first point, (i), refers foremost to the system size in terms of the overall number of

particles. The atomistic simulation of, for example, polyvalently functionalized nanopar-

ticles binding to a cell surface is beyond current technical means. It also refers to the

system size in terms of conformational space volume: Highly flexible structures such as

polyethylene glycol (PEG) chains, used as linkers or spacers, are not large in terms of

the overall number of particles, but have a voluminous conformational space that needs

to be sampled properly in order to make meaningful predictions.

The latter point, (ii), has an impact on the choice of computational tools that are appli-

cable for studying multivalent interactions. Traditionally, ligand-receptor interactions

are evaluated in a rather “static” way in order to limit the computational cost, e.g. by cal-

culating and comparing single-point (e.g. molecular docking [26, 27]) or short trajectory

(e.g. the linear interaction model [28]) interactions energies. The special properties of

multivalent ligand-receptor interactions, however, are rooted in “dynamic” phenomena

(to be discussed in Chapter 2) that can only be captured by studying larger ensembles

6An example is the measurement of “off” rate constants in kinetics. Experiments will only yield the
averaged “off” rate constant for the whole complex, which gives little to none information about how
the microscopic kinetics of a multivalently bound complex works.

7According to Lipinski’s Rule of Five [25], a rule of thumb for “druglikeness”, the majority of drug-like
molecules is small, with a molecular weight of less than 500 u, an equivalent of about 20 to 70 atoms.
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of states. In other words, it is necessary to move from a static, state-based view of

ligand-receptor binding to a more dynamic perspective that focuses on processes – the

topic of Chapter 6.

What remains is to find strategies that allow for the sampling of these large ensembles.

In the course of this thesis, different approaches are taken. The first one is long-time

MD simulation, which basically is the attempt to overpower the sampling problem by

using more computing resources. This is expensive in terms of resources, but a proven

way to capture molecular processes. The second approach is coarse-graining, where

realism and detail with regard to the molecular system under investigation is sacrificed

in order to access larger timescales. Recently, Numata et al. [29] reported how coarse-

grained simulations of PEG spacers in a bivalent ligand-receptor system can be used to

estimate the effective concentration of ligand, depending on the topology of the receptor.

Another recent example is the study of rebinding effects in multivalent systems by Weber

et al. [30], relying in parts on Monte Carlo simulations of a highly simplified bivalent

ligand-receptor system. Finally, the third approach is importance sampling, and other

computational methods that aim at lessening the problems associated with large systems

by using enhanced sampling algorithms [31]. As an example for this class of methods, this

thesis will present the ZIBgridfree sampling algorithm (Chapter 3.2) and its application

to a small multivalent system (Chapter 6.3). An evaluation of the method in terms of

sampling accuracy can be found in Appendix A.



Chapter 2

Multivalent interactions –

a theoretical background

2.1 Terms and definitions

Following the nomenclature summarized by Haag et al. [1], interactions between an m-

valent receptor and an n-valent ligand are considered to be multivalent (m,n > 1, also

m 6= n). Interactions between multiple monovalent ligands (n = 1) with a multivalent

receptor are not multivalent. In this case, however, the binding of the monovalent ligands

is favored due to the symmetry effect [32–34], as an m-valent receptor will bind m times

more monovalent ligands than a monovalent receptor with only one binding site, a fact

that, depending on the ligand concentration, will also promote the occurence of immedi-

ate rebinding after dissociation from the receptor. Both the symmetry effect als well as

rebinding have to be taken into account to multivalent ligands as well. Furthermore, one

can discriminate between homo- and hetero-multivalent ligands and receptors, which ei-

ther have multiple identical binding sites (homo), or multiple non-identical binding sites

(hetero) [1].

Multivalent interactions at interfaces (e.g. cell membranes or functionalized nanolay-

ers) or on larger structures (e.g. viruses or nanoparticles) are often denoted as polyva-

lent interactions. These systems are characterized by the high valency of binding sites

(m,n >> 10) and large-scale (and predominantly lateral) interactions. Although the

terms polyvalency and multivalency eventually describe the same functional concept,

this differentiation in nomenclature can be helpful for providing a certain context. The

focus of this thesis is laid on isolated, homo-multivalent interactions of low valency1.

1Atomistic simulation of upper nanoscale (and above) polyvalent systems is still out of reach for
classical molecular simulation, even on current supercomputers (cp. Chapter 1.4).

13
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Two more noteworthy terms related to the concept of multivalency are avidity (from

the context of biochemistry and immunology) and chelation, or chelate effect (from the

context of inorganic coordination chemistry).

Figure 2.1: Schematized diagrams of dimeric IgA (left) and pentameric IgM (right).
The subunits are held together by disulfide bonds (red). A single J (joining) chain is
disulfide-bonded between the tails of two heavy chains. IgA is the principal antibody
class in secretions such as saliva and tears. During the formation of the IgM pentamer,
the addition of each successive four-chain IgM subunit requires a J chain, which, except
for the final one, is discarded afterwards. Unlike other antibody classes, the IgM subunit
does not have a flexible hinge region within its heavy chain, possibly an explanation

for the comparatively low binding affinity of its antigen-binding sites [35].

The first term, avidity, was coined in order to describe the binding behavior of im-

munoglobulins (or antibodies) of different valency. The five antibody isotypes of mam-

mals can be divided into bivalent (monomeric IgD, IgE and IgG), tetravalent (homod-

imeric IgA, see Figure 2.1, left) and decavalent (homopentameric IgM, see Figure 2.1,

right) structural classes, which in turn differ in their biological properties, functional

locations and ability to deal with different antigens [36].

In contrast to the term affinity, which in this context corresponds to the strength of a

single antibody-antigen interaction, avidity denotes the combined synergistic strength of

all antibody-antigen interactions involved. Given that the antigen has multiple binding

sites, avidity is supposed to be more than the sum of the individual antibody-antigen

binding affinities. The decavalent antibody IgM, for instance, the major antibody class

secreted into the blood in the early stages of a primary antibody response, is known

to have a lower affinity per antigen-binding site compared to its bivalent counterparts,

antibodies IgD, IgE and IgG, but was shown to compensate for this drawback by its

higher avidity – arguably related to its higher valency [37].
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Figure 2.2: Chelate complex of metal and ethylenediaminetetraacetic acid (EDTA).

The second term, chelation, denotes the formation or presence of two or more separate

coordinate bonds between a polydentate ligand (i.e. a ligand having more than one free

electron pair) and a single central atom [38]. While the ligand, denoted as chelator,

chelant or chelating agent, typically is an organic compound, the central atom is of-

ten a double positively charged metal ion (e.g. Fe2+ or Cu2+). It is noteworthy that

chelate complexes play an important role in nature: Prominent examples include heme,

chlorophyll and vitamin B12.

Chelate complexes are known to be more stable than similar monodentate, mutually

untethered ligands. Traditionally, this “chelate effect” is attributed to two causes. First,

the entropy loss upon complex formation is supposedly reduced for tethered ligands, and

hence constitutes a thermodynamic advantage [39]. In the example given in Figure 2.2,

the chelate complex is formed by two entities, whereas a similar complex formed by

nonchelating ligands would consist of seven separate entities, each of which is subject

to entropy loss upon complex formation. In addition, a chelate ligand is not able to

withdraw from the central atom until all coordinate bonds are broken, so that the

dissociation of chelator and metal ion is unfavorable. This renders the chelate complex

very stable, and also increases the probability of immediate reassociation after bond

breaking. More recent studies using isothermal titration calorimetry (ITC) and quantum

chemical methods paint a more ambivalent picture of the origins of the chelate effect,

and conjecture that it is either completely enthalpic in origin [40], or “a result of both

enthalpy and entropy contributions that vary from one system to the other.” [41]

As will be discussed in Sections 2.2 and 2.3, many characteristics of chelate complexes are

trademarks of multivalent systems in general. Although multivalent binding and chelate

binding are sometimes used as synonyms, the latter is rather a special case of a more

general concept. Consequently, the chelate effect, and also the concept of avidity, can be

understood as examples of a more general multivalent enhancement effect. Remarkably,
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this effect can be encountered in very heterogeneous systems that cover several mag-

nitudes of length scale, ranging from sub nanoscale chelate complexes, involving small

organic molecules and metal ions, to microscale lateral interactions between viruses and

cell surfaces [1].

Given the somewhat conflicting results regarding the origin of the multivalent enhance-

ment effect even for the smallest chelate complexes, it becomes clear that the quanti-

tative theoretical description of multivalent chemical systems remains a challenge [1].

Enthalpic and entropic contributions (e.g. the reduction of entropy loss at complex for-

mation), as well as the immediate reassociation after complex breaking (“rebinding”)

have to be considered and put into a larger perspective. First, the following section will

try to compile the thermodynamic aspects of multivalent binding.

2.2 Multivalent thermodynamics

As a first step, it is straightforward to look for the multivalent enhancement effect in

the thermodynamics of multivalent binding. Once an interaction between a monovalent

receptor and a single binding site takes place, a free energy change ∆Gmono will occur.

Hence, for n independent monovalent ligands interacting successfully with n binding

sites, the total change in free energy is n ·∆Gmono. Based on this simple observation,

if a multivalent enhancement effect is at work, it must hold that for an n-valent ligand,

∆Gmulti < n ·∆Gmono. Using the van’t Hoff equation, it is possible to relate the Gibbs

free energy of binding ∆G with the associated binding constant K,

∆G = −RT · lnK (2.1)

where R = 8.3144621(75) J/mol K is the universal gas constant, and T is the abso-

lute temperature. Consequently, for an interaction that benefits from a multivalent

enhancement effect, it must hold that Kmulti > (Kmono)
n [2]. Going back to the original

definition of the Gibbs free energy of binding,

∆G = ∆H − T∆S (2.2)

it is straighforward to trace the multivalent effect in the enthalpic (∆H) and the entropic

term (T∆S) separately, which will be done in the following sections. Nonetheless, it

shall be mentioned that recent research suggests that certain more intricate aspects of

multivalent enhancement (such as an increase in the occurence of rebinding events) are

not clearly separable into enthalpic and entropic components and have to be treated

differently in order to arrive at a proper thermodynamic formulation [30].
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2.2.1 The role of enthalpy

The enthalpy change ∆H is equivalent to the total energy generated by a chemical

or enzymatic reaction at constant temperature and pressure, and only depends on the

initial (unbound) and the final (bound) state of the system under observation. As the

enthalpy change is largely dependent on the nature of the ligand and the binding site

of the receptor, one might assume that for an n-valent ligand, it holds that ∆Hmulti =

n ·∆Hmono. This assumption, however, is unrealistic.

Whitesides et al. use a prototypical, idealized bivalent receptor to illustrate this problem,

see Figure 2.3 [2]: In order to reach the theoretically possible bivalent binding enthalpy

of ∆Hbi = 2 · ∆Hmono, the connecting rigid spacer would have to provide perfect fit

to the receptor, regarding both the spacing between the two binding moieties as well

as the angle of binding moiety presentation. As soon as the spacer is less than perfect

(e.g. the spacing between the binding moieties is too wide or too narrow), an enthalpic

penalty due to strain in both ligand and receptor has to be added to the balance, i.e.

∆Hbi = 2 · ∆Hmono + ∆Hstrain. Intuitively, if the mismatch between binding moiety

presentation and receptor becomes too severe, bivalent binding will become impossible.

In practice, designing a spacer structure with perfect fit is not feasible, therefore a certain

enthalpic penalty for strain in multivalent ligand and receptor has to be anticipated.

3,4cm

3,4cm

+

x

y

x = y, ΔHbi = 2ΔHmono

x < y, ΔHbi > 2ΔHmono

x > y, ΔHbi > 2ΔHmono

2ΔHmono

3,4cm

x

+

Figure 2.3: Simplified model of the enthalpic change upon binding for a bivalent
ligand. For a bivalent receptor with a binding site distance x, the enthalpic change
upon binding for two monovalent ligands is ∆H = 2 ·∆Hmono. For a bivalent ligand
with a spacer (or binding moiety spacing) of length y, ∆Hbi > 2 · ∆Hmono in cases
where y does not match x, as strain energy in both bivalent ligand and receptor has to

be added to the enthalpic balance [2].

Another enthalpic penalty might arise from the chemical modification of the binding

moiety that is necessary in order to attach it to a spacer or linker. This is especially

true in cases where the receptor binding site is very selective, and the binding moiety

to be used for the multivalent ligand has already undergone several cycles of structural

refinement regarding the receptor. In this situation, any modification of the original
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monovalent binding moiety might lead to a less favorable enthalpy.

To be fair, one has to add that a spacer, scaffold or linker structure might be de-

signed such that it is able contribute to a favorable enthalpic balance, i.e. ∆Hbi =

2 · ∆Hmono + ∆Hstrain + ∆Hspacer, with ∆Hspacer ≤ −∆Hstrain. In this situation,

the penalty ∆Hstrain is compensated by favorable interactions between spacer/scaffold

and/or the linker with the receptor surface, in sum denoted as ∆Hspacer. Apart from

the fact that the rational design of such compounds represents a considerable challenge,

it would also be hard to determine the contribution of ∆Hspacer by experiment.

Although not per se related to multivalency, the positive scenario ∆Hmulti < n ·∆Hmono

can be encountered as well. In these cases, the first ligand-receptor binding event at one

of the binding sites of an m-valent receptor triggers a conformational change in adja-

cent, unoccupied receptor binding sites, which in turn leads to (increasingly) favorable

enthalpy for the next m− 1 binding events. This effect is denoted as allosteric (“inter-

site”) cooperativity and plays an important role in certain biological systems.

The best-studied biological example for allosteric cooperativity is the interaction between

tetrameric hemoglobin and four oxygen molecules: Once a single hemoglobin monomer

becomes oxygenated, a conformational change in the whole complex is initiated, causing

the remaining three monomers to gain an increased affinity for oxygen [42]. This effect

is important for the function of hemoglobin as the transporter of oxygen, as it enables

the selective uptake of oxygen at high oxygen levels in the lung, and the targeted release

of oxygen in tissues with a low level of oxygen. As a consequence, the oxygen binding

curve of hemoglobin is sigmoidal, as opposed to the normal hyperbolic curve associated

with noncooperative binding.

Another biological example for allosteric cooperativity is the binding of the oligosaccha-

ride portion of the cell surface receptor ganglioside GM1, called oligo-GM1, to pentameric

cholera toxin B5, which was studied by Schön and Freire using a calorimetric method

[43]. They were able to show that the initial binding of a single oligo-GM1 molecule to

one of the binding sites of B5 will lead to improved enthalpy for subsequent binding

events at the adjacent binding sites.

It is important to note that this form of enthalpic cooperativity is not related to a

multivalent enhancement effect, and that the above biological examples do not rep-

resent multivalent ligand-receptor interactions according to the original definition, see

Section 2.1. Nonetheless, multivalent interactions are able to benefit from allosteric co-

operativity, which makes it even more difficult to determine the “true” contribution of

multivalent enhancement. The idea of cooperativity in multivalent interactions will be

revisited in Section 2.4.



Chapter 2. Multivalent interactions – A theoretical background 19

2.2.2 The role of entropy

As was shown in the previous section, there is not much room for improvement of

∆Hmulti compared to n · ∆Hmono in an n-valent interaction. Several factors, mainly

related to the manner in which the binding moieties are presented to their receptor, may

disfavor the enthalpy of the multivalent interaction. Therefore, whenever multivalent

enhancement occurs (∆Gmulti < n·∆Gmono), it is traditionally attributed to the entropic

term in Equation 2.2.

A short side note on the concept of entropy

The term ∆S states the difference of entropy between the unbound and the bound state.

This term is often denoted a “entropy loss upon binding”, because a system is supposed

to lose entropy when it undergoes the transition from the unbound state into the bound

state. In this context, it is helpful to recall the general concept of entropy. Ludwig

Boltzmann defined entropy as

S = k logW. (2.3)

This formula defines the macroscopic quantity entropy S in terms of the multiplicity W

of the microscopic degrees of freedom of the system.

The concept of multiplicity can be illustrated with a simple lattice model for diffusion,

taken from Ref. [44]: Given that one has four black particles and four white particles in

a volume of eight lattice sites. There are four lattice sites on the left, and four lattice

sites on the right, separated by a permeable wall. The overall volume is fixed, which

means that all the lattice sites are occupied either by a black or a white particle. The

degrees of freedom of the system are now defined in terms of black and white particles

on each side of the permeable wall.

2

1

3

Figure 2.4: A simple lattice model of diffusion, adapted from Ref. [44]. The four
lattice sites on the left and the four lattice sites on the right are separated by a permeable
wall. The four black and the four white particles can adapt every configuration of

occupying the lattice sites with equal probability. The overall volume is fixed.
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Assuming that each spatial configuration (or sequence) is equally probable, the number

of distinguishable arrangements of N particles in M sites is given by

W (N,M) =
M !

N !(M −N)!
.

For each given value of left and right compositions, the total multiplicity is the product

of the multiplicities for the left and the right side. With regard to the exemplary particle

configurations shown in Figure 2.4, one can compute the following multiplicities:

1. W = W (left) ·W (right) =
4!

2!2!

4!

2!2!
= 36

2. W = W (left) ·W (right) =
4!

1!3!

4!

3!1!
= 16

3. W = W (left) ·W (right) =
4!

0!4!

4!

4!0!
= 1

Systems tend to be found in the states with the highest multiplicity W , or, in other

words, “a system will change its degrees of freedom to reach the microscopic arrangement

with the maximum possible multiplicity” [44]. Hence, one can predict the most probable

composition of black and white particles by maximizing the multiplicity of arrangements.

The first case, which has the most uniform distribution of particles, has the highest

multiplicity, and therefore is the most probable. The third case, which has the greatest

particle segregation, is the least probable.

This leads directly to the Second Law of Thermodynamics, which states that isolated

systems tend towards their states of maximum entropy. With that in mind, it is not

meaningful to define entropy as a measure for the “disorder” of a system, because the

notion about what is orderly and what is not is often a matter of personal preference,

while the term multiplicity is well-defined.

For use in thermodynamics, k in the original definition of entropy in Equation 2.3 is the

quantity of Boltzmann’s constant kB = 1.3806488(13) · 10−23 J/K, which puts entropy

into units that can be interconverted with energy. kB leads to the entropy per particle.

Entropy, however, is a concept that applies to any type of probability distribution func-

tion. For other types of probability distributions, k is chosen to suit the current purpose,

e.g. k = 1. Finally, a simple justification for the use of the logarithm function (more

precisely the natural logarithm loge = ln) in Equation 2.3 is the need for compatibility

with thermodynamics, which requires entropies to be extensive.

Given a system with two subsystems A and B and multiplicities WA and WB (Wtotal =

WAWB), this means that the total entropy of the system is the sum of the subsystem

entropies: Stotal = SA + SB. This property is easily satisfied when the multiplicity of



Chapter 2. Multivalent interactions – A theoretical background 21

states is counted in a logarithmic way, i.e. if SA = k lnWA and SB = k lnWB, then

Stotal = k lnWAWB = k lnWA + k lnWB = SA + SB [44].

Whitesides’ model of entropically enhanced bivalent binding

Considering the above, it now becomes clear that any kind of binding of a ligand to

a receptor results in a loss of entropy, as the multiplicity of states in the bound state

is (inevitably) less than in the unbound state. To be more precise, the entropic term

from Equation 2.2 can be split up into four components, namely translational and rota-

tional entropy change ∆Strans and ∆Srot, conformational entropy change ∆Sconf , and

solvation-associated entropy change ∆Ssol (cp. Equation 2.4) [2].

∆S = ∆Strans + ∆Srot + ∆Sconf + ∆Ssol (2.4)

In the unbound state, ligand and receptor are free to translocate in three dimensions and

to rotate around their three principal axes. The same holds for attaining conformational

changes. The movement and dynamics of the unbound entities is only hindered by the

viscosity (and the resulting friction) of the solvent molecules. The solvent molecules, in

turn, are free to form a more or less defined shell around the solute.

In the bound state, the individual translational and rotational freedom of the ligand is

lost, conformational changes of both ligand and receptor are constrained, and the free

arrangement of solvent molecules around the solute molecules is limited - in particular

with regard to the ligand, which may be buried deep in narrow protein binding site,

with only small room for solvent molecules left.

While this phenomenon per se is inevitable, any reduction of the entropy loss upon

binding will lead to a (more or less) significant improvement of ∆G (cp. Equation 2.2).

The rationale behind improving ∆G by means of multivalency is that a preorganization

of the ligands in terms of multivalent arrays leads to a reduction of the entropy loss

upon binding. This form of preorganization is equivalent to reducing the multiplicity of

microstates in the unbound state.

The schematic depicted in Figure 2.5 summarizes this notion for different situations in

a simplified manner, and is mainly based on Whitesides et al. [2]. For a monovalent

ligand and a monovalent receptor (case a), the entropy loss upon binding is ∆Smono =

∆Strans + ∆Srot. Intuitively, for two monovalent ligands and two receptor binding sites

(case b), the entropy loss doubles, as each ligand requires one equivalent of ∆Strans

and ∆Srot. Using a bivalent ligand with an ideal (and completely rigid) spacer (case

c), the entropy cost can again be reduced to approximately one equivalent of ∆Strans

and ∆Srot, as the translational and rotational degrees of freedom of the two ligands are
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joined together:

∆Sbi/rigid = ∆Strans + ∆Srot

Finally, when using a bivalent ligand with a flexible spacer (case d), the conformational

entropy loss of the spacer has to be added to the balance. The quantity ∆Sconf is depen-

dent on the structural parameters of the spacer, and can, in theory, become arbitrarily

large. This implies that the – theoretically optimal – advantage of saving one equivalent

of ∆Strans and ∆Srot each is threatened to be nullified when an inappropriately long

and flexible spacer is used.

For these merely qualitative summations, the intrinsic conformational entropy change

of the ligands has been omitted, as it is supposedly invariant with regard to the valency

of the system. Hence, ∆Sconf in Figure 2.5 only refers to the conformational entropy

change in the spacer. The same holds for the solvent-associated entropy change ∆Ssol.

Any effect of the spacer on ∆Ssol (e.g. by interacting with the surface of the receptor)

is neglected for the sake of generality.

+

+

+

2

ΔSmono        

ΔSbi/mono  

ΔSbi/rigid 

ΔSbi/flex  +

= ΔStrans + ΔSrot

= 2ΔStrans + 2ΔSrot

≈ ΔStrans + ΔSrot

≈ ΔStrans + ΔSrot + ΔSconf 

b) 

a) 

c) 

d) 

Figure 2.5: Simplified model of the entropy loss upon binding for a) one monovalent
ligand and a monovalent receptor, b) two monovalent ligands and a bivalent receptor, c)
a bivalent ligand, rigid spacer with a bivalent receptor and d) a bivalent ligand, flexible

spacer with a bivalent receptor [2].

More important, the simplified scheme shown above is only valid if the quantities ∆Strans

and ∆Srot are approximately equal for mono- and bivalent scenario.

According to the Sackur-Tetrode equation for calculating the absolute entropy of an

ideal (monoatomic) gas, Strans is related to the logarithm of the molecular mass m

(Strans ∝ ln(m)), and inversely to the logarithm of its concentration (Strans ∝ ln([L])−1).

Similarly, Srot is related to the logarithm of the product of the molecule’s three principal

moments of inertia, Ix, Iy and Iz (Srot ∝ ln(IxIyIz)) [2], which in turn are dependent

on its shape, mass distribution and axis of gyration. Whitesides et al. argue that the

“weak” logarithmic dependence of ∆Strans and ∆Srot on the mass of the dimensions
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of the molecule allow for this approximation, provided the molecules under comparison

are given in the same concentration. Still, assuming equivalence for mono- and bivalent

ligands with regard to ∆Strans and ∆Srot is a very optimistic scenario, and probably

should be conceived only as a theoretical upper limit for the entropy loss that can be

saved by moving from mono- to bivalent ligand.

Turning again to Figure 2.5, one can now focus on the comparison of the two bivalent

scenarios, case c) and case d). In case c), the two ligands are tethered by a completely

rigid spacer (no torsional rotation around bonds is possible) that perfectly matches the

spacing of the two receptor binding sites. The initial binding event of the first ligand to

the first receptor binding site costs approximately ∆Strans + ∆Srot in terms of entropy

loss. As this hypothetical bivalent ligand only has a single conformation, the subsequent

binding event of the second ligand to the second receptor binding site can occur without

additional entropy cost. Given that no additional enthalpic cost accumulates, the free

energy change for the second (intramolecular) binding event is entropically enhanced:

∆H ≈ ∆Hmono and ∆S ≈ 0, therefore ∆G ≈ ∆Hmono.

This hypothetical scenario suffers from the fact that in reality, a completely rigid spacer

cannot be implemented. All chemical linking groups introduce a certain amount of flex-

ibility to the structure, and in many cases, structural flexibility is even wanted in order

to compensate for incomplete knowledge of the target receptor’s shape and dimensions

(the receptor, in turn, might also have flexibly spaced binding sites). Last but not least,

structural flexibility may be required for maintaining an acceptable degree of solubility.

A more realistic scenario is depicted in Figure 2.5 d). Here, the ligands are tethered

by a spacer that undergoes a conformational entropy change ∆Sconf upon binding to

the receptor. Typically, for any kind of complex formation, the conformational entropy

change is bound to be unfavorable (∆Sconf < 0), as the multiplicity of available confor-

mational states in the complexed state is smaller than before complexation. Intuitively,

a long, chain-like spacer with great structural flexibility, as indicated in the schematic

of case d), is likely to lose more conformational entropy upon binding to the receptor as

a more rigid counterpart.

The quantity of ∆Sconf is important, as it ultimately decides over the fate of the bi-

valent interaction – at least within the scope of this limited model. In cases where

∆Sconf > ∆Strans + ∆Srot, the bivalent ligand is entropically enhanced, which means

that bivalent binding is favored over two monovalent binding events (cp. Figure 2.6,

path A). If ∆Sconf < ∆Strans + ∆Srot, bivalent binding is entropically diminished, and

only monovalent binding events will take place (cp. Figure 2.6, path B). Finally, when

∆Sconf ≈ ∆Strans+ ∆Srot, the bivalent ligand is entropically neutral, which means that

both bivalent and monovalent binding of two separate entities will occur [2].
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ΔS ≈ ΔStrans + ΔSrot 
+ ΔSconf 

A B

ΔS ≈ 2ΔStrans + 2ΔSrot 

ΔSconf 
> ΔStrans 

+ ΔSrot ΔSconf 
< ΔStrans 

+ ΔSrot

ΔSconf 
≈ ΔStrans 

+ ΔSrot

Figure 2.6: Entropically enhanced binding (only path A), entropically diminished
binding (only path B) and entropically neutral binding (bottom, paths A and B). In
the latter case, the entropic cost of bivalent binding and monovalent binding of two
separate entities is approximately equal, so that both scenarios will occur with the

same likelihood [2].

Whitesides et al. give an estimate of the entropic cost of freezing a single, rotating carbon-

carbon bond at a temperature of 298 K at 0.5 kcal/mol, and 0.1 - 1.0 kcal/mol for other

types of rotating bonds [45, 46]. According to this estimate, the upper bound for the

conformational entropy loss of an triethylene glycol spacer is 10 kcal/mol, assuming that

all rotating bonds are frozen upon complexation [2]. Although a flexible spacer is likely

to retain some of its conformational flexibility even after complexation (which makes

the factual entropy loss less severe), the order of this number indicates that ∆Sconf

may become so large that a multivalent interaction will be rendered impossible due to

entropic reasons, given the spacer is both long and very flexible.

Enthalpy-entropy compensation

Another aspect connected to quantifying the entropy loss upon binding is the phe-

nomenon of enthalpy-entropy compensation [47], which refers to a seemingly linear rela-

tionship between ∆H and ∆S in many (and originally only biological) processes: a gain

in enthalpy will be compensated by a loss in entropy, and vice versa. By now, enthalpy-

entropy compensation has also been studied in the context of supramolecular chemistry

(host-guest interactions) [48], as well as in biomolecular (small molecule/drug-receptor)

[49, 50] and multivalent interactions [51]. It has to be mentioned that enthalpy-entropy

compensation suffers from a somewhat dubious reputation, as the linear relation between

∆H and ∆S can also arise as a statistical artifact caused by interpolating temperature-

dependent data that covers an insufficient range of measurements. However, whenever

enthalpy-entropy compensation is derived from calorimetric measurements, “it cannot

be easily dismissed” [52].

A simple justification for enthalpy-entropy compensation is given by the following, very
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intuitive line of thought: In order to maximize the enthalpic gain (i.e. ∆H � 0), the in-

teracting species (e.g. a small molecule ligand and a macromolecular biological receptor)

have to form a tight and stable interaction. This corresponds to giving up conforma-

tional multiplicity, and has an impact to both interaction partners. Even if the small

ligand molecule is very rigid (e.g. a steroid compound), it may induce a notable loss of

conformational multiplicity in the receptor binding site. This corresponds to a loss in

conformational entropy, i.e. ∆Sconf � 0. Accordingly, a less tight interaction with only

a moderate gain in enthalpy will allow for more conformational multiplicity, so that the

conformational entropy loss is less severe.

The impact of this effect is dependent on the structural properties of the system in

question. A very interesting example from the literature is the bivalent binding of im-

munoreceptor tyrosine-based activation motif (ITAM) to the Syk tandem Src homology

domain (Syk tSH2). The tSH2 domain of Syk consists of two SH2 domains that are

connected by a flexible interdomain. While the SH2 domains form defined, compact

structures, the interdomain is subject to notable conformational variability, which, ac-

cording to Fütterer et al. [53], provides the structural basis for “a surprising flexibility in

the relative orientation of the two SH2 domains.” Figure 2.7 shows the crystal structure

of the tSH2 domain of Syk bound to dually tyrosine-phosphorylated ITAM.

flexible interdomain

C-SH2
N-SH2

ITAM

Figure 2.7: Dually tyrosine-phosphorylated ITAM bound to the tSH2 domain of Syk
(secondary structure representation). Two phosphotyrosine side chains (highlighted)
form the central element of the tSH2 domain recognizing binding motif of ITAM (PDB

ID 1A81 [53]).

In their work from 2005, de Mol et al. [51] compare two different ligands for the tSH2

domain: 1, a flexible peptide derived from the tSH2 recognizing ITAM sequence, and 2,

a ligand in which the amino acids between the two SH2 binding motifs in ligand 1 have
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been replaced by a rigid linker of comparable length. Following the line of thought from

the previous sections, the rigidified ligand should have a higher affinity for the tSH2

domain due to an advantage with regard to ∆Sconf . The authors found, however, that

the expected entropy advantage is not realized. On the contrary, ligand 2 binds with a

considerably higher entropy price of approximately -9 kcal/mol, which is attributed to

a further decrease in protein flexibility upon binding. Considering the structure of Syk

tSH2, it is very likely that this mainly applies to the flexible linker that connects the

two SH2 domains (cp. Figure 2.7). Consequently, de Mol et al. [51] conclude that “the

entropy price for fixing the flexible protein counteracts the entropy gain of rigidization of

the ligand.” Interestingly, the rigidified ligand brought about an enthalpic enhancement

in the same order of magnitude, so that both ligands bound to the Syk tSH2 domain

with comparable affinity.

This example shows that enthalpy-compensation adds another unknown variable to the

design of multivalent compounds. It shows that rigidization of spacer and scaffold struc-

tures can have adverse effects, in particular when the receptor is prone to losing con-

formational multiplicity upon binding. Similarly, using very flexible structures can be a

double-edged sword, as the flexibility that allows all ligand-receptor interactions to occur

without energetic strain is the same flexibility that may render a multivalent interaction

unfavorable due to entropic loss.

Furthermore, depending on the nature of the system, the loss in (conformational) en-

tropy can be “notoriously difficult to quantitate” [2] with experimental methods such as

isothermal titration calorimetry (ITC). In this respect, the use of structure-based mod-

eling and simulation methods in a predictive way may offer relief, as will be discussed

in Chapter 3.3.

Entropic cost of the first binding event

The final aspect with regard to the role of entropy in multivalent interactions to be dis-

cussed here is the entropic cost of the first (or initial) binding event. Whitesides’ model

suggests that a multivalent ligand benefits from the fact that following the first binding

event – i.e. after the first interaction site of the multivalent ligand has bound to the

first unoccupied interaction site of the multimeric receptor – subsequent ligand-receptor

binding events can take place without additional (or at least significantly reduced) cost

with regard to ∆Strans and ∆Srot. Consequently, the determinant factor for the suc-

cess or failure of the multivalent interaction is the amount of ∆Sconf that accumulates

in the process. While the latter argument holds true, it is important to consider that

the occurrence of the initial binding event is in fact at an entropic disadvantage in the

multivalent case.



Chapter 2. Multivalent interactions – A theoretical background 27

Recently, Weber et al. have shown this using two simplified model systems that, again,

describe the scenario of two monovalent ligands versus one bivalent ligand binding to

a dimeric receptor [30]. Each of the two model systems consists of a three-dimensional

box with hard walls in which a receptor with two binding sites is placed at a fixed

position. Additionally, the box contains either two monovalent ligands (scenario 1) or

one bivalent ligand (scenario 2). In the first case, the ligands are allowed to diffuse in the

box independent of each other. In the second case, the ligands are connected by a flexible

spacer that imposes a restraint on their intermolecular distance. Thermodynamic data

for the two systems was generated using Markov chain Monte Carlo (MCMC) [54, 55]

simulations on the basis of a simple force field implementation. Potential energy plots

of two typical simulation runs are shown in Figure 2.8.
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Figure 2.8: Potential energy plots of “monovalent” scenario 1 (top) and “bivalent”
scenario 2 (bottom), derived from two exemplary Markov chain Monte Carlo (MCMC)

simulations. The unit of energy is chosen arbitrarily [30].

One can clearly discriminate the three main energy levels of the systems: V ≈ 0 is

the unbound state of the system (no interaction between ligands and receptor binding

sites). V ≈ −6 is the singly bound state and V ≈ −12 is the doubly bound state. In

the “bivalent” scenario 2, vibrations of the spacer lead to oscillations in the distance

restraint potential, particularly visible above the base line. The model does not include

energetic interactions between spacer and receptor, which in a real system, depending

on its chemical structure, can be non-negligible.

By plotting the minimal distance of the first ligand to the first receptor binding site

against the distance of the second ligand to the second receptor binding site (where the

pair with nearest distance is chosen as “first” pair), the conformational space of the two
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systems can be projected unto two dimensions for better classification into the three

macroscopic states “unbound”, “singly bound” and ”doubly bound”. The effect of the

spacer is clearly visible: Whereas in the absence of a spacer, almost every combination

of ligand-receptor distances is possible, the attachment of a spacer leads to a strong

correlation between the two collective variables. Consequently, a certain portion of

conformational space remains unpopulated.
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Figure 2.9: Conformational space representation of “monovalent” scenario 1 (left)
and “bivalent” scenario 2 (right). Red: doubly bound state, blue: singly bound state,

and green: unbound state [30].

Under the assumption that the potential energy values are approximately piece-wise

constant within each of the three macroscopic states, the entropy differences can be

calculated as ratios of the corresponding conformational space volumes. In order to

compare the entropic cost2 of the first binding event, one has to take the difference in

entropy change upon transition from unbound to bound state for the monovalent and

the bivalent system:

∆∆S1st = ∆S1st/bi −∆S1st/mono = kB ln
( 2(a− ε)2

(a− 2ε+ b)(2a− ε)

)
, (2.5)

where a is the maximum distance of a ligand to one of the receptors (depending on the

box size), and ε is the ligand-receptor binding distance. Furthermore, b = a−x−y, where

x is the maximum (i.e. extended or “stretched”) spacer length, and y is the distance

between the receptor binding sites. Finally, kB is Boltzmann’s constant. See Ref. [30]

for the derivation of Equation 2.5.

Because of ε < b < a, this expression is always negative: ∆S1st/bi is smaller than

∆S1st/mono, which means that the entropy loss in the bivalent scenario is always larger.

Due to the fact that a single bivalent ligand has a smaller “search space” than two

monovalent ligands, the probability of a ligand entity encountering a receptor binding site

is reduced, and the first ligand-receptor binding event in the bivalent case is entropically

2In the scope of this model, entropy changes refer exclusively to ∆Strans, as the ligands are modeled
as mere particles without any rotational degrees of freedom.
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diminished. Consequently, in situations where, regardless of receptor valency, only one

binding event per receptor is required, the use of a monovalent ligand is more promising.

By contrast, in situations where the equilibrium is to be driven towards are state where

all receptor binding sites are occupied, a multivalent ligand is the best choice.

2.3 Multivalent kinetics

Apart from the entropic factors discussed above, another cause for the characteristic

properties of multivalent complexes stems from the underlying kinetics. The association

and dissociation of monovalent ligand-receptor complexes is governed by two rate con-

stants – kon and koff – that quantify the rate of transition from unbound to bound, and

bound to unbound state, respectively. The ratio of these two rate constants yields Kd,

the dissociation constant, Kd = koff/kon. Kd is widely used as a measure for the affinity

of complexes, and can be related to the Gibbs free energy of binding by using the van’t

Hoff equation (cp. Equation 2.1). The rate constants, in turn, are mainly dependent

on the concentrations of the two interacting species, and the environmental factors that

dictate the microscopic dynamics of the system, such as temperature, pressure, and the

viscosity of the solvent.

Describing the association and dissociation of multivalent complexes is intrinsically more

complicated. Depending on the valency of the system, a model of multivalent binding in

terms of reaction kinetics has to define additional kinetic entities in order to describe the

various partially bound states that bridge the gap between the “all ligands unbound”

and “all ligands bound” states, which in turn are connected by a complex network of

“on” and “off” rate constants. This is feasible for small (typically synthetic) multiva-

lent systems of defined valency, but becomes impractical for large (typically biological)

multivalent systems where the valency cannot be controlled exactly. The description

of multivalent binding processes in terms of reactions kinetics is complicated further

by the fact that, by using current experimental methods, it is often not possible to (i)

identify the partially bound states of the complex as kinetic entities of the system, sup-

posedly due to their transient nature, and, consequently, (ii) determine the microscopic

rate constants that quantify the transition rates between the kinetic entities. Therefore,

experimental measurements of multivalent kinetics typically have to be interpreted as

the average over all microscopic steps of the binding process.

In their prototypical study from 1998, Kramer and Karpen [56] studied the binding

of PEG-linked dimers (PLDs) of cGMP to tetrameric cyclic-nucleotide-gated (CNG)

channels, namely olfactory CNG and rod photoreceptor CNG. As the activation of
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Figure 2.10: Left: Schematic of PEG-linked cGMP dimers binding to a tetrameric
CNG channel. After the first ligand has bound, the effective concentration Ceff of the
unbound ligand is determined by the hemisphere that is circumscribed by the tethered
molecule. The length of the flexible spacer determines the radius of the hemisphere.
Right: The “off” rate of the dimeric compound (“PLD”) accelerates with the amount
of free, monovalent cGMP that is applied to the loaded channels. Figures taken from

[56], reprinted with kind permission of Nature Publishing Group.

the channel protein by binding of cGMP induces a change of the membrane poten-

tial, the authors were able to record the averaged kinetics of the binding process with a

patch clamp method. In comparison to the monovalent control, the dimeric compounds

showed largely decelerated dissociation rates (up to 3400-fold slower than for monovalent

cGMP), in particular when the average length of the PEG spacer presumably matched

the binding site distance of the CNG channels, so that “channels remained open for min-

utes, even with continuous superfusion with agonist-free solution.” [56] Consequently,

the Kd values for the bivalent compounds turned out to be up to 260-fold lower than

for monovalent cGMP.

Based on their observations, the authors formulated an estimate for predicting the dis-

sociation rate constant of a bivalent ligand that is doubly bound to two binding sites of

a receptor, kbioff , as follows:

kbioff = 2koff ·Kd/(Ceff +Kd), (2.6)

where koff is the intrinsic “off” rate of cGMP from a single binding site, Kd is the

dissociation constant of cGMP, and Ceff is the effective concentration of cGMP at the

second binding site. Ceff , in turn, is calculated from the volume of the hemisphere

with radius r, the average length of the spacer that tethers the two ligand moieties.

The above equation assumes that kbioff is equal to twice the monovalent koff , times the

probability that the second site is not occupied. The authors propose that, as soon that

a single cGMP dissociates, it “has a high probability of rebinding before its partner can

also dissociate.” [56] Unfortunately, it is not reported in how far the predictions are in

accordance with the measured rates.
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In a study from 2000 by Rao et al. [57], the authors designed and characterized a

high affinity trivalent ligand-receptor system derived from vancomycin (a glycopeptide

antibiotic) and the peptide L-Lys-D-Ala-D-Ala. By using high-performance liquid chro-

matography (HPLC) in combination with a competitive binding assay, they estimated a

dissociation constant in water of approximately 4 ·10−17 M, which is “one of the tightest

known for low molecular weight organic species” [57], and surpasses the corresponding

monovalent dissociation constant (Km
d ≈ 1.6 · 10−6 M) by several orders of magnitude.

In order to explain the high affinity of their trivalent complex, they proposed a binding

mechanism based on a kinetic model that consists of four main states (one unbound state

and three bound states of increasing valency), and consequently requires three pairs of

on- and off-rates (Figure 2.11).

k-1       

               
k1

L3 + 
R3

L3 ● 
R3'1

L3 ● 
R3'2

L3 ● 
R3'3

k-3       

               
k3

k-2             
k2

Figure 2.11: Kinetic model of a trivalent ligand-receptor system, adapted from [57].
The association and dissociation of complex L3 •R3’3 from ligand L3 and receptor R3

is assumed to a stepwise process with clearly defined kinetic entities.

Due to the fact that the rate constants for the trivalent system could not be measured

experimentally, the authors proposed an estimate of the kinetic parameters of the system

that interpolates from the (measurable) kon and koff values of the monovalent interac-

tion, and applies statistical factors to take into account the valency of the system. The

estimate relies on three main assumptions: (i) The value of the rate constant for the first

step in association of L3 with R =3, k1, is nine times that of kon for monomeric L and

R: k1 = 9kon. (ii) The rate constant for dissociation of each L •R pair in L3 •R3’3 is

approximately the same as koff for monomeric L•R: k−1 = k−2/2 = k−3/3 = koff . (iii)

The rate constants of the two “following” associations, after corrections for statistical

factors, are approximately the same: k2/4 = k3. Combining these assumptions, k2 and
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k3 can be calculated as follows:

Kt
d = (k−1k−2k−3)/(k1k2k3)

= (koff · 2koff · 3koff )/(9kon · k2k3) (2.7)

≈ 4 · 10−17

With kon ≈ 2.8 · 107 M−1 s−1 and koff ≈ 30 s−1, the authors estimated the rates of the

intra-complex associations to be k2 = 8 · 106 s−1 and k3 = 2 · 106 s−1. They conclude

that the large values of these rate constants indicate “fast intramolecular rebinding” [57]

of partially dissociated L •R pairs, which in turn they suggest to be the kinetic origin

of the high stability of complex L3 •R3’3.

Although the above estimates of rate constants are highly approximate (e.g. in not

considering possible variations in the “off” rates), they are very insightful for pointing out

the main properties of multivalent binding kinetics. Two main points can be maintained:

(i) The association of multivalent complexes is discriminative with regard to the first

and all subsequent binding events. (ii) The dissociation of multivalent complexes is

presumably slowed down by the occurrence of rebinding events.

In answer to (i), mainly inspired by the field of supramolecular chemistry, it has indeed

become common practice to distinguish between the first and possible subsequent bind-

ing events of a multivalent binding process [1]. More precisely, while the initial binding

event is considered to be intermolecular binding (as in “conventional” ligand-receptor in-

teractions), the subsequent binding events are considered to be intramolecular3 binding.

This differentiation is based on the observation that, while the initial, intermolecular

binding event is dependent on the concentrations of both ligand and receptor, the sub-

sequent, intramolecular binding events are solely dependent on the concentration of the

ligand. Moreover, the concentration of the ligand in intramolecular binding is bound to

be (locally) increased, as the spatial proximity of ligand and receptor has already been

established. This notion is explained in more detail in Section 2.4 on cooperativity.

In the kinetic model of bivalent binding proposed by Kramer and Karpen, this phe-

nomenon is formulated in terms of the effective concentration Ceff . Given that the first

ligand has bound to the receptor, the value of Ceff is calculated under the assumption

that the second, unbound ligand is uniformly distributed in a hemisphere of a radius

determined by the length of the spacer that is used to tether the two ligands (cp. Fig-

ure 2.10). This model of an increased local concentration was refined by Diestler and

Knapp [58], who proposed that the unbound, tethered ligand is distributed according to

3In this context, despite usage of the term “intramolecular”, the ligand-receptor interactions in ques-
tion are still assumed to be non-covalent and reversible.
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a three-dimensional Gaussian distribution. In practice, Ceff is hard to predict due to its

dependence on various (mainly structural) parameters of the system, and in particular

the spacer used to tether the ligands, a problem that will be elaborated in Chapter 4,

dealing with the conformational properties of flexible spacer structures. More severely,

Ceff cannot be determined by experiment.

A more widespread approach of taking into account the increase of local concentration

in multivalent binding is given in terms of the effective molarity (EM). The concept

of effective molarity, which has the unit of a concentration (mol/l), is to weight the

intramolecular equilibrium constants with a factor that “accounts for the ease of the

intramolecular process” [59], and presumably corresponds to the gain in local concen-

tration that is caused by the spatial proximity of the unbound ligands to the receptor

(a more precise definition will follow in the next section). In contrast to the effective

concentration, the effective molarity can be determined by experimental methods, at

least for synthetic systems of defined, and typically low, valency. Hunter and coworkers

[60, 61], for example, were able to quantify the effective molarity in a series of bivalent

ligand-receptor systems by implementing the “double mutant cycle”, an approach that

since then has been proven successful in different scenarios [11, 62].

Recently, Hogben et al. [63] used denaturation titrations in order to investigate the sta-

bility of the complexes of cyclic and linear zinc-porphyrin hexamers with multidentate

ligands having up to six pyridyl coordination sites (Figure 2.12). The results reveal that

the stepwise effective molarities for the third through sixth intramolecular coordination

events with the cyclic hexamer are extremely high (EM = 102 M and above), whereas

the values for the linear porphyrin oligomers are only modest (EM ≈ 0.05 M). This ex-

ample shows very impressively that the increase in effective molarity is directly related

to the preorganization of the binding sites of a multivalent ligand with regard to the

structure of the receptor.

Even more interesting, the effective molarity can be developed into a measure for a

cooperative effect in multivalent binding processes. Consequently, it is possible to link

the effective molarity (or, in other words, the increase in local concentration after the

initial binding event) to the very origins of the multivalent enhancement effect. The

phenomenon of cooperativity in multivalent systems (and a delineation from allosteric

cooperativity) will be presented in the next section.

Point (ii), the occurrence of rebinding effects, was investigated by Kramer and Karpen

by conducting a competitive binding assay. For monovalent ligands, the dissociation

from a single binding site is “normally unaffected by the concentration of free ligand in

solution.” [56] For a partially dissociated multivalent ligand, however, the free ligand

in solution becomes a competitor for the unoccupied binding sites that are available

for rebinding – an idea that is depicted in Figure 2.13. Indeed, the authors found that
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Figure 2.12: Stepwise equilibria defining the effective molarities EM2 – EM6 for
formation of the linear zinc-porphyrin hexamer-hexapyridil complex as shown on the
right. K1 = Kmono is the microscopic binding constant for coordination of a pyridyl
group to one face of a zinc site. For information on the statistical factors, please refer
to the original reference. Figures taken from [63], reprinted with kind permission of the

American Chemical Society.

delayed application of cGMP to the loaded receptors accelerated the “off” rates of their

PEG-linked cGMP dimers, proportional to the concentration of free ligand that was

applied (also cp. Figure 2.10).

Figure 2.13: Schematic representation of rebinding in a trivalent complex, adapted
from [57]. As soon as a single ligand dissociates, the spatial proximity to the receptor
is maintained by the remaining partner(s) associated with the receptor. Consequently,
it has a high probability of rebinding. The occurrence of rebinding events becomes less

prevalent when another ligand (red) is competing for the receptor binding sites.

A similar competitive binding assay, quantified by means of HPLC, was conducted by

Rao et al. [57] for their trivalent system introduced above (cp. Figure 2.7). They found

that a large excess of monovalent ligand L in the millimolar range (≈ 86 mM) was

necessary to induce a dissociation of the complex L3 • R3’3 (formed from an initial

solution of 22 µM L3 and 3 µM R3’3, respectively). Surprisingly, even given the high

excess of L, the trivalent complex L3•R3’3 could still be detected by HPLC in significant

amounts after equilibration. This findings not only support the idea of rebinding in
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general, but once more indicate that the increase in local concentration (or effective

molarity) for a well-designed multivalent ligand can be very large.

While rebinding is a likely factor for the high stability of multivalent complexes, it

poses certain challenges when it comes to formulating kinetic models of multivalent

binding processes. The “conventional” kinetic model of ligand-receptor binding is based

on the assumption that the kinetic entities – the steps of the binding process – are

intrinsically Markovian, which means that the future of the system, e.g. the probability

of transition from unbound to bound state, is dependent only on its present state. While

this holds true for systems where the states are separated by high energy barriers, it

can be shown that Markovianity is lost when the states are not well separated [64]. In

a recent study, Weber et al. [30] argued that the transient nature of partially bound

states in rebinding systems requires a mathematical reformulation of the kinetic model

of multivalent binding in terms of a “soft”, function-based definition of states in order

to quantify the contribution of rebinding correctly. The notion of a soft definition of

kinetic entities in the formalization of (multivalent) ligand-receptor binding processes

will be picked up again in Chapter 6.

2.4 Cooperativity in multivalent systems

In 1998, Whitesides et al. [2] first proposed a quantity for characterizing the enhancement

effect in a multivalent interaction: The enhancement factor ε4 is defined in terms of the

ratio of the association constant of the multivalent interactionKmulti, and the association

constant of the monovalent interaction Kmono (Equation 2.8).

ε =
Kmulti

Kmono
(2.8)

Consequently, the enhancement factor ε comprises all parameters that distinguish the

multivalent from the monovalent interaction, and can even be applied to systems where

the exact number of binding sites is unknown. While this seems to be practical in

many situations, it has the disadvantage that it is not possible to separate symmetry

effects from other effects that enhance or diminish the binding affinity in a multivalent

interaction [1]. These “other” effects can be summarized as cooperativity effects.

Cooperativity is a widely used concept to quantify the special properties of systems with

coupled interactions (a feature that is not necessarily limited to multivalent systems).

A system is considered cooperative if the collective system acts differently than what

is to be expected from the sum of its individual interactions. More precisely, positive

4Whitesides’ enhancement factor ε is denoted as β in the original publication. This notation is not
adapted in order to discriminate from the cooperativity factors α and β (Equations 2.9 and 2.13).
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cooperativity describes a scenario where the interactions in the collective system are

enhanced, while negative cooperativity describes a scenario where the interactions in

the collective system are diminished – each compared to the sum of the individual

interactions in a non-cooperative reference system [65].

Generally, one delineates two different types of cooperativity, namely allosteric coopera-

tivity, and chelate cooperativity. The former phenomenon is well characterized and not

related to multivalent interactions per se (cp. Section 2.2.1, where the prime example

for allosteric cooperativity in biology, hemoglobin, was briefly mentioned). Chelate co-

operativity, however, is less well recognized than its counterpart, and represents (to a

large extent) a synonym for multivalent cooperativity. The naming presumably stems

from the fact that chelate complexes were the initial objects of study in this regard

(cp. Section 2.1). Due to the fact that both effects can trigger similar behavior on the

macroscopic level, in spite of having a completely different origin on the molecular level,

separating the two types of cooperativity has been a notoriously difficult problem [65].

Ercolani and Schiaffino define the origin of allosteric cooperativity to be the interplay of

two or more intermolecular binding interactions, whereas chelate cooperativity “arises

from the presence of one or more intramolecular binding interactions [...] as a consequence

of the chelate effect.” [59] This will be illustrated for a generic bivalent ligand-receptor

system in the following.

Allosteric cooperativity

Figure 2.14 shows the binding of a monovalent ligand L to a bivalent receptor RR. The

two equilibria between the three main states of the system are described in terms of the

microscopic association constants K1 and K2, multiplied with the statistical factors that

arise from the degeneracy of the singly bound “intermediate” state [32]. The reference

constant Kmono can be obtained by studying the binding of L to a monovalent version

R of the bivalent receptor RR, or, alternatively, “by directly taking the value of the

constant K1 as the reference constant” [59].

+ 2 +

RR RR ● L L RR ● 
L2L

2K1 ½K2

Figure 2.14: Binding of a monovalent ligand L to a bivalent receptor RR, adapted
from [59].

The allosteric (intersite) cooperativity of the above system is evaluated by comparing

the joint association constant of the (presumably) cooperative system K1 ·K2, with the
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joint association constant of the non-cooperative reference system, K2
mono. The ratio of

the two quantities yields the allosteric cooperativity factor α (Equation 2.9).

α =
K1 ·K2

K2
mono

(2.9)

For α < 1, the system under study exhibits negative cooperativity, while for α > 1, it

is considered to be positively cooperative. In both cases, intermolecular binding of L to

the two binding sites of RR is coupled by one or more possible factors (e.g. electrostatic,

or steric/conformational interactions). If α takes the value 1, the system under study is

non-cooperative, and its association constants correspond to the association constant of

the reference system: K2 = K1 = Kmono. This means that intermolecular binding of L

to the two binding sites of RR is not coupled in any way.

Chelate cooperativity

The second type of cooperativity, chelate cooperativity, can occur only in multivalent

systems, and characterizes cooperativity effects that stem exclusively from the mul-

tivalent properties of the system under study. Synonymously used terms for chelate

cooperativity are multivalent cooperativity, multivalent enhancement, or, plainly, “mul-

tivalency” [1]. Due to the fact that the latter terms are often not well separated from

other enhancing effects that may play a role in multivalent binding, it is helpful to remain

with the term chelate cooperativity.

The concept of chelate cooperativity is based on regarding all but the first binding events

in a multivalent ligand-receptor interaction as intramolecular binding events. The grade

of coupling between the intramolecular binding interactions is quantified by the effective

molarity (EM). Figure 2.14 shows the binding of a bivalent ligand LL to a bivalent

receptor RR, under the assumptions that (i) the ligand is present in a large excess

relative to the receptor ([LL]0 � [RR]0)5, and (ii) allosteric cooperativity is excluded

(α = 1). Under these conditions, the receptor can exist in only four possible states,

namely free (RR), partially bound in a 1:1 open complex (o −RR • LL), in a doubly

bound cyclic complex (c−RR •LL), and in a doubly bound 1:2 complex involving two

ligand molecules (RR • (LL)2) [59].

The formation of the doubly bound cyclic complex is determined by the intramolecular

association constant Kintra, which is defined as the product 1/2Kmono ·EM. Analogous to

the previous example, 1/2 is a statistical factor for the cyclization process, and Kmono is

the reference association constant. EM, in turn, denotes the effective molarity. Ercolani

5This assumption simplifies the situation in so far that complexes involving more than one receptor
molecule (e.g. (RR)2 • LL) can be neglected.
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+ 2

RR LL

4Kmono

Kmono+

o-RR ● LL LL

+

c-RR ● LL LL

RR ● 
(LL)2

Kintra = ½Kmono · EM

½EM

Figure 2.15: Binding of a bivalent ligand LL to a bivalent receptor RR, adapted
from [59]. This simplified model assumes that [LL]0 � [RR]0 and α = 0.

and Schiaffino [59] demonstrate the effect of chelate cooperativity on the above system

by comparing the speciation profile (the fractions of the four “species”, depending on

the concentration [LL]0) in the absence (Kintra = 0) and in the presence of the chelate

interaction (e.g. Kintra = 25, corresponding to Kmono · EM = 50), as shown in Figure

2.16.
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log(Kmono·[LL]0)

(a) Kintra = 0

log(Kmono·[LL]0)
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[LL]0 = EM/2

(b) Kintra = 25

Figure 2.16: Speciation profiles for the equilibria shown in Figure 2.15, (a) in the
absence of chelate cooperativity, and (b) in the presence of chelate cooperativity. The
concentration scale is normalized by multiplying with Kmono. The fractions of the
different species are represented by the following symbols: 4 , o − RR • LL, ◦ ,
RR • (LL)2, � , c −RR • LL, and • , total fraction of occupied RR binding sites.

Figure taken from [59], reprinted with kind permission of John Wiley and Sons.

Intuitively, with Kintra = 0, the cyclic complex c−RR •LL does not form at all. With
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increasing concentration of LL, however, the receptor binding sites are progressively

saturated, and eventually the partially bound open complex o −RR • LL is displaced

completely by the doubly bound 1:2 complex involving two ligand molecules, RR•(LL)2.

By contrast, the presence of the chelate interaction leads to a sharp decrease of the

partially bound complex c − RR • LL, in favor of the doubly bound cyclic complex

c − RR • LL. This “all-or-none” behavior, the depletion of intermediate states, is

characteristic of cooperative systems [65], and once more underlines that multivalency

is successful in driving the system towards a state were a maximum number of ligands

is bound. A second look at the speciation profile of c − RR • LL reveals another

interesting property of the chelate interaction: At high concentrations of LL, the cyclic

complex is competing (and eventually losing) against the doubly bound 1:2 open complex

RR • (LL)2, which results in a bell-shaped, or “none-all-none” [59] profile.

This can be explained by the fact that the concentration of the cyclic complex c−RR•LL

depends linearly on the ligand concentration (Equation 2.10), whereas the concentration

of the doubly bound open complex RR • (LL)2 depends on the square of the ligand

concentration (Equation 2.11):

[c−RR • LL] = 2K2
mono · EM · [RR] · [LL] (2.10)

[RR • (LL)2] = 4K2
mono · [RR] · [LL]2 (2.11)

Consequently, the ligand concentration at which the switch between the cyclic and the

doubly bound open complex occurs can be obtained by equating the right-hand sides of

the two equations above (Equation 2.12, also cp. Figure 2.16 (b)).

[LL]switch = EM/2 (2.12)

Thus, Ercolani and Schiaffino reason that “EM is the threshold concentration of ligand

binding groups L above which the intramolecular process loses the competition with

the intermolecular one” [59], and conclude that chelate cooperativity, in contrast to

allosteric cooperativity, is dependent on the ligand concentration. Interestingly, a similar

phenomenon had already been described in 1912 by the Swiss chemist Ruggli, who

found that in covalent cyclization reactions, intramolecular interactions are favored over

intermolecular interactions at low concentrations (Ziegler-Ruggli dilution principle) [66].

Several approaches of quantifying the degree of chelate cooperativity for a given system

have been discussed in the literature [59, 65]. Considering the effective molarity to be

an immediate measure for chelate cooperativity is not consistent, as it has the unit of

a concentration, whereas a “proper” cooperativity factor similar to α (being the ratio

of two equilibrium constants) should be dimensionless. Hunter et al. [65] proposed the

product Kmono ·EM to be a suitable cooperativity factor, which however was challenged
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by Ercolani and Schiaffino [59], who found this choice to be misleading to due to the

fact that (i) it coincides with the intramolecular association constant Kintra, save for the

statistical factor 1/2, (ii) it does not take into account the ligand concentration on which

chelate cooperativity depends, and (iii) it tends to be zero in the absence of chelate

cooperativity, where it should tend to 1.

The authors argue that the correct way to assess chelate cooperativity requires that the

intermolecular binding leading to the doubly bound open complex RR • (LL)2 (with

a joint association constant of 4K2
mono) has to be used as a reference. Following this

approach, one obtains two different cooperativity factors β and β′ (Equations 2.13 and

2.14).

β =
EM

2 · [LL]
(2.13)

The factor β (Equations 2.13) relates intramolecular binding with the intermolecular

binding, and can be interpreted as the “apparent” (or virtual) equilibrium constant for

the conversion of the non-cooperative doubly bound open complex RR • (LL)2 into the

cooperative doubly bound cyclic complex c−RR •LL. The value of β is dependent on

the ligand concentration. If the concentration of the bivalent ligand is equal to EM/2,

there is no chelate cooperativity (β = 1), whereas positive chelate cooperativity (β > 1)

requires [LL] < EM/2, and, vice versa, [LL] > EM/2 yields negative chelate cooperativ-

ity (β < 1). Consequently, the effective molarity of the intramolecular interaction has

a noteworthy impact on the equilibrium of the system: “The higher the value of EM,

the larger the concentration range over which the chelate interaction displays positive

cooperativity.” [59]

β′, in turn, relates the overall binding (the sum of intermolecular and intramolecular

binding) with “pure” intermolecular binding, or, in other words, the monovalent refer-

ence system (Equation 2.14).

β′ = 1 +
EM

2 · [LL]
(2.14)

In this situation, there can only be positive chelate cooperativity: The factor β′ is

never smaller than one. Hereby, Ercolani and Schiaffino [59] show that multivalent

binding is always favored when competing with comparable monovalent binding, unless

the advantage is nullified by negative allosteric cooperativity.

While the newly defined chelate cooperativity factors β and β′ are theoretically rigorous

in separating the multivalent cooperativity from other effects, they suffer from their

applicability to real systems. The precondition that the ligand is present in a large (and

invariant) excess relative to the receptor, [LL]0 � [RR]0, is not given in typical ITC

titration experiments, where the concentration of the ligand is significantly smaller than

the concentration of the receptor in the beginning, and larger at the end of the titration

[66]. In lack of a better alternative, Hunter’s aforementioned approach of evaluating the
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expression Kmono ·EM remains a practical means for studying the chelate cooperativity

of bivalent complexes [1].

The above example of a bivalent system paints a “minimal” (and arguably not very

impressive) picture of the phenomenon of chelate cooperativity. Nonetheless, it is

the same phenomenon that enables fundamental processes such as supramolecular self-

organization and protein folding [65].

In summary, the theoretical concepts of describing multivalent enhancement are man-

ifold, but also (at least partly) redundant. A common motif of all models is the idea

that the quasi-intramolecular binding events (following a first binding event between

multivalent receptor and multivalent ligand) are favored due to preorganization of the

interacting entities. The impact of this preorganization can either be expressed in terms

of reduced entropy loss upon binding, or an increase in the local (or effective) concentra-

tion of ligand (Ceff and EM). The concept of EM is enticing as it is, at least for some

multivalent systems, derivable from experiment and can be linked directly to the degree

of chelate cooperativity to be expected. Finally, as has been pointed out in Ref. [30],

separating the contribution of rebinding events from other aspects of multivalent binding

may pose difficulties when using standard kinetic models that rely on the presence of

high energy barriers between unbound and bound states, i.e. when binding is perceived

in the spirit of an activated process.





Chapter 3

Molecular simulation –

a theoretical background

3.1 Basics of classical molecular simulation

M icroscopic systems formed from elementary particles are governed by the laws of

quantum mechanics. Due to the fact that particles can be strongly delocalized,

even to the extent of having wavelike properties, the probability density of finding a

particle in a given place at a given time is described in terms of a wave function. The

dynamics of how the wave function evolves over time is described by the Schrödinger

equation, a partial differential equation that is fundamental to quantum mechanics. Un-

fortunately, given the high computational cost, solving the Schrödinger equation “as is”

is feasible only for the smallest (two-atomic) molecules [67].

For systems involving large masses and energies, the laws of quantum mechanics are

known to give over to the laws of classical mechanics, which govern the dynamics of

macroscopic systems. Molecular systems as observed in the course of this thesis are

on the borderline of these two regimes. While the electrons show a distinctly quantum

mechanical behavior, the atomic nuclei can in most situations be described in terms of

classical mechanics, a property that is owed to their high mass. The disparity between

the mass scales of electrons and nuclei gives rise to both the Born-Oppenheimer and the

classical approximation [19].

The Born-Oppenheimer approximation aims at overcoming the high computational cost

of solving the Schrödinger equation for coupled nuclei and electrons by splitting the com-

putation in two consecutive steps. In the first step, the electronic Schrödinger equation

is solved, yielding the wave function depending on electrons only. For this purpose, the

nuclei are fixed in a certain configuration. This approach is justifiable by the fact that,

43
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from the perspective of the fast-moving electrons, the disproportionately heavier nuclei

are rendered virtually immobile [19]. In the second step, the electronic wave function

serves as a potential in a Schrödinger equation that contains only the (now mobilized)

nuclei: Every electronic state of the molecule creates a potential along which the nuclei

are moving. The Born-Oppenheimer approximation delivers good results for molecules

in the ground state, in particular for atoms with heavy nuclei. Unfortunately, the com-

putational cost of solving the electronic Schrödinger equation ab initio, independent of

using empirically derived parameters, remains high. The use of wave function-based

ab initio methods1 is typically limited to systems of no more than 20 (coupled-cluster

theory [69]) or 100 atoms (Møller-Plesset perturbation theory of the second order [70]).

By comparison, the relatively new approach of density functional theory (DFT), working

on functionals of electron density instead of wave functions, is apt to describe systems

of up to 1,000 atoms. DFT is in principle another ab initio method, but semi-empirical

in character due to necessary approximations in the density functionals. Finally, fully

semi-empirical methods are able to cope with systems of up to 10,000 atoms, but are

dependent on parameters from empirical data, and choose to omit certain types of in-

teractions completely [67].

While the ongoing improvement of quantum mechanical methods allows for the handling

of increasingly large systems, these class of methods remains predominantly a tool for de-

termining precise ground state energy, and not for studying larger dynamical processes.

In order to explore the conformational space of biomolecular systems, not uncommonly

consisting of hundreds of thousands of particles, a further simplification of the dynam-

ics is necessary. This need leads to the classical approximation – the description of a

molecular system in terms of classical mechanics2 – which describes the motion of bodies

under the action of a system of forces, and, in different (re)formulations, goes back to

Newton, Lagrange, Hamilton and Liouville [19].

Any formulation of classical mechanics requires that, for every particle involved, the cur-

rent position and velocity can be determined. This is directly contradictory to Heisen-

berg’s uncertainty principle, a fundamental convention of quantum mechanics, which

states that in a quantum mechanical system, two complementary properties of a parti-

cle cannot be determined with arbitrary precision at the same time. Consequently, the

spatial whereabouts of electrons in quantum mechanics are described in terms of proba-

bility densities, and not in terms of positions (as defined by coordinates), velocities, and

the resulting trajectories known from classical mechanics. The classical approximation

1The foundation for this class of methods is the Hartree-Fock approach [68], which by now has been
enhanced by electron correlation methods to allow for higher precision [67].

2The general study of mechanics began as early as the 4th century BC (Aristotelian physics), but
the term classical mechanics, coined in the early 20th century, typically refers to the system of physics
that was begun by Newton and his contemporaries.
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acknowledges the inability to properly describe electrons in a very straightforward man-

ner – by ignoring them. Therefore, the smallest elementary particle that is considered in

classical molecular simulation is typically the atom (or ion). However, certain properties

that arise from electronic effects are emulated in classical simulations, e.g. by attaching a

non-integer partial charge to every classical particle, which in turn adds to the potential

that acts on the particles. Despite its lack of sub-atomic precision, classical molecular

has been successful in reproducing the macroscopic properties of various molecular sys-

tems, in particular because the empirical potential functions that are used in classical

simulation can be tailored and tuned for the application in question (this is elaborated

in the following section).

One of the main limitations for the classical simulation of biomolecular systems (apart

from the aforementioned sampling problem that affects very large systems, cp. Chapter

1.4) is the inability to model charge transfer reactions, and the dynamic breaking and

formation of covalent bonds. Therefore, it is for instance not possible to modulate the

protonation state of amino acid side chains by simulating a pH titration experiment.

Currently, the hybrid quantum mechanics/molecular mechanics approach (QM/MM)

[71] as well as (yet experimental) polarizable force fields [72] try to offer some relief

in this respect. However, for modeling dynamic, non-covalent interactions that involve

macromolecules, and in particular when explicitly modeled solvent is required, classical

molecular simulation remains the one method of choice, and it is extensively used in the

context of this thesis. In the following, the theory behind this method is presented in

more detail.

3.1.1 Phase space and force field

In the classical approximation, a specific three-dimensional configuration of the N -

particle molecular system under observation is described as a position state q, where

q ∈ R3N . The whole molecular position space, consisting of all possible position states

q, is then denoted as Ω. Analogously to q, p ∈ R3N is the vector of collective mo-

menta acting on q. By joining q and p, one obtains a complete characterization of

the molecular system in terms of classical mechanics, given by the phase space vector

γ = (q, p)> ∈ R6N .

The most commonly used formulation of classical mechanics in the context of molecular

simulation is the one by Hamilton. Therein, the total energy of a single point γ of the

phase space Γ is given in terms of the separable Hamiltonian, the sum of the potential

energy U and the kinetic energy K (Equation 3.1).

H(γ) = H(q, p) = U(q) +K(p) = U(q) +
1

2
pTMp (3.1)



Chapter 3. Molecular simulation – A theoretical background 46

M represents the 3N×3N -mass matrix, which for every atom k contains the correspond-

ing atom mass mk thrice on its diagonal. While the kinetic energy K, dependent only

on p, can be calculated directly from atom masses and momenta, the potential energy

U , dependent only on q, has to be approximated by a molecular force field. Molecular

force fields describe U as the sum of a number of energy terms that represent all bonded

and non-bonded interactions in the system. In order to assemble a complete force field

representation, the atom types of all particles as well as their connectivity have to be

known. The energy terms, in turn, are usually very simplistic approximations of the

quantum mechanical potentials that are at work in “true” molecular systems, and have

to be considered as a necessary compromise between the speed of computational evalu-

ation and physico-chemical accuracy.

For example, the bond stretching potential Ub between two covalently bonded atoms i

and j is often represented by a simple harmonic potential (Figure 3.1) of the form

Ub(rij) = 1/2 kbij(rij − bij)2, (3.2)

so that the resulting force acting on atom i is

F i(rij) = kbij(rij − bij)
rij
rij
. (3.3)

In the above equations [73], the force constant kbij as well as the equilibrium bond

length bij are parameters that have to be derived from ab initio calculations beforehand.

Therefore, a classical force field is typically tailored for performing a certain limited task,

e.g. for reproducing peptide dynamics at a temperature of 300 K in water, and loses its

validity if certain of these preconditions are not met. Consequently, in classical molecular

simulation, the force field has to be chosen on the basis of the application.

The Lennard-Jones potential ULJ , in turn, describes the interaction energy between two

non-bonded uncharged atoms, and is given by

ULJ(rij) =

(
C

(12)
ij

r12
ij

−
C

(6)
ij

r6
ij

)
, (3.4)

with a resulting force of

F i(rij) =

(
12
C

(12)
ij

r13
ij

− 6
C

(6)
ij

r7
ij

)
rij
rij
. (3.5)
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Figure 3.1: Plot of a harmonic bond-stretching potential as used in the molecular
dynamics package GROMACS for modeling the oscillation of covalent bonds [73]. The
equilibrium bond length bij as well as the force constant kbij are chosen according to

the atom types of the two atoms i and j that are involved in the covalent bond.

In the above equations [73], the parameters C
(12)
ij and C

(6)
ij are again atom type-dependent

parameters. The Lennard-Jones potential is often rewritten in the form

ULJ(rij) = 4εij

((
σij
rij

)12

−
(
σij
rij

)6
)
, (3.6)

dependent on the two parameters εij , the depth of the potential minimum, and σij , the

position of the intercept of zero, which again have to be fitted to the results of ab initio

calculations (Figure 3.2).

The Lennard-Jones potential has an attractive and a repulsive component, the latter of

which becomes dominant when the distance between the two interacting atoms under-

cuts the sum of their van der Waals radii. With increasing distance, the Lennard-Jones

potential converges against zero. Therefore, unlike the second important non-bonded

interaction in classical force fields, the electrostatic Coulomb interaction, the Lennard-

Jones interaction can typically be cut off at a certain distance without having to correct

for the long-range portions separately.3

Ub and ULJ represent examples for bonded and non-bonded terms in classical force fields

which are simple functions of the distance between two particles. However, not all of the

energy terms in classical force fields are dependent on only two particles. The oscillation

of an angle between two covalent bonds is described by a three-body potential, and the

fluctuation of torsion (or dihedral) angles is computed from a four-body potential. More

complicated many-body potentials are typically not considered [19].

3In certain scenarios, however, the effect of the truncation can be non-negligible, e.g. on the gas-liquid
phase transition, and has to be corrected [74].
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Figure 3.2: Plot of a Lennard-Jones potential as used in the molecular dynamics
package GROMACS for modeling the interaction energy of non-bonded uncharged atoms
[73]. The depth of the potential minimum εij as well as the position of the intercept
of zero σij are chosen according to the atom types of the two atoms i and j that are
involved in the interaction. The optimal interaction distance rm (with an interaction

energy of −εij) can be computed as rm = 21/6σij .

The computational evaluation of these simple terms appears to be trivial, but the chal-

lenge in designing classical force fields lies in the shear number of interacting particles.

While the computation of bonded interactions is typically manageable, the brute-force

calculation of all non-bonded interactions in a large system is becoming an increasingly

tedious – and eventually impossible – task, given that it has to be performed millions

of times during a typical molecular simulation, and considering that, in principle, each

particle has a non-bonded interaction will all other particles in the system. Therefore,

state of the art molecular dynamics (MD) code uses an abundance of different methods

in order to accelerate the evaluation of the force field, some of which are presented below

(Table 3.1).

Of course, the most valuable (and by now indispensable) tool for accelerating the force

field evaluation in classical molecular simulation is parallel computing. The develop-

ment of efficient and scalable algorithms for this task has seen large advancements in

recent years [76]. The performance of MD simulations, however, does certainly not scale

linearly with the number of processors, and is ultimately dependent on the nature and

modeling of the system in question.4

More details concerning molecular force fields can be found in references [73] and [19].

The choice of force fields for the simulations conducted in the course of this thesis is

discussed in Chapters 4.5, 5.5, 6.5, and Appendix A.4.

The next section will elaborate on a crucial step in the theory of molecular simula-

tion: Moving from the calculation of solitary phase space trajectories of molecules to

4A rule of thumb for parallel MD simulations is to use not more than one processor per 1,000 particles.
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Method Description

Tabulated potentials Potential values are precomputed for the prevalent coordi-
nate range and looked up in a table during the simulation.

Periodic boundary conditions The use of periodic boundary conditions allows to mimic
the properties of infinitely large systems (commonly sol-
vent boxes) by creating virtual periodic images at a com-
paratively low cost.

Cut-off for non-bonded inter-
actions

Only particles within a certain distance of each other are
considered to interact directly. Long-range interactions (in-
cluding interactions with periodic images) are treated sep-
arately, e.g. by particle-mesh Ewald [75].

Neighbor lists The neighbor lists of directly interacting particles are up-
dated only every n integration steps.

Constraints By constraining the length of covalent bonds, the high-
frequent bond stretching potential does not have to be cal-
culated explicitly. This allows for a larger integration step
(cp. Section 3.1.4).

Table 3.1: A selection of methods for reducing the computational cost of force field
evaluations in classical molecular simulation [73].

the calculation of statistical ensembles, a prerequisite for the prediction of macroscopic

observables from molecular simulations.

3.1.2 The canonical ensemble

In the previous section, a description for the classical state of a molecular system in

terms of the separable Hamiltonian H(q, p) was introduced (cp. Equation 3.1). It was

elaborated how the potential energy U can be approximated by a molecular force field.

Using the Hamiltonian as well as the according equations of motion

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(3.7)

one can now, given an initial state (q(0), p(0)) is at hand, calculate the the dynamic evo-

lution of the system over a certain time in terms of the phase space trajectory (q(t), p(t)).

This calculation will yield precise and deterministic information regarding the dynamics

of the isolated system, however biased by a strong dependency on the chosen starting

conditions (q(0), p(0)) [19].

In practically every experimental setup, the molecular system under observation is em-

bedded into some kind of larger environment with which it is interacting. Typically,

this experimental environment dictates certain macroscopic properties, such as temper-

ature and pressure, and thus has a direct influence on all of the microscopic states of

the system. Consequently, studying isolated molecular systems in terms of deterministic

phase space trajectories is often not very meaningful. Therefore, using the theoretical
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framework of statistical thermodynamics, it is common practice to embed the molecular

system under observation within a formulation that allows for (i) fixing certain macro-

scopic environmental properties in terms of constraints and (ii) predicting the values of

macroscopic observables from the microscopic states in a reliable manner [19].

Thus, in contrast to monitoring a single molecular system with one possible state at

a time, one now considers a large number of identical systems (all obeying the same

Hamiltonian), each of which in a different state, and summarize these in terms of a sta-

tistical ensemble. A statistical ensemble can also be thought of as large – and possibly

infinite – number of realizations of a random experiment [44, 77]. In this context, it is

helpful to define the terms microstate and macrostate.

A microstate corresponds to a detailed description of the molecular system on the atomic

level by a state γ in phase space. Due to its microscopic scale, a microstate generally

cannot be determined by experiment. The term macrostate, by contrast, refers to ther-

modynamic variables of the molecular system that in principle are measurable, such as

temperature T , volume V , pressure P , number of particles N , or inner energy E.

Typically, every macrostate of the system can be realized by a high number of mi-

crostates, which implies that, if a certain macrostate is given, the microstate is, to a

large extent, undefined [19]. Therefore, a statistical ensemble is described by a proba-

bility density %(q, p, t) in phase space Γ,∫
Γ
%(q, p, t) dq dp = 1 (3.8)

which assigns a probability measure to every microstate of the statistical ensemble. In

the context of molecular simulation, one is typically interested in those % where % is

dependent on (q, p) solely by means of H. If % = %(H, t) with H = H(q, p), it can be

shown that ∂% ∂t = 0, which implies that the probability density % is time-invariant.

This corresponds to a stationary ensemble, i.e. a molecular system in thermodynamic

equilibrium [78].

The quantities of interest are now the expected values of observables over the statistical

ensemble. An observable is any function A : Γ→ R that assigns a real number to every

microstate (q, p) of phase space. Examples for relevant observables are the potential

energy U , or the kinetic energy K, but also geometric or structural properties, such as

the value of a particular torsion angle, or the degree of membership with regard to a

certain metastable state [77].

Finally, enforcing different macroscopic environmental constraints on % leads to differ-

ent types of statistical ensembles. A selection of widely used ensembles in statistical

thermodynamics is listed in Table 3.2. The most commonly used statistical ensemble in

classical molecular simulation is probably the canonical (or NV T ) ensemble, which fixes
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Name of ensemble Constraints Description

Microcanonical
(NV E)

Constant number of particles
Constant volume
Constant total energy

Thermally isolated

Canonical (NV T ) Constant number of particles
Constant volume
Constant temperature

Thermally coupled, exchange
of energy between the sys-
tems

Isobaric-isothermal
(NpT )

Constant number of particles
Constant pressure
Constant temperature

Thermally and pressure cou-
pled, exchange of energy be-
tween the systems

Grand canonical, or
macrocanonical

Constant temperature
Constant volume

Thermally coupled, exchange
of energy and particles be-
tween the systems

Table 3.2: Different types of ensembles in statistical thermodynamics [74]. In classical
molecular simulation, most experimental setups can be mimicked by either the canonical

or the isobaric-isothermal ensemble.

the number of particles N , the volume V and the temperature T of the system under

observation. In the canonical ensemble, one can imagine the N -particle system of vol-

ume V being connected to an infinitely large thermal bath with a constant temperature

T . While the mean kinetic energy of the system remains constant in the limit, it can

now constantly exchange energy with the surroundings. The canonical ensemble can

also be envisioned as a distribution over microcanonical ensembles, thermally isolated

systems with constant total energy E, which means that the average total energy 〈E〉
of the canonical ensemble is likewise constant.

The invariant probability density describing the distribution of phase space microstates

(q, p) in the canonical ensemble is given by the Boltzmann distribution:

π(q, p) =
1

Z
exp (−βH(q, p)), (3.9)

where the partition function

Z =

∫
Γ

exp (−βH(q, p)) dq dp (3.10)

serves as a normalization factor that is necessary to turn π into a probability distribu-

tion. Since Z (from the German word Zustandssumme, “sum of states”) in this case

is an integral over all possible states of a 6N -dimensional system, it can be calculated

analytically only for the most simple molecular systems [19].

The temperature T of the thermal bath, given in Kelvin, enters the equation by means

of the inverse temperature β = 1/kBT , where kB is Boltzmann’s constant. Due to

the contact with the virtual thermal bath, there is in theory no limitation to the total

energy of an individual microstate of the system. Consequently, at least in principle,

every microstate in phase space is accessible. For increasing total energy, however, the
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probability to actually find a certain microstate decreases exponentially. Therefore, the

overwhelming majority of statistical weight is represented by regions of phase space that

have a comparatively low total energy. It is these regions which almost exclusively enter

into Z. Of course, the actual distribution of π on different energy levels is strongly

dependent on β, and the character of the energy landscape described by H.

As the Hamiltonian H in the classical case is separable into U(q) and K(p), substituting

Equation 3.1 into 3.9 yields

π(q, p) =
1

Zq · Zp
exp (−βU(q)) exp (−βK(p))

= ρ(q) · η(p).

(3.11)

Thus, the Boltzmann distribution can be factorized into independent distributions ρ of

positions and η of momenta, where the latter corresponds to the Maxwell-Boltzmann

distribution [19]. In contrast to Zq, Zp can generally be calculated analytically for

Cartesian coordinates.

For many applications in classical molecular simulation, it is sufficient to sample from

the spatial distribution ρ, as one is interested mainly in observables in q. The expected

value of an observable A : Ω→ R is given by the integral

〈A〉ρ =

∫
Ω
A(q)ρ(q) dq

=
1

Zq

∫
Ω
A(q) exp(−βU(q)) dq

(3.12)

over the position space Ω, which, due to the high dimensionality of Ω, cannot be com-

puted directly for systems of relevant size [19].

Let (q1, ..., qn) be an independent sequence of molecule configurations generated by draw-

ing samples from the distribution ρ. Then it follows from the law of large numbers that

the sample means

A =
1

n

n∑
i=1

A(qi) (3.13)

converges to the expected value 〈A〉ρ for the number of samples n → ∞. Furthermore,

according to the central limit theorem, with increasing n, the sampling error, i.e. the

difference between the sampled distribution and ρ, decreases asymptotically in O(1/
√
n)

almost certainly [78].

This is also connected to an important requirement for “good” statistical ensembles:

ergodicity. The ergodicity requirement states that the ensemble average of an observable

should coincide with its time average [77]:

Ā∞ = 〈A〉ρ . (3.14)
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In order to implement ergodicity, the time evolution of the system needs to be mixing.

A more precise definition of the term follows in the next section.

Finally, all that remains to be done for predicting the relevant observables of the system is

to generate a sufficient number of samples from ρ. Unfortunately, in practical molecular

simulation, the rough energy landscape inherent to most molecular system prevents the

efficient generation of samples: The sampling typically remains confined to basins of

low potential energy containing almost invariant microstates for a long time, while high

energy transition states leading to different regions of conformational space are avoided.

One way to address this problem is to use the Markov chain Monte Carlo (MCMC)

approach. MCMC generates samples from a probability distribution ρ by constructing

an ergodic Markov chain that has ρ as its unique stationary distribution.

3.1.3 Markov chain Monte Carlo

MCMC methods are a class of numerical methods, which, based on a stochastic process,

create a dependent sequence (q(n)) of random vectors q(n) ∈ Ω distributed according to

ρ and satisfying the Markov property:

P (Xk = q(k) | Xk−1 = q(k−1), ..., X0 = q(0)) = P (Xk = q(k) | Xk−1 = q(k−1)).

Due to the manner of its construction, the resulting Markov chain then has ρ as its

unique stationary distribution for n→∞. The original MCMC algorithm, published in

1953 by Metropolis et al. [79], was developed for studying the diffusion of neutrons in

fissible material.

The most remarkable property of the MCMC algorithm is its ability to generate a

Markov chain which has ρ as its unique stationary distribution without having to state

ρ explicitly, in particular without knowledge of the partition function Zq.

To achieve this, the transition from q to a successor state q̃ is split into a trial step and

an acceptance step. In the latter, the newly proposed trial state q̃ is accepted with a

probability of Pacc and rejected (in favor of remaining in state q) with 1− Pacc:

P (q → q̃) = Ptry(q → q̃) · Pacc(q → q̃). (3.15)

During the trial step, it must be ensured that every state q ∈ Ω is reachable within

a finite number of steps. If, in addition, one chooses a symmetric trial probability

Ptry(q → q̃) = Ptry(q̃ → q), which means that proposing state q̃ in state q is equally

likely to proposing state q in q̃, one obtains

Pacc(q → q̃)

Pacc(q̃ → q)
= exp(−β∆U). (3.16)
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The probability of accepting a state is then defined according to the Metropolis criterion

Pacc(q → q̃) = min

{
1,
ρ(q̃)

ρ(q)

}
= min {1, exp (−β∆U)} .

(3.17)

Due to the fact that the probability distribution ρ is given within a quotient, the prob-

lematic partition function Zq cancels out in the acceptance step and leaves only a ratio

of probabilities that is easy to compute.

The resulting Markov chain is irreducible because in the trial generation algorithm, ev-

ery position state is, in principle, reachable from any other, i.e. all position states are

able to communicate. Due to the possibility of rejecting a trial, the Markov chain is also

aperiodic. A Markov chain that is both irreducible and aperiodic is ergodic. Therefore,

the unique stationary distribution exists [77].

It has to be mentioned that the sequence of samples generated by MCMC methods

does not represent a phase space trajectory (or even a time series), and can thus not

interpreted in terms of a dynamic process.

The main problem of all MCMC methods is that the proposed trial state q̃ has to be

substantially different from its predecessor q, and yet has to be accepted with a high

probability in order to achieve efficiency. Thus, q̃ has to be as far away from q as possible

for the algorithm to cover a large amount of Ω in a short time, while, simultaneously,

U(q̃) should be smaller than or equal to U(q). Therefore, the efficiency of any sam-

pling strategy based on the Metropolis algorithm is largely dependent on two quantities,

which are (i) the computational cost of the trial step, and (ii) the average acceptance

probability [77].

MCMC works wonders in situations were the trial state can be generated quickly. This

applies to systems that intrinsically have a low dimensionality, or are modeled in a

coarse-grained fashion that allows for an easy guess of trial states. In Chapters 1.4

and 2.2, respectively, examples were presented where MCMC was applied successfully

for sampling the (atomistic) conformational space of flexible PEG spacers [29] and for

sampling the (non-atomistic) conformational space of a simplified model of bivalent

ligand-receptor binding [30].

Obviously, for molecular systems with a large number of particles, generating a com-

pletely random (and thus almost certainly unphysical) position state for the trial step

will not produce satisfying results. The so-called hybrid Monte Carlo (HMC) [80, 81]

approach aims at overcoming this problem by calculating a short phase space trajectory

that originates in the current state q, and ends with the trial state q̃. Thus, by combining

MD (in the microcanonical ensemble) with the MCMC approach, the HMC algorithm

aims at generating trial states that by design have a high probability of being accepted.
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While this idea is elegant, it suffers from the fact that (i) generating the trial step is

computationally expensive and potentially inefficient for technical reasons5 and (ii) for

larger numbers of interacting particles – and certainly as soon as explicitly modeled

solvent is involved – the acceptance probability deteriorates rapidly due to pronounced

energy fluctuations.

Due to the limitations of Monte Carlo methods with regard to the application to large

systems, a different approach is required. In the next section, it will be discussed how

conventional molecular dynamics can be enhanced such that it is enabled to sample from

the canonical ensemble as well.

3.1.4 Molecular dynamics

Molecular dynamics (MD), which in contrast to the MCMC class of methods is a de-

terministic approach, derives the motion of a molecular system over time by solving

the Hamiltonian equations of motion by numerical integration. Within the limitations

of classical mechanics, MD will reproduce the correct physical behavior of a molecular

system, although a certain error stemming from numerical integration as well as inac-

curacies in the force field has to be expected. Furthermore, one should be aware that

small perturbations of the initial state can lead to dramatically different trajectories, i.e.

the initial value problem in MD is ill-conditioned [99]. Nonetheless, unlike sequences of

samples generated by MCMC, MD trajectories can be interpreted directly in terms of a

physical process [19].

An analytic solution of the equations of motion (cp. Equation 3.7) is known only for the

most basic molecular systems. Therefore, it is common practice to employ numerical

integrators for this task. Intuitively, an ideal numerical integrator should conserve the

total energy of the system exactly: A motion on the falling flank of the force field is

accelerated, whereas a motion against the gradient −∇U(q) = F is decelerated. This

corresponds to the conversion of potential energy into kinetic energy, and vice versa,

while the total energy remains constant [82].

Due to the limitations of machine precision and trade-offs made in order to achieve good

performance, energy conservation in numerical integration is typically only required to

be “good enough”, i.e. the total energy of the system should be conserved on average.

Furthermore, for molecular simulation of Hamiltonian systems, the integrator should be

symplectic (preserving the volume of phase space Γ) and time-reversible (applying the

inverse impulse leads back to the previous state) [19].

A popular integrator that is both symplectic and time-reversible is the velocity Verlet

5Parallel computing of very short trajectories tends to be inefficient, because initiating the commu-
nication between the processors (e.g. via a message-passing interface such as MPI) creates significant
computational overhead.
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integrator [74], which, like the Euler integrator and other Verlet-type integrators, is de-

rived from a Taylor expansion of the trajectory q(t). Verlet integrators are based on

a second-order Taylor approximation in which the third-order terms cancel, which is

why one arrives at an error order of O(τ3) without having to compute any expensive

third-order terms [19]. The velocity Verlet integrator updates the position q and the

velocity v = q̇ according to the equations

q(t+ τ) = q(t) + τ q̇(t) +
τ2

2
M−1F (t),

q̇(t+ τ) = q̇(t) +
τ2

2
M−1(F (t) + F (t+ τ)),

(3.18)

where τ denotes the length of the integration step and F the force acting on q, corre-

sponding to −∇U(q). Given some initial state (q(0), q̇(0)), the trajectory describing the

motion of the system over time is then generated by repeatedly applying Equations 3.18.

The time step length τ is typically chosen on the order of 1 fs = 10−15 s, so as to cover

even the most high-frequent events – bond length oscillations – with a sufficient num-

ber of integration steps. Constraining bonds length with the help of constraint solving

algorithms such as SHAKE [83] or LINCS [84] allows for increasing τ to up to 2 fs and

thus leads to an improved overall simulation performance.

Whereas MCMC methods are able to sample from the canonical ensemble, the basic

form of MD introduced above only samples from the microcanonical ensemble. The

microcanonical ensemble fixes the number of particles N , the volume V and the total

energy E = H of the system as constants (cp. Table 3.2). The latter constraint causes

a problem, because, as states of constant energy are not necessarily connected, an MD

trajectory in the microcanonical ensemble is not an ergodic (mixing) Markov chain [77],

meaning that even in a hypothetical simulation trajectory of infinite length, only a sub-

section of phase space is ever sampled.

The main advantage of MD in this “pure” form is the ability to reproduce the true

dynamics of a molecular system given some initial state (q(0), p(0)), which makes it a

valuable tool for calculating time-dependent quantities or transport coefficients in iso-

lated systems [19].6 However, due to the high demand for predicting the properties of

coupled molecular systems (cp. Section 3.1.2), that is dictated by the reality of most

experimental setups, a lot of effort has been put into extending the MD approach so as

to allow for canonical sampling.

6Even in this scenario, longer MD calculations suffer from a high degree of error amplification that
stems from errors in numerical integration.
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3.1.5 Thermostats

In 1980, Andersen [85] first suggested that MD could generate other ensembles that

the microcanonical one in order to better mimic experimental conditions, in particular

the canonical ensemble for thermally coupled systems.7 His proposal for generating the

canonical ensemble, NV T , from an MD run was to randomly pick a particle during the

simulation and adjust its velocity to the appropriate Maxwell-Boltzmann distribution for

the desired temperature (cp. Equation 3.11). While being formally correct, Andersen’s

thermostat suffered from a supposedly poor efficiency, and “the fact that discontinuities

in the trajectories were introduced.” [86] One of the main problems of Andersen’s ther-

mostat is that, unlike MD in the NV E ensemble, which conserves the total energy E,

there is no conserved quantity for evaluating the numerical stability of the simulation.

A by now more popular thermostat was introduced by Nosé [87] and reformulated by

Hoover [88]. The Nosé-Hoover thermostat allows for the control of temperature without

the use of random numbers. For this purpose, the Hamiltonian of the system is “ex-

tended by introducing a thermal reservoir and a friction term in the equations of motion.

The friction force is proportional to the product of each particle’s velocity and a fric-

tion parameter, ξ. This friction parameter (or ‘heat bath’ variable) is a fully dynamic

quantity with its own momentum (pξ) and equation of motion; the time derivative is

calculated from the difference between the current kinetic energy and the reference tem-

perature.” [73] In contrast to Andersen’s thermostat, Nosé’s dynamics has a conserved

quantity that can be monitored throughout the simulation [74].

While the Nosé-Hoover thermostat was developed for sampling the canonical ensemble,

it can be shown to be nonergodic in certain situations, in particular for small and stiff

systems. In order to compensate for this shortcoming, the Nosé-Hoover chain approach

was proposed, where each of thermostats in the “chain” has its own thermostat control-

ling its temperature, and in the limit of an infinite chain of thermostats, the dynamics

are guaranteed to be ergodic [89]. The manual for the popular MD software GROMACS

(which by default uses a chain of ten Nosé-Hoover thermostats) states that “just a few

chains can greatly improve the ergodicity, but recent research has shown that the sys-

tem will still be nonergodic, and it is still not entirely clear what the practical effect of

this [is].” [73] In any case, the introduction of chains of thermostats requires additional

tuning by the user, and further complicates this temperature coupling scheme.

Another popular thermostat is that of Berendsen et al. [90], in which Hamilton’s equa-

tion of motion are supplemented by a first-order equation for the kinetic energy. The

driving force of this equation is the difference between the instantaneous kinetic energy,

and its target value. According to Bussi et al. [86], ”Berendsen’s thermostat is stable,

7The original article, however, also contains proposals for sampling the isoenthalpic-isobaric and the
isothermal-isobaric ensemble.
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simple to implement, and physically appealing; however, it has no conserved quantity

and is not associated with a well defined ensemble [...]. In spite of this, it is rather widely

used.” Due to the fact the Berendsen thermostat suppresses kinetic energy fluctuations,

the distribution of the kinetic energy as well as dependent fluctuation properties, such as

the heat capacity, cannot be determined in a rigorous manner. Other ensemble averages

can be calculated with sufficient accuracy, in particular for very large system, as the

error scales with 1/N , the number of particles [73].

A similar thermostat which does produce a correct NV T ensemble is the velocity-

rescaling thermostat by Bussi et al. [86].

The velocity-rescaling thermostat is an extension of the original Berendsen method that

uses a properly constructed random force in order to enforce the correct distribution for

the kinetic energy. The rescaling procedure is typically distributed over a number of

time steps in order to prevent abrupt and fast fluctuations in the velocities. In general,

the algorithm works as follows [86]:

(1) Evolve the system with Hamilton’s equations of motion using a symplectic integrator

such as velocity Verlet (cp. Equation 3.18).

(2) Calculate the kinetic energy.

(3) Evolve the kinetic energy for a time corresponding to a single time step using an

auxiliary continuous stochastic dynamics.

(4) Rescale the velocities so as to enforce the new value of the kinetic energy.

The auxiliary dynamics for the kinetic energy is given in terms of (Equation 3.19)

dK = (K̄ −K)
dt

τ
+ 2

√
KK̄

Nf

dW√
τ
, (3.19)

where Nf is the number of degrees of freedom, and K̄ = Nf/2β is the average kinetic

energy at the target temperature. dW , in turn, is a Wiener process, a stochastic process

that is chosen such that is leaves the canonical distribution of the kinetic energy invariant.

Without the stochastic term, Equation 3.19 is reduced to that of the standard Berendsen

thermostat [86]. Save for a random seed, there are no additional parameters.

Conveniently, the velocity-rescaling thermostat also has a conserved quantity, which

Bussi et al. name the “effective energy”, H̃. For an infinitesimal time step, one finds

(Equation 3.20)

H̃(t) = H(t)−
∫ t

0
(K̄ −K(t′))

dt′

τ
− 2

∫ t

0

√
K(t′)K̄

Nf

dW (t′)√
τ

, (3.20)
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The physical meaning of the above equation is “that the fluxes of energy between the

system and the thermostat are exactly balanced.” [86] For a finite time step as used in

numerical integration, this compensation of the fluxes is only approximate, but nonethe-

less the conservation of H̃ provides a measure for the accuracy – accuracy in terms of

correctly representing the desired ensemble – of the states that are generated. Therefore,

in current MD software, the conserved quantity is usually stored along with the other

observables throughout a simulation with the velocity-rescaling thermostat [73].

The ability to generate theNV T ensemble while preserving the dynamic properties of the

system makes the velocity-rescaling thermostat very attractive for practical molecular

simulation. Therefore, it has been used almost exclusively for the simulations conducted

in the course of this thesis. If an isobaric-isothermal scenario is required, the thermostat

can be complemented by either the Berendsen barostat [90] or the Parrinello-Rahman

barostat [91, 92], which both can be used to enforce a certain reference pressure on

the system. The Berendsen barostat works by rescaling the simulation box vectors and

coordinates at regular intervals, while the Parrinello-Rahman barostat is an extended

ensemble approach similar to the Nosé-Hoover thermostat. Whereas the latter in the-

ory produces the “true” NpT ensemble, the Berendsen barostat suffers from the same

limitations as the Berendsen thermostat [73].

Stochastic dynamics as an alternative to thermostats

A different approach of mimicking a system coupled to a heat bath without using a ther-

mostat is given by stochastic, or Langevin, dynamics. The idea of stochastic dynamics

(SD) is to add a friction and a random noise term to the Hamiltonian equations of

motion, therewith turning them into stochastic differential equations (hence the name):

ṗ = −∇U(q)− ζp+ σẆ ,

q̇ =M−1p.
(3.21)

In Equation 3.21, ζ is the friction constant, and σẆ is a noise process that emulates

random forces conveyed by the Brownian motion exerted by the surrounding heat bath

[19]. Consequently, the dynamics itself can be employed as a thermostat for the desired

temperature, which however requires system-dependent tuning of the friction constant.

For instance, the GROMACS manual [73] states that “an appropriate value for ζ is 0.5

ps−1, since this results in a friction that is lower than the internal friction of water,

while it is high enough to remove excess heat.” Consequently, when SD is used as a

thermostat in connection with other kinds of solvent, an appropriate value for ζ has to

be determined beforehand.
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In the case of SD, it can be shown explicitly that the resulting distribution of states

corresponds to the canonical distribution, and that the ensemble average corresponds

to the time average (cp. Equation 3.14), which makes it a good choice for sampling

observable averages in the NV T ensemble [19].

Analogously to the velocity Verlet integrator for “pure” MD (cp. Equation 3.18), Langev-

in/stochastic dynamics can be discretized in a symplectic manner (Equation 3.22):

q(t+ τ/2) = q(t) + τ/2M−1p(t),

p(t+ τ) = p(t) + τ∇U(q(t+ τ/2))− τζp(t) +
√
τσN (0, 1),

q(t+ τ) = q(t+ τ/2) + τ/2M−1p(t+ τ),

(3.22)

where N (0, 1) is a normally distributed random variable with mean 0 and variance 1

[19]. Depending on the choice of ζ, the resulting dynamics can differ significantly from

conventional MD trajectories, but will still deliver the correct averages [73].

3.2 Conformational analysis with ZIBgridfree

This section is based on (and contains content from) the following publication:

• A. Bujotzek, O. Schütt, A. Nielsen, K. Fackeldey, M. Weber: Efficient conforma-

tional analysis by partition-of-unity coupling. Accepted for publication in J. Math.

Chem. 2013.

In the preceding section, the focus was laid on the basics of molecular simulation, and in

particular on how to generate samples from the statistical ensemble that best represents

the experimental conditions. This was motivated by the desire to calculate expected

values for almost arbitrary observables regarding the molecular system of interest.

While the theoretical and algorithmic machinery for generating the proper ensemble

is proven and tested, the sampling process in practical molecular simulation is often

plagued by the aforementioned sampling problem (cp. Chapter 1.4). The sampling

problem is rooted in the fact that the dynamics of molecular systems typically exhibits

a distinct metastable character: Molecular systems tend to remain within an almost

invariant subset of conformational space for a long time8, while transitions between dif-

ferent almost invariant subsets (i.e. conformational changes) are rarely observed events.

This characteristic is due to the rough potential energy landscape inherent to most

molecular systems. Basins of low potential energy, grouped around local minima, are

8The definition of long in this context arises from the relation to the integration time step τ (cp.
Equation 3.18), which for atomistic simulations is in the order of 1 or 2 fs.
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separated by high energy barriers, corresponding to conformational changes, or changes

from unbound to bound state, etc. This complicates the sampling of conformational

space, as MD trajectories tend to generate states from within the basin of one local

minimum for a long time, while transitions between different local minima are achieved

only very seldom, or not at all. This effect, often denoted as trapping, can lead to in-

complete coverage of conformational space, and thus to insufficient statistics. This effect

is particularly severe with regard to the sampling of transient regions of conformational

space, e.g. in the study of ligand-receptor binding processes, as the dynamics of the

system will try to avoid the energetically unfavorable (but most interesting) transition

states at any cost.9

While, as of yet, conventional thermostated (long-time) MD remains the predominant

tool in the molecular simulation community, several successful strategies for overcom-

ing (or rather lessening) the sampling problem have been developed, including umbrella

sampling [93], essential dynamics [94] and replica exchange [95].

In the following, as one example for an enhanced sampling scheme in molecular simu-

lation, an enhanced version of the ZIBgridfree sampling algorithm [96] is presented, as

it was developed in the course of this thesis. The principle of ZIBgridfree is inspired

by umbrella sampling and combines an uncoupling-coupling approach with an adaptive

refinement strategy in order to enable efficient and thorough sampling, even in transient

regions of conformational space. In the initial uncoupling step of the algorithm, confor-

mational space is partitioned into subsets. Each subset is sampled independently toward

convergence of the correct local distribution by means of evaluating the variance-based

Gelman-Rubin convergence criterion [102]. If convergence cannot be achieved (e.g. when

the sampling keeps on jumping between two local minima), a refinement of the partition-

ing is triggered, followed by additional sampling. In the subsequent coupling step, the

weighted partial densities are joined together to yield the overall Boltzmann distribu-

tion, so that the identification of conformations is reduced to a clustering problem based

on the eigenstates of the overlap matrix of the partitioning. Finally, conformational

weights and inter-conformational transition probabilities can be determined. The ex-

tended version of ZIBgridfree presented here broadens the scope of this sampling scheme

by combining it with a standard MD software package so as to give access to the most

popular and up-to-date force fields and solvent models. More details on the implemen-

tation of this version of ZIBgridfree, including the results of a number of validation runs,

can be found in Appendix A.

9Chapter 6 will focus exclusively on the sampling of binding processes.
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3.2.1 Conformation dynamics

As partitioning methods based on meshes or grids suffer from the “curse of dimension-

ality”, ZIBgridfree implements a meshless, function-based partitioning approach. This

is motivated by the concept of conformation dynamics [97, 98], where conformations

of a molecular system are defined in terms of soft-characteristic membership functions,

rather than classical sets in position space (denoted as Ω below). The primary objective

of conformational dynamics is to identify a set of nC metastable conformations, defined

by membership functions χ1, ..., χnC : Ω→ [0, 1]. Each point q ∈ Ω is assigned to each of

the conformations i = 1, ..., nC with a certain degree of membership χi(q). The functions

χi are non-negative

∀q ∈ Ω : χi(q) ≥ 0, i = 1, ..., nC , (3.23)

and form a partition of unity

∀q ∈ Ω :

nC∑
i=1

χi(q) = 1, (3.24)

which reflects that the assignment of conformations corresponds to a soft partitioning

of Ω. The conformations defined on the basis of membership functions χi are associated

with an overlapping partial density function ρ̃i:

ρ̃i =
χi(q)ρ(q)

w̃i
, (3.25)

where the partition functions

w̃i =

∫
Ω
χi(q)ρ(q) dq, (3.26)

represent the corresponding thermodynamical weights. As the membership functions

χi are, by definition, observables over the ensemble under consideration, the thermody-

namic weights w̃i are the expected values of χi under the joint Boltzmann distribution

of positions, ρ (cp. Equation 3.11).

A central concept in ZIBgridfree is the approximation of the unknown conformation

membership functions χi from a function basis φ, ..., φs : Ω → [0, 1], where the initial

number of basis functions s should be chosen larger than the anticipated number of

conformations. The function basis is chosen such that is has the same properties as the

membership functions χ1, ..., χnC , i.e. non-negativity (cp. Equation 3.23) and partition

of unity (cp. Equation 3.24). Therefore, each conformation membership function χj can
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be constructed from a convex combination of the basis functions φi [99]:

χj =
s∑
i=1

χdisc(i, j)φi, j = 1, ..., nC , (3.27)

where χdisc is a row-stochastic matrix containing the linear combination factors. Anal-

ogous to ρ̃i and w̃i in Equations 3.25 and 3.26, each of the basis function is associated

with a partial density ρi and a thermodynamic weight wi. In order to calculate a spe-

cific ρi, it is useful that each basis function φi can be formulated in terms of a modified

potential energy function Ũi as

Ũi(q) = U(q) + Ûi(q) = U(q)− 1

β
ln (φi(q)). (3.28)

Based on the samplings of the partial densities ρi associated with the basis functions φi,

the subsequent cluster analysis aims at identifying both the correct number of clusters

nC , as well as the matrix χdisc of linear combination factors, so as to obtain the set of

membership functions χj by applying Equation 3.27.

As a precondition for the partitioning discussed above, a rough scheme of the relevant po-

sition space has to be given. This can be delivered in terms of a long-time MD trajectory

(possibly using elevated temperature for improved coverage of position space), a targeted

MD or pulling trajectory, the output of certain tools for exploring conformational space

(e.g. CONCOORD [100] for protein structures) or even by manually preparing a sequence

of geometries. From this presampling is selected a set of nodes {n1, . . . , ns} ∈ Ω to each

of which is attached a radial basis function Wi given by

Wi(q) = exp (−α δ2(q, ni)), i = 1, ..., s, (3.29)

where α is a shape parameter, and δ2 a distance measure to be specified in the next

section. The basis functions Wi take on their maximum at the defining node ni, and

decrease exponentially as the distance δ2 of a state q to ni increases. As Equation 3.24 is

not yet satisfied, one constructs a partition of unity with basis functions φi by following

Shepard’s approach [101]:

φi :=
Wi∑s
j=1Wj

, i = 1, ..., s. (3.30)

The shape parameter α is chosen in dependence on the number of nodes s and the mean

node distance θ, and defines the degree of separation of the meshless discretization. A

proper choice for the value of α ensures thorough sampling in the area belonging to basis

function φi, as it helps to restrain the sampling process from wandering off into a lower

energy basin. For α → ∞, the discretization converges to a Voronoi tessellation, i.e.
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the soft partitioning degenerates into a hard partitioning without overlaps between the

basis functions.

Figure 3.3: Soft partitioning of a single torsion angle by six overlapping basis functions
(dashed black lines). The nodes (marked by white numbered labels) were picked from a
high-temperature presampling distribution (light gray histogram) by using the k-means

algorithm.

In practice, the sampling of the basis functions φi is run in parallel, as each Ũi can be

evaluated at every position q ∈ Ω independently of all Ũj with j 6= i. Depending on the

available resources, one can either sample several basis functions in parallel, evaluate the

potential Ũi in parallel (which in turn accelerates the sampling of the associated basis

function), or combine both approaches.

3.2.2 Internal coordinates

ZIBgridfree uses internal coordinates (either torsion angles and/or distances) as collective

variables in order to define the conformation of the system under observation. Prior to

picking a set of nodes for discretization, a set of nK internal coordinates has to be

specified by the user. The distance δ2(q, ni) between state q and node ni (Equation

3.29) is measured in the space of internal coordinates. Therefore, the outcome of the

discretization is directly related to the choice of internal coordinates. Deciding on a

meaningful set of internal coordinates is not always trivial. For conformational analysis

of small molecules, picking all rotatable torsion angles is an obvious choice, whereas for

peptides or proteins, picking only backbone torsion angles is practical. For complexes

of multiple molecules, the set of torsion angles has to be complemented by a set of

distances in order to describe the molecules’ relative positioning to each other (Figure

3.4). Depending on the focus of the simulation, the set of internal coordinates can be

reduced to a relevant subset, e.g. the part of a protein that is involved in ligand binding.

In general, high-frequency torsion angles associated with very mobile atoms such as
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hydrogen can be neglected, as they do not contribute to a meaningful conformational

description. If only one linear coordinate is given, the ZIBgridfree discretization will

resemble the discretization along a single reaction coordinate in conventional umbrella

sampling.

Figure 3.4: A set of internal coordinates for describing the state of a bivalent host-
guest system. The positioning of the charged amino groups of the bivalent guest with
regard to the complementary crown ethers of the host is described by a set of six linear
coordinates. The linear coordinates can, for instance, be supplemented by torsion angles

that describe the conformation the guest molecule.

Whereas angular internal coordinates can only take on values between -π and +π, dis-

tance (or linear) coordinates can in principle take on any positive value. This leads

to problems whenever linear coordinates with a large spread or a large absolute value

are overly dominant, as other internal coordinates with more subtle changes are ren-

dered irrelevant when the distance function δ2 is evaluated. In order to tackle this

problem, linear coordinates can be weighted and normalized automatically by calling

zgf create pool with option ‘–balance-linears’.

Let k be a linear coordinate that corresponds to the Euclidean distance between two par-

ticles in the system under observation. The weight of this coordinate is then determined

as follows:

coord weight(k) =
coord weight(k)initial√

2 ∗ var(k)
, (3.31)

where coord weight(k)initial is one, unless specified differently by the user. This means

that coordinates with a high spread are downgraded by dividing the initial weight by the

full width at half maximum. Furthermore, an offset for k is applied by subtracting its

mean value in order to compensate for high absolute values. This leads to the following
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weighting formula:

kbalanced = coord weight(k) · (k − offset(k))

= coord weight(k) · (k − (offset(k)initial +mean(k))),
(3.32)

where offset(k)initial is zero, unless specified differently by the user. This approach

realizes an equal weighting of all internal coordinates involved. Nonetheless, certain

applications might call for biased weighting of the internal coordinates, e.g. when the

distance between ligand and receptor (defined by linear internal coordinates) is to be

stressed in comparison to more subtle conformational changes in the ligand molecule

(defined by torsion angle internal coordinates).

3.2.3 Implementing the potential modification

Sampling the ZIBgridfree basis function φi requires a modification of the potential func-

tion U(q) (Equation 3.28). The aim was to change the algorithm such that it can be

run with standard force fields and unmodified MD packages such as GROMACS [76].

Treating the MD code as a black box has several advantages: The user can use read-

ily available software (pre-compiled for many Linux distributions and pre-installed on

most computing clusters), and plug in new versions as they are released. Full flexibility

regarding the choice of force field and other simulation parameters is sustained. Fur-

thermore, internal changes to the highly optimized MD code, possibly having a negative

impact on the simulation performance, are evaded.

Adapting ZIBgridfree to a standard MD package is a two-step procedure. First, for each

selected node ni, the nK-dimensional φi function is projected on a single dimension by

coordinate-wise evaluation: Instead of considering the joint distance δ2(q, ni) involving

all internal coordinates, one now considers exclusively the distance regarding coordinate

k:

φik(q) :=
exp (−α δ2

k(q, ni))∑s
j=1 exp (−α δ2

k(q, nj))
, k = 1, ..., nK . (3.33)

The above expression yields the membership of state q with respect to coordinate k

regarding basis function φi. The one-dimensional penalty potential acting on coordinate

k of state q can simply be obtained as:

Ûik(q) = − 1

β
ln (φik(q)). (3.34)
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Finally, in order to approximate Ũi, for every internal coordinate k, a generic cubic

restraint potential (as available in many common MD packages) is fitted to the penalty

potential Ûik and added to the force field representing the unmodified potential U . This

approach was implemented for the GROMACS MD package, where restraint potentials

of the form

Ures(Φ
′) =


1
2kres (Φ′ −∆Φ)2 , for Φ′ > ∆Φ

0, for Φ′ ≤ ∆Φ
(3.35)

are readily available (given here for a torsion angle restraint on torsion angle Φ′ =

(Φ0 − Φ) mod 2π, with rest position Φ0 and unrestrained region ∆Φ, analogous for

distance restraints). The concept of fitting restraint potentials to the coordinate-wise

projected basis function penalty potentials of ZIBgridfree is depicted in Figure 3.5.

Figure 3.5: Sampling of a torsion angle distribution (gray histogram) with ZIBgridfree.
The sampling is forced to stay within the area of an exemplary basis function (dashed
gray line) by its penalty potential (dashed black line). For use with GROMACS, the
penalty potential is approximated by a harmonic restraint potential (solid black line).
Due to the approximation error, the sampling is not sufficiently limited to the area
covered by its basis function (left). After reweighting the sampling points with regard

to the their basis function (right), the approximation error is removed.

The imperfect approximation of multi-dimensional basis functions by harmonic restraints

introduces a certain error, as sampling points may be generated from areas of Ω that

are not covered by the basis function in question. This is especially true for boundary

regions, where several basis functions are overlapping. This approximation error can

be removed by giving each sampling point q a weight frame weighti(q) with respect to

basis function φi:

frame weighti(q) =
φi(q)

exp(−β · Ures(q))
(3.36)
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The effect of reweighting on the sampling distribution is depicted in Figure 3.5. Calcu-

lating the sampling point weights is inexpensive in terms of computation time. Subse-

quently, when checking for convergence of the sampling, or when calculating observables

of any kind, only the reweighted distribution is considered.

3.2.4 Adaptive refinement of the partitioning

In order to ascertain a sufficient sampling of the partial densities ρi, ZIBgridfree pursues

an adaptive refinement approach. After a certain number of simulation steps, conver-

gence of the sampling is tested by evaluating the Gelman-Rubin convergence criterion

[102]. If the convergence test fails, the sampling will be extended by n simulation steps

(followed by another convergence test) for a maximum of m times (where n and m are

user-defined settings). If convergence has not been achieved after m extensions of the

original sampling length, a refinement of the partitioning in the area of the affected basis

function is triggered. By default, two children nodes ni1 and ni2 are introduced, whereas

the original parent ni is removed from the partitioning, along with its basis function φi.

This principle is illustrated in Figure 3.6.

Figure 3.6: The sampling of basis function ’1’ (associated with a node at -68◦) has
come upon a second minimum in the region around -180◦ (left). In this case, con-
vergence of the sampling is not achieved in the allocated number of sampling steps.
A failed convergence test triggers an automatic refinement of the partitioning (right).
The parent node ’1’ is removed and replaced by two children named ’7’ (-65◦) and ’8’
(-167◦). The samplings of the associated basis functions converge quickly, as they are

now confined to a single energy minimum each.

Removal and addition of nodes have an impact on the overall partitioning, as with the

number of nodes s, the mean node distance θ is bound to change. Hence, following each

refinement step, the shape parameter α (Equation 3.29) is recalculated. With proceeding

refinement and increasing s, α will become larger, which in turn leads to a higher degree

of separation between basis functions. This mechanism leads to increased convergence

rates over the course of the refinement.
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Despite several cycles of refinement, the sampling of transition regions (e.g. when a node

is situated on the steep flank of a potential energy barrier) may not lead to convergence

according to the Gelman-Rubin criterion. In these cases, the sampling has to be dis-

continued as soon as a sufficient number of data points from the transition region has

been collected. This can be achieved by calling zgf mdrun with the option ‘–multistart’:

Instead of prolonging the sampling in terms of trajectory extensions, this option will

trigger multiple restarts from the initial position with varying starting impulse – an

approach that is indispensable in the sampling of binding processes.

3.2.5 Reweighting and cluster analysis

Direct free energy reweighting

As the partial densities associated with the discretization nodes are sampled independent

of each other, they may represent an accurate local distribution of states, but do not

have the correct relative weighting. This leads to an error when the joint Boltzmann

distribution is accumulated from the individual partial densities, as is illustrated in

Figure 3.7 for the torsion angle distribution of n-pentane. In order to arrive at a balanced

joint Boltzmann distribution, the partial densities have to be reweighted according to a

free energy difference estimate implemented in the tool zgf reweight. The free energy

difference estimate, based on the approach of Klimm et al. [103], is outlined shortly in

the following.

1. From each set of states {q(i)
n }n=1,...,N(i) ∈ Ω representing the partial density ρi,

i = 1, . . . , s, choose a set of reference points {q(i)
r }r=1,...,R(i) . A reference point

is characterized by having a potential energy value within the energy standard

deviation of ρi. More precisely, with 〈U (i)〉 being the mean potential energy of set

q(i),

∥∥∥U(q(i)
r )− 〈U (i)〉

∥∥∥ ≤
√√√√ 1

N (i)

N(i)∑
n

(
U(q

(i)
n )− 〈U (i)〉

)2
.

2. Approximate the local density of sampling points by evaluating expression Dvoli ,

which counts the number N
(i)
near of sampling points that are near, i.e. within a

certain distance voli around each reference point q
(i)
r , and compute its inverse

(
Dvoli(q

(i)
r )
)−1
≈ N (i)

N
(i)
near + 1

.
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For this purpose, voli is chosen as large as the mean variance of the internal

coordinates regarding all sets of states q(i), which is precomputed in a first iteration

over the sampling data. The variance for each set is computed in terms of the

distance function δ2, dependent on the type of the internal coordinates that are

involved in the discretization.

3. Compute the entropy estimate

Si = kB ln

 1

R(i)

R(i)∑
l=1

(
Dvoli(q

(i)
r )
)−1

 ,

the free energy

Gi = 〈U (i)〉 − T · Si,

and the statistical weights

wi = wi−1 · exp (−β (Gi −Gi−1)) ,

with w1 = 1. The free energy values have to be ordered by size before calculating

the statistical weights. Finally, the statistical weights have to be normalized so

that
∑s

i=1wi = 1.

Figure 3.7: Torsion angle distribution of the two torsion angles of n-pentane at 300 K,
assembled from 25 individual node samplings. Before reweighting, each partial density
contributes equally to the joint distribution (left). This leads to disproportionately high
weights of the gauche/trans, trans/gauche and gauche/gauche conformations. After
thermodynamic reweighting, the correct relative weights of the partial densities are

restored, which leads to an improved joint distribution (right).
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Overlap weight correction

The reweighting method introduced in the previous section works best for well-separated

basis functions. Depending on the given discretization and the nature of the system

under observation, the basis functions in ZIBgridfree can have a more or less pronounced

overlap. Therefore, in order to take basis function overlap into account, a correction of

the statistical weights w is necessary. The degree of overlap between each pair of basis

functions φi and φj is quantified in terms of the overlap integral matrix S ∈ Rs×s:

Sij =

∫
Ω
φi(q)φj(q)ρ(q) dq, (3.37)

which for practical reasons is approximated as

Sij =
1

N (i)

N(i)∑
n=1

φj(q
(i)
n ) · frame weighti(q

(i)
n ) (3.38)

from the states {q(i)
n }n=1,...,N(i) that represent the partial density ρi. Note that the

shape of S is influenced by the chosen discretization, in particular by the number of

discretization nodes s. For fine discretizations (large α, cp. Equations 3.29 and 3.30),

S will resemble a diagonal matrix. For very coarse discretizations and small α, it will

degenerate into a full matrix.

The statistical weights w of the basis functions can be derived by solving the eigen-

value problem w>S = w>, which means that w corresponds to the unique, positive

and normalized left eigenvector of S with regard to its eigenvalue λ1 = 1 [99]. This

eigenvector-based approach is not well-conditioned and highly dependent on sufficient

sampling in the overlap regions between the basis functions [104]. In order to benefit

from the advantages of both direct free energy reweighting and the eigenvector-based ap-

proach, a number of power iteration steps from the original weights w with the stochastic

matrix are started, until the corrected weights (again denoted as w) are convergent.

After the correction of w, an adjustment of S is required. If the matrix S has been

computed according to Equation 3.37, it is usually not symmetric. Furthermore, the

row sums do not correspond to the corrected weights w. According to the method of

Sinkhorn[105], an iterative rescaling of the row sums to meet w, followed by a sym-

metrization of S, leads to a corrected overlap integral matrix that is consistent with the

precomputed statistical weights. After this correction, the vector w is a left eigenvector

of D−1S corresponding to the eigenvalue λ1 = 1, where D = diag(w). In the following,

the stochastic matrix D−1S is used for the identification of metastable states.
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Metastability analysis with PCCA+

From the chemical perspective, metastable subsets correspond to the main conformations

of the underlying molecular system. In the presence of metastable states, any matrix

describing the transition behavior of the system (including the corrected overlap integral

matrix D−1S) exhibits a virtual block-diagonal structure, i.e. there exists a permutation

of indices so that the metastable subsets of the system are represented by (more or less)

quadratic blocks along the diagonal of the matrix (see Figure 3.8).

Figure 3.8: Schematic of a (permutated) transition matrix in the presence of
metastable subsets. Within the three conformations c1 to c3, states are mixing quickly.
By contrast, transitions from conformation to conformation (light gray off-diagonal

area) are rare events.

Every block in this matrix is associated with an eigenvector of the matrix whose eigen-

value is almost one. The set of the eigenvalues in the vicinity of one is denoted as the

Perron cluster, and the size of this set corresponds to the number of chemical confor-

mations nC . As the eigenvector space represents a basis of the transition matrix, every

conformation can be stated by a linear combination of these eigenvectors. The linear

combinations of the eigenvectors associated with the eigenvalues of the Perron cluster

contain, for each basis function φi, the degree of membership with regard to each of the

nC conformations. Robust Perron cluster analysis (PCCA+) [106, 107] is used to find

the permutation yielding the block-diagonal structure, and hence the matrix of linear

combination factors χdisc (cp. Equation 3.27). The result is the matrix χ ∈ Rs×nC ,

where the entry χ(i, j) ∈ [0, 1] denotes the degree of membership of basis function φi

with regard to the j-th metastable subset.

Using the weight vector w containing the thermodynamic weights of the basis functions

φi, it is then possible to calculate the weights w̃ of the conformations as w̃ = χ>w.

An estimate for the precision of the conformational weights that can be expected from a

conformational analysis with ZIBgridfree can be made based upon the validation results

presented in Appendix A.
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3.3 Conformational entropy estimation

Chapter 2.2.2 introduced the concept of entropy as the logarithmic counting of the states

of a given system. A high multiplicity of states q ∈ Ω is equivalent to a high entropy

of the system. The absolute entropy of the position space Ω of a molecular system

described in terms of a canonical ensemble can be expressed by the integral (Equation

3.39):

SΩ = −kB
∫

Ω
ln(ρ(q))ρ(q) dq, (3.39)

where the probability that the system adopts a certain state q is given by the spatial

Boltzmann distribution (Equation 3.40, also cp. Equation 3.11) [108]:

ρ(q) =
exp (−βU(q))∫

Ω exp (−βU(q̄)) dq̄
. (3.40)

For q ∈ R3N as obtained from a molecular simulation, the integral given in Equation

3.39 does not separate the conformational entropy from the rotational and the transla-

tional component, i.e. SΩ = Sconf + Strans + Srot. Therefore, if only the conformational

component is required, the rotational and translational degrees of freedom have to be

eliminated, e.g. by shifting and aligning the principal axes of the molecule throughout

the sequence of sampled states. Alternatively, it is possible to define representations

of the conformational state that are inherently invariant with regard to translation and

rotation (cp. Section 3.2.2 on internal coordinates/collective variables) – a thought that

will be picked up later.10

Even after removing translational and rotational degrees of freedom, the position space

would in principle be unlimited, if it was not constrained by the potential energy U : With

increasing U(q), the probability that the system can be found in the associated state q

decreases exponentially. Consequently, unphysical states with a disproportionately high

potential energy do not occur. Therefore, if a high number of states is accessible on

a moderate energy level – with regard to the Boltzmann distribution for a given tem-

perature – the entropy of the system (in its current macrostate) is favorable. If only a

small number of states is accessible, the entropy is unfavorable. In this case, the system

is driven towards a macrostate with a higher entropy, unless it is compensated by an

adequate amount of enthalpy gain.

In the study of molecular systems, one is often interested in calculating entropy differ-

ences between certain macrostates of the system, i.e. in answering how many microstates

are associated with each of the relevant macrostates. This knowledge is a key factor in

10The significance of conformational entropy in the context of multivalent ligand-receptor binding has
been discussed in Chapter 2.2.2.



Chapter 3. Molecular simulation – A theoretical background 74

understanding binding affinities in ligand-receptor systems, and the missing link when

calculating free energy differences between unbound and bound state with methods such

as MMPB/SA, using the potential energy from a Molecular Mechanics force fields,

solvation electrostatics from the Poisson-Boltzmann equation, and an estimate of the

hydrophobic effect11 from the accessible Surface Area [110]. Considering the aforemen-

tioned difficulties in sampling molecular (and in particular macromolecular) position

space, calculating entropy differences, or even absolute entropy, in an efficient manner

is among the most complex problems in molecular simulation. Not only computational,

but also experimental methods struggle with quantifying conformational entropy.

While experimental measurements of free energy changes, e.g. by means of isothermal

titration calorimetry (ITC), allow for separating entropic from enthalpic contributions

(cp. Chapter 1.4, Table 1.1), Numata [110] states that “the separation of the total en-

tropy change into solvent and solute components is in general not straightforward.”

Nonetheless, in 2002 the conformational entropy loss of a protein backbone upon forced

mechanical unfolding could be estimated by means of atomic force microscopy mea-

surements [111], and advancements in nuclear magnetic resonance (NMR) spectroscopy

allow for resolving separate microscopic states of solute molecules. Frederick et al. [112]

and Marlow et al. [113], for instance, were able to estimate the change in conformational

entropy of the protein calmodulin upon binding of different target domains by means of

NMR relaxation analysis, which in turn could be related to the overall entropy change

that was obtained by ITC measurements. Recently, a similar approach has been applied

for studying conformational entropy changes in the carbohydrate recognition domain of

galectin-3 upon binding of different small-molecule ligands [114]. However, determining

the conformational entropy change for small solute molecules (or even for separate parts

of such, e.g. for a given flexible spacer component) remains a notable challenge, and

therefore, at least for now, stays a domain of simulation methods.

The most commonly used method for calculating absolute conformational entropy from

simulation trajectories of macromolecules (such as proteins) is the quasi-harmonic ap-

proximation (QHA) [115–117]. QHA, in turn, is based on principle-component analysis

(PCA), or covariance analysis, and can be used to identify linear correlations between

pairs of coordinates. For this purpose, it uses the covariance matrix C of the atomic

coordinates (Equation 3.41) [116]:

Cij =M
1
2
ii(qi − 〈qi〉) M

1
2
jj(qj − 〈qj〉), (3.41)

where M is the diagonal atom mass matrix for mass-weighted analysis, or the unit

matrix for non-mass weighted analysis. C is a symmetric 3N × 3N matrix, which can

11The hydrophobic effect is in truth also a largely entropic phenomenon, connected to the rearrange-
ment of networks of water molecules [109].
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be diagonalized with an orthonormal transformation matrix R (Equation 3.42) [73]:

R>CR = diag(λ1, λ2, ..., λ3N ), with λ1 ≥ λ2 ≥ ... ≥ λ3N . (3.42)

The eigenvectors of R are called principal (or essential) modes. The eigenvalue λi, in

turn, is the mean square fluctuation of the i-th principal component. The matrix R

defines a transformation to a new coordinate system, which can be used to project

the trajectory unto the principal modes in order to obtain the corresponding principal

components, pi(t) (Equation 3.43) :

p(t) = R>M
1
2 (q(t)− 〈q〉) (3.43)

The first few principal modes often describe collective, global motions in the system,

as they are constructed such that they contain the largest variance in the data. Thus,

PCA is useful for filtering the large-scale dynamics of a macromolecule (which may have

chemical/functional relevance) from the “noise” of small, local (and likely irrelevant)

dynamics. The trajectory can be filtered along a certain principal mode i as follows

(Equation 3.44) [73]:

qfi(t) = 〈q〉+M−
1
2R∗i pi(t) (3.44)

Again, if Cartesian coordinates are used, the trajectory should be fitted to a reference

structure beforehand in order to remove translational and rotational motion.

The main concept of QHA is to fit, for each principal mode, the associated observed

probability density to a harmonic oscillator model for which the entropy, among other

thermodynamic properties, can be calculated analytically [110]. The variances of this

multi-dimensional Gaussian distribution are assumed to be equal to the eigenvalues λ

of the diagonalized covariance matrix. For more complex molecular systems, this step is

highly approximative, as it is based on the assumption that the (possibly very intricate)

dynamics of the principal mode can be emulated by a harmonic potential.

The second significant approximation is made in limiting covariance analysis to linear

correlation, although coordinates in molecular simulation, depending on the nature of

the system under observation, were shown to correlate in a supralinear manner [110].

Consequently, QHA tends to substantially overestimate the entropy for systems with

multimodal conformational densities, i.e. as soon as multiple energy minima are occupied

[118]. In these cases, QHA only delivers an upper bound on conformational entropy,

but not an exact value. By now, some of these shortcomings have been addressed

in terms of different extensions of the original QHA algorithm in order to correct for

anharmonic behavior and supralinear correlation, so that the upper bound on the exact

conformational entropy value can at least be tightened. For a compact, but very rich

overview of these methods, refer to Ref. [110].
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Fortunately, for many applications in the context of molecular simulation, calculating

absolute conformational entropy values can be bypassed by considering differences in

conformational entropy instead, e.g. for thermodynamic reweighting of different regions

in conformational space (cp. Section 3.2.5) [103], for quantifying the entropy loss be-

tween unbound and bound state in a ligand-receptor pair [16], or for comparing the

conformational entropy of different (but structurally similar) spacer variants in a multi-

valent compound [119].

For instance, in order to estimate conformational entropy differences from simulations

of different polymer variants presented on anti-fouling surfaces, Weber and Andrae pre-

sented a Monte Carlo-inspired approach that is based on comparing densities in con-

formational space, and relating the observed differences in conformational denseness to

the conformational entropy difference [108]. While the original publication uses (subsets

of) Cartesian coordinates, the approach was later extended to work with different types

of collective variables (cp. Section 3.2.2) in order to simplify the application to solute

molecules [103].

Weber and Andrae calculate the entropy difference between two canonical ensemble

systems of interest at a given temperature T (Equation 3.45)

∆S =
∆U −∆A

T
(3.45)

from estimates of the inner energy difference ∆U and the Helmholtz free energy difference

∆A. The computation of ∆U is the trivial part as it can be obtained from a Boltzmann-

distributed sampling of the two position spaces Ω1 and Ω2, and the associated potential

energy functions U1(q) and U2(q) (Equation 3.46):

∆U =

∫
Ω2

U2(q)ρ(q) dq −
∫

Ω1

U1(q)ρ(q) dq = 〈U2〉 − 〈U1〉. (3.46)

What remains is to find an estimate for ∆A. The Helmholtz free energy A, the thermo-

dynamic potential at work in the canonical ensemble, is defined as the logarithm of the

(unknown) partition function Zq (Equation 3.47, also cp. Equation 3.11):

A := −β−1 ln(Zq) = −β−1 ln

(∫
Ω

exp(−βU(q)) dq

)
. (3.47)

The authors use a Monte Carlo quadrature approach in order to avoid the need to

evaluate the partition function explicitly, which leads to the following expression for the
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Helmholtz free energy difference (Equation 3.48):

∆A = −β−1 ln

(∫
Ω2

exp(−βU2(q)) dq∫
Ω1

exp(−βU1(q)) dq

)

≈ −β−1 ln


exp(−βU2(q

(2)
r )) vol(Ω2)

Dequi
vol2

(q
(2)
r )

Dvol2(q
(2)
r )

exp(−βU1(q
(1)
r )) vol(Ω1)

Dequi
vol1

(q
(1)
r )

Dvol1(q
(1)
r )


≈ −β−1 ln

(
Dvol1(q

(1)
r )

Dvol2(q
(2)
r )

)
+ U2(q(2)

r )− U1(q(1)
r ).

(3.48)

The fraction Dequi
voli

(q
(i)
r )/Dvoli(q

(i)
r ) with i = 1, 2 is an estimator for the density of con-

formational states around a reference state q
(i)
r that is meant to represent the conforma-

tional space Ωi of volume vol(Ωi).

The final step in Equation 3.48 requires that the two position spaces Ω1 and Ω2 are com-

parable (if not equal) in structure, e.g. by having an equal number of degrees of freedom.

This requirement enforces an equal position space volume vol(Ωi), and thus leads to the

same number of equally distributed states to be expected, Dequi
voli

. Consequently, both

terms cancel out. Together with the estimate for ∆U (cp. Equation 3.46), one arrives

at the following estimate for the entropy difference (Equation 3.49):

∆S ≈ [〈U2〉 − U2(q
(2)
r )]− [〈U1〉 − U1(q

(1)
r )]

T
+ kB ln

(
Dvol1(q

(1)
r )

Dvol2(q
(2)
r )

)
, (3.49)

which, if one selects reference states with a potential energy that corresponds to the ob-

served mean potential energy, i.e. U1(q
(1)
r ) = 〈U1〉 and U2(q

(2)
r ) = 〈U2〉, can be simplified

further to (Equation 3.50):

∆S ≈ kB ln

(
Dvol1(q

(1)
r )

Dvol2(q
(2)
r )

)
. (3.50)

In practice, it is necessary to consider significantly more than one reference state q
(i)
r in

order to converge the entropy difference estimate. The result is then based on a mean

over a number of M1 and M2 density estimates taken at various reference positions in

Ω1 and Ω2 (Equation 3.51):

∆S ≈ kB ln

M1
∑M2

r=1

(
Dvol2(q

(2)
r )
)−1

M2
∑M1

r=1

(
Dvol1(q

(1)
r )
)−1

 . (3.51)

Algorithmic details on the choice of reference states and the choice of volume voli for
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evaluating the density estimate Dvoli(q
(i)
r ) can be found in Section 3.2.5. For a math-

ematical background on the Monte Carlo quadrature approach used in Equation 3.48,

please refer to the original Ref. [108].



Chapter 4

Flexible spacer systems

4.1 Introduction

Chapters 1 and 2 have introduced the concept of multivalency and the idea of

a multivalent enhancement effect in chemical systems, an effect that, based on

the preorganization of complementary binding partners in multivalent arrays, induces

a cooperative effect that helps to enhance binding affinities and allows to assemble

complex geometries and architectures. Along with this introduction, certain topics of

interest were pointed out as possible starting points for an investigation with theoretical

methods, investigations that might help to better understand the different factors that

are at work in multivalent systems. Among these topics were the question in how far

conformational entropy can have an impact on multivalent interactions (a question that

has, in turn, an impact on choices for the design of spacers and scaffolds for multivalent

compounds), but also the desire to monitor an actual multivalent binding process on the

molecular level, e.g. for looking into the occurrence of rebinding events. Accordingly,

Chapter 3 focused on how chemical systems in general can be studied on the atomistic

level, efficiently and purely computational, by means of classical molecular simulation.

This chapter constitutes the first “applied” part of this thesis, and as such presents the

results from two studies that involve the application of different computational tools,

mainly related to conformational analysis and conformational entropy estimation, to

realistic multivalent systems. The first study (Section 4.2, based on Ref. [119]) is a

purely computational one, however complemented with a chemical context provided by

Min Shan and his supervisor Prof. Dr. Rainer Haag (for affiliations, see footnote 1),

and addresses the problem of designing “successful” flexible and semi-flexible spacers

for tethering two ligand moieties in different bivalent compounds meant for binding to

79
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human estrogen receptor (ER), a known drug target that was shown to have a homod-

imeric receptor layout with two identical steroid binding sites (Section 4.1.1). The focus

of this first study is on predicting spacer conformations and conformational entropy

differences in water. The second study (Section 4.3, based on parts of Ref. [16]) rep-

resents a collaborative work of mainly experimental nature, conducted by Min Shan1

at Freie Universität Berlin, Frank Abendroth2 at Humboldt-Universität zu Berlin and

Anja Wellner3 at Universität Innsbruck, accompanied by a computational part that was

conducted by the author of this thesis. It deals with a binding study of a series of novel

bivalent ER ligands involving flexible spacers, with the focus on predicting the confor-

mational entropy loss upon binding, as well as the impact of spacer-protein interactions,

again in the presence of explicitly modeled water. The findings suggest that flexible

spacers based on oligo(ethylene glycol) introduce a number of effects that may interfere

with ligand binding and can possibly be connected to the low binding affinities that

have been reported in the literature (Section 4.1.2). Together with the results presented

in Chapter 5, which is dealing with multivalent systems involving rigid and semi-rigid

spacers, this chapter aims at deriving certain guidelines for the rational design of spacers

and scaffolds for multivalent displays.

4.1.1 Estrogen receptor as a drug target

Estrogen receptors (ERs) are DNA-binding proteins in the cytoplasm belonging to the

superfamily of nuclear receptors. As ligand-dependent transcription factors, they are

involved in a variety of processes that regulate gene expression. ER is activated by the

estrogen estradiol (E2), which, upon binding to the ER monomer, triggers its release

from heat shock protein and thus induces receptor dimerization. Thereupon, the ER

dimer is able to recruit coactivator proteins, bind DNA and regulate gene transcription.

E2 not only regulates female sexual reproduction, but is also involved in regulating

tissue growth, development and other physiological processes. According to its manifold

functions, it can be found in different types of tissues such as brain, liver, endometrium,

and bones [120, 121]. It is known that ERs are over-expressed in the majority of breast

cancer cases, and have also been linked to other kinds of cancer. Ever since, drugs have

been developed that bind to ER to prevent the conformational change that is crucial for

1responsible for concept, synthesis, NMR experiments, and relative binding affinity measurements,
supervised by Prof. Dr. Rainer Haag (also concept) at Institut für Chemie und Biochemie, Freie Uni-
versität Berlin, Takustraße 3, 14195 Berlin (Germany)

2responsible for synthesis and relative binding affinity measurements, supervised by Prof. Dr. Oliver
Seitz at Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin
(Germany)

3responsible for cellular assays, supervised by Prof. Dr. Ronald Gust at Institut für Pharmazie -
Pharmazeutische Chemische, Universität Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria)
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the recruitment of coactivators, which, in turn, is supposed to inhibit the transcription

process by preventing ER from establishing its DNA binding abilities [122, 123].

(a) Dimeric ERα LBD-agonist-coactivator complex (b) Dimeric ERα LBD-SERM complex

Figure 4.1: Secondary structure representations of the crystal structures of the ERα
ligand binding domain (LBD) dimer in complex with (a) diethylstilbestrol (DES), a
synthetic non-steroidal estrogen that acts as an ER agonist (PDB ID 3ERD), and (b)
4-hydroxytamoxifen (OHT), the active metabolite of the SERM tamoxifen (PDB ID
3ERT). The comparison of the two crystal structures reveals the structural mechanism
of coactivator recognition and its antagonism based on the ligand-dependent positioning
of Helix 12 (yellow). In (a), a coactivator protein (purple) is able to bind to the open
coactivator recognition site, whereas in (b), the same site is obscured by Helix 12 and

thus prevents coactivator recruitment [124].

Interestingly, ER binding ligands cannot simply be divided into agonists (such as the

native hormone E2) and antagonists (such as the breast cancer drug fulvestrant), but

have to be supplemented by the class of selective estrogen receptor modulators (SERMs).

SERMs can act as either agonist or antagonist, depending on the type of tissue. Accord-

ing to Riggs and Hartmann [125], this can be explained by three main factors, namely

(i) “differential estrogen-receptor expression in a given target tissue”, (ii) “differential

estrogen-receptor conformation on ligand binding”, and (iii) “differential expression and

binding to the estrogen receptor of coregulator proteins.”

The first factor (i) is indeed based on the uneven distribution of the receptor subtypes

ERα and ERβ in different tissue types. Given that, for instance, the SERMs ralox-

ifene and tamoxifen function as pure agonists when binding to ERβ, but work as partial

agonists when binding to ERα [125], a tissue-specific effect dependent on a differential

specificity for ERα and ERβ is to be expected. The latter points (ii) and (iii) are largely

related to a ligand-dependent conformational change in ER that induces a repositioning

of its C-terminal Helix 12 (Figure 4.1): Upon binding of an agonistic ligand, Helix 12

will rearrange and thus seal the steroid binding site so that the coactivator binding site,

a hydrophobic groove on the receptor surface, is revealed [122, 123]. Depending on their

structure, SERMs typically only allow for an imperfect repositioning of Helix 12, so that

the binding of known coactivators is (at least partly) obstructed. It was also reported
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that some ER-SERM complexes favor the recruitment of corepressors instead, which, in

turn, leads to an amplification of the antagonistic effect. Further degrees of freedom in

the modulation of ER activity by SERMs are introduced by the different tissue-specific

distributions of coactivators and corepressors [125]. To make things even more compli-

cated, it could be shown that certain SERMs that were tailored for the steroid binding

site of ER are able to bind to a part of the coactivator binding site as well, at least in

the case of ERβ [126] (Figure 4.2).

From the perspective of drug discovery, the (somewhat unpredictable) tissue-specific

character of SERMs can be both a blessing – as it opens the potential to create tissue-

specific agents with reduced side effects – and a curse. The SERM and breast cancer

drug tamoxifen, for instance, acts as an antagonist in breast tissue, and thus inhibits

tumor growth. In endometrial tissue, however, it is a partial agonist of ER, and leads

to an increased risk of developing uterine cancer. Finally, in bone tamoxifen acts as a

full agonist of ER that helps to prevent osteoporosis [127].

4.1.2 Bivalent inhibition of estrogen receptor

In 1997, Brzozowski et al. first reported the crystal structures of the ER (subtype ERα)

LBD in complex with endogenous E2 and the SERM raloxifene [128]. This breakthrough

provided not only a straightforward method to study the mechanisms of ER coactivator

recruitment and its antagonism, but also substantial information about the structural

parameters of the ER dimer, such as binding site distance, the size of the dimer interface,

and the fact that is has a C2-symmetric layout. The crystal structures of subtype ERβ,

complexed to E2 and genistein (a partial ERβ agonist), were resolved shortly after, in

1999 [129] (Figure 4.2). Moreover, evidence was found that the dimerized form of ER

exists even in the absence of the ligand [130]. The sum of these findings sparked the

idea to exploit the concept of multivalent enhancement by complementing the dimeric

receptor layout with a bivalent ligand design, not only in order to develop more potent

and stable inhibitors of ER, but also to screen for yet undiscovered ways to modulate

ER activity.

A number of motives for pursuing the concept of multivalency have been discussed at

length in Chapters 1 and 2. In short, the special properties of a multivalent ligands can

induce a cooperative effect that is based on the preorganization of the binding partners

partaking in the multivalent interaction, which in turn can lead to the formation of very

stable complexes, even (and particularly) for individually weak interacting moieties.

The effects of multivalent preorganization on the interaction of the binding partners can

be expressed in terms of different theoretical concepts. Most importantly, the interac-

tion between multivalent ligand and multivalent receptor turns from an intermolecular
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(a) Dimeric ERβ LBD-partial agonist complex (b) Dimeric ERβ LBD-SERM com-
plex

Figure 4.2: Secondary structure representations of the crystal structures of the ERβ
ligand binding domain (LBD) dimer in complex with (a) genistein, a phytoestrogen
that acts as a partial ERβ agonist (PDB ID 1QKM) [129], and (b) OHT (PDB ID
2FSZ) [126]. The latter structure represents a noteworthy case, as it proves that small
hydrophobic molecules can bind to the coactivator binding site as well, which leads
to a total of four OHT molecules in the complex. The comparison of the two crystal
structures once more illustrates the conformational diversity of ER that is related to

the flexible positioning of Helix 12 (yellow).

into an intramolecular one after a binding at the first ligand-receptor interaction site has

been established. Thereupon, all subsequent intramolecular binding events can benefit

from a significant increase in effective molarity. The extent of the increase in effective

molarity, in turn, is dependent on the degree of preorganization and thus directly related

to the fitness of the spacer or scaffold that is used for presenting the binding partners

in the multivalent array (cp. Chapter 2.3).

The same effect can be formalized in terms of thermodynamics as a reduction of entropy

loss upon binding: Due to the fact that subsequent (i.e. intramolecular according to

the above definition) binding events in a multivalent binding process do not generate

rotational and translational entropy loss in the extent as the binding of additional mono-

valent ligands would, the overall entropy loss upon binding with regard to all binding

sites is favorable for the multivalent ligand. Again, the extent of this entropy “gain” by

preorganization is dependent on the structure of the spacer or scaffold, as the auxiliary

structure generates additional conformational entropy that is bound to be lost upon

binding to the receptor, and thus has to be considered in the overall thermodynamic

balance (cp. Chapter 2.2, in particular Figures 2.5 and 2.6).

Finally, once a multivalent binding has been achieved, the stability of the complex can

benefit from the occurrence of rebinding events, a subject that has been discussed in

Chapter 2.3 (cp., e.g., Figure 2.13).

In summary, the promise of the above advantages made implementing the multivalent

concept for novel, bivalent ligands of ER worthwhile. In 1994, Bergmann et al. first
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investigated the effects of a series of bivalent hexestrol (a non-steroidal ER agonist) linked

with oligomethylene and oligo(ethylene glycol) (OEG) spacers of varying lengths [131],

even before the crystal structure of ER had been resolved. During the last two decades,

several bivalent ER ligands, consisting of two individual ligand moieties linked by flexible

tethers, have been designed and synthesized [132–134]. In 2010, Wendlandt et al. showed

the biological activity of synthetic bivalent estrogen dimers linked by aliphatic spacers to

be higher than that of E2 [135]. Unfortunately, whenever receptor binding affinity was

reported, the bivalent compounds mostly performed poorly, significantly below the level

of their monovalent counterparts. When comparing different spacer lengths, however,

the binding affinities were often peaking at a distance where the occurrence of a bivalent

interaction could be expected, i.e. close to the distance of the two ER steroid binding sites

[134]. Based on the available theory and models on multivalent binding (cp. Chapter

2), it can be assumed that the regression in binding affinity can be attributed to the

additional entropic cost intrinsic to flexible spacers, or a lack of structural fitness of the

bivalent compounds that is related to the spacer, or (more likely) a combination of both

phenomena.

A better understanding of these factors is a prerequisite for the development of potent

bivalent ligands that can actually fulfill the promise of multivalent enhancement. In

the following study (Section 4.2), the structural and entropic properties of different

flexible and semi-flexible spacer types based on OEG are assessed by means of molecular

simulation and conformational entropy calculations. Furthermore, it is investigated how

ligand moieties and spacer may interact in aqueous solution. A second study (Section

4.3), involving a series of novel bivalent ligands using flexible EG spacers of different

lengths, deals with the conformational entropy loss upon binding that is associated with

flexible spacers, as well as the possibility of spacer folding and protein-spacer interactions

in the bound state. In the end, certain guidelines for the design of bivalent ER ligands

are derived.

4.2 Study F1: Towards a rational spacer design for biva-

lent inhibition of estrogen receptor

This section is based on the full text of the following publication, reprinted with kind

permission of Springer (including figures and tables):

• A. Bujotzek, M. Shan, R. Haag, M. Weber: Towards a rational spacer design for

bivalent inhibition of estrogen receptor. J. Comput. Aided Mol. Des., 25(2):253–

262, 2011. URL http://www.springerlink.com/content/m26v953551660127.

http://www.springerlink.com/content/m26v953551660127
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4.2.1 Looking for spacer design paradigms

The importance of the spacer (or scaffold4) used for tethering and possibly preorganizing

the individual ligands cannot be emphasized enough. The fitness of the spacer w.r.t.

the target receptor has a direct impact on the effective molarity of the intramolecular

binding events, and thus the degree of cooperativity of the overall interaction. It has

an impact on both enthalpy (an unfit spacer can render the interaction unfavorable

for enthalpic reasons) and entropy (an overly flexible spacer can render the interaction

unfavorable for entropic reasons) of the ligand-receptor interaction.

Arguably, the most important factor for spacer design is the effective distance that has

to be bridged, i.e. the distance between the target binding sites. In case of ERα, crystal

structures reveal the binding site centers to be approximately 31 Å apart, while the

straight-line distance between the binding site openings of the SERM binding confor-

mation is approximately 34.5 Å (measured in the crystal structure with PDB ID 2R6W

[136]). The ER dimer is a relatively rigid structure, so that one can assume the binding

site distance to remain approximately constant. If the binding sites on a multivalent

target are connected by flexible interdomains (one such case is the tSH2 domain of Syk

introduced in Chapter 2.2.2, see Figure 2.7), this assumption cannot be made.

Another determining factor for spacer design is spacer flexibility. The spacer has to be

flexible enough to permit the attached ligand moieties to enter the target binding sites.

The spacer should not create additional energy barriers that impede the positioning of

the ligand moieties. In this respect, flexible spacers such as OEG appear to be most

adequate, as they provide more room for sterical adjustments compared to a hypothet-

ical rigid spacer structure. More flexibility of the spacer comes at the cost of increased

conformational entropy, which in turn threatens to penalize the binding affinity.

A third factor to be considered is related to interactions of the spacer with itself and the

attached ligands, which again is determined by spacer flexibility (as such interactions

can only occur if spacer flexibility allows for it). Ligand-ligand interactions may occur

if the spacer folds over so that the attached ligands can come into interaction range.

Ligand-spacer interactions may occur if, for instance, both ligand and spacer possess

hydrophobic motifs, and, finally, the spacer may form superstructures such as helices by

self-interaction. All of these effects are likely to penalize binding affinity.

There is an abundance of other questions related to the design of molecular spacers, such

as uptake in body and/or cell, processing in biological systems, and, of course, chemical

synthesis. These, however, are beyond the focus of this study.

4The following statements apply to both spacers and (typically more complex) scaffolds, but the term
scaffold is abandoned because the focus of this chapter is on rather simplistic spacers without higher
levels of organization (cp. Chapter 1.3).
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4.2.2 OEG spacers and novel semi-flexible spacer designs

Traditionally, the most commonly used spacer for bivalent targeting of ER has been

OEG or poly(ethylene glycol) (PEG), which is water-soluble, has a low toxicity and is

commercially available in different chain lengths. However, as was briefly discussed in

the introduction, the performance of OEG-linked bivalent ER ligands still leaves room

for improvement. It was shown that OEG has a flexible structure that is prone to form

coiled and helix-like conformations in aqueous solution [137]. This property may be

disadvantageous for the applicability of OEG/PEG as a molecular spacer. LaFrate et

al. proposed the use of less polar compounds (namely poly(propylene) and poly(butylene

glycol) ethers) to address the challenge of coil and helix formation [134]. This, too, did

not immediately lead to improved binding affinities.

Figure 4.3: Structures of compounds 1 (bromine-capped EG11) to 6, the spacer
designs involved in the computational study.

In this computational study, the basic EG11 spacer (spacer 1) is compared to five OEG-

based spacer designs (Figure 4.3), that, in the fully extended conformation, are bridging

approximately the same distance as EG11 (Table 4.1). The new designs introduce dif-

ferent structural motifs to the OEG backbone, meant to break helical folding patterns

and provide rigidity for the extended, distance-spanning conformations one is typically

looking for. For rigid elements, 2-butyne (spacers 3, 5 and 6), phenyl (spacer 5) and

biphenyl (spacers 4 and 6) are used. Regarding spacer 2, no additional rigidity is added

to the structure, but the central EG subunit is replaced by a single carbon-carbon bond,

again meant to suppress helix formation. A conformational analysis of all compounds

is performed to assess the effect of the proposed structural elements. Furthermore, a

method for conformational entropy estimation [108] is applied in order to look into the

impact of rigid elements on the entropic properties of the structures. Retaining OEG as
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structural element in all of the proposed spacer designs aims at maintaining a sufficient

solubility in water.

Compound Structure Length [Å]

1 EG11 43.72

2 EG5-C2-EG5 42.59

3 EG5-(2-butyne)-EG5 42.60

4 EG5-C-biphenyl-C-EG5 48.59

5 EG4-(2-butyne)-O-phenyl-O-(2-butyne)-EG4 44.84

6 EG3-(2-butyne)-O-biphenyl-O-(2-butyne)-EG3 45.31

Table 4.1: Maximum spanned distance (bromine-bromine) of spacers 1–6 in the fully
extended conformation.

Attaching ligands to a flexible or semi-flexible spacer is likely to have an impact on

its conformational profile. Unwanted interactions between ligand and ligand as well as

ligand and spacer may be related to the low binding affinities that have been reported for

bivalent ER ligands. To look into this, each of the proposed spacer designs was modeled

twice, once capped only with bromine, i.e. without actual ligand moieties attached (cp.

Figure 4.3), and once coupled via amide linkage groups to two copies of DES (Figure

4.4, with bivalent DES-coupled EG11 serving as an example). Note that in the context

of this study, DES serves merely as a prominent (but arbitrarily chosen) representative

for any ER binding ligand.

Figure 4.4: Two copies of DES coupled via amide to EG11, forming a bivalent ligand
for ER. For comparison, each spacer design shown in Figure 4.3 was modeled with and

without ligands attached (i.e. amide-coupled to DES or merely bromine-capped).

4.2.3 Results

End-to-end distances

As Table 4.2 shows, mean end-to-end distances over 100 ns simulation time in water are

less than half of what had been measured for the extended conformations. This indicates

that folded spacer conformations are highly favored over linear, extended conformations.

The minimum distance observed throughout the trajectories is virtually equal for all
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Compound Min. [Å] Max. [Å] µ [Å] σ [Å]

1 3.45 34.06 14.99 5.84

2 3.51 32.37 12.25 5.19

3 3.48 36.44 13.14 5.78

4 3.48 37.54 14.50 6.30

5 3.40 38.89 13.05 5.88

6 3.45 39.01 17.69 7.36

Table 4.2: Bromine-bromine distance data measured over 100 ns for the bromine-
capped spacers (mean µ, standard deviation σ).

spacer designs, which implies that all structures are flexible enough to fold over, i.e. the

minimum end-to-end distance is limited only by the terminal bromines’ van der Waals

radii. The highest mean end-to-end distance is observed for spacer 6, with 17.69 Å,

which also has the highest distance standard deviation, followed by EG11 (spacer 1),

with a mean of 14.99 Å. Maximum end-to-end distances reach more than 30 Å for all

spacer designs, theoretically sufficient for bridging the two binding sites of ER. However,

the occurrence of extended conformations is very low (cp. Figure 4.5). The exception is

spacer 6, which also has the widest distribution of distances in general.

Figure 4.5: Histogram of bromine-bromine distances measured over 100 ns for the
bromine-capped spacers.

End-to-end distances decrease further as soon as DES ligands are attached to the spacer

(cp. Table 4.3). Mean nitrogen-nitrogen distances drop below 10 Å for all compounds,

with spacer 6 again performing best with a mean distance of 9.84 Å. The decrease

in mean end-to-end distances is accompanied by a general decrease of the standard

deviation w.r.t. the distribution of distances. Minimum and maximum distances remain

in a similar order.
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Compound Min. [Å] Max. [Å] µ [Å] σ [Å]

1 3.61 31.19 9.53 3.75

2 4.06 29.81 9.72 2.27

3 3.11 31.52 8.11 2.86

4 3.71 33.03 8.55 3.34

5 3.48 40.84 9.33 3.82

6 3.36 35.07 9.84 3.44

Table 4.3: Nitrogen-nitrogen distance data measured over 100 ns for the DES-coupled
spacers (mean µ, standard deviation σ).

Figure 4.6 shows that the end-to-end distance distributions for the ligand-coupled spac-

ers become significantly narrower. The emergence of distinct peaks suggest that each

compound adopts a relatively limited number of stable conformations. This seems to

apply in particular to spacers 1–4.

Figure 4.6: Histogram of nitrogen-nitrogen distances measured over 100 ns for the
DES-coupled spacers.

The effects of ligand attachment on end-to-end distances mean and standard deviation

for all compounds are summed up in Figure 4.7. The largest drop of both mean and

standard deviation on ligand attachment occurs for spacer 6, followed by spacer 4.

In order to investigate if the decrease in end-to-end distances is exclusively related to

bivalent ligands coupled with DES, the structure of a bivalent steroidal ligand published

by LaFrate et al. [134] was modeled and simulated analogously. This structure, consisting

of an EG5 spacer that tethers two E2 residues modified at the 17α position, also suffered

from a drop in end-to-end distances (measured at the C17 positions) to a mean value

distinctly below 10 Å (data not shown). This suggests that the phenomenon is not

limited to bivalent ligands involving DES. It may rather be connected to more general
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structural motifs of the coupled ligand moieties, such as the presence of conjugated

systems.

Figure 4.7: Impact of ligand attachment on spacer end-to-end distance mean (µ, full
line) and standard deviation (σ, dotted line) for bromine-capped compounds (black)

and ligand-coupled compounds (light gray).

Conformational entropy estimation

Figure 4.8: Conformational entropy comparison of bromine-capped spacers (full line)
and DES-coupled spacers (dotted line). Bromine-capped EG11 (spacer 1) was used as

the reference compound.

Conformational entropy follows an upward trend for spacers 1–6, where the lowest con-

formational entropy is measured for spacers 1 and 2 (EG11, and its closest derivative),

followed by spacers 3 and 4 (both containing either one 2-butyne or one biphenyl el-

ement). Spacers 5 and 6, which both contain combinations of multiple 2-butyne and

phenyl elements, are ranking with the highest conformational entropy (Figure 4.8).
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All DES-coupled compounds exhibit a lower conformational entropy than their bromine-

capped counterparts. This decrease is expected, as the results shown in the previous

section suggest that ligand-attachment constraints the conformations of the spacer. The

extent of the entropy drop is most significant for spacers 4 and 6, which both contain

biphenyl residues. The formation of stable hydrophobic interactions between biphenyl

and DES ligands may explain this effect. By contrast, the smallest drop in confor-

mational entropy is observed for spacers 1 and 2. Here, either spacer structure may

prohibit ligand-spacer and ligand-ligand interactions (which, however, would contradict

end-to-end distance data), or the spacer intrinsically may have a folding pattern with

low conformational entropy that is not dramatically altered as soon as ligands are at-

tached. The latter seems to be the case for spacers 1 and 2, which in aqueous solution

are prone to form low entropy helix-like structures.

The distinct rise of conformational entropy from spacers 1–6 appears to be counterintu-

itive, as an increasing number of rigid, seemingly low entropy elements had been incor-

porated into the structures. In order to explain the above entropy ranking (cp. Figure

4.8), it was looked into which types of structural elements (Figure 4.9) contribute most

to the spacers’ conformational entropy balance.

Figure 4.9: Torsion angle types with different degrees of conformational entropy
contribution: Torsions at spacer caps or ends (CAP), torsions of EG units (EG1,
EG2, EG3), torsions neighboring triple bonds (TRI), torsions neighboring phenyl rings

(PHE), and torsions connecting two phenyl rings (DPH).

The highest conformational entropy contribution is found for the terminal torsion an-

gle of the spacer (CAP), where either bromine or the ligand is attached (Figure 4.10).

One EG subunit consisting of three bonds has a relatively low entropy contribution,

and shows a regular pattern of two low entropy torsions (EG1 and EG2) and one high

entropy torsion (EG3). The second-highest entropy contribution can be found for tor-

sions neighboring triple bonds in 2-butyne (TRI), as they allow for unhindered rotation,

resulting in an uniform distribution over the whole torsion angle range. One can also
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find a high entropy contribution for torsions neighboring phenyl rings (PHE) and tor-

sions connecting two phenyl rings (DPH). Therefore, although phenyl rings and triple

bonds intrinsically are rigid, low entropy structures, they introduce high conformational

entropy to the system by enabling free rotation of the attached groups.

Figure 4.10: Conformational entropy contribution of different types types of tor-
sion angles in bromine-capped spacers (full line) and DES-couple spacers (dotted line),

measured on the example of spacer 6.

The above results suggest a relatively mild effect of ligand-attachment on individual

torsion angle types, as in all cases except for EG2 they remain more or less invariant (cp.

Figure 4.10). The significant drop in entropy for EG2 indicates that in spacer 6 (which

was used for the torsion angle comparison (cp. Figure 4.10) the largest entropic penalty

caused by ligand-spacer and ligand-ligand interactions has to be borne by the short EG3

chains, which otherwise would be able to move in an unhindered fashion. These findings

help to explain the conformational entropy ranking shown in Figure 4.8: As soon as an

EG subunit is replaced by a triple bond (e.g. spacer 3), two high entropy TRI torsions

are introduced to the structure. This results in an overall higher conformational entropy,

especially when the TRI motif interrupts a longer EG chain that otherwise would be

prone to fold into a low entropy structure such as a helical loop. The same is true for

structures containing phenyl (two PHE torsions) and biphenyl (two PHE torsions and

one DPH torsion).

Conformational analysis

As the end-to-end distance results presented above have indicated, one can observe a

folding of spacer structures in water when looking at the actual MD trajectories. Pre-

dominant conformations for bromine-capped EG11 are either loop or U-shaped. Helical

conformations are also present in the mix, but the formation of stable or even rigid

helices that persist for more than a few picoseconds cannot be confirmed. The overall
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flexibility of EG seems to be high. For short EG chains, folding into complex coils or

loops is not possible, which adds to the high flexibility.

Figure 4.11: Conformation density of bromine-capped spacer 3. Coloring indicates
the presence of atoms with at least 10 % probability. While the central 2-butyne
fragment remains linear, the attached EG chains rotate heavily so that no distinct

positions are visible.

Rigid elements such as 2-butyne (Figure 4.11) and biphenyl (data now shown) retain

their linear conformation, but introduce a great amount of rotational entropy to the

remaining part of the molecule. It might be argued that this free rotation can have a

beneficial effect as it prevents trapping in a certain conformation that may be adverse to

binding. However, it leads to an increase of the entropy penalty that has to be suffered

upon binding to the receptor.

Figure 4.12: Conformation density plot of spacer 3. Coloring indicates the presence
of atoms with at least 15 % probability. Without ligands attached, the EG chains can
move freely (left). As soon as DES is coupled to the spacer, the structure becomes
more compact and chain flexibility is restricted. The DES ligands align in parallel to

the 2-butyne part of the spacer, forming a barrel-shaped structure (right).

Depending on the spacer design, the attachment of DES moieties can have more or

less pronounced effect. For spacer 3, a relatively large drop in conformational entropy
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upon coupling with DES had been calculated (cp. Figure 4.8). This is supported by

the conformation density plot shown in Figure 4.12. While for the bromine-capped

spacer, EG chains can rotate freely, attaching DES moieties leads to a barrel-shaped

structure, where DES aligns parallely to the 2-butyne part of the spacer. The molecule

thus becomes more compact and less flexible. By contrast, for spacer 5, only a relatively

minor drop in conformational entropy upon coupling with DES had been found (cp.

Figure 4.8). The according conformation density plot (Figure 4.13) supports this finding,

as with DES moieties attached, the densities appear to be only slightly more defined

than for the bromine-capped spacer. Largely unhindered rotation of the EG chains

and the presence of only one aromatic ring in the structure of spacer 5 may prevent

the formation of more pronounced hydrophobic stacking interactions as in the case of

biphenyl-containing spacers 4 and 6.

Figure 4.13: Conformation density plot of spacer 5. Coloring indicates the presence
of atoms with at least 15 % probability. For bromine-capped (left) and ligand-coupled
spacers (right) a similar density plot is obtained, i.e. the impact of ligand-attachment is
relatively small. The slight shadows appearing parallel to the phenyl ring indicate the
presence of the ligands or parts of the spacer interacting with the phenyl ring. The fact
that the density cloud in this area is not very defined suggests that these interactions
are comparatively weak, i.e. conformational flexibility remains. This is in agreement
with the conformational entropy estimation of spacer 5, where only a minor entropy

drop after ligand-attachment was found (cp. Figure 4.8).

For the spacer designs containing biphenyl, a variety of stacked conformations that

maximize hydrophobic interactions involving the DES moieties was found (Figure 4.14).

This provides a justification for the low end-to-end distances that were observed after

coupling the spacers with DES (cp. Figure 4.5). The formation of stacked conformations

not only neutralizes the distance spanned by the linear elements, but may also have

adverse effects on water solubility. Although not taken into account within the course of

this purely computational study, it is possible that multiple structures can be involved

in such interactions to form larger aggregates.
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4.2.4 Discussion

The design of potent bivalent ligands for ER remains a challenging task. The ligand

binding sites are buried deeply within the receptor, and between the binding sites a

distance of more than 30 Å has to be bridged. The molecular spacer used to connect

the ligands has to provide the right interplay between flexibility and rigidity.

The results of this computational study suggest that an optimal spacer should be as

rigid as possible, while still providing the flexibility that is required for allowing access

to the binding pockets. Furthermore, in order to provide reliable design guidelines for

chemists, the spacer should have a defined conformation and bridging distance when

exposed to solvent, and the spacer parameters should be invariant w.r.t. the attachment

of ligand moieties.

Figure 4.14: In water, hydrophobic interactions promote stacked, sandwich-like con-
formations, shown here for DES-coupled spacer 6.

The flexible and semi-flexible spacer designs under investigation in this article reveal

certain weaknesses. Due to their high structural properties, the effective bridging dis-

tance in water is diminished even after introducing rigid segments. As OEG/PEG shows

very variable folding patterns, a mere prolonging of the chain is only of limited use. The

prediction of an optimal chain length is not possible without elaborate case-specific anal-

ysis. Furthermore, the attachment of ligand moieties leads to distinct changes of the

spacers’ parameters, which complicates the rational design of bivalent ligands. Confor-

mation density plots show that the use of phenyl and 2-butyne as linear, rigid elements

leads to more defined spacer structures and linear conformations. The positive effects

are neutralized, however, by the flexibility of the attached OEG chains. Even short

chains of three EG units allow for enough flexibility to permit interactions between the

ligand and hydrophobic parts of the spacer and thus promote a hydrophobic collapse of

the structure.

Consequently, there is a need for novel compounds, hydrophilic and yet rigid, that can

be assembled in a modular fashion in order to provide spacer structures with defined
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conformation and bridging distance. This notion is summarized in Figure 4.15. The

results of this study suggest that the probability to find flexible spacers based on OEG

in an extended conformation is low (cp. Figure 4.15 a)), whereas folded spacer confor-

mations (cp. Figure 4.15 b)), occur with high probability. The use of rigid, modular

spacer or scaffolds with defined ligand presentation distance and short flexible linkers

(cp. Figure 4.15 c)) may offer the best compromise between flexibility and rigidity.

In order to prohibit ligand-spacer interactions that might hinder the free presentation of

the ligand moieties, a prerequisite for achieving stable binding to the target, the flexible

linkers used to connect spacer and ligand moieties ought to be rather short, just enough

to allow for access into the binding pocket without causing steric hindrances with the

receptor surface. This parameter, in turn, is dependent on both the depth of the recep-

tor binding pocket as well as the structure of the ligand moiety. The exemplary ligand

DES used in this study is an ER agonist5 and thus buried deeply in the ER structure.

Therefore, it would require a linker of several Å length to enable the correct positioning

when attached to a larger spacer or scaffold structure. SERMs such as raloxifene, in

contrast, typically protrude from the binding pocket so that only a comparatively short

linker would be required.

One of the main promises of using bivalent (and multivalent ligands in general) is the

entropic advantage gained over their monovalent counterparts, based on the opportu-

nity to save translational and rotational entropy for subsequent, intramolecular binding

events (cp. Section 4.1.2). This advantage is opposed by the intrinsic conformational

entropy contribution of the spacer, or, more precisely, the conformational entropy loss

of the spacer upon binding.

Conformational entropy differences between different spacer types and elements were

determined. For OEG chains, a regular pattern of triplets consisting of two low en-

tropy torsions and one high entropy torsion was found. For phenyl and biphenyl, hardly

any conformational entropy contribution of torsions involved in the conjugated systems

was measurable. However, bonds neighboring phenyl groups allow for unhindered ro-

tation and were found to introduce a notable amount of conformational entropy to the

system. The same applies to bonds neighboring triple bonds. Although 2-butyne and

phenyl/biphenyl parts help to construct rigid, linear structures that maintain defined

distances for ligand presentation, their high contribution in terms of conformational en-

tropy appears to be a drawback. In general, values for spacers containing 2-butyne and

phenyl elements generated higher conformational entropy values.

5Considering the structural basis of coactivator recruitment by the ER dimer (cp. Section 4.1.1), it
can be expected that the attachment of any type of spacer or scaffold via a linkage group will turn an
originally agonistic ER ligand such as DES into an (at least partially) antagonistic one, as the linker/s-
pacer/scaffold protruding from the steroid binding site is likely to prohibit an adequate repositioning of
Helix 12.
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Figure 4.15: Different scenarios of bivalent binding that can be modulated by the
structure of spacer or scaffold: a) Bivalent binding is achieved with a flexible spacer
that adapts a linear conformation. b) Bivalent binding is rendered impossible due to
folding of the spacer and stacking of hydrophobic ligand moieties. c) Bivalent binding

is achieved with modular rigid spacer and short flexible linkers.

The entropic advantage that is connected to the cooperative effect in multivalent sys-

tems can only be exploited if the spacer does not interfere with the enthalpy of the

interaction, i.e. the ligand moieties have to be presented in a way that allows for unhin-

dered access to the target binding sites. Therefore, maintaining a defined ligand-ligand

distance (corresponding to the approximate binding site displacement) and avoiding

ligand-ligand and ligand-spacer interactions that interfere with ligand presentation (such

as hydrophobic stacking) is more fundamental than entropic optimization of the spacer.

The author’s opinion is that an adequate preorganization of the ligand moieties should

be the prime interest when designing multivalent ligands, only then followed by en-

tropic considerations. An issue not addressed in this study, and yet to be discussed in

the next sections, is the interplay of protein and spacer structure. For instance, one

might imagine a scenario where contact between spacer and protein, following the initial

binding event, induces spacer-protein interactions that promote unfolding of the flexi-

ble spacer, thus leading to linear spacer conformations that encourage bivalent binding.

Furthermore, these interactions might even improve the enthalpy of the interaction so

that ∆Hbi ≈ 2×∆Hmono + ∆Hspacer < 2×∆Hmono. Regarding the use of OEG/PEG

spacers this scenario can be challenged, as PEG, when attached to surfaces, is known to

rather have protein-repellent properties [138]. These questions have to be the subject of

further investigations.

The results presented in this study may be helpful in order to avoid certain traps con-

nected with the design of bivalent ligands for ER, or similar bivalent targets. The

findings may serve as starting points for research aimed at providing chemists with new

and improved molecular spacer and scaffold structures.
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4.3 Study F2: Conformational analysis of bivalent estro-

gen receptor-ligands – From intramolecular to inter-

molecular binding

This section is based on (and contains content from) the following publication:

• M. Shan, A. Bujotzek, F. Abendroth, O. Seitz, M. Weber, R. Haag: Conforma-

tional analysis of bivalent estrogen receptor-ligands: From intramolecular to inter-

molecular binding. ChemBioChem, 12(17):2587–2598, 2011. URL http://online

library.wiley.com/doi/10.1002/cbic.201100529/abstract.

The second study, presented in the following, aims at investigating the binding behavior

of bivalent ER ligands tethered by flexible spacers in dependence on the spacer length.

For this purpose, a series of bivalent ligands based on the SERM raloxifene (RAL),

tethered by flexible OEG spacers of varying length, was designed and synthesized, and

the relative binding affinities (RBA)for ERα were determined in vitro, accompanied by

cellular assays for determining biological activity w.r.t to ERα and ERβ. In order to

examine why the bivalent RAL ligands (and bivalent ER ligands tethered by flexible

spacers in general) are suffering from low binding potencies when compared their mono-

valent counterparts, a conformational study in aqueous solution based on the analysis of

NMR and UV absorption spectra, as well as a computational study on thermodynamic

factors and binding modes was incorporated into the project. The author of this thesis

is responsible only for the computational part of this study (Section 4.3.3), but the ex-

perimental results as contributed by the collaborating scientists (see remarks in Section

4.1) are summarized in order to provide the necessary context.

4.3.1 Bivalent ligand design

In the literature, the most successful bivalent estrogen ligand tethered by flexible spacers

study was reported by LaFrate et al. [134]. They prepared their bivalent estrogen ligands

based on the crystal structure of the ERα LBD in complex with E2 (PDB ID 1ERE)

and obtained a peak in ERα binding affinity when the ligand moieties were tethered by

a spacer of 35 Å length (linear extended conformation), which correlates nicely with the

approximate distance of the steroid binding sites in the crystal structure (≈ 31 Å).

The design of the bivalent RAL ligands prepared in the course of this study was based

on the crystal structure of the ERα LBD in complex with LY156681 (PDB ID 2R6W)

[136], a derivative of RAL (Figure 4.16). LY156681, being a SERM, binds to the same

steroid binding site as the ER agonist E2, but leads to a displacement of Helix 12

http://onlinelibrary\.wiley.com/doi/10.1002/cbic.201100529/abstract
http://onlinelibrary\.wiley.com/doi/10.1002/cbic.201100529/abstract
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when compared to the closed, agonist-binding conformation that can be found in crystal

structure 1ERE (cp. Section 4.1.1). Due to fact that the basic side chain of LY156681

protrudes from the steroid binding site of ER (the structural property that prohibits the

reorientation of Helix 12), the conformation of ERα in crystal structure 2R6W offers an

excellent starting point for envisioning the binding mode of a bivalent ligand: Any kind

of spacer used to tether two ER ligands would have to protrude from the binding pocket

in a similar fashion, and thus lead to a similar arrangement of Helix 12. At the same

time, the side chain of SERMs like RAL appears to provide a promising linkage site

for attaching the spacer, as it leaves the main portion of the ligand moiety untouched,

and consequently should retain a high binding affinity for ER – a hypothesis that is

put to the test in the course of this study. The series of monovalent RAL derivatives

investigated by Dai et al., including LY156681, were shown to have high affinities for

ERα, with binding constants of less than 10 nM [136].

Figure 4.16: Structures of the ER agonist estradiol (E2), the SERM raloxifene (RAL),
its derivative LY156681, and the novel bivalent (9–21) and monovalent RAL ligands

(22, 23) as designed and synthesized for this study.

Using crystal structure 2R6W and the modeling and visualization software Amira [139],

the distance between the two piperidine nitrogen atoms at the side chain of the two

LY156681 molecules bound to the ERα LBD dimer was determined to be approximately

34.5 Å, which again matches the optimal spacer length for bivalent ER ligands observed

by LaFrate et al. [134]. Considering the results of the in silico Study F1 presented in

Section 4.2, which suggested that the length of the extended, linear conformation of

a flexible spacer is not a proper measure of its effective bridging distance, it seemed

worthwhile to examine the influence of the spacer length of bivalent RAL ligands on

the associated binding affinities. Therefore, a systematic spacer length study, covering

spacer lengths from 4.71 to 47.7 Å (corresponding to EG1–EG13 in the extended linear
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conformation), was carried out, acknowledging that the shorter spacer variants are fac-

tually unable to realize bivalent binding to both steroid binding sites of the ER dimer.

Despite the somewhat worrisome results of Study F1 w.r.t. to the properties of OEG

spacers (in particular concerning folding and the possibility of hydrophobic collapse in

water), OEG was chosen as spacer structure for tethering the RAL moieties because of

its favorable qualities for the application in biological and pharmaceutical applications,

e.g. for being non-toxic, biocompatible and water-soluble [56]. Furthermore, OEGs have

been reported to be resistant to the non-specific adsorption of proteins [140], which would

exclude unwanted interactions between protein and spacer, and thus should promote an

bivalent interaction only between the ligand moieties and the steroid binding sites of

ER. In order to compensate for the possibility of OEG folding into helical or coiled con-

formations, and thus a reduction of the effective spacer bridging distance, OEG chains

of significantly more than 34.5 Å length (extended) were incorporated into the study.

With increasing spacer length of the flexible spacer, an increase in the conformational

entropy loss upon binding has to be expected, along with an enthalpic penalty that may

arise from hydrophobic interactions between the tethered ligands in aqueous solution

(cp. Section 4.2.3). These questions were therefore made subject of the computational

part of this study (Section 4.3.3).

The structure of the novel bivalent ligands based on RAL, 9–216, is depicted in Figure

4.16, along with two monovalent RAL ligands with monomethylated OEG side chains

that were prepared as monovalent control (compounds 22 and 23). Instead of the 4-

methylpiperidin that defines the side chain of LY156681, the novel compounds feature

a 1,2,3-triazole at the same position.

4.3.2 Biological evaluation

The affinities of the 15 mono- and bivalent RAL ligands (9–23) were evaluated with the

HitHunter enzyme fragment complementation (EFC) estrogen chemiluminescence assay

(DiscoveRx) [141]. All binding affinities are expressed as RBA values (Table 4.4), that

is, relative to the IC50 values of the reference, E2 (3.11 nM, RBA = 100%). Figure 4.17

shows the relationship between the RBA values and the maximum spacer lengths of the

bivalent ligands. In general, all of the mono- and bivalent ligands had lower affinity for

ERα than the reference E2, and with increasing spacer length, the binding affinities of

the bivalent ligands decrease further.

Due to the fact that RBA values do not directly reflect biological effects, such as es-

trogenic or antiestrogenic activity, compounds 9, 12, 15, 18, 21, 23, and raloxifene

6Compounds 1–8 are related to the synthesis of compounds 9–21 only, and do not appear in the
binding study. The numbering was maintained in order to keep consistency with the original Ref. [16].
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Compound Structure Length[a] [Å] RBA[b] [%] C
[c]
eff [nM]

9 RAL2EG1 4.71 67.7 ± 27.5[d] 7.59 × 106

10 RAL2EG2 8.35 18.6 ± 8.10 1.36 × 106

11 RAL2EG3 11.9 25.6 ± 11.1 4.73 × 105

12 RAL2EG4 15.5 14.2 ± 5.41 2.13 × 105

13 RAL2EG5 19.1 24.3 ± 9.28 1.15 × 105

14 RAL2EG6 22.7 3.73 ± 2.90 6.81 × 104

15 RAL2EG7 26.2 10.2 ± 2.15[d] 4.40 × 104

16 RAL2EG8 29.8 4.51 ± 3.28 2.99 × 104

17 RAL2EG9 33.4 5.29 ± 1.47 2.13 × 104

18 RAL2EG10 37.0 4.68 ± 1.02[d] 1.57 × 104

19 RAL2EG11 40.6 3.51 ± 0.66 1.19 × 104

20 RAL2EG12 44.2 4.41 ± 0.70 9.20 × 103

21 RAL2EG13 47.7 4.64 ± 0.63[d] 7.29 × 103

22 RALEG4Me 14.3 10.0 ± 6.58[d] -

23 RALEG6Me 21.5 3.42 ± 2.65[d] -

raloxifene - - 30.0[d] -

Table 4.4: Structure, maximum spacer length, relative binding affinity (RBA) and
effective concentration (Ceff ) of bivalent (9-21) and monovalent ligands (22, 23). [a]
Distances between the carbons at 4-position of the 1,2,3-triazole in the extended lin-
ear conformation were measured with Amira and considered as the maximum spacer
length. [b] RBA values were determined by competitive bindings assays and expressed
as [IC50(E2)/IC50(compound)]×100 % (RBA for E2 = 100 %, IC50(E2) = 3.11 nM for
ERα). The Kd of E2 is 0.3 nM for ERα. [c] Ceff was calculated as the second RAL
moiety in a hemisphere of a radius equal to the spacer length of the bivalent ligand
[56]. [d] Ref. [17]. Table taken from [16], reprinted with kind permission of John Wiley

and Sons.

were chosen to evaluate hormonal activity in a transactivation assay using U2OS cells

transfected with plasmids for either ERα or ERβ, as well as a luciferase reporter gene.

As expected, raloxifene only showed antagonistic effects w.r.t. to ERα and ERβ, and

the antiestrogenic activity was about 20 times higher for ERα than for ERβ. Similarly,

monovalent ligand 23 did not show estrogenic effects, but weak antagonistic effects. The

antagonistic effects were much greater in the case of the bivalent ligands (which turned

out to be pure antiestrogens), with a 5–20 times higher selectivity for ERα. Further-

more, the antagonistic effect on ERα was dependent on the spacer length and decreased

in the order: 9 (IC50 = 11 nM) > 12 (19 nM) > 15 (50 nM) > 18 (92 nM). Compound

21 showed nearly the same antagonistic effect as 9.7

Given that the closest distance between the two LY156681 molecules in crystal structure

2R6W is 34.5 Å, bivalent ligands tethered by shorter OEG spacers are theoretically not

capable of forming a simultaneous binding between the two ERα steroid binding sites.

7More details on the cellular assays can be found in Ref. [16], cp. in particular in Tables 2 and 3.
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The question from which spacer length onwards bivalent binding is feasible will be ad-

dressed in the computational section of this study. Certainly, bivalent binding to the

steroid binding sites is not realizable with a spacer length of less than 20 Å, which is

why the high RBA values of compounds 9–13 in comparison to the monovalent control,

compounds 22 and 23, are rather striking.

The higher binding affinity of the bivalent ligands with short spacers therefore needs to

be attributed to the second, tethered RAL moiety. In principle, two scenarios can be

envisioned: (i) The second “dangling” RAL moiety tethered to the one that is already

bound leads to an increase in effective concentration in the vicinity of the steroid binding

site, which in turn would promote the enhanced occurrence of rebinding events [56] (cp.

Chapter 2.2.2). In fact, the decrease in effective concentration with an increase in spacer

length follows the same trend as the decrease in binding affinities (Table 4.4, column

Ceff ). On the other hand, recent theoretical results suggest that the occurrence of re-

binding events in this particular situation – low ligand valency, high individual ligand

binding affinity, gated binding sites – is rendered relatively unlikely [30]. Therefore, a

second scenario appears to be more probable: (ii) The second RAL moiety undergoes ad-

ditional interactions with the surface of the ERα LBD, most likely on the same monomer

[142, 143]. There have been several reports about a secondary estrogen binding site that

lies very close to or within the coactivator binding groove of the ER LBD [144, 145],

and in fact a crystal structure of ERβ in complex with the SERM 4-hydroxytamoxifen

binding to this particular site exists [126] (cp. Sections 4.1.1 and 4.1.2). Given the large

degree of homology between ERα and ERβ, a similar non-specific (or rather “semi-

specific”) binding mode on the surface of ERα can be envisioned as well, and would

explain the increase in binding affinity that is brought about by the second RAL moiety

in conjunction with a short spacer.

Bivalent ligand 14 marks a special case, as it achieves almost the similar RBA as its

monovalent counterpart, 23 (both 14 and the monovalent control 22 feature an EG6

spacer). This suggests that the binding mode of 14 is truly monovalent, and does not

involve additional interactions of the second RAL moiety. Considering previous findings

about the structure of ER, one can argue that the spacer length of bivalent ligand

14 is a critical length for distinguishing between two different ER binding modes for

bivalent RAL ligands: The first one is an intramolecular bivalent binding mode that

involves simultaneous binding to the steroid binding site of ER and a secondary site (or

“subsite”) on the same ERα LBD monomer, while the second one is an intermolecular

bivalent binding mode that is characterized by simultaneous binding to the two steroid

binding sites on the neighboring sides of an ERα LBD dimer (Figure 4.18). The EG6

spacer of bivalent ligand 14 may represent a particularly unfortunate choice of spacer,
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Figure 4.17: Relationship between the relative binding affinity and maximum spacer
length of of bivalent (9–21, �) and monovalent ligands (22, 23, ©); 100 % binding
affinity for E2. Figure taken from [16], reprinted with kind permission of John Wiley

and Sons.

as it appears to be too long for intramolecular bivalent binding, but also too short for

realizing intermolecular bivalent binding.

Figure 4.18: A) Schematic of the ERα LBD dimer in which each ERα LBD monomer
features a primary (native) steroid binding site/ligand binding pocket (LPB) and a
secondary site on the ERα LBD surface. B)–E) Four different binding modes for biva-
lent ligands binding to ERα LBD that demonstrate the progress from intramolecular to
intermolecular bivalent binding. Figure taken from [16], reprinted with kind permission

of John Wiley and Sons.

This notion is presented in Figure 4.18, B–E: Bivalent ligands tethered by short spac-

ers (9–13) form intramolecular bivalent binding on the same ERα LBD monomer [17]

(Figure 4.18 B). With increasing spacer length, binding affinity decreases as (i) the

conformational entropy loss upon binding to the subsite accumulates and/or (ii) bind-

ing is hindered by a spacer-induced lack of fit to the subsite, and/or (iii) binding is

rendered unfavorable by an enthalpic penalty on spacer unfolding. In the limit case

(bivalent ligand 14), no bivalent binding in either mode is achieved (Figure 4.18 C).
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Consequently, the RBA of bivalent ligand 14 is in the order of the monovalent control,

ligand 23. Finally, bivalent ligands tethered by longer spacers (15–21) should in theory

be able to achieve intermolecular bivalent binding (Figure 4.18 D), which would explain

the local peak in RBA marked by bivalent ligand 15 (using an EG7 spacer). However,

somewhat surprisingly, the RBA of all bivalent ligands using longer spacers than EG7

(16–21) drops almost to the unsatisfying level of bivalent ligand 14. Here, again, (i)

the high conformational entropy of longer OEG chains and/or (ii) spacer folding (and

thus the enthalpic penalty on spacer unfolding) renders intermolecular bivalent binding

unfavorable (Figure 4.18 E). By contrast, the theoretical benefit of longer spacers w.r.t.

to allowing for bridging the steroid binding sites without causing structural strain (and

thus without diminishing the enthalpy of the interaction) cannot be exploited in terms

of RBA.

Under the premise that bivalent ligand 15 is able to realize intermolecular bivalent bind-

ing according to the above model of two different bivalent binding modes, there remain

the questions (1) how this can be achieved, given that the EG7 spacer used in bivalent

ligand 15 spans only 26.2 Å, in contrast to the requirement of 34.5 Å that was predicted

based on crystal structure 2R6W (and supported by a previous study [134]), and (2)

why the RBA values do not match the expectations sparked by high-affinity bivalent

ligands that were previously reported for other multivalent target receptors [6, 56].

The first question is addressed in terms of a computational study on the bivalent inter-

molecular ERα binding mode of compound 15 in comparison to the binding mode of

LY156681, presented in the next section. The answer to question (2), in turn, may be re-

lated to issues with the flexible spacer. Interestingly, in 2006 Kim et al. reported a study

were E2 was conjugated to PAMAM dendrimers through short (17α-phenylethynyl) and

long (EG6) tethers. They found that for the short tether, E2 is “free and solvent exposed,

while the long tether [...] wraps around the hormone and the dendrimer and markedly

reduces access to the receptor.” [146] Furthermore, computational Study F1 on the

conformations of flexible and semi-flexible spacers in water, involving a series of bivalent

DES ligands (Section 4.2), had pointed out the risks of a hydrophobic collapse of the

structures that arises from the interplay of spacer folding and hydrophobic (π-π stack-

ing) interactions related to the tethered DES moieties. In order to validate this result,

and thus to find a possible answer to question (2), solvent-dependent conformational

changes of bivalent ligands 9, 11 and 20 (representing short and long spacer variants)

as well as monovalent ligand 22 were studied by NMR spectroscopy and UV-absorption

experiments.

The ROESY spectra (ROESY = rotating-frame nuclear Overhauser effect correlation

spectroscopy) reveal that (Figure 4.19 A), with an increasing proportion of deuterium

water (0–40% D2O), the intramolecular interaction between the RAL moieties (aromatic
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Figure 4.19: A) Aromatic (protons 1–8) and OEG (proton 9) regions of the 1H
NMR and ROESY spectra of OEG-tethered bivalent ligands 11 (left) and 20 (right)
in a solution of [D6]DMSO with 0, 10, 20, and 40 % D2O (top to bottom). B) Two
proposed conformations of 11 (left) and 20 (right) in an aqueous environment. Figure

taken from [16], reprinted with kind permission of John Wiley and Sons.

protons 1–8) and the tethered OEG spacer (alkyl proton 9) is becoming much stronger

for bivalent ligand 20 than for bivalent ligand 11. This is not surprising, as the spacer

of 20 is long enough to wrap around its RAL moieties, while the spacer of 11 is not.

In the case of bivalent ligand 11, the significant upfield shift of the aromatic protons –

in particular w.r.t. aromatic proton 6 – gives evidence for the prevalence of π-π stacked

conformations. By contrast, the aromatic proton 6 of bivalent ligand 20 only undergoes

a small upfield shift. This indicates that an intramolecular π-π stacking conformation

between two RAL moieties dominates in the case of bivalent ligands tethered by short

spacers, such as 11, whereas spacer-wrapped conformations, which leave room only for

weak π-π stacking interactions, are prevalent in the case of bivalent ligands tethered

with longer spacers, such as 20 (Figure 4.19 B). Thus, one can argue that the ligand
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moieties tethered by short spacers are more exposed to the solvent, and consequently, to

the receptor as well. In order to confirm the solvent-dependent effect, the UV absorption

of bivalent ligands 9 and 21 and monovalent ligand 22 was studied in different solvent

systems.8 It was found that the UV-absorption maximum for each bivalent ligand in the

aqueous solvent (3.85% DMSO in water) underwent a bathochromic shift (λmax = 290

and 293 nm, for 9 and 21, respectively) compared to the monovalent ligand (λmax = 287

nm for 22). In contrast, no bathochromic shift was observed in organic solvent (3.85%

DMSO in chloroform). This confirms that the interaction between hydrophobic RAL

moieties and the OEG spacer only dominates in aqueous solvent, and not in organic

solvent, which is consistent with the observations in the NMR spectra.

In this respect, the computational predictions w.r.t. to the properties of flexible spacers

presented in Study F1 (Section 4.2) are confirmed by the experimental results of this

study. The fact that, upon binding to the target receptor, both π-π stacking as well

as spacer folding/wrapping interactions have to be overcome before a bivalent inter-

action can be realized would account for the low RBA values. The findings are also

in line with the results from the study by Kim et al. regarding the relationship of ER

binding affinity and tether structure in E2-PAMAM conjugates [146], and a report of

similar hydrophobic ligand-ligand interactions observed in low-temperature NMR and

X-ray analyses of bivalent GABAA-benzodiazepine receptor ligands tethered by short

spacers that resulted in low binding affinities [147]. In the following, the results of the

computational part of this study are presented. Strategies to counter the problems that

are associated with the use of flexible spacers are discussed in the chapter on rigid and

semi-rigid spacers, Chapter 5.

4.3.3 Results and discussion (computational part)

Binding mode comparisons

In order to evaluate the sterical fit w.r.t. to the target receptor, compounds 9 to 15 (cov-

ering spacer variants EG1 to EG7) were modeled and parametrized for MD simulations

with the Amber-99SB force field. The unknown bivalent binding modes were modeled

by first performing a monovalent alignment of the RAL moieties to the LY156681 lig-

ands from the crystal structure with PDB ID 2R6W, followed by energy minimization in

the presence of protein structure and explicit solvent in order to relax the OEG spacer

portion of the bivalent ligand. The data suggests that bivalent binding to the ER steroid

binding sites is not possible for compounds 9 to 14 (EG1 to EG6 spacers), as the in-

sufficient length of the spacer prohibits the simultaneous servicing of both binding sites.

8More details on this experiment can be found in the Supporting Information of Ref. [16], along with
a plot of the UV spectra (Figure S4).
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Compound 15 (EG7 spacer) allows for bivalent binding to the steroid binding sites while

leaving some room for conformational oscillations and binding mode adjustment (Figure

4.20). Given this result, one can assume that bivalent binding to the steroid binding

sites is also possible for compounds 16–21, which feature longer OEG spacers.

Figure 4.20: Conformational density of compound 15 bound to ERα, obtained from
a 10 ns MD simulation in water. The conformational density of the RAL moieties
(orange) is relatively compact, indicating tight fit to the steroid binding sites of ER.
In contrast, the conformational density of the spacer portion (purple) turns out to be
more diffuse, indicating that flexibility, especially in the central part of the chain, is
retained. Figure taken from [16], reprinted with kind permission of John Wiley and

Sons.

Results from a 10 ns MD simulation of compound 15 in the bivalently bound state

reveal some differences to the monovalent binding mode (Figure 4.21). A hydrogen

bonding interaction between the 4-methylpiperidin in the side chain of ligand LY156681

and residue ASP351 of ERα is characteristic for the monovalent binding mode of this

SERM. The novel bivalent compounds presented in this study feature a 1,2,3-triazole

ring structure at the same position, which is further connected to the OEG spacer.

Simulations of compound 15 show that the 1,2,3-triazole ring is hindered to interact

with residue ASP351 because the connecting EG7 spacer forces the linker groups to

arrange towards each other.

In this respect, the spacer appears to have an disadvantageous impact on the enthalpy

of the ligand-receptor interaction. To look deeper into the different binding modes for

mono- and bivalent case, the positioning of two binding moieties of compound 15 bound

to the ERα dimer (as obtained during MD simulation) was compared to the positioning

of the two LY156681 ligands (as found in the crystal structure with PDB ID 2R6W)

in terms of a set of distances measured at different positions, as indicated in Figure

4.22. While the distances between the major parts of the binding moieties of compound

15 (positions 1 to 4) change only slightly (0.01 – 0.24 nm), the distances between the

ligand side chains of LY156681 and the linker groups of 15 (positions 5 to 7) show a
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Figure 4.21: Overlay of bivalent ligand 15 (RAL moieties black, 1,2,3-triazole linker
part and spacer in blue) with LY156681 (red), bound to the steroid binding pockets of
ERα. The side chain of residue ASP351 is highlighted (PDB ID 2R6W). The snapshot

was obtained after energy minimization and short MD simulation in water.

notable deviation (0.35 – 1.45 nm). In the latter case, a closer arrangement especially for

the 1,2,3-triazole parts becomes apparent, allowing for some relaxation of the attached

spacer.
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Figure 4.22: Distance comparison between two LY156681 ligands and two RAL moi-
eties as part of bivalent ligand 15 while bound to the ERα dimer. Values obtained
by 10 ns of MD simulation in water (blue) are plotted against values taken from the

crystal structure (red).

The result shows that, despite its short spacer length of only 26.2 Å in the linear con-

formation, compound 15 is able to achieve bivalent binding to both steroid binding

sites, however at the sacrifice of not being able to fully interact with residue ASP351.

One might argue that this effect should be somewhat lessened when longer spacers are

applied (compounds 16–21).
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Conformational entropy estimation

Following the sterical considerations, it was looked into how the length of the applied

OEG spacers has an impact onto the loss of conformational entropy upon binding to the

receptor. For this purpose, MD simulations of compounds 9–15 in the unbound state

as well as in the receptor bound state were performed, starting with one ligand bound

and the second ligand dangling in the solution. Based on the cumulative sampling data

of 100 ns of MD per system (i.e. 200 ns of MD per unbound/bound pair), an estimate of

the conformational entropy loss upon binding, regarding both RAL moieties and spacer

part, was conducted (Figure 4.23).
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Figure 4.23: Conformational entropy loss of bivalent ligands 9–15 upon binding to
ERα, subdivided into the contribution of spacer part (blue) and RAL moiety (red).

The above results indicate that the major part of conformational entropy loss upon

binding (∆Sconf ) stems from the RAL parts (including the 1,2,3-triazole ring) with a

mean value of 2.19 kJ/mol. Not surprisingly, compound 9, which has the highest RBA,

also has the highest ∆Sconf value in the RAL moieties (2.92 kJ/mol), as it achieves

intramolecular bivalent binding to the steroid subsite and a proximate hydrophobic

subsite near the coactivator binding region with tight fit.9 Compound 15 shows the

second highest ∆Sconf value of 2.53 kJ/mol for the RAL moieties.

The spacers’ contribution to conformational entropy is comparatively low (mean value

0.79 kJ/mol), but has a higher spread than the conformational entropy of the RAL parts

(standard deviation 0.66 kJ/mol for the spacers, compared to 0.45 kJ/mol for RALs).

The data strongly suggests that conformational entropy loss increases with spacer length,

with compound 15 (EG7 spacer) having the highest ∆Sconf value of 2.05 kJ/mol (spacer

only). Hence, for longer spacers, conformational entropy loss of the spacer will equalize

9Subsite binding for this compound is demonstrated by means of molecular modeling in Study R2
(Chapter 5.3), which was published shortly before Study F2.
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Figure 4.24: Different sampling outcomes for compounds with short spacers: Bivalent
ligand 12 (EG4 spacer, blue) folds into a compact conformation over the steroid binding
site. Bivalent ligand 13 (EG5 spacer, cyan) achieves intramolecular bivalent binding
to steroid binding site and the hydrophobic subsite. An alignment with the LY156681
ligands from the crystal structure is shown in red. Figure taken from [16], reprinted

with kind permission of John Wiley and Sons.

the improved ability to reach both steroid binding sites. This is also supported by

the RBA measurements, where no distinct peak appears for spacers longer than EG7.

Despite its short spacer length, compound 9 also shows a relatively large ∆Sconf value

(0.37 kJ/mol), again due to its tight fit to both steroid binding site and subsite region. In

contrast to bivalent ligands 9 and 15, compounds 11 and 13, which also show elevated

RBA, only have relatively small ∆Sconf values. This might be either due to incomplete

conformational sampling (i.e. the simulation did not capture realistic binding minima)

or the predicted binding modes indeed allow for increased conformational entropy and

hence lead to comparatively high RBA values.

In addition to differences in ∆Sconf values, other factors may be even more decisive for

achieving multivalent binding. The simulations confirmed the propensity of OEG spacers

to fold into helical loops, even with one ligand bound to the receptor binding site (Figure

4.24). In the Study F1 presented earlier (cp. Section 4.2), it was shown that hydrophobic

ligands tend to stabilize compact, folded conformations of OEG spacers. The enthalpic

penalty of unfolding in order let the unbound ligand sense for a second binding site on

the receptor surface might be the limiting factor of the binding process, with the entropy

loss of unbound ligand compared to bound ligand being only an additional (but minor)

factor. Hence, bivalent ligand 9 may be the most successful compound w.r.t. RBA as

its spacer is too short for adapting a folded conformation, but long enough to bridge

steroid binding site and hydrophobic subsite. This line of thought is picked up in Study

R2 (Chapter 5.3).
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4.4 Conclusion

In conclusion, the cumulative results of the binding study confirm the doubts that were

raised by the first study: Flexible spacers such as OEG are a problematic choice for

tethering ER ligands (as is mirrored in the low RBA values), and quite possibly for

tethering hydrophobic ligands in general. The general suggestions for spacer design that

were formulated in Section 4.2.4 can therefore be maintained. An additional – and

somewhat surprising – result of the second study is the finding that the conformational

entropy loss in the OEG spacers upon binding to the receptor is comparatively low

(albeit increasing with spacer length). The main burden of conformational entropy loss

upon binding is suffered by the RAL moieties, and not by the OEG chain. Most likely,

this can be attributed to two main factors, namely (i) the conformational entropy of

OEG in solvent is not as high as expected, due to the fact that its structure undergoes

folding and thus limits the fluctuation of the torsion angles, and (ii) the conformational

entropy loss of OEG upon binding is not as severe as apprehended. As soon as one

RAL moiety is bound to the steroid binding site (and thus buried within the receptor

structure), it is no longer available for hydrophobic π-π stacking, which in turn might

restore a certain degree of flexibility to the OEG chain. Even for the intermolecular

bivalent binding mode of compound 15, which uses a conceivably short EG7 spacer that

is likely to undergo structural strain in the process, the simulation results indicate that a

notable amount of flexibility in the OEG chain is retained – in particular when compared

to the RAL moieties, which are locked tightly in the steroid binding sites. Consequently,

the enthalpic penalty of “unwrapping” a bivalent ligand tethered by a long spacer, or

of “unstacking” the ligand moieties tethered by a short spacer appears to be the major

obstacle in achieving higher RBA values, and not the conformational entropy loss upon

binding. It appears that here a higher degree of preorganization is required.

The differentiation of two different bivalent ER binding modes, i.e. intramolecular (in-

volving the steroid binding site and the coactivator binding site on the same ER LBD

monomer) and intermolecular bivalent binding (involving the steroid binding sites on

the neighboring sides of an ER dimer) that can be modulated by varying the length of

the tethering spacer was one of the main results of the experimental binding study. The

suggested mechanism could be supported by the findings of the computational study,

which provided evidence for both the sterical availability of the coactivator binding site

for bivalent ligands tethered by short spacers (EG1–EG5), as well as the possibility to

bridge the steroid binding sites in terms of intermolecular bivalent binding with longer

spacers (≥ EG7). Furthermore, the effects of attaching a spacer on the binding mode of

the tethered RAL moieties could be illustrated, and differences to the binding mode of

the unmodified monovalent RAL derivative LY156681 were pointed out.
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One can also conclude that the ER dimer is not a particularly “low-hanging fruit” when

it comes to the task of designing potent bivalent ligands. First of all, the known mono-

valent ER binders already are characterized by high binding affinities in the nanomolar

regime, which does not leave plenty of room for improvement. In cases were evolu-

tion has resorted to the multivalent display of ligands and receptors, it mostly involves

individually weak interactions. In addition, the buried steroid binding site of ER (in

combination with the low receptor valency) is a disadvantageous environment for the

occurrence of rebinding events, arguably the main source of the high stability of mul-

tivalent compounds (cp. Ref. [30]). Finally, the complex structural mechanism of ER

activation, related to the flexible positioning of Helix 12, complicates the interpretation

of binding studies.

This also applies to computational binding studies, as, for instance, the availability of the

coactivator binding site for the binding of small molecules (e.g. the second ligand moiety

of a bivalent ligand) is dependent on the positioning of Helix 12, which in turn is depen-

dent on the ligand that is bound to the steroid binding site. Monitoring macroscopic

structural changes in protein structures in the course of atomistic molecular simulations

is still beyond reach (at least for screening and comparing larger series of ligands), so

that a good choice of the initial protein crystal structure is of great importance. Last but

not least, the high number of additional degrees of freedom that are intrinsic to flexible

spacers adds to the overall complexity. In this case, it appears that the shortcomings

of flexible spacers render the process of rational molecular design almost impossible.

It is, for example, very difficult to screen for the optimal distance of bivalent ligand

presentation without a strong bias caused by different effects such as spacer folding or

conformational entropy loss.

The next chapter will present a different concept of displaying ligands in multivalent

arrays that is based on the use of rigid spacers and scaffold structures that can be

complemented by optional flexible elements in a modular fashion. Again, molecular

simulation is used to provide an insight into these systems on the atomistic level.

4.5 Experimental setup

4.5.1 Modeling and simulation

The structures of proteins, spacers and bivalent ligands were modeled using the vi-

sualization software Amira [139]. All simulations were performed using the software

GROMACS, version 4.07 [76] and the according port of the Amber force fields, ffamber

[148], more precisely the Amber-99SB force field [149] in combination with either the

TIP4P-Ew water model [150, 151] (Study F1) or the TIP3P water model [152] (Study
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F2), respectively. All novel structures were parametrized using the software Antecham-

ber [153, 154] from AmberTools 1.2 [155], with charges calculated by the AM1-BCC

method [156, 157]. For Study F1, the structures were put into equally sized rhombic do-

decahedron solvent boxes of about 9 nm side length. For Study F2, the non-complexed

structures were placed into equally sized rhombic dodecahedron solvent boxes of about

6 nm side length. The complexed structures were prepared by aligning a pre-minimized

conformation of the novel bivalent ligand to the SERM ligands as found in ERα crystal

structure with PDB ID 2R6W [136]. For the starting configurations of the complexes,

the raloxifene binding mode was modeled based on the known monovalent binding mode,

with spacer and second ligand protruding into the solvent. The protein-ligand complexes

were placed into equally sized rhombic dodecahedron solvent boxes of about 9 nm side

length. The energy of the systems was minimized with the steepest descent algorithm,

and afterwards 200 ps simulations were performed during which the positions of all heavy

(non-hydrogen) atoms of ligand and protein (if any) were restrained in order to settle

the solvent molecules. These systems were subsequently used as starting conformations

for either one MD run of 100 ns length per structure (Study F1) or five MD runs of

20 ns length per structure (Study F2), the latter using a different initial impulse vector

on every restart, leading to a cumulative sampling data of 100 ns of MD per ligand or

complex. In order to maintain a constant temperature of 300 K and a pressure of 1 bar,

velocity rescaling [86] and Berendsen weak coupling [90] were applied. A twin range

cut-off of 1.0/1.4 nm for van der Waals interactions was applied and the smooth particle

mesh Ewald algorithm [75] was used for Coulomb interactions, with a switching distance

of 1.0 nm. Bond lengths were constrained using the LINCS algorithm [84], allowing for

an integration step of 2 fs.

4.5.2 Conformational entropy estimation

Conformational entropy differences were estimated using the density-based approach of

Weber and Andrae [108] (cp. Chapter ??), based on the cumulative sampling data of

100 ns per system that was obtained from thermostated MD simulations as described

in the previous section. In contrast to using (subsets of) Cartesian coordinates for de-

scribing conformational states as suggested in Ref. [108], a definition in terms of internal

coordinates was preferred in order to avoid translational and rotational bias (cp. Chap-

ter 3.2.2). The set of internal coordinates consisted of all rotatable torsion angles of

the spacer as well as the spacer end-to-end distance (Study F1) or all rotatable torsion

angles of the bivalent ligand, subdivided again into spacer and RAL moieties (Study

F2). Consequently, conformational distances between structures where calculated with

a metric in internal coordinate space, and not in terms of Cartesian root-mean-square
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deviation (RMSD) values as in the original Ref. [108]. The size of the evaluation region

used for density estimation was chosen according to the variance of the internal coor-

dinates w.r.t. the cumulative sampling data. For Study F2, the first two nanoseconds

of each MD run were discarded in order to allow for relaxation of the systems. Per

data set, 500 sampling points with approximately mean potential energy were chosen as

reference points. Triple bond torsion angles (in 2-butyne moieties) as well as delocalized

bond torsion angles (in phenyl groups) were accounted for with an entropy contribution

of zero.

In order to obtain a meaningful estimate of conformational entropy differences with the

above method, the volume of the conformational spaces under observation has to have

a comparable, if not equal, size. This notion is best implemented by picking an equal

number of (internal) coordinates for the density estimate. Despite the structural simi-

larity of the compounds under observation in Study F1, a slightly different number of

rotatable torsion angles per structure was obtained (ranging from 33 to 35). To improve

the comparability of results, the number of torsion angles for the density estimate was

padded up by counting either one or two standard EG backbone torsion angles twice,

where necessary, therewith artificially prolonging the EG portion of the spacer in a rel-

atively minor way. In Study F2, the systems under comparison were structurally equal

by definition (unbound state compared to bound state w.r.t. the same bivalent ligand),

so that no padding of the internal coordinates was necessary.

4.5.3 Visualization of conformational density

Conformation density plots were computed with the approach of Schmidt-Ehrenberg et

al. [158] which is available as part of the visualization software Amira [139]. Rather than

visualizing conformations in terms of a single representative, probability densities over

all molecular geometries in the sampling data are accumulated and visualized by volume

rendering. This requires the application of a suitable alignment of the geometries in ad-

vance, preferably along a rigid part of the molecule. Visualizing molecular conformations

in terms of density plots helps to incorporate the notion of a diverse statistical ensemble

of states into a single static representation. It is helpful for discriminating flexible and

rigid regions in conformational space, but also meets the idea of conformation dynamics

(cp. Chapter 3.2.1), which perceives (and identifies) chemical conformations in terms of

softly overlapping metastable regions in conformational space.
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Rigid spacer systems

5.1 Introduction

One of the main conclusions of the previous chapter was that, in order to facilitate

the design of successful synthetic multivalent compounds, a modular approach of

spacer and scaffold design would be the most promising: For bridging distances and pre-

organizing ligands, the spacer or scaffold ought to be as structurally defined as possible,

only to be complemented with flexible elements if necessary, e.g. with short flexible link-

ers for allowing access to the binding pockets of the target. The multivalent enhancement

effect stems from the preorganization of ligands for their receptors, and, given the struc-

ture of the multivalent target is known, this idea should be exploited. One of the main

arguments for using completely flexible spacers is that they compensate for structural

uncertainty w.r.t. to the target, e.g. if the distance between binding sites is unknown,

or prone to change for structural reasons such as flexible interdomains. One can turn

around this argument by asserting that in some cases, flexible spacers can even add to

the uncertainty due to their rather unpredictable behavior – such as solvent-dependent

folding and wrapping of the attached ligand moieties (cp. Chapter 4.3).

This chapter presents two studies that involve spacers that are constructed from nucleic

acids, a material that implements the concepts of modularity and rigidity in an elegant

fashion. This is particularly interesting in the respect that nucleic acids themselves may

have been the the first self-assembling structures that exploited the concept of multiva-

lency (more precisely, multivalent base pairing and stacking) and, given the fact they

are conserved throughout evolution, are a living proof of its success.

Due to the fact that nucleic acids assemble from small nucleotide subunits that can be

associated with a defined bridging distance, they allow for a higher degree of preorga-

nization as it can be implemented by the use of completely flexible spacer structures.

115
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The proof that nucleic acids can be arranged into complex two and three-dimensional

shapes on the nanoscale was provided in 2006 by the article on DNA origami by Rothe-

mund [159]. Nowadays, it is possible not only to synthesize native nucleic acids at high

rates, or to create synthetic variants of nucleic acids with certain select properties, such

peptide nucleic acids (PNA) [160], but also to modify nucleic acids such that various

kinds of functional groups can be attached. This opens up the possibility to use molec-

ular architectures based on nucleic acid for the multivalent presentation of ligands, a

notion that according to Scheibe et al. [161] offers intriguing opportunities, “because (a)

oligonucleotide synthesis provides monodisperse material, (b) the valency of the ligand

display can readily be controlled by programmed self-assembly based on nucleic acid hy-

bridization and (c) the well-known base-pairing rules allow Ångström-scale positioning

of functional groups along the rigid nucleic acid helix.”

Both studies presented in this chapter are collaborative works of mainly experimental

nature that were conceptualized by chemists and accompanied by a computational part

in order to facilitate the interpretation of the results. The experimental part of the

first study (Section 5.2, based on Ref. [161]), was conducted by Christian Scheibe1 at

Humboldt-Universität zu Berlin, and focuses on the design, synthesis and application

of multivalent scaffolds assembled from DNA and PNA templates for the multivalent

presentation of glycoligands to lectin binding sites. The main idea here is to show that

linear PNA-DNA complexes with glycoligands attached at varying distances can be used

as “molecular rulers” for the spatial screening of binding sites on targets of possibly yet

unknown structure.

The experimental part of the second study (Section 5.3, based on Ref. [17]), was con-

ducted by Frank Abendroth2 at Humboldt-Universität zu Berlin and Min Shan3 at Freie

Universität Berlin, and deals with the DNA-controlled bivalent presentation of ligands

for estrogen receptor (ER). Due to the fact that Study R2 includes the same ligand

moieties as the ER binding study involving bivalent ligands tethered by flexible spacers

(Study F1, cp. Chapter 4.3), it offers the welcome opportunity of conducting a direct

comparison between flexible and rigid spacers w.r.t. to ligand-receptor binding affinities

and binding modes obtained under the same conditions.

1responsible for concept, synthesis and SPR measurements, supervised by Prof. Dr. Oliver Seitz
(also concept) at Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489
Berlin (Germany), co-supervised by Dr. Jens Dernedde at Zentralinstitut für Laboratoriumsmedizin
und Pathobiochemie, Charité Universitätsmedizin Berlin (CBF), Hindenburgdamm 30, 12203 Berlin
(Germany)

2responsible for concept, synthesis and relative binding affinity measurements, supervised by Prof. Dr.
Oliver Seitz (also concept) at Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße
2, 12489 Berlin (Germany)

3responsible for synthesis and relative binding affinity measurements, supervised by Prof. Dr. Rainer
Haag at Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin (Ger-
many)
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Given the fact that, for instance, DNA double helices are relatively rigid structure with

well-defined conformational properties, the need for predictive molecular simulation in

the context of spacers and scaffolds based on nucleic acids can be questioned. Param-

eters that are crucial for ligand presentation, such as the canonical raise per base pair

(base-to-base distance), helical twist per base pair, or helix diameter, can readily be

found in the literature. Furthermore, the explicit solvent simulation of DNA macro-

molecules is an expensive task in terms of the required computing power, as the large

linear molecules require spacious solvent boxes.

Still, molecular simulation of nucleic acids becomes worthwhile as soon as flexibility is

introduced to the systems. As will be pointed out in this chapter, one of the main

advantages of using nucleic acids as molecular spacers/scaffolds is the possibility that

structural flexibility can be reintroduced into the architecture “in small doses” where

needed, e.g. for wrapping around a spherical target protein in order to gain access to

its binding sites (Study R1, cp. Section 5.2) or in order to avoid sterical clashes with

the protein surface in the bound state (Study R2, cp. Section 5.3). Therefore, one of

the main objectives of the computational studies presented in this chapter is to evaluate

the influence of structural elements such as backbone nick sites or unpaired regions of

varying length on the properties of the spacer/scaffold and thus to facilitate the rational

design of such compounds in the future.

A second objective of molecular simulation in this context is related to the modified

nucleotides that are used for tethering the ligands to the spacer/scaffold. Typically, the

structural properties of the modified nucleotide and linker are less well studied, so that

a binding simulation to the actual protein surface or binding pocket can provide addi-

tional insights. This might, for instance, reveal unwanted effects such as ligand moiety-

spacer/scaffold interactions as discussed at length in the previous chapter. Again, the

author of this thesis is responsible only for the computational part of these studies (Sec-

tions 5.2.3 and 5.3.2), but the experimental results as contributed by the collaborating

scientists (see remarks above) are summarized in order to provide the necessary context.

5.2 Study R1: DNA-programmed spatial screening of

carbohydrate-lectin interactions

This section is based on (and contains content from) the following publication:

• Ch. Scheibe, A. Bujotzek, J. Dernedde, M. Weber, O. Seitz: DNA-programmed

spatial screening of carbohydrate-lectin interactions. Chem. Sci., 2:770-775, 2011.

URL http://pubs.rsc.org/en/content/articlelanding/2011/sc/c0sc00565g.

http://pubs.rsc.org/en/content/articlelanding/2011/sc/c0sc00565g
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5.2.1 Carbohydrate interactions benefit from multivalent presentation

Interactions between proteins and carbohydrate ligands are often characterized by low

binding affinities, which, in the cellular context, are typically compensated by the

multivalent presentation of both carbohydrate ligands and carbohydrate binding sites

[162, 163]. Apart from the valency of the multivalent interaction, the distance and

orientation at which the carbohydrate (glyco) ligands are presented, and thus preor-

ganized, are factors that determine the resulting overall affinity and specificity of the

interaction. Arguably, for interactions of low valency – involving only a limited numbers

of glycoligands – the role of preorganization that is needed for achieving a sufficient

binding affinity becomes increasingly important. Significant efforts have been put into

the synthesis of low-valency glyco structures that allow for the precise control of the

presentation of the individual ligand moieties, which in turn creates the possibility to

interrogate the spatial arrangement of the binding sites of the targeted lectin [164]. How-

ever, highest binding affinities are usually achieved by using polyvalent glyco clusters

based on multivalent scaffolds such as polymers [165–167], dendrimers [168–170], and

nanoparticles [171–173]. A precise control of number, orientation and distance between

the presented ligand moieties is often difficult to realize in these glyco clusters.

Consequently, the use of well-defined and highly preorganized molecular architectures

based on nucleic acids seems to be a promising alternative for the multivalent display of

glycoligands. Kobayashi explored self-organized, high molecular weight DNA-galactose

clusters of high periodicity and studied the effect of the helical torsion of glycan dis-

play on cooperative lectin recognition [174, 175]. More recently, Winssinger described

the hybridization of end-labeled PNA carrying flexibly tethered bivalent hexamannose

units [176], a study that suggested that nucleic acid hybridization can be used to mimic

complex carbohydrate epitopes. The study that is presented is the following extends

the concept by using DNA-programmed multivalency as a tool for the interrogation of

the spatial arrangement of lectin binding sites.

Figure 5.1: Crystal structure of ECL with N -linked oligosaccharide and lactose,
bound at opposite sides of the dimer at a distance of approximately 65 Å [177]. This

arrangement of binding sites is not optimally bridged with a rigid linear spacer.
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One problem that has to be overcome in this context is that lectins, being roughly

spherical proteins, have their binding sites arranged over a convex surface – a fact that

calls for ligand displays from either concave, a structural feature that can be difficult to

implement, or flexible scaffolds. Previous systematic screenings of distance dependencies

in multivalent systems have relied on flexible scaffolds [5, 178–180], cyclodextrins [181],

and cyclopeptides [6, 182–184]. Due to the fact that the rigid linear conformation of

the double helix (by design an almost perfect “molecular ruler”) is a disadvantage in

this situation, the nucleic acid architectures in this study were designed to contain semi-

rigid regions in order to avoid torsional and bending stress upon multivalent binding to

lectins with convex surfaces. The main objective of the computational part of this study,

complementing the experimental section, is to evaluate the effectiveness of these designs.

The approach is based on the use of PNA conjugates (Figure 5.2 I) that contain O-linked

N -acetyl-lactosamine (LacNAc) residues at internal positions. The formation of different

multivalent complexes w.r.t. to the distance between the LacNAc residues (Figure 5.2

II and III) can then be controlled by hybridization with selected DNA template strands

– and thus with a minimum of required synthesis. The binding behavior of the different

complexes is evaluated using the LacNAc-specific Erythrina cristagalli lectin (ECL) [177]

(Figure 5.1).

Figure 5.2: Modular assembly of multipartite PNA-DNA complexes to control the va-
lency and spatial arrangement of a multivalent display of glycoligands (yellow). Figure

taken from [161], reprinted with kind permission of Royal Society of Chemistry.

5.2.2 Design and evaluation of LacNAc-PNA-DNA complexes

PNA was chosen as the scaffold of choice for this application because PNA-DNA du-

plexes have a higher stability than DNA-DNA duplexes, and are not susceptible to

enzymatic degradation by proteases [185], a feature that would facilitate prospective

studies in biological environments. The construction of the multivalent LacNAc assem-

blies follows a modular approach that allows for the rapid and facile assembly of a wide
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range of supramolecular structures with defined valency. The key element is a modi-

fied, cysteine-derived PNA monomer that permits the conjugation of LacNAc residues

via thioether formation. PNA oligomers that can carry the modified residue are then

hybridized to complementary DNA strands – a convenient means to “program” the pre-

sentation distance between the LacNAc ligands.4 From five different PNA-oligomers

with three independent anticodon sequences (two anticodon sequences were used twice,

once with LacNAc attached and once in an unmodified version) and DNA templates

that provide three codon segments distributed over four positions, in principle a total

of 324 different complexes can be formed. Only a fraction of these complexes was evalu-

ated in the binding studies. The distances between the LacNAc residues were estimated

based on the known solution NMR structure of PNA-DNA duplexes, i.e. a helical twist

that comprises 13 base pairs with a pitch of 42 Å [186]. Accordingly, PNA oligomers of

length 13 were synthesized. In order to correct for smaller discrepancies in the parallel

presentation of the LacNAc-ligands arising from helical torsion, some flexibility is given

by the maleimido-linker used for tethering thiol-modified PNA and ligands, as well as

by the possibility to incorporate nick sites into the backbone (cp. Figure 5.2 III).

ECL was chosen as the model substrate for testing the binding affinities of the novel

compounds by surface plasmon resonance (SPR) because its carbohydrate binding affini-

ties and structure have been well characterized [177]. The lectin exists as a homodimer

in which the binding sites for galactose-containing carbohydrates, including LacNAc,

are located on opposite sides of the protein (cp. Figure 5.1). The distance between the

binding sites in the crystal structure is approximately 65 Å. However, given that a linear

scaffold that presents multiple ligand moieties for simultaneous binding to ECL would

have to adapt a bent conformation in answer to the convex receptor surface, a larger

presentation distance (in the range of approximately 100 Å) would be in order.

For the initial SPR experiments, the density of immobilized lectin on the gold surface

was set to approximately 2700 RU (1 RU corresponds to ca. 1 pg of lectin per mm2)

[187] and the influence of the number of LacNAc ligands on the binding behavior was

investigated.5 As expected, no binding was found for the PNA-DNA duplex carrying no

LacNAc ligands, and complex 17, presenting only a single LacNAc residue, was revealed

to have a low binding affinity (KD = 800 µM). For complex 18, in turn, involving two

different PNA-LacNAc conjugates, the SPR sensorgram reveals a 33-fold enhancement of

binding affinity per ligand (KD = 12 µM), a trend that is followed by trivalent complex

19 (KD = 2.6 µM) and tetravalent complex 20 (KD = 1.1 µM), the latter showing a

182-fold enhancement in binding affinity compared to the monovalent complex 17 (for

4For details on the synthesis, as well as for the sequences of PNA oligomers and DNA templates,
please refer to the original Ref. [161].

5For a full report on the SPR measurements, including kinetic data, please refer to Ref. [161], Table
1, Figure 2, and the associated electronic supplementary information (ESI), Table 2, Figures S1-S21.
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structural representations of complexes 17, 18, 19 and 20, cp. Ref. [161], Table 1).

Interestingly, in the initial SPR measurements, little to no difference in the binding

affinities of complexes 18 and 22–27 was observed (Figure 5.3, gray bars), despite the

fact that the distance of LacNAc presentation in this series is varied from 42 Å (complex

22) to 146 Å (complex 27). It was soon suspected that the high density of ECL molecules

immobilized on the sensor chip promotes the occurrence of cross-ECL binding between

adjacent receptor molecules, and thus cancels out the differences w.r.t. to simultaneous

recognition of two binding sites on a single ECL molecule. It was shown earlier that

crosslinking of lectin molecules, also referred to as aggregation, can govern binding

arrangements at high concentrations [188]. With the intention of reducing crosslinking,

the density of immobilized ECL was reduced to 700 RU, and indeed, this step uncovered

the differences in the binding behavior of the bivalent complexes 18 and 22–27 (Figure

5.3, black bars): The dissociation constants reach an optimum for LacNAc-LacNAc

presentation distances between 104 and 127 Å, and deteriorate for presentation distances

that are either significantly shorter or longer. The decrease in binding affinity is less

striking for long presentation distances, which suggests that an increase in crosslinking

probability might partially compensate for unfavorable single-ECL fit. In summary, an

obvious relationship to the spatial arrangement of the binding sites of ECL (at a distance

of ca. 100 Å, including compensation for convexity) can be established.

Figure 5.3: Influence of the LacNAc-LacNAc distance on the binding affinities of
bivalent complexes 18 and 22–27. The canonical distance of ligand presentation is
given in Å below the structural representations of the complexes. Figure taken from

[161], reprinted with kind permission of Royal Society of Chemistry.

In addition to the distance between the LacNAc ligands, the flexibility of the complexes

also appears to be a factor that influences binding to ECL. Initially, it was envisioned

that nick sites in the PNA backbone (i.e. at the end of each PNA 13mer) introduce

local flexibility to the structure and thus facilitate bending of the PNA-DNA complex

around the protein. In fact, complexes 24 and 25, arguably the most flexible structures
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in the comparison due to their unpaired regions of the DNA template (complex 24: 2

× 13 bp unpaired strand, complex 25: 1 × 26 bp unpaired strand) showed the smallest

dissociation constants of all tested bivalent substrates. This indicates that unpaired

single strand regions bend more readily than nick sites in duplex regions (complexes 18,

22, 23, 26 and 27) and thus allow complexes 24 and 25 to better adapt the curved

conformation required for simultaneous binding to the ECL binding sites. The objective

of the following computational study was to describe (and ideally quantify) the structural

origin of this phenomenon.

5.2.3 Results and discussion (computational part)

The main obstacles for molecular simulation in this context was given by the lack of

software tools for generating three-dimensional structures of PNA-DNA duplexes from

sequence, and, more severely, the lack of force field parameters for PNA, in particular

for the basic PNA residues needed for pairing with the standard DNA base set.

First, the PNA-DNA duplex solution structure (PDB ID 1PDT), obtained from the

Protein Data Bank, was aligned to a generic (ideal) DNA double helix created with the

software nab from AmberTools 1.2 [155]. By energy minimization with position restraints

using the modeling and visualization software Amira [139], the (somewhat warped) solu-

tion NMR structure was rectified and turned into an idealized version of the PNA-DNA

duplex. Overlapping substructures of the generic duplex structure were cut out and

used as templates for force field parametrization of the PNA residues with the bases

adenine, cytosine, guanine and thymine, as well as a number of capping residues for N

and C-termini. All residues were parametrized for the Amber-99SB force field [149] using

the software Antechamber [153, 154], with charges calculated by the AM1-BCC method

[156, 157]. The novel PNA force field parameters were carefully adjusted to match both

the existing peptide backbone parameters as well as the canonical parameters of the

DNA bases. Finally, the modified PNA residue containing the maleimido-linker was

modeled with Amira and parametrized according to the above protocol. The attached

LacNAc ligand moiety was not explicitly modeled. The complete set of PNA parame-

ters was included into the residue database of the Amber-99SB force field for the MD

software GROMACS, therewith enabling its native tool pdb2gmx for the preparation of

PNA-DNA complexes for simulation. In order to be able generate the relevant PNA-

DNA complexes from sequence, a Python wrapper for nab was written6 that replaces

one DNA backbone in a custom DNA double helix structure with a matching PNA

backbone (unpaired regions are supported as well). The resulting structure/parameter

6courtesy of Ole Schütt
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combination of the PNA-DNA duplex was evaluated in MD simulations and showed

reasonable stability and agreement with the solution NMR structure.

Subsequently, MD simulations in explicit water were carried out in order to investigate

the influence of nick sites and unpaired regions on the flexibility of the nucleic acid

structure in more detail. For this purpose, the structures of complexes 18, 24 and – a

purely hypothetical – complex 28 were generated and prepared for simulation. These

complexes possess an equal number of bases between the LacNAc ligands and thus qualify

for a direct distance comparison. Complex 28 shares the same sequence as complex 18,

but has a continuous PNA backbone without nick sites. For further reference, complex

22, featuring a short LacNAc-LacNAc distance, was prepared for simulation as well.

The MD simulations were started from the linear complex conformation. Due to the

fact that the DNA templates have a length of 52 bp, the use of rather large solvent

boxes of about 20 nm side length was required. After an initial 10 ns for equilibration,

the simulations were extended to a length of 30 ns in total. Although this simulation

length is probably not sufficient to sample the complete conformational space of such

large complexes (in particular w.r.t. to the single strand segments), it can be assumed

that differences in flexibility are revealed.

Complex Distance µ / σ [Å] Torsion µ / σ [◦]

28 102.89 ± 3.86 129 ± 3.38

18 98.77 ± 5.46 112 ± 4.80

24 109.67 ± 5.54 59 ± 7.60

22 43.58 ± 3.37 35 ± 2.37

Table 5.1: LacNAc–LacNAc presentation distances and angles as measured during 20
ns of MD simulation (mean µ and standard deviation σ).

The most rigid complex (28) shows a mean LacNAc-LacNAc distance that hardly dif-

fers from the estimated, canonical distance of 104 Å, which confirms that the force field

parameters are in order (Table 5.1). For the flexible complexes 18 and 24, a devia-

tion of about 5 Å from the predicted value can be found. While the probability for

adapting bent conformations – and thus for displaying shorter LacNAc-LacNAc dis-

tances – should increase for both complexes, only complex 18 shows an actual decrease

in LacNAc-LacNAc distance: Due to an increase in base to base distance and a decrease

in helix diameter, the single strand regions of complex 24 expand to a larger degree

than double strand segments, and thereby (over)compensate the distance decrease that

is connected with the increase in bending propensity – at least in the limited time frame

that is accessible to the simulation. Notably, even the most rigid complex (28) shows

a certain amount of oscillations w.r.t. to the ligand presentation distance, leading to a
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standard deviation of 3.86 Å. This corresponds to a contribution of 0.12 Å of “uncer-

tainty” per residue in a non-interrupted backbone (the distance between the two ligands

in this complex is 31 bp). The standard deviation of the ligand presentation distance

for complexes 18 and 24 is in the same order (≈ 5.5 Å), a fact that underlines the

effectiveness of nick sites.

The MD simulations also suggest differences in the dispersion of the torsion angle be-

tween the LacNAc presentation sites. While for double stranded complexes 18 and 28

the angle is in the same range, a clearly different value is found for complex 24. This

and the increased standard deviation of the torsion angle obtained for complex 24 shows

that the single strand segment indeed confers a higher flexibility than double strands.

The torsion angle standard deviation of complex 18 (two nick sites between the LacNAc

moieties) is about double the value of complex 22 (one nick site between the LacNAc

moieties), which suggests that the torsional freedom of the strand per nick site might

be additive.

In a second step, it was evaluated to which extent nick sites and unpaired regions promote

the formation of bent conformations as required for bivalent binding to ECL. As the

initial 30 ns of MD only led to moderate bending of the strands, MD simulations were

set up where a constant force acts on the strand so that the required LacNAc-LacNAc

distance can be adjusted. After obtaining bent, distance-adjusted conformations for

complexes 18, 24 and 28, short MD simulations were performed for measuring the force

that is necessary to remain in these potential binding (i.e. correct LacNAc-LacNAc

distance) conformations (Figure 5.4).

Figure 5.4: Mean force acting on the strand in the bent conformation with adjusted
LacNAc-LacNAc distance, measured at the ligand attachment sites over 400 ps. Figure

taken from [161], reprinted with kind permission of Royal Society of Chemistry.

These values give a measure of strand flexibility, as they can also be interpreted as the

force that has to act on the strand to adopt the bent conformation. As expected, the

highest force is obtained for the duplex with a continuous PNA backbone (complex 28).

The introduction of nick sites (complex 18) or unpaired single strand regions (complex

24) increases torsional freedom and the ability to stretch as the force needed to keep

the complexes in the bent conformation decreases (Figure 5.5).
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(a) Complex 18 (b) Complex 24

Figure 5.5: Surface representations of the complex conformations obtained by MD
simulations in which a constant force acted on the strand to bend the complexes into a
conformation suitable for bivalent binding to ECL. (a) In complex 18, bending occurs
mainly at the nick sites while the duplex segments remain in a linear conformation. (b)
In complex 24, the bent is formed by a nick in the flexible unpaired region (dark gray
= DNA, blue = PNA strands, green = linker). Figure taken from [161], reprinted with

kind permission of Royal Society of Chemistry.

The measured effect is slightly higher for the complex involving single strand regions

(24). Hence, conformations suitable for bivalent binding to ECL (and arguably any

spherical target protein) are more likely to be observed for these complexes. Given the

relatively distinct difference in binding affinity w.r.t. to complexes 18 and 24 (cp. Figure

5.3), one could have expected a somewhat larger difference in mean force as well. Due to

the fact that the bent conformations were generated by applying a rather artificial pulling

force, the resulting complexes may not in detail represent realistic bent conformations

as they appear in solvent (or possibly upon encountering of a target protein) without

the application of artificial strain. Therefore, a “true” bent conformation of complex

24 may require even less force. Here, the large number of degrees of freedom in the

unpaired regions of the DNA template is pushing the limits of molecular simulation.

For complex 22, a bent conformation with the correct LacNAc-LacNAc distance could

not be obtained – with an adjusted LacNAc-LacNAc distance of 65 Å, the strand is

rather linear than bent – which may explain the comparatively poor binding affinity

(Figure 5.6). In general, the observations from the MD simulations are in agreement

with the results from the SPR experiments: The binding affinity data obtained from

experiment coincides with the structural adaptability to the target structure as revealed

by simulation in terms of strand bending force and strand rotational freedom.

The following second study on rigid and semi-rigid nucleic acid scaffolds will now ex-

plicitly consider the biological receptor molecule as well.
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Figure 5.6: Surface representations of the conformation of complex 22 obtained by
MD simulations in which a constant force acted on the strand to bend the complex into
a conformation suitable for bivalent binding to ECL. In this case, the short distance
between the ligand attachment sites leads to a linear rather than a bent conformation

(dark gray = DNA, blue = PNA strands, green = linker).

5.3 Study R2: DNA-controlled bivalent presentation of

ligands for the estrogen receptor

This section is based on (and contains content from) the following publication:

• F. Abendroth, A. Bujotzek, M. Shan, R. Haag, M. Weber, O. Seitz: DNA-

controlled bivalent presentation of ligands for the estrogen receptor. Angew.

Chem. Int. Ed., 50(37):8592–8596, 2011. URL http://onlinelibrary.wiley.

com/doi/10.1002/anie.201101655/abstract.

Study R1 has proven that the structural properties of nucleic acids are advantageous

for the controlled presentation of ligands in multivalent arrays. The self-organization of

complementary strands allows for generating a high number of different (and yet con-

trolled and monodisperse) structural permutations with a minimum of synthetic effort.

The rigid character of the double helix permits to position the attached ligand moieties

very precisely, and thus turns nucleic acids into molecular rulers for screening the dis-

tance of binding sites of yet unknown protein targets. One of the main advantages of

nucleic acid scaffolds is the possibility to introduce structural flexibility in small, con-

trolled “doses” wherever needed, either by adding backbone nick sites or unpaired single

strand segments of varying length. Again, this can be implemented by changes in the

template strand, and thus rather conveniently. The effects of these flexible substructures

on the parameters of ligand presentation have been the focus of the computational part

of study R1.

The second study on rigid and semi-rigid spacers and scaffolds (and the final part of this

thesis dealing with spacer and scaffold design) revisits the model system of the previous

http://onlinelibrary.wiley.com/doi/10.1002/anie.201101655/abstract
http://onlinelibrary.wiley.com/doi/10.1002/anie.201101655/abstract
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chapter, estrogen receptor (ER). In this study, the favorable properties of nucleic acid

scaffolds – in this case DNA – are exploited in order to create potent bivalent ligands

for ER, outperforming not only a series of bivalent ligands using flexible spacers (cp.

Chapter 4.3), but also the monovalent control. In this respect, the study is unique as it

shows that multivalent enhancement can also work for individually potent ligand moi-

eties with nanomolar affinities presented at low valencies – and for a relevant biological

target. The computational part of this study focuses on the modeling of receptor binding

modes of different DNA-SERM complexes, with the aim to facilitate the interpretation

of the relative binding affinity (RBA) measurements. This once more involves the elusive

hydrophobic subsite on the surface of ERα (cp. Chapter 4.1.2)

5.3.1 Rigid and semi-rigid DNA scaffolds for the bivalent presentation

of estrogen receptor ligands

The precise positioning of functional groups conjugated to DNA by mutual recogni-

tion of DNA sequences has been demonstrated in a number of different scenarios, e.g.

for chromophores [189, 190], metals [191, 192], catalytic units [193, 194], nanoparticles

[195, 196], fluorophores [197, 198], and even proteins [199–201]: The ability to arrange

functional units at well-defined distances is required for many applications, and DNA

hybridization (without neglecting the use of other nucleic acids) is a convenient means to

do so. While until recently the focus of these applications has been on material science

as well as on the immobilization of biomolecules, using self-organizing DNA conjugates

for addressing biological problems promises to be a fruitful venture [202–204]. In the

previous section, Study R1 has presented the rapid spatial screening of lectin binding

sites by rigid and semi-rigid multivalent PNA-DNA-LacNAc complexes with minor syn-

thetic effort. Other examples include the interrogation of a tandem SH2 domain with

DNA-peptide conjugates [18], or of a dimeric death receptor with PNA-peptide macro-

cycle conjugates [205]. The common motif is the covalent attachment of a ligand for

a biological receptor to an oligonucleotide. Bi- or even multivalent nucleic acid-ligand

conjugates can be generated in a very straightforward manner by hybridization of more

than one modified oligonucleotide to an (unmodified) template strand, which, by varia-

tions in sequence and length, can be used to adjust the distances at which the ligands

are presented to the receptor. The concept has been discussed at length in Sections 5.2.1

and 5.2.2. The results presented so far have already indicated that nucleic acid scaffolds

offer notably more control w.r.t. to the parameters of ligand presentation than can be

implemented by these use of flexible spacers. The study presented here marks the first

example were DNA scaffolds are used for the spatial screening of a protein receptor using

potent small molecule ligands. The model system is again the dimeric ERα, and the
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study incorporates the two well-known SERMs 4-hydroxytamoxifen (Tam) and ralox-

ifene (Ral), but only the latter ligand is incorporated into the computational part of the

study. A series of bivalent ligands based on Ral (including the monovalent control) from

Study F2 is integrated into Study R2 for comparison.

The synthesis of the SERM-oligonucleotides was realized by introducing an alkyne mod-

ified uridine building block during the automated DNA synthesis. The SERMs were

equipped with azido functions to enable the covalent attachment to the oligonucleotides

by Cu-catalyzed 1,3-dipolar cycloaddition. The resulting conjugates were obtained in

30–70 % yield. The affinities of the complexes and compounds were evaluated with the

HitHunter enzyme fragment complementation (EFC) estrogen chemiluminescence assay

(DiscoveRx) [141]. All binding affinities are expressed as RBA values (Figure 5.7), that

is, relative to the IC50 values of the reference, E2 (3.11 nM, RBA = 100%).7

Figure 5.7: Relative binding affinity (RBA) for the relevant complexes and compounds
(RBA for E2 = 100 %, IC50(E2) = 3.11 mM for ERα). [a] Calculated for 1:1 mixture of
the cis/trans isomers. nt = nucleotide. Note that the flexible bivalent ligands Ral2n
appear in study F1 as RAL2EGn. The same holds for the monovalent control: Ral3 =
RALEG4Me, Ral5 = RALEG6Me (cp. Table 4.4).8 Figure taken from [17], reprinted

with kind permission of John Wiley and Sons.

Tam and Ral maintained high ERα-binding affinity after conjugation to DNA. Inter-

estingly, Ral, when conjugated to a ssDNA (single strand DNA) 15mer in 2Ral (not

shown) even surpassed the RBA of its small molecule counterpart, Ral (130 vs. 30 %

RBA). Given that ER is a transcription factor, it is plausible that the oligonucleotide

scaffold contributes to the affinity of the conjugate to ER. A variation of the nucleic acid

sequence in 3Ral (not shown), in turn led to a distinct drop in binding affinity (4 %

RBA). Despite the undeniable contribution of the DNA scaffold to the binding affinity

of the conjugates, control experiments with unmodified oligonucleotides showed – in the

limits of the binding assay – no binding to ERα (cp. [17] Figure S32 and Table S4 in

7Details regarding synthesis and RBA measurements are omitted in this short summary. Please refer
to the original Ref. [17] and the associated Supporting Information.
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the Supporting Information).

The actual spatial screening of the ERα binding pockets was performed using the self-

assembled complexes in which two different Tam-oligonucleotide conjugates or two dif-

ferent Ral-oligonucleotide conjugates were annealed to a template strand. The distance

between the ligands was varied by changing the number of unpaired template nucleotides

Yn in the resulting bivalent, ternary complexes 4Rn (cp. Figure 5.7). The stability of

the ternary complexes was evaluated by melting experiments, and proved to be virtually

unaffected by the conjugation of the ER ligands (cp. [17] Figure S18–S20 in the Support-

ing Information). The experiments with the bivalent complexes revealed a remarkably

high level of up to 300 % RBA for ERα, a noteworthy result given that studies involving

flexibly linked SERM dimers have shown relatively low binding affinities (cp. Ref. [135]

and Study F2 in Chapter 4.3).

In order to evaluate the effect of bivalent ligand presentation, the complexes 4n were

compared with a monovalent control, i.e. complexes 5n (not shown), compromising the

same DNA architecture, but featuring only one ligand moiety. The bivalent complexes

4Tam0 and 4Tam4 showed five to seven times higher affinity to ERα than the monova-

lent complexes 5Tam0 and 5Tam4, which clearly underlines the advantage of bivalent

ligand presentation.

The highest binding affinities were obtained for complexes in which the Tam moieties

were separated by three (4Tam0) or seven (4Tam4) nucleotides. The complexes in-

volving Ral show an even more pronounced distance dependency: Again, two max-

ima of the binding affinity were observed at a separation of three (4Ral0) and six

nucleotides (4Ral3). Analogously to the Tam conjugates, these complexes exceed the

binding affinity of monovalent Ral. The two distinct peaks in binding affinity of the bi-

valent complexes involving both Tam and Ral when presented at three and six, or seven,

respectively, nucleotides apart, are noteworthy. In order to estimate the corresponding

ligand presentation distances, it was assumed that the complexes adopt the structure

of B-DNA, the most common form of DNA in living systems (20 Å helix diameter, 3.4

Å base-to-base distance, 10.2 nucleotides per turn), an assumption that is justified be-

cause it was shown that fully base-paired ternary complexes (such as 4Tam0 and 4Ral0)

maintain the structural characteristics of B-DNA [206]. Furthermore, in accompanying

FRET studies (FRET = fluorescence resonance energy transfer) it was ascertained that

a ternary DNA complex consisting of two double-helical segments separated by three

unpaired nucleotides retains the length of a canonical B-duplex [18].

Based on this assumption, and taking into account the length of the linker (Figure 5.8)

as well as helical torsion, it was concluded that a spacer of three nucleotides length will

arrange the triazole units at a distance of less than 23 Å, while a spacer of six or seven

nucleotides length will position the triazole units 38–40 Å apart. Furthermore, given

that in the latter cases a segment of unpaired nucleotides is involved, a larger degree
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of flexibility can be expected. For comparison, the nitrogen atoms of two raloxifene

molecules in a co-crystal with the ERα dimer are positioned 34.7 Å apart [128].

In order to investigate the pronounced distance dependency revealed by the RBA mea-

surements in more detail, the structural fit of different bivalent complexes w.r.t. to the

ERα dimer was evaluated in terms of a computational study consisting of two parts:

The first part aimed at pointing out a possible structural basis for the binding behavior

by suggesting a number of complex-receptor binding modes by means of modeling, and

subsequent evaluation of the suggested binding modes in MD simulations. The second

(and more general) part aimed at characterizing the influence of unpaired single strand

segments in ternary DNA complexes on structural properties that may play a role for

the presentation of ligands. The results are presented in the following.

5.3.2 Results and discussion (computational part)

Modeling of bivalent steroid binding site modes

The complexes Ral40, Ral42, Ral43 and Ral44 were generated based on generic DNA

double helix structures generated with the software nab from AmberTools 1.4 [155] and

complemented by unpaired single strand segments as well as the nucleotide-Ral conju-

gates at the appropriate positions in the sequence with the modeling and visualization

software Amira [139]. Given the strong evidence for ternary DNA complexes adopting

the shape of B-type DNA (cp. 5.3.1), the DNA helices were modeled accordingly. Force

field parameters for DNA were readily available in the Amber-99SB force field [149], so

that only the novel nucleotide-Ral conjugate (Figure 5.8) had to be parametrized from

scratch.

Figure 5.8: The nucleotide-Ral conjugate incorporates a semi-flexible linker that
ascertains an adequate distance between Ral moieties and DNA duplex (4Ral3).
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The first objective was to investigate the large difference in RBA between complex

Ral43, with Ral moieties separated by six nucleotides, and complexes Ral42 and Ral44,

having either one nucleotide less or one nucleotide more separation. With an estimated

distance of 38–40 Å between the triazole units (Ral43), bivalent binding should be in

range for all three complexes. In order to obtain ERα binding conformations of the

complexes Ral4n (n = 2–4), first an alignment of a single Ral moiety of complex Ral4n

with a single SERM (LY156681) as bound in complex structure with PDB ID 2R6W

[136] was performed. By modeling with Amira, the remaining part of the Ral4n complex

was then arranged so as not to cause steric overlap with the protein structure. At the

connection between duplex parts and unpaired single strand segments, the connection

was first severed in order to allow for arranging the rigid duplex parts more easily, to be

reconnected again afterwards. The remaining Ral moiety was arranged within the second

binding pocket or close by, if possible. After an initial geometry with no or only moderate

receptor overlap was found, a first energy minimization (steepest descent algorithm) was

performed, using only the Ral4n complex in explicit solvent, with position-restrained Ral

moieties. The optimized – mainly w.r.t. to the conformation of the flexible segments –

Ral4n complex was then reintroduced to the ERα structure, put into a new solvent box,

and a second energy minimization was performed, using the complete system consisting

of protein, Ral4n complex and explicit solvent, without position restraints, followed

by a 200 ps position-restrained MD simulation in order to settle the solvent molecules.

These simulations provided the starting geometries for unrestrained MD simulations of

up to 10 ns lengths which were used for data collection and in order to evaluate the

stability of the complexes. The resulting binding modes are shown in Figure 5.9.

The results show that complex Ral43 is able to achieve bivalent binding to the steroid

binding sites of the ERα dimer without notable structural strain (cp. Figure 5.9 a). The

flexible spacer of three nucleotides of unpaired single strand has a large contribution in

this respect, as it can arrange within the narrow groove between the two ERα monomers

more readily than a double-helical segment. The distance between the two triazole units

is 28.6 Å (mean over 10 ns of MD), which allows for unhindered entry of the Ral moiety

into the steroid binding sites. Again, similar to the binding mode of bivalent ligand

Ral27/RAL2EG7 from Study F2 (cp. Chapter 4.3.3), the triazole units adopt a different

positioning than the 4-methylpiperidin in the side chain of ligand LY156681, a fact that

can probably be attributed to the attached linkers.

By contrast, the predicted binding modes of complexes Ral42 and Ral44 do not achieve

simultaneous bivalent binding to the steroid binding sites of the ERα dimer without

putting up with significant structural strain. A separation of five nucleotides between

the Ral moieties (Ral42) leads to an only marginally smaller distance w.r.t. to the linear

distance between the modified nucleobases in the strand; however, the angle of ligand
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(a) 4Ral3-ERα complex (6 nt separation, 3 nt unpaired)

(b) 4Ral2-ERα complex (5 nt separation, 2 nt unpaired)

(c) 4Ral4-ERα complex (7 nt separation, 4 nt unpaired)

Figure 5.9: Proposed binding modes of bivalent complexes (a) Ral43, (b) Ral42, and
(c) Ral44 to ERα (crystal structure with PDB ID 2R6W [136]): Ral moieties = orange,
LY156681 ligands (SERM from crystal structure) = purple, template strand = light
gray, conjugate strands = green. The pictures show snapshots from MD simulations in

explicit water.
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presentation is altered such that, given that one Ral moiety is already bound to the first

steroid binding site, the second Ral moiety is directed towards the solvent (cp. Figure 5.9

b). This effects seems to be amplified by the rigid linear spacer segment that connects the

nucleobase with the triazole unit of the Ral moiety. Consequently, despite the shorter

separation in terms of nucleotides, the mean distance between the two triazole units

increases notably to a value of 39.46 Å. The structural mismatch appears to be less

severe for complex Ral44 (cp. Figure 5.9 c), where the second Ral moiety only falls a

little short of the steroid binding site (in fact, contact to the binding site entry can still

be established). Again, the rigid linear spacer segment may be a double-edged sword,

as it successfully ascertains the unobstructed presentation of the Ral moiety, however

at the cost of not allowing for a more flexible compensation of structural mismatch in

the scaffold.9 In this case, the mean distance between the two triazole units adds up

to a value of 35.33 Å, which – considering the co-crystal of ERα with raloxifene – is

technically very close to an optimal distance for bivalent binding. This might explain

why complex Tam44 (not included in the computational study), analogously to his

counterpart having a separation of seven nucleotides between the ligand moieties, was

found to have a very high RBA value of 300 %. Here, a small change in the ligand

moiety might indeed make a difference.

In summary, the modeling results seem to represent a plausible structural basis for the

RBA measurements presented above (cp. Figure 5.7). What remains is the question how

Ral40, the complex with the highest RBA of all bivalent complexes using Ral, might

bind to ERα. Following the above protocol, a bivalent binding mode of complex Ral40

involving simultaneous binding to (or near to) the steroid binding sites of the ERα

dimer could not be realized. In this case, the ligand moiety separation distance of only

three nucleotides and the lack of a flexible unpaired segment render bivalent binding

to the steroid binding sites – from the modeling perspective – impossible. Considering

the high RBA of Ral40, the occurrence of a different bivalent binding mode, involving

a hydrophobic subsite associated with the coactivator binding site of ERα, might be

the explanation. In the spirit of Study F2 (cp. Chapter 4.3), this would presume the

existence of an intermolecular bivalent binding mode (involving both steroid binding

sites on the opposing sides of ERα dimer, cp. Figure 5.9) and an intramolecular bivalent

binding mode (involving both steroid binding site and a hydrophobic subsite on a single

ERα monomer). In the next section follows an evaluation of in how far Ral40 might be

able to adapt such an intramolecular bivalent binding mode.

9If the nucleic acid scaffold is to be used as a molecular ruler for screening distances between binding
sites, an excess of structural compensation by flexible linkers may be counterproductive.
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Modeling of bivalent subsite binding modes

In the computational part of study F2, the ERα binding modes of a series of bivalent

Ral ligands tethered by flexible oligo(ethylene glycol) (OEG) spacers, covering spacer

variants from EG1 to EG7, were investigated by MD simulations, starting from a config-

uration were one Ral moiety of the bivalent ligand is bound to the first steroid binding

site, while the remaining Ral moiety is dangling in the solvent (cp. Chapter 4.3.3). The

result was not only that bivalent binding to the steroid binding sites in all likelihood

would require a spacer of at least seven EG units (intermolecular bivalent binding was

shown for ligand Ral27/RAL2EG7), but also that bivalent ligands tethered by shorter

spacers adapt several other binding modes, some of which involving contact of the “dan-

gling” Ral moiety to the surface of ERα. This phenomenon might also be the source of

the high RBA value of complex Ral40.

In order to assess this in more detail, it was evaluated where the “dangling” Ral moiety

of compound Ral21/RAL2EG1, the highest affinity bivalent ligand tethered by a short

flexible spacer, can find favorable interaction sites on the ERα surface. For this purpose,

the free Ral moiety was “docked” at several accessible locations in the vicinity of the

steroid binding site, and interaction energies and complex stability were evaluated by

conducting short MD simulations. A stable binding mode for the auxiliary Ral moiety

that is accessible with the very short spacer of Ral21/RAL2EG1, given that the first Ral

moiety is bound to the steroid binding site, could be identified in terms of a hydrophobic

patch (or groove) that is formed by residues Leu354, Leu 355 and Ile358 “below” the

steroid binding site entry, and residues Leu539 and Met543 on Helix 12 (Figure 5.10).

Figure 5.10: Ral21/RAL2EG1 (cyan) adapting an intramolecular binding mode in-
volving both steroid binding site and hydrophobic subsite (red) on the same ERα
monomer (gray). For comparison, the LY156681 ligands from the crystal structure
(PDB ID 2R6W [136]) are shown in purple. The picture shows a snapshot from an MD

simulation in explicit water.
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This region belongs to the coactivator recognition interface of ERα (cp. Chapter 4.1.1,

in particular Figure 4.1) and has already been shown to bind hydrophobic peptides [207]

and – in the case of its homologue ERβ – small hydrophobic molecules (such as SERMs)

as well (cp. Chapter 4.1.2, in particular Figure 4.2). Thus, considering the high RBA

value of Ral21/RAL2EG1 and the accumulated evidence (including modeling results)

it is likely that the suggested intramolecular binding mode as depicted in Figure 5.10

exists. Of course, the availability of the hydrophobic subsite is dependent on the posi-

tioning of Helix 12, which in turn is dependent on the ligand that is bound to the steroid

binding site. The crystal structure used for modeling the binding mode (PDB ID 2R6W)

is a co-crystal with SERM (and raloxifene derivative) LY156681, so that the positioning

of Helix 12 should also match complexes involving Ral2n/RAL2EGn and Ral4n. A

very rough estimate of the interactions energies from the MD simulation indicates that

binding of a single Ral moiety to the subsite yields approximately 40 % of the enthalpy

of the steroid binding site.

Finally, it was evaluated if complex Ral40, having the shortest ligand presentation

distance as well as the highest RBA of all bivalent complexes 4Raln can adapt a simi-

lar intramolecular binding mode as the flexible compound Ral21/RAL2EG1. For this

purpose, the Ral moieties of Ral40 were aligned to the Ral moieties in the predicted

intramolecular binding mode of Ral21/RAL2EG1, and the scaffold (a double-helical

structure with a very limited number of degrees of freedom) had to arrange accord-

ingly. Again, the complex was optimized over two cycles of minimization in explicit

water according to the protocol described above, to be subsequently studied in an MD

simulation. The resulting binding mode is shown in Figure 5.11.

Figure 5.11: Overlay of 4Ral0-ERα and Ral21/RAL2EG1-ERα complex adapting
an intramolecular bivalent binding mode involving both steroid binding site and hy-
drophobic subsite: DNA scaffold = transparent white, Ral moieties of 4Ral0 = orange,

Ral21/RAL2EG1 = cyan.
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The modeling results indicate that 4Ral0 can adapt the suggested intramolecular bind-

ing mode analogously to its flexible counterpart, Ral21/RAL2EG1, without putting

structural strain on its (rather rigid) double-helical DNA scaffold. In contrast to the

intermolecular binding modes for complexes 4Ral2, 4Ral3 and 4Ral4 (cp. Figure 5.9),

the DNA (double) strand does not arrange in the central groove of the ERα dimer, but

rather on the side of a single monomer.

Flexibility of ternary DNA complexes containing unpaired nucleotides
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Figure 5.12: Mean distance and mean torsion angle between to nucleobases divided
by a distance of 15 bp as a function of the number of unpaired nucleotides in between.
Figure taken from the Supporting Information of [17], reprinted with kind permission

of John Wiley and Sons.

The final part of the computational study changed the focus from modeling ERα binding

modes to a more general view on conformations of ternary DNA complexes in water. In

order to assess the impact of unpaired regions on the parameters of a DNA double helix

structure, multiple 32 ns MD simulations of ternary DNA complexes of 42 bp length,

and supplemented by variable segments of unpaired strand (0-15 bp), were conducted.

The mean distance as well as the mean torsion angle w.r.t. the longitudinal axis of

the strand were measured at two exemplary nucleobases divided by 15 bp distance,

with the unpaired segment in between (Figure 5.12). The mean distance (dark gray)

tends to increase proportional to the length of the unpaired region, as the DNA single

strand helix diameter is smaller than the DNA double helix diameter, i.e. the unpaired

segment extends in length. However, due to the increase in bending propensity in

the unpaired region, the net mean distance increase is relatively mild (≈ 5 Å). The

error bars (standard deviation over 32 ns simulation time) show that even very short

unpaired segments introduce notable structural flexibility compared to the continuous

double strand (length of unpaired region = 0). The same holds for the torsional freedom
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of the strands (light gray, plotted from -180 to 180◦): While the full double strand

complex allows for only a very modest torsional freedom torsion of approximately 13◦,

single strand segments enable the strand to rotate up to more than 70◦ around the

longitudinal axis. Although MD simulations of 32 ns length are not able to sample the

complete conformational space of long DNA single strands, certain trends are clearly

visible and may be helpful when using DNA as a variable scaffold for the presentation of

ligands. The results are also in line with the findings that were presented for semi-rigid

PNA-DNA complexes (cp. 5.2.3).

5.4 Conclusion

In summary, the results obtained from the molecular simulations were able to contribute

to the interpretation of the experimental results, and thus help to draw certain conclu-

sions regarding the design of spacers and scaffolds for the multivalent presentation of

ligands to biological receptors.

First of all, nucleic acids scaffolds exceed flexible spacers in terms of controlled ligand

presentation. Double-helical segments reliably retain a rod-like (linear) rigid structure

that is successful in bridging distances of several nanometers while allowing for posi-

tioning ligand moieties with an error of only a few Ångström with a very manageable

synthetic effort. Given that for a series of ternary complexes only two oligonucleotide-

ligand conjugates have to be synthesized (while the remaining “work” is taken over by

self-assembly), nucleic acids are near perfect molecular rulers for screening the distances

between receptor binding sites. More complex architectures, such as cross- or grid-like

scaffolds based on the Holliday junction [208], can be implemented as well. The DNA

origami approach has impressively demonstrated how even functional three-dimensional

structures, such as the DNA lockbox [209], can be constructed.

However, addressing multiple binding sites on a single receptor of low valency is a chal-

lenge of its own. In order to achieve high binding affinities, the preorganization of the

ligand moieties has to go further than adjusting the presentation distance on a linear

spacer. Study R1, presenting a distance screening approach for (low-affinity) binding

sites on a lectin, has demonstrated how the introduction of flexible elements to nucleic

acid scaffolds can improve the affinity for the receptor by adapting the scaffold to its con-

vex shape. In this context, another advantage of nucleic acid scaffolds is that structural

flexibility can be introduced in controlled quantities by the use of either nick sites in the

back bone, or unpaired single strand segments of variable length. The structural impact

of these flexible elements has been investigated at length in the course of this chapter.

Finally, Study R2 has provided evidence that well-preorganized bivalent ligands based

on DNA scaffolds are able to outperform both potent monovalent ligands – as well as
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bivalent ligands using flexible spacers – in terms of binding affinity for a biological re-

ceptor. Of course, one has to tread carefully when making such claims, as, for instance,

the DNA scaffold itself can contribute to an increase in affinity, not by preorganization,

but in terms of enthalpy, especially when the target receptor is a transcription factor

such as ER.

An important factor to consider when using nucleic acid scaffolds is that the distance

of ligand presentation is correlated to the angle of ligand presentation, regardless of

whether the ligand is attached to the backbone (e.g. a PNA backbone, as in Study

R1) or to a modified nucleobase (as in Study R2). The binding mode comparisons in

Section 5.3.2 reveal a very distinct difference in the angle of ligand presentation that

is brought about by the distance of a only a single nucleotide. Thus, ligands can only

be presented in the same angle when a helix turn is completed, or the rigidity of the

structure is partly abandoned (at the cost of a higher variance in the ligand presentation

parameters). Consequently, if one aims at a high degree of preorganization, considering

a three-dimensional structure of the scaffold during the design process is advisable.

One of the main disadvantages of using nucleic acid scaffolds for (intracellular) biologi-

cal applications is that they, being relatively large and negatively charged compounds,

are not well internalized by cells, and, when within the cell, may trigger a response by

the immune system, and/or quickly become subject of enzymatic degradation.10 Thus,

scaffolds based on nucleic acids are facing similar adversities as synthetic siRNA [210].

Using more robust, synthetic constructs such as PNA is a possible way to circumvent

these problems in the future.

By contrast, bivalent ligands tethered by flexible OEG spacers are readily internalized

by cells and were also shown to possess biological activity (cp. Chapter 4.3.2). This ad-

vantage is lessened by the problems associated with flexible spacers (discussed at length

in the previous chapter), namely folding, wrapping, as well as hydrophobic stacking in-

teractions of ligand moieties in water, leading to a hydrophobic collapse of the structure

and thus rendering bivalent binding unfavorable. All of this can be considered side ef-

fects of the comparatively low degree of preorganization that is associated with the use

of very flexible structures. In this respect, the rigid and semi-rigid scaffolds observed in

this chapter have been proven to be more successful: Short-range interactions between

two ligand moieties are virtually impossible, and interactions between ligand moiety

and spacer/scaffold could not be observed in the course of the simulation. However,

the latter case may still occur if rather flexible ligands (e.g. peptide chains), possibly

carrying positive charges, are attached to a scaffold that contains a negatively charged

DNA backbone. The ligand-scaffold combination presented in Study R2, consisting of a

10Of course, there is a number of biological applications that involve interactions on the cell surface,
or the glycocalix, that are calling for the multivalent display of ligands, too, but would not be affected
by these problems.
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negatively charged DNA scaffold that presents hydrophobic ligands attached via short

and partially rigid linkers, is not affected by such effects and thus ascertains an unhin-

dered presentation of the ligand moieties.

The conformational entropy loss upon binding has not been studied explicitly for the

nucleic acid scaffolds presented in this chapter. For double-helical segments, the entropy

loss upon binding should be negligible, while for longer single strand segments, it is

very hard to obtain a sampling that would be sufficient for conducting a meaningful

conformational entropy estimate. In this respect, the use of experimental methods such

as NMR spectroscopy that are able to take into account longer timescales is probably

more fruitful (cp. Chapter ??). Still, it appears that, again, conformational entropy

loss is not the limiting factor w.r.t to binding affinity, but rather enthalpy, in terms of

sterical fit to the target. Complexes 18, 24 and 25 (the latter complex was not mod-

eled) from Study R1 provide clear evidence that partially flexible scaffolds are able to

outperform their more rigid counterparts in terms of binding affinity, despite the fact

that they have to suffer a larger loss in conformational entropy. This is in accord with

the observations from Study F2, where the conformational entropy loss of flexible OEG

chains upon binding of the bivalent ligand to ERα constitutes a comparatively small

fraction of the estimated change in free energy (cp. Chapter 4.3.3). Consequently, con-

formational entropy loss appears to be the limiting factor only in the (hypothetical) limit

of very long spacers or very flexible scaffolds for addressing more than a single receptor

molecule. In summary, one could conclude that sterical considerations and correct pre-

organization of the ligand moieties should be the main priority of spacer and scaffold

design, while reduction of conformational entropy loss can be considered a means for

further optimization of established binders.

5.5 Experimental setup

5.5.1 Study R1

Structures of the complexes were modeled using the visualization software Amira [139],

based on the solution structure of a PNA-DNA duplex obtained from the Protein Data

Bank (PDB ID 1PDT) [186] and a generic B-DNA double helix structure generated with

the software nab from AmberTools 1.2 [155]. The modified PNA residue was modeled

including the complete linker, but without the LacNAc ligand. The standard base set of

PNA required for PNA-DNA duplexes and the modified PNA residue were parametrized

for the Amber-99SB force field [149] using the software Antechamber [153, 154], with

charges calculated by the AM1-BCC method [156, 157]. The protonation state of the

PNA-DNA complexes in solvent was the normal one for pH 7. All simulations were
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performed using the software GROMACS, version 4.07 [76] and the according port of

the Amber force fields, ffamber [148]. For the 30 ns simulations, the linear complex

conformations were used as starting configurations. The complex structures were sol-

vated with roughly 176,000 water molecules (TIP3P water model [152]) in equally sized

rhombic dodecahedron boxes of 19.6 nm side length. To neutralize the overall charge, an

adequate amount of potassium ions was added to the simulation boxes. The energy of

the systems was minimized with the steepest descent algorithm, and 200 ps position re-

strained MD simulations were performed in order to settle the solvent molecules. These

systems were subsequently used as starting conformations for the unrestrained long-

time simulations. In order to obtain bent complex conformations, a constant distance

restraining potential was used for bending the complex structures such that the distance

between the linkers was adjusted to the approximate distance of the ECL binding sites.

This was done using implicitly modeled solvent. Afterwards the bent complexes were

transferred into explicit TIP3P solvent, following the protocol described above for the

linear complexes, including energy minimization and position restrained MD in order to

settle the solvent molecules. These were then used as starting configurations for the force

measurements. The forces were measured by applying an harmonic potential restraining

the distance between atoms of the two linker attachment sites, and then calculating a

400 ps MD trajectory, yielding the mean the force that has to act on the strand to

remain in the bent conformation with the correct linker-linker distance. To maintain

a constant temperature of 300 K and a pressure of 1 bar, velocity rescaling [86] and

Berendsen weak coupling [90] were applied. A twin range cut-off of 1.0/1.4 nm for van

der Waals interactions was applied and the smooth particle mesh Ewald algorithm [75]

was used for Coulomb interactions, with a switching distance of 1.0 nm. For the 30 ns

simulations, bond lengths were constrained using the LINCS algorithm [84], allowing for

an integration step of 2 fs. For the force measurement simulations, an integration step

of 1 fs and unconstrained bond lengths were used.

5.5.2 Study R2

Structures of ligands and ligand-DNA complexes were modeled using the visualization

software Amira [139]. DNA strands used in the ligand-DNA complexes were built based

on generic B-DNA double helix structures generated with the software nab from Am-

berTools 1.4 [155]. The structure of ERα was obtained from the Protein Data Bank

(PDB ID 2R6W) [136]. All molecules were parametrized for the Amber-99SB force field

[149]. Molecule residues not available in the standard force field database, including

the nucleotide-raloxifene conjugate, were parametrized using the software Antechamber
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[153, 154], with charges calculated by the AM1-BCC method [156, 157]. The protona-

tion state of all molecules in solvent was the normal one for pH 7. All simulations were

performed using the software GROMACS, version 4.07 [76] and the according port of the

Amber force fields, ffamber [148].

Simulations were performed in rhombic dodecahedron boxes with at least 1 nm solute-

box distance filled with explicit water (TIP3P water model [152]). To neutralize the

overall charge, an adequate amount of potassium ions was added to the simulation

boxes. To maintain a constant temperature of 300 K and a pressure of 1 bar, velocity

rescaling [86] and Berendsen weak coupling [90] were applied. A twin range cut-off of

1.0/1.4 nm for van der Waals interactions was applied and the smooth particle mesh

Ewald algorithm [75] was used for Coulomb interactions, with a switching distance of

1.0 nm. Bond lengths were constrained using the LINCS algorithm [84], allowing for an

integration step of 2 fs.





Chapter 6

Multivalent binding processes

6.1 Introduction

The previous chapters have focused on outlining certain guidelines regarding the

design of spacers and scaffolds for the multivalent presentation of ligands. For

this purpose, the structural properties of a number of multivalent compounds were in-

vestigated by means of molecular simulation, both in the unbound state (in solvent), and

in the bound state (in complex with a biological receptor). This comparative approach

is able to reveal a number of issues that can be of relevance, and, in particular when

related to and verified by “wet” experimental results, allows to draw certain conclusions.

One main drawback of this approach is that the modeling of the bound state is based on

a number of assumptions that have to be made based on previous knowledge, in most

cases in the form of available crystal structures: Docking algorithms typically need the

approximate position of the binding site in the sub-nanometer range in order to pro-

duce meaningful results. For the modeling of the bivalent binding modes in the previous

chapters, it was presumed that the ligand moieties adapt roughly the same conformation

and orientation in the binding pocket as the monovalent ligand. The latter is largely

predetermined by the presence of the attached spacer or scaffold as it has to protrude

from the binding pocket – a fact that facilitates modeling.1 In this particularly fortunate

scenario, a number of co-crystal structures of estrogen receptor (ER) α with raloxifene

and its derivatives were available, so that a very good guess of the bound state could be

obtained by adapting the ligand conformation accordingly and then aligning the ligand

moieties of the novel bivalent compounds to the ligands bound in the crystal structure.

The result were a number of stable complexes that, to the best knowledge of the author,

should reflect the character of the in vitro binding modes. Still, as one has not witnessed

1Computational approaches that, lacking previous knowledge, test for all possible orientations of a
small molecule ligand in a binding pocket require notable computing power, cp., e.g., Ref. [211].

143
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the dynamical process that leads from the unbound to the bound state, there is no def-

inite answer to the question if the system is able to adapt the complex in the suggested

form. In the case of ER, this question is particularly interesting as the binding sites

are buried beneath the receptor “surface” and thus require a rather mobile ligand – or

some sort of induced fit by the receptor – in order to achieve binding. In summary, the

question arises, instead of modeling a hypothetical bound state, why not simulate the

proper binding process?

The answer to this question is related to a number of difficulties that arise from the

general limitations of classical molecular simulation already hinted at in Chapters 1.4

and 3.2: The dynamics of the molecular system, which on the atomistic level is domi-

nated (and limited in velocity) by friction with the surrounding solvent molecules has to

be traversed using integration steps of 1 or 2 femtoseconds, while the most interesting

molecular processes are only beginning to take place in the upper nanosecond regime,

and above. Due to the rough potential energy landscape inherent to most molecular

systems, the dynamics tends to remain within the same almost invariant subset of con-

formational space (i.e. a local low energy basin of the potential energy landscape) for

a long time – long in relation to the length of the integration step – while transitions

between different almost invariant subsets (i.e. conformational changes associated with

the crossing of a more or less significant energy barrier) are rare events. Consequently,

a lot of computing resources are spent on generating highly redundant data. The study

of molecular binding processes is affected by this problem more than other disciplines,

at it is dependent on sufficient sampling primarily in the transient regions of conforma-

tional space, i.e. exactly those that are the least populated regions due to the fact that

molecular systems avoid adopting energetically unfavorable states.

Nonetheless, due to the increasing performance of computing clusters, the simulation of

binding processes has come within reach of at least some scientists. In 2011, Buch et al.

reported the complete reconstruction of an enzyme-inhibitor binding process by molec-

ular dynamics (MD) simulations [212]. The authors performed 495 explicit solvent MD

simulations of 100 ns each with the ligand, benzamidine, starting in the unbound state,

driven only by diffusion, 187 of which produced binding events to the enzyme, trypsin.

The cumulative data was used to generate a Markov State Model (MSM) [213] of the

binding process that revealed two metastable intermediate steps, one of which could be

identified as being the rate-limiting one. This study reveals the huge computational cost

connected with the sampling of binding processes even for a small ligand-receptor sys-

tem as benzamidine-trypsin: Due to the fact that a single simulation does not generate

sufficient information in the transition regions, the experiment has to be repeated an

ample number of times.

A more efficient alternative to free ligand binding simulations is given by steered MD

(SMD), where typically, the ligand is “pulled” out of the receptor binding pocket (or
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through a membrane channel) by an artificial force that acts along a predefined reac-

tion coordinate (cp., e.g., Ref. [214]). This approach requires that, unlike in free ligand

binding simulations, certain assumptions regarding the binding process have to made in

advance, such as the position of the binding pocket, and the binding mode of the ligand.

Furthermore, in order to obtain unbiased statistics, the pulling simulation has to be

accompanied by a subsequent series of umbrella sampling simulations, in which, simi-

lar to the ZIBgridfree sampling scheme (cp. Chapter 3.2), additional data is generated

in several restrained basins along the reaction coordinate [93]. These are then joined

together by a thermodynamic reweighting approach such as the weighted histogram

analysis method (WHAM) [215].2 The pulling/umbrella sampling approach can be used

with great success whenever the ligand is rather small, and its movement is more or

less unidirectional, such as in the simulation of transport processes through membranes

[216]. Furthermore, it is possible to relate the results of pulling simulations with data

obtained from atomic force microscopy (AFM) experiments [217].

Unfortunately, for studying multivalent binding processes, force pulling/SMD is a some-

what problematic choice, as it is not immediately clear on which group of atoms the

force would have to act (given that there a multiple ligand moieties), nor in which way

to define the reaction coordinate(s) – given that the mechanism of multivalent binding

may be rather intricate as it contains additional diffusive elements for the yet unbound

ligand moieties. Therefore, the following sections present an approach that combines

free diffusion ligand binding simulations with the aforementioned ZIBgridfree sampling

scheme. The latter has the advantage that, being an umbrella-like approach, it allows

for thorough sampling in the transient regions of conformational space, while it remains

very flexible w.r.t. to the choice of reaction coordinates (or rather internal coordinates,

cp. Chapter 3.2.2). The “presampling” of conformational space needed by ZIBgridfree is

obtained by a free diffusion binding MD trajectory, which ascertains that the complete

model of the binding process reflects a physically meaningful transition from the un-

bound to the (doubly) bound state – within the limits of classical molecular simulation.

To the best knowledge of the author, the systematic study of a multivalent binding pro-

cess in explicit solvent by means of atomistic molecular simulation is a first. The study

incorporates a comparison to an analogously designed monovalent system.

2A different thermodynamic reweighting strategy that pursuits the same goal has been introduced in
Chapter 3.2.5.
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6.2 How to presample a bivalent host-guest binding pro-

cess

The model system for the following computational binding study is a bivalent crown

ether-ammonium host-guest system, consisting of a anthracene linked 18-crown-6 dimer

host molecule (DiC6), and a bivalent ammonium ion guest molecule, incorporating

a short flexible spacer (G3+2H) (Figure 6.1). The compounds (among a number of

variations of the guest molecule, mainly in terms of spacer length) were synthesized

and studied in ITC experiments by Larissa v. Krbek3 at Freie Universität Berlin in

the course of a master’s thesis [66]. The thermodynamics of the formation of complex

(G3+2H)•DiC6 in the presence of tosylate counter ions (OTs) could be characterized

in a mixture of chloroform and methanol. Using the “double mutant cycle” approach

[60, 61], the system was shown to exhibit positive chelate cooperativity (cp. Chapter

2.4). Therefore, the author of the study reasoned that the singly bound open 1:1 com-

plex does not persist as a (meta)stable species in the solvent, but rather represents a

transient intermediate of the formation of the doubly bound cyclic complex – a hypoth-

esis that ought to be verifiable by means of molecular simulation.

The synthetic host-guest system DiC6-(G3+2H) is probably one of the smallest biva-

lent ligand-receptor systems imaginable, and thus offers a welcome opportunity for the

theoretical study of multivalent binding processes in general, more so than more complex

and less well-controlled biological ligand-receptor systems as have been discussed in the

previous chapters. Furthermore, a structurally analogous monovalent control system

C6-(MonoG1+H) is available and thus can be integrated into the study for a direct

comparison between monovalent and bivalent scenario. Typically, this feature is more

difficult to implement when working with biological receptors.

The first task after the structures had been modeled and parametrized for the Amber-

99SB force field was to generate a sequence of states that describe a binding path from

the unbound to the (doubly) bound state of the system. Furthermore, the idea was to

pursuit an efficient approach, so that, even when a whole series of compounds (e.g. with

varying spacer lengths in the guest molecules) has to be analyzed, the computational cost

remains manageable. Given that both complexes proved to be very stable – when started

from a the (singly or doubly) bound position obtained by energy minimization, both

bivalent (G3+2H)•DiC6 as well as monovalent (MonoG1+H)•C6 did not dissociate

in the course of a 100 ns MD simulations at 298 K – it became obvious that simulating a

series of dissociation and (re)association events within a single trajectory would not be

3supervised by Prof. Dr. Christoph Schalley (also concept) at Institut für Chemie und Biochemie, Freie
Universität Berlin, Takustraße 3, 14195 Berlin (Germany), co-supervised by Dr. Constantin Czekelius
(same affiliation)
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Figure 6.1: Structures of the bivalent host-guest system DiC6-(G3+2H) (left) and
the monovalent control C6-(MonoG1+H) (right). The tosylate anion (OTs) was used

as counter ion. Nomenclature of compounds according to Ref. [66].

realizable. Therefore, a different approach for the generation of an ensemble of binding

paths was developed, which was coined the “vacuum shotgun method”.

The vacuum shotgun method works by repeatedly “shooting” the guest at the host

molecule by performing short MD simulations with random starting impulse in the

absence of solvent molecules. If the two binding partners do not by chance miss each

other (and consequently drift away into empty space for the remaining simulation time),

binding in vacuum is in general achieved very quickly, in most cases within the first

25 ps of the simulations.4 The advantage of this approach is that a very diverse set of

binding paths and binding modes of the system (an ensemble of binding paths) can be

generated within a very short time (Figure 6.2).

Figure 6.2: An exemplary set of states from an ensemble of binding paths for a
bivalent host-guest system generated with the vacuum shotgun method.

4In this particular case, this corresponds to 4.655 s computing time on a single processor core, more

precisely an Intel Core
TM

i7 870@2.93GHz.
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After removal of redundant and continuously bound states, the ensemble of binding paths

can be used as presampling input for the ZIBgridfree algorithm. The largest drawback of

this approach is that it does not account for the proper positioning of solvent molecules.

Therefore, the ZIBgridfree algorithm was extended such that it can generate energetically

minimized solvent boxes for the states obtained by the vacuum shotgun presampling us-

ing the tools zgf solvate nodes and zgf genion, which in turn are wrappers for the

GROMACS applications editconf, genbox and genion. The retroactive solvation of the

input states for ZIBgridfree generates additional computational cost, which, however, is

negligibly small in comparison to working with explicit solvent from the beginning.

Unfortunately, when the vacuum shotgun method using retroactive solvation was de-

vised, it was not yet foreseeable that (i) a rather large counter ion, namely OTs, would

be involved in the binding process, and that (ii) a polar component in the solvent is

needed in order to ascertain the proper solvation of OTs. This poses a number problem

w.r.t. to the above approach, as it is not immediately clear if and in how far the counter

ion intervenes with the complex formation (and thus where to place it), and how a mix-

ture of solvents would array in the simulation box.

First equilibration simulations of solvent boxes including the final solvent mixture of 10:1

chloroform-methanol as well as the appropriate number of counter ions revealed that not

only the OTs molecules in fact tend to array near the ammonium cation moieties of the

guest (an indicator that stable tripartite complexes such as C6•(MonoG1+H)•OTs

exist), but also that the methanol component of the solvent mixture forms polar clus-

ters that involve the positively charged guest molecules, the negatively charged counter

ions, as well as, to a lesser degree, the host molecules’ crown ethers (Figure 6.3).

(a) C6-(MonoG1+H)-OTs (b) DiC6-(G3+2H)-2OTs

Figure 6.3: Host guest systems (a) C6-(MonoG1+H)-OTs (monovalent) and (b)
DiC6-(G3+2H)-2OTs (bivalent) after a 2 ns equilibration of the solvent mixture (10:1
chloroform-methanol) in the position-restrained unbound state at 298 K (chloroform =

gray, methanol = purple). Polar clusters of methanol molecules are clearly visible.
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Considering the subtle effects connected with solvent mixture and counter ions, and

given their expectable influence on the binding process, the vacuum shotgun/retroac-

tive solvation approach was abandoned in favor of a presampling by conventional free

diffusion simulations involving the complete explicit solvent and counter ion setup. For

this purpose, for each of the two systems DiC6-(G3+2H)-2OTs (bivalent) and C6-

(MonoG1+H)-OTs (monovalent control), five MD simulations of 10 ns length each were

conducted, starting from the unbound state with about 1.5 nm separation between host

and guest molecule (cp. Figure 6.3). For the monovalent system C6-(MonoG1+H)-

OTs, one of the five simulations captured a binding event. In case of the bivalent

system DiC6-(G3+2H)-2OTs, the five simulations produced one binding event lead-

ing to a singly bound open complex, and one binding event leading to a doubly bound

cyclic complex. In summary, one can estimate that for the given pair of systems, ap-

proximately 50 ns of MD are required in order to observe a single binding event. This

relatively low yield can be explained by the fact that (i) both host and guest molecule

are rather small and mobile and therefore subject to rapid diffusion in the box and (ii)

the complexation of host and guest is hindered by OTs counter ions associating with the

ammonium moieties and thus obscuring the interaction site. Consequently, not every

close contact between host and guest immediately induces complex formation.

As a side note, it shall be mentioned that bivalent guest molecule (G3+2H), despite

featuring a flexible spacer for bridging the ammonium moieties, did not exhibit wrapped

or folded conformations in the given solvent mixture: Quite contrary to the bivalent

compounds equipped with hydrophobic ligand moieties presented in Chapter 4, guest

(G3+2H) is driven towards the extended conformation by the positive charges on both

ends as they prohibit closer interactions. Therefore, despite the flexible spacer structure,

the preorganization of two interaction sites w.r.t. host DiC6 is successful.

The obtained binding trajectories represent a physically meaningful path from the un-

bound to the (singly or doubly) bound state of the system that considers the influence

of both solvent mixture and counter ions under the given conditions. These trajectories

were used as the starting point for a full conformational analysis with ZIBgridfree that

is described in the following.

6.3 Results and discussion

6.3.1 Discretization of conformational space

The (soft) conformational space discretization of both systems was created based on

a set of internals coordinates consisting of three strongly correlated distances between

ammonium moiety and 18-crown-6 ring per interaction site, leading to three internal
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Figure 6.4: Three distances between ammonium moiety and binding site form the in-
ternal coordinates for system C6-(MonoG1+H)-OTs. Analogous internal coordinates

were chosen for the bivalent system DiC6-(G3+2H)-2OTs.

coordinates for the monovalent system (Figure 6.4), and six internal coordinates for the

bivalent system. Given the fact that all distances cover a similar range of values, the

internal coordinates were weighted equally (cp. Chapter 3.2.2). In order to remove the

abundance of unbound states not related to the binding process from the presampling

data, states with distances of more than 1.8 nm distance between the interaction sites

were discarded. In case of the bivalent system, this condition had to be fulfilled for both

interaction sites in order to warrant the removal of a state from the presampling.

A number of 16 discretization nodes in case of C6-(MonoG1+H)-OTs and 31 discretiza-

tion nodes in case of DiC6-(G3+2H)-2OTs – equidistantly placed in the conformational

space revealed by the presampling – lead to an α value5 of approximately 15, a value

that, during the validation of ZIBgridfree, had been proven to be a good compromise

between restraining the sampling within a certain area while still allowing for a sufficient

overlap between the basis functions (cp. Appendix A). The α value was set to exactly

15 for both discretizations in order to ascertain the comparability of the bivalent system

and its monovalent control.

Finally, for each discretization node, 5 × 500 ps of MD in the NVT ensemble were sim-

ulated at a temperature of 298 K, with each 500 ps run starting at the initial position

of the discretization node using a random starting impulse vector in order to allow for

a good coverage of conformational space even in the transient regions of the binding

process (for simulation details, see Section 6.5). This lead to a joint sampling time of 40

ns for system C6-(MonoG1+H)-OTs, and 77.5 ns for system DiC6-(G3+2H)-2OTs.

6.3.2 Metastability analysis

The thermodynamic weights of the partial densities associated with the discretization

nodes were calculated via the direct free energy reweighting approach and corrected

5The shape parameter α defines the degree of separation that is conveyed by the basis functions φi,
i = 1, . . . , s, where s is the number of basis functions that form the discretization (cp. Chapter 3.2.1).
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via the overlap integral matrix S as described in Chapter 3.2.5. The energy terms

considered for thermodynamic reweighing were (i) the bonded energy terms of host and

guest molecule (calculated by using the tool zgf rerun) and (ii) the non-bonded energy

terms between host and guest molecule (including self and long-range interactions) from

the original simulation. Considering all energy terms from an explicit solvent simulation

for thermodynamic reweighting is typically not an option, as the energetic “noise” of

the solvent molecules will obscure the state of the solute, and thus leads to an uniform

distribution. Therefore, meaningful energy groups for host (receptor), guest (ligand),

and other relevant constituents of the system have to be defined prior to the simulation.

The results of the thermodynamic reweighting are shown in Figures 6.5 (system C6-

(MonoG1+H)-OTs) and 6.6 (system DiC6-(G3+2H)-2OTs).

Figure 6.5: Mean potential energy (gray) and corrected discretization node weights
(blue) for the 16 discretization nodes of system C6-(MonoG1+H)-OTs. The improve-
ment in potential energy with decreasing distance between host and guest molecule is
clearly visible. The decrease in potential energy goes along with an increase in the

thermodynamic weights.

For the monovalent system (cp. Figure 6.5), the weighting documents a decrease in

potential energy that is directly related to the distance of the host to the guest molecule

(nodes 1–16 cover host-guest distances from approximately 1.7 nm to 2.5 Å). A notable

increase in the interaction energy sets in with node 11 at an approximate host-guest

distance of 7.5 Å, and culminates in the bound state (nodes 14, 15 and 16). While

nodes 1–10 have similar (and low) thermodynamic weights, nodes 11–16, covering host-

guest distances of 7.5 Å and nearer represent the largest share of the distribution. This

finding also indicates that, due to shielding of the electrostatic interactions by solvent
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Figure 6.6: Mean potential energy (gray) and corrected discretization node weights
(blue) for the 31 discretization nodes of system DiC6-(G3+2H)-2OTs. Three distinct
levels of potential energy for non-complexed, singly bound open complex and doubly
bound cyclic complex can be discriminated. The weights of the discretization nodes

are distributed more evenly than in the monovalent case.

molecules, a relatively close vicinity between host and guest is required in order to induce

complex formation – a completely different picture than for the in vacuo simulations

reported in Section 6.2.

In contrast to the “continuous” picture that is found for the monovalent system, the

bivalent system exhibits three distinct and evenly separated energy levels (cp. Figure

6.6): Nodes 1–19 represent the unbound state, nodes 20–26 correspond to the singly

bound open complex, and nodes 27–31 form the doubly bound cyclic complex. In this

case, the thermodynamic weights are distributed more evenly over all three energy levels,

but nonetheless the largest accumulation of weight is found for nodes that are involved

in the doubly bound state.

The overlap integral matrices S (or rather the corrected matrices D−1S, cp. Chapter

3.2.5) for the two systems quantify, for each pair of basis functions involved in the dis-

cretization, the overlap of the associated partial densities, and thus can be interpreted

as describing the transition behavior of the underlying system (Figure 6.7). Matrix rows

with many off-diagonal entries indicate transient regions that involve notable overlap

between the discretization nodes, while very stable or isolated discretization nodes are

marked by large entries on the diagonal. Due to the fact that in this case the discretiza-

tion is “presorted” by host-guest distances, a block-diagonal structure (an indicator for
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(a) C6-(MonoG1+H)-OTs (b) DiC6-(G3+2H)-2OTs

Figure 6.7: Overlap integral matrix S for (a) C6-(MonoG1+H)-OTs with 16 dis-
cretization nodes and (b) DiC6-(G3+2H)-2OTs with 31 discretization nodes. Large
matrix entries (red, yellow) indicate no or few overlap with neighboring discretization
nodes and represent isolated and/or stable regions. Discretization nodes with many
off-diagonal entries (blueish) exhibit a significant overlap with their neighborhood and

thus mark transient regions.

the presence of metastable states) can be found for both matrices even before permu-

tation by the Robust Perron cluster analysis (PCCA+) algorithm. The S matrix for

the monovalent system (cp. Figure 6.7 a) exhibits an isolated unbound state (node 1),

an articulate “block” for the bound state (nodes 14, 15 and 16 in the lower right cor-

ner) and a large transition region in between. For the bivalent system, the picture is

more diverse (cp. Figure 6.7 b): The diagonal contains approximately three small and

isolated blocks of nodes, most likely representing different unbound states. The lower

right corner (nodes 20–31) contains two relatively distinct blocks with significant mutual

communication that should mark the singly bound and the doubly bound state.

By applying the PCCA+ algorithm on the S matrix (cp. Chapter 3.2.5), the number

of metastable states nC as well the degree of membership of the s basis functions (i.e.

discretization nodes) with regard to each of the nC conformations is revealed and formu-

lated in terms of the matrix χ ∈ Rs×nC . Due to the fact that PCCA+ is a soft clustering

approach, each discretization node can be assigned to multiple metastable states simul-

taneously, with varying degrees of membership. This form of eigenvector-based cluster

analysis is based exclusively on the transition behavior that is embedded within the S

matrix, and requires no predefinition of certain states or “core sets” (e.g. based on chem-

ical previous knowledge). Once the χ matrix has been obtained, it is possible to compute

the thermodynamic weights of the metastable states w̃ as w̃ = χ>w, with w being the

thermodynamic weights of the basis functions. The clustering results for the monovalent
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Figure 6.8: The χ> matrix (top) of system C6-(MonoG1+H)-OTs groups the 16
discretization nodes into three metastable states: The unbound state (UB, left), the
almost bound state (AB, center), and the singly bound state (SB, right). The colors
in the χ> matrix indicate the degree of membership of a discretization node to a
given metastable state: dark red = highest degree of membership, dark blue = no
membership. Nodes 6, 9 and 10 represent transition regions that belong almost evenly

to the two metastable states AB and SB.

system, including a graphical representation of the χ matrix as well as representative

molecular states, are shown in Figure 6.8: For system C6-MonoG1+H)-OTs, PCCA+

identifies three metastable states, namely the unbound state (UB) with a weight of 4.58

%, the almost bound state (AB) with a weight of 9.04 %, and the singly bound state

(SB)6 with a weight of 86.38 %. State UB is detached from the rest of the system, save

a small degree of communication involving nodes 2 and 3 that leads into state AB. State

AB, in turn, exhibits a fluent transition into the SB state. Nodes 6, 9, and in particular

10 mark the transition “state” (or rather transition region in conformational space) be-

tween the two clusters AB and SB. Nodes 14, 15 and 16 have the highest membership

w.r.t. to state SB, represent the proper bound state.

For the bivalent system, the interpretation of the clustering results is slightly more

difficult (Figure 6.9): PCCA+ identifies five metastable states, three of which represent

different unbound states, namely UB1 (weight 3.92 %), UB2 (weight 3.49 %), and UB3

(weight 14.46 %), leading to a total weight of 21.87 % for the unbound state. UB1, UB2

and UB3 differ in the relative positioning between host and guest molecule, but share

the main characteristic, which is a relatively large distance between both interaction

sites on host and guest (and thus beyond being able to induce the binding process). The

remaining two metastable states are the almost bound state (AB) with a weight of 15.06

6Of course, in this case there is no other bound state than the singly bound one, as the system is
monovalent. The nomenclature was chosen for better comparability with the bivalent system DiC6-
(G3+2H)-2OTs.
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Figure 6.9: The χ> matrix (top) of system DiC6-(G3+2H)-2OTs groups the 31
discretization nodes into five metastable states: Three distinct unbound states (UB1,
UB2, and UB3, left), the almost bound state (AB, center), and the doubly bound
state (SB, right). The colors in the χ> matrix indicate the degree of membership
of a discretization node to a given metastable state: dark red = highest degree of
membership, dark blue = no membership. The singly bound state is not identified as
a proper metastable entity, but rather assigned to the metastable states AB and DB.

%, and the doubly bound state (DB) with a weight of 63.07 %. Interestingly, based on

the eigenvector-based clustering of the S matrix, the singly bound is not identified as

a proper metastable state. Instead, it is assigned to state DB, and, to a much lesser

degree, to state AB. Given that the separated energy levels for the singly bound and the

doubly bound state (cp. Figure 6.6) indicated a seemingly stepwise process, this result

is surprising: It means that the singly bound state does not exist as a proper kinetic

entity, but rather as the transient component of the doubly bound state. This would

indicate a distinct cooperative effect in the bivalent binding process.

In comparison, the bivalent system has a larger fraction of unbound state (21.87 vs. 4.58

%), and a smaller fraction of bound state (63.07 vs. 86.38 %), while the fraction of almost

bound state is in the same range (15.06 vs. 9.04 %). This can possibly be attributed to

the fact that the presampling of the bivalent system is imperfect in the regard that it

covers the almost bound state (leading into the transient singly bound state) only for

one of the two binding sites of DiC6, while a complete ensemble of binding paths would

have to consider both cases. One can only speculate that, if a second almost bound

state (“AB2”) had been sampled, the conformational weights would shift in a somewhat

more favorable direction for the bivalent system. Finally, it should be mentioned that

the weights calculated for the states of the kinetic models are valid only for the given

simulation box. A direct comparison with experiment would require to include how often

a ligand from the bulk solvent encounters a receptor within the distance that presumably
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triggers a binding process.

(a) Singly bound open complex (b) Doubly bound cyclic complex

Figure 6.10: Snapshots from an MD simulation of system DiC6-(G3+2H)-2OTs that
show the positioning of the OTs counter ion(s) (a) during the binding process, and (b)
after formation of the doubly bound cyclic complex. If in the close vicinity of the guest
molecule (red), OTs can act as a competitor for its ammonium interaction sites and

thus delays the cyclization of the complex. The host molecule is shown in blue.

Finally, the role of the counter ion OTs throughout complex formation was investigated.

It was found that (i) in the bivalent system, OTs counter ions are able to associate with

the guest molecule’s ammonium moieties and form (G3+2H)•OTs or (G3+2H)•2OTs

complexes that can persist for several nanoseconds, and (ii) both C6-(MonoG1+H)-

OTs as well as DiC6-(G3+2H)-2OTs were found to form tripartite complexes, the latter

both in the singly bound open complex, delaying cyclization (Figure 6.10 a), as well as in

the “completed” doubly bound cyclic complex form of the bivalent system (Figure 6.10

b). This confirms the results of the quantum-mechanical DFT calculations presented

in Ref. [66], and shows that, if in the vicinity of a guest molecule, OTs prefers the

interaction with the ammonium moiety over a closed solvent shell formed by methanol

molecules.

Transition probabilities

In order to look into the transition behavior on the level of the metastable states, addi-

tional unrestrained short-time MD simulations in the NV E ensemble were conducted.

The unrestrained “transition nodes” (as opposed to the discretization nodes used for

sampling the stationary distribution) were placed in regions of conformational space

that mark interfaces between the different metastable states, and thus are prone to re-

veal the associated transition behavior more readily than simulations that are started

exactly within the center of a metastable region.7 A thorough study and evaluation of

7The program code for this procedure, including the calculation of matrix Pc(τ), was devised by
Adam Nielsen (same affiliation as the author of this thesis).
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different strategies for placing transition nodes, along with a mathematical interpreta-

tion of the resulting transition probability matrices, can be found in Ref. [218].

For system C6-(MonoG1+H)-OTs, a total of 45 transition nodes was placed, each of

which was started for ten runs of 100 ps each using a random starting impulse, leading to

a total additional sampling time of 45 ns. Analogously, system DiC6-(G3+2H)-2OTs

required 95 transition nodes in order to cover the larger number of metastable states.

With the same number of simulation runs per node, this lead to an additional sampling

time of 95 ns. The resulting transition probability matrices Pc(τ), with τ = 100 ps,

based on the cumulative transition sampling, are shown in the following.

Pc(τ) =


UB AB SB

UB 0.9868 0.0132 0.

AB 0.0489 0.7584 0.1928

SB 0.0002 0.0029 0.9969

, with τ = 100 ps (6.1)

Matrix 6.1 represents the transition probability matrix Pc(τ) for the monovalent case.

Within the short time span of 100 ps, the system has a very high probability to remain

in either the unbound state (UB, ≈ 99 %) or the bound state (SB, ≈ 100 %). In case

where a transition starting in UB or SB takes place, it almost exclusively happens via

the almost bound state (AB). Given the system is in state AB, it is more likely to make

the transition into the bound state (≈ 19 %) than into the unbound state (≈ 5 %).

For the bivalent system, Pc(τ) shows a more diverse picture (Matrix 6.2): The three

unbound states UB1, UB2 and UB3 have a somewhat more transient character, with

probabilities to remain in the current state of approximately 74, 40, and 80 %, respec-

tively. Surprisingly, all three unbound states are found to allow for a direct transition

into the bound state, without having to take a “detour” via the almost bound state,

most notably for UB2 and UB3 with a probability of approximately 12 and 15 %. This

shows that the soft eigenvector-based clustering does not draw a clear line between un-

bound and almost bound states. The proper AB state, in turn, has about the same

“stability” as in the monovalent case (≈ 75 %), but a slightly higher probability to make

the transition into the bound state (≈ 23 % vs. 19 %). Finally, the probability to remain

in state DB is about 96 %, and thus a little less than for the bound state in the mono-

valent system, which is surprising. However, due to the soft definition of states, a direct

comparison between state SB in the monovalent system and state DB (encompassing

both singly and doubly bound complexes) in the bivalent system may not be possible.

Another reason may be that an OTs counter ion was directly involved in the binding

process of system DiC6-(G3+2H)-2OTs (cp. Figure 6.10 a) – a factor that might in-

crease the off rate – which was not the case for system C6-MonoG1+H)-OTs, where the
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OTs molecule associated with the complex only after its formation. Again, additional

presampling covering more possible scenarios of counter ion placement throughout the

binding process might be a remedy for this problem.

Pc(τ) =



UB1 UB2 AB UB3 DB

UB1 0.7354 0.0549 0.1181 0.0143 0.0773

UB2 0.2206 0.4077 0.0118 0.2394 0.1204

AB 0.0215 0. 0.7518 0. 0.2267

UB3 0. 0.0470 0. 0.8021 0.1510

DB 0.0022 0.0097 0.0211 0.0113 0.9557


, with τ = 100 ps (6.2)

Unfortunately, due to the fact that the singly bound state of system DiC6-(G3+2H)-

2OTs is not identified as a metastable state of the system – and thus does not represent

a proper kinetic entity in the model of the binding process – one cannot put a number

on the transition between the singly bound state and the doubly bound state, and

therewith on the probability of rebinding, once the complex has partially dissociated.

Yet, one could also argue that it is precisely the lack of a proper singly bound state

that indicates a significant impact of rebinding in this system, similar to a driving force

that continuously pushes the system towards a stable doubly bound state. Compared to

systems with gated binding pockets that require the crossing of an energy barrier, the

system at hand has freely accessible binding sites that should promote the occurrence

of rebinding events.

In their non-atomistic study of multivalent ligand-receptor systems, Weber et al. argue

that the impact of rebinding in a given system, including scenarios where partially bound

states do not form discrete kinetic entities, can be quantified by the degree with which

the almost bound state of the system is attributed to the bound state [30]:

w̃TB = wTB + χbound(AB) · wAB︸ ︷︷ ︸
rebinding effect

. (6.3)

In Equation 6.3, the factual weight of the “totally bound” state TB (with all binding

sites served), w̃TB, is the sum of the thermodynamic weight of state TB, wTB, and the

degree of membership of the almost bound state AB to the bound state, expressed in

terms of the membership function χbound. Consequently, if one interprets the transient

singly bound state as being the almost bound state of the doubly bound state – the

only stable bound state of the system – one can come to the conclusion that rebinding

would indeed be an important factor for the stability of complex (G3+2H)•DiC6. The

same holds true for system C6-(MonoG1+H)-OTs, which, despite being monovalent,
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can benefit from rebinding events as well. In this respect, the binding model presented

above provides more information w.r.t. to the occurrence of rebinding events than the

long-time MD simulations conducted earlier, where a dissociation event (let alone a

rebinding event) could not be recorded once. Of course, it would be possible to predefine

the singly bound state as a kinetic entity, and then start additional short-time transition

simulations from there to derive at least a propensity for rebinding. Finally, for this

particular pair of systems, it has to be expected that the presence of counter ions may

have a (possibly adverse) impact on the occurrence of rebinding events: The association

of OTs to the unbound ammonium moiety of the guest might handicap or delay the

rebinding process. This might promote the complete dissociation of the complex, in

particular for the monovalent system.

6.4 Conclusion

In summary, the conformational analysis using ZIBgridfree delivered a characterization of

the binding process in terms of a Markov State Model for both monovalent and bivalent

system at a comparatively low cost, in particular w.r.t. to approaches that rely on large

numbers of free diffusion trajectories [212]. The cost in terms of nanoseconds of MD

is listed in Table 6.1. The simulations have given an insight into the mechanism of a

bivalent binding process in explicitly modeled solvent, starting by free diffusion of host

and guest molecule, and leading to the formation of a stable doubly bound complex.

I. Presampling II. Restrained III. Unrestrained Σ

MD (NV T ) [ns] MD (NV T ) [ns] MD (NV E) [ns] [ns]

C6-(MonoG1+H)-OTs 50.0 16 × 2.5 45 × 1.0 135.0

DiC6-(G3+2H)-2OTs 50.0 31 × 2.5 95 × 1.0 222.5

Table 6.1: Computational cost of ZIBgridfree in terms of nanoseconds of MD for sys-
tems C6-(MonoG1+H)-OTs and DiC6-(G3+2H)-2OTs, for presampling, restrained
sampling (stationary distribution), and unrestrained sampling (transition behavior).

The analysis revealed the differences between monovalent and bivalent binding process

regarding the number and population of the associated metastable states. Based on the

eigenvector-based cluster analysis by PCCA+, a strong indicator for the presence of a

cooperative effect in the formation of the intramolecular binding in the bivalent system

(i.e. the cyclization of complex (G3+2H)•DiC6) was found. Furthermore, the transition

probabilities between the different metastable states of both systems were derived for a

short time span of 100 ps. Although rebinding events have not been observed explicitly

within the course of the simulations, the clustering results allow to draw the conclusion

that both systems should benefit from rebinding, which of course is more likely to occur
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in the bivalent system. Finally, it was evaluated in how far the counter ion OTs is

involved in the binding process and the resulting host-guest complexes.

The main challenge in the study of binding processes by means of ZIBgridfree is the

generation of a sufficient presampling. Due to the somewhat unpredictable counter

ions and the heterogeneous solvent mixture, the vacuum shotgun method for obtaining

a more complete ensemble of binding paths could not be employed (cp. Section 6.2).

Consequently, if one is dependent on free diffusion binding trajectories such as in the

case at hand, the approach loses some of its efficiency. For future studies, a system

of similar size, but within homogeneous solvent (and preferably without bulky counter

ions such as OTs) would be desirable. Finally, in order to study the impact of rebinding

events more thoroughly, a ligand-receptor pair with low affinity – and thus being subject

to frequent dissociation events, even on the nanosecond timescale – would be more

promising. In this context, structurally different bivalent guest molecules ought to be

investigated w.r.t. to differences in the (re)binding behavior, depending on the degree

of preorganization that is conveyed by spacer length and rigidity.

6.5 Experimental setup

Structures of the host-guest complexes and the tosylate counter ion were modeled using

the visualization software Amira [139], and parametrized for the Amber-99SB force field

[149] using the software ACPYPE [219] and Antechamber [153, 154], with charges calcu-

lated by the AM1-BCC method [156, 157]. All simulations were performed using the

double precision version of the software GROMACS, version 4.55 [76]. The initial complex

configurations were obtained by energy minimization with the steepest descent algorithm

in vacuo. The structures in complexed and non-complexed form (with a guest molecule

displaced by 1.5 nm) were placed in cubic boxes of 6.5 nm side length and solvated in

a 10:1 mixture of chloroform and methanol. The force field parameters for chloroform

and methanol were obtained from the GROMACS Molecule & Liquid Database at URL

http://virtualchemistry.org/gmld.php [220, 221]. To neutralize the overall charge,

an adequate amount of counter ions was added to the simulation boxes. The energy of

the systems was minimized with the steepest descent algorithm, and 2 ns position re-

strained MD simulations were performed in order to settle the solvent molecules. These

systems were subsequently used as starting conformations for unrestrained simulations

of five times 10 ns per system, i.e. monovalent C6-(MonoG1+H)-OTs and bivalent

DiC6-(G3+2H)-2OTs, starting in the non-complexed form. The ten 10 ns simulations

were complemented by two 100 ns long-time simulations of the two systems starting

http://http://virtualchemistry.org/gmld.php
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in the complexed form meant for evaluating complex stability (and for recording dis-

sociation events, which failed). To maintain a constant temperature of 298 K in the

NV T simulations, velocity rescaling [86] was applied. A twin range cut-off of 1.0/1.4

nm for van der Waals interactions was applied and the smooth particle mesh Ewald

algorithm [75] was used for Coulomb interactions, with a switching distance of 1.0 nm.

The integration step was set to 1 fs for all simulations. The same simulation parameters

were applied to the ZIBgridfree simulations, exempt from the transition node samplings,

where no thermostat was applied in order to realize an NV E ensemble setup. The error

threshold for the symmetrization of the S matrices was set to 10−3.





Chapter 7

Conclusion and outlook

This thesis has demonstrated different approaches of studying multivalent chemi-

cal systems using the methodical toolkit and theoretical framework of molecular

simulation, starting with the conformational analysis of isolated uncapped and capped

spacer structures in solvent (Study F1, Chapter 4.2), and ending with the simulation

of a complete bivalent host-guest binding process (Chapter 6). The structures under

observation ranged from small synthetic compounds (Studies F1 and F2, Chapters 4.2

and 4.3) to large bioconjugate structures (Studies R1 and R2, Chapters 5.2 and 5.3),

from biological structures such as estrogen receptor to completely synthetic structures

such as the host-guest systems presented in Chapter 6.

Chapters 4 and 5 focused on aspects of the architecture of multivalent compounds, ad-

dressing topics such as the estimation of conformational entropy loss upon binding, the

prediction of conformational changes in solvent, and the calculation of critical structure-

dependent parameters of ligand presentation. The largest part of these studies was

based on realistic multivalent systems provided by cooperating chemists. Consequently,

wherever possible, efforts were made to relate the simulation results to data from “wet”

experimental methods, namely NMR spectroscopy and binding affinity measurements,

to at least obtain a qualitative validation of the computational predictions. The joint re-

sults of experimental and computational studies reveal a number of problems connected

to using fully flexible spacer structures for bridging hydrophobic ligands in polar sol-

vent, and confirm the advantages attested to more rigid scaffold structures constructed

from nucleic acids regarding the defined and unobstructed multivalent presentation of

the ligand moieties. The results also underline that, beyond nucleic acids, there is a

demand for rigid, water-soluble as well as biocompatible compounds in order to extend

the molecular construction kit that is available to the chemists who design multivalent

spacers and scaffolds.

163
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Furthermore, the results suggest that the conformational entropy loss upon binding in

flexible spacer chains (at least in the scenario “hydrophobic ligands – polar solvent”) is

comparatively low, mainly due to the fact that enthalpic effects such as π-π stacking

interactions and spacer folding and wrapping dominate the dynamics and restrain the

conformation of the flexible spacer even in the unbound state. Consequently, these fac-

tors, rather than conformational entropy loss, appear to be the limiting factor w.r.t. to

binding affinity.

Chapter 6 changed focus from the rather static comparison between unbound and bound

state to actually monitoring the dynamics of a bivalent binding process of a small syn-

thetic host-guest system, including the comparison to the binding process of an analo-

gous monovalent system. The sampling of binding processes in explicit solvent settings

belongs to the challenges of molecular simulation, and was realized by applying the

importance sampling scheme ZIBgridfree so that the sampling could be obtained at a

relatively low computational cost in terms of overall simulation time. The analysis of

the sampling data encompassed both the eigenvector-based cluster analysis of the over-

lap integral matrix – revealing the metastable states of the system and their statistical

incidence – as well as the calculation of the transition probability matrix – describing

the flux between the metastable states for a short time span. For both monovalent and

bivalent system, a notable part of the metastable “almost bound” state is assigned to

the bound state, which, according to the theory of Weber et al., is an indicator for the

propensity to rebind [30]. Given that both host-guest systems allow for energy-barrier

free binding (not considering counter-ion related effects), rebinding should play an im-

portant role for the stability of the complexes – although it could not be observed in the

preceding long-time simulations. For the bivalent system, the singly bound state was

attributed in part to the almost bound state, and, in a much larger extent, to the dou-

bly bound state. The fact that the singly bound state does not represent a metastable

kinetic entity in the binding process is a strong indicator for the presence of a cooper-

ative effect in the bivalent system, which would be in accord with the positive chelate

cooperativity that was attributed to the complex by double mutant cycle analysis.

Despite this fact, the overall fraction of the unbound state was found to be larger for

the bivalent system in the range of about 17 %. This might either be an artifact of

insufficient sampling, or stem from subtle effects that are triggered by the association

of the tosylate counter ion to the guest molecule. Unfortunately, the positioning of the

counter ion could not be generalized for monovalent and bivalent case, so that a certain

bias cannot be excluded. Furthermore, the transition probability matrix reveals that a

notable part of the unbound state in the bivalent system allows for direct transitions

into the doubly bound state, which indicates that the categorization into unbound and

almost bound state (and consequently the weighting) in this case is somewhat diffuse.
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Therefore, a direct comparison of the weights is flawed, as the soft definition of states

by PCCA+ based on the eigenvectors of the overlap matrix leads to slightly different

characterizations of what “unbound”, “almost bound” and “bound” means in the case

at hand.

In summary, the author of this thesis hopes that the results can make a small contri-

bution to the future design of multivalent compounds, as well as to the understanding

of the mechanisms of multivalent binding. Of course, a lot of work remains to be done.

In principle, the ZIBgridfree approach is efficient enough to be applied to larger series

of compounds. The next step could be to compare binding processes of low valency

(bi-, tri- and tetravalent) using different ligand moieties – possibly weaker ones with re-

gard to observing rebinding events – and varying spacer/scaffold structures for the guest

molecule. Given that a training set of “wet” experimental measurements will become

available, a mid-term goal could be to setup a pipeline of computational tools that allow

for the prediction of effective molarities (and hence chelate cooperativity), based on the

analyses of binding processes obtained by molecular simulation, in a similar manner as

it is done for predicting binding free energies of small molecules. In order to improve

the comparability of results, the method should include the optional user-defined state

definition in terms of “hard” Voronoi cells.

Another imminent task in the context of multivalency is to adapt the methods of molec-

ular simulation such that they can meet the challenge of dealing with large-scale polyva-

lent systems, such as the interactions at the interface of cell surfaces and functionalized

nanoparticles, e.g. for the determination of optimal particle shape and curvature, or lig-

and loading ratios. Although the atomistic simulation of such compounds will become

more and more accessible with the continuing progress in parallel computing w.r.t. to

both hardware as well as algorithms, the question remains if pursuing this approach

is worthwhile. Structure preparation, data analysis and storage alone would demand a

tremendous amount of resources that may not be justifiable – given that many questions

associated with nanoscale compounds can be answered by electron microscopy and other

non-computational methods in a more reliable manner.

This calls for approaches that maintain an efficient pipeline of model building, data gen-

eration and analysis that can keep up with the work that is done in lab in terms of time

and resources spent. One means to achieve this is to resort to coarser levels of descrip-

tion (coarse-grained force fields, or even modeling by differential equations such as in

systems biology and pharmacokinetics). Ideally, one would pursue an adaptive approach

where critical substructures are simulated in atomistic simulations of manageable size

and cost in order to obtain parameters that can then be fed into a coarse simulation

model able to run on a laptop computer or web interface to enable direct comparison

with experimental data.





Appendix A

Validation of a

ZIBgridfree-GROMACS hybrid

sampling framework

This section is based on (and contains content from) the following publication:

• A. Bujotzek, O. Schütt, A. Nielsen, K. Fackeldey, M. Weber: Efficient conforma-

tional analysis by partition-of-unity coupling. Accepted for publication in J. Math.

Chem. 2013.

A.1 Introduction

Z IBgridfree as a sampling algorithm that implements the notion of conformation dy-

namics (cp. Chapter 3.2.1) has been introduced as early as 2005 [82, 96]. The orig-

inal algorithm was tailored for the conformational analysis of small, drug-like molecules

in vacuum. The corresponding implementation of the algorithm was centered around

the hybrid Monte Carlo (HMC) algorithm [80, 81] for generating the sampling, using a

customized (but merely sequential) version of the Merck molecular force field [222].

More recently, the demand to apply the algorithm to increasingly large systems, and

a change of focus from single-molecule conformational analysis to the study of ligand-

receptor binding processes [223] has created the need to modify the algorithm and its

implementation accordingly, in particular with regard to allowing for a flexible choice of

force fields, and, last but not least, the ability to conduct explicit solvent simulations.

Therefore, it was decided to delegate the propagation of the dynamics (and most of all

167
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force field evaluation) to a molecular dynamics (MD) software package.1

In a first draft of the new implementation, it was attempted to retain the HMC scheme of

the original ZIBgridfree and to use GROMACS only for the generation of the trial state

q̃ (cp. Chapter 3.1.3). This approach suffered significantly from two main issues: (i)

For large systems (and certainly as soon as explicit solvent was involved) the acceptance

probability of HMC deteriorated rapidly due to very pronounced energy fluctuations, and

(ii) for short MD trajectories (as required in HMC), parallel computation was rendered

inefficient due to the large computational overhead caused by initiating the communica-

tion between the processors via the message-passing interface (MPI). The latter point

nullified the performance gain that can be achieved by parallel force field evaluation,

and thus was the reason why this idea had to be abandoned.

A second draft of the new implementation was centered around integrating the ZIB-

gridfree potential modification (cp. Chapter 3.2.1) directly into the GROMACS source

code (written in C), and extending the GROMACS executables such that they are able

to read in all necessary information regarding the discretization so that an evaluation

of the basis functions throughout the simulation is possible. This approach, however,

involved extensive modifications in several parts of the GROMACS libraries, and would

have required time-consuming maintenance work whenever a new version of the original

software is released. Therefore, the integration into the MD code was abandoned as

well, in favor of a hybrid framework that treats the MD software merely as a black box,

which has the advantage that new versions of GROMACS can be plugged in as they are

released. Furthermore, the user does not have to cope with compiling and maintaining

an additional, non-standard version of GROMACS, which on large computing clusters

can be a tedious task. The algorithmic modifications that are necessary to realize this

approach have been discussed in Chapter 3.2.3.

The algorithmic framework of the current hybrid implementation is written in Python.

Certain functions, such as for reading trajectories and resolving periodic boundary con-

ditions, have been borrowed from the original GROMACS source. In general, the author

of this thesis perceives Python as a good programming language for academic code, as it

is accessible, enforces good readability by its syntax conventions, and has a comparably

low maintenance. Extensive open source libraries for scientific computing are available,

most notably numpy [224, 225] and scipy [226]. The successive steps of the algorithm

have been organized into separate scripts that can easily be modified or extended in a

modular fashion. Furthermore, focus was laid on making the use of ZIBgridfree com-

prehensible and transparent. This motivation led to development of the graphical user

interface zgf browser, which offers a number of visualization and analysis tools for

1The choice finally fell on the software GROMACS [76], for reasons of availability, performance, and
its extensive documentation and community support.
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monitoring the discretization, sampling progress and clustering results. Finally, ZIB-

gridfree was adapted to the HLRN computing cluster, so that ZIBgridfree sampling jobs

can be submitted directly to the according HLRN job queue. This allows to exploit the

massively parallel computing environment by using both a parallel force field evaluation

(implemented by GROMACS) and a parallel evaluation the discretized conformational

space in terms of the basis functions (implemented by ZIBgridfree). The implementa-

tion of this new version of the algorithm was supported by the programming work of

Ole Schütt, and mathematical advice provided by Konstantin Fackeldey, both from the

working group of PD Dr. Marcus Weber.2

The extensions of the algorithm and the broadening of its scope towards explicit solvent

simulations demanded a re-evaluation of its performance, which is presented in the

following sections.

A.2 Results

A.2.1 Pentane in vacuo

Figure A.1: Three-dimensional representation of n-pentane. The two backbone tor-
sion angles chosen as internal coordinates are highlighted.

In order to evaluate basic properties of the algorithm, vacuum simulations of n-pentane,

a small alkane with five carbon atoms (see Figure A.1), were conducted. The two back-

bone torsion angles of n-pentane were chosen as internal coordinates for the discretiza-

tion. With regard to these internal coordinates, n-pentane has nine main conformations,

separated by distinct energy barriers. The presampling of conformational space was ob-

tained in terms of a 100 ns MD simulation at a very high (and physically unrealistic)

temperature of 1000 K. Reference weights for the conformations of n-pentane were taken

from the literature [227] (see Table A.1).

2same affiliation as the author, namely Arbeitsgruppe Mathematischer Molekülentwurf, Abteilung
Numerische Analysis und Modellierung, Zuse-Institut Berlin, Takustraße 7, 14195 Berlin (Germany)
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c tr/tr g−/tr g+/tr tr/g− tr/g+ g+/g+ g−/g− g+/g− g−/g+

w̃c 0.473 0.120 0.132 0.117 0.132 0.013 0.012 < 0.005 < 0.005

Table A.1: Conformational weights of n-pentane at 300 K, derived from a hybrid
Monte Carlo (HMC) simulation using the Merck molecular force field [222]. tr(ans):
≈ ±180◦, g(auche)+: ≈ +60◦, g(auche)−: ≈ −60◦. Torsion angles are given on the

scale [−180, . . . , 180].

Stability regarding randomness of impulse and discretization

In order to monitor the impact of choosing a different discretization (placing of nodes

in conformational space) on the sampling outcome, three experiments with ten runs of

ZIBgridfree each were conducted: a) Equally placed nodes, but random MD starting

impulse, b) randomly placed nodes, but equal MD starting impulse, and c) randomly

placed nodes and random MD starting impulse. All runs were conducted with 20 dis-

cretization nodes and a minimum sampling time of 100 ps per node, leading to a mean

overall sampling time per run of 2.8 ns. The results are shown in Figure A.2, left.
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Figure A.2: Conformational weights of n-pentane. Error bars indicate the standard
deviation w.r.t. 10 runs. Deviation from the literature values is indicated as intra-bar
plot. Left: 20 nodes, 100 ps minimum sampling time per node, with equally placed
nodes, random MD starting impulse (dark gray), randomly placed nodes, equal MD
starting impulse (gray), and randomly placed nodes and random MD starting impulse
(light gray). Right: 100 ps minimum sampling time per node, 10, 20, 30 and 40 nodes

(dark gray to light gray), random MD starting impulse, random node placement.

Randomizing the MD starting impulse leads to a maximum standard deviation of 0.025

regarding the weight of the most dominant conformation, tr/tr. Randomizing the node

placement by picking different initial seeds for the k-means algorithm leads to a max-

imum standard deviation of 0.031 for conformation tr/tr. When both MD starting

impulse and node placement are randomized at the same time (mimicking a standard

sampling setup), the maximum standard deviation is slightly smaller (0.23 for conforma-

tion tr/tr), which indicates that the uncertainty regarding both choices is not additive.
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Stability regarding fineness of discretization

Similar simulations (random MD starting impulse, random node placement, 100 ps min-

imum sampling time per node) were performed with varying number of sampling nodes

in order to evaluate the impact of the fineness of the discretization. For this experiment,

automatic refinement of the discretization was switched off. The results are shown in

Figure A.2, right. When only ten discretization nodes are used (only one more than

the expected number of conformations), the error becomes very large (0.128 for confor-

mation tr/tr), and, despite a relatively large mean overall sampling time of 3.2 ns per

run, the rare conformations g+/g- and g-/g+ are not identified at all. For 20, 30 and

40 discretization nodes (mean overall sampling times 2.79, 4.45 and 5.5 ns per run),

the results are comparable, but do not improve visibly with increasing fineness of the

discretization.

Stability regarding sampling time

Finally, it was looked into how the sampling time per node determines the quality of

the results. The outcome is shown in Figure A.3. A very short minimum sampling time

of 10 ps per node produces a large error (0.099 for conformation tr/tr), but, given the

mean overall sampling time of only 365 ps per run, the averaged conformational weights

are acceptable. With increasing sampling time per node, the error can be significantly

reduced. For a minimum sampling time of 1000 ps per node (mean overall sampling time

26.7 ns), the maximum standard deviation (conformation tr/tr) is reduced to 0.016, and

below one percent for all other conformations. One can conclude that a rough estimate

of the conformational weights can be obtained at a very low cost, whereas precise results

have to be paid for with thorough sampling of the partial densities.

The results show a perceivable deviation w.r.t. to the conformational weights found

in the literature (cp. Table A.1), which most likely can be attributed to the use of a

different force field and (possibly) the different dynamics for propagating the system.

For comparison, the conformational weights obtained from ZIBgridfree with 25 nodes

and 1000 ps minimum sampling time per node, averaged over ten runs, are given in

Table A.2.

c tr/tr g−/tr g+/tr tr/g− tr/g+ g+/g+ g−/g− g+/g− g−/g+

w̃c 0.486 0.113 0.113 0.116 0.110 0.027 0.029 0.003 0.004

Table A.2: Averaged conformational weights of n-pentane at 300 K, derived from ten
runs of ZIBgridfree using the Amber-99SB force field.
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Figure A.3: Conformational weights of n-pentane. Error bars indicate the standard
deviation w.r.t. 10 runs. Deviation from the literature values is indicated as sub-bar
plot. 25 nodes, with 10, 100 and 1000 ps minimum sampling time per node (dark gray

to light gray), random MD starting impulse, random node placement.

A.2.2 Alanine dipeptide in water

Figure A.4: Three-dimensional representation of alanine dipeptide (ACE-ALA-NME,
i.e. terminally blocked alanine). The two backbone torsion angles Φ and Ψ chosen as

internal coordinates are highlighted.

As a second example, the conformations of alanine dipeptide in explicit TIP4P-Ew

water were studied. Alanine dipeptide is the most basic (or “minimal”) polypeptide and

serves as a popular test case for evaluating biological force fields. The two backbone

torsion angles Φ and Ψ span the relevant conformational space of alanine dipeptide,

and were hence chosen as internal coordinates for the discretization. With regard to

these internal coordinates, alanine dipeptide has six main conformations, which however

are not as well-separated as in the previous example, n-pentane. Obtaining correct

conformational weights from explicit solvent simulations is more difficult compared to

vacuum or implicit solvent settings, as the dynamics of a solvated system is decelerated,

while the computational cost of producing sufficient sampling data multiplies.
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Reference weights for the conformations of alanine dipetide at 300 K in the NV T and

in the NpT ensemble were obtained from two 200 ns MD simulations (see Table A.3).

c C5 PII αR αP αL Cα7
NV T w̃c 0.2696 0.4043 0.1745 0.1369 0.0136 0.0010
NpT w̃c 0.2794 0.4363 0.1563 0.1190 0.0070 0.0020

Table A.3: Conformational weights of alanine dipeptide at 300 K in the NV T and
in the NpT ensemble, derived from two 200 ns MD simulations using the Amber-99SB
force field. C5: ≈ 143◦/−158◦, PII : ≈ 70◦/−158◦, αR: ≈ 70◦/11◦, αP : ≈ 136◦/−11◦,
αL: ≈ 55◦/ − 40◦, and Cα7 : ≈ −60◦/ ± 180◦. Torsion angles are given on the scale

[−180, . . . , 180]. Conformation labels taken from Chodera et al. [228].

Explicitly modeled water also complicates the presampling of conformational space:

High (or elevated) temperature presampling is possibly only to a certain extent, and

requires a re-equilibration of the simulation boxes before the partial densities can be

sampled at the target temperature. In principle, discretization nodes can also be picked

from a vacuum or implicit solvent trajectory of the molecule of interest, to be put in ex-

plicit solvent only before the sampling of partial densities with ZIBgridfree is commenced

(implemented in the tools zgf solvate nodes and zgf genion). Again, another cycle

of energy minimization and simulation box equilibration is needed before usable sam-

pling data can be collected. For this example, the presampling consisted of a 100 ns MD

trajectory at the target temperature of 300 K, which means that re-equilibration after

node selection was not necessary.

Stability regarding sampling time

First, it was looked into how the sampling time per node determines the quality of the

results using random MD starting impulse and random node placement in an NV T

ensemble. The outcome is shown in Figure A.5. In comparison to the (vacuum) n-

pentane example, a longer minimum sampling time per node is required in order to

yield acceptable results. For a very short minimum sampling time of 10 ps per node,

the results were not interpretable due to the large error (data not shown). A minimum

sampling time of 100 ps per node (mean overall sampling time 2.4 ns) produces large

errors of around 15 % in terms of standard deviation for the three largest conformations

PII , C5 and αR. When the minimum sampling time per node is increased to 500 ps (mean

overall sampling time 7.7 ns), the error can be reduced below 6 % for all conformations

(largest error is 0.0581 for conformation PII). Finally, with a minimum sampling time

of 1000 ps per node (mean overall sampling time 15 ns), the error is in the range of 5

%, and mainly below (largest error is 0.0533 for conformation PII).

An auxiliary trial with a minimum sampling time of 1000 ps per node (mean overall

sampling time 15.56 ns) using a double precision version of GROMACS did not lead to



Appendix A. Validation of a ZIBgridfree-GROMACS hybrid sampling framework 174

a further decrease in standard deviation, contrary to what might have been expected

from an increase in precision of coordinates and observables.
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Figure A.5: Conformational weights of alanine dipeptide. Error bars indicate the
standard deviation w.r.t. 10 runs. Deviation from the reference values is indicated as
sub-bar plot. 15 nodes, with 100, 500 and 1000 ps minimum sampling time per node
(dark gray to light gray), including an auxiliary 1000 ps double precision trial, random

MD starting impulse, random node placement.

Stability regarding choice of dynamics

Second, similar simulations (random MD starting impulse, 15 randomly placed nodes,

1000 ps minimum sampling time per node) were performed while exchanging the com-

mon MD integrator with a stochastic dynamics (SD) integrator. Both integrators were

compared in the context of an NV T and an NpT ensemble, the latter realized by using

a Parrinello-Rahman barostat. All trial runs were conducted with a double precision

version of GROMACS. The results are shown in Figure A.6. In both NV T and NpT

ensemble, the SD integrator delivers better results with regard to the standard deviation

over ten runs. In the NV T ensemble, the largest error obtained with the SD integrator

is 3.618 % (conformation PII), compared to 5.86 % when the MD integrator is used

(conformation αR). This gap becomes somewhat closer in the NpT ensemble, where the

largest error obtained with the SD integrator is 5.35 %, compared to 6.3 % when the

MD integrator is used (both w.r.t. conformation αR).

The chosen dynamics also has an impact on the mean conformational weights. When the

SD integrator is used, the largest conformation, PII is sampled less dominant than with

the MD integrator (NV T : 36.18 % compared to 39.68 %, and NpT : 39.02 % compared

to 44.93 %). Instead, the conformational weight is distributed more equally over the

minor conformations αR, αP and αL.
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Figure A.6: Conformational weights of alanine dipeptide. Error bars indicate the
standard deviation w.r.t. 10 runs. Deviation from the reference values is indicated
as sub-bar plot. 15 nodes, 1000 ps minimum sampling time per node, random node
placement, with MD integrator (NV T ), SD integrator (NV T ), MD integrator (NpT ),

and SD integrator (NpT ), dark gray to light gray.

The results show an acceptable agreement with the reference weights that were extracted

from the 200 ns MD trajectory for all runs using 500 ps or more minimum sampling time

per node, at least for the runs conducted with the MD integrator (i.e. the same integra-

tor that was used for the long-time trajectories used as reference). Long-time data from

the SD integrator is not available, but it can be expected to deliver a slightly different

distribution. In general, the largest deviation is found for the αR conformation: ZIBgrid-

free tends to overweight αR by about 4 %, a weight that is mostly drawn from the αP ,

and partly from the αL conformation. As the conformations of alanine dipeptide tend

to have notable overlapping regions (as opposed to the well-separated conformations of

n-pentane), the error might not only be due to insufficient sampling, but also to imper-

fect clustering of certain states in transient regions. For comparison, the conformational

weights in the NV T and the NpT ensemble, obtained from ZIBgridfree with 15 nodes

and 1000 ps minimum sampling time per node and averaged over ten runs, are given in

Table A.4.

c C5 PII αR αP αL Cα7
NV T w̃c 0.2606 0.3968 0.2112 0.1244 0.0067 0.0003
NpT w̃c 0.2871 0.4493 0.1586 0.1035 0.0015 0.0001

Table A.4: Averaged conformational weights of alanine dipeptide at 300 K in the
NV T and in the NpT ensemble, derived from ten runs of ZIBgridfree using the Amber-

99SB force field (MD integrator, double precision GROMACS).
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A.3 Conclusion

As far as the limited number of test cases allows, it was shown that algorithm and

software perform reasonably well in determining the conformational weights of small

molecular systems in both vacuum and solvent at a comparatively low computational

cost. A direct performance comparison with long-time MD trajectories is difficult, as the

applicability of ZIBgridfree is dependent on the availability of some kind of presampling

of conformational space from which discretization nodes can be selected. Hence, the cost

of obtaining the presampling would have to be added to the overall balance. The cost

of generating an adequate presampling, in turn, is dependent on the system in question.

For example, a series of docking results of a small molecule in a protein binding pocket

would also serve as a valid starting point for using ZIBgridfree.

Given the efficiency of current MD code in generating even very long trajectories in a

relatively short time, the need for a complex algorithm like ZIBgridfree can be questioned.

However, depending on the size of the system under observation, the possibilities of force

field parallelization can be limited. Here, another level of parallelization on the basis

function level might be helpful. Furthermore, the analysis, handling and storage of very

long trajectories can be tedious. ZIBgridfree uses short trajectories that are generated in

a directed way, and the convergence of the sampling is monitored. Furthermore, the use

of collective variables (i.e. internal coordinates) and the integrated clustering approach

lead to a level of abstraction that significantly facilitates the analysis of the sampling

data, the identification of relevant events and their biological or chemical interpretation.

The source code of ZIBgridfree is available free of charge at URL https://github.com/

CMD-at-ZIB/ZIBMolPy.

A.4 Experimental setup

All molecular simulations were performed with GROMACS, versions 4.54 and 4.55 (single

precision, unless stated differently). All molecules were parametrized for the Amber-

99SB force field [149]. Residues not already included in the standard force field were

prepared using the software ACPYPE [219] and Antechamber [153, 154] from AmberTools

[155], with charges calculated by the AM1-BCC method [156, 157].

For the vacuum simulations (n-pentane), van der Waals and Coulomb interactions were

computed without cut-off (all vs. all). For the explicit solvent simulations (alanine

dipeptide), the TIP4P-Ew water model [150, 151] was used. The solute was placed in

a rhombic dodecahedron simulation box of 4.0 nm side length, containing 1523 solvent

molecules. A twin range cut-off of 1.0/1.4 nm for van der Waals interactions was applied

https://github.com/CMD-at-ZIB/ZIBMolPy
https://github.com/CMD-at-ZIB/ZIBMolPy
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and the smooth particle mesh Ewald algorithm [75] was used for Coulomb interactions,

with a switching distance of 1.0 nm.

In order to generate the NV T ensemble of states for the desired temperature of 300 K,

either the velocity-rescaling thermostat [86] in combination with an MD leap-frog inte-

grator, or a Langevin-type stochastic dynamics [229] integrator was used. For the explicit

solvent NpT simulations (alanine dipeptide), the velocity-rescaling thermostat/stochas-

tic dynamics integrator was supplemented by the Parrinello-Rahman barostat [91, 92],

with a reference pressure of 1 bar. The integration step was set to 1 fs for all simula-

tions. The error threshold for the symmetrization of the S matrices was set to 10−2 for

pentane, and to 10−4 for alanine dipeptide.
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[203] L. Röglin and O. Seitz. Controlling the activity of peptides and proteins with

smart nucleic acid–protein hybrids. Org. Biomol. Chem., 6(21):3881–3887, 2008.

[204] Z.L. Pianowski and N. Winssinger. Nucleic acid encoding to program self-assembly

in chemical biology. Chem. Soc. Rev., 37(7):1330–1336, 2008.

[205] K. Gorska, J. Beyrath, S. Fournel, and N. Winssinger. Ligand dimerization

programmed by hybridization to study multimeric ligand–receptor interactions.

Chem. Commun., 46(41):7742–7744, 2010.

[206] E. Protozanova, P. Yakovchuk, and M.D. Frank-Kamenetskii. Stacked–unstacked

equilibrium at the nick site of DNA. J. Mol. Biol., 342(3):775–785, 2004.

[207] C. Chang, J.D. Norris, H. Grøn, L.A. Paige, P.T. Hamilton, D.J. Kenan,

D. Fowlkes, and D.P. McDonnell. Dissection of the LXXLL nuclear receptor-

coactivator interaction motif using combinatorial peptide libraries: Discovery of

peptide antagonists of estrogen receptors α and β. Mol. Cell. Biol., 19(12):8226–

8239, 1999.

[208] R. Holliday. A mechanism for gene conversion in fungi. Genet. Res., 5(2):282–304,

1964.

[209] E.S. Andersen, M. Dong, M.M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh,

M.M. Golas, B. Sander, H. Stark, C.L.P. Oliveira, et al. Self-assembly of a

nanoscale DNA box with a controllable lid. Nature, 459(7243):73–76, 2009.

[210] H. Xia, Q. Mao, H.L. Paulson, and B.L. Davidson. siRNA-mediated gene silencing

in vitro and in vivo. Nat. Biotechnol., 20(10):1006–1010, 2002.

[211] V. Durmaz, M. Weber, and R. Becker. How to simulate affinities for host–guest

systems lacking binding mode information: Application to the liquid chromato-

graphic separation of hexabromocyclododecane stereoisomers. J. Mol. Model.,

pages 1–10, 2012.

[212] I. Buch, T. Giorgino, and G. De Fabritiis. Complete reconstruction of an enzyme-

inhibitor binding process by molecular dynamics simulations. Proc. Natl. Acad.

Sci. USA, 108(25):10184–10189, 2011.



Bibliography 197
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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Anwendung von Methoden der klassischen Molekül-

simulation auf multivalente Ligand-Rezeptor Systeme. Die Fragestellungen des ange-

wandten Teils der Arbeit drehen sich erstens um das rationale Design von molekularen

Abstandshalter- und Gerüststrukturen, die sich für eine multivalente Präsentation von

Liganden für einen gegebenen (typischerweise biologischen) Rezeptor eignen, und zweit-

ens um die Mechanismen, die einen multivalenten von einem monovalenten Bindungs-

prozess abgrenzen, etwa im Hinblick auf die für multivalente Systeme realisierbare Chelat-

kooperativität. Anhand der Analyse der Simulationsdaten und das in Verhältnis set-

zen der theoretischen Ergebnisse mit von Kooperationspartnern bereitgestellten experi-

mentellen Daten können gewisse Grundlagen für das Design von molekularen Abstands-

halter- und Gerüststrukturen erarbeitet werden, etwa im Hinblick auf den Einsatz von

flexiblen und rigiden Elementen im modularen Aufbau, sowie lösungsmittelabhängige

Faltungseffekte. Die Analyse des Bindungsprozesses eines synthetischen bivalenten Wirt-

Gast-Systems im Hinblick auf metastabile Zustände und Übergangswahrscheinlichkeiten

ergibt des Weiteren deutliche Hinweise auf das Vorhandensein eines kooperativen Effek-

ts im Zusammenhang mit der intramolekularen Bindung bei der Bildung des zyklischen

Komplexes. Der angewandte Teil der Arbeit wird ergänzt durch einen theoretischen

Teil, der sich erstens mit den chemischen Hintergründen der in multivalenten Syste-

men wirkenden Effekten auseinander setzt, und zweitens die Grundlagen der klassischen

Molekülsimulation zusammenfasst. Der theoretische Teil der Arbeit wird vervollständigt

durch eine Charakterisierung des ZIBgridfree-Sampling-Algorithmus, der im Rahmen

dieser Arbeit erweitert und neu implementiert wurde, um die Simulation des bivalen-

ten Bindungsprozesses unter Berücksichtigung des Lösungsmittels zu ermöglichen. Eine

Validierung der Methode anhand der Konformationsanalyse zweiter kleiner Moleküle in

Vakuum und in explizit modelliertem Wasser ist im Anhang der Arbeit zu finden.
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