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Abstract
This thesis is concerned with the long-term dynamics of irreversible Markov processes in

discrete and continuous state spaces. In the first part, we study how the long-term dynamics

of a reversible Markov process changes if an external force that destroys detailed balance is

added. We derive an intuitive and general comparison result in terms of commuting times

which indicates that under certain constraints the external driving force will always accelerate

the long-term dynamics.

We argue that non-trivial cycles in the probability flow are the key feature of irreversible

processes and explain two ways of obtaining cycle decompositions in detail. We study how

cycles can be used to construct reversible surrogates of irreversible processes that represent

the long-term dynamics more faithfully than simple symmetrization, and apply this to the

problem of module detection in directed networks. As a second application, we consider

the problem of computing transition pathways between metastable states. This is done by

considering the current of reactive trajectories which is computed by Transition Path Theory.

We show that this current has cycles if the dynamics is irreversible, and compare two possible

Hodge-Helmholtz like splittings of the current into simpler parts. One method is based on a

projection, the second is based on cycle decompositions. We show that the second method

allows for a computation of the statistics of transition pathways.

In the second part, we study optimal control problems that arise if the external force can be

adjusted by a controller who wants to minimize a certain objective function. We focus on

linear quadratic (LQ) control problems and show that they are dual to sampling problems

which appear e.g. in Molecular Dynamics. A numerical method to approximately solve LQ

control problems is derived. The method uses a logarithmic transformation together with a

Galerkin projection onto a suitable space of basis functions. The result is a discretization of

the entire control problem that replaces the continuous dynamics by a discrete Markov jump

process, and preserves the most important structural properties. If the dynamics is metastable,

then we propose to utilize the metastable structure by choosing a committor basis, guided

by MSM theory. We derive error bounds for this choice which complement standard error

bounds from the theory of finite elements. The method is flexible and can also incorporate

other choices, e.g. piecewise polynomial or radial basis functions.

Throughout the thesis, we complement theoretical results with careful numerical experiments.

Key words: Irreversible Markov Process, Metastability, Optimal Control, Cycle Decompositions,

Transition Path Theory
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Zusammenfassung
Diese Arbeit behandelt die Langzeit-Dynamik irreversibler Markovprozesse in diskreten und

kontinuierlichen Zustandsräumen. Im ersten Teil wird untersucht wie sich die Langzeit-

Dynamik eines reversiblen Prozesses unter dem Einfluss einer externen Kraft ändert, welche

die Reversibilität zerstört. Wir geben ein intuitives und allgemeines Resultat mithilfe von

commuting times an, welches zeigt dass die externe Kraft unter gewissen Zwangsbedingungen

stets für eine Beschleunigung der Langzeit-Dynamik sorgt.

Wir argumentieren, dass Zyklen im Wahrscheinlichkeitsfluss Schlüsselmerkmale irreversibler

Prozesse sind und beschreiben zwei Methoden zur Zerlegung des Flusses in Zyklen im Detail.

Mit diesen Methoden werden reversible Ersatzprozesse konstruiert, welche die Langzeit-

Dynamik irreversibler Prozesse besser abbilden als einfaches Symmetrisieren. Dies wird

auf das Problem der Moduldetektion in gerichteten Netzwerken angewendet. Als zweite

Anwendung wird das Problem der Berechnung von Übergangspfaden zwischen metastabilen

Mengen betrachtet. Dabei betrachten wir den Fluss reaktiver Trajektorien, der durch Transition

Path Theory gegeben ist. Wir zeigen, dass dieser Fluss bei irreversibler Dynamik ebenfalls

Zyklen enthält, und vergleichen zwei Methoden, um den Fluss in einfachere Bestandteile zu

zerlegen. Die erste Methode basiert auf einer Projektion, die zweite auf Zyklenzerlegungen.

Wir zeigen, dass die zweite Methode geeignet ist, um die Statistik der Übergangspfade zu

bestimmen.

Im zweiten Teil werden Optimalsteuerungsprobleme behandelt, welche entstehen, wenn

die externe Kraft von einem externen Agenten gesteuert werden kann. Wir beschränken uns

auf linear-quadratische (LQ) Kontrollprobleme und zeigen, dass diese dual zu bestimmten

Samplingproblemen z.B. in der Moleküldynamik sind. Eine numerische Methode zur Lösung

von LQ Kontrollproblemen wird hergeleitet. Diese Methode benutzt eine logarithmische Trans-

formation zusammen mit einer Galerkin Projektion auf einen geeigneten Unterraum. Das

Ergebnis ist eine Diskretisierung des gesamten Kontrollproblems, welches die kontinuierliche

Dynamik mit einem diskreten Markovsprungprozess ersetzt und die wesentlichen struktu-

rellen Eigenschaften erhält. Wenn die Dynamik metastabil ist, schlagen wir die Benutzung

einer Committorbasis im Sinne der MSM Theorie vor und geben Fehlerschranken an. Diese

Fehlerschranken ergänzen Standard-Fehlerschranken aus der Theorie der finiten Elemente.

Die Methode ist flexibel und erlaubt die Benutzung anderer Basisfunktionen, z.B. stückweise

polynome oder radiale Basisfunktionen.

In der gesamten Arbeit ergänzen wir theoretische Resultate mit sorgfältigen numerischen

Experimenten.
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Introduction

Many real world processes in physics, chemistry, geological sciences, material sciences, social

sciences etc. can be modelled by stochastic Markov processes. The randomness in these

models is often the result of microscopic degrees of freedom that are not explicitly represented,

e.g. the various chemical reactions that eventually lead to the formation of a seemingly random

decision in an individual, or a bath of water molecules that interact with a larger molecule or

colloidal particle. Often the models of interest operate on a vast range of time- and/or length

scales, and this proposes a serious challenge: Direct numerical simulations, for example, have

to resolve the smallest scales, but the processes of interest typically take place on the largest

scales and thus become rare events.

Stochastic processes are best understood in equilibrium. We will explain below in more detail

how the term ’equilibrium’ is used in this thesis, but in order to be in equilibrium, the process

must necessarily be (a) autonomous and (b) reversible. In other words, the dynamics that

govern the evolution of the process must (a) not change with time and (b) be invariant under

time reversal (in a statistical sense, see below). The questions considered in this thesis broadly

fit into one of the following two categories:

• How do the long-term dynamics of a reversible Markov process change when non-

reversibility is added?

• Can we utilise non-reversibility to accelerate the long-term dynamics?

Over the last years, the long-term dynamics of Markov processes in equilibrium has been

well understood. The key here is the self-adjointness of the associated transfer operator, and

the resulting spectral properties. We know that the slowest processes are described by the

dominant eigenvalues and eigenvectors of the transfer operator [HS06], and that they describe

metastable transitions between almost invariant sets. With Markov State Models (MSMs)

[SFHD99, DHFS00, SNS10, SNL+11], we also have an efficient tool for the computation of

these objects. By choosing a certain state space discretization, the part of the transfer operator

that governs the slowest processes is well approximated by a matrix. This matrix can be

sampled by many short trajectories and still allows for the computation of the long-term

dynamics that would otherwise require extremely long trajectories. If we move away from

equilibrium, however, all of this machinery breaks down.

1



Introduction

In fact, the non-equilibrium case is vastly more complicated, and a systematic understanding is

still missing. Even the term ’non-equilibrium’ has different uses in the literature. To appreciate

these differences, it is necessary to go from a trajectory-based description of the dynamics

to a density-based description. So let µt (x) be the probability density, assuming it exists, to

find the system at point x at time t . The typical situation is that µt → µ∞ in some sense as

t →∞, and µ∞ is invariant under the dynamics. We then call the process ergodic and µ∞
a steady state. Now take two regions A and B in state space and consider the probability

p(t , A,B) to observe the system in region A at time 0 and then in region B at time t . The

steady state µ∞ is an equilibrium state if and only if for any two regions A, B and any t > 0,

the flow f (t , A,B) = p(t , A,B)−p(t ,B , A) is equal to zero when the system is in µ∞ at time

0. The property p(t , A,B) = p(t ,B , A) is called reversibility or detailed balance. The term

’non-equilibrium’ can therefore mean any of the following [CMZ11]:

(1) Non-autonomous dynamics: The dynamics is time-dependent, and a steady state

typically does not exist.

(2) Transient regime: A steady state µ∞ exists and µt →µ∞, but for the times t considered

µt is still different from µ∞.

(3) Non-reversibility: The dynamics is in a steady state µ∞, but some flows f (t , A,B) are

non-zero, i.e. detailed balance is violated.

Situation (3) is sometimes called non-equilibrium steady state (NESS), and arises if the

stochastic process of our model fails to be reversible. This is the situation we will consider in

chapter 2.

At first glance, there seems to be a paradox: The fundamental laws of physics are all invariant

under time reversal, so why should our model break this symmetry? The answer is that

the scope of any model is limited: We cannot model every part of the system of interest

according to fundamental laws. Irreversibility can then enter in many ways, i.e. through coarse

graining or effective forces that are the result of an external environment which is not explicitly

modelled. We will take the mathematical viewpoint and simply assume that reversibility

fails and explore the consequences. One immediate consequence is the following: The flow

f (t , A,B) must be divergence-free, meaning that for any region A, the total flow into A must

equal the total flow out of A. If this were not the case, the probability of being in A would

either increase or decrease with time, in contradiction to the system being in the steady state

µ∞. For discrete state spaces, this means that f (t , A,B) obeys Kirchhoff’s first law and must

be decomposable into elementary cycles. This observation was first made by Schnakenberg

[Sch76]. Many other authors have since then picked up the idea that these elementary cycles

encode important information about non-reversible processes [JQQ04, Kal06, Pol15]. In fact,

in the light of a widely used analogy between reversible Markov chains in equilibrium and

electrostatics, the appearance of cycles in f (t , A,B) when reversibility no longer holds reminds

one of magnetostatics, which is hallmarked by cycles in the magnetic field. Cycles will be the

primary tool for studying non-reversible Markov chains in chapter 2.
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Why should one be interested in studying irreversible Markov processes? The answer is twofold.

First, many real world processes are simply best described by a non-reversible model, and

it is important to understand the properties of these models. Second, even if the model is

reversible, if we are interested in the long term dynamics then simply running the model itself

might be a bad idea. If the model is very metastable, then the long-term dynamics is hard to

sample from equilibrium simulations, and adding external forces might help to accelerate

the sampling. Indeed, a number of results [RS14, HHMS05, SSG10] suggest that a reversible

process is always ’slower’ than a large class of non-reversible processes that are obtained

by adding an external force to the reversible process. Here, ’slower’ means e.g. that the

second-largest eigenvalue of the transfer operator is closer to one. In this sense, simulations

of reversible processes are the worst choice if one is interested in obtaining information about

a rare event. We discuss this aspect in chapter 2.

If adding an external force to a reversible process can accelerate the sampling of rare events, it

is natural to consider a scenario where an external controller can adjust the external force to

minimize a certain objective function. By solving the associated optimization problem, we

could then find the best force to add in order to achieve the best improvement in sampling.

This is the framework of Optimal Control Theory. Indeed, there is a duality principle based

on [DPMR96] that establishes a duality between a certain class of optimal control problems

and sampling problems in Molecular Dynamics (MD) [HS12]. Solving the optimal control

problem exactly provides a zero-variance estimator for the quantity one wanted to sample

[HS12]. To exploit this duality, we need to think about methods for solving optimal control

problems. This is the topic of chapter 3. One of the first steps in this direction was the seminal

work of Bellman [Bel56] who showed that the solution to an optimal control problem can be

found via a recursion principle that he called dynamic programming. The recursion principle

leads to the Bellman equation, which for continuous state spaces takes the form of a nonlinear

partial differential equation (PDE). This leads to an immediate problem: For large state spaces,

all of the established solution methods for PDEs fail because of the curse of dimensionality.

The same is true for other standard solution methods of optimal control problems, such as

value iteration and policy iteration, see e.g. [Kus01]. In order to make progress, we need a

method for solving optimal control problems approximately that uses the multiscale structure

of the problem. We will use MSM theory as a guide to construct such a method in chapter 3.

Organisation of the thesis. Figure 1 shows the structure of the thesis and the dependencies

of the different sections. Chapter 1 reviews background material on Markov processes and

the different concepts of metastability for such processes, before moving on to the somewhat

more specialised topics of Transition Path Theory, which is concerned with the computation

of rare event statistics, and Optimal Control. Chapter 2 is concerned with NESS for Markov

chains and develops the theory of cycle decompositions for these in section 2.1. This theory is

used to construct reversible surrogates of the NESS Markov chain in section 2.2, and we apply

these approximations to the problem of module detection in networks in section 2.3. As a

second application, we marry Transition Path Theory and cycle decompositions to compute
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transition pathways for NESS Markov chains in section 2.4. Chapter 3 begins by reviewing the

duality between control problems and sampling. In section 3.2, the MSM-based discretization

of the control problems considered in section 3.1 is developed. We close by discussing the

averaging method in section 3.3, which helps to reduce the problem size for very large systems.

1.1 Markov Processes

1.2 Metastability

1.3 Transition Path!
Theory

1.4 Optimal Control

2.1 Cycle!
Decompositions

2.2 Reversible!
Approximations

2.3 Application I: Modules!
in Directed Networks

2.4 Application II: Transition!
Pathways in Irreversible!

Markov Processes

3.1 Optimal Control as!
a Means to Accelerate!

MD sampling

3.2 MSM Discretizations!
of LQ Type!

Control Problems

3.3 Multiscale Problems:!
Averaging

Figure 1 – Organisation of the thesis.

Main results. We highlight the main results. For more details and further references, see

the respective sections. Parts of these results are published in [BH14, SBHS13, BC14, HBS+14,

CBS15, BCS15].

(1) In section 2.2.3, we prove a general comparison result about commuting times for a

non-reversible Markov process (X t )t with generator L and the reversible process (X s
t )t

with generator Ls = 1
2 (L+L−) obtained by symmetrisation. Here, L− is the generator of

the time-reversed process, see section 1.1.1. Let A and B be two regions in state space

and define the commuting time T (A,B) = EA[τB ]+EB [τA] to be the average time to go

from A to B and then back to A. The result is that for any disjoint A and B ,

T s(A,B) ≥ T (A,B)

where T (A,B) and T s(A,B) are the commuting times for (X t )t and (X s
t )t respectively.

In words: (X s
t )t is always slower than (X t )t . Results in a similar spirit were found in

[RS14, HHMS05, SSG10] for Markov diffusions and Markov chains. All of these results
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are more technical and use e.g. Large Deviation methods to provide comparisons

between the second largest eigenvalue of L and Ls or the asymptotic variance of MCMC

estimators based on (X t )t and (X s
t )t . In contrast, the result presented here is in terms of

dynamical quantities and thus allows for a clear and direct interpretation. It also tells us

what to expect in terms of metastability.

(2) In section 2.3, we use the theory of cycle decompositions for non-reversible Markov

chains that we adapt from [Kal06, JQQ04] to detect modules in directed networks. For

the purpose of this thesis, modules are metastable sets of a Markov chain that lives on

the network. Figure 2 shows an illustration of the structures one can expect to find. One

common definition of a module used in the network community is as a set of nodes

with high link density. By this definition, the blue, red and green structures in Figure

2 are modules. However, there is a topological difference between the green and the

blue and red structures: The shortest cycle connecting any two nodes A, B in the green

structure (the yellow ribbon in Figure 2) is very long. As a consequence, a random walker

following edge directions cannot spend much time in the green structure, but it can

spend long times in the red and blue structures due to the presence of internal cycles.

A

B

Figure 2 – Modules in a directed network.

Module detection is a huge area of research [For10, SLB12, SDYB12, DYB10, EL09,

New06, NBW06]. In a nutshell, existing topological methods do not pick up on the

difference between the green and the blue/red structures, while existing methods based

on random walks [DBCS11, SCB+14] are confined to reversible processes and thus to

undirected networks. Our method is a random walk based method that constructs

a suitable reversible surrogate of the non-reversible random walk via cycles. It can

differentiate between the green and the blue/red structures in Figure 2 by construction

since their metastability is different.

(3) In section 2.4, we provide a new way to analyse the probability current of reactive

trajectories in Transition Path Theory (TPT) for irreversible processes. If identifying
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metastable sets is the first step to understand long-term dynamics, then understanding

the pathways along which the transitions between these sets happen is the second step.

This is the domain of TPT [VE06]. One constructs an ensemble of reactive trajectories,

which are trajectories that start in A and transition to B before returning to A. One

interesting quantity to compute is the probability current f +
AB which is generated by

the reactive trajectories. If the dynamics is non-reversible, f +
AB contains cycles, and it

does make sense to look for a decomposition of f +
AB into simpler parts that allow for

a clearer interpretation of the underlying transition mechanism. This is illustrated in

Figure 3: It is clear that a transition from A ∈ C1 to B ∈ C5 has to go via C2, with C3

and C4 representing detours. This is not obvious from f +
AB , but it is possible to find

a decomposition of the form f +
AB = gradΦ+R where gradΦ represents the transition

and R the detours. In section 2.4, we compare decompositions of this type based on

Hodge-Helmholtz decompositions with those based on cycles. This leads to new ways

of analysing irreversible Markov processes with TPT.

A

B

grad� R

f+
AB

C1

C2

C3

C5
C4

C1

C1

C2 C2

C3

C3

C4

C4

C5

C5

Figure 3 – Decomposition of the probability current f +
AB into the gradient of a potentialΦ and

a rotation R.

(4) In section 3.2, we develop a numerical method to approximately solve linear-quadratic

control problems. The method uses a logarithmic transformation to turn the Bellman

equation (which is a nonlinear PDE) into a linear PDE, and then discretizes the linear
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PDE with a Galerkin projection onto a suitable space of basis functions. After the

discretization, the logarithmic transform is inverted. The result is a discretization of

the entire control problem that replaces the continuous dynamics by a discrete Markov

jump process, and preserves the most important structural properties. If the dynamics is

metastable, then we propose to utilize the metastable structure by choosing a committor

basis, guided by MSM theory. However, the method is flexible and can also incorporate

other choices, e.g. piecewise polynomial or radial basis functions [Wen99]. The example

in Figure 4 shows that this method reproduces the effective potential, which is the

outcome of the control problem, remarkably well with as few as three basis functions,

even for a relatively complicated potential energy landscape with many local minima.

We give theoretical error bounds in section 3.2.2.

The most developed method for the discretization of optimal control problems is the

Markov chain approximation method (MCA) by Kushner, see [Kus01] and the references

therein. It replaces the continuous control problem with a control problem for a Markov

chain and can deal with a more general class of control problems. However, the dis-

cretization has to use a grid which renders the problem intractable in high dimensions,

and only weak convergence results are obtained. Our method includes MCA if we use

linear finite elements on a grid as basis functions in the sense that MCA discretizes

derivatives by finite differences whereas our method discretizes derivatives by finite

elements. In this case, we obtain strong convergence results.

−4 −2 0 2 4
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−4 −2 0 2 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4 – Left: Potential energy V (blue), effective potential U (green) and MSM approximation
(red). Right: Committor basis based on the three main wells.

In terms of linear PDEs, Galerkin-based discretization methods are well known and

usually called finite elements in this context [Bra07]. Aside from the structural discretiza-

tion of the control problem, the novelty of our contribution lies in the identification

of the committor basis as an effective basis when metastabilities are present, and the

error bounds we compute in section 3.2.2. These complement standard error bounds

for finite element methods, which are usually given in terms of piecewise polynomial

functions on grids, as well as existing error bounds in the MSM literature [Sar11].
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1 Background

1.1 Markov Processes

In this section we give a brief introduction to the mathematical theory of Markov processes.

For details see [SS13b].

We denote the state space byX. For us,Xwill always be either a countable set or a subset of Rd

and we call X discrete in the former and continuous in the latter case. Let B be the σ-algebra

of Borel sets on X. A stochastic process on X is a collection of X-valued random variables

(X t )t∈T where the time index set is either T = [0,∞) (continuous time) or T =N (discrete time).

If no specification is necessary, we will often just write (X t )t . The stochastic process (X t )t

lives on the probability space (Ω,F ,P) whereΩ= {ω : T →X} is the set of X-valued functions

on T, F is the σ-algebra generated by the sets
{

X −1
t (B)|t ∈ T,B ∈B

}
and P is the probability

measure generated by the finite-dimensional distributions of (X t )t , which are the measures

µt1,...,tk on Xk defined by

µt1,...,tk (B1 ×B2 × . . .×Bk ) = P
[

X t1 ∈ B1, . . . , X tk ∈ Bk
]

, ti ∈ T, Bi ∈B. (1.1)

Note that for each fixed t ∈ T, we have a random variableΩ 3ω 7→ X t (ω). On the other hand,

for each fixed ω ∈Ω we can consider the function T 3 t 7→ X t (ω) which is sometimes called

sample path, realization or trajectory of the process.

For every t ∈ T we define the natural filtration Ft ⊂F of F with respect to (X t )t to be the σ-

algebra generated by the sets
{

X −1
s (B)|s ∈ T, s ≤ t ,B ∈B

}
. That is, Ft contains all pre-images

of B-measurable subsets of X under Xs for times s ≤ t . Intuitively speaking, Ft contains all

events that can be decided given knowledge of Xs(w) for s ≤ t , i.e. the ’past’ of X t . We say that

(X t )t is a Markov process if the so-called Markov property is satisfied:

P [X t ∈ B |Fs] = P [X t ∈ B |Xs] ∀0 ≤ s < t , ∀B ∈B. (1.2)
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Chapter 1. Background

The Markov property says that the probability of events in the future of s ∈ T depends only

on the ’present’ Xs(ω) and not on the history of (X t )t before time s. It is often important to

guarantee that the Markov property holds even if the fixed time t in (1.2) is replaced by a

stopping time. A random variable τ :Ω→ T is called a stopping time if

{τ≤ t } = {ω ∈Ω : τ(ω) ≤ t } ∈Ft ∀t ∈ T.

In other words, τ is a stopping time if we can decide whether or not τ≤ t has occurred based

on the knowledge of the process up to time t only. The process (X t )t is said to have the strong

Markov property if (1.2) still holds with t replaced by a stopping time τ.

A Markov process is called homogeneous if P [X t+h ∈ B |X t ] = P [Xh ∈ B |X0] for all t ,h ∈ T and

all B ∈B holds. The motion of a homogeneous Markov process is completely described by its

transition function p : T×X×B → [0,1] according to

p(t , x,B) = P [X t ∈ B |X0 = x] . (1.3)

We recall the most important properties of transition functions:

1. x 7→ p(t , x,B) is measurable for fixed t ∈ T and fixed B ∈B.

2. B 7→ p(t , x,B) is a probability measure for fixed t ∈ T and fixed x ∈X.

3. We have the Chapman-Kolmogorov equation:

p(t + s, x,B) =
∫
X

p(t , x,dy)p(s, y,B) ∀t , s ∈ T, x ∈X, B ∈B. (1.4)

This follows from the Markov property (1.2).

Next we discuss invariant measures and ergodicity. A probability measure µ is said to be

invariant w.r.t. (X t )t iff∫
X

p(t , x,B)µ(dx) =µ(B) ∀t ∈ T, B ∈B. (1.5)

In this thesis, µ will always denote a probability measure over X, that is, µ(X) = 1. For a

measurable function u :X→Rwe denote the expectation value of u w.r.t. the measure µ by

Eµ [u] =
∫
X

u(x)µ(dx).

The space of measurable functions u :X→Rwith E [|u|] <∞ is denoted by L1(X,µ). Then the

Markov process (X t )t is said to be ergodic w.r.t. µ if [Wal82]

Eµ [u] = lim
T→∞

1

T

∫ T

0
u(X t )dt ∀u ∈ L1(X,µ) (1.6)

10
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holds for almost all initial values X0. If T =N, then the integral on the RHS is replaced by a sum.

For an ergodic Markov process, averages over µ can be replaced by long-time averages, which

is the foundation of Monte Carlo sampling and similar numerical methods. The existence and

uniqueness of an invariant measure µ is a necessary, but not a sufficient condition for (X t )t to

be ergodic, and for many real systems both ergodicity and existence and uniqueness of µ are

very difficult to prove. In this thesis we will mostly deal with ergodic Markov processes.

1.1.1 Time-reversibility

We now discuss the very important concept of time-reversibility. Since we need the concept

of forward and backward dynamics to do so we need T to be symmetric around t = 0, so let

T =R or T =Z if the time horizon is infinite, or let T = [−T,T ] or T =Z∪ [−T,T ] for some T > 0

if the time horizon is finite. Let the process (X t )t be homogeneous and ergodic with unique

invariant measure µ, and let X t ∼µ for all t ∈ T. We define the time reversal transformation

R : (Ω,F ) → (Ω,F ) by (Rω)(t) = ω(−t) for all t ∈ T. Obviously R is invertible and R−1 = R.

Then the time-reversed process
(
X −

t

)
t is defined by1 X −

t (ω) = X−t (ω), and we denote the law

of
(
X −

t

)
t by P− = P ◦R. We often call (X t )t the forward and

(
X −

t

)
t the backward process. A

Markov process is called time-reversible or simply reversible if P = P−, i.e. if the laws of the

forward and backward process are the same. In particular, we have

P [X t ∈ A, X0 ∈ B ] = P− [X t ∈ A, X0 ∈ B ] = P
[

X −
t ∈ A, X −

0 ∈ B
]= P [X0 ∈ A, X t ∈ B ] (1.7)

for all A,B ∈B and all t ∈ T, where we used the definition of P−, X −
t and the homogeneity of

X t . The equation (1.7) can be written in terms of the transition function by using

P [X t ∈ A, X0 ∈ B ] =
∫

B
P [X t ∈ A|X0 = x]µ(dx) =

∫
B

p(t , x, A)µ(dx),

which holds since X0 ∼µ. Then (1.7) can be written as∫
B

p(t , x, A)µ(dx) =
∫

A
p(t , x,B)µ(dx). (1.8)

If the transition function is absolutely continuous w.r.t. the Lebesgue measure2 dx on X, that

is, if a density p(t , x, y) exists such that

p(t , x, A) =
∫

A
p(t , x, y)dy ∀A ∈B,

then (1.8) simply reads µ(dx)p(t , x, y) = µ(dy)p(t , y, x) for all t ∈ T and µ-a.e. x, y ∈ X. This

equation is often called detailed balance. It turns out that detailed balance is both necessary

1Another definition often used in the literature is X−
t = XT−t for T = [0,T ], which reduces to our definition for

homogeneous processes after a shift t 7→ t − T
2 .

2If X is discrete, then the Lebesgue measure dx is replaced by the counting measure.
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Chapter 1. Background

and sufficient for (X t )t to be reversible3.

Finally, we introduce an information-theoretic characterization of reversibility. We define the

relative entropy of two probability measures µ and ν as

H(µ,ν) =
∫
X

log
dµ

dν
(x)µ(dx) ifµ¿ ν, H(µ,ν) =+∞ otherwise. (1.9)

Let F[0,T ] be the σ-algebra generated by
{

X −1
t (B)|t ∈ T,0 ≤ t ≤ T,B ∈B

}
and denote by P[0,T ]

and P−
[0,T ] the laws P and P− restricted to F[0,T ], meaning that e.g. P[0,T ] is the probability mea-

sure associated to the paths of finite length [0,T ] 3 t 7→ X t (ω). Then the entropy production

rate eP is defined as

eP = lim
T→∞

1

T
H

(
P[0,T ],P−

[0,T ]

)
. (1.10)

That is, eP is the rate of growth of relative entropy between P and P− as the time interval [0,T ]

considered gets larger. Being a relative entropy, eP is always positive and eP = 0 if and only

if P = P− a.s.. In fact since H(µ,ν) is a distance measure4 for the probability distributions µ

and ν, the entropy production rate can be seen as a measure for the distance between X t and

X −
t and thus as a measure for the degree of irreversibility of (X t )t . In summary, we have the

following equivalent characterizations of reversibility for homogeneous Markov processes:

1. Symmetry under time reversal: The laws of forward and backward process are the same,

that is P = P−,

2. Symmetry of two-point correlations: The relation P [X t ∈ A, X0 ∈ B ] = P [X t ∈ B , X0 ∈ A]

holds for all t ∈ T and all A,B ∈B,

3. Detailed balance: µ(dx)p(t , x, y) =µ(dy)p(t , y, x) holds for all t ∈ T and µ-a.e. x, y ∈X,

4. Zero entropy production: eP = 0.

1.1.2 Transfer Operators

From here on we will need the weighted Banach spaces

Lp (X,µ) =
{

u :X→R :
∫
X
|u(x)|pµ(dx) <∞

}
, 1 ≤ p <∞ (1.11)

and

L∞(X,µ) =
{

u :X→R :µ−esssup
x∈X

|u(x)| <∞
}

3From detailed balance, it is not hard to show that the symmetry of the two-point correlations (1.7 also holds
for all finite-dimensional distributions (1.1) provided (Xt )t is homogeneous, which implies P = P−.

4The relative entropy is not symmetric, H(µ,ν) 6= H(ν,µ). Thus H(µ,ν) is not a metric, but it still provides a
useful notion of distance between probability measures.
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with the corresponding norms ‖u‖p and ‖u‖∞ respectively. Due to Hölder’s inequality

Lq (X,µ) ⊂ Lp (X,µ) for all 1 ≤ p ≤ q ≤∞.

Unless stated otherwise we will let T = [0,∞). The transition function introduced in (1.3) is

one way to completely characterize the dynamics of a homogeneous Markov process. Another

is via the family of Transfer Operators5 Tt : L1(X,µ) → L1(X,µ), which are defined for t ≥ 0 as

(Tt u)(x) = Ex [u(X t )] =
∫
X

u(y)p(t , x,dy), (1.12)

where Ex [u(X t )] is the expectation value of u(X t ) conditioned on X0 = x. The operator T0 is

the identity, and from the Chapman-Kolmogorov equation (1.4) we get the semigroup property

Tt Ts = TsTt = Ts+t ∀s, t ∈ T, s, t ≥ 0.

The invariance of the transition functions w.r.t. µ (1.5) guarantees that ‖Tt‖1 = 1, thus the

family of Transfer operators is a one-parameter family of contraction operators, and as such it

can be written as Tt = exp(tL) for an operator L : D ⊂ L1(X,µ) → L1(X,µ) which is defined as

(Lu)(x) = lim
t↓0

Tt u(x)−u(x)

t
, (1.13)

and u ∈ D if the limit in (1.13) exists. The operator L is called the generator of the Markov

process (X t )t . If T =N, we simply set L = T1 − I . The operators Tt and L describe the evolution

of observables with time. This is summarized in the following theorem (for T =R):

Theorem 1.1 Let f :X→ R be continuous and bounded and define u : T×X→ R as u(t , x) =
Ex

[
f (X t )

]
. Suppose that u(t , ·) ∈D for each t ∈ T and that the map t 7→ u(t , x) is differentiable.

Then u satisfies the backward Kolmogorov equation

∂u

∂t
= Lu on (0,∞)×X, u(0, x) = f (x). (1.14)

The theorem follows from (1.13) and properties of the semigroup Tt . We prove it in appendix

A. One typical situation where the assumptions of the theorem are satisfied is u ∈C 1,2(T×X) in

the context of diffusions, see below and [Øks03]. The counterpart of Theorem 1.1 is concerned

with the evolution of probability densities:

Theorem 1.2 Suppose that the law of (X t )t has a density ν w.r.t. the Lebesgue measure, that

is P(X t ∈ B) = ∫
B ν(x, t)dx. Let X0 ∼ ν0. Then under some regularity assumptions, ν solves the

forward Kolmogorov equation

∂ν

∂t
=Lν on (0,∞)×X, ν(0, x) = ν0(x) (1.15)

5A priori, Tt is defined on L∞(X,µ), but it can be extended to Lp (X,µ) for all p ≥ 1.
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where L is the formal L2-adjoint of L, that is
∫
Xν(x)(Lu)(x)dx = ∫

X (Lν) (x)u(x)dx.

Equation (1.15) is also known as the Fokker-Planck-equation. One usually needs stronger

assumptions on the coefficients of L in order for (1.15) to hold than one needs for (1.14).

For example, in the context of diffusions (1.15) holds if ν ∈C 1,2(T×X) and additionally the

coefficients of L, b(t , ·) and σ(t , ·), are in C 1(X) and C 2(X) for every t ∈ T respectively. Cf. below

and [LM94]. It is therefore typically better to study the backward equation instead of the

forward equation.

The transfer operator point of view is most powerful if Tt and L are regarded as operators on

the Hilbert space L2(X,µ) equipped with the scalar product

〈u, v〉µ :=
∫

X
u(x)v(x)µ(dx). (1.16)

Then the adjoint T ∗
t of Tt in L2(X,µ) is equal to T −

t , the transfer operator of the backward

process X −
t :

〈u,Tt v〉µ = Eµ[u(X0)v(X t )] = Eµ[u(X −
0 )v(X −

−t )] = Eµ[u(X −
t )v(X −

0 )] = 〈T −
t u, v〉µ

by using the definition of Tt , the fact that X t = X −
−t the homogeneity of X −

t and the invariance

of µ. Similarly, L∗ = L−, L− being the generator of the backward process X −
t . If (X t )t is

reversible, then Tt and L are essentially self-adjoint operators on L2(X,µ), and consequently

σ(Tt ) ⊂ [−1,1] and σ(L) ⊂ (−∞,0]. Furthermore, if (X t )t is ergodic then the essential spectral

radius of Tt is bounded away from one. Spectral properties of Tt have important connections

to metastability, see section 1.2.

1.1.3 Markov Diffusions

In what follows X=Rd and T =R. Markov diffusions are generalizations of Brownian Motion,

the prototypical stochastic process named after the erratic movement of pollen particles

observed by the botanist Robert Brown in 1827. A Brownian Motion or Wiener Process Wt

on Rd is a homogeneous Markov Process with independent gaussian increments Wt −Ws ∼
N (0, (t − s)I ) and a.s. continuous sample paths. Here N (µ,Φ) denotes the normal distribution

with mean µ and covariance matrixΦ.

To describe diffusions we shall use the theory of Stochastic Differential Equations (SDEs) in

the Itô sense, for an introduction to SDEs and Itô calculus see [Øks03]. A Markov diffusion

(X t )t is defined as the solution to the SDE

d X t = b(X t , t )dt +σ(X t , t )dWt , X0 = x0. (1.17)

with Wt being Brownian motion on Rm , the drift vector field b :Rd ×T →Rd and the diffusion

coefficient σ : Rd ×T → Rd×m . The matrix-valued function a(X t , t) = 1
2σ(X t , t)σT (X t , t) is

14



1.1. Markov Processes

called the diffusion matrix. Existence and uniqueness of a solution to (1.17) is guaranteed

under mild regularity assumptions on b andσ, see [Øks03]. We will always work with diffusions

where existence and uniqueness is guaranteed, and furthermore where (X t )t is ergodic and

admits a unique invariant measure µ.

In the following we shall assume that b andσdo not depend explicitly on time, i.e. b(x, t ) = b(x)

and σ(x, t ) =σ(x). Then the generator of the diffusion (1.17) acts on u ∈C 2
0 (Rd ) as

Lu(x) =∑
i

bi (x)
∂u

∂xi
+∑

i , j
ai j (x)

∂2u

∂xi∂x j
= b(x) ·∇u +a : ∇2u (1.18)

where ∇2u is the Hessian matrix of u and a : ∇2u denotes the trace of the matrix product

between a and ∇2u. If the matrix a is positive-definite, that is∑
i , j

ai j (x)ξiξ j > 0 ∀ξ ∈Rd ,

then L is elliptic. If a is positive-semidefinite, i.e. the above inequality is not strict, then L is

said to be semi-elliptic. If a constant θ > 0 exists such that∑
i , j

ai j (x)ξiξ j > θ‖ξ‖2 ∀ξ ∈Rd , (1.19)

holds for all x ∈ D ⊂ Rd , then L is said to be uniformly elliptic on the domain D. If (X t )t

has invariant measure µ and this measure admits a density w.r.t. the Lebesgue measure

on Rd which we also denote by µ, then the time-reversed diffusion
(
X −

t

)
t satisfies the SDE

[HP86, Met07]

d X −
t = b−(X −

t )dt +σ(X −
t )dWt , b−

i (x) =−bi (x)+ 2

µ(x)
∇ j (

ai j (x)µ(x)
)

. (1.20)

Since the diffusion coefficient σ is unchanged under time reversal, a Markov diffusion is

reversible iff b = b−.

The solutions of stochastic differential equations can be used to describe solutions of certain

PDEs. The backward Kolmogorov equation (1.14) is the first example of this interplay, and

one might wonder if this can be generalized. This is indeed the case, and the most classical

example of this is given by the famous Feynman-Kac formula [Øks03]:

Theorem 1.3 (The Feynman-Kac formula.) Let g ∈C 2
0 (Rd ) and f ∈C (Rd ), and assume that

f is bounded from below. Put

u(t , x) = Ex

[
exp

(
−

∫ t

0
f (Xs)ds

)
g (X t )

]
. (1.21)
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Chapter 1. Background

Then u satisfies the PDE

∂u

∂t
= Lu − f u on (0,∞)×Rd , u(0, x) = g (x), x ∈Rd . (1.22)

Moreover, if w ∈C 1,2(R×Rd ) is bounded on K ×Rd for each compact K ⊂R and w solves (1.22),

then w = u.

The backward Kolmogorov equation and the Feynman-Kac formula both consider parabolic

PDEs. Similar results exist for elliptic boundary value problems: Suppose we are interested in

the solution h of a PDE on a domain D ⊂Rd . Let (X t )t be a Markov diffusion with semi-elliptic

generator L and initial condition inside D, and let τD be the time X t hits the boundary ∂D.

Then τD is a stopping time, and we assume that τD is a.s. finite for all initial conditions x ∈ D .

Then the following theorem holds [Øks03] (see [Kai12] or [FS06, App. D] for a detailed proof):

Theorem 1.4 (A Feynman-Kac formula for boundary value problems.) Let f ≥ 0 be a con-

tinuous function on Rd . Let g ∈C (∂D) be bounded. Consider the boundary value problem

Lh(x)− f (x)h(x) = 0 on D,

lim
x→y

h(x) = g (y) y ∈ ∂D. (1.23)

Then if a bounded solution h to (1.23) exists, it has the form

h(x) = Ex

[
exp

(
−

∫ τD

0
f (Xs)ds

)
g

(
XτD

)]
. (1.24)

We now give two examples for SDEs which occur frequently in Molecular Dynamics applica-

tions.

1. The overdamped Langevin equation is given by

d X t =−∇V (X t )dt +p
2εdWt (1.25)

where V ∈C 1(Rd ) is the potential and ε> 0 the temperature. If V grows faster than linear

as ‖x‖→∞, then the dynamics (1.25) is ergodic with invariant measure

µ(x) = Z−1e−ε
−1V (x), Z =

∫
e−ε

−1V (x)dx. (1.26)

The quantity Z is called the partition function. The generator of (1.25) acts on u ∈C 2(Rd )

as Lu =µ−1∇· (µ∇u
)
. The overdamped Langevin equation is an example of a reversible

dynamics.
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1.1. Markov Processes

2. The second example is the famous Langevin equation

d X t = m−1Pt d t

dPt = −(∇V (X t )+γm−1Pt
)

d t +√
2γεdWt (1.27)

where X t ,Pt ∈ R3d denote the position and momentum of d particles at time t , m is

the mass of the particles6 and γ the friction coefficient. The overdamped Langevin

equation (1.25) arises as the high-friction limit of (1.27). Langevin dynamics is ergodic

with invariant measure

dµ(x, p) = e−ε
−1 H(x,p)dxdp, H(x, p) =V (x)+ 1

2m
pT p. (1.28)

The function H :R3d ×R3d →R is called the Hamiltonian. Langevin dynamics is non-

reversible. The generator L of (1.27) acts on functions u ∈C 2(R3d ×R3d ) like

Lu = εγ∆p u +m−1p ·∇x u −∇xV ·∇p u −γm−1p ·∇p u.

1.1.4 Markov Chains and Markov Jump Processes

If the state space X is discrete and T is continuous, we are in the realm of Markov jump

processes (MJPs). If T is also discrete, we are in the realm of Markov chains. In this section,

we will discuss the case where X = {1, . . . ,d} is a finite set. This has the advantage that the

operators in question become finite matrices and thus many technical complications are

avoided. The function spaces Lp (X,µ) for 1 ≤ p ≤∞ all coincide with Rd , and the transition

function (1.3) always has a density

p(t , x, y) = P[X t = y |X0 = x]. (1.29)

The equation (1.5) for the stationary distribution µ becomes∑
x∈X

p(t , x, y)µ(x) =µ(y). (1.30)

As before, µ gives rise to a scalar product 〈u, v〉µ = ∑
x∈Xµ(x)u(x)v(x). The action of the

transfer operator (1.12) can be written as

Tt u(x) = E[u(X t )|X0 = x] = ∑
y∈X

u(y)P[X t = y |X0 = x] = ∑
y∈X

u(y)p(t , x, y), (1.31)

6It is possible to consider different masses and friction coefficients for all particles, which we won’t do here to
keep notation simple.

17



Chapter 1. Background

hence Tt acts as a matrix on u ∈Rd , and the components of Tt are the transition probabilities

(1.29) which we shall always assume to be continuous at t = 0, that is

lim
t↓0

p(t , x, y) = δx y ∀x, y ∈X. (1.32)

This guarantees that the trajectories of (X t )t are right continuous functions with left limits,

so-called càdlàg functions. Trajectories of (X t )t are piecewise constant with distinct jumps at

random times. From (1.30) we see that µT Tt =µT , i.e. µ is a left eigenvector to the eigenvalue

1 of Tt . The semigroup of transfer operators Tt becomes a semigroup of stochastic matrices,

i.e. matrices with row sum one, with generator

L = lim
t↓0

Tt − I

t
. (1.33)

The generator matrix L has row sum zero, and µT L = 0, i.e. µ is a left eigenvector of L to the

eigenvalue 0. The off-diagonal entries of L are all nonnegative and the diagonal entries are

given by lxx = −∑
y 6=x lx y . The reversed-time generator L− = L∗ is given by L− = D−1

µ LT Dµ

where Dµ = diag(µ), this follows from 〈·,L(·)〉µ = 〈L−(·), ·〉µ. In components,

l−x y =
µ(y)

µ(x)
ly x ∀x, y ∈X. (1.34)

Both L and L− have the same stationary distribution µ.

As we saw in section 1.1.2, the evolution of conditional expectations u(t , x) = Ex [ f (X t )] is

governed by the backward Kolmogorov equation (1.14). For Markov jump processes equation

(1.14) has the same form, but becomes a system of d coupled linear ODEs instead of a PDE.

The same is true for the Fokker-Planck equation (1.15). The operator appearing in (1.15) is

simply L = LT . The Fokker-Planck-equation itself becomes

∂ν(t , x)

∂t
= (

LTν
)

(t , x) = ∑
y 6=x

ly xν(t , y)+ lxxν(t , x) (1.35)

and can be interpreted as a balance equation for the probability ν(t , x) = P(X t = x). Therefore,

ly x for y 6= x is the rate at which (X t )t jumps from y to x, and lxx =−∑
y 6=x lx y is the escape

rate of state x.

To further illustrate this, let 0 = t0 < t1 < t2 < . . . < tn < . . . denote the sequence of jump times

of (X t )t . Then Xn := X (tn) defines a Markov chain which is called the embedded chain of the

jump process (X t )t . The Markov jump process is then completely characterized by the chain

(Xn)n of states visited and the sequence of waiting times τi = ti+1 − ti . The embedded chain

(Xn)n has a transition matrix Q with entries

qx y = P[Xn+1 = y |Xn = x] =


lx y

−lxx
x 6= y

0 x = y.
(1.36)
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1.1. Markov Processes

The waiting times τi are exponentially distributed with parameter wx = E[τi |Xi = x] =−1/lxx .

The ergodicity properties of Markov chains and Markov jump processes on finite state spaces

can be completely characterized by some simple structural properties. For a Markov chain with

transition matrix Q we say that x, y ∈X communicate if there are m,m′ ∈N such that (Qm)x y >
0 and (Qm′

)y x > 0, i.e. y can eventually be reached from x and vice versa. Communication is

an equivalence relation and divides X into communication classes. If there is only one class,

then the Markov chain is called irreducible. A MJP is called irreducible if its embedded chain

is irreducible. An irreducible Markov chain on finite state space X is necessarily also positive

recurrent, meaning that for every x ∈ X , Ex [τx ] <∞ where τx = inf{n > 0 : Xn = x} is the first

return time to x. The state x ∈X of a Markov chain is called periodic with period p if returns

to x must occur in multiples of p time steps. Formally, the period p of x ∈X is defined as

p = gcd
{
n :

(
Qn)

xx > 0
}

.

If p = 1, then x is said to be aperiodic. If all x ∈X are aperiodic then the chain (Xn)n is said to

be aperiodic. For Markov chains, we have the very important ergodic theorem [Bré99]:

Theorem 1.5 (Ergodic theorem for Markov chains.)

(a) Let (Xn)n be an irreducible positive recurrent Markov chain on Xwith stationary distri-

bution µ and transition matrix P, and let f :X→R be such that Eµ[ f ] <∞. Then for any

initial distribution ν0, Pν0 -a.s.

lim
T→∞

1

T

T∑
n=1

f (Xn) = Eµ[ f ].

(b) If additionally (Xn)n is aperiodic, then for any initial distribution ν0,

lim
n→∞

∥∥νT
0 P n −µT

∥∥= 0

with ‖µ‖ :=∑
x∈X |µ(x)|.

Theorem 1.5 is the reason one calls a Markov chain ergodic if it is irreducible, positive recurrent

and aperiodic. This implies both (a) and the stronger property (b). MJPs cannot be periodic,

thus a MJP is called ergodic if it is irreducible and positive recurrent. The transition matrix

Q of an ergodic Markov chain has a simple eigenvalue 1 with the stationary distribution µ

being the unique left eigenvector, µT Q =µT . The generator L of an ergodic MJP has a simple

eigenvalue 0 with the stationary distribution µ being the unique left eigenvector, µT L = 0.

We finish this section by noting that, like the forward and backward Kolmogorov equations,

the Theorems 1.3 and 1.4 discussed in section 1.1.3 also have analogues for MJPs. We first

present the analogue of Theorem 1.3:
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Theorem 1.6 (The discrete Feynman-Kac formula.) Let f , g ∈Rd . Put

u(t , x) = Ex

[
exp

(
−

∫ t

0
f (Xs)ds

)
g (X t )

]
. (1.37)

Then u satisfies the ODE

∂u

∂t
= Lu − f u on (0,∞)×X, u(0, x) = g (x), x ∈X. (1.38)

Moreover, if w ∈C 1,0(R×X) solves (1.38), then w = u.

As for the Kolmogorov equations, in the discrete Feynman-Kac formula the parabolic PDE

(1.22) is replaced by a system of d coupled linear ODEs for which existence and uniqueness is

simple. Next we present the analogue of Theorem 1.4:

Theorem 1.7 (A discrete Feynman-Kac formula for boundary value problems.) Let D ⊂ X
and f , g :X→Rwith f ≥ 0. Consider the boundary value problem

Lh(x)− f (x)h(x) = 0 x ∈ D

h(x) = g (x), x ∈X\ D. (1.39)

Then the unique solution to (1.23) is

h(x) = Ex

[
exp

(
−

∫ τD

0
f (Xs)ds

)
g

(
XτD

)]
. (1.40)

Now the equation (1.39) is a linear system of equations instead of a PDE. We prove Theorem

1.7 in Appendix A. It also holds for Markov chains if we set L :=Q − I .

1.2 Metastability

The concept of metastability is of central importance for this thesis, and it is a concept that is

particularly elusive. Although the intuition behind it is usually clear, the mathematical defini-

tion of metastability is not. Several different aspects of metastability exist, and accordingly

one finds several different definitions in the literature [BEGK02, BGK05, HS06, DSS12]. Here

we review some of them. A good overview can be found in [SS13b].

1.2.1 Metastable Sets

Perhaps the simplest aspect of metastability is that of an almost invariant set. A set A ⊂ X
is called invariant for the timescale T if P[X t ∈ A|X0 ∈ A] = 1 for all 0 ≤ t ≤ T , that is the

process (X t )t is certain to remain in A over the timespan T . The set A is called invariant if it is
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1.2. Metastability

invariant for T =∞. Invariance is a very strict concept. For example, for an ergodic process

an invariant set A must necessarily have µ(A) ∈ {0,1}, therefore invariant sets do not allow for

a decomposition of X into multiple sets of finite measure. It is therefore natural to relax the

condition of invariance to define metastable sets:

Definition 1.8 (metastable sets) The set A ⊂ X is called metastable for the timescale T if

pt (A, A) := P[X t ∈ A|X0 ∈ A] ≈ 1 for all 0 ≤ t ≤ T .

This defines metastable sets as sets which are almost invariant with respect to the timescale

T chosen. Obviously pT (A, A) ≈ 1 is a vague statement. However, the larger pT (A, A) is, the

more metastable A is for the timescale T , and we are often interested in the most metastable

sets. Since metastability is defined relative to a timescale T , an obvious question is how to

choose T . Definition 1.8 becomes more restrictive the larger T is, so we will have fewer and

fewer metastable sets as T is chosen larger and larger. This hierarchical structure is natural

and reflects the multiscale structure of many dynamical processes. Usually we will select

an appropriate reference timescale t f and we are then interested in finding sets which are

metastable w.r.t. T À t f . There are two alternative ways to characterize the metastability of a

set:

1. Large hitting times. Denote by τD = inf{t ≥ 0 : X t ∈ D} the hitting time of a set D ⊂X.

Suppose A is a metastable set in the sense of definition 1.8 for some T À t f , and let

D = Ac be the complement of A. Since metastable sets are hard to leave, we expect the

mean time it takes to hit D from any x ∈ A to be large, i.e. Ex [τD ] À t f for all x ∈ A. Of

course Ex [τD ] depends on x. In some ideal cases, Ex [τD ] will be almost constant for

all x ∈ A, but often this is only true for x sufficiently far away from ∂A or for very low

temperatures.

2. Small exit rates. With the same setting as above, suppose that we are in the situation

that Ex [τD ] is almost constant for all x ∈ A. Then heuristically, the exit rate of A can be

defined as Γ(A) = 1/Ex [τD ] and we expect Γ(A) ¿ t−1
f . More rigorously, it can be shown

[BBI12] that the distribution of the random variable τD conditioned on x ∈ A is asymp-

totically independent of x and exponential, hence P[τD = t |X0 = x] ∼ exp(−Γ(A)t ),

which defines the rate Γ(A), and indeed one has Γ(A) ¿ t−1
f .

1.2.2 Metastable Partitions

The notion of metastable sets can be used to partition X. This is tied to the construction of

Markov State Models (MSMs) [Sar11]. A full partition ofX is a collection of sets A1, . . . Am with

Ai ∩ A j =; and
⋃m

i=1 Ai =X. We can use definition 1.8 to evaluate the metastability of a full

partition:
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Definition 1.9 The metastability index DT (A1, . . . , Am) of the full partition A1, . . . , Am ofX for

the timescale T is defined as

DT (A1, . . . , Am) =
m∑

k=1
pT (Ak , Ak ). (1.41)

The partition A1, . . . Am is called metastable for the timescale T if DT (A1, . . . , Am) ≈ m.

The metastability index can be used as an optimization criterion to find the best metastable

partition (A∗
1 , . . . , A∗

m) = argmaxA1,...,Am
DT (A1, . . . , Am) among all full partitions into m sets for

a given timescale T .

Full partitions suffer from a problem which is illustrated in Figure 1.1. Suppose the dynamics

(X t )t is a Markov diffusion given by (1.27) with the potential V shown in Figure 1.1. For

such a dynamics, deep wells are obvious metastable sets. But the assumption that the whole

energy landscape can be decomposed into deep wells is usually not valid, and in fact the exact

location of the boundary between A1 and A2 in Figure 1.1 is largely arbitrary. In this situation

it is more meaningful to search for an incomplete partition ofX, that is a collection C1, . . . ,Cm

of disjoint sets such that the complement of C = ⋃m
i=1 Ci is nonempty. The metastability of

an incomplete partition can be characterized via the mean hitting times in the following way

[BEGK02]:

Definition 1.10 (Metastability of incomplete partitions) For an incomplete partition C1, . . . ,Cm

of X, let C =⋃m
i=1 Ci . We define the metastability of the set Ci to be

ρi =
supx∈X\C Ex [τC ]

infx∈Ci Ex
[
τC \Ci

] . (1.42)

The partition C1, . . . ,Cm is called ρ-metastable if ρ := maxi ρi ¿ 1.

In this definition, the time tR = supx∈X\C Ex [τC ] is the maximum return time to one of the

metastable sets from outside and Ti = infx∈Ci Ex
[
τC \Ci

]
is the minimum time it takes to escape

Ci and jump into any other metastable set C j . The metastability ρi is the degree of separation

between the two timescales tR and Ti . A large degree of metastability in the sense of Definition

1.10, i.e. a small ρi , requires tR to be small, so the metastable sets have to be easy to reach, and

Ti to be large, so transitions between different sets have to be hard. The key difference between

full and incomplete metastable partitions is the following: For the incomplete partition shown

in Figure 1.1, a transition from C1 to C2 is necessarily a transition from the left to the right well.

But in terms of the full partition shown in Figure 1.1, a transition from A1 to A2 is any crossing

of the boundary between A1 and A2, and such boundary crossings may happen many times

without any true transition from the left to the right well. In other words: The sets C1, . . . ,Cm

define the locations of the ’cores’ of metastable regions. For this reason they are also called

core sets in this context [DSS12, Sar11].
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A1 A2

V

C1 C2

Figure 1.1 – A metastable partition A1, A2 of the double well potential V . Because of the
extended transition region, the exact position of the boundary between A1 and A2 is largely
arbitrary.

1.2.3 Detecting Metastability

With the Definitions 1.8, 1.9 and 1.10 of metastable sets and metastable partitions, some

obvious questions remain: How does one detect a priori if a system is metastable or not?

How does one find metastable sets and partitions? How does one determine the number of

metastable sets in a partition?

Definition 1.10 indicates one possible answer to these questions via the hitting times: Select

some test set A ⊂X, and compute the hitting times Ex [τA] for all x ∈X\ A, this can be done by

solving a linear system of the form (1.23). Then for the metastable decomposition C1, . . . ,Cm in

Definition 1.10, we expect that Ex [τA] is large and almost constant for all x ∈Ci . Moreover, if

xi ∈Ci and x j ∈C j with i 6= j , we expect that generically Exi [τA] is very different from Ex j [τA].

Generically here means that this property holds for many, but not necessarily all test sets

A ⊂ X. This way, hitting time distributions for different test sets may be used to detect the

metastable sets C1, . . . ,Cm , see [SS14].

Metastability is best understood if the dynamics is reversible. For reversible Markov diffusions

and MJPs it is known [BEGK02, BGK05] that if a metastable decomposition in the sense of

Definition 1.10 exists, then the spectrum of the generator L has m dominant eigenvalues

0 =λ1 >λ2 > . . . >λm , and the inverses of the dominant eigenvalues are asymptotically close

to the jumping timescales Ti = infx∈Ci Ex
[
τC \Ci

]
from Definition 1.10 in a certain ordering.

Moreover, the location of the metastable sets is encoded in the eigenvectors of the m dominant

eigenvalues. In other words, for a reversible Markov diffusion or MJP, metastability can be

detected by examining the dominant spectrum of L.

A similar relation between metastable full partitions in the sense of Definition 1.9 and the

spectrum of the transfer operator Tt is known [HS06, Hui01]:

Theorem 1.11 Let A1, . . . , Am be a full partition ofX. Let Tt be reversible and 1 =λ1 >λ2 > . . . >
λm be the m dominant eigenvalues of Tt with corresponding eigenfunctions u j . Furthermore, let

a > 0 be such thatσ(Tt ) ⊂ [−a, a]∪{λm}∪. . .∪{λ1}. Then the metastability index D t (A1, . . . , Am)
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can be bounded by

κ1λ1 + . . .κmλm + c ≤ D t (A1, . . . , Am) ≤λ1 + . . .λm (1.43)

where κi = ‖Qui‖2
2 and c = a(1−κ1) . . . (1−κm). Q is the orthogonal projection onto the space

D =
{

u ∈ L2(X,µ) : u =
m∑

i=1
ciχAi , c1, . . . ,cm ∈R

}
.

Theorem 1.11 establishes a relation between the metastability index D t (A1, . . . Am) of the full

partition A1, . . . , Am for the timescale t and the dominant spectrum of the transfer operator Tt

for the same timescale. Theorem 1.11 can be read in the following way: If Tt has m dominant

eigenvalues close to 1, then we can find a partition into m sets which has a metastability

index close to m, namely the partition that minimizes the projection errors κi = ‖Qui‖2
2 of the

eigenfunctions ui onto the space D of functions which are constant on the sets Ai . In other

words, the sets Ai should be selected so that the eigenfunctions u j are almost constant on the

Ai .

1.3 Transition Path Theory

As we saw in the last section, for a metastable Markov process several regions in state space

Xmight exist in which the process stays for a long time, such that transitions between these

regions become rare events. Often it is precisely those transitions one is interested in. This

is where Transition Path Theory (TPT) steps in as an exact theory to describe and bias on

the statistical ensemble governing those transitions. An introduction to TPT can be found in

[VE06, Met07]. Here we only give a short overview of the objects one is dealing with in TPT.

Fix two subsets A,B ⊂Xwith smooth boundaries, nonzero measure and A∩B =;. In TPT, A

is the reactant state and B the product state, and we are interested in reactions from A to B .

We usually think of A and B as well-defined metastable sets which are ’far apart’ in the sense

that the dynamical process (X t )t we are interested in takes a long time to make transitions

between A and B , cf. Definition 1.10. However, TPT is still exact if this is not the case. Suppose

that T =R and that we have an infinitely long equilibrium trajectory T 3 t 7→ X t (ω), which we

denote by X (t ) for convenience. Now we define the stopping times

τ+AB (t ) = inf
{

t ′ ≥ t : X (t ′) ∈ A∪B
}
, τ−AB (t ) = sup

{
t ′ ≤ t : X (t ′) ∈ A∪B

}
. (1.44)

That is τ+AB (t) is the first time after time t when X (t) hits A ∪B and τ−AB (t) is the last time

before time t when X (t) was in A ∪B . For the realization X (t) we define the set of reactive

times R as

t ∈ R ⇔ X (t ) ∉ A∪B , X (τ+AB (t )) ∈ B , X (τ−AB (t )) ∈ A. (1.45)
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A

B
⌧�AB(t)

⌧+
AB(t)

X(t)

t

Figure 1.2 – An illustration of the ensemble of reactive trajectories in TPT. For the realization
X (t ) shown, the part in red is a reactive piece.

In other words t ∈ R if (1) X (t) is neither in A nor in B , (2) the trajectory X (t) followed into

the past starting at time t hits A before B , and (3) the trajectory X (t ) followed into the future

starting at time t hits B before A, see Figure 1.2 for an illustration. R is a disjoint union of

intervals, each interval representing one reactive piece. It is important to notice that τ+AB (t ),

τ−AB (t ) and R depend on the realization X (t ) and are therefore random variables themselves.

In TPT one is interested in computing the following objects:

1. The probability density of reactive trajectories µR (x). Assuming that it exists, µR (x) is

the probability density of finding X t at x conditioned on X t being reactive (that is, t

being in R). Formally,∫
C
µR (x)dx = P [X t ∈C |t ∈ R] ∀C ∈B. (1.46)

2. The probability current of reactive trajectories J AB . This probability current is a vector

field on X with the property that if J AB is integrated over a surface ∂S which is the

boundary of a region S ⊂X\ (A∪B), we get the probability flux of reactive trajectories

across that surface. To make this definition precise we need to know what vector fields

on X are. We reserve that for later when we specialize to X being discrete.

3. The reaction rate kAB . As stated above, the set R of reactive times is a disjoint union of

intervals where each interval represents one reaction. Let NT be the number of reactions

or disjoint intervals in R∩ [−T,T ]. Then the reaction rate is defined as the limit

kAB = lim
T→∞

NT

2T
.
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1.3.1 Transition Path Theory for Markov Jump Processes

We now specialize to the setting of Section 1.1.4, that is X = {1, . . . ,d} is finite and (X t )t is a

Markov jump process on X with generator L. TPT for MJPs has been studied extensively in

[Met07]. A prominent role is played by the committor functions:

Definition 1.12 (Forward and backward committors.) Let τ = inf{t ≥ 0 : X t ∈ A ∪B} and

τ− = inf{t ≥ 0 : X −
t ∈ A ∪B}. The forward and backward committor functions q+ and q− are

defined as

q+(x) = P [Xτ ∈ B |X0 = x] , q−(x) = P
[

X −
τ− ∈ A|X0 = x

]
. (1.47)

By applying theorem 1.7 with f = 0 and g = 1B , we see immediately that the forward committor

is the unique solution of the linear system

(Lq+)(x) = 0, x ∈X\ (A∪B)

q+(x) = 0, x ∈ A (1.48)

q+(x) = 1, x ∈ B.

Likewise, by applying theorem 1.7 to the reversed process X −
t with f = 0 and g = 1A , we see

that the backward committor is the unique solution of the linear system

(L∗q−)(x) = 0, x ∈X\ (A∪B)

q−(x) = 1, x ∈ A (1.49)

q−(x) = 0, x ∈ B.

Since X is discrete, the probability density of reactive trajectories µR exists, and we are now in

a position to compute it. First, observe that µR (x) = 0 for x ∈ A∪B , hence we may assume that

x ∈X\ (A∪B). Now we perform a Bayesian inversion:

µR (x) = P[X t = x|t ∈ R] = P[t ∈ R|X t = x]

P[t ∈ R]
P[X t = x].

But by the definition (1.45) of R and the homogeneity of (X t )t ,

P[t ∈ R|X t = x] = P[0 ∈ R|X0 = x] = P[Xτ ∈ B , X −
τ− ∈ A|X0 = x]

with τ and τ− as in definition 1.12. By the same definition and the Markov property we finally

get P[t ∈ R|X t = x] = q+(x)q−(x) and

µR (x) = Z−1
R q+(x)µ(x)q−(x), ZR = P[t ∈ R] = ∑

x∈X
q+(x)µ(x)q−(x). (1.50)
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Now we come to the probability current of reactive trajectories. The discrete analogue to

vector fields are flows, that is, antisymmetric functions onX×X. We first define the probability

current of reactive trajectories between states x, y ∈X:

f AB (x, y) := lim
s↓0

1

s
P[X t = x, X t+s = y, [t , t + s] ∈ R] = q−(x)µ(x)lx y q+(y). (1.51)

For a derivation of the last identity see [Met07]. The current f AB is antisymmetrized to give

the effective probability current

f +
AB (x, y) = 1

2

(
f AB (x, y)− f AB (y, x)

)
. (1.52)

The effective probability current plays the role of J AB in discrete TPT. The fact that f +
AB can be

negative does not mean that probability currents can be negative, rather the sign of f +
AB indi-

cates the direction in which more reactive trajectories flow. Both f AB and f +
AB have interesting

conservation properties. For any function F :X×X→R, we define the divergence of F by

divF :X→R, divF (x) =∑
y

F (x, y)−∑
y

F (y, x). (1.53)

The divergence of F at x measures the difference between the amount of flow transported by

F into x and the amount of flow transported out of x. Since divergence is unchanged under

antisymmetrization, div f AB = div f +
AB and anything we say about the divergence of f AB also

holds for f +
AB . The current f AB is divergence-free on X\ (A∪B):

div f AB (x) = 0 ∀x ∈X\ (A∪B). (1.54)

This follows from the committor equations (1.48) and (1.49). The fact that f AB is divergence-

free on x \ (A∪B) reflects the fact that a reactive trajectory entering x ∈X\ (A∪B) must also

leave x and stay reactive at the same time. This is not so on A∪B , in fact A acts as a source

and B as a sink of reactive trajectories, and it can be shown [Met07] from (1.54) and (1.51) that

the reaction rate can be expressed as

kAB = ∑
x∈A

div f AB (x) =− ∑
x∈B

div f AB (x)

= ∑
x∈A,y∈X

f AB (x, y) = ∑
x∈X,y∈B

f AB (x, y). (1.55)

The reaction rate can also be expressed with f +
AB in the same way.

1.4 Optimal Control Theory

In this section we give a short and nontechnical introduction to stochastic optimal control

theory, following [FS06]. A complete theory of stochastic optimal control needs the theory
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of viscosity solutions which we omit, for details see also [FS06]. Optimal control theory is a

mathematical framework which models the following situation: Given a dynamical system

which can be influenced by an external controller, we seek to minimize an objective function

over all admissible controls. In stochastic optimal control, the dynamical system is a stochastic

process. In the following we describe the controlled processes and objective functions used in

this thesis in more detail and then describe the dynamic programming approach for solving

the resulting optimization problem formally. We finish by stating several verification theorems.

Let the controlled process
(
X u

t

)
t be a stochastic process on the state spaceXwhose evolution

is influenced by another stochastic process (ut )t which takes values in the control space U.

We assume that U is a complete separable metric space. Often U=Rk for some k > 0. We call

the process (ut )t an admissible control strategy if

1. ut is Ft -adapted7,

2. ut (ω) ∈U for every ω ∈Ω and every t ∈ T,

3. The evolution equation for X u
t has a unique strong8 solution.

The second condition says that we are only allowed to select controls from the control space

U, while the first condition says that we are only allowed to base or choice of us at time s on

the history of
(
X u

t

)
t from time 0 to time s. The third condition becomes meaningful once we

specify an evolution equation for X u
t . The space of all admissible control strategies is denoted

by U . We call u ∈ U a Markov control if u is of the form ut = α(t , X u
t ) for some function

α : T×X→U.

We have to specify how the control ut influences the evolution of X u
t . In specific examples, this

is done by specifying the evolution equation for X u
t , but the following construction can serve

as a guiding principle: Suppose that we have a family of infinitesimal generators Lα indexed

by α ∈U. Then for a constant control strategy u ≡α ∈U, we let
(
X u

t

)
be a Markov process with

generator Lα. If (ut )t is not constant, then the choice of generator at time s depends on us .

We now give evolution equations for X u
t for the systems of interest in this thesis:

• Controlled Markov Diffusions. Let X = Rn . The controlled process X u
t satisfies the

controlled SDE

dX u
t = b(t , X u

t ,ut )dt +σ(t , X u
t ,ut )dWt , X u

0 = x (1.56)

where Wt is Brownian motion on Rm , and b : T×Rd ×U→Rd and σ : T×Rd ×U→Rd×m

are the control-dependent drift vector field and diffusion coefficient.

7A stochastic process (ut )t is called Ft -adapted if the random variable ut is Ft -measurable for every t ∈ T.
8A strong solution to the SDE (1.17) is a stochastic process (Xt )t that satisfies (1.17) with probability one, with

the Brownian motion Wt given in advance. See [Øks03] for an account on weak and strong solutions. If
(
X u

t

)
t is a

MJP, the word ’strong’ is omitted.
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• Controlled MJP. Let X= {1, . . . ,d} be finite and let Lα be a generator matrix on X with

entries l (x, y ;α) for everyα ∈U. If the control us =α is used at time s, then the jump rate

from x ∈X to y ∈X at time s is given by l (x, y ;α). The probability νu(x, t) = P(X u
t = x)

evolves according to the controlled Fokker-Planck equation

∂νu(x, t )

∂t
= ∑

y 6=x
l (x, y ;ut )νu(x, t )+ l (x, x;ut )νu(x, t ).

In both examples, X u
t is not necessarily a Markov process. However, if (ut )t is a Markov control

policy, then X u
t is a Markov process under some additional non-degeneracy assumptions, see

[FS06]. The goal of the controller is to minimize the objective function J u over all admissible

controls u ∈U . The most common objective functions are

1. finite time horizon: On a finite time horizon [0,T ], the objective function J u with initial

data (t , x) has the form

J u(t , x) = Et x

[∫ T

t
f
(
s, X u

s ,us
)

ds + z
(
X u

T

)]
(1.57a)

where Et x [. . .] denotes expectation conditioned on X u
t = x. The function f : [0,T ]×X×

U→ R is called the running cost, z : X→ R the terminal cost and T > 0 the terminal

time. Both f and z are required to be measurable functions.

2. indefinite time horizon: Let A ⊂X and let the stopping time τ be the first exit time of X u
t

from A (of course τ depends on u). Then J u has the form

J u(x) = Ex

[∫ τ

0
f
(
X u

s ,us
)

ds + z
(
X u
τ

)]
(1.57b)

with running cost f :X×U→R and terminal cost z : ∂A →R.

3. infinite time horizon: Here we use either a discounted cost criterion

J u
λ (x) = Ex

[∫ ∞

0
e−λs f

(
X u

s ,us
)

ds

]
(1.57c)

with discounting parameter λ> 0 or an averaged cost criterion

J u(x) = limsup
T→∞

Ex

[
1

T

∫ T

0
f
(
X u

s ,us
)

ds

]
. (1.57d)

The solution of an optimal control problem is encoded in the following two key quantities:

The optimal cost-to-go or value function V and, if it exists, the optimal control policy u∗:

V (t , x) = inf
u∈U

J u(t , x), u∗ = argmin
u∈U

J u . (1.58)

Note that the optimization in (1.58) is carried out over all admissible control policies, which is
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an extremely difficult optimization problem. If one knows a priori that u∗ exists and is a Markov

control policy, then one can restrict the optimization to the much smaller space of Markov

controls, but this is not always possible. With dynamic programming which is described next,

the optimization over U can be reduced to a much simpler pointwise optimization.

1.4.1 Dynamic Programming

We review the dynamic programming principle for the case (1.57a) of a finite time horizon

problem, which associates the value function (1.58) of the optimal control problem with a

non-linear PDE. The discussion here is completely formal, we leave all mathematical rigour to

the presentation of the verification theorems in the next section, which state that solutions to

certain PDEs coincide with the value function of an optimal control problem.

Suppose that an optimal policy u∗ exists, and take us =α ∈U for t ≤ s < t +h and us = u∗
s for

t +h ≤ s ≤ T . Then

V (t , x) ≤ J u(t , x) = Et x

[∫ t+h

t
f
(
s, X u

s ,α
)

ds +V
(
t +h, X u

t+h

)]
(1.59)

Because us =α is constant on [t , t+h],
(
X u

s

)
s is a Markov process with generator Lα on [t , t+h].

Suppose that all the generators Lα have a common domain of definition D and that V (t , ·) ∈D.

Then by (1.13),

LαV (t , x) = lim
h↓0

1

h

(
Et x

[
V

(
t , X u

t+h

)]−V (t , x)
)
.

Furthermore, if V (·, x) ∈C 1 then

lim
h↓0

1

h

(
Et x

[(
V (t +h, X u

t+h

)]−Et x
[(

V (t , X u
t+h

)])= ∂V (t , x)

∂t

and

lim
h↓0

1

h
Et x

[∫ t+h

t
f
(
s, X u

s ,α
)

ds

]
= f (t , x,α).

Using all of this, we can subtract V (t , x) on both sides in (1.59), divide by h and take the limit

h → 0, which gives after collecting all the terms:

0 ≤ f (t , x,α)+ ∂V (t , x)

∂t
+LαV (t , x). (1.60)

On the other hand we expect that equality in (1.59) holds if u = u∗ on [t ,T ]. Letα∗ = E
[
u∗

t |Ft
]

and note that α∗ ∈U is a.s. constant since u∗
t is Ft -adapted. Then if u∗ is continuous, we have

0 = f (t , x,α∗)+ ∂V (t , x)

∂t
+Lα

∗
V (t , x).
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This equality together with the inequality (1.60) yields the Bellman equation

0 = min
α∈U

{
f (t , x,α)+ ∂V (t , x)

∂t
+LαV (t , x)

}
0 ≤ t ≤ T, x ∈X. (1.61)

For Markov diffusions, equation (1.61) is a nonlinear parabolic PDE in [0,T ]×X together with

the terminal condition V (T, x) = z(x) for all x ∈X. For MJPs, (1.61) is a set of coupled nonlinear

evolution equations. The advantage of the Bellman equation is that the minimization over U

in (1.58) has been reduced to a pointwise minimization over U, which is a lot more feasible

computationally. Still, a direct solution of (1.61) is not feasible if X is high dimensional. The

Bellman equation also suggests that an optimal Markov control policy u∗
t =α∗(t , X u

t ) should

exist, where the function α∗ should satisfy

α∗(t , x) = argmin
α∈U

{
f (t , x,α)+LαV (t , x)

}
0 ≤ t ≤ T, x ∈X. (1.62)

The derivation of (1.61) is formal in the sense that we made several strong and unjustified

assumptions, e.g. the existence of an optimal control, sufficient smoothness of V and the

assumption that V (t , ·) ∈D for all 0 ≤ t ≤ T . With some technical effort these assumptions can

be relaxed and the derivation made rigorous, see [FS06].

1.4.2 Controlled Markov Diffusions

We now specialise to the diffusion setting. Let
(
X u

t

)
t be a controlled Markov diffusion in Rd

evolving according to the SDE (1.56). We let U=Rk and recall that for any admissible u the

SDE (1.56) is required to have a unique strong solution. For any α ∈U, define the action of the

generator Lα on g ∈C 1,2
0 (T×Rd ) as

Lαg (t , x) = b(t , x,α) ·∇g +a(t , x,α) : ∇2g (1.63)

where a(t , x,α) = 1
2σ(t , x,α)σT (t , x,α). We now state a verification theorem that establishes

a link between solutions to the Bellman equation (1.61) and solutions to the corresponding

optimal control problem [vH07].

Theorem 1.13 (Verification, finite time horizon.) Let O = [0,T )×X. Suppose V ∈C 1,2(O) is

a solution to

0 = ∂V (t , x)

∂t
+min

α∈U
{
LαV (t , x)+ f (t , x,α)

}
, (t , x) ∈O,

V (T, x) = z(x), x ∈X
(1.64)

and assume that |E[V (0, X0)| <∞. Denote by U0 ⊂U the class of admissible control strategies

u such that∫ t

0
∇V

(
s, X u

s

) ·σ(
s, X u

s ,us
)

dWs
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is a martingale (rather than a local martingale). Then V (t , x) ≤ J u(t , x) for every u ∈U0 and all

(t , x) ∈O, where the cost function J u is given by (1.57a). If further a minimum

α∗(t , x) = argmin
α∈U

{
LαV (t , x)+ f (t , x,α)

}
, (t , x) ∈O (1.65)

exists and u∗
t =α∗ (

t , X u
t

)
is in U0, then V (t , x) = J u∗

(t , x) for all (t , x) ∈O, and u∗ is an optimal

Markov control strategy for the control problem (1.57a).

With the verification Theorem 1.13 at hand, we know that once we find a solution to the

Bellman equation (1.64), we know that this solution coincides with the value function of the

finite time horizon optimal control problem (1.57a). Furthermore, if the minimum in (1.65)

exists and defines an admissible control strategy, then we know that an optimal control for

problem (1.57a) is given by the Markov control u∗
t =α∗ (

t , X u
t

)
. This approach is very practical

and suffices for this thesis. There is also a verification theorem for the case of an indefinite

time horizon [vH07]:

Theorem 1.14 (Verification, indefinite time horizon.) Let A ⊂X be open and bounded with

closure Ā. Suppose V ∈C 2(Ā) is a solution to

0 = min
α∈U

{
LαV (x)+ f (x,α)

}
, x ∈ A,

V (x) = z(x), x ∈ ∂A.
(1.66)

Let X u
0 ∈ A a.s. and let τ be the first exit time of X u

t from A. Denote by U0 ⊂ U the class of

admissible control strategies u such that τ<∞ a.s. and

E
[∫ τ

0
∇V

(
s, X u

s

) ·σ(
s, X u

s ,us
)

dWs

]
= 0.

Then V (x) ≤ J u(x) for every u ∈U0 and all x ∈ A, where the cost function J u is given by (1.57b).

If further a minimum

α∗(x) = argmin
α∈U

{
LαV (x)+ f (x,α)

}
, x ∈ A (1.67)

exists and u∗
t =α∗ (

X u
t

)
is in U0, then V (x) = J u∗

(x) for all x ∈ A, and u∗ is an optimal Markov

control strategy for the control problem (1.57b).

Results similar to Theorem (1.13) and (1.14) exist for both the discounted cost and averaged

cost criteria for infinite time horizons, but these results are omitted here. They can be found

e.g. in [FS06].
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1.4.3 Controlled Markov Jump Processes

We know specialize to controlled MJPs. Let X= {1, . . . ,d} and let Lα be a generator matrix on

X with entries l (x, y ;α) for every α ∈ U. Denote by U0 ⊂ U the class of admissible control

strategies such that for all functionsΦ :X→R and for any stopping time τ the Dynkin formula

holds:

Ex [Φ(X u
τ )] =Φ(x)+Ex

[∫ τ

0
LusΦ(X u

s )ds

]
. (1.68)

In [FS06], the term ’admissible control system’ is used for the class U0. Essentially, the

martingale properties used to define U0 in the previous section together with the smoothness

assumptions on V are equivalent to (1.68). This allows us to carry the verification theorems

(1.13) and (1.14) over to the discrete case. Specifically, we have the following:

Theorem 1.15 (Verification, finite time horizon.) Let O = [0,T )×X. Suppose V ∈C 1,0(O) is

a solution to

0 = ∂V (t , x)

∂t
+min

α∈U
{
LαV (t , x)+ f (t , x,α)

}
, (t , x) ∈O,

V (T, x) = z(x), x ∈X.
(1.69)

Then V (t , x) ≤ J u(t , x) for every u ∈U0 and all (t , x) ∈O, where the cost function J u is given by

(1.57a). If further a minimum

α∗(t , x) = argmin
α∈U

{
LαV (t , x)+ f (t , x,α)

}
, (t , x) ∈O (1.70)

exists and u∗
t =α∗(t , X u

t ) is in U0, then V (t , x) = J u∗
(t , x) for all (t , x) ∈O, and u∗ is an optimal

Markov control strategy for the control problem (1.57a).

And for the indefinite time horizon case:

Theorem 1.16 (Verification, indefinite time horizon.) Let A ⊂ X. Suppose V : X→ R is a

solution to

0 = min
α∈U

{
LαV (x)+ f (x,α)

}
, x ∈ A,

V (x) = z(x), x ∈X\ A.
(1.71)

Let X u
0 ∈ A a.s. and let τ be the first exit time of X u

t from A and assume that τ is a.s. finite for all

u ∈U0. Then V (x) ≤ J u(x) for every u ∈U0 and all x ∈ A, where the cost function J u is given by

(1.57b). If further a minimum

α∗(x) = argmin
α∈U

{
LαV (x)+ f (x,α)

}
, x ∈ A (1.72)
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exists and u∗
t =α∗(X u

t ) is in U0, then V (x) = J u∗
(x) for all x ∈ A, and u∗ is an optimal Markov

control strategy for the control problem (1.57b).

We prove Theorem (1.16) in appendix A, the proof of Theorem (1.15) is analogous.
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2 Irreversible Markov Chains and Cycles

This chapter studies irreversible Markov chains as a prototype for non-equilibrium systems.

We use graph-theoretical representations of the transition matrix P of the Markov chain, and

the notion of cycle decompositions in particular, as our main tools. Both are introduced

in detail in section 2.1. We first give a purely algebraic construction to arrive at a cycle

decomposition in section 2.1.2, then we present a stochastic construction in section 2.1.3. We

then discuss the connections between cycle decompositions and reversibility (or irreversibility)

in section 2.1.4 and give connections to the entropy production rate functional in section

2.1.5.

The second part of the chapter is devoted to the construction of reversible surrogates to

irreversible Markov processes. We formulate the problem in section 2.2 and classify possible

solutions to a simple subproblem in section 2.2.1. The solution to the general problem via

cycle decompositions is constructed in section 2.2.2. Finally, a theoretical result that shows

that commuting times for reversible processes are always accelerated if a non-reversible term

is added is shown in section 2.2.3.

The third part of the chapter is concerned with applications and numerical examples. We

discuss two main applications: Module detection in section 2.3 and dealing with loops in

transition paths in section 2.4. Section 2.3 uses the ideas developed in sections 2.1 and 2.2.

Section 2.4 also uses TPT, which was introduced in section 1.3.

2.1 Cycle Decompositions

2.1.1 Coates Graph and Cycle Space

Here and in the rest of the chapter, we assume the state space X to be finite. This allows us to

give a graph-theoretical characterization of irreversibility in terms of cycles in a directed graph

which we associate to our Markov process. To set this up, first note that we are free to think

of any linear operator L on RX as a bilinear form L : RX×RX → R acting as L(v, w) = 〈v,Lw〉.
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Here, 〈v, w〉 = vT w is the canonical scalar product on RX. By restricting this bilinear form to

the canonical basis on RX, we obtain a map L :X×X→R. The values L(x, y) ≡ lx y for x, y ∈X
are simply the entries of L viewed as a matrix. We will freely switch between these different

points of view. Now we make the following definition:

Definition 2.1 Let L be a linear operator on RX. The Coates graph of L is the directed graph

G(L) with vertex set X and edge set E = {
(x, y) ∈X×X : L(x, y) > 0

}
.

Let (Xn)n be a Markov chain on X with transition matrix P and associated Coates graph

G(P ). We now develop graph-theoretical interpretations of several properties of (Xn)n in

terms of G(P ). These results generalize immediately to continuous time MJPs by replacing

G(P ) with G(L). A first observation is that ergodicity translates into a form of connectivity: A

directed path in G is a sequence (x1, . . . , xs) of nodes in G where every (xi , xi+1) is an edge in

G for i = 1, . . . , s −1. We call the nodes x, y in G strongly connected if there is a directed path

from x to y and a (possibly different) directed path from y to x. x and y are called weakly

connected in G(P ) if they are strongly connected in G(P +P T ). Strong (weak) connectivity

is an equivalence relation and partitions G into equivalence classes which we call strongly

(weakly) connected components. We call G strongly (weakly) connected if it has only one

strongly (weakly) connected component (which then must be all of X). Then we have

Lemma 2.2 The communication classes of P equal the strongly connected components of the

Coates graph G(P ). In particular, if P is ergodic then G(P ) is strongly connected.

Proof: Two states x, y are said to communicate if there are natural numbers r, s such that

(P r )x y > 0 and (P s)y x > 0. But then pxx2 px2x3 . . . pxr−1 y > 0 for some sequence of nodes

x, x2, . . . , xr−1, y , which implies that there is a directed path of length r from x to y in G(P ). For

the same reasons, there is also a directed path of length s from y to x in G(P ). This shows

that x and y are strongly connected if they communicate. The converse is trivial, hence com-

munication and strong connectivity are logically equivalent. If P is ergodic, then P must be

irreducible, hence it must have only one communication class, therefore G(P ) has only one

strongly connected component. ■

The study of non-ergodic Markov chains essentially reduces to the study of each communica-

tion class separately. We therefore assume ergodicity of (Xn)n and thus strong connectivity of

G(P ) from here on. In the rest of this section, we introduce the cycle and cocycle vector spaces

of general oriented graphs, following [Kal06] and [Pol15]. Cycles in the Coates graph G(P ) will

play a prominent role later on if P is irreversible.

Let G = (V ,E) be an oriented graph with edges E = {e1, . . . ,e|E |}. The edge vector space R|E |

is the space of formal linear combinations of edges (in an algebraic topology context, R|E |

would be called the space of one-chains). We endow R|E | with the standard Euclidean scalar

product 〈·, ·〉. Since edges are oriented, every edge e has a unique source s(e) ∈V and a unique
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target t(e) ∈ V . We identify s(e) and t(e) with the associated canonical basis vectors in R|V |

and denote the boundary of an edge e by ∂e = t(e)− s(e). By linear extension this gives us a

boundary operator ∂ :R|E | →R|V |. We define the vector space of one-cycles as C = ker∂, and

the space C ∗ of cocycles as the row space of ∂. We reserve the term cycles for elements of C

of the form c =∑
i si ei with si ∈ {0,±1}. The coefficient si is positive if the orientations of c and

ei agree, negative if they are opposite and zero if ei is not present in c. Graphically, cycles are

sequences of edges such that for each incoming edge at a vertex x, there is an outgoing one.

The rows of ∂ correspond to simple cocycles, which are minimal sets of edges that disconnect

G into two subgraphs. An example graph with some cycles and a cocycle is shown in Figure

2.1.

e2
e1

e3
e4

e5

e6

e7

Figure 2.1 – Example of an oriented graph G . Some cycles are c1 = e2 +e3, c2 = e1 +e5 +e6 +e7,
c3 = e2 + e4 − e5 and c4 =−e3 + e4 − e5. The dotted edges denote the cocycle c∗ = e4 + e5 − e6

whose removal disconnects the red vertex from the rest of G .

Notice that we distinguish between the cycles c3 = e2 +e4 −e5 and c4 =−e3 +e4 −e5. This is

different from e.g. the treatment in [Sch76] and [Pol15], where −e denotes e with opposite

orientation, and e and −e cannot both be present in E . For us −e means that the edge e is

traversed in the opposite orientation, and there may or may not be another distinct edge e ′ ∈ E

which is e with that reversed orientation. This has the effect of regarding e.g. c1 = e2 +e3 not

as identical to zero, but as a cycle of length 2.

The dimension of C ∗ is easily shown1 to be |V |−1. By the rank-nullity theorem the dimension

of C is equal to the Betti number b = |E |−|V |+1. There is a canonical way to construct a basis

{γ1, . . . ,γb} of C [Sch76]: Let T ⊂G be a spanning tree of G (that is, a subgraph of G that weakly

connects all vertices of G , but contains no cycles). See Figure 2.2 for an illustration. Edges of

G which belong to T are called cochords and denoted by
{
eµ

}|V |−1
µ=1 . Edges of G which do not

belong to T are called chords and denoted by {eα}b
α=1. Adding a chord eα to T encloses one

1The columns of ∂ correspond to edges and every column has exactly one +1 (for its target) and one −1 (for
its source). Therefore, the rows of ∂ sum to zero. Now let us remove the row corresponding to x0 ∈X. We have
to show that the remaining |V | −1 rows are linearly independent, i.e. that 0 = ∑

x 6=x0 αx∂xe implies all αx = 0.
Pick any x∗ ∈X. Because G is strongly connected, there is a directed path (x0, x1, . . . , xn , x∗) from x0 to x∗ with
ei := (xi , xi+1) ∈ E . The column corresponding to e0 only has one +1 and no −1 because x0 = s(e0) has been
removed. Therefore, αx1 = 0. By induction, all αxi = 0 and finally αx∗ = 0.
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cycle γα which we orient in the direction of eα. The set Γ= {γ1, . . . ,γb} of cycles obtained in

this way is linearly independent because 〈eα,γα′〉 = δαα′ . Since dimC = b, Γ is a basis of C .

We term Γ the Betti basis of C .

e2
e1

e4

T

�1

�2

�3 e3
e5

e6
e7

Figure 2.2 – Oriented graph G with spanning tree T (dark edges) and chords e1, e2, e3 (red
edges). The corresponding Betti cycles are γ1 = e1+e5+e6+e7, γ2 = e2+e4 and γ3 = e3−e5−e4.

2.1.2 Decomposing Flows in the Betti Basis

Let F : X×X→ R be a flow2. Recall the definition of divergence in section 1.3. We call F

divergence-free if

divF (x) =∑
y

F (x, y)−∑
y

F (y, x) = 0. (2.1)

In physical terms, (2.1) expresses a conservation law: Since the flow into x balances the flow

out of x, the type of mass which is transported by F is conserved at x. In the context of

electrical networks, F would be an electrical current and (2.1) is called Kirchhoff’s current

law. Let R|E | be the space of one-chains and C be the space of one-cycles of G(F ). We can

associate a one-chain F to F by putting F =∑
x,y F (x, y)ex y where ex y denotes the edge with

source x and target y . From (2.1) we get that

∂F =∑
x,y

F (x, y)∂ex y =
∑
x,y

F (x, y)(y −x) =∑
x

x

(∑
y
−F (x, y)+∑

y
F (y, x)

)
= 0.

Hence F ∈C , and we can use the Betti basis to decompose F in terms of the Betti basis [Kal06]:

Lemma 2.3 (Cycle decomposition, algebraic version.) Let F :X×X→ [0,∞) be divergence-

free, and let Γ= {γ1, . . . ,γb} be the Betti basis of the space of one-cycles in G(F ). Then there are

2In section 1.3, we required flows to be antisymmetric functions on X×X, which is standard. We drop this
requirement for the moment to be slightly more general.
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weights ω(γα) > 0 such that

F (x, y) =
b∑

α=1
ω(γα)〈ex y ,γα〉 (2.2)

holds for all x, y ∈ X. The weights are given by ω(γα) = F (s(eα), t(eα)) where eα is the chord

corresponding to γα.

Proof: We associate the one-chain F =∑
x,y F (x, y)ex y to F . Since F is divergence-free, F ∈C

and can be expressed in terms of the Betti basis as

F =
b∑

α=1
ω(γα)γα (2.3)

with real numbers ω(γα). We get (2.2) from (2.3) by taking the scalar product with ex y on

both sides. If we take the scalar product with eα on both sides, we get ω(γα) = 〈
eα,F

〉 =
F (s(eα), t (eα)) since 〈eα,γα′〉 = δαα′ , and

〈
eα,F

〉> 0 because F > 0. ■

Example. Consider the graph shown in Figure (2.2). The flow F (x, y) = µx px y of the simple

random walk on this graph is given by

F = 1

15
(3e1 +2e2 +e3 +e4 +2e5 +3e6 +3e7) .

The decomposition of F into Betti cycles shown in Figure 2.2 reads F = 1
15

(
3γ1 +2γ2 +γ3

)
, this

is (2.3). Note that the weights in (2.2) are positive, but the scalar products 〈ex y ,γα〉 can be

either +1 (if the orientations of ex y and γα agree) or −1 (if they disagree). For example, the

flow through the edge e5 is 〈e5,F 〉 = 1
15

(
3〈e5,γ1〉+2〈e5,γ2〉+〈e5,γ3〉

)= 1
15 (3−1).

Computational aspects. To compute the cycle decomposition (2.2), we need to perform the

following steps:

1. Find a spanning tree T ⊂G(F ). Identify the chords {eα,α= 1. . .b}.

2. For each chord eα, find the sequence λα =∑|V |−1
µ=1 sµeµ of cochords that connects t (eα)

with s(eα). Then set γα := eα+λα.

3. For each chord eα, compute the corresponding weight ω(γα) = 〈eα,F 〉.

These steps are fairly easy to perform. The computationally most demanding part for large

graphs is the identification of the spanning tree T , which can be done e.g. by the Prim [Pri57]

algorithm in time O (|E | log |X|). There are two major disadvantages of (2.2): (i) The Betti cycles

γα and the weights ω(γα) are not unique; they depend on the choice of spanning tree T . (ii)

Since ω(γα) > 0, we can interpret ω as a probability distribution over Γ. But the Betti cycles γα

39



Chapter 2. Irreversible Markov Chains and Cycles

themselves are algebraic objects that do not allow for a stochastic interpretation. For example,

it is not possible for the Markov chain (Xn)n to pass through all the edges of γ3 in Figure 2.2

in the direction which is induced by γ3 since e4 and e5 can only be passed through in the

opposite direction. To remedy this, we now present a stochastic version of (2.2) due to Qian

[JQQ04].

2.1.3 The Circulation Distribution

Let C be the space of one-cycles of G(P ). We define a subset C0 ⊂ C of cycles that can be

given a stochastic meaning by

C0 =
{

c ∈C : c is simple, c =∑
i

si ei with si = {0,1}

}
.

Here simple means that c has no self-intersections, i.e. there are no two edges in c that

have the same source or the same target nodes. We can denote a cycle c ∈ C0 unambigu-

ously by the sequence of edges that c visits, i.e. c = [x1, . . . , xp ] is the cycle with edges

(x1, x2), . . . , (xp−1, xp ), (xp , x1). The orientation of c ∈C0 always agrees with the orientation of

its edges, therefore we may introduce the passage functions that describe which nodes and

edges are part of c as follows:

Jc (x) =
1 if x is a node in c,

0 otherwise
; Jc (x, y) =

1 if (x, y) is an edge in c,

0 otherwise
. (2.4)

The two passage functions are related by the balance property∑
y

Jc (x, y) =∑
y

Jc (y, x) = Jc (x). (2.5)

For any cycle c ∈C0, it is possible for the Markov chain (Xn)n to pass through all the edges of c

in the direction and order induced by c. These passages can be counted given a realization

(Xn)1≤n≤T of length T of (Xn)n . The sequence (X1, X2, . . . , XT ) of states visited by the realization

forms a path in G(P ) which has a finite number of self-intersections or recurrences. Each

recurrence corresponds to a cycle in G(P ) that has been passed through by (Xn)1≤n≤T . For each

cycle c ∈C0 we can count the number of times N T
c it has been passed through by (Xn)1≤1≤T .

To make this precise, we introduce the derived chain (ηn)n associated to (Xn)n which takes

values in the space of finite ordered sequences of elements inX. (ηn)n acts as a memory which

allows us to detect when recurrences occur and which cycles are completed. We set N T
c := 0

for all c ∈C0 and η1 := X1. The other values of (ηn)n are constructed iteratively together with

the passage counts N T
c as follows:

• If ηi = (y1, . . . , ys) and Xi+1 6= yl for all 1 ≤ l ≤ s, then set ηi+1 := (y1, . . . , ys , ys+1) with

ys+1 := Xi+1.
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n 1 2 3 4 5 6 7 8
Xn 1 4 2 3 2 6 7 4
ηn (1) (1,4) (1,4,2) (1,4,2,3) (1,4,2) (1,4,2,6) (1,4,2,6,7) (1,4)

Cycles [2,3] [4,2,6,7]

Table 2.1 – The first few states of the Markov chain (Xn)n and the derived chain (ηn)n , and the
cycles passed through by (Xn)n .

• If ηi = (y1, . . . , ys) and Xi+1 = yl for some 1 ≤ l ≤ s, then the cycle c := [yl , . . . , ys] has been

completed. We set N T
c → N T

c +1 and ηi+1 := (y1, . . . , yl ).

In table 2.1, an example of this construction is shown. Now we setωT (c) := N T
c /T for all c ∈C0,

and CT := {c ∈ C0 : ωT (c) > 0}. Both ωT and CT are FT -measurable random variables, and

Qian et.al. [JQQ04] have shown the following:

Lemma 2.4 (Cycle decomposition, stochastic version.) The sequences of random variables

(CT )T∈N and (ωT )T∈N converge almost surely. With C∞ :=⋃∞
T=0 CT and ω∞ := limT→∞ωT , we

have

µx px y =
∑

c∈C∞
ω∞(c)Jc (x, y) ∀x, y ∈X, (2.6)

µx = ∑
c∈C∞

ω∞(c)Jc (x) ∀x ∈X. (2.7)

Furthermore, for any c = [x1, . . . , xs] ∈C∞ the weight ω∞(c) is given by

ω∞(c) = px1x2 px2x3 . . . pxs−1xs pxs x1

D ({x1, . . . , xs})∑
x∈XD ({x})

(2.8)

where D ({x1, . . . , xs}) is the determinant of the matrix I −P with rows and columns indexed by

{x1, . . . , xs} deleted (we set D(X) = 1 by convention).

Example: In the graph shown in Figure 2.2, C0 = {c1,c2,c3} with c1 = γ1, c2 = γ2 and c3 =
e1 + e2 + e3 + e6 + e7. The corresponding weights for the simple random walk are given by

ω∞(c1) = 2/15, ω∞(c2) = 1/15 and ω∞(c3) = 1/15, and (2.6) for the flow F (x, y) =µx px y of the

simple random walk reads F = 1
15 (2c1 + c2 + c3).

Note that (2.7) is an easy consequence of (2.6) and (2.5) and can be traced back to the fact

that we only allow positive coefficients si in c =∑
i si ei for c ∈C∞. The function ω∞ is termed

circulation distribution by Qian. ω∞(c) can be interpreted as the probability that (Xn)n

completes the cycle c with its next step if it was initialized in equilibrium. Both ω∞ and C∞
are unique, and (2.8) shows that ω∞(c) is the product of the transition probabilities along the

edges of c times a normalization constant times the minor D ({x1, . . . , xs}) which accounts for

the excursions (Xn)n is allowed to take while completing c . For example, while completing the

cycle [4,2,6,7] the realization in table 2.1 performs the excursion (2,3,2).

41



Chapter 2. Irreversible Markov Chains and Cycles

Computational aspects. The uniqueness and stochastic meaning of (2.6) are the advantages

of (2.6) over (2.2). However, (2.6) is hard to compute: C∞ is much larger than the Betti basis Γ,

and computing it directly amounts to finding all simple cycles in the directed graph G , which

is at least an NP-hard problem. Here is the reason: If one has a list of all simple cycles in G ,

one may take the largest one(s) and check if it is a Hamiltonian cycle (a cycle visiting every

node exactly once). But the problem of determining if a directed graph G has a Hamiltonian

cycle is already NP-hard. In addition, for every c ∈ C∞ a different minor of I −P must be

computed in order to obtain ω∞(c) according to (2.8). In practice, we will always work with

a finite realization (Xn)1≤n≤T and sample ωT and CT according to the algorithm presented

above.

2.1.4 Cycle Decompositions and Reversibility

We study the effects of time reversal on the cycle decompositions (2.2) and (2.6). Let µ be

the unique invariant distribution of P and Dµ be the diagonal matrix with diagonal entries

given by µ. We form the probability flow matrix F = DµP whose components are given by

Fx y = P(Xn = x, Xn+1 = y). Note that µ > 0 by ergodicity, so that Fx y = µx px y > 0 iff px y > 0,

therefore G(P ) = G(F ). Let P− be the transition matrix of the time-reversed Markov chain

(X −
n )n . In components, p−

x y = µy

µx
py x . The probability flow matrix F− = DµP− associated to

P− is just the transpose of F . The Coates graph G(P−) is G(P ) with the orientations of all

edges reversed. We denote by e− the edge e with reversed orientation, that is s(e−) = t (e) and

t(e−) = s(e). Similarly, we denote by c− ∈ C the cycle c with reversed orientation, that is if

c =∑
i si ei then c− =∑

i si e−i . The space of one-cycles of G(P−) is C − = {c− : c ∈C }.

If T is a spanning tree of G(P ) with chords eα, then T − is a spanning tree of G(P−) with

corresponding chords e−α . Correspondingly, if Γ= {γ1, . . . ,γb} is a Betti basis of C , then Γ− :=
{γ−1 , . . . ,γ−b } is a Betti basis of C −. We write the one-chain F− ∈C − in terms of Γ− as

F− =
b∑

α=1

〈
e−α ,F−〉

γ−α =
b∑

α=1
〈eα,F 〉γ−α =

b∑
α=1

ω(γα)γ−α.

Thus F −F− =∑
αω(γα)

[
γα−γ−α

]
, or in components

Fx y −F−
x y =µx px y −µy py x =

b∑
α=1

ω(γα)〈ex y ,γα−γ−α〉. (2.9)

If P is reversible, then F is symmetric and the LHS of (2.9) is identically zero. Edges in G(P )

then come in pairs {e,e−}, and for any Betti cycle γα ∈ Γ, one of the following must be true:

• The chord eα is such that e−α ∈ T . Then γα is equal to the cycle eα+e−α so that γα = γ−α.

• The chord eα is such that e−α ∉ T . Then e−α is itself a chord, and the corresponding Betti
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cycle is γ−α, so that γα and γ−α are both in Γ. Furthermore,

0 = 〈
eα,F −F−〉=∑

α′
ω(γα′)

〈
eα,γα′ −γ−α′

〉=ω(γα)−ω(γ−α)

so that ω(γα) =ω(γ−α).

As a consequence, we have Γ = Γ− and ω(γα) = ω(γ−α) for all γα ∈ Γ if P is reversible. The

converse follows directly from (2.9). On the other hand, from (2.6) we get

µx px y −µy py x = ∑
c∈C∞

ω∞(c)
[

Jc (x, y)− Jc−(y, x)
]

.

If we extend the function ω∞ to C∞∪C −∞ by putting ω(c−) = 0 for all c− ∈C −∞ \C∞, then we

can write the last equation as

µx px y −µy py x = ∑
c∈C∞

[ω∞(c)−ω∞(c−)] Jc (x, y). (2.10)

If P is reversible, we can verify that ω∞(c) =ω∞(c−) holds for all c ∈C∞ by inspecting (2.8):

For c = [x1, . . . , xs], we write P(c) = px1x2 px2x3 . . . pxs−1xs for the product of the transition proba-

bilities along the edges of c. Then

ω∞(c)

ω∞(c−)
= px1x2 px2x3 . . . pxs−1xs pxs x1

pxs xs−1 pxs−1xs−2 . . . px2x1 px1xs

= P(c)

P(c−)
(2.11)

which equals one by detailed balance if P is reversible. On the other hand, if ω∞(c) =
ω∞(c−) ∀c ∈C∞, then P is reversible since the RHS of (2.10) is identically zero. In summary,

the following conditions are all equivalent characterizations of the reversibility of P :

1. Detailed balance holds: µx px y =µy py x for all x, y ∈X.

2. The matrix F = DµP is symmetric.

3. Iff Γ is a Betti basis of G(P ), then Γ= Γ− and ω(γα) =ω(γ−α) for all γα ∈ Γ.

4. The circulation distribution is symmetric under time reversal: ω∞(c) =ω∞(c−) ∀c ∈C∞.

2.1.5 Cycle Decomposition and Entropy Production

Recall the definition (1.10) of the entropy production rate functional eP in section 1.1.1. For

Markov chains with transition matrix P and invariant distribution µ, we can write the entropy

production rate as

eP = 1

2

∑
x,y∈X

(
µx px y −µy py x

)
log

(
µx px y

µy py x

)
(2.12)
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if the weak reversibility condition µx px y > 0 ⇔ µy py x > 0 ∀x, y ∈ X is satisfied (otherwise

eP =+∞ by definition). Qian [JQQ04] has shown that eP can also be expressed in terms of the

circulation distribution ω∞ as

eP = 1

2

∑
c∈C∞

(ω∞(c)−ω∞(c−)) log

(
ω∞(c)

ω∞(c−)

)
(2.13)

which shows that eP measures the degree to which ω∞ is antisymmetric under orientation

reversal c 7→ c−. In terms of the Betti basis, we can express eP as

eP =
b∑

α=1
ω(γα) log

(
P(γα)

P(γ−α)

)
. (2.14)

Equation (2.14) shows that for eP = 0 it is enough that ω∞(γα) =ω∞(γ−α) for all Betti cycles

γα, we do not need ω∞(c) =ω∞(c−) ∀c ∈C∞. We prove equations (2.12), (2.13) and (2.14) in

appendix A.

Example: Biased RW on a circle. As an example, we consider a biased random walk on a

circle with n nodes. The transition probabilities of the RW are given by px,x±1 = 1
2 (1±a) with

0 ≤ a ≤ 1. The Coates graph G(P ) is the graph with n nodes and 2n edges shown in Figure 2.3.

The invariant distribution is µ= 1
n (1, . . . ,1)T . By using (2.12) one readily checks that eP only

depends on a and is given by

eP (a) = a log

(
1+a

1−a

)
(2.15)

with the extremal cases eP (0) = 0 (the reversible case) and eP (1) = +∞ (where weak non-

reversibility fails). We now check (2.14). If we pick the spanning tree T shown in Figure 2.3,

then Γ consists of two cycles γr and γl = γ−r of length n with corresponding chords er and el

and n −1 cycles of length 2. The cycles of length 2 do not contribute to (2.14), therefore

eP =ω(γr ) log
P(γr )

P(γl )
+ω(γl ) log

P(γl )

P(γr )
.

From Lemma 2.3 we see that the weights are given by ω(γr ) = 1
2n (1+a) and ω(γl ) = 1

2n (1−a).

We furthermore have P(γr ) = 1
2n (1+a)n and P(γl ) = 1

2n (1−a)n . Plugging everything in, we get

eP = 1

2n
(1+a) log

(1+a)n

(1−a)n + 1

2n
(1−a) log

(1−a)n

(1+a)n = a log
1+a

1−a

which agrees with (2.15). Now we check (2.13). The class C∞ for this graph consists of γr , γl

and n cycles of length 2 which do not contribute to (2.13). Hence

eP = [
ω∞(γr )−ω∞(γl )

]
log

ω∞(γr )

ω∞(γl )
.
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2.2. Reversible Surrogates

We now need to compute ω∞(γr ) and ω∞(γl ) according to (2.8). We have D({x1, . . . , xn}) =
D(X) = 1 by definition, henceω∞(γl/r ) = P(γl/r )Z−1 with Z =∑

x D({x}). Because of symmetry,

the minors D({x}) are all equal, and because D = I −P is a tridiagonal matrix they can be

computed easily. One obtains

D({x}) = (1+a)n − (1−a)n

2n a
= P(γr )−P(γl )

a

and putting everything together:

eP = 1

nD({x})

[
P(γr )−P(γl )

]
log

P(γr )

P(γl )
= a

n
log

(1+a)n

(1−a)n = a log
1+a

1−a

which also agrees with (2.15).

T

el

er

1

2
(1 + a)

1

2
(1 � a)

Figure 2.3 – Coates graph of the biased random walk on a cycle with n states. The only
nontrivial cycles are produced by the chords er and el .

2.2 Reversible Surrogates

When studying an irreversible process (X t )t , it is often natural to ask for some other reversible

process (X s
t )t that approximates (X t )t . Of course one wishes as many structural properties as

possible to be inherited by (X s
t )t . In the context of Markov processes, we call (X s

t )t a reversible

surrogate of (X t )t if (X s
t )t is a reversible Markov process on the same state space and with the

same invariant distribution as (X t )t . If (X t )t is a Markov chain with transition matrix P , then

the transition matrix P s of (X s
t )t has to satisfy µx p s

x y = µy p s
y x for all x, y ∈X, where µ is the

invariant distribution of P .

We can reformulate this in terms of the flow Fx y =µx px y as follows: A reversible surrogate of

F is a flow F s that

(a’) is symmetric, F s = (F s)T ,
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Chapter 2. Irreversible Markov Chains and Cycles

(b’) has the same out-flow as F at every vertex x:
∑

y F s
x y =µx =∑

y Fx y ∀x ∈X.

It is clear from section 2.1 that if F is decomposed into cycles according to (2.3) or (2.6), then

the irreversibility of F is the degree to which either the Betti weights ω(γα) or the circulation

distribution ω∞(c) are not symmetric under orientation reversal of γα resp. c. If we have

a strategy for curing this asymmetry for each cycle independently, then we have a general

strategy to construct F s . In the next section, we examine possible strategies to symmetrize

flows cycle by cycle. This is used in section 2.2.2 to discuss reversible surrogates of general

Markov chains.

2.2.1 Reversible Surrogates of Unit Cycle Flows

Let c = [x1, . . . , xs] be a simple cycle with associated one-cycle c, and let F = c be a flow3 of

unit one along c. Note that F is invariant under the right-shift R : [x1, . . . , xs] 7→ [x2, . . . , xs , x1].

We now pose the following problem: Find a flow F s on X= {x1, . . . , xs} that has the following

properties:

(a) F s is symmetric, F s = (F s)T .

(b)
∑

y F s
x y = 1 for all x ∈X.

(c) F s is invariant under R.

Here (a) and (b) correspond to (a’) and (b’), and we require the additional property (c) because

F also possesses (c) and we want F s to inherit as many structural properties as possible. F s

also has a cycle decomposition, and the cycles making up F s can be given by any sequence

of the form [y1, . . . , yl ] with l ≤ s and pairwise different yi ∈ {x1, . . . , xs}. Call such a sequence

[y1, . . . , yl ] a motif. An example of a motif and the action of R on it are shown in Figure 2.4. We

can use any motif [y1, . . . , yl ] to construct a flow F s that satisfies (a)-(c) in the following way:

Choose 1 ≤ l ≤ s and a motif m = [y1, . . . , yl ]. Average with respect to R:

m = m +Rm + . . .+R s−1m. (2.16)

Then we let F s to be a flow of unit 1/2l through m and the reverse m−:

F s[m] = 1

2l

[
m +m−]

. (2.17)

That F s as constructed in (2.17) is symmetric and invariant under R is clear by construction.

That leaves to check (b). Pick any x ∈X. As we rotate the motif m with R, every node yi in m

will coincide with x once. Therefore, l out of the s terms in (2.16) contribute to the out-flow of

3We use the identification of flows and one-cycles explained in section 2.1.2.
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Figure 2.4 – Left: The cycle c = [x1, . . . , xs] (black edges), the motif m = [y1, y2, y3] (red edges)
and the rotated motif Rm (red dotted edges). Right: Hitting time signatures of different
reversible surrogates.

x and we get
∑

y mx y = l . The same applies for m−, and we get

∑
y

F s
x y [m] = 1

2l
[l + l ] = 1

which is (b). Thus indeed, a reversible surrogate F s can be constructed from any motif

m = [y1, . . . yl ] via (2.17). There are very many different motifs (though some might lead to the

same F s[m]): After averaging with R, there is one motif for l = 1, (s −1)/2 motifs for l = 2 and

(s −1)! motifs for l = s, one of which coincides with the original cycle c = [x1, . . . , xs]. Motifs

can also be combined to give even more ways to construct F s . However, some choices are

clearly simpler than others. Table 2.2 shows the simplest motifs one might choose and the

corresponding flow F s .

Clearly the simplest choice is m = [xi ], but the resulting flow F s = I is trivial and the Coates

graph G(F s) is disconnected, so we have to discard that option. Another very simple choice

is m = [x1, . . . , xs]. This amounts to F s = 1
2

(
F +F T

)
, i.e. standard symmetrization. The next

simplest choice is to use some motifs of length l = 2. There are (s −1)/2 different motifs of

length 2, corresponding to diagonals of different length in G(F s). The simplest choice is to use

all of them, this leads to F s
x y = 1

s−1 (1−δx y ) and to G(F s) being the complete graph on s nodes

without selfloops with each edge carrying a flow of 1/(s −1) such that the total out-flow of any

node is 1. We refer to this as mixing without selfloops. If one includes all motifs of length 1

and 2, then F s
x y = 1

s and G(F s) is the complete graph on s nodes with selfloops with each edge

carrying a flow of 1/s. This is referred to as mixing with selfloops.

At first glance, it seems that mixing changes the original flow F much more dramatically

than symmetrization, but this is deceiving. Since we are interested in dynamical properties

of the original, non-reversible process (X t )t , we consider the hitting time h(x) = Ex
[
τx1

]
of
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Chapter 2. Irreversible Markov Chains and Cycles

strategy motifs taken F s Coates graph of F s

static [xi ] F s = I

mixing without
selfloops

all s−1
2 different

[xi , x j ]
F s

x y = 1
s−1 (1−δx y )

1

s � 1

mixing with
selfloops

[xi ] and all s−1
2 dif-

ferent [xi , x j ]
F s

x y = 1
s

1

s

symmetrization [x1, . . . , xs] F s = 1
2

(
F +F T

) 1

2

Table 2.2 – Some motifs and the corresponding flows F s . For simplicity, edge directions are
not shown in the Coates graph (all edges appear in pairs of opposite directions).

state x1 as a dynamical signature. In Figure 2.4 on the right, h(x) is shown for s = 20 for the

original process and the reversible surrogates obtained by symmetrization, mixing with and

mixing without self-loops. The hitting time of the original process is simply h(xi ) = s − i +1

for i 6= 1. For mixing without self-loops, h(xi ) = s −1 for i 6= 1 and for mixing with self-loops,

h(xi ) = s for i 6= 1. This is still very close to the hitting times of the original process, and

more importantly it has the correct linear scaling with s. In contrast, the hitting time of the

reversible surrogate obtained by symmetrization is completely off. It is given by the parabola

h(xi ) = 1
4 s2 − (i −1− s

2 )2 for i 6= 1, which is much larger than the hitting time of the original

process, and more importantly it scales quadratically with s, while the hitting time of the

original process scales linearly with s.

What can one learn from this for general Markov processes? The hitting times are dynamical

signatures of what we want to call the mobility of a stochastic process, i.e. its ability to reach

other states quickly. Strong cyclic flows strongly increase mobility locally, i.e. between the

states along the cycle. This is an inherent feature of non-reversible dynamics that we have to

reproduce if we want to construct a reversible surrogate. We have seen that for one cycle, the
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2.2. Reversible Surrogates

reversible surrogate obtained by symmetrization is far less mobile. This is in fact a general

result that holds for arbitrary non-reversible Markov chains, we discuss this in section 2.2.3.

The reversible surrogates constructed by the mixing with and without self-loops strategies

emulate the strong mobility of the non-reversible process by adding many new edges in the

interior of c. This changes the structure of G(P ) significantly and it will not be a faithful

representation of all the dynamical properties of the original irreversible process (this is likely

to be impossible), but both strategies do give faithful representations of the hitting times we

are interested in. In section 2.2.2, we will discuss how reversible surrogates of general Markov

chains can be constructed using cycle decompositions and the mixing with self-loops strategy

for each cycle. In section 2.2.3, we discuss the relationship between certain hitting times of

(X t )t and (X t )s
t for the symmetrization strategy in more detail.

2.2.2 Reversible Surrogates of General Markov Chains

In section 2.2.1 we discussed different symmetrization strategies for a unit flow F = c along a

cycle c . Here, we will discuss the ’mixing with selfloops’ strategy for general Markov processes.

For a single loop, it consisted of replacing F with F s given by F s(x, y) = 1
|c| Jc (x)Jc (y) where

Jc (x) is the passage function introduced in (2.4) and |c| denotes the length of the cycle c, i.e.

the number of non-zero coefficients si in c =∑
i si ei . Now let F :X×X→ [0,∞) be a general

divergence-free flow. By (2.3) we can write F =∑b
α=1ω

(
γα

)
γα as a linear combination of unit

flows along Betti cycles γα. Applying mixing with selfloops to every one of them gives

F s
b(x, y) =

b∑
α=1

ω
(
γα

)
|γα|

Jγα(x)Jγα(y) ∀x, y ∈X, (2.18)

the index b denotes that F s
b is constructed by using the Betti basis (as such, F s

b is basis-

dependent). On the other hand, if F (x, y) =µx px y then we can use (2.6) to write F as a linear

combination of unit flows along cycles c ∈C∞, and applying mixing with selfloops to every

c ∈C∞ gives

F s
∞(x, y) = ∑

c∈C∞

ω∞(c)

|c| Jc (x)Jc (y) ∀x, y ∈X, (2.19)

the index ∞ denotes that the circulation distribution ω∞ is used to construct F s∞. F s∞(x, y)

enjoys the additional property that, due to (2.7) and
∑

y Jc (y) = |c|,∑
y

F s
∞(x, y) = ∑

c∈C∞
ω∞(c)Jc (x) =µx ∀x ∈X. (2.20)

This enables us to write F s∞(x, y) =µx P s∞(x, y) where the loop transition matrix P s∞ is given

by

P s
∞(x, y) = 1

µx

∑
c∈C∞

ω∞(c)

|c| Jc (x)Jc (y) ∀x, y ∈X. (2.21)
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Chapter 2. Irreversible Markov Chains and Cycles

By construction, P s∞ is reversible with respect to the stationary distribution µ, thus P s∞ is a

reversible surrogate of the non-reversible transition matrix P . This is a special feature of the

stochastic cycle decomposition (2.6): From (2.18) we obtain

µ̃x :=∑
y

F s
b(x, y) =

b∑
α=1

ω
(
γα

)
Jγα(x) ∀x ∈X (2.22)

similar to (2.20), enabling us to write F s
b(x, y) = µ̃x P s

b(x, y) with a reversible transition matrix

P s
b . On the other hand, the decomposition of F (x, y) =µx px y according to (2.2) leads to

µx =∑
y

b∑
α=1

ω
(
γα

)〈ex y ,γα〉 =
b∑

α=1
ω

(
γα

)
Jγα(x)sγα(x) (2.23)

where sγα(x) ∈ {−1,0,1}, as follows: If γα passes through x ∈X then there must be exactly two

edges e1 and e2 with 〈e1/2,γα〉 6= 0 that are incident to x. The value of sγα depends on the

relative orientations of these edges and γα:

sγα(x) =


1 if 〈e1,γα〉 = 〈e2,γα〉 = 1,

−1 if 〈e1,γα〉 = 〈e2,γα〉 =−1,

0 if 〈e1,γα〉 =−〈e2,γα〉 =±1.

(2.24)

In other words sγα(x) =±1 if e1 is incoming to x, e2 is outgoing from x and their orientations

agree (disagree) with γα, and sγα(x) = 0 if e1 and e2 are either both outgoing from or incoming

to x. By comparing (2.22) with (2.23), we see that the invariant distribution µ̃ of P s
b is in general

different from the invariant distribution µ of P . In other words, P s
b is not a reversible surrogate

in the sense that was discussed in section 2.2.1, but P s∞ is. This is the disadvantage of the

algebraic cycle decomposition (2.2) compared to the stochastic one (2.6).

2.2.3 Reversible Processes are Always Slower than Irreversible Processes

In this section we compare an irreversible ergodic Markov process (X t )t with generator L

and invariant distribution µ with the corresponding reversible process (X s
t )t with generator

Ls = 1
2 (L+L−), which also has the stationary distribution µ, and we assume that (X s

t )t is also

ergodic. There are several results in the literature indicating that (X s
t )t is always ’slower’ than

(X t )t : For diffusions, it was shown in [RS14] that the asymptotic variance of MCMC estimators

based on (X t )t is strictly smaller when compared to those based on (X s
t )t for a large class of

observables f , provided a non-degeneracy condition on the added irreversible drift holds. In

[HHMS05] it was shown that under similar non-degeneracy conditions, the absolute value

of the second-largest eigenvalue of L is strictly larger than the absolute value of the second-

largest eigenvalue of Ls , indicating a faster convergence rate towards µ. For Markov chains,

similar results on the asymptotic variance were given in [SSG10], and the irreversible terms

added to Ls were characterized in terms of additional flows along cycles in G(Ls).
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The result we give below complements these findings in terms of commuting times. First we

will need some language from potential theory. We assume that X is finite. Let A,B ⊂X be

disjoint and let

τA = inf{t > 0 : X t ∈ A}, τB = inf{t > 0 : X t ∈ B}

be the first hitting times (after time t = 0) of A and B . We define the equilibrium measure

e AB (x) =
Px [τA > τB ] for x ∈ A,

0 otherwise
(2.25)

which is the probability of escaping A from the point x ∈ A, and the capacity of A and B

cap(A,B) = ∑
x∈A

µ(x)e AB (x) (2.26)

which is the total rate of escape to B if starting from A. It is not hard to see [BEGK02] that

e AB (x) = (Lq+)(x) for x ∈ A with the forward committor q+ as in (1.47), and that cap(A,B)

equals the reaction rate kAB that was defined in (1.55), thus potential theory uses the same

objects as TPT. Following [Slo13], we establish a relation between first hitting times, capacities

and the committor function via the last exit biased distribution on A, which we define as

νAB (x) := µ(x)e−AB (x)

cap(A,B)

with e−AB (x) = P−
x [τA > τB ] = (−L−q−)(x) being the equilibrium potential of the reversed pro-

cess4. νAB is the distribution of the points on ∂A that (X −
t )t visits last before escaping to B , or

equivalently the distribution of points on ∂A that (X t )t visits first when coming from B . Now

we define the mean hitting time of B when starting in A and the commuting time T (A,B)

between A and B as

EA [τB ] =
∑
x∈A

νAB (x)Ex [τB ] , T (A,B) = EA [τB ]+EB [τA] . (2.27)

The distribution νAB is concentrated on the boundary of A. Defining EA [τB ] by averaging

Ex [τB ] with respect to νAB leads to the following intuitive definition of T (A,B): Given a

realization (X t )0<t≤T , define a discrete process (X̂ t )0<t≤T taking values in {a,b} by the following

set of rules: (i) (X̂ t )t only changes when (X t )t enters A∪B , (ii) when X t ∈ A then X̂ t = a, (iii)

when X t ∈ B then X̂ t = b. See also Figure 2.5. If we let N T
AB be the number of times (X̂ t )t

switches from a to b in time T , then a.s.

T (A,B) = lim
T→∞

T

N T
AB

.

4The extra minus sign in e−AB (x) = (−L−q−)(x) results from the fact that the boundary conditions for q+ and
q− are flipped.
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A B
(Xt)t

νAB νBA

Figure 2.5 – Visualization of the discrete process (X̂ t )t : The trajectory of (X t )t is green if X̂ t = a
and red if X̂ t = b. The support of the distributions νAB and νB A is illustrated in blue.

Also note that in the most interesting case where A is a metastable set, Ex [τB ] is almost

constant on A and it does not matter how we average it over A. With our choice of νAB , we

have the following relation between the hitting time EA [τB ], the capacity cap(A,B) and the

backward committor q− according to [Slo13]:

Lemma 2.5 The mean hitting time EA [τB ] of B when starting in A is given by

EA [τB ] = 1

cap(A,B)

∑
x∉B

µ(x)q−(x). (2.28)

As a consequence,

T (A,B) = 1

cap(A,B)
. (2.29)

We prove Lemma 2.5 in appendix A. The main result of this section is the following theorem:

Theorem 2.6 Let L be the generator of an ergodic Markov process on X and let Ls = 1
2 (L+L−).

Let A,B ⊂X be disjoint and let q be the forward committor of Ls with source A and target B.

Denote by caps(A,B) and T s(A,B) the capacity and commuting time of Ls , respectively. Then

cap(A,B) ≥ caps(A,B) and T (A,B) ≤ T s(A,B). (2.30)

The inequalities are strict unless Lq −Ls q = 0.

According to Theorem 2.6, the commuting time between any two sets A and B is always smaller

for the non-reversible process (X t )t when compared to its reversible counterpart (X s
t )t . This

can also be read the other way around: If one adds a non-reversible perturbation δL = D−1
µ H

to Ls such that H T = −H is an antisymmetric matrix5, then T (A,B) always decreases and

cap(A,B) always increases. We prove Theorem 2.6 in appendix A using variational formulas

5This guarantees that L = Ls +D−1
µ H satisfies Ls = 1

2 (L+L−).
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for the capacities. For non-reversible processes, we have the following saddle point formula

for cap(A,B) [Slo13]:

cap(A,B) = inf
f ∈H AB

sup
h∈GAB

{−2〈L− f ,h〉µ−〈h,−Lsh〉µ
}

(2.31)

where GAB = {h : X→ R : hA = const,hB = const} and H AB = {h :X→ [0,1] : hA = 1,hB = 0}.

For reversible processes, we have the simpler variational formula [Slo13, BEGK02]

caps(A,B) = inf
f ∈H AB

〈 f ,−Ls f 〉µ. (2.32)

The infimum in (2.32) is attained for f = q+. The infimum in (2.31) is attained for f = 1
2 (q++

1−q−).

2.3 Application I: Modules in Directed Networks

In the previous sections we studied graph-theoretical properties of the Coates graph G(P ) of

a Markov transition matrix P . This can also be turned around: Starting from a graph G , one

may look for a suitable transition matrix P or generator L such that G(P ) resp. G(L) equals

G . This defines a Markov process (X t )t on the graph G ; in this context one often says that

(X t )t is a random walk on G . For example, if G is represented by an adjacency matrix A such

that Ax y = 1 if the edge (x y) is present in G and Ax y = 0 otherwise, then we may define the

transition matrix P of the simple random walk on G by setting

px y =
Ax y

dx
∀x, y ∈X (2.33)

where dx =∑
y Ax y is the out-degree of x ∈X. The main idea behind the study of random walks

on graphs is that one may infer structural properties of G by studying dynamical properties

of (X t )t . This connection is well established in the case of undirected networks, i.e. where A is

symmetric. In this case P is reversible and one knows that the stationary distribution of (2.33)

is given by the out-degree µx = Z−1dx with Z = ∑
x dx . Further, one knows that if there is a

subset C ⊂X such that nodes in C have many more connections to other nodes in C than to

nodes outside of C , then C is a metastable set of (2.33). In fact, one can check that

P(X1 ∈C |X0 ∈C ) = 1

P(X0 ∈C )

∑
x,y∈C

1

Z
Ax y = 1−

∑
x∈C ,y∉C Ax y∑
x∈C ,y∈X Ax y

. (2.34)

If there are many more connections within C than between C and X\C , then this number will

be close to one. Such densily connected subsets C are called modules, and their identification

is of great interest in the network literature. An algorithm that finds an incomplete partition

{C1, . . . ,Cm} of network modules by detecting the m most metastable sets with MSM techniques

was presented in [DBCS11, SCB+14]. The input parameter m is inferred from the spectrum

of P . We refer to this algorithm as MSM clustering. MSM clustering and a few other popular
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clustering methods are explained in more detail in appendix B.

In the case of directed networks where A is not symmetric, (X t )t is irreversible and much less

is known about properties and the detection of metastable sets of (X t )t . This problem can

be circumvented by using a reversible surrogate (X s
t )t of (X t )t , but the relationship between

metastable sets of (X s
t )t and metastable sets of (X t )t and/or specific structures in G is often

not clear. For example, if (X s
t )t is obtained by symmetrizing (X t )t , i.e. (X s

t )t has the transition

matrix P s = 1
2 (P +P−), then we know from section 2.2.3 that the commuting times between

any two subsets A,B ⊂X are slower for (X s
t )t then for (X t )t , and we have already seen in section

2.2.1 that this effect can be severe. We therefore expect (X s
t )t to have more metastable sets

than (X t )t , and we expect clustering algorithms based on (X s
t )t to show an overpartitioning

effect. Two examples of overpartitioning are shown in Figure 2.6. On the left, the barbell graph

is shown which consists of two loops of length n glued together. The loops themselves are

metastable sets of (X t )t , but a typical clustering (here obtained by the infomap algorithm

[DYB10]) obtained from the symmetric process (X s
t )t partitions the loops further. These

smaller subsets are metastable sets for (X s
t )t , but not for (X t )t . The effect grows as n gets larger,

as we have seen in section 2.2.1. The graph in Figure 2.6 on the right has three subsets C1, C2

and C3 with high link densities, and all three are metastable sets for (X s
t )t . However, C3 is not

a metastable set for the process (X t )t which follows the link directions. In fact, (X t )t can stay

for at most 6 consecutive steps in C3 before it is forced to go out.

(b)(a)

C1

C2

C3

Figure 2.6 – Two examples of overpartitioning. Left: Overpartitioning of large cycles in the
barbell graph. Clustering produced by Infomap [DYB10]. Right: The set C3 is a metastable
set for the symmetric random walk (X s

t )t , but not for (X t )t . Clustering produced by MSM
clustering of P s .

In this section we propose to use the reversible process (X s
t )t with transition matrix P s∞ from

(2.21) or P s
b to detect modules in G . This work has been published in [CBS15, BC14]. We have

seen in section 2.2.3 that the mixing along cycles which is performed in the construction of

P s∞ and P s
b can help to overcome the slow mixing behaviour and hence the overpartitioning
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effect of the symmetric process. Additionally, in [BC14] it has been argued that the quantity

µx P s
∞(x, y) = ∑

c∈C∞

ω∞(c)

|c| Jc (x)Jc (y) (2.35)

is a measure of communication, similar to the commuting time, between x and y as seen

by (X t )t . Indeed, (2.35) sums over all c ∈ C∞ passing through x and y , which are ways to

commute from x to y and then back to x. Each such commuting cycle c is weighted by

ω∞(c) which measures how often (X t )t completes c and thus how important c is to (X t )t as a

communication channel, and by the length |c| so that short commuting cycles are preferred.

In the context of module detection however, the main question we have to answer is if there

is a relation between metastable sets of (X s
t )t and subsets of nodes in G with an interesting

structure. The following lemma will help answering this question in the affirmative:

Lemma 2.7 Let (X t )t be a random walk on the graph G. Let ω∞ be the circulation distribution

and γα be the Betti cycles with weights ω
(
γα

)
of (X t )t . Let C ⊂ X. If (X s

t )t is the reversible

surrogate of (X t )t with transition matrix P s∞ (2.21), then

P(X s
1 ∈C |X s

0 ∈C ) = 1−
∑

x∈C ,y∉C
∑

c∈C∞
ω∞(c)
|c| Jc (x)Jc (y)∑

x∈C ,y∈X
∑

c∈C∞
ω∞(c)
|c| Jc (x)Jc (y)

. (2.36)

If (X s
t )t has the transition matrix P s

b , then

P(X s
1 ∈C |X s

0 ∈C ) = 1−
∑

x∈C ,y∉C
∑b
α=1

ω(γα)
|γα| Jγα(x)Jγα(y)∑

x∈C ,y∈X
∑b
α=1

ω(γα)
|γα| Jγα(x)Jγα(y)

. (2.37)

We prove Lemma 2.7 in appendix A. The structural similarity between (2.34) and (2.36) resp.

(2.37) is clear: The adjacency matrix Ax y has been replaced by F s∞(x, y) =∑
c∈C∞

ω∞(c)
|c| Jc (x)Jc (y)

resp. F s
b(x, y) = ∑b

α=1
ω(γα)
|γα| Jγα(x)Jγα(y). However, (2.34) only holds if A is symmetric, while

(2.36) and (2.37) hold for general networks G . Structurally, (2.34) compares the number of

links between x and X \C with the total number of links leaving x for any node x ∈C , so C

is metastable if it has many more internal than external links. On the other hand, (2.36) and

(2.37) compare the number of cycles connecting x and X\C with the total number of cycles

at x for every x ∈ C , so a metastable set of (X s
t )t is a set with very many internal cycles and

few cycles connecting C and X \C . Cycles are weighted according to ω∞ resp. ω
(
γα

)
. This

becomes even more apparent with the following corollary of (2.36): Let C X\C∞ ⊂ C∞ be the

subset of cycles c ∈C∞ that leave the set C . Then

P(X s
1 ∈C |X s

0 ∈C ) ≥ 1−
∑

x∈C
∑

c∈C X\C∞ ω∞(c)Jc (x)∑
x∈C

∑
c∈C∞ω∞(c)Jc (x)

.

For example, the set C3 in Figure 2.6 on the right does not have any internal cycles c ∈ C∞.
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Depending on the spanning tree chosen for the construction of the Betti basis, there are

some Betti cycles γα which lie completely in C3, but their coefficients ω
(
γα

)
should be small

compared to the coefficients of the external cycles. We will see this in more detail in section

2.3.2.

So far we have established a relation between metastable sets of (X s
t )t , where (X s

t )t is the

Markov chain with transition matrix P s∞ or P s
b , and subsets of nodes of G with an interesting

structure. We also have a way to detect these metastable sets with MSM clustering once P s∞
resp. P s

b is known. That leaves us with the task of computing P s∞ reps. P s
b . We discuss this in

section 2.3.1 before moving to numerical examples in section 2.3.2.

2.3.1 Computational Aspects

Computing P s∞. A possible way to compute P s∞ is via its definition (2.21). This requires

knowledge of C∞ and ω∞. There is an immediate problem: As we discussed in section 2.1.3,

a direct computation of C∞ and ω∞ is NP-hard and thus numerically infeasible. A possible

remedy is to approximate C∞ and ω∞ by sampling CT and ωT for some finite time T > 0; as

we know from section 2.1.3 these approximations converge almost surely to C∞ resp. ω∞.

An algorithm to sample CT and ωT from a realization (Xn)1≤n≤T has also been discussed in

section 2.1.3. We state the algorithm again for convenience:

Algorithm 1 (sampling the cycle decomposition):

(i) Initialization: Set CT =;, N T
c = 0 for all c ∈C0 and η1 = X1.

(ii) for i = 2 to T :

(a) If ηi = (y1, . . . , ys) and Xi+1 6= yl for all 1 ≤ l ≤ s, then set ηi+1 :=
(y1, . . . , ys , ys+1) with ys+1 := Xi+1.

(b) If ηi = (y1, . . . , ys) and Xi+1 = yl for some 1 ≤ l ≤ s, then the

cycle c := [yl , . . . , ys] has been completed. Set CT → CT ∪ {c},

N T
c → N T

c +1 and ηi+1 := (y1, . . . , yl ).

Algorithm 1 requires to store a list of all the cycles that have been found, and in (b) one has to

check if the newly found cycle is already in the list or not. That makes the algorithm inefficient

both from the perspective of storage and computation time. It is more efficient to directly

sample an approximation P s
T of P s∞, which can be done by utilizing the following Lemma:

Lemma 2.8 (Sampling P s
T ) Let P s

T :RX→RX be the matrix with components

P s
T (x, y) = ÑT (x, y)

NT (x)
∀x, y ∈X, (2.38)
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where ÑT (x, y) = ∑
c∈CT

N T
c

|c| Jc (x)Jc (y) and NT (x) is the number of times (Xn)1≤n≤T passes

through x. Then P s
T is a reversible transition matrix with stationary distribution µT (x) =

NT (x)/T , and P s
T (x, y) → P s∞(x, y) a.s. as T →∞.

Proof: We first show the identity∑
y

ÑT (x, y) = ∑
c∈CT

N T
c Jc (x) = NT (x), (2.39)

which proves that P s
T has row sum one. With µT (x) = NT (x)/T , (2.39) together with the fact

that ÑT (x, y) = ÑT (y, x) ∀x, y ∈ X also shows that µT (x)P s
T (x, y) = µT (y)P s

T (y, x) ∀x, y ∈ X.

Thus P s
T is reversible with stationary distribution µT . The first equality in (2.39) follows from∑

y Jc (y) = |c|. The last equality is true for the following reason: Suppose Xi = x and X j = x

with j > i are two successive visits of x. Then either η j−1 contains Xi = x, in which case adding

X j = x triggers the completion of the cycle c = [Xi , . . . , X j−1] with Jc (x) = 1, or η j−1 does not

contain Xi , in which case there must be a i < j ′ < j such that X j ′ triggered the completion of a

cycle c containing Xi . In both cases, two successive visits of x correspond to the completion

of one cycle c with Jc (x) = 1.

Finally, to show that P s
T (x, y) → P s∞(x, y) as T →∞, write (2.38) out:

P s
T (x, y) = T

NT (x)

∑
c∈CT

1

T

N T
c

|c| Jc (x)Jc (y) = 1

µT (x)

∑
c∈CT

ωT (c)

|c| Jc (x)Jc (y).

Then ωT →ω∞ and CT ↑C∞ a.s. by Lemma 2.4, and µT (x) →µ(x) a.s. by the ergodic theorem

1.5 (take f = 1x ). ■

Lemma 2.8 provides us with a way of sampling P s
T , all we need to do is obtain the counts

ÑT (x, y) for all x, y ∈X from the realization (Xn)1≤n≤T . The algorithm 2 we present below does

exactly that.

Algorithm 2 (sampling P s
T ):

(i) Initialization: Set η1 = X1 and ÑT (x, y) = 0 for all x, y ∈X.

(ii) for i = 2 to T :

(a) If ηi = (y1, . . . , ys) and Xi+1 6= yl for all 1 ≤ l ≤ s, then set ηi+1 :=
(y1, . . . , ys , ys+1) with ys+1 := Xi+1.

(b) If ηi = (y1, . . . , ys) and Xi+1 = yl for some 1 ≤ l ≤ s, then the

cycle c := [yl , . . . , ys] has been completed. We set ÑT (x, y) →
ÑT (x, y)+ 1

|c| for all x, y ∈ c and ηi+1 := (y1, . . . , yl ).
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Algorithm 2 is asymptotically optimal in terms of both data storage and computation time: For

data storage, the only additional data besides the counts ÑT (x, y) themselves that needs to be

stored is the current state of the derived chain η. Since η can contain at most |X| elements, the

cost of storing η is O (|X|) and is therefore negligible to the cost of storing the counts ÑT (x, y),

which is O (|X|2) in the worst case. For the computation time let us examine the number N (T )

of operations performed by the algorithm as a function of T . For each 1 ≤ i ≤ T , Xi has to

be compared to all elements in ηi to determine if we are in (a) or (b), for a total of
∑T

i=1 |ηi |
operations. Every time a cycle c is completed, we are in (b) and need to perform |c|2 additions.

Finally, ηi needs to be updated to ηi+1 for a total of T operations. In total,

N (T ) =
T∑

i=1
|ηi |+

∑
c∈CT

N T
c |c|2 +T

≤ |X|T +|X| ∑
c∈CT

N T
c |c|+T

= (2|X|+1)T.

The last line follows from
∑

c∈CT
N T

c |c| = ∑
x
∑

c∈CT
N T

c Jc (x) = ∑
x NT (x) = T , see also (2.39).

This shows that N (T ) is O (T ), which is asymptotically optimal since every element of (Xn)1≤n≤T

has to be accessed at least once.

Convergence of P s
T → P s∞. While Lemma 2.8 guarantees a.s. convergence P s

T → P s∞ as

T →∞ by Theorem 1.5, it does not give information about the rate of convergence. If the

samples X1, . . . , XT where drawn independently, we could apply the law of large numbers to

the random variables ωT and µT , which would give a convergence with 1/T 1/2. In practice,

the correlations between the Xi induced by the Markov chain result in a convergence rate for

both µT and ωT that is dominated by the second-largest eigenvalue of P s∞ [SNS10]. If P s∞ has

strong metastabilities, this convergence rate can be slow. If the stationary distribution µ is

already known, one can use e.g. ‖µ−µT ‖ where ‖ · ‖ is any vector norm as an indicator for

convergence of P s∞.

Time series perspective. Networks are often constructed from data. For example, let Y1, . . . ,YT

be a time series of observations with Yi ⊂X. After a suitable discretization, we may assume

the observational space X to be discrete and define the counts NT (x) = ∑T
i=1δ(Yi = x) and

NT (x, y) =∑T−1
i=1 δ(Yi = x,Yi+1 = y) for all x, y ∈X. If we assume that the time series (Yi )i was

generated by a Markov chain on X, then the Maximum-Likelihood estimator of the transition

matrix of that chain is given by

P (x, y) = NT (x, y)

NT (x)
∀x, y ∈X.

Finally, we may construct the transition network of (Yi )i [DZD+10], which is just the Coates

graph G(P ). With this perspective, detecting modules in G really means detecting structure in
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the data (Yi )i . Then that same data can and in fact should be used as input for computing P s
T

with algorithm 2, and the inherent finiteness of (Yi )i removes the issue of convergence of P s
T

to some P s∞ since P s∞ is inaccessible and the observational window [0,T ] is dictated by the

data. Since algorithm 2 is asymptotically optimal, computing P s
T is as fast as computing P . We

conclude that time series analysis is the most natural use case for module detection with P s
T .

Computing P s
b . We can compute P s

b from its definition P s
b(x, y) = µ̃−1

x F s
b(x, y) with µ̃ given by

(2.22) and F s
b(x, y) given by (2.18). This requires the computation of the Betti basis {γ1, . . . ,γb}

and the corresponding weights ω
(
γα

)
. We discussed in section 2.1.2 that this can be done

in a computationally efficient way. The most demanding part is to find a spanning tree T

in the graph G . We use the Prim algorithm [Pri57] for this, which is O (|E | log |X|). The Prim

algorithm is capable (at no additional cost) of finding a minimal spanning tree, i.e. a tree T

that minimizes R(T ) :=∑
e∈T r (e) where r : E → [0,∞) are custom edge weights. We utilize this

to find a unique spanning tree T instead of having to chose one arbitrarily. More specifically,

we let r (e) be the resistance r (e) = (
µs(e)p(s(e)t (e))

)−1. The minimal spanning tree returned by

the Prim algorithm has the property that the total resistance of the cochords is minimized, or

equivalently that the total resistance of the chords is maximized.

T

e1

e2 e3

�1 �2 �3

(b)(a)
C2

C1

Figure 2.7 – Left: The barbell graph with minimal spanning tree T , chords e1, e2 and e3 and
corresponding cycles γ1, γ2 and γ3. Right: G(P s∞), modules detected by MSM clustering (red
and blue nodes) and two sets C1 and C2 whose metastability index we compute (red and blue
shaded regions).

2.3.2 Numerical Examples

Barbell Graph. Our first example is the barbell graph G with 2n nodes and uniform edge

weights. Figure 2.7 shows G together with a minimal spanning tree T on the left. We have

three chords e1, e2 and e3 corresponding to the Betti cycles γ1, γ2 and γ3. The weights are

all equal and given by ω(γ1) =ω(γ2) =ω(γ3) = 1
2(n+1) . One readily sees that C∞ = {γ1,γ2,γ3}

and ω∞(γi ) = ω(γi ). Hence in the particular case here, the algebraic and stochastic cycle

decompositions are exactly equal.
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In Figure 2.7 on the right, G(P s∞) is shown. The weights correspond to F s∞(x, y). Not surpris-

ingly, MSM clustering detects two modules which correspond to the clusters of red and blue

nodes shown. We can compute the metastability index of e.g. the red cluster C1 according to

(2.36):

p1(C1,C1) = P(X s
1 ∈C1|X s

0 ∈C1) = 1−
ω(γ2)
|γ2|

ω(γ2)+ω(γ1) ·n
= 1− 1

2(n +1)
.

In Figure 2.8, we show the metastability index pt (C ,C ) as defined in Definition 1.8 for different

times t and C =C1 (red) and C =C2 (blue). pt (C ,C ) is computed for the process with transition

matrix P s∞ (square markers) and for the symmetric process with transition matrix P s = 1
2 (P +

P−) (solid lines). The full cycle C1 is very metastable for both processes. On the other hand, for

the half-cycle C2 the metastability index pt (C2,C2) measured by P s decays a lot slower than

pt (C2,C2) measured by P s∞.
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p
t(C

,C
)

Figure 2.8 – Metastability index for C =C1 (red) and C =C2 (blue), computed with P s∞ (square
markers) and P s = 1

2 (P +P−) (solid lines).

Two or Three Modules? Our next example is the graph that already showed up in Figure 2.6.

It is shown again in Figure 2.9 together with the minimal spanning tree T and two possible

clusterings: One with three modules C1, C2 and C3 on the left, and one with only the two

modules C1 and C2 and a larger transition region on the right. MSM clustering of the symmetric

process with transition matrix P s produces the three modules. MSM clustering of P s∞ and P s
b

produces the clustering with two modules. C3 is not a module for P s∞ because there are no

internal cycles c ∈C∞ in C3, cf. (2.36). In fact every cycle passing through C3 also has to pass
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through C1 and C2. C3 is not a module for P s
b because examining the spanning tree T reveals

that most chords in C3 correspond to Betti cycles that also pass through C1 and C3, and only a

single chord corresponds to a Betti cycle that lies completely in C3.

C1

C2

C3

T
C1

C2

T

Figure 2.9 – Directed graph G with minimal spanning tree T (black edges). Left: Clustering
with P s produces three modules C1, C2 and C3. Right: Clustering with P s∞ or P s

b produces two
modules C1 and C2. Grey nodes are in the transition region.

In Figure 2.10 we examine this further by studying the metastability index pt (C ,C ) for different

times t and C = C1 (red), C = C2 (blue) and C = C3 (green). The metastability index was

computed for the simple random walk with transition matrix P given by (2.33) (solid lines), the

symmetrized random walk with transition matrix P s = 1
2 (P +P−) (round markers) and finally

the random walk with transition matrix P s
T with T = 106 (square markers, results for P s

b are

similar). The sampling error induced by the finite sampling time T was monitored by the error

‖µ−µT ‖1 and is ‖µ−µT ‖1 ≈ 0.0036.

For all three processes, C1 and C2 are metastable sets. The metastability indices of P and

P s∞ are in good agreement while the metastability index of P s is significantly higher. This is

consistent with the observations in section 2.2.3. For C3, the metastability index of P has a

sharp drop and reaches zero for t = 6, reflecting the fact that the simple RW is forced out of C3

after at most 6 steps. For P s∞, pt (C3,C3) is also very small and never larger than 0.5. In contrast,

pt (C3,C3) decays much slower for the symmetric process given by P s , e.g. p6(C3,C3) ≈ 0.45 is

still an order of magnitude larger than the equilibrium probability Pµ(X t ∈C3) ≈ 0.04.

Langevin Dynamics. Our next example uses the cycle decomposition to analyse a Markov

State Model (MSM) of the Langevin System (1.27)

d X t = m−1Pt d t

dPt = −(∇V (X t )+γm−1Pt
)

d t +√
2γεdWt (2.40)
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Figure 2.10 – Metastability index for C =C1 (red), C =C2 (blue) and C =C3 (green) computed
with P (solid lines) P s∞ (square markers) and P s = 1

2 (P +P−) (round markers).

with one-dimensional x and p coordinates and double well potential V (x) = (x2 −1)2. So far

MSMs have been considered mostly for reversible processes, Langevin dynamics however is

non-reversible. Figure 2.11 shows the phase space of this system together with some periodic

orbits of the associated Hamiltonian system. In this case the process has two metastable sets

around the minima x± =±1 of the potential V and p = 0. We set m = 1, ε= 0.2 and γ= 0.2, so

that the Langevin dynamics is still ’close’ to the associated Hamiltonian system

ẋ = p, ṗ = −∇x V (x), (2.41)

i.e., if we start the Langevin process in (x0, p0) with energy E0 = H(x0, p0) < 0.9 then the

dynamics will approximately follow the periodic orbit H (x, p) = E0 (with x < 0 if x0 < 0 and x >
0 if x0 > 0) of the associated Hamiltonian system for some time interval of order 1. Therefore

the typical transition from the vicinity of one of the wells across the energy barrier at x = 0

towards the other well will look as follows: first the trajectory will orbit the initial well for some

period of time before it crosses the barrier and starts to orbit the target well until it finally hits

the close vicinity around the respective energy minimum.

For this Langevin process MSM building is done as follows [BPN14, SS13a]: We construct a

uniform box covering of the essential state space [−1.8,1.8]×[−1.8,1.8] where the invariant pdf

is larger than the square root of the machine precision. We took square boxes Bi , i = 1, . . . ,n of

size ∆x = 0.2 and ∆p = 0.2. Next, M = 1000 trajectories of length t = 0.25 were started in every
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Figure 2.11 – Some periodic orbits of the system with Hamiltonian H = 1
2 p2 +V (x). The

coloring is according to the energy E0 = H(x0, p0).

box (distributed due to µ), and the transition matrix

Pi j =
mi j

M
,

was constructed, where mi j is the number of trajectories starting in Bi and ending up in B j .

The length t = 0.25 of the trajectories is very small compared to the expected transition time

(which is larger than 100 here) and still shorter than the period of the periodic orbits of the

associated Hamiltonian system. MSM [SS13a] theory tells us that the leading eigenvalues

of the transition matrix P are very close approximations of the leading eigenvalues of the

Langevin transfer operator and thus allow for an approximation of the transition statistics

between the metastable wells.

The metastable sets C1 and C2 found by MSM clustering of the loop transition matrix P s∞ are

shown in Figure 2.12 on the left. They respect the rotational symmetry (x, p) 7→ (−x,−p) that

the Hamiltonian system (2.41) enjoys. In Figure 2.12 on the right, we show the committor

function q1(x) = P(Xτ ∈C1|X0 = x) corresponding to the left set C1. The functionq1 determines

the degree to which the nodes in the transition region X \
(⋃m

i=1 Ci
)

are affiliated to C1. We

observe that q1 picks out the separatrix, i.e. the curve E0 = 1 which separates orbits that are

restricted to one of the minima and orbits around both minima, in the following sense: Boxes

inside the separatrix either have q1(x) ≈ 0 or q1(x) ≈ 1, while boxes outside have q1(x) ≈ 0.5.

This is in perfect agreement with the intuition that the Langevin system is still close to the

Hamiltonian system. Note that detailed balance is strongly violated here: In the p < 0 half-

plane, transitions from right to left are vastly more probable than transitions from left to right.

In the p > 0 half-plane, the situation is the other way around. This is also reflected by q1 in

(2.12b), which is closer to one in the p < 0 half-plane and closer to zero in the p > 0 half-plane.
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A clustering based on P s = 1
2 (P +P−) could not reflect this.
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Figure 2.12 – Clustering results for the Langevin system. (a) MSM clustering for P s∞, cluster
centers C1 (left) and C2 (right). (b) MSM clustering for P s∞, affiliation q1 and separatrix E0 = 1
(blue curve).

Timeseries example. Our final example is a time series {X1, . . . , XT } of seismic events in

California from 1952 to 2012, obtained from the SCEC6. See [AS06, AS04, DGP08, FDK13] for a

discussion of several approaches to analyse seismic data using recurrence networks, including

the approach based on a discretization of the observational space that we use here. Only

events with magnitude larger than mc = 2.5 are considered (these are 48669 events). The ob-

servational spaceX is the rectangle from 32◦ to 37◦ in latitude and −122◦ to −114◦ in longitude,

and we partition X into 4000 quadratic boxes Si of length ∆l = 0.1◦. Finally, the boxes which

don’t see any events are discarded. The transition matrix thus constructed corresponds to a

network with 2175 nodes and 28839 edges.

A Matlab implementation of algorithm 2 constructs P s
T in 2.05 seconds on a laptop. MSM clus-

tering takes 7.6 seconds. This clearly shows that performance is not an issue when algorithm 2

is used on time series data. The detected modules are shown in Figure 2.13, where a node x

receives the color of module Ci if the corresponding committor function qi satisfies qi (x) ≥ 0.8,

and is colored grey if qi (x) < 0.8 for all modules Ci . In fact the latter is the case for 80% of the

nodes, but these correspond to only 25% of all events. This illustrates that the incomplete

partition constructed here correctly reflects the uncertainty coming from limited data. A full

partitioning, which is obtained by most of the available clustering algorithms, e.g. Markov

Stability [SDYB12] or Infomap [DYB10], would have to cluster the grey nodes as well, even

though not enough data is available to do so. 9 modules are found, all of which correspond

to important faults or groups of faults, the largest one containing the San Andreas fault. This

demonstrates that this method can successfully uncover structure in the dataset {X1, . . . , XT } -

in this case, the presence of geological faults that influence the earthquake pattern.

6Southern California Earthquake Center, www.scec.org
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Figure 2.13 – Quaternary faults [USG] in Southern California and the clustering of the SCEC
time series found by CMSM. Node size is proportional to the number of events, color indicates
the modules found.

2.4 Application II: Transition Pathways in Irreversible Markov Pro-

cesses

In section 2.3, we studied how metastable sets of a non-reversible Markov process can be

found. In this section, we are interested in the transition mechanism between sets. So let

A,B ⊂X be two disjoint sets. We think of A and B as dynamically separated metastable sets,

but this is not necessary. The transition mechanism from A to B is completely described by

the TPT current of reactive trajectories J AB (or f AB in the discrete case) that was introduced

in section 1.3. We will see below that for reversible processes, J AB is a gradient vector field

with the forward committor function q+ as potential. This greatly simplifies the study of

the transition mechanism. For non-reversible processes, J AB also has rotational parts and

it makes sense to ask for a decomposition of J AB into a part with a gradient structure and a

purely rotational part. The gradient part may then be studied in isolation to understand the

transition mechanism. We discuss two approaches to this problem: A geometrical approach

via a projection analogous to a Hodge-Helmholtz decomposition in section 2.4.1 and a purely

dynamical approach via a decomposition of the ensemble of reactive trajectories into an

ensemble of directed pathways and an ensemble of cycles. The former approach is easier to

compute but we shall see that it lacks a stochastic interpretation. The latter approach uses the

cycle decompositions from section 2.1. It is computationally more demanding, but it has a

clear stochastic interpretation and allows us to give correct stochastic weights to all possible
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directed pathways from A to B .

2.4.1 Hodge-Helmholtz Decomposition

LetX⊂Rd . Recall that the probability current of reactive trajectories J AB introduced in section

1.3 is a vector field J AB :X→ Rd on X. To understand the structure of the transition from A

to B in more detail, it is helpful to decompose J AB into simpler parts. The basic idea here is

the concept of Hodge-Helmholtz decompositions: Let F be a vector field on some bounded

domain D ⊂R3. Then F can always be decomposed into a gradient and a rotation:

F =∇Φ+∇×R. (2.42)

The gradient part ∇Φ is rotation-free (∇×(∇Φ) = 0) while the rotational part ∇×R is divergence-

free (∇·(∇×R) = 0). The potentialΦ can be computed by taking the divergence of (2.42), which

yields the Poisson equation ∇·F =∆Φ together with appropriate boundary conditions on ∂D

forΦ and R, e.g. ~n ·R = 0 and ~n ·∇Φ=~n ·F , where ~n is the normal vector of ∂D .

When looking for decompositions of the type (2.42) for J AB , we have to make additional

assumptions on the dynamics. We first consider the case of Markov Diffusions on X ⊂ Rd .

Then we consider the case of MJPs on discrete state spaces, that is we look for decompositions

of the type (2.42) for the effective probability current f +
AB introduced in (1.52).

Markov Diffusions

Let (X t )t be a diffusion onX⊂Rd with generator L given by (1.18). Let A and B be two disjoint

closed subsets of Xwith smooth boundaries. The probability current J AB is given by [Met07]

J AB (x) = q−(x)q+(x)J (x)+q−(x)µ(x)a(x)∇q+(x)−q+(x)µ(x)a(x)∇q−(x) (2.43)

with the equilibrium current J(x) = µ(x)b(x)−∇· (a(x)µ(x)
)
. We assume that the diffusion

matrix a is either symmetric positive definite (denoted by a > 0) or symmetric positive semidef-

inite (denoted by a ≥ 0). We show in appendix A that if (X t )t is reversible, J AB reduces to

J AB (x) =µ(x)a(x)∇q+(x), (2.44)

that is J AB is µ(x)a(x) times a gradient vector field with potential q+. This motivates the

following definition:

Definition 2.9 A Hodge-Helmholtz decomposition of the probability current of reactive tra-

jectories J AB :X⊂Rd is given by a potentialΦ :X⊂R and another vector field R :X⊂Rd such

that

J AB (x) =µ(x)a(x)∇Φ(x)+R(x) ∀x ∈X (2.45)
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where divR = 0 on X and ~nA ·R =~nB ·R = 0 with ~nA and ~nB being the unit normal vector fields

on ∂A and ∂B. We write JΦ(x) :=µ(x)a(x)∇Φ(x).

We collect some properties:

Theorem 2.10 The decomposition (2.45) has the following properties:

(i) The PotentialΦ solves the following Dirichlet problem with Neumann boundary condi-

tions:

LsΦ= 0 onX\ (A∪B),

~nA · (a ∇Φ) =~nA · (a ∇q+)
on ∂A, (2.46)

~nB · (a ∇Φ) =−~nB · (a ∇q−)
on ∂B.

If a > 0 then there is a (up to an overall additive constant) unique weak solution Φ to

(2.46) in the Sobolev space H 1 (X\ (A∪B)), and Φ achieves its minimum on ∂A and its

maximum on ∂B.

(ii) If (X t )t is reversible, thenΦ= q s and R = 0 are solutions for (2.45).

(iii) Let γ : [0,T ] →X be a path so that for every t ∈ [0,T ], the tangent vector γ̇(t) is parallel

to JΦ(γ(t )). If a ≥ 0 thenΦ is nondecreasing along γ. If a > 0 thenΦ is strictly increasing

along γ.

Proof:

(i) To compute the potentialΦ, we take the divergence of (2.45). For x ∈X\(A∪B) we know

that div J AB (x) = 0. On the other hand, the divergence of the RHS of (2.45) is given by

div
(
µ(x)a(x)∇Φ(x)

)=∑
i
∇i

(
µ(x)

∑
j

ai j (x)∇ jΦ(x)

)

=∑
j

(
∇ jΦ(x)

)∑
i
∇i (

µ(x)ai j (x)
)+µ(x)

∑
i , j

ai j (x)
∂2Φ(x)

∂xi∂x j

=µ(x)bs(x) ·∇Φ+µ(x)a(x) : ∇2Φ(x)

with, in view of (1.20),

bs
j (x) := 1

µ(x)

∑
i
∇i (

µ(x)ai j (x)
)= 1

2

(
b j (x)+b−

j (x)
)

.

Putting this together, we obtain that

div
(
µ(x)a(x)∇Φ(x)

)=µ(x)LsΦ(x) ∀x ∈X\ (A∪B)
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with the symmetrized generator Ls = 1
2 (L+L−). Together with the boundary conditions

obtained by multiplying (2.43) with ~nA resp. ~nB , this gives (2.46). If a is positive definite

then Ls is elliptic and (2.46) has a unique weak solution (up to an additive constant)

in the Sobolev space H 1 (X\ (A∪B)) [Bra07, Bra12]. Furthermore, by the maximum

principle for elliptic operators,Φ achieves its maximum and minimum on ∂A∪∂B . Let

xM be the maximum ofΦ and suppose that xM ∈ ∂A. Then by the Hopf Lemma [EL98],

either Φ is constant (But that would imply ∇Φ= 0 and thus div J AB = 0 on X by (2.45).

Hence unless kAB = 0, Φ is not constant.) or ~nA(xM ) ·∇Φ(xM ) < 0. Since a is positive

definite, this implies that ~nA(xM ) · (a(xM )∇Φ(xM )) < 0. On the other hand, since ∂A is

the surface where q+ = 0, either ∇q+(xM ) = 0 or ∇q+(xM ) is parallel to ~nA(xM ). Since a

is positive definite, this implies ~nA(xM ) · (a(xM )∇q+(xM )
)≥ 0, in contradiction to (2.46).

(ii) If (X t )t is reversible, then Φ = q s solves (2.46) since then q+ = q s and q− = 1 − q s .

Furthermore, by (2.44) andΦ= q s , we have J AB = JΦ and by (2.45), we have J AB = JΦ+R .

Thus R = 0.

(iii) Since γ̇(t ) is parallel to JΦ(γ(t )) for every t ∈ [0,T ], there is a scalar function α : [0,T ] →
(0,∞) so that γ̇(t ) =α(t )JΦ(γ(t )). LetΦt =Φ(γ(t )) and ξ(x) =∇Φ(x). Then

Φ̇t =∇Φ(γ(t ))·γ̇(t ) =α(t )∇Φ(γ(t ))·JΦ(γ(t )) =α(t )µ
(
γ(t )

)∑
i j

ai j
(
γ(t )

)
ξi (

γ(t )
)
ξ j (

γ(t )
)

.

Sinceα> 0 and µ> 0, a ≥ 0 implies Φ̇t ≥ 0 so thatΦ is non-decreasing, and a > 0 implies

Φ̇t > 0 so thatΦ is strictly increasing. ■

Theorem (2.10) gives a way to computeΦ by solving (2.46) and guarantees weak uniqueness of

the solution in the case where a > 0. It also allows for an interpretation of the decomposition

(2.45). Firstly, in the reversible case we obtainΦ= q s and R = 0. Thus the appearance of the

rotation R is due to nonreversibility. R is divergence-free and thus the surface integral of R over

any dividing surface between A and B is zero, so R does not describe how reactive trajectories

are transported from A to B . The gradient part JΦ shows the opposite behaviour: The potential

Φ is a harmonic function of the elliptic operator Ls , and differs from q s only in the boundary

conditions in (2.46). If a > 0, then by Theorem (2.10)Φ is strictly increasing along flowlines of

JΦ. SinceΦ achieves its minimum at ∂A and its maximum at ∂B , this means that flowlines of

JΦ go from ∂A to ∂B , they do not form cycles and they cross every equipotential surface ofΦ

exactly once. So JΦ does describe the transport mechanism of the reactive trajectories from A

to B .

These properties show that JΦ is very similar to Jq s , the reactive current of the symmetrized

process with generator Ls . But note that by Theorem 2.6 kAB ≥ k s
AB , so JΦ will generically

transport more flow from A to B than Jq s . This is achieved by stretching the potentialΦ relative

to q s , allowing for a comparatively larger gradient. That this really happens becomes clear in

Theorem 2.14 which discusses the discrete case and shows thatΦ= (
kAB /k s

AB

)
q s when A = {a}

and B = {b} are single points. Note the similarity to the construction of reversible surrogates in
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section 2.2.1: In order to emulate the stronger mobility of a non-reversible process, we had to

add additional edges. Here, we have to allow for more flow to pass along the existing edges in

order to emulate the stronger reaction rate of the non-reversible process.

Markov Jump Processes

Let (X t )t be a MJP on X= {1, . . . ,n}, and let A and B be two disjoint subsets of X. The discrete

analogon of the vector field J AB is the effective probability current f +
AB :X×X→R introduced

in (1.52). In order to talk about Hodge-Helmholtz decompositions of f +
AB , we need discrete

gradient and divergence operators. The divergence was introduced in (1.53). We define a

discrete gradient operator:

Definition 2.11 (Discrete gradient.) Let L be the generator of a MJP on X= {1, . . . ,n}. For any

(x, y) ∈X×X let

c s(x, y) = 1

2

(
µx lx y +µy ly x

)
be the capacity of the edge (x y). For a function f :X→R, let the gradient of f be the function

grad f :X×X→R given by

grad f (x, y) = 1

2
c s(x, y)

(
f (y)− f (x)

)
.

This definition is motivated by the following observation: If (X t )t is reversible, then f +
AB

reduces to [Met07]

f +
AB (x, y) = 1

2
µx lx y

(
q+(y)−q+(x)

)= grad q+(x, y), (2.47)

thus f +
AB is a gradient flow with potential q+, in perfect agreement with the diffusion situation.

Note that grad f is an antisymmetric function on X×X, and we have the following Lemma:

Lemma 2.12 For any f :X→R, we have

divgrad f = DµLs f

where Ls = 1
2 (L+L−).
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Proof: Let x ∈X. We compute

divgrad f (x) =∑
y

grad f (x, y)−∑
y

grad f (y, x) = 2
∑

y
grad f (x, y)

=∑
y

c s(x, y)
[

f (y)− f (x)
]

=∑
y
µx Ls

x y f (y)

using (1.53), the antisymmetry of grad f and definition 2.11. ■

We now make the following definition, in analogy with definition 2.9:

Definition 2.13 A Hodge-Helmholtz decomposition of the effective current f +
AB :X×X→ R

is given by a potentialΦ :X⊂R and a flow R :X×X→R such that

f +
AB (x, y) = gradΦ(x, y)+R(x, y) ∀x, y ∈X (2.48)

and divR = 0 on X.

Note that there are no additional boundary conditions for R in (2.48). The reason for this is

that in contrast to the diffusion case, (2.48) together with divR = 0 already leads to an equation

for Φ which has a unique solution. This also means that in general R(x, y) 6= 0 for x ∈ A and

y ∉ A or x ∉ B and y ∈ B . Again we collect properties of this decomposition:

Theorem 2.14 The decomposition (2.48) has the following properties:

(i) If (X t )t is ergodic thenΦ and R are unique up to an overall additive constant inΦ. The

potentialΦ solves the linear system

LsΦ= b, b(x) =


0 x ∈X\ (A∪B),

(Lq+)(x) x ∈ A,

−(L−q−)(x) x ∈ B.

(2.49)

In addition,Φ achieves its minimum on A and its maximum on B.

(ii) If (X t )t is reversible, thenΦ= q s and R = 0.

(iii) If A = {a} and B = {b} are singletons, then

Φ= kAB

k s
AB

q s (2.50)

where kAB =∑
y µa lay q+(y) and k s

AB =∑
y µaLs

ay q s(y).

(iv) If (x1, . . . , xT ) is a path in G(Ls) such that gradΦ(xi , xi+1) > 0 for all i = 1. . .T −1, thenΦ

is strictly increasing along (x1, . . . , xT ).
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Proof:

(i) In complete analogy with the diffusion case, we obtain the equation thatΦmust solve

by taking the divergence of (2.48). From (1.51) and (1.54), we obtain for the divergence

of the LHS

div f +
AB (x) =


0 x ∈X\ (A∪B),∑

y µx lx y q+(y) x ∈ A,

−∑
y q−(y)µy ly x x ∈ B.

(2.51)

The divergence of the RHS of (2.48) gives DµLsΦ in view of Lemma (2.12). If we divide

both sides by Dµ and use the definition of L−, we obtain (2.49). Since (X t )t is ergodic,

the kernel of Ls is given by the constant functions on X. Thus the solution to (2.49) is

unique up to a constant. By (2.49) and the maximum principle for the operator Ls ≤ 0,

the potential Φmust achieve its maximum and minimum on A∪B . Suppose x ∈ A is

the maximum ofΦ. Then

LsΦ(x) =∑
y

Ls
x yΦ(y) = ∑

y 6=x
Ls

x y

(
Φ(y)−Φ(x)

)< 0.

On the other hand,

b(x) = Lq+(x) = ∑
y 6=x

lx y
(
q+(y)−q+(x)

)≥ 0

since q+(x) = 0, in contradiction to (2.49).

(ii) If (X t )t is reversible then q+ = q s and q− = 1−q s , soΦ= q s solves (2.49). On the other

hand, f +
AB = grad q+ by (2.47), thus R = 0.

(iii) If A = {a} and B = {b}, then by (i ) and (1.55),Φ solves LsΦ= b with

µx b(x) =


0 x ∈X\ (A∪B),

kAB x = a,

−kAB x = b.

On the other hand, the committor function q s solves (1.48) with L replaced by Ls , which

can be written as Ls q s = bs with

µx bs(x) =


0 x ∈X\ (A∪B),

k s
AB x = a,

−k s
AB x = b.

This shows (2.50).
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(iv) Clear from definition (2.11). ■

Theorem (2.14) guarantees that the decomposition (2.48) always has a solution up to an overall

additive constant in Φ as long as (X t )t is ergodic. It also shows that the interpretation of

the diffusion case (2.45) carries over to (2.48). Again R = 0 in the reversible case, so that the

appearance of R can be attributed to the non-reversibility of (X t )t . Since divR = 0 on X, the

total flow transported by R across any dividing surface between A and B is zero, so R does

not describe the transport mechanism of reactive trajectories from A to B , but additional

rotations instead. The potential Φ again differs from q s only due to the different boundary

conditions in (2.49). If A and B are singletons, then (2.50) shows that Φ and q s are equal

up to a multiplicative constant given by the fraction of the reaction rates kAB and k s
AB . This

multiplicative constant is always larger than one and stretchesΦ compared to q s so that gradΦ

can transport the rate kAB ≥ k s
AB . The situation A = {a} and B = {b} can always be reached

by lumping the states in A to a single state {a} and the states in B to a single state {b}: Let

T = X \ (A ∪B). We set µa = ∑
x∈Aµx , µb = ∑

x∈B µx and define the lumped generator L̄ on

T∪ {a}∪ {b} by setting

l̄x y = lx y ∀x, y ∈T,

l̄ay = 1

µa

∑
x∈A

µx lx y ∀y ∈T,

l̄xb = ∑
y∈B

lx y ∀x ∈T.

It can be checked easily that lumping preserves f +
AB (x, y) for all x, y ∈T and that f +

AB (a, y) =∑
x∈A f +

AB (x, y) for all y ∈T as well as f +
AB (x,b) =∑

y∈B f +
AB (x, y) for all x ∈T.

The following Lemma is a corollary of Theorem 2.14.

Lemma 2.15 LetΦ be the potential of f +
AB as in (2.48), and write gradΦ= 1

2

(
gradΦ+−gradΦ−

)
where gradΦ+ ≥ 0 and gradΦ− ≥ 0 are the positive and negative parts of gradΦ. Then the Coates

graph G
(
gradΦ+

)
is a directed tree with all of its roots in A and all of its leaves in B, andΦ is

strictly increasing along paths in G
(
gradΦ+

)
.

Proof: By (iv) in Theorem (2.14), G
(
gradΦ+

)
is cycle-free, and Φ is strictly increasing along

paths in G
(
gradΦ+

)
. If x is a root in G

(
gradΦ+

)
, then gradΦ(y, x) ≤ 0 for all y ∈ X, and

there must be an x ′ ∈X with gradΦ(x, x ′) > 0. Thus divgradΦ(x) > 0. Likewise, if x is a leaf

in G
(
gradΦ+

)
then divgradΦ(x) < 0. By (2.48) and (2.51), divgradΦ(x) = div f +

AB (x) = 0 if

x ∈X\ (A∪B), divgradΦ(x) > 0 if x ∈ A and divgradΦ(x) < 0 if x ∈ B . Thus all the roots are in

A and all the leaves are in B . ■
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Examples

Barbell Graph. As our first example we consider the Barbell graph G that was shown in

Figure (2.7). We define a random walk on G that goes with probability p = 0.8 along edge

directions and with probability (1−p) against edge directions. We select the source A = {a}

and target B = {b} as shown in Figure 2.14. The resulting effective current f +
AB is also shown

in Figure 2.14. The dotted lines transport almost no current, so that f +
AB is concentrated on

a single pathway from a to b. A typical reactive trajectory uses this pathway. In Figure 2.14

on the right, the potentialΦ and the splitting of f +
AB into gradΦ and R are shown. We observe

that gradΦ uses the loops in both directions with equal preference. The fact that one of the

directions is actually preferred is encoded in R. In other words: The flowlines of gradΦ do not

coincide with typical pathways of reactive trajectories.

a b

f+
AB

a b

R

grad�

Figure 2.14 – Left: The effective current f +
AB on the barbell graph with source A = {a} and target

B = {b}. The dotted edges carry almost no current. Right: Gradient flow gradΦ (green edges)
and rotation R (red edges). Thickness denotes magnitude of flow. The colorscale of the nodes
indicates the value ofΦ.

A

B

A

B

Figure 2.15 – Transition tube graph. Left: Effective current. Edge thickness is proportional to
the magnitude of the current. Right: Node coloring indicatesΦ. Edge directions according to
gradΦ. Edge thickness is proportional to gradΦ. Edge color is proportional to R.

Transition tube with vortices. The next example is a graph G which represents a short

transition tube with 4 additional vortices. We construct this by starting with the simple RW

(2.33) on the undirected graph G and then adding a strong preference to travel along the
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vortices in the direction shown in Figure 2.15, which results in the current f +
AB shown on

the left. On the right we show the splitting of f +
AB into gradΦ and R. The color of the edges

is proportional to R while the thickness is proportional to gradΦ. The rotation R picks the

vortices out. We observe that gradΦ is larger for the outer pathways than it is for the central

pathway and, as in the barbell graph example, gradΦ passes through the vortices in both

directions - in the direction given by f +
AB and against it. The potentialΦ itself is also shown in

Figure 2.15, and it is monotonically increasing from the left to the right.

Random block model. Our next example is a simple random walk on a random graph G

generated by a so-called random block model. Given parameters m, nb , pi and po , the

random block model first groups the n = mnb nodes into m blocks C1, . . . ,Cm of nb vertices

each. Then the model decides independently for each directed edge if it is present or not. In

the simplest version of the model, edges that connect nodes in the same block (i.e. interior

edges) are present with probability pi , while edges between blocks (i.e. exterior edges) are

present with probability po . We make the additional modification of only allowing exterior

edges between a specified central block Cm0 and any other block Ci . This arranges the blocks

in a star-shaped fashion, see Figure 2.16.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

n

h n

A

BC1

C2

C3

C4

C5

Figure 2.16 – Left: A realization of the random block model with m = 5, nb = 50, pi = 0.5 and
po = 0.0016, with a random source node A in block C1 and a random target node B in block
C3 selected. Node color is according to q+, with red denoting q+(x) = 1 and green denoting
q+(x) = 0. Node size proportional to µR (x) (log scale). Right: Dominant eigenvalues of the
transition matrix P (2.33) for this model.

For pi À po , the block model produces a directed graph G with a pronounced modular

structure. The simple random walk (2.33) on G is expected to display strong metastability

with metastable sets C1, . . . ,Cm . As an example, we consider the parameters m = 5, nb = 50,

pi = 0.5 and po = 0.0016. This produces 5 well connected blocks C1, . . . ,C5 with on average 4

connections per direction between the central block C2 and the other blocks7. Figure 2.16

7There is a small probability that the random graph G created by the block model is not strongly connected, so
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shows an example realization. Figure 2.16 also shows the dominant spectrum of the transition

matrix P of the simple RW on G given by (2.33). As expected, there are 5 eigenvalues close to

one which shows that P displays very strong metastability.

Now we study transitions from C1 to C5 by selecting a random node in C1 as the source A and

a random node in C5 as the target B . Figure 2.16 shows the forward committor q+ (colour of

the nodes) and the probability of reactive trajectories µR given by (1.50) (size of the nodes).

We see that q+ is almost constant on C1, C5 and C2 ∪C3 ∪C4. Most of the reactive trajectories

are in C2, followed by C3. This further confirms the presence of strong metastability. A typical

reactive trajectory first equilibrates in C1, then transitions to C2, equilibrates in C2∪C3∪C4 and

finally transitions to C5 where it goes to B . Since it cannot go from C3 or C4 to C5, transitions

C2−C3−C5 or C2−C4−C5 are detours that we would like to separate from the actual transition

C1 −C2 −C5. We may conclude that gradΦ describes the transition from A to B , but gradΦ is

positive on edges where the reactive trajectories themselves cannot go.

A

B

grad� R

f+
AB

C1

C2

C3

C5
C4

C1

C1

C2 C2

C3

C3

C4

C4

C5

C5

Figure 2.17 – The decomposition (2.48) of f +
AB (top) into gradΦ (bottom left) and R (bottom

right) for the random block model. Colour according to q+ with red denoting q+(x) = 1 and
green denoting q+(x) = 0. Node size proportional to the total amount of flow passing through
the node (log scale). Edge color proportional to the total amount of flow passing through the
edge (log scale).

that the simple RW on G would not be ergodic. If this happens, we discard G and redraw.
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In Figure 2.17, the effective current f +
AB and its splitting into gradΦ and R according to (2.48)

is visualized. For all the plots in Figure 2.17, the color of the edges is proportional to the

logarithm of the amount of flow the edge transports, from light grey (small) to black (large).

The color of the nodes corresponds to q+. The potentialΦ and q+ are indistinguishable. The

size of the nodes corresponds to the total traffic, i.e. the total incoming flow, the node sees,

again on a logarithmic scale. We see that the effective current f +
AB is large on all exterior edges

between C2, C3 and C4, indicating a lot of traffic between C2, C3 and C4 before the transition

to C5 is made. The edges from C5 to C2 also carry a lot of current. In contrast, gradΦ only

goes from C1 to C2 and than to C5. All exterior edges between C1 −C2 and C2 −C5 are now

oriented in the direction of the reaction, and there is almost no traffic between C2, C3 and C5.

The rotation R captures back and forth transitions between C2 and C1, C3, C4, and C5.

Langevin system. The last example is the Langevin system (2.40) from section 2.3.2. Recall

that with the parameters from section 2.3.2, the Langevin system is close to the correspond-

ing Hamiltonian system. For the Hamiltonian system, the energy H(x, p) = 1
2m p2 +V (x) is

conserved. For the Langevin system, Eµ[Ht ] is conserved and Eµ[|Ht − H0|] varies slowly:

The system will sample constant energy surfaces quickly, but take a long time to reach

energies which are significantly higher or lower. We study reactions from the right basin

A = {0.9 ≤ x ≤ 1.1,−0.3 ≤ p ≤ 0.3} to the left basin B = {−1.1 ≤ x ≤−0.9,−0.3 ≤ p ≤ 0.3}. To go

from the right basin to the left basin, the system must first increase its energy from H0 = 0 to

H1/2 ≥ 1 to reach the separatrix, then it must travel to the left and finally decrease its energy

from H1/2 ≥ 1 to H1 = 0. Therefore we expect the potentialΦ to coincide with H in the right

well and with −H in the left well. Figure 2.18 shows Φ and the contour lines of H , and the

result indeed confirms our expectations exactly.

Figure 2.18 also shows the splitting (2.48) of f +
AB into gradΦ (green arrows) and R (red arrows).

The rotation R essentially coincides with the flow of the Hamiltonian system itself. That is,

R describes the fast dynamics within regions of constant energy. The gradient flow gradΦ

is approximately symmetric with respect to the momentum flip p 7→ −p. In particular, the

total flow crossing the x = 0 hypersurface in the p > 0 region is very similar to the total flow

crossing x = 0 in the p < 0 region. In contrast, a typical reactive trajectory would cross the

x = 0 hypersurface many times, but it would almost always cross from right to left in the p < 0

region and from left to right in the p > 0 region, and it would almost always make its last

crossing in the p < 0 region. This shows that we cannot interpret gradΦ as i.e. the flowlines of

reactive trajectories after their detours have been removed.

2.4.2 Transition Pathways and Cycles

Parts of the work presented in this section are published in [BCS15]. The numerical results of

section 2.4.1 all indicate one drawback if we wish to interpret the decomposition (2.48): The

potential part gradΦ is insensitive to the edge orientations of f +
AB . This renders a stochastic in-

terpretation of the splitting (2.48) impossible. By this we have the following in mind: Consider
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Figure 2.18 – Langevin system. Top: PotentialΦ and contour lines of H . For the boxes at the
boundary,Φ could not be computed reliably due to lack of data. Bottom: Gradient flow gradΦ
(green arrows) and rotation R (red arrows). The length of the arrows is proportional to the
magnitude of flow transported. The size of the arrows representing gradΦ has been enlarged
by a factor of 2 relative to R for visibility.

some way to interpret gradΦ as the probability flow generated by an ensemble of ’pruned’

reactive trajectories. By the properties of gradΦ, the pruned reactive trajectories will have no

cycles and will produce the same reaction rate kAB . However, other statistical properties of the

ensemble of pruned trajectories might be completely different when compared to the original

ensemble of reactive trajectories. For example, pruned trajectories might perform transitions

frequently that are extremely unlikely or even outright forbidden for the reactive trajectories.
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The numerical results in 2.4.1 indicate that this behaviour of gradΦ is generic. As a way out, we

will now discuss an alternative to the Hodge-Helmholtz-decomposition presented in section

2.4.1 that constructs the ensemble of pruned reactive trajectories explicitly and therefore has

a direct stochastic interpretation. The cycle decompositions of section 2.1 provide the tool for

achieving this.

To set things up, we make the following definition, following [Met07]:

Definition 2.16 A reaction pathway is a nonintersecting directed path in G
(

f +
AB

)
that starts

in A and ends in B.

The idea here is the following: A single reactive trajectory (A, x1, . . . , xn ,B) can always be

decomposed into one uniquely defined reaction pathway and several cycles. This can be done

via the algorithm presented in section 2.1.3. The only difference is that we have two different

kinds of ’cycles’: Reaction pathways and cycles in the transition region T=X \ (A ∪B). The

corresponding decomposition of f +
AB into a current generated by reaction pathways and a

current generated by cycles will be given by Lemma 2.4.

In order to use Lemma 2.4, we need to construct a Markov chain (X R
n )n with transition matrix

P R and invariant distribution µR such that µR
x pR

x y gives the current f +
AB . However, f +

AB is not

divergence-free in A and B , but µR
x pR

x y has to be divergence-free everywhere in order to use

Lemma 2.4. As a first step we therefore map all of A∪B to a single state s and define a lumped

flow F R on T∪ {s}, as shown in Figure 2.19. The next Lemma tells how this is done.

A
B

s

Figure 2.19 – Left: Transition region T (grey), source A (green) and target B (red). Right: The
lumping procedure consists of keeping T and mapping all of A∪B to a single node s.

Lemma 2.17 Let the lumped flow F R on T∪ {s} be defined by

F R (x, y) =


max

{
f AB (x, y)− f AB (y, x),0

}
x, y ∈T∑

a∈A f AB (a, y) x = s, y ∈T∑
b∈B f AB (x,b) x ∈T, y = s.

(2.52)
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Then 1
2

(
F R (x, y)−F R (y, x)

)= f +
AB (x, y) for all x, y ∈T, and F R is divergence-free on T∪ {s}. In

addition, the total outflow
∑

y F R (s, y) of s equals kAB .

Proof: 1
2

(
F R (x, y)−F R (y, x)

) = f +
AB (x, y) for all x, y ∈ T is clear. The outflow of F R from s is

given by∑
y

F R (s, y) = ∑
a∈A,y∈X

f AB (a, y) = kAB

and equals the inflow of F R into s:∑
x

F R (x, s) = ∑
x∈X,b∈B

f AB (x,b) = kAB .

Thus divF R (s) = 0. It remains to show that divF R (x) = 0 for x ∈X:

divF R (x) = ∑
y∈T∪{s}

(
F R (x, y)−F R (y, x)

)
= ∑

y∈T

(
f AB (x, y)− f AB (y, x)

)+F R (x, s)−F R (s, x)

= ∑
y∈T

(
f AB (x, y)− f AB (y, x)

)+ ∑
y∈B

f AB (x, y)− ∑
y∈A

f AB (y, x)

= ∑
y∈X

(
f AB (x, y)− f AB (y, x)

)= 0

since f AB is divergence-free on X\ (A∪B). ■

Thus F R describes the transport of reactive trajectories from A to B in the same way f +
AB does,

but it transports them from s back to s instead. Every reaction pathway (xA , x1, . . . , xn , xB )

corresponds to a simple loop (s, x1, . . . , xn , s) in G(F R ) which passes through s. The next step

is to define a transition matrix P R on T∪ {s} and a corresponding stationary distribution µR

such that µR (x)pR (x, y) = F R (x, y) for all x 6= y ∈T∪ {s}. This can indeed always be done, as

the next lemma shows.

Lemma 2.18 Define

µR (x) =


∑
y F R (x, y) x ∈T,

1−∑
x∈TµR (x) x = s

(2.53)

and

pR (x, y) =


F R (x,y)
µR (x) x 6= y ∈T∪ {s},

0 x = y ∈T,

1−∑
y∈T pR (s, y) x = y = s.

(2.54)

Then P R is a transition matrix with stationary distribution µR and µR (x)P R (x, y) = F R (x, y)
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holds for all x 6= y ∈T∪ {s}.

Proof: That
∑

y P R (x, y) = 1 and
∑

x∈T∪{s}µ
R (x) = 1 is clear from the definition. µR (x)pR (x, y) =

F R (x, y) for all x 6= y ∈T∪ {s} follows directly from (2.54). We show that µR is the stationary

distribution of P R : For y ∈T∪ {s},∑
x
µR (x)pR (x, y) =µR (y)pR (y, y)+ ∑

x 6=y
F R (x, y)

=µR (y)pR (y, y)+ ∑
x 6=y

F R (y, x)

=µR (y)pR (y, y)+ ∑
x 6=y

µR (y)pR (y, x) =µR (y)

using the results above and the fact that F R is divergence-free. This finishes the proof. ■

Note that we needed to include a self-loop at the state s, clf. Figure 2.19. This ensures that the

process (X R
t )t spends the appropriate amount of time in the non-reactive state s and that the

overall transition rate kAB is correctly given by the outflow of s. There is no need to include

self-loops for any other state x ∈T.

The transition matrix P R constructed in Lemma 2.18 is the generalization of the ’no detour

transition path process’ to non-reversible processes that was constructed in [CVE14] for

reversible ones. In fact, the name ’no detour process’ is only justified in the reversible case,

where the current F R of P R equals grad q+ and thus the trajectories produced by P R are

directed pathways from A to B along which q+ always increases. In the non-reversible case,

paths generated by P R indeed perform detours in the form of loops, which we proceed to

remove in what follows.

Now we are ready to use the cycle decomposition (2.6) for µR (x)pR (x, y). This will decompose

the flow F R (x, y) into simple cycles in the graph G
(
F R

)
. We can write the set C∞ of simple

cycles in G
(
F R

)
as C∞ = {[s]}∪C s∞∪C T∞ where C s∞ is the set of cycles that contain the node s

and at least one node inT and therefore correspond to reaction pathways, and C T∞ is the set of

cycles that do not contain s and therefore correspond to detours of the reactive trajectories.

Theorem 2.19 The decomposition formula

F R (x, y) =µR (x)pR (x, y) = ∑
c∈C s∞

ω∞(c)Jc (x, y)+ ∑
c∈C T∞

ω∞(c)Jc (x, y) (2.55)

= F P (x, y)+R(x, y)

holds for all x 6= y ∈T∪ {s}, and has the following properties:

(i)
∑

c∈C s∞ω∞(c) = kAB

(ii) If (X t )t is reversible, then C T∞ =; and thus R = 0.

80



2.4. Application II: Transition Pathways in Irreversible Markov Processes

Proof: The decomposition (2.55) is a consequence of (2.6) andC∞ = {[s]}∪C s∞∪C T∞. We show

(i) and (ii):

(i) We use Lemma 2.17, equation (2.55) and the fact that Jc (s, y) = 0 for all c ∈C T∞ and all

y ∈T to write

kAB = ∑
y∈T

F R (s, y) = ∑
y∈T

∑
c∈C s∞

ω∞(c)Jc (s, y) = ∑
c∈C s∞

ω∞(c)Jc (s).

But by definition Jc (s) = 1 for all c ∈C s∞, which shows (i).

(ii) If (X t )t is reversible, then we know from section 2.4.1 that f +
AB = grad q+ and G

(
f +

AB

)
contains no cycles. Then the only cycles G

(
F R

)
can have must pass through s. ■

The weights ω∞(c) for the reaction pathways c ∈C s∞ have the following interpretation: Sup-

pose X R
0 = s and let τ= inf

{
t > 0 : X R

t = s
}

be the next time the state s is visited. By definition,

this completes a cycle in C s∞, and the probability that the completed cycle is c is given by

ω∞(c)/kAB . Thus ω∞(c) endows C s∞, and thus the space of reaction pathways, with a prob-

ability distribution. If we generate a long realization of the process (X R
t )t that gives many

transitions from s back to s, remove all detours (i.e. all loops in T) and then compute a

histogram of the different reaction pathways that have been used by (X R
t )t , then this his-

togram converges to ω∞(c)/kAB as the length of the realization goes to infinity. This follows

from the properties of the circulation distribution discussed in section 2.1.3. Note that the

ensemble of trajectories generated by (X R
t )t is very different from the ensemble of reactive

trajectories: They have the same effective current, but the trajectories generated by (X R
t )t

are typically much shorter since they cannot go back and forth along the same edge (which

reactive trajectories can do).

Comparison with the Hodge-Helmholtz decomposition. With (2.48) and (2.55) we have

two different decompositions of the effective current f +
AB on our hands8. Both decompositions

are unique and split up f +
AB into a part responsible for the transition from A to B - in the case

of (2.48) this is gradΦ while in the case of (2.55) this is the flow F P carried by the reactive

pathways C s∞ - and an additional rotational part R. Both decompositions share the property

that R = 0 iff (X t )t is reversible. The difference is that the decomposition (2.48) is based

on a projection and thus neither R nor gradΦ have an immediate stochastic interpretation.

Indeed gradΦ> 0 on edges where no reactive trajectory can go, and thus gradΦ cannot be

interpreted as a flow of pruned reactive trajectories. In contrast, this is exactly what F P is by

construction: If all the reactive trajectories are pruned so that only the directed pathways from

A to B remain, then their flow is given by F P . Consequently, F P (x, y) > 0 only on edges (x, y)

where f +
AB (x, y) > 0. On the downside, the decomposition (2.55) is much harder to compute

than (2.48) which only requires to solve a linear system, and F P cannot in general be written

8Recall that by lemma 2.17, F R antisymmetrized essentially equals f +AB .
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as the gradient of a potentialΦ, which is desirable because it gives us a reaction coordinate

to monitor the transition from A to B (namely Φ). If one wishes to obtain such a reaction

coordinate, then Φ from (2.48) is our best answer. If one wishes to know which reaction

pathways are actually used during that transition, then (2.55) gives the answer. We will now

look at examples to highlight this.

Examples

We start with a tutorial example. Consider a system with source A = {1}, target B = {5} and

transition region T= {2,3,4}. The effective probability current is shown in Figure 2.20. The

reaction rate is given by kAB = k and equals the flow from 1 to 2. At node 3, a fraction of δ of

the incoming current is rerouted to 2 via 4, the rest is pushed onward to 5. The lumped flow

F R is shown on the right in Figure 2.20. It is given by

A
B

s

1

1 � �
k

�

1 � �
k

k
k

1

1 � �
k

�

1 � �
k

k k

Figure 2.20 – Left: Effective current f +
AB of a tutorial example network. Right: The lumped

current F R of the same network.

F R = k


0 1 0 0

0 0 1
1−δ 0

1 0 0 δ
1−δ

0 δ
1−δ 0 0

 .

According to Lemma 2.18, we define µR =
(
α, 1

1−δk, 1
1−δk, δ

1−δk
)T

with α = 1− 2+δ
1−δk so that∑

x µ
R (x) = 1, and

P R =


1− k

α
k
α 0 0

0 0 1 0

1−δ 0 0 δ

0 1 0 0

 .

Thus according to P R , from 3 one goes next to 4 (and thus uses the loop) with probability δ, and

one goes to 5 and arrives at the target with probability 1−δ. The decomposition (2.55) is given
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in terms of C s∞ = {[1,2,3]} with ω∞ ([1,2,3]) = k and C T∞ = {[2,3,4]} with ω∞ ([2,3,4]) = δ
1−δk.

We can make out two regimes: If δ> 1/2 then ω∞ ([2,3,4]) >ω∞ ([1,2,3]), and rotation in T

dominates. If δ< 1/2 thenω∞ ([2,3,4]) <ω∞ ([1,2,3]), and the reaction from A to B dominates.

The analysis so far assumed that k is independent of δ. But actually k depends on δ because α,

which is the probability of being in the non-reactive state s, stays fixed as δ is varied. Therefore

k = (1−α) 1−δ
2+δ , and accordingly

ω∞ ([1,2,3]) = (1−α)
1−δ
2+δ ,

ω∞ ([2,3,4]) = (1−α)
δ

2+δ .

Not surprisingly, k =ω∞ ([1,2,3]) is maximized for δ= 0 and becomes vanishingly small as δ

approaches one. On the other hand, ω∞ ([2,3,4]) = 0 for δ= 0. ω∞ ([2,3,4]) grows monotoni-

cally with δ and reaches its limit value of 1
3 (1−α) for δ= 1, where T and s disconnect.

Now we revisit the examples from section 2.4.1. In all of them, the lumped flow F R is first

constructed from f +
AB using the procedure described above, then the splitting of F R into F P

and R according to (2.55) was studied by sampling a random walk of length N = 106 from P R ,

which is long enough to obtain convergence for the quantities of interest (i.e. the probabilistic

weights ω∞(c) of the most important pathways) in our examples.

Barbell graph. We revisit the barbell graph from Figure 2.7. As in section 2.4.1, we define

a random walk on the barbell graph that goes with probability p = 0.8 along edge directions

and with probability (1−p) against edge directions. The resulting effective current f +
AB was

shown in Figure 2.14 and is shown again in Figure 2.21. One observes that f +
AB has no cycles,

hence C T∞ =; and consequently R = 0 and F P = F R . The set C s∞ has four elements that we

may denote as {(t t), (tb), (bt), (bb)} where (t t) is the path from a to b that uses the top arc

in the left loop and in the right loop, (tb) is the path that uses the top arc in the left and the

bottom arc in the right loop, and so on. Almost all of the current is transported by (bt ).

a b

f+
AB

Figure 2.21 – The effective current f +
AB on the barbell graph with source A = {a} and target

B = {b}. The dotted edges carry almost no current.
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A

B

Figure 2.22 – Transition tube graph. Node coloring indicates q+. Edge directions according to
F P . Edge thickness is proportional to the magnitude of F P . Edge color is proportional to the
magnitude of R.

Transition tube with vortices. Now we revisit the transition tube graph with additional

vortices from Figure 2.15. In Figure 2.22, the splitting of f +
AB into the potential part F P and the

rotation R is shown. The edge thickness is proportional to F P , the edge color is proportional

to the magnitude of R with large values in red and small values in green. The only difference

to the splitting shown in Figure 2.15 is the way the red edges, i.e. the edges in the vortices, are

used by F P resp. gradΦ. The red edges which allow transport from A to B are used by F P , the

others are not used. This is because F P by construction has to respect the sign structure of

f +
AB . In contrast, gradΦ reverses the orientation of the red edges which do not allow transport

from A to B .

As expected, the set C T∞ has four members with large weights which correspond to the four

vortices shown in red in Figure 2.22. The other members in C T∞ are 3 orders of magnitude less

likely, and correspond to slightly longer versions of the vortices that also use a few of the green

edges. The most important pathways in C s∞ are the central, top and bottom pathway which

are visible in Figure 2.22. They are all equally likely and together they carry more than 82% of

the reactive flow, that is, more than 82% of the reactive trajectories used one of these three

pathways.

Random block model. We revisit the random block model from Figure 2.16. On the same

realization that was studied in Figures 2.16 and 2.17, the current F P carried by directed

pathways from A to B was sampled. The result is shown in Figure 2.23. The result looks similar

to gradΦ shown in Figure 2.17: There is almost no flow in C3 and C4, and no flow back from

C5 to C2 or from C2 to C1. This is to be expected: If a trajectory is e.g. in C3, it must come from

and go back to C2. Because of the strong metastability, it is very likely to loop back on itself in

C2 before going to C5. Then all the states it has visited in C3 become part of a loop which gets
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C1

C5

C2

C3
C4

Figure 2.23 – Current F P (x, y) carried by directed pathways in (2.55). Colour according to q+

with red denoting q+(x) = 1 and green denoting q+(x) = 0. Node size proportional to the total
amount of flow passing through the node (log scale). Edge color proportional to the total
amount of flow passing through the edge (log scale).

erased. The biggest difference between F P and gradΦ is that F P uses only the exterior edges

which are present in G and point in the direction of the reaction, while not using edges that

point in the direction opposite to the reaction. In contrast, gradΦ changes the orientations

of exterior edges so that they all point in the direction of the reaction, and then it uses all of

them.

Langevin system. We revisit the Langevin system from section 2.3.2. We use the same

parameters as for the numerical study in sections 2.3.2 and 2.4.1, so that the discussions

therein apply. In particular, the Langevin system is close to the Hamiltonian system, the

energy H(x, p) = 1
2m p2 +V (x) is a slow variable, and a typical reactive trajectory consists of

many orbits around A followed by a transition from the x > 0 to the x ≤ 0 half-plane followed

by many orbits around B . Because of the dynamics (2.40), all reaction pathways must cross

from the x > 0 to the x ≤ 0 half-plane in the p < 0 region.

Figure 2.24 shows the splitting of f +
AB into F P (blue arrows) and R (red arrows). And indeed,

the only qualitative difference of this splitting to the one shown in Figure 2.18 is that F P crosses

the x = 0 plane only in the p < 0 region whereas gradΦ crossed the x = 0 plane with equal

probability in the p < 0 and the p > 0 region. In this respect, F P captures the behaviour of the
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Figure 2.24 – Langevin system. Productive flow F P (blue arrows) and rotation R (red arrows).
The length of the arrows is proportional to the magnitude of flow transported. The size of the
arrows representing F P has been enlarged by a factor of 2 relative to R for visibility.

reactive trajectories and may tell which reaction pathways the reactive trajectories are using,

whereas gradΦ does not.

To obtain further insight into the structure of C T∞, we show the empirical distribution of cycle

lengths d(n) = ∑
c∈C T∞ω∞(c)δ (|c| = n) in Figure 2.25. The number N d(n) is the number of

times a cycle which has length n and is in C T∞ was passed through by the realization (Xn)1≤n≤N

of length N that we use to sample. The distribution d(n) has a pronounced global maximum at

n ≈ 5 and another local maximum at n ≈ 10. These correspond to orbits with winding number

one and two respectively: The Hamiltonian system completes an orbit with winding number

w in time t = w . Since the discretization time step is t = 0.25 and the Langevin system is close

to the Hamiltonian system, we expect orbits of winding number one to take 4−5 steps and

orbits of winding number two to take 9−10 steps. To confirm this intuition, we order the

members of C T∞ according to ω∞(c) in descending order. Figure 2.24 shows the cycles c1, c4,

c13 and c15 on the right and confirms that these are orbits around A or B with winding number

one. All other cycles ci with 1 ≤ i ≤ 20 also correspond to similar orbits, but they are not shown

since they would overlap with the other cycles.

Common observations. When comparing the numerical results for the decomposition

(2.48) with those for the decomposition (2.55), we can make the following common observation

for all the examples studied here:

(i) The support of R is essentially the same for both decompositions, but the magnitude of
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Figure 2.25 – Langevin system. Left: Distribution d(n) of lengths of cycles in C T∞. Right: The
sets A and B (light yellow) and the cycles c1, c4, c13 and c15.

R is different,

(ii) edge directions in G
(
gradΦ

)
may be different from edge directions in G

(
f +

AB

)
while edge

directions in G
(
F P

)
and G

(
f +

AB

)
are always the same,

(iii) while F P is by construction a current generated by pruned reactive trajectories, gradΦ

cannot be interpreted as such.

These observations lead to the conclusion that the splitting (2.48) is more geometrical, i.e.

dictated by the graph topology and the metric given by the capacities c s(x, y), while the

splitting (2.55) is more dynamical, i.e. dictated by properties of actual realizations of (Xn)n .
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3 Optimal Control Theory in Molecular
Dynamics

In chapter 2, we have seen that numerical estimators based on reversible processes often dis-

play strong metastabilities which results in poor convergence properties. In particular, section

2.2.3 showed that these metastabilities can always be reduced by adding a non-reversible

force. In this chapter, we study problems where the additional force term can be adjusted by

an external controller that wishes to minimize a certain objective function. These optimal

control problems have already been introduced in section 1.4. Now we restrict our attention

to a special class of control problems, so-called linear quadratic (LQ) control problems, which

are dual to sampling problems in e.g. Molecular Dynamics applications. Solving the optimal

control problem exactly solves the sampling problem in the sense that it gives rise to a zero-

variance estimator. The duality between control and sampling is explained in detail in section

3.1.

The remainder of the chapter is devoted to the approximate solution of LQ control problems.

We have to perform a discretization in order to be able to do numerics. We choose a Galerkin

method in conjunction with a logarithmic transformation. After the discretization, a control

problem for a discrete Markov jump process is obtained. The method is explained in section

3.2. We prove error bounds in section 3.2.2 and study examples in section 3.2.4.

Section 3.3 is concerned with the method of averaging [PS08]. In large and complex systems

with metastabilities, one usually has few slow and many fast variables. The method of averag-

ing allows to reduce the problem size by averaging over the fast variables. We demonstrate in

section 3.3 that the method also applies to LQ control problems. The averaging method is one

way to arrive at discretizations of the type studied in 3.2 which are numerically tractable and

still capture the important slow degrees of freedom, even for larger systems. As an example,

we study alanine dipeptide in section 3.2.4.
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Chapter 3. Optimal Control Theory in Molecular Dynamics

3.1 Optimal Control as a Means to Accelerate MD Sampling

In this chapter, we are concerned with the following problem: Given a (possibly large) state

space Xwith a dynamics governed by a Markov process (X t )t on X and a target region A ⊂X
which we assume to be a closed set with smooth boundary ∂A, we are interested in the

hitting time τA = inf{t > 0 : X t ∈ A}. In particular, we are interested in the statistics of τA (i.e.

mean, variance, higher moments) conditioned on X0 ∈ B in a situation where the starting

region B is strongly dynamically separated from A so that transitions from B to A are rare

events. This is a typical situation in Molecular Dynamics. Here the space X = R3N is the

configuration space of a large molecule with N atoms, (X t )t describes the dynamics of the

molecule in its environment (e.g. a water bath), and the regions A and B correspond to two

different molecular conformations, i.e. different geometric configurations of the molecule

which influence its chemical behaviour. For example, A might be an unfolded and B a folded

structure. Transitions between A and B are rare events since they happen on a time scale

which is several orders of magnitude larger than the simulation time scale one is forced to use.

One way to obtain statistics of a bounded random variable Z is to compute its cumulant

generating function or free energy

γs [Z ] =− logE
[
e−sZ ]

(3.1)

which, by using the Taylor formula around s = 0, admits a moment expansion of the form

γs [Z ] = sE [Z ]− s2

2
E

[
(Z −E[Z ])2]+ . . . (3.2)

so that we can compute the nth moment Mn[Z ] = E [(Z −E[Z ])n] of Z by taking the nth

derivative of γs[Z ] around s = 0:

Mn[Z ] = (−1)n−1 dn

dsn γs[Z ]

∣∣∣∣
s=0

. (3.3)

If we therefore know γs[Z ] for all values s in a small neighbourhood around s = 0, then at

least theoretically we can compute all moments of Z from (3.3), which gives us complete

information about the statistics of Z . In the case we are interested in, Z = τA and E [. . .] is

expectation conditional on X0 ∈ B . In order to be slightly more general, we will seek the

function

V (x) :=−ε logEx

[
exp

(
−ε−1

∫ τA

0
f (Xs)ds

)]
(3.4)

for x ∈ B , a temperature parameter ε > 0 and some measurable and nonnegative function

f : X→ [0,∞). The cumulant generating function (3.1) of Z = τA is obtained from (3.4) by

taking f = s1X and averaging V (x) over x ∈ B . In the situations we are interested in, V (x)

will always be approximately constant for all x ∈ B so that the averaging step isn’t necessary.

Conditioning on a single x ∈ B has advantages that will become clear shortly.
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One way to compute V (x) would be through sampling: Suppose we have obtained N realiza-

tions (X (n)
t )t of the dynamics (X t )t with X (n)

0 = x, e.g. via numerical integration. Let τ(n)
A be the

value of τA for the nth realization. Then a naive estimator of V (x) would be

V̂ (x) =−ε log
1

N

N∑
n=1

exp

(
−ε−1

∫ τ(n)
A

0
f
(
X (n)

s

)
ds

)
. (3.5)

However there are three problems with the estimator (3.5): (i) By our assumption, transitions

from B to A are rare and thus difficult to observe in a numerical simulation, (ii) because of

the nonlinearity of the logarithm, the estimator (3.5) is biased, (iii) because of the exponential

inside the expectation value in (3.4) which gives large weights to realizations where the value

of the integral inside the exponential is small, the estimator (3.5) has a large variance.

We will instead pursue an entirely different way of computing V (x) in this chapter: It will be

shown below that V (x) can be interpreted as the value function of an optimal control problem.

The rest of the chapter is then devoted to the development of techniques for solving this

optimal control problem approximately. For concreteness, we will assume that the dynamics

(X t )t is a Markov diffusion (1.17) onX=Rd with a generator L given by (1.18), i.e. (X t )t evolves

according to the SDE

dX t = b(X t )dt +σ(X t )dWt , X0 = x (3.6)

with Wt being Brownian motion in Rm , drift b : Rd → Rd and diffusion coefficient σ : Rd →
Rd×m . We further assume L to be uniformly elliptic, see (1.19). As a consequence, the bilinear

form

(ξ,η)a(x) :=∑
i , j

ai j (x)ξiη j ∀ξ,η ∈Rd (3.7)

is an inner product on Rd for every x ∈X. Consider the following optimal control problem:

LQ control problem. Minimize the functional

J u(x) = Ex

[∫ τA

0

(
f
(
X u

s

)+ 1

4
|us |2

)
ds

]
(3.8)

over all u ∈ U0 with the space of admissible control strategies U0 as in Theorem 1.14 and

control space U=Rm , subject to the dynamics of the controlled process (X u
t )t satisfying the

SDE

dX u
t =

(
b

(
X u

t

)+ 1p
2ε
σT (

X u
t

)
ut

)
dt +σ(X u

t )dWt , X u
0 = x. (3.9)

Thus the control enters linearly in the dynamics (3.9) and quadratically in the cost (3.8). The

factor 1/4 in (3.8) is merely convention. The quadratic penalization term in (3.8) equals the

relative entropy H(Q,P ) between the reference measure P of the uncontrolled diffusion (3.6)
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Chapter 3. Optimal Control Theory in Molecular Dynamics

and the probability measure Q of the controlled process (3.9), as can be shown using Girsanov’s

theorem [Øks03, Thm. 8.6.8]. In other words, it holds that (cf.[HS12, HBS+14]):

EQ

[
1

4

∫ τA

0
|us |2ds

]
= ε

∫
log

dQ

dP
dQ = εH(Q,P ),

cf. the definition (1.9) of the relative entropy.

The rigorous statement of the duality result that now follows requires several strong assump-

tions, in particular the existence of a classical solution to a linear elliptic PDE. We first state

and prove the result and then comment on the assumptions.

Theorem 3.1 (Duality between control and sampling problem.) Let (X t )t be a Markov dif-

fusion on X=Rd evolving according to the SDE (3.6) with uniformly elliptic generator L. Let

A ⊂X be closed with smooth boundary and such that the hitting time τA = inf{t > 0 : X t ∈ A}

is a.s. finite and κ := supx∈X\A Ex [τA] <∞. Assume further that L, A and K ≥ f ≥ 0 with K > 0

are such that the PDE

Lφ(x)−ε−1 f (x)φ(x) = 0 on X\ A,

φ(y) = 1 y ∈ ∂A. (3.10)

has a bounded solution φ ∈C 2 (X\ A). Let V :X\ A →R be given by

V (x) =−ε logEx

[
exp

(
−ε−1

∫ τA

0
f (Xs)ds

)]
.

Then V ∈C 2(X \ A), and V = infu∈U0 J u is the value function of the LQ control problem (3.8),

(3.9). The minimizer u∗ = argmin J u is unique and given by the feedback law

u∗
t =α∗ (

X u
t

)
, α∗(x) =−p2ε−1/2σT ∇V (x).

The strategy u∗ is in U0 if Ex [τA] <∞ under
(
X u∗

t

)
t and u∗

t ≤ K ′ for all t ≤ τA and some K ′ > 0.

If this holds then u∗ is an optimal Markov control strategy, i.e. we have V (x) = J u∗
(x) and

V (x) ≤ J u(x) for all u ∈U0.

Proof. By the Feynman-Kac formula (1.23) in Theorem 1.4, the solution φ to (3.10) is given by

φ(x) = Ex

[
exp

(
−ε−1

∫ τA

0
f (Xs)ds

)]
, (3.11)

and it follows that

V (x) =−ε logφ(x). (3.12)

Next we show that φ is uniformly bounded away from zero: From f ≤ K , Jensen’s inequality
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and the assumption κ := supx∈X\A Ex [τA] <∞, we have

φ(x) ≥ Ex
[
exp

(−ε−1KτA
)]≥ exp

(−ε−1K Ex [τA]
)≥ exp

(−ε−1Kκ
)> 0,

thus φ is uniformly bounded away from zero, and since φ ∈C 2 (X\ A), we can take derivatives

in (3.12) and conclude that V ∈C 2(X\ A). From (3.12), we obtain by the chain rule and (1.18)

ε
Lφ

φ
=−LV +ε−1(∇V ,∇V )a(x). (3.13)

Now consider the relation

−ε−1(∇V ,∇V )a(x) = min
α∈Rm

{
1p
2ε
α ·σT ∇V + 1

4
|α|2

}
, (3.14)

which holds in view of a = 1
2σσ

T . If we combine (3.10) with (3.13) and (3.14), we see that V

solves the boundary value problem

min
α∈Rm

{
LV (x)+ 1p

2ε
α ·σT ∇V + f (x)+ 1

4
|α|2

}
= 0 on X\ A,

V (y) = 0 y ∈ ∂A. (3.15)

Now the statements of the Theorem all follow from the verification Theorem (1.14). The

only thing left to show is that the minimum α∗(x) exists and the corresponding Markov

control strategy u∗
t = α∗ (

X u
t

)
is in U0. That the minimum exists and is equal to α∗(x) =

−p2ε−1/2σT ∇V (x) is clear from (3.14). To show that u∗
t ∈U0, we need that τA <∞ a.s. under(

X u∗
t

)
t , which holds by assumption, and Ex

[∫ τA
0 ∇V

(
X u

s

) ·σ(
X u

s

)
dWs

]= 0. The latter follows

from the assumption u∗
t ≤ K ′ for all t ≤ τA [vH07]. ■

Remark: On the assumptions in Theorem 3.1. The question of existence of a classical

solution φ ∈C 2(X\ A) to the PDE (3.10) is difficult in general. We are guaranteed existence of a

classical solution φ if one of the following sets of assumptions holds:

(i) a, b and f are in C∞(X\ A), the boundary ∂A is in C∞, and A is such thatX\ A is bounded

[EL98]. The latter may be achieved by setting A := A′∪E where E is the exterior of the

bounded region of state space we are interested in, and A is the compact target region

we want to reach. We have different options of specifying boundary conditions on

∂A′ = ∂A∪∂E . We may use Neumann boundary conditions on E , i.e. replace (3.10) with

Lφ(x)−ε−1 f (x)φ(x) = 0 on X\ A′,

φ(y) = 1 y ∈ ∂A, (3.16)
∂φ

∂n
(y) = 0 y ∈ ∂E .
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This translates to Neumann boundary conditions ∂V
∂n = 0 on E in (3.15). Alternatively

we may put Dirichlet boundary conditions φ(y) = exp(−ε−1C ) for y ∈ ∂E with some

C > 0, which leads to Dirichlet boundary conditions V (y) =C for y ∈ ∂E in (3.15). If E is

sufficiently far away and such that the probability of reaching E before A is negligible,

then these modifications to (3.10) do not change the solution φ much in the region of

interest.

(ii) Instead of (3.10), we may consider the following parabolic PDE on Q =O × [t0, t1) with

bounded O ⊂X:

Lφ−ε−1 f φ= ∂φ

∂t
on O × [t0, t1),

φ(y, t ) = exp(−ε−1g (y)) y ∈ ∂O, t ∈ [t0, t1),

φ(y, t1) = exp(−ε−1C ) y ∈O.

Here, C > 0 is some (possibly large) constant. Then a solution φ ∈C 1,2(Q)∩φ(Q̄) exists

[FS06] which is given by a Feynman-Kac formula similar to (1.22). The functional J u to

be minimized in the control problem changes to

J u(x) = Ex

[∫ τ

0

(
f
(
X u

s

)+ 1

4
|us |2

)
ds + z(Xτ,τ)

]
where τ is the first exit time of Q, z(y, t) = g (y) for y ∈ ∂O and z(y, t1) =C for y ∈O. As

before, we may separate ∂O = ∂A ∪∂E where ∂A is the boundary of the target region

and ∂E is the boundary of the region of interest in the state space X, and we may set

g (y) = 0 for y ∈ ∂A and g (y) = C for y ∈ ∂E . Formally, we may take the limit t1 →∞
to recover (3.16). For very large t1 exiting Q is the same as exiting O, and φ becomes

time-independent.

Concerning the additional assumptions needed to ensure that u∗
t ∈U0, we have that since

α∗ =−p2εσT ∇V is in C 1(X\ A), the condition u∗
t ≤ K ′ for all t ≤ τ automatically holds if we

restrict X\ A to a bounded region by one of the procedures outlined above. The condition that

Ex [τA] <∞ under
(
X u∗

t

)
t also automatically holds in this case, this follows from the uniform

ellipticity of a [vH07].

Special case: Overdamped Langevin dynamics. An interesting special case is when the

dynamics of the uncontrolled process is given by the overdamped Langevin equation

dX t =−∇v(X t )dt +p
2εdWt (3.17)

that was introduced in (1.25). We denote the potential by v in order to avoid confusion with

the value function V . The control space Rm equals the state space Rd here. The generator L

acts on functions u ∈C 2(X) as Lu = ε∆u − (∇v) ·∇u, and is uniformly elliptic with σ=p
2ε1

94
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and a = ε1 > 0. The controlled equation (3.9) in Theorem 3.1 becomes

dX u
t = (−∇v

(
X u

t

)+ut
)

dt +p
2εdWt .

The HJB equation (3.15) becomes

min
α∈Rd

{
LαV (x)+ f (x)+ 1

4
|α|2

}
= 0 on X\ A,

V (y) = 0 y ∈ ∂A.

with Lα = L +α ·∇. The optimal control u∗ is given by u∗
t = α∗ (

X u
t

)
with α∗(x) = −2∇V (x),

and thus the optimally controlled process (X ∗
t )t evolves according to the SDE

dX ∗
t =−∇U

(
X ∗

t

)
dt +p

2εdWt (3.18)

with the effective potential U (x) = v(x)+2V (x).

3.1.1 Duality Between Control and Path Sampling for Jump Processes

The duality result of Theorem 3.1 between a path sampling problem and an optimal control

problem via a logarithmic transformation also holds for Markov jump processes. This construc-

tion goes back to [She85], and we repeat it here in condensed form, see also [FS06, Sec. VI.9].

In the following, let (X̂ t )t≥0 be an ergodic MJP on the discrete state space X̂= {1, . . . ,n} with

infinitesimal generator G ∈ Rn×n , and define the stopping time τA = inf{t > 0: X̂ t ∈ A} to be

the first hitting time of a subset A ⊂ X̂. Consider the following optimal control problem:

LQ control problem for MJPs. Minimize the functional

Ĵ v (i ) = Ei

[∫ τA

0

{
f̂ (X̂ v

s )+k(X̂ v
s , vs)

}
ds

]
(3.19)

over all controls v ∈U0 with U0 as in section 1.4.3. The controls v take values in the control

space U= {α : X̂→ (0,∞)}. The function f̂ : X̂→R is assumed to be nonnegative. If vs =α for

s ∈ [t , t ′), then the generator of the controlled process
(
X̂ v

s

)
s for times s ∈ [t , t ′) is given by

Gα = (Gα
i j )i , j∈X̂ , Gα

i j =
Gi jα( j )

α(i )
. (3.20)

The control-dependent costs k(i ,α) in (3.19) are given by

k(i ,α) = ε(Gα(logα))(i )−ε (Gα)(i )

α(i )
. (3.21)
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The next lemma records some important properties of the control problem (3.19), (3.20). This

will also make the connection to the continuous case clear.

Lemma 3.2 Let the LQ control problem (3.19), (3.20) be defined as above.

(i) Let G be reversible with unique stationary distribution µ. Then µα(i ) = Z−1
α α2(i )µ(i ),

with Zα an appropriate normalization constant, is the unique probability distribution

such that Gα is reversible with stationary distribution µα.

(ii) Let P̂ denote the probability measure on the space of trajectories generated by X̂ t with

initial condition X̂0 = i , and let Q̂ be the corresponding probability measure generated by

X̂ v
t with the same initial condition X̂ v

0 = i . Then Q̂ is absolutely continuous with respect

to P̂ and the expected value of the running cost k is the relative entropy (1.9) between Q̂

and P̂ , i.e.,

EQ̂

[∫ τA

0
k(X̂ v

s , vs)ds

]
=

∫
log

dQ̂

dP̂
dQ̂ = εH(Q̂, P̂ )

where EQ̂ [. . .] is the expectation over all realizations of X̂ v
t starting at X̂ v

0 = i .

Proof. We first show (i). By assumption we have µ(i )Gi j =µ( j )G j i . Now, let µα be such that

µα(i )Gα
i j =µα( j )Gα

j i . We will show that µα has the proposed form:

µα(i )Gα
i j =

α( j )

α(i )

µα(i )

µ(i )
µ(i )Gi j = α( j )

α(i )

µα(i )

µ(i )
µ( j )G j i = α2( j )

α2(i )

µ( j )

µ(i )

µα(i )

µα( j )
µα( j )Gα

j i

But since µα(i )Gα
i j =µα( j )Gα

j i , we must have

µα( j )

µ( j )α2( j )
= µα(i )

µ(i )α2(i )
∀i 6= j .

This can only be true if the quantity Z−1
α := µα(i )

µ(i )α2(i ) is independent of i . This gives µα( j ) =
Z−1
α α2( j )µ( j ) as desired. The constant Zα is uniquely determined by the requirement that

µα be normalized. Finally, from reversibility it follows directly that µα is also a stationary

distribution of Gα.

To show (ii), note that the running cost k(i ,α) can be written as

k(i ,α) = ε∑
j 6=i

Gi j

{
α( j )

α(i )

[
log

α( j )

α(i )
−1

]
+1

}
, (3.22)

the integral of which is the relative entropy between Q̂ and P̂ (see [DPMR96, Sec. 3.1.4]). The

absolute continuity between Q̂ and P̂ simply follows from the fact that α in the definition of

Gα was required to be component-wise strictly positive. ■
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Lemma 3.2 explains the rather unusual form (3.21) of the control-dependent cost k(i ,α): As

for the continuous problem (3.8), (3.9), the expectation value of k is just the relative entropy

between the probability measures Q̂ of the controlled process
(
X̂ v

t

)
t and P̂ of the uncontrolled

process (X t )t . In the continuous case the relative entropy had the simple form of a quadratic

penalty term. Here it is more complicated, but structurally still the same.

Lemma 3.2 also shows that the generator Gα is still reversible for all controls α ∈U. In partic-

ular, note the following: Suppose µ is of the form µ(i ) = Z−1 exp
(−ε−1v̂(i )

)
of a Boltzmann

distribution for some potential v̂ : X̂→ R. Then the stationary distribution of the optimally

controlled process is given by

µα
∗
(i ) ∝ exp

(−ε−1 (
v̂(i )+2V̂ (i )

))
,

i..e µα
∗

is a Boltzmann distribution in the effective potential Û = v̂ +2V̂ . This is in complete

analogy to the continuous case, clf. (3.18). We have the following duality result:

Theorem 3.3 (Duality for MJPs.) Let (X̂ t )t be an ergodic MJP on X̂ = {1, . . . ,n} with generator

G, τA = inf{t > 0 : X̂ t ∈ A} for some A ⊂ X̂ and f : X̂ → [0,∞). Let ε> 0. Define

V̂ (i ) =−ε logEi

[
exp

(
−1

ε

∫ τA

0
f̂ (X̂s)d s

)]
.

Then V̂ is the value function of the LQ control problem (3.19), (3.20). The optimal control

v∗ = argmin Ĵ v exists and is unique, and is given by

v∗
t =α∗(X v

t ), α∗(i ) = exp
(−ε−1V̂ (i )

)
.

Proof. Consider the linear boundary value problem∑
j∈X̂

Gi j φ̂( j )−ε−1 f̂ (i )φ̂(i ) = 0, i ∈ X̂\ A

φ̂(i ) = 1, i ∈ A .

(3.23)

By Theorem 1.7, the unique solution to (3.23) is given by

φ̂(i ) = Ei

[
exp

(
−1

ε

∫ τA

0
f̂ (X̂s)d s

)]
and thus V̂ = −ε log φ̂, and by multiplying (3.23) with φ̂−1(i ), we see that V̂ satisfies the

equation

exp(V̂ /ε)G exp(−V̂ /ε)−ε−1 f̂ = 0, i ∈ X̂\ A

V̂ (i ) = 0, i ∈ A .
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The exponential term in the above equation for V̂ can be recast as

exp(V̂ /ε)G exp(−V̂ /ε) = ε−1 min
α>0

{−(GαV̂ )(i )+k(i ,α)} (3.24)

using the identity miny∈R{e−y +ay} = a −a log a for a > 0 and the definition (3.21) of k(i ,α).

As a consequence, (3.23) is equivalent to

min
α∈U

{
(GαV̂ )(i )+k(i ,α)+ f̂ (i )

}= 0, i ∈ X̂\ A

V̂ (i ) = 0, i ∈ A .
(3.25)

which is the dynamic programming equation of a Markov decision problem. It readily follows

from (3.24) that the minimizer in (3.25) exists and is given by α∗ = exp(−ε−1V̂ ). The rest

follows from the verification theorem 1.16. ■

3.2 MSM Discretizations of LQ Type Control Problems

3.2.1 Galerkin Projection Point of View

In this section we will develop a discretization for the LQ control problem (3.8), (3.9) discussed

in Section 3.1. The discretization will approximate the continuous control problem with a

control problem for a Markov jump process on finite state space. We will focus on overdamped

dynamics (3.17). Overdamped dynamics is reversible, we thus study reversible dynamics with

external control. This work has been published in [SBHS13, BH14].

Because of the nonlinearity of the problem, a general theory for discretizing continuous

optimal control problems is unavailable. However, we saw in Section 3.1 that for the control

problems we are interested in, a logarithmic transform to a linear PDE (3.10) is available. For

linear PDEs, discretization theory in terms of Galerkin projections onto finite-dimensional

subspaces of the PDE solution space exists. Our strategy will therefore be the one indicated

in Figure 3.1, where the term ’linear PDE’ refers to the PDE (3.10), and the term ’constrained

linear system’ refers to the linear system (3.23).

In the first part of this section, we will develop the Galerkin projection for general subspaces

and obtain some control of the discretization error. To refine this control, we specify the

subspace D we project onto. As the state space is unbounded and possibly high-dimensional,

a grid-based discretization is prohibitive. Here we suggest a meshless discretization based on

an incomplete partition of state space into so called core sets, that are the metastable regions

of the uncontrolled dynamics. We will prove an error bound which gives us detailed control

over the discretization error, even if very few basis functions are used. We should mention

that clearly other choices are possible, such as radial basis functions or moving least-squares,

but for metastable and high-dimensional systems like in molecular dynamics or chemical

reaction kinetics using core sets and the associated basis of committor functions is beneficial.
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Optimal Control

Problem for SDE

Optimal Control 

Problem for MJP

continuous discrete

linear PDE
constrained

linear system

log trafo log trafo

Galerkin projection

?

Figure 3.1 – Discretization of continuous control problems via a logarithmic transform.

In the second part of this section, we will develop the stochastic interpretation of the resulting

matrix equation as the backward Kolmogorov equation of a MJP. We will study the resulting

discrete control problem and make a connection to Transition Path Theory [VE06] and core

set MSMs [SNL+11].

3.2.2 Galerkin Projection of the Dirichlet Problem

We consider the boundary value problem(
L−ε−1 f

)
φ(x) = 0, x ∈X\ A

φ(x) = 1, x ∈ ∂A .
(3.26)

with L = ε∆−∇v ·∇ being the uniformly elliptic generator of (3.17) and f :X→ [0,K ] bounded

and continuous. We declare that φ|A = 1, so that the domain of φ is X. In order to be able

to apply theorem 3.1 and to have a problem which is amenable to numerical discretization,

we think of X as being bounded and impose homogeneous Neumann boundary conditions
∂φ
∂n = 0 on ∂X , see Figure 3.2.

Following standard references (e.g. [Bra07]) we construct a Galerkin projection of (3.26). For

this purpose, we introduce the L2-based Sobolev space H 1 with norm ‖φ‖H 1 = ‖∇u‖2
µ+‖u‖2

µ

and the Hilbert spaces V = {ψ ∈ L2(X,µ),‖ψ‖H 1 <∞} and V0 = {ψ ∈ V ,ψ|∂A = 0}. We further

define the symmetric and positive bilinear form

B : V ×V →R, B(φ,ψ) = ε−1〈 f φ,ψ〉µ+ε〈∇φ,∇ψ〉µ.
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A

X \ A

Figure 3.2 – The domain X and target set A.

Now if φ is a solution of (3.26), then it also solves the weak problem1

B(φ,ψ) = 0 ∀ψ ∈V0 . (3.27)

A Galerkin solution φ̂ is now any function satisfying

B(φ̂,ψ̂) = 0 ∀ψ̂ ∈ D0, (3.28)

with D0 being a suitable finite dimensional subspace V0. Specifically, we choose basis func-

tions χ1, . . . ,χn+1 with the following properties:

(S1) The functions χi : X→R are in V .

(S2) The χi form a partition of unity, that is
∑n+1

i=1 χi = 1.

(S3) The χi satisfy χn+1|A = 1 and χi |A = 0 for i ∈ {1, . . . ,n}.

All elements of D0 := lin{χ1, . . . ,χn} will satisfy homogeneous Dirichlet boundary conditions

in (3.26), and we will sometimes write D :=χn+1 ⊕D0 and think of the Galerkin solution φ̂ as

an element in D . Now define the matrices

Fi j =
〈χi , f χ j 〉µ
〈χi ,1〉µ

, Ki j =−ε 〈∇χi ,∇χ j 〉µ
〈χi ,1〉µ

.

1Neumann boundary conditions of the form
∂φ
∂n = gN on ∂X only contribute to the RHS of (3.27) with a term

〈gN ,ψ〉L2(∂X) [Bra07]. For homogeneous Neumann boundary conditions gN = 0 and therefore this contribution is
identically zero.
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Setting φ̂=∑
i φ̂iχi , the weak form (3.28) becomes a matrix equation for the unknown coeffi-

cients φ̂i :

n+1∑
j=1

(
Ki j −ε−1Fi j

)
φ̂ j = 0, i ∈ {1, . . . ,n}

φ̂n+1 = 1,

(3.29)

which is the discretization of (3.26).

In order control the discretization error of the Galerkin method, we choose a norm ‖ ·‖ on V

and introduce the two error measures:

1. The Galerkin error ε= ‖φ−φ̂‖, i.e. the difference between original and Galerkin solution

measured in ‖ ·‖.

2. The best approximation error ε0 = infψ̂∈D ‖φ− ψ̂‖, i.e. the minimal difference between

the solution φ and any element ψ̂ ∈ D .

In order to obtain full control over the discretization error, we need bounds on ε, and we will

get them by first obtaining a bound on the performance p := ε/ε0 and then a bound on ε0.

The latter will depend on the choice of subspace D . For the former, standard estimates assume

the following ‖ ·‖-dependent properties of A:

(i) Boundedness: B(φ,ψ) ≤α1‖φ‖‖ψ‖ for some α1 > 0

(ii) Ellipticity: for all φ ∈V holds B(φ,φ) ≥α2‖φ‖ for some α2 > 0.

If both (i) and (ii) hold, Céa’s lemma states that p ≤ α1
α2

, see e.g. [Bra07]. For the energy norm

‖φ‖2
B :=B(φ,φ) we have α1 =α2 = 1 and therefore p = 1, thus the Galerkin solution φ̂ is the

best-approximation to φ in the energy norm.

Performance bound

The next two statements give a bound on p if errors are measured in the L2-norm. In this case,

B(·, ·) is still elliptic but possibly unbounded. Later in this section, we will specify the bound

on ε0 for a specific Galerkin basis.

Theorem 3.4 Let B be elliptic. Further let

Q : L2(X,µ) → D0 ⊂ L2(X,µ) , Qw =
n∑

i=1

〈
χi , w

〉
χi
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be the orthogonal projection onto D0. Then

p2 =
(
ε

ε0

)2

≤ 1+ 1

α2
2

sup
v∈V

‖QB(1−Q)v‖2
µ

‖v‖2
µ

where B = ε−1 f −L is the linear operator associated with φ 7→B(·,φ).

Proof. In Appendix C. ■

Remark 3.5 Note that ‖QB(1−Q)v‖µ ≤ ‖QB v‖µ is always finite even though B is possibly

unbounded since v ∈V ⊂ L2(X,µ) and Q is the projection onto a finite-dimensional subspace of

L2(X,µ).

The bottom line of Theorem 3.4 is that if B leaves the subspace D almost invariant, then φ̂

is almost the best-approximation of φ in ‖ · ‖µ. The following lemma gives a more detailed

description. In the following, we will write ‖ ·‖ = ‖ ·‖µ for convenience.

Lemma 3.6 Let Q⊥ = 1−Q and define

δL := max
k

‖Q⊥Lχk‖, δ f := max
k

‖Q⊥ε−1 f χk‖

to be the maximal projection error of the images of the χk ’s under L and f . Then

‖QBQ⊥‖ = ‖Q⊥BQ‖ ≤ (δL +δ f )

√
n

m

where m is the smallest eigenvalue of M̂.

Proof. The first statement is true since A is essentially self-adjoint. For the second statement,

first of all

‖Q⊥BQ‖ = ‖Q⊥(ε−1 f −L)Q‖ ≤ ‖Q⊥ε−1 f Q‖+‖Q⊥LQ‖
holds from the triangle inequality. We now bound the term involving L. Notice that for

φ̂=∑
i φ̂iχi ∈ D :

‖Q⊥Lφ̂‖ = ‖∑
i
φ̂i Q⊥Lχi‖ ≤ δL

∑
i
|φ̂i | = δL‖φ̂‖1.

Then, with M̂ := (〈χi ,χ j 〉µ)i j :

‖Q⊥LQ‖ = sup
φ=φ||+φ⊥∈V

‖Q⊥Lφ||‖
‖φ‖ ≤ sup

φ||∈D

‖Q⊥Lφ||‖
‖φ||‖

≤ δL sup
φ̂∈Rn

‖φ̂‖1√
〈φ̂, φ̂〉M

A similar result holds for the term involving f . The statement now follows from a standard

equivalence between finite-dimensional norms, ‖φ̂‖1 ≤
p

n‖φ̂‖2, and the fact that M̂ is sym-

metric, which implies that 〈φ̂, φ̂〉M = φ̂T M̂φ̂≥ mφ̂T φ̂= m‖φ̂‖2
2. ■
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To summarize, Theorem 3.4 and Lemma 3.6 give us a formula for the projection performance

p which states that

p2 ≤ 1+ n

m

(δL +δ f )2

α2
2

.

How large or small δ f is will depend on the behaviour of f , e.g., if f = const then δ f = 0. Both

δ f and δL are always finite even though L is possibly unbounded.

Choice of basis functions and bound on ε0

Case A: Linear basis functions. We let theχi be piecewise linear basis functions. Specifically,

in d = 1 we use the Lagrange basis on a regular grid with grid points xi and grid spacing h,

given by

χi (x) =


1+ 1

h (x −xi ) x ∈ [xi−1, xi )

1− 1
h (x −xi ) x ∈ [xi , xi+1),

0 else.

See also Figure 3.3. The derivatives of these basis functions are particularly simple. A simple

computation shows that

Ki ,i±1 =−ε 〈∇χi ,∇χ j 〉µ
〈χi ,1〉µ

= ε

h2

[
exp

(−ε−1 (v(xi±1/2)− v(xi ))
)+O (h2)

]
(3.30)

where xi±1/2 = xi ±h/2, and

Fi ,i±1 =
〈χi ,χ j 〉µ
〈χi ,1〉µ

= 1

6
f (xi±1/2)exp

(−ε−1 (v(xi±1/2)− v(xi ))
)+O (h2) (3.31)

with Fi i = 1−Fi ,i+1 −Fi ,i−1. It follows from standard finite element theory [Bra07] that the L2

best-approximation error ε0 is given by

ε0 =C h2 (3.32)

with a constant C > 0.

Case B: Committor basis functions. We now generalize results [DSS12] on the approxima-

tion quality of MSMs for reversible equilibrium diffusions and estimate the best-approximation

error ε0 for the case that the subspace D is spanned by committor functions associated with

the metastable sets of the dynamics. To this end suppose that the potential V (x) has n +1

deep minima x1, . . . , xn+1. Let C1, . . . ,Cn+1 be convex core sets around x1, . . . , xn+1 and such

that A =Cn+1. We write C =∪n+1
i=1 Ci and T=X \C and introduce τC = inf{t ≥ 0 : X t ∈C }. We
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xi xi+1 xi+2xi�1

xi+1/2

h

1

C1 C2 C3

Figure 3.3 – Left: Lagrange basis functions χi and χi+1. Right: Committor basis associated to
the core sets C1, C2, C3.

take χi to be the committor function associated with the set Ci , that is

χi (x) = P(XτC ∈Ci |X0 = x). (3.33)

See also Figure 3.3. These χi satisfy the assumptions (S2)–(S3) and (S1) except on the core set

boundaries, which is a set of measure zero. Since we do not have a grid parameter, by which

the approximation error can be controlled, standard PDE techniques for bounding ε0 fail.

Indeed, typically we will have very few basis functions compared to a grid-like discretization.

The following theorem gives a bound on ε0.

Theorem 3.7 Let Q be the orthogonal projection onto the subspace D spanned by the committor

functions (3.33), and let φ be the solution of (3.26). Then we have

ε0 = ‖Q⊥φ‖µ ≤ ‖P⊥φ‖µ+µ(T)1/2 [
κ‖ f ‖∞+2‖P⊥φ‖∞

]
where ‖ · ‖ = ‖ · ‖µ, κ = supx∈TEx [τC ], and P is the orthogonal projection onto Vc = {v ∈
L2(X,µ), v |Ci = const on every Ci } ⊂ L2(X,µ), with P⊥ = 1−P.

Proof. In Appendix C.2. ■

In Theorem 3.7, κ is the maximum expected time of hitting the metastable set from outside

(which is short). Note further that P⊥φ= 0 on T . The errors ‖P⊥φ‖µ and ‖P⊥φ‖∞ measure

how constant the solution φ is on the core sets. Theorem 3.7 suggest the following strategy to

minimize ε0: (i) Place a core set Ci in every metastable region whereφ is expected to be almost

constant, (ii) place core sets in regions with high invariant density µ in order to minimize µ(T).

This strategy requires knowledge of the invariant density µ. Identifying the metastable regions

requires additional dynamical information. If this is not available, then a good guess is usually

to use the deepest wells of µ.

Theorem 3.7 together with Theorem 3.4 gives us full control over the discretization error ε.

These error bounds are along the lines of MSM projection error bounds [SNS10], [DSS12].
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Remark 3.8 It would be nice to have an error estimate also for the value function. In general

such an estimate is difficult to get, because of the nonlinear logarithmic transformation V =
−ε logφ involved. However we know that φ and its discrete approximation are both uniformly

bounded and bounded away from zero. Hence the logarithmic transformation is uniformly

Lipschitz continuous on its domain, which implies that the L2 error bounds holds for the value

function with an additional prefactor given by the Lipschitz constant squared; for a related

argument see [HLPZ14]

3.2.3 Interpretation in Terms of a Markov Decision Problem

We derive an interpretation of the discretized equation (3.29) in terms of a MJP. We introduce

the diagonal matrix Λ with entries Λi i = ∑
j Fi j (zero otherwise) and the full matrix G =

K −ε−1(F −Λ), and rearrange (3.29) as follows:

n+1∑
j=1

(
Gi j −ε−1Λi j

)
φ̂ j = 0, i ∈ {1, . . . ,n}

φ̂n+1 = 1,

(3.34)

This equation can be given a stochastic interpretation. To this end let us introduce the vector

π ∈Rn+1 with nonnegative entries πi = 〈χi ,1〉 and notice that
∑

i πi = 1 follows immediately

from the fact that the basis functions χi form a partition of unity, i.e.
∑

i χi = 1. This implies

that π is a probability distribution on the discrete state space X̂= {1, . . . ,n +1}. We summarize

properties of the matrices K , F and G :

Lemma 3.9 Let K , G, F and π be as above.

(i) K is a generator matrix (i.e. K is a real-valued square matrix with row sum zero and

positive off-diagonal entries) with stationary distribution π that satisfies detailed balance

πi Ki j =π j K j i , i , j ∈ X̂

(ii) F ≥ 0 (entry-wise) with πi Fi j =π j F j i for all i , j ∈ X̂.

(iii) G has row sum zero and satisfies πT G = 0 and πi Gi j =π j G j i for all i , j ∈ X̂.

(iv) If ‖ f ‖∞ ≤−ε2 〈∇χi ,∇χ j 〉µ
〈χi ,χ j 〉µ for all i 6= j , then Gi j ≥ 0 for all i 6= j . In this case equation (3.34)

admits a unique and strictly positive solution φ̂> 0.

Proof. (i) follows from
∑

i χi (x) = 1 and reversibility of L: We have
∑

i π(i )Ki j =∑
i 〈χi ,Lχ j 〉µ =

〈L1,χ j 〉µ = 0 and π(i )Ki j = 〈χi ,Lχ j 〉µ = 〈Lχi ,χ j 〉µ = π( j )K j i . (ii) follows from f (x) being

real and positive for all x. As for (iii), G has row sum zero by (i) and the definition of Λ.

π(i )Gi j = π( j )G j i follows from (i), (ii) and the fact that Λ is diagonal, and πT G = 0 follows
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directly. For (iv), first note that by the assumption on ‖ f ‖∞, we have

Fi j = ε−1〈χi , f χ j 〉µ ≤ ‖ f ‖∞〈χi ,χ j 〉µ ≤−ε〈∇χi ,∇χ j 〉µ = Ki j ,

so that Gi j ≥ 0 for all i 6= j . Existence, uniqueness and strict positivity of the solution φ̂ to

(3.34) then all follow from Theorem 1.7. ■

It follows that if the running costs f are such that (iv) in Lemma 3.9 holds, then G is a generator

matrix of a MJP that we shall denote by (X̂ t )t≥0, and by Theorem 1.7, (3.34) has a unique and

positive solution of the form

φ̂(i ) = E
[

exp

(
−ε−1

∫ τA

0
f̂ (X̂s)d s

)∣∣∣∣X̂0 = i

]
with f̂ (i ) =Λi i and τA = inf{t ≥ 0|X̂ t = i +1}. We can then apply the Duality Theorem 3.3 to

interpret V̂ =−ε log φ̂ as the value function of the Markov decision problem (3.19), (3.20). This

completes the construction of the discrete control problem. Note that in general2 G 6= K , but

both K and G are reversible with stationary distribution π.

Elber’s milestoning process

The discretized equation admits a useful stochastic representation, by which its coefficients

can be computed without knowing the committor functions. Define the forward milestoning

process X̃ +
t to be in state X̃ +

t = i if X t visits core set Ci next, and the backward milestoning

process X̃ −
t to be in state X̃ −

t = i if X t came from Ci last. Then the discrete costs can be written

as

f̂ (i ) = 1

πi
〈χi , f

∑
j
χ j 〉 =

∫
νi (x) f (x)d x = Eµ

[
f (X t )

∣∣X̃ −
t = i

]
(3.35)

where νi (x) =π−1
i χi (x)µ(x) = P(X t = x|X̃ −

t = i ) is the probability density of finding the system

in state x given that it came last from i . Hence f̂ (i ) is the average costs conditioned on

the information X̃ −
t = i , i.e. X t came last from Ai , which is the natural extension to the full

partition case where f̂ (i ) was the average costs conditioned on the information that X t ∈ Ai .

The matrix Ki j =π−1
i 〈χi ,Lχ j 〉 is reversible with stationary distribution

πi = 〈χi ,1〉 = Pµ(X̃ −
t = i )

and is related to so called core MSMs. To see this, define the core MSM transition matrix

Pτ with components Pτ
i j = P(X̃ +

t+τ = j |X̃ −
t = i ), and the mass matrix M with components

Mi j = P(X̃ +
t = j |X̃ −

t = i ). Then, it is not hard to show that for reversible processes we have

2In case of a full partition, ∪i Ci =X, the χi become stepfunctions and K =G is the generator of a full partition
MSM. Our method then becomes a finite volume method. Stepfunctions are not regular enough to be in V however.
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Pτ
i j =π−1

i 〈χi ,T τχ j 〉µ and Mi j =π−1
i 〈χi ,χ j 〉µ so that

K = 1
πi
〈χi ,Lχ j 〉µ = limτ→0

1
τ (Pτ−M) .

Thus K is formally3 the generator of the Pτ. If the core sets are chosen as the metastable states

of the system, K can be sampled directly from X̃ ±
t . See [SNS10, SNL+11] for more details on

the construction and sampling of core MSMs. F can also be sampled using

Fi j = Eµ
[

f (X t )χ{X̃ +
t = j }

∣∣∣X̃ −
t = i

]
(3.36)

Therefore, as in the construction of core MSMs, we do not need to compute committor

functions explicitly.

3.2.4 Numerical Results

We will present two examples to illustrate the approximation of LQ-type stochastic control

problems based on a sparse Galerkin approximation using MSMs.

1D triple well potential

To begin with we study diffusion in the triple well potential which is presented in Figure 3.5a.

This potential has three minima at x0/1 = ∓3.4 and x2 = 0. We take X = [−4,4] and choose

A = [x0 −δ, x0 +δ] with δ= 0.2 as the target set and the running cost f = f0 = const, such that

the control goal is to steer the particle into C0 in minimum time. In Figure 3.5a the potential v

and effective potential U are shown for ε= 0.5 and f0 = 0.08 (solid lines), cf. equation (3.18).

One can observe that the optimal control lifts the second and third well up such that the

system is driven into C0 quickly.

First we validate our method with a convergence test using linear finite elements as basis

functions χi . To do so, we compute a reference solution φ̂ of (3.29) using linear finite elements

on a uniform grid with spacing hr = 10−4. The resulting interpolation φI =∑
i χi φ̂(i ) is very

close to the true solution φ of (3.26). We also compute a reference solution for the value

function VI =∑
i χi V̂ (i ) with V̂ =−ε log φ̂ and for the optimal control uI =−2∇VI . Then we

compute coarser solutions φI ,h using various grid spacings 1 ≥ h ≥ 10−3 and compute the L2

error ‖φI ,h −φI‖µ, and L2 errors for VI and uI similarly. The result is shown in Figure 3.4. The

L2 error of φI ,h is quadratic in h, as expected from the theory. Additionally, the L2 error of VI ,h

is also quadratic in h which, given that the transformation between φ and V is nonlinear, is

surprising. The error of uI ,h is only linear in h; as expected one order of convergence is lost

due to the fact that uI is the gradient of VI .

Next we use a committor basis. In accordance with the strategy to minimize minimize ε0 in

3The Pτ do not form a semigroup since M 6= 1, thus K cannot be interpreted as i.e. the generator of X̃−
t .

However, the entries of K are the transition rates between the core sets as defined in transition path theory [VE06].
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Figure 3.4 – L2 error of φI ,h , VI ,h and uI ,h using linear finite elements (dashed lines) and using
the committor basis (circles).

Theorem 3.7, we placed core sets Ci = [xi −δ, xi +δ] in each of the three wells of the potential

shown in Figure 3.5a, resulting in the set of three basis functions shown in Figure 3.5b. The L2

errors achieved by solving (3.29) in this basis are shown as circles in Figure 3.4. We observe

that the 3 committor functions achieve the same performance as linear finite elements with

grid spacing h ≈ 0.2, which corresponds to ≈ 40 basis functions. Theorem 3.7 gives ε0 ≤ 0.08,

while the actual error is one order of magnitude smaller. The dashed line in Figure 3.5a gives

the approximation to the effective potential U calculated in the committor basis, which is in

good agreement to the reference solution. In Figure 3.5c the optimal control u (solid line) and

its approximation uI (dashed line) are shown. The core sets are shown in blue. The jumps in

uI at the left boundaries of the core sets are due to the fact that the committor functions are

only piecewise C 1.

The computations so far require explicit knowledge of the basis functions χi to compute the

matrices K and F . For high-dimensional systems the committor basis is usually not explicitly

known. To mimic this situation, we construct a core MSM to sample the matrices K and F .

100 trajectories of length T = 20.000 were used to build the MSM. In Figure 3.5d, the optimal

cost starting from the rightmost well V (x1) and its estimate using the core MSM are shown for

ε= 0.5 and different values of f0. Each of the 100 trajectories has seen about four transitions.

For comparison, a direct sampling estimate of V (x1) using the same data is shown (green).

The direct sampling estimate suffers from a large bias and variance. In contrast, the MSM

estimator for V (x1) performs well for all considered values of σ. The constant C which ensures
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3.2. MSM Discretizations of LQ Type Control Problems

φ̂> 0 when f0 ≤C is approximately 0.2 in this case. This seems restrictive but still allows to

capture all interesting information about φ and V (x1).
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Figure 3.5 – Three well potential example for ε= 0.5 and f0 = 0.08. (a) Potential v(x) (blue),
effective potential U = v +2V (green) and approximation of U with committors (dashed red).
(b) The three committors. (c) The optimal control u(x) (solid line) and its approximation
(dashed line). Core sets are shown in blue. (d) Optimal cost V (x1) for ε= 0.5 as a function of
f0. Blue: Exact solution. Red: Core MSM estimate. Green: Direct sampling estimate.

Rugged 1D triple well potential

We now make the potential in Figure 3.5a rugged by adding a sinusoidal function. This is

an important test case since in many applications, in particular in MD, potential energy

landscapes are not smooth and instead have many local minima. We choose the same control

target, the same parameters and the same core sets C0, C1 and C2 as in the previous section. As

before, we compute a reference solution on a uniform grid with grid spacing hr = 10−4. Then

we compute coarser solutions with linear finite elements, and we compare with the committor

basis based on the three core sets C0, C1 and C2. The rugged potential v(x), the effective

potential U (x) = v(x)+2V (x) and the approximation computed with the committor basis are

shown in Figure 3.7a. Qualitatively, the solution computed from the committor basis seems
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Chapter 3. Optimal Control Theory in Molecular Dynamics

to perform quite well and is able to track both the large-scale behaviour and the small-scale

oscillations of U (x).
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Figure 3.6 – L2 error of φI ,h , VI ,h and uI ,h using linear finite elements (dashed lines) and using
the committor basis (circles) for the rugged potential. The right set of circles corresponds to
the small committor basis with 3 basis functions. The left set of circles corresponds to the
larger committor basis with 15 additional basis functions.

Finally, we want to investigate if it is possible to improve upon the performance of the com-

mittor basis by enlarging it. To do so, we put 13 further core sets C 2
0 , . . .C 2

12 (the upper index

should indicate that these are ’level 2’ core sets) equidistantly in the region X\ (C0 ∪C1 ∪C2).

No information about the position of the local minima is used when placing the additional

core sets, since it is unrealistic to assume that this is possible. The level 1 and level 2 core sets

are also shown in Figure 3.7a. Then, a larger committor basis is computed based on the level 1

core sets C0, C1, C2 together with the level 2 core sets C 2
0 , . . .C 2

12.

The numerical errors for the finite element method and both the small and large committor

basis are all summarized in Figure 3.6. We observe that the linear finite elements perform a

lot worse when compared to the results for the smooth potential in Figure 3.4: The quadratic

(for φ and v) resp. linear (for u) convergence only happens for h < 10−1, and we loose two

orders of magnitude in accuracy for the same value of h when compared to Figure 3.4. This

is because the small oscillations in the potential happen on the length scale h = 10−1, and

in order to achieve good accuracy, the linear basis functions χi ,h have to resolve them. In

contrast, the results computed with the small committor basis do not loose much accuracy

when compared to the smooth potential. In terms of the error in φ, the small committor basis
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3.2. MSM Discretizations of LQ Type Control Problems

achieves the same performance as linear finite elements with h ≈ 0.2, as before. In terms

of u, the performance is as good as linear finite elements with h ≈ 0.1. In terms of V , the

performance is as good as linear finite elements with h ≈ 2 ·10−2, corresponding to ≈ 400 basis

functions. The rugged potential is an example of a dynamics with slow and fast variables. We

study these systems in more detail in section 3.3.
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Figure 3.7 – Rugged three well potential example for ε= 0.5 and f0 = 0.08. (a) Potential v(x)
(blue), effective potential U = v +2V (green) and approximation of U with small committor
basis (dashed red). First level core sets C0, C1, C2 are shown in blue, second level core sets
C 0

2 , . . . ,C 2
12 are shown in red. (b)-(d) Comparison of reference solution (green line) with small

(red dashed line) and large committor basis approximation (blue dashed line). (b) Optimal
control, (c) value function, (d) solution φ of the boundary value problem.

Note however that the bound given by Theorem 3.7 does decrease by adding more core

sets: Theorem 3.7 gives ε0 ≤ 0.1 for the small committor basis, and ε0 ≤ 0.012 for the large

committor basis. In summary, the small committor basis still performs well for the rugged

potential. However, while adding more core sets and thus basis functions decreases both the

bound on ε0 given by Theorem 3.7 and the actual error in φ, we cannot guarantee that the

error in V and/or u also decreases.
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Chapter 3. Optimal Control Theory in Molecular Dynamics

When using the large committor basis, the error in φ decreases, but the error in u and V

increase. To see why this happens, we compare the reference solution and the approximations

given by the small and large committor basis for u, V and φ in Figures (3.7b) - (3.7d). We

can see that the control oscillates very strongly, and while the approximation from the large

committor basis can track the oscillations a bit better outside the core sets, it also forced to

zero more often, i.e. on all the additional core sets. The value function improves near C0 if

one goes to the large committor basis, but deteriorates around C2. This is understood if one

considers the error in φ, which is the error that is controlled by Theorem 3.7: The increase in

error near C2 is of the order 10−4 and is barely visible. In contrast, the decrease in error near

C0 is of the order 10−1 and vastly outweighs the increase near C2. The problem for the value

function is the large relative error near C2 since φ becomes very small, while the Galerkin

discretization only controls the absolute error.

Alanine dipeptide

As a second, non-trivial example we study conformational transitions in Alanine dipeptide

(ADP), a well-studied test system in molecular dynamics. We performed an all-atom simula-

tion of ADP in explicit water (TIP3P) with the Amber FF99SB force field [HAO+06] using the

GROMACS 4.5.5 simulation package [VDSLH+05]. The simulations were performed in the

NVT ensemble, where the temperature was restrained to 300 K using the V-Rescale thermostat

[BDP07]. 20 trajectories of 200ns with 100ps equilibration runs were simulated. Covalent

bonds to hydrogen atoms were constrained using the LINCS algorithm11 [HBBF97] (lincs iter

= 1, lincs order = 4), allowing for an integration timestep of 2 fs. The leap-frog integrator was

used. Lennard-Jones interactions were cut off at 1 nm. Electrostatic interactions were treated

by the Particle-Mesh Ewald (PME) algorithm12 [DYP93] with a real space cut-off of 1 nm, a

grid spacing of 0.15 nm, and an interpolation order of 4. Periodic boundary conditions were

applied in the x, y, and z-direction.
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Figure 3.8 – (a) Alanine dipeptide. (b) Free energy gi =− logπi .
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In Figure 3.8a, a cartoon of the molecule is shown. The full system including the water

molecules has about 4000 degrees of freedom. However, it is well known that the conforma-

tional dynamics, which are the slowest dynamical processes in the system, can be monitored

via the backbone dihedral angles φ and ψ. The dynamics along the other degrees of freedom

happens on much faster time scales. We show in section 3.3 that this time scale separation

implies that the value function is essentially a function of φ and ψ and constant in all other

directions. We will use this to build a Markov State Model which partitions the φ−ψ-plane.

Validation of the MSM approximation

We construct a full partition MSM using a uniform clustering into 36×36 boxes Ai of size

10◦× 10◦ in the φ−ψ-plane, and we use characteristic basis functions χi (x) = 1Ai for the

discretization4. Figure 3.8b shows the free energy gi =− logπi =− logP[X t ∈ Ai ] together with

the three largest molecular conformations α, β and Lα. The missing boxes have not seen any

data. The slowest dynamical process is the switching between the left-handed Lα structure

and the right-handed α and β sheet structures. As is customary in MSM theory [SNS10], we

estimate the slowest implied timescale (ITS) as follows: For different lagtimes τ, we construct

the MSM transfer operator Pτ
i j =π−1

i 〈χi ,T τχ j 〉µ and compute

t1(τ) =− τ

logλ1(τ)

where λ1(τ) is the 2nd largest eigenvalue of Pτ. The result is shown in Figure 3.9a. We observe

a plateau for 6ps ≤ τ≤ 30ps which indicates that the time-discrete snapshots X̂ τ
n := X̂nτ are

well described by a Markov chain with transition matrix Pτ for τ≥ 6ps. The plateau is used

to compute t1 = 1560ps±6ps. For smaller values of τ, X̂ τ
n is not Markovian due to recrossing

effects. For this reason we also cannot sample K directly and have to work with the finite-time

transfer operator Pτ instead. Before proceeding to the optimal control problem, we study

the effect of this time discretization on the mean first passage time (MFPT) t(x) = Ex [τα∪β]

where τα∪β is the first hitting time of α∪β. Since the α, β and Lα conformations are very

metastable, t(x) is almost constant on Lα and tLα = E[t(x)|x ∈ Lα] can be computed from t1

via tLα = t1/πα∪β where πα∪β = 0.96 is the invariant measure of the α and β conformation

combined [SNL+11]. This gives tLα = 1626ps±6ps.

On the other hand, let Nτ
α∪β = inf{n > 0 : X̂ τ

n ∈α∪β}. If the chain (X̂ τ
n)n is Markovian, then the

time-discrete MFPT t̂τ(x) = Ex [τNτ
α∪β] satisfies the matrix equation

(Pτ− I )t̂τ =−τ outside α∪β, t̂ = 0 inα∪β. (3.37)

4Let Ci ⊂ Ai be a core set in cell Ai . The characteristic basis functions can be obtained from the committors by
expanding Ci to fill out all of Ai . This basis is used to construct full partition MSMs and produces particularly
simple sampling formulas. The characteristic functions are not in V , but the sampling results are similar to what
one would obtain using committors with cores Ci which fill out most of Ai .
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Additionally, since τα∪β ∈ (τ(Nτ
α∪β−1),τNτ

α∪β], we should expect that

t̂τLα := E
[
t̂τ(x)|x ∈ Lα

]= tLα + cτ, c ≤ 1. (3.38)

In Figure 3.9b, t̂τLα obtained by solving (3.37) is shown as a function of τ together with tLα . A

linear interpolation using the values for 6ps ≤ τ≤ 30ps where the Markov assumption holds

gives t̂τ = t̂ 0 + 0.8τ with t̂ 0 = 1628ps, which is consistent with (3.38). This shows that the

time discretization introduces only small, controllable errors for τ ≥ 6ps. In the following,

we will work with τ= 10ps. Notice that the time discretization amounts to the replacement

K → τ−1(Pτ− I ) in (3.29).
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Figure 3.9 – (a) Slowest implied timescale t1(τ) (red) and average using the values for 6ps ≤ τ≤
30ps (green). (b) Time-discrete MFPT t̂τLα as a function of τ (red), linear interpolation of t̂τLα
(blue) and the reference value tLα (green). The confidence interval of tLα is shown as dashed
lines.

Controlled transition to theα-helical structure

Next we consider an optimal control problem for steering the molecule into the α-structure.

We choose as the target region A = α and define running costs in the (φ,ψ) variables as

f (φ,ψ) = f0 + f1‖ψ−ψα‖2 where ‖ ·‖ is a simple metric on the torus, and we choose f0 = 0.01

and f1 = 0.001 representing a mild penalty for being away from the target region in the ψ-

direction. We discretize this control problem using the same partition and time discretization

as for the MSM construction in section 3.2.4 and sample Pτ and F from the MSM data. The

resulting value function V̂ = log φ̂ is shown in Figure 3.10a. Since the basis functions χi are not

differentiable and some data is missing in V̂ , we have to construct an interpolation VI (φ,ψ)

from the point data V̂ to obtain an estimate for the optimal control force u(φ,ψ) =−2∇VI (φ,ψ).

An interpolation based on a Delauney triangulation which is C 1 everywhere except at the data

points is shown in Figure 3.10b.

To demonstrate that adding the control force u(φ,ψ) has the effect of speeding up the transi-
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tion from Lα toα, we would have to implement it in the MD simulation software. We leave that

for future work. We can make a prediction of the anticipated effect within the MSM framework:

In accordance with (3.20), we compute the transition matrix Pτ
α∗ of the optimally controlled

process by Pτ
α∗(i , j ) = Pτ(i , j )α

∗( j )
α∗(i ) with α∗ = φ̂ for i 6= j . The discretized MFPT vector t̂∗ of the

optimally controlled process can be computed from the Matrix equation(
Pτ
α∗ − I

)
t̂∗ =−τ outside α, t̂∗ = 0 inα.

The result is shown in Figure 3.10c and gives a speed up compared to t̂0 of one order of

magnitude. A larger speed up could easily be achieved by increasing f . In Figure 3.10d we

show the free energy of the controlled process in log scale, which according to Lemma 3.2 is

given by gα
∗ =− logπα

∗ = log Zα∗ −2V̂ − logπ. Observe that the Lα and β conformations are

now much less populated compared to the equilibrium distribution in Figure 3.8b: As in the

1D example, the control mainly has the effect of lifting the wells which are not in the target

region up such that they become less metastable.

3.3 Multiscale Problems: Averaging

In this section, we discuss the averaging approach for MJPs5 as it was described in [PS08]

and apply it to the optimal control problems discussed earlier. This approach is useful when

systems with many degrees of freedom and a strong time scale separation into a ’slow’ and

a ’fast’ dynamics are considered. One can then average over the fast dynamics in order to

obtain a reduced problem in terms of a MJP that only acts on the slow dynamics. This is the

justification for working in the (φ,ψ)-space in the numerical example discussed in section

3.2.4: The Markov Model of the Molecular dynamics simulation of ADP does exhibit a strong

time scale separation with the slow variables being the dihedral angles φ and ψ. We follow the

reference textbook [PS08]. See also [PW14, HP14] for further details.

Following [PS08], we consider a MJP on finite state space Xwith a generator G that admits a

separation of the form

G = 1

ε
G0 +G1

with a small parameter 0 < ε¿ 1 that controls the time scale separation. We will let X be

indexed by two variables x and y with x standing for the slow and y for the fast variables. The

leading order contribution G0 corresponds to fast ergodic dynamics in y with x frozen.

The precise situation is as follows: The state space is X=Xx ×Xy . We assume X to be finite

and denote by ‖ · ‖ = ‖ · ‖∞ the sup-norm on X. We let g ((x, x ′), (y, y ′)) be the element of G

associated with a transition from (x, y) ∈Xx ×Xy to (x ′, y ′) ∈Xx ×Xy , and similarly for G0 and

5Everything discussed in this section works for Markov chains as well, if one replaces the generator by P − I .
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Figure 3.10 – (a) Optimal control V̂ for steering into the α-structure. (b) Interpolation VI (φ,ψ)
obtained from V̂ via a Delauney triangulation, and a steepest descent path from Lα to α.
(c) MFPT to the α conformation for the optimally controlled process. (d) Free energy gα

∗ =
− logπα

∗
of the optimally controlled process.

G1. We now assume that the elements of G0 and G1 are of the form

g0((x, y), (x ′, y ′)) =a0(y, y ′; x)δxx ′ (3.39)

g1((x, y), (x ′, y ′)) =a1(x, x ′; y)δy y ′ (3.40)

where a0(y, y ′; x) denotes the entry corresponding to a transition from y to y ′ of a generator

A0(x) that acts only on Xy , for fixed x ∈ Xx . Similarly, a1(x, x ′; y) denotes the entry of a

transition from x to x ′ of a generator A1(y) that acts only on Xx , for fixed y ∈Xy . We assume

the family of generators A0(x) to be ergodic for every x ∈ Xx , such that A0(x) has a one-

116



3.3. Multiscale Problems: Averaging

dimensional left and right nullspace for every x ∈Xx , characterized by∑
y ′

a0(y, y ′; x)1(y ′) =0, (3.41)

∑
y
µ∞(y ; x)a0(y, y ′; x) =0. (3.42)

Next we introduce the averaged generator Ḡ1 on Xx by:

ḡ1(x, x ′) =∑
y
µ∞(y ; x)a1(x, x ′; y). (3.43)

In [PS08], the following averaging result is proved:

Theorem 3.10 (Averaging for MJPs) Let (X t ,Yt )t be a MJP on X = Xx ×Xy with generator

G = 1
εG0 +G1 with G0 and G1 given by (3.39) and (3.40). Then as ε→ 0, (X t )t converges in

distribution6 to a Markov chain (X̄ t )t on Xx with generator Ḡ given by (3.43).

One should note that (X t )t is not a Markov process, only (X t ,Yt )t is. Theorem 3.10 now states

that (X t )t can be approximated by a Markov process (X̄ t )t onXx . The proof is done by applying

the method of averaging to the backward Kolmogorov equation (see (1.14))

∂u

∂t
= Lu on (0,∞)×X, u(0, x, y) = f (x, y). (3.44)

for u(t , x, y) = E(x,y)
[

f (X t ,Yt )
]
. One shows that u is approximated by u0(x, y) = u0(x)1(y)

which is governed by the averaged equation

∂u0

∂t
= Ḡu0.

In applications, we cannot compute Ḡ from (3.43) since we do not have access to the con-

ditional distributions µ∞(y ; x). However, from a realization of (X t ,Yt )t we can construct an

estimator for Ḡ using the X t component only. This is because for ε¿ 1 the fast variables

sample µ∞(y ; x) on the fast time scale where X t ≈ x stays approximately constant. The MSM

transfer operator that was constructed for the ADP example in section 3.2.4 is effectively

Pτ = exp(τḠ), with the slow variable space being the space of dihedral angles (φ,ψ).

In the following, we will show a similar averaging result for discrete control problems. The

idea is to use the duality theorem 3.3 and the Feynman Kac formula (1.39) to express the value

function of the control problem in terms of the solution φ to a boundary value problem of the

form (3.29). For boundary value problems, we can establish the following averaging result:

6I.e. the finite-dimensional distributions (1.1) of (Xt )t converge weakly to the finite-dimensional distributions
of (X̄t )t .
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Theorem 3.11 (Averaging for BVPs). Let A = Ax ×1y ⊂Xx ×Xy and let φ be the solution to the

boundary value problem(
G − f

)
φ=0 onX\ A

φ=g on A
(3.45)

with functions f :X→ [0,∞) and g : A → [0,∞) such that g (x, y) = g0(x)1(y), and generator

G = 1
εG0 +G1 with G0 and G1 given by (3.39) and (3.40). Let τεA be the first hitting time of A

under G = 1
εG0 +G1 and suppose that there is C > 0 and ε0 > 0 such that supx,y Ex,y

[
τεA

]≤C

holds for all 0 < ε ≤ ε0. Then for ε ≤ ε0, ‖φ−φ0‖ ≤ C ′ε with C ′ independent of ε, where

φ0(x, y) =ψ0(x)1(y) and ψ0 is the solution to the boundary value problem(
Ḡ − f̄

)
ψ0 =0 onXx \ Ax

ψ0 =g0 on Ax
(3.46)

with Ḡ given by (3.43) and

f̄ (x) =∑
y
µ∞(y ; x) f (x, y). (3.47)

Proof. First we derive (3.46). We insert the ansatz φ = φ0 + εφ1 into (3.45) and compare

coefficients. This gives

G0φ0 = 0 onX\ A, φ0 = g on A (3.48)

G0φ1 +G1φ0 − f φ0 = 0 onX\ A, φ1 = 0 on A. (3.49)

We introduce the orthogonal projection P (w.r.t. the euclidean scalar product 〈u, v〉 = uT v)

onto the space
{

v ∈RX : v = 0 on A
}

and use the notation

G =
(

H M

N O

)

for a matrix G :RX→RX where H = PGP , M = PGP⊥ and so on. In this notation, the matrix

G0 is of the form

G0 =
(

H 0

0 O

)

since in order to go from A = Ax ×1y to X\ A one needs to change the x-variable, but by (3.39)

the x-variable is left unchanged by G0. We can therefore rewrite equation (3.48) as(
H 0

0 1

)(
Pφ0

P⊥φ0

)
=

(
0

g

)

which has the solution φ0(x, y) =ψ0(x)1(y) with boundary condition ψ0(x) = g0(x) for x ∈ Ax .
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We rewrite (3.49) in the same manner:(
H 0

0 1

)(
Pφ1

P⊥φ1

)
=

(
P

(
L1φ0 − f φ0

)
0

)

The second equation has the unique solution P⊥φ1 = 0. In order for the first equation Hψ1 =
P

(
L1φ0 − f φ0

)
to have a solution ψ1 := Pφ1, the Fredholm alternative [PS08] implies the

solvability condition

P
(
L1φ0 − f φ0

)⊥ ker
(
H T )

.

By our assumptions, the nullspace ker
(
H T

)
is characterized by∑

x∈Xx \Ax ,y∈Xy

µ∞(y ; x)c(x)g0((x, y), (x ′, y ′)) = 0

for any vector c = {c(x)} on Xx \ Ax . Thus imposing the solvability condition gives

0 = ∑
x∈Xx \Ax ,y∈Xy

µ∞(y ; x)c(x)
[
(G1φ0 − f φ0)(x, y)

]
. (3.50)

From (3.40) and φ(x, y) =ψ0(x)1(y), we have

(G1φ0)(x, y) = ∑
x ′,y ′

g1((x, y), (x ′, y ′))φ0(x ′, y ′) =∑
x ′

a1(x, x ′; y)ψ0(x ′).

Therefore (3.50) is equivalent to

0 = ∑
x∈Xx \Ax ,y∈Xy

µ∞(y ; x)c(x)

[∑
x ′

a1(x, x ′; y)ψ0(x ′)− f (x, y)ψ0(x)

]

= ∑
x∈Xx \Ax

c(x)

[∑
x ′

ḡ1(x, x ′)ψ0(x ′)− f̄ (x)ψ0(x)

]

where the last line follows from the definitions of the averaged generator (3.43) and the

averaged costs (3.47). Since c is an arbitrary vector in RXx \Ax , the sum in the last line has to

vanish componentwise. This together with the boundary condition ψ0(x) = g0(x) implies

(3.46).

Now we have to show that ‖φ−φ0‖ ≤C ′ε. To do this, we insert φ=φ0 +εφ1 +r into (3.45), use

(3.48) and (3.49) and arrive at

(G − f )r +ε(G1φ1 − f φ1) = 0 onX\ A, r = 0 on A.

With the shorthand b :=G1φ1 − f φ1, this becomes

(−G + f )r = εb onX\ A, r = 0 on A.
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Taking norms on both sides gives λ f
m‖r‖ ≤ ε‖b‖ where λ f

m is the smallest eigenvalue of the

operator P (−G + f )P where P is orthogonal projection onto the space {v :X→R : v |A = 0}. Let

P (X) be the space of probability measures on X. By the Perron-Frobenius theorem, λ f
m has

a positive eigenvector that we can characterize by a variational formula due to Donsker and

Varadhan [DV75]:

λ
f
m = inf

ν∈P (X\A)
sup

u≥0,u|A=0

( ∑
x∈X\A

(−Gu

u

)
(x)ν(x)+Eν[ f ]

)

≥ inf
ν∈P (X\A)

sup
u≥0,u|A=0

∑
x∈X\A

(−Gu

u

)
(x)ν(x) =:λ0

m .

Here, the inequality holds because f ≥ 0. λ0
m is the smallest eigenvalue of P (−G)P and can

be bounded by λ0
m ≥ 1/supx,y Ex,y

[
τεA

]≥C−1, see [Bov09]. This can also be seen by inserting

u = Ex
[
τεA

]
into the variational formula above. Putting everything together gives

‖r‖ ≤ ε

λ
f
m

‖b‖ ≤ ε

λ0
m
‖b‖ ≤ εC‖b‖

and thus ‖φ−φ0‖ = ‖εφ1 + r‖ ≤ ε‖φ1‖+‖r‖ ≤ ε(‖φ1‖+C‖b‖) which finishes the proof. ■

The conditions in theorem 3.11 demand that transitions from X\ A to A happen on the slow

time scale, and that boundary conditions encoded by g do not vary along the fast time scale.

This is satisfied e.g. if A = A1∪. . .∪An is a union of metastable sets Ai and g = g11A1+·· ·+gn1An

is constant on the Ai . The control problems we considered in section 3.2.2 are a special case of

this situation. With the help of theorem 3.11, we get the following averaging result for control

problems:

Theorem 3.12 (Averaging for control problems.) Let V = infv∈U J v be the value function of

the LQ control problem7 (3.19)-(3.20) for a MJP (X t ,Yt )t on X=Xx ×Xy with cost function

J v (x, y) = Ex y

[∫ τA

0

{
f (X v

s ,Y v
s )+k(X v

s ,Y v
s , vs)

}
ds + z

(
XτA

)]
,

target region A = Ax ×1y ⊂X, control-dependent costs k as in (3.21) and terminal costs z
(
XτA

)
.

Let G = 1
εG0 +G1 with G0 and G1 as in (3.39)-(3.40). Then for ε¿ 1, ‖V −V0‖ ≤ Cε where

V0(x, y) = V̄0(x)1(y) and V̄0 is the value function of an LQ control problem for a MJP (X̄ t )t on

Xx with averaged cost functional

J̄ v (x) = Ex

[∫ τAx

0

{
f̄ (X̄ v

s )+ k̄(X̄ v
s , vs)

}
ds + z

(
X̄τAx

)]
(3.51)

with f̄ given by (3.47), control space U = {α : Xx → (0,∞)}, modified generator Ḡα given by

Ḡα(x, x ′) = Ḡ(x, x ′)α(x ′)/α(x) with Ḡ given by (3.43), and control-dependent costs k̄(x,α) given

7In order to not confuse the multiscale parameter ε with the temperature parameter in (3.19)-3.20), we set
temperature to one here.
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by

k̄(x,α) = (Ḡα(logα))(x)− (Ḡα)(x)

α(x)
.

Proof. By the duality theorem 3.3 and theorem 1.7, V =− logφ and φ is the unique solution of

the boundary value problem(
G − f

)
φ=0 onX\ A

φ=g on A

with g (x, y) = g0(x)1(y) and g0(x) =− log z(x). By theorem 3.11, φ=φ0 +O (ε) with φ0(x, y) =
ψ0(x)1(y), and ψ0 solves the averaged boundary value problem(

Ḡ − f̄
)
ψ0 =0 onXx \ Ax

ψ0 =g0 on Ax .

By applying theorem 3.3 again, we see that V̄0 :=− logψ0 is the value function of the averaged

control problem (3.51). Set V0(x, y) = V̄0(x)1(y). Since φ0 is bounded away from zero, we have

for ε¿ 1

‖V −V0‖ =
∥∥logφ0 − log

(
φ0 +εφ1 +O (ε2)

)∥∥=
∥∥∥∥εφ1

φ0
+O (ε2)

∥∥∥∥=Cε+O (ε2).

This finishes the proof. ■

Theorem (3.12) tells that under the same assumptions as for theorem (3.11), the value function

V can be approximated to lowest order in ε by a function V0 which is constant along Xy , and

V0 itself is the value function of an averaged control problem. Recall that the optimal strategy

for the problem in theorem 3.12 was α∗ = exp(−V ) =φ, hence α∗ =α∗
0 +O (ε) with α∗

0 being

constant along Xy as well. Therefore, the modified generator Gα∗
x y = Gx yα

∗(y)/α∗(x) only

modifies G1 and leaves G0 invariant. In other words: Only transitions along the slow variable

are affected by the control α∗, while transitions along the fast variable are unchanged. Note

also that we make no assumptions on f , in particular f is allowed to vary along Xy .

Example. As an example, we revisit the random block model from section 2.4.1. We choose

the parameters nb = 5, m = 100, pi = 0.4 and po = 10−3. We arrange the 5 blocks A1, . . . , A5 on

a ring and only allow external edges between neighbouring blocks. We also disallow edges

from A1 to A5, such that a transition from A1 to A5 has to happen via A2, A3, A4. The resulting

graph is shown in Figure 3.11.

We construct a generator G = 1
εG0+G1 on this graph, where G0 describes transitions within the

blocks and G1 describes transitions along edges between blocks. We can describe the position

of the MJP on the graph by two coordinates (x, y), where the slow coordinate x ∈ {1, . . . ,nb} is
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A5

A1
A2

A3A4

Figure 3.11 – Blockmodel with 5 metastable sets A1-A5. The control target is A = A5. Nodes
are colored according to the value function. Node size is proportional to µ. Edges are colored
according to how their transition rates are modified by α∗: For red edges Gα∗

x y >Gx y . For blue

edges Gα∗
x y <Gx y .

the index of the block and the fast coordinate y ∈ {1, . . . ,m} is the position within the block.

We set ε = 0.01. To demonstrate averaging, we study the LQ control problem of theorem

3.12 with target region A = A5, no terminal costs and normally distributed running costs

f (x) = N ( f0, f0/2) with f0 = 10. In Figure 3.12, the resulting value function V and the averaged

value function V0 are shown. Indeed V is almost constant within blocks, with fluctuations of

order ε. V0, which is computable from a 5×5-system, approximates V almost perfectly.

As a consequence, the generator Gα∗
of the resulting optimal strategy α∗ only modifies jump

rates along edges between blocks. In Figure 3.11, the coloring of the edges indicates how

their jump rates are modified by α∗. Red edges have increased jump rates, blue edges have

decreased jump rates. As expected, jump rates on clockwise edges are increased while jump

rates on counterclockwise edges and jump rates from A5 back to A1 are decreased.
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Figure 3.12 – The value function V for the full problem (blue line) and the averaged value
function V0 (red dotted line).
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4 Conclusion and Outlook

In the introduction, two questions were asked:

(1) How do the long-term dynamics of a reversible Markov process change when non-

reversibility is added?

(2) Can we utilize non-reversibility to accelerate the long-term dynamics?

We will now interpret the results of the thesis in order to give partial answers.

It is clear that we cannot expect a general answer to question (1): Without further constraints

on the type of non-reversibility added, anything could happen. The most general answer to

question (1) given in the thesis is in Theorem 2.6 in section 2.2.3. It compares a reversible

and ergodic Markov process (X s
t )t which has stationary distribution µ and generator Ls with a

non-reversible Markov process (X t )t which is obtained from (X s
t )t by adding a term δL to the

generator. The generator L = Ls+δL of (X t )t has to satisfy Ls = 1
2 (L+L−). For finite state spaces,

this is satisfied if δL = D−1
µ H with H =−H T an antisymmetric matrix. Theorem 2.6 now states

that (X s
t )t is always slower than (X t )t in the sense that T s(A,B) ≥ T (A,B) for any A,B ⊂X. In

other words, adding the non-reversible term δL = D−1
µ H will always decrease the commuting

time for any pair of regions A,B . If A and B are metastable sets then the commuting time

T (A,B) is a way to quantify their degree of metastability. Theorem 2.6 therefore tells us that

(X t )t will always be less metastable than (X s
t )t .

Theorem 2.6 was stated and proven for finiteX, but the tools used to prove it - potential theory

and the variational formulas (2.31) and (2.32) - also exist for diffusions on continuous X. A

possible generalisation of Theorem 2.6 to this case can therefore be expected.

Note that we cannot use any antisymmetric matrix H to construct L = Ls +D−1
µ H . L must still

be a generator matrix, in particular all the off-diagonal entries of L have to be nonnegative.

But if H is a suitable antisymmetric matrix, then we automatically have div H = 0 and this

guarantees that we can decompose G(H) into cycles. Since cycles in G(H) must be cycles in

G(Ls) (otherwise L = Ls +D−1
µ H would have negative off-diagonal entries), a way to construct
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a suitable H is to look for cycles in G(Ls). This highlights another important feature of non-

reversible processes: The appearance of non-trivial cycles in the probability current. Section

2.1 compared two possible ways for finding these cycles: An algebraic construction in Lemma

2.3 and a probabilistic one in Lemma 2.4. Throughout the thesis, cycles appeared in many

places that hint at their importance:

• Expressions (2.13) and (2.14) for the entropy production rate (1.10) in terms of cycles.

• If one wants to find a suitable H so that L = Ls + D−1
µ H satisfies the conditions of

Theorem 2.6, one needs to find cycles in G(Ls).

• Module detection for irreversible processes: With the help of Lemma 2.7, we defined

modules as subsets with many internal and few external cycles and identified them with

metastable sets of the loop transition matrix P s∞ (2.21) in section 2.3.

• The TPT current of reactive trajectories f +
AB has cycles if the dynamics is irreversible.

These cycles cloud the interpretation of f +
AB as describing a transport mechanism, and

we would like to remove them. This was addressed in section 2.4.

In summary, we may answer question (1) in the following way: The long-term dynamics is

almost always accelerated if non-reversibility is added. If one wants to understand the precise

mechanisms, then cycles are the key.

In order to give an answer to question (2), we need to specify what exactly we want to accelerate.

We shall be interested in two kinds of observables: Equilibrium observables, which are of the

form φ( f ) = Eµ[ f (X t )] with X t ∼ µ and a measurable and bounded function f :X→ R, and

path observables of the form ψ[F ] = E[F ] where the function F :Ω→R depends on the whole

realization of (X t )t . What we want to accelerate is the time a numerical method needs to

compute φ( f ) or ψ(F ) to a certain accuracy.

Since sampling from an equilibrium distribution µ converges with a rate that is given by the

second-largest eigenvalue which in turn corresponds to a pair of regions A and Ac such that

T (A, Ac ) is maximal, Theorem 2.6 gives an answer to question (2) for equilibrium observables.

The answer is that, within the confinements of Theorem 2.6, we can add any non-reversible

term to a reversible process, it will always accelerate the sampling. This is consistent with

results in [SSG10]. The question of how e.g. δL = D−1
µ H should be chosen best is not answered.

It might be possible to formulate an optimization problem to answer this question, but we

leave that for future work (see below).

For path observables, Theorem 2.6 does not help since the dynamics and therefore ψ(F )

change under the addition of δL. In order to compute the unmodified observable ψ(F ) under

the modified dynamics, a reweighting procedure is needed. In section 3.1, it was explained

that for path observables of the form

ψ(x) = Ex

[
exp

(∫ τ

0
f (Xs)ds

)]
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such a reweighting procedure is given in terms of the solution to an optimal control problem.

Here, τ was the first hitting time of a region A ⊂X, and we are interested in situations were

the initial state x ∈ B and A and B are metastable sets. With the optimal control formulation,

we can compute the optimal way to accelerate transitions from B to A by adding a control ut .

Under the optimal control u∗
t , a zero variance estimator for ψ is obtained [HS12].

In section 3.2, a numerical method to solve the resulting LQ control problems numerically was

constructed based on Galerkin projections. An L2 error bound on the performance p = ε/ε0

was given in Theorem 3.4 that complements Céa’s lemma [Bra07]. Bounds on ε0 for standard

choices of basis functions, e.g. piecewise polynomial or radial basis functions, can be found in

the literature [Bra07, Wen99]. We gave special attention to the committor basis and bounded

ε0 for this choice in Theorem 3.7. We have shown that the committor basis is extremely sparse

and still very accurate, provided the core sets are placed in the metastable wells. Doing this

however requires prior knowledge about the location of these metastable regions.

In MSM theory, the elements of the MSM transition matrix

Pi j =
〈χi ,Pτχ j 〉µ
〈χi ,1〉µ

cannot be computed numerically due to the high-dimensional integrals involved and must

be sampled instead. The same is true for the matrices K and F that we construct with our

method in (3.29) if a committor basis or a basis of indicator functions of a full partition of

state space is used. The benefits of using such a discretization for our method are the same as

for MSM theory: Instead of having to sample ψ using few long trajectories, which would be

extremely difficult, we can sample K and F using many short trajectories.

Outlook

We give a short account on questions left unanswered and possible future directions, without

an effort of completeness:

(1) The duality Theorem 3.1 holds for general Markov diffusions of the form

dX t = b(X t )dt +σ(X t )dWt .

However, we construct the Galerkin discretization method in section 3.2 for the case

of X t being reversible with b(x) =−∇V (x) only. This is in accordance with the focus of

the thesis on studying how reversible processes change if non-reversibility (in this case

control) is added. The technical reason for this limitation is that then the generator L

of the process is self-adjoint in L2(µ) with scalar product 〈·, ·,〉µ, which leads to better

properties for the Galerkin projection. However, it should be possible to extend the

Galerkin projection formalism to the case where L is not self-adjoint, which enables the
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study of control applied to irreversible processes.

(2) In section 2.4, we studied transition pathways between two metastable regions A and

B for irreversible processes with the help of TPT. It would be interesting to see how

this system would react if a control is introduced, e.g. to accelerate the transition from

A to B . In principle, it should be possible with the methods presented in section 2.4

to compute for every reaction pathway how it reacts to the control, e.g. it might shift

slightly or the proportion of reactive flow it carries might change.

(3) Theorem 2.6 does not tell how δL = D−1
µ H should be chosen in order to optimally

accelerate the commuting time T (A,B). This question can be formulated as an optimal

control problem in the following way: Consider the extended state space Xe =X⊗ {0,1}.

We denote a state inXe by (x, s) and think of s = 0 as signifying ’(X t )t has not yet reached

B ’ and of s = 1 as signifying ’(X t )t has reached B ’. In other words, we define a process

(X e
t )t onXe by X e

t = (X t , st ) where the dynamics of X t is Markovian with generator L and

st = 1{t≥τB } where τB is the first hitting time of B . Now let τe = inf
{

t > 0 : X e
t ∈ A⊗ {1}

}
be

the first hitting time of the state A⊗ {1} ⊂Xe that denotes ’return to A after B has been

visited’. With appropriate running costs k(x,u), we may now think of minimizing the

functional

J u(x) = Ex

[∫ τe

0

(
f (X e

s )+k(X e
s ,us)

)
ds

]
under the constraint that Lu = L+D−1

µ H with H =−H T . For the choice f = 1 and initial

point x ∈ A, the functional J u(x) is essentially T (A,B) plus an additional control penalty

term. This is not an LQ control problem however, so new solution methods must be

sought.

(4) If we want to go beyond LQ control problems, then obtaining a linear PDE by logarithmic

transformation will no longer be possible in general, and we are forced to work with

the nonlinear control problem directly. A possible avenue for doing this is approximate

policy iteration, see [Ber11] and the references therein for a description of this method

in the context of Markov chains. We now outline how this method would look like in

the context of diffusions. The starting point is ordinary policy iteration [Kus01], which

begins with an initial Markov control policy u0 and then iterates the following two steps:

• Policy evaluation: Given a Markov control policy un , determine the cost Jn = J un .

If J u has the form (1.57b) for the indefinite horizon problem, then this can be done

by solving the linear PDE

0 = Lun Jn(x)+ f (x,un(x)), x ∈ A,

Jn(x) = z(x), x ∈ ∂A.
(4.1)

• Policy improvement: Compute a better policy un+1 by finding the minimizer in the

Bellman equation (1.66) with the value function V replaced by the cost Jn of the
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current policy un . For the indefinite horizon problem with cost function (1.57b),

policy improvement takes the form

un+1(x) = argmin
α∈U

{
Lα Jn(x)+ f (x,α)

}
, x ∈ A. (4.2)

Policy evaluation is usually more difficult than policy improvement (solving a PDE vs.

pointwise minimization). The appeal of policy iteration is that it replaces the nonlinear

Bellman equation (1.66) with an iterative scheme were a linear PDE (4.1) must be solved

at each iteration step. The idea of approximate policy iteration is now to replace the diffi-

cult step (4.1) by an approximation obtained by projecting (4.1) onto a low-dimensional

space of ansatz functions. This is precisely the Galerkin projection formalism that was

developed in section 3.2. With the ansatz space D = {χ1, . . . ,χn} and Q being the projec-

tion onto D, approximate policy iteration begins with an initial Markov control policy

u0 and iterates the following two steps:

• Approximate policy evaluation: Given a Markov control policy un , determine the

approximate cost Ĵn =Q Jn by solving

0 = L̂un Ĵn + r un , L̂un

i j = 〈χi ,Lunχ j 〉µ
〈χi ,1〉µ

, r un

i = 〈χi , f (·,un)〉µ
〈χi ,1〉µ

. (4.1’)

• Policy improvement: Compute a better policy un+1 by finding the minimizer in the

Bellman equation (1.66) with the value function V replaced by the approximate

cost Ĵn of the current policy un . For the indefinite horizon problem with cost

function (1.57b), policy improvement takes the form

un+1(x) = argmin
α∈U

{
Lα Ĵn(x)+ f (x,α)

}
, x ∈ A. (4.2’)

The approximate policy evaluation step (4.1’) requires solving a linear system as well as

sampling of Lun and r un . This sampling can be performed with the techniques discussed

in section 3.2.3. Approximate policy iteration is not restricted to LQ control problems,

but for LQ control problems the policy improvement step (4.2’) becomes particularly

simple, namely un+1(x) =−p2ε−1/2σT ∇Jn(x), cf. Theorem 3.1.

Figure 4.1 shows some preliminary results for the triple well potential with 20 evenly

spaced gaussian basis functions as ansatz functions. The ’do nothing’ policy u0 ≡ 0 was

chosen as starting policy. In Figure 4.1 on the right, the error of the iterates ‖J∗− Ĵk‖µ
is compared with the best approximation error ‖J∗−Q J∗‖µ. One can observe that the

error decreases very fast initially, but then it starts oscillating instead of converging.

This is due to the projection in (4.1’). Oscillations around a limit cycle are typical for

approximate policy iteration [Ber11].
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Figure 4.1 – Approximate policy iteration, preliminary results for the triple well potential. Left:
First six iterates Ĵk (blue), value function V = J∗ (green) and best approximation Q J∗ (red).
Right: Error of the iterates Ĵk compared to the best approximation error.
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A Appendix A

A.1 Proof of theorem 1.1

We present the proof of theorem 1.1. Let g (x) = u(t , x) for t ∈ (0,∞). Since f is bounded,

f ∈ L∞(X,µ) and u(t , x) = (Tt f )(x). Since t 7→ u(t , x) is differentiable, we have

∂u

∂t
= lim

h→0

u(t +h, x)−u(t , x)

h
= lim

h→0

(Tt+h f )(x)− (Tt f )(x)

h

= lim
h→0

(Th(Tt f ))(x)− (Tt f )(x)

h
= lim

h→0

(Th g )(x)− g (x)

h
.

Since g = u(t , ·) ∈D, the last limit on the RHS exists and equals Lg = Lu(t , ·). This proves the

assertion. ■

A.2 Proof of theorem 1.7

We present the proof of theorem 1.7. Existence and uniqueness of the solution to (1.39) holds

as follows: Note that we can write (1.39) as

(LD − fD )hD = b (A.1)

where LD , fD and hD are L, f and h restricted to D respectively (i.e. columns and rows

corresponding to X \ D have been erased) and b is the vector one obtains by plugging the

boundary conditions h(x) = g (x) into equation (1.39), i.e. b(x) =∑
y∈X\D lx y g (y). Because L is

a generator matrix, L ≤ 0 and LD < 0, and since f ≥ 0 the matrix LD − fD < 0 is negative definite

and therefore invertible, so that (A.1) has a unique solution.

Now we show that (1.40) is a solution to (1.39). To do so, we use the characterization of the MJP

{X t }t by the embedded chain (Xn)n and the sequence of waiting times (τn)n . Let X0 = x ∈ D (if

x ∈X\D , we immediately have h(x) = g (x)). We use the law of total expectation to rewrite h(x)
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by conditioning on τ0 = τ and X1 = y 6= x, this implies X t = x for 0 ≤ t < τ and Xτ = y . Then,

h(x) =
∫ ∞

0
P[τ0 = τ|X0 = x]

∑
y 6=x

P[X1 = y |X0 = x]

×Ex

[
exp

(
−

∫ τD

0
f (Xs)ds

)
g

(
XτD

)∣∣∣∣τ0 = τ, X1 = y

]
dτ

Since the τi are exponentially distributed, P[τ0 = τ|X0 = x] = λe−λτ with λ = −lxx . Further-

more, P[X1 = y |X0 = x] = qx y = lx y /(−lxx ) by (1.36). The exp
(−∫ τ

0 . . .
)

part of the integral in

the conditional expectation is Fτ-measurable and, since we condition on Fτ, can be pulled

outside the conditional expectation. This results in

h(x) =
∫ ∞

0
e−λτ

∑
y 6=x

lx y exp

(
−

∫ τ

0
f (x)d s

)
×Ex

[
exp

(
−

∫ τD

τ
f (Xs)ds

)
g

(
XτD

)∣∣∣∣τ0 = τ, X1 = y

]
dτ

Since {X t }t is a homogeneous Markov process, we can restart it at t = τ with initial condition

Xτ = y , and then the conditional expectation above equals h(y). We end up with

h(x) = ∑
y 6=x

lx y h(y)
∫ ∞

0
e−(λ+ f (x))τdτ= ∑

y 6=x
lx y h(y)

1

λ+ f (x)
.

This can be rearranged to give, in view of λ=−lxx ,

f (x)h(x) = ∑
y 6=x

lx y h(y)+ lxx h(x) = (Lh)(x)

which is (1.39). ■

A.3 Proof of theorem 1.16

Let u ∈U0. Since V solves the Bellman equation (1.71) and us ∈U for all 0 ≤ s < τ, we have

Lus V
(
X u

s

)+ f
(
X u

s ,us
)≥ 0, 0 ≤ s < τ. (A.2)

Now use the Dynkin formula (1.68):

Ex
[
V

(
X u
τ

)]=V (x)+Ex

[∫ τ

0
Lus V

(
X u

s

)
ds

]
≥V (x)−Ex

[∫ τ

0
f
(
X u

s ,us
)

ds

]
.
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Because of the boundary condition in (1.71) we have Ex
[
V

(
X u
τ

)]= Ex
[
z
(
X u
τ

)]
, hence

V (x) ≤ Ex

[∫ τ

0
f
(
X u

s ,us
)

ds + z
(
X u
τ

)]= J u(x).

This proves the first part of the assertion. For the second part, let u∗
t = α∗ (

X u
t

)
with α∗(x)

given by (1.72). Then the inequality (A.2) becomes an equality, and therefore V (x) = J u∗
(x). ■

A.4 Expressions for the entropy production rate

We first show (2.12). Recall that eP = limT→∞ 1
T H

(
P[0,T ],P−

[0,T ]

)
. Let νx (t ) = P(X t = x). We will

now show that

H
(
P[0,T ],P−

[0,T ]

)
=

T−1∑
t=0

eP (t ) (A.3)

with the transient entropy production rate at time t given by

eP (t ) = 1

2

∑
x,y∈X

[
νx (t )px y −νy (t )py x

]
log

(
µx px y

µy py x

)
. (A.4)

Equation (2.12) follows from (A.3) and (A.4) since limt→∞ ‖ν(t)−µ‖ = 0 by the second state-

ment in the ergodic theorem 1.5 and by the fact that if a sequence of real numbers converges as

limn→∞ | fn − f∞| = 0, then also limn→∞ |Fn − f∞| = 0 for Fn := 1
n

∑n
i=1 fi . To show (A.3), we note

that the probability to observe the trajectory (x0, x1, . . . , xT ) under the forward and backward

dynamics is given by

P[0,T ](x0, . . . , xT ) = νx0 (0)px0x1 . . . pxT−1xT ,

P−
[0,T ](x0, . . . , xT ) = νx0 (0)p−

x0x1
. . . p−

xT−1xT

= pxT xT−1 . . . px1x0νx0 (0)
µxT

µx0

.
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Therefore,

H
(
P[0,T ],P−

[0,T ]

)
= EP[0,T ]

[
log

µx0 px0x1 . . . pxT−1xT

µxT pxT xT−1 . . . px1x0

]
=

T−1∑
t=0

EP[0,T ]

[
log

µxt pxt xt+1

µxt+1 pxt+1xt

]

=
T−1∑
t=0

∑
x,y∈X

P(xt = x, xt+1 = y)

(
log

µx px y

µy py x

)

=
T−1∑
t=0

∑
x,y∈X

νx (t )px y

(
log

µx px y

µy py x

)

=
T−1∑
t=0

eP (t )

which is (A.3).

Next we show that (2.13) follows from (2.12). By inserting (2.10) into (2.12), we have

eP = 1

2

∑
x,y∈X

∑
c∈C∞

[ω∞(c)−ω∞(c−)] Jc (x, y) log

(
µx px y

µy py x

)
.

This can be rearranged as

eP = 1

2

∑
c∈C∞

[ω∞(c)−ω∞(c−)] log

(
P(c)

P(c−)

)
.

Now we use (2.11) to arrive at (2.13). Finally, we show that (2.14) follows from (2.12). An

equivalent way of writing (2.12) is

eP = ∑
x,y∈X

µx px y log

(
µx px y

µy py x

)
.

We can express this in the edge basis for the one-cycle F =∑
x,y µx px y ex y and insert (2.3):

eP = ∑
e∈E

〈
e,F

〉
log

( 〈
e,F

〉〈
e−,F

〉)
= ∑

e∈E

b∑
α=1

ω(γα)
〈

e,γα
〉

log

( 〈
e,F

〉〈
e−,F

〉)
.

Let us write e ↑↑ γα if
〈

e,γα
〉 = 1 and e ↑↓ γα if

〈
e,γα

〉 = −1. Note that
〈

e,F
〉 = F (s(e), t (e))

where s(e) is the source and t (e) the target of e. Then the last equation becomes

eP =
b∑

α=1
ω(γα)

[ ∑
e↑↑γα

log

(
F (s(e), t (e))

F (t (e), s(e))

)
+ ∑

e↑↓γα
log

(
F (t (e), s(e))

F (s(e), t (e))

)]
.

This can be rearranged to give

eP =
b∑

α=1
ω(γα) log

(
P(γα)

P(γ−α)

)
.
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which is (2.14). ■

A.5 Proof of Lemma 2.5

In view of a theorem similar to theorem 1.7 (see for example [BEGK02, Øks03]), the function

h(x) = Ex [τB ] solves the boundary value problem

Lh(x) =−1, x ∉ B ,

h(x) = 0, x ∈ B. (A.5)

Then, using that e−AB (x) = (−L−q−)(x) holds for all x ∈ A, we get∑
x∈A

µ(x)e−AB (x)h(x) =− ∑
x∈A

µ(x)(L−q−)(x)h(x) =−〈L−q−,h〉µ

where the last step is true because (L−q−)(x) = 0 for x ∈X\ (A∪B) and h(x) = 0 for x ∈ B . We

proceed by using (A.5):

〈L−q−,h〉µ = 〈q−,Lh〉µ =− ∑
x∉B

µ(x)q−(x)+ ∑
x∈B

µ(x)q−(x)(Lh)(x).

The last term is zero since q−(x) = 0 for x ∈ B . Putting everything together, we arrive at∑
x∈A

µ(x)e−AB (x)h(x) = ∑
x∉B

µ(x)q−(x).

Dividing both sides by cap(A,B) gives (2.28). Equation (2.29) follows by adding up (2.28) and

(2.28) with A and B interchanged, which replaces q− with 1−q− on the RHS of (2.28). ■

A.6 Proof of Theorem 2.6

Recall the variational formula (2.31) for cap(A,B). For any f ∈H AB , we have

sup
h∈GAB

{−2〈L− f ,h〉µ−〈h,−Lsh〉µ
}≥−2〈L− f , f 〉µ−〈 f ,−Ls f 〉µ

by choosing h = f ∈GAB . But 〈L− f , f 〉µ = 〈 f ,L f 〉µ = 〈 f ,Ls f 〉µ. Hence

sup
h∈GAB

{−2〈L− f ,h〉µ−〈h,−Lsh〉µ
}≥ 〈 f ,−Ls f 〉µ ∀ f ∈H AB .

Taking the infimum over all f ∈H AB gives in view of (2.31) and (2.32)

cap(A,B) ≥ caps(A,B)
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which is (2.30). To show strictness, we write q+ = q +δq with δq(x) = 0 for all x ∈ A∪B and

then we write cap(A,B) as

cap(A,B) = 〈q+,−Lq+〉µ = 〈q+,−Ls q+〉µ = 〈q +δq,−Ls(q +δq)〉µ.

Using the fact that 〈δq,−Ls q〉µ = 0 since (Ls q)(x) = 0 for x ∉ (A∪B) andδq(x) = 0 for x ∈ (A∪B),

we obtain

cap(A,B) = caps(A,B)+〈δq,−Lsδq〉µ. (A.6)

Since Ls is ergodic, −Ls ≥ 0 with kerLs being the space of constant functions on X. Since

δq = 0 on (A∪B), we have that δq is not constant and therefore 〈δq,−Lsδq〉µ > 0 as long as

δq(x) 6= 0 for some x ∈X. We demonstrate that this is indeed the case: q+ solves the linear

system

0 = ∑
y∈X

Lx y
(
q(y)+δq(y)

) ∀x ∈X\ (A∪B).

If we take into account that Ls q(x) = 0 for x ∈X\ (A∪B) and rearrange terms, we get∑
y∈X

Lx yδq(y)+ ∑
y∈X

(
Lx y −Ls

x y

)
q(y) = 0 ∀x ∈X\ (A∪B).

Since δq = 0 on A∪B , this can be rearranged to∑
y∈X\(A∪B)

Lx yδq(y) = b(x) ∀x ∈X\ (A∪B)

with b(x) = −∑
y∈X

(
Lx y −Ls

x y

)
q(y), or shortly L̂δq = b where L̂ is L restricted to X \ (A ∪B).

The matrix −L̂ is a non-singular M-Matrix, which follows from −L̂e > 0 where e is the vector

whose components are all one [PB74]. By the properties of non-singular M-matrices, L̂ is

invertible and ker L̂ = {0} [PB74]. Therefore δq = 0 if and only if b = 0, which is equivalent to

Lq −Ls q = 0. ■

A.7 Proof of Lemma 2.7

We prove (2.36), (2.37) follows analogously. From the definition of conditional expectation,

P(X s
1 ∈C |X s

0 ∈C ) = 1

P(X s
0 ∈C )

∑
x,y∈C

µx P s
∞(x, y) = 1− 1

P(X s
0 ∈C )

∑
x∈C ,y∉C

µx P s
∞(x, y)

= 1−
∑

x∈C ,y∉C µx P s∞(x, y)∑
x∈C ,y∈Xµx P s∞(x, y)

.

Now insert (2.19) to obtain (2.36). ■
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A.8 The Current of Reactive Trajectories J AB

We show that (2.44) follows from (2.43). First of all, in view of (1.20),

1

2
µ(x) (b(x)+b−(x)) =∇· (a(x)µ(x)

)
so that the equilibrium current J (x) becomes

J (x) =µ(x)b(x)−∇· (a(x)µ(x)
)= 1

2
µ(x) (b(x)−b−(x)) .

If (X t )t is reversible then b = b− and thus J(x) = 0 for all x ∈X. Furthermore, q− = 1−q+ in

this case. Thus (2.43) simplifies to

J AB (x) = (
1−q+(x)

)
µ(x)a(x)∇q+(x)+q+(x)µ(x)a(x)∇q+(x)

=µ(x)a(x)∇q+(x)

which is (2.44). ■
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ods

B.1 MSM Clustering

Recall Definition 1.10 of an incomplete metastable partition. The goal of MSM clustering is to

find core sets C1, . . . ,Cm such that the metastability index

ρ = max
i
ρi , ρi =

supx∈X\C Ex [τC ]

infx∈Ci Ex
[
τC \Ci

] . (B.1)

is minimized. This is an NP-hard problem which can only be solved with a heuristic which we

now explain, for more details see [DBCS11, SCB+14]. The heuristic behind MSM clustering is

to separate the problem into two subproblems:

(1) Separate the state spaceX into the union of the cores C =⋃
i Ci and the transition region

T=X\C ,

(2) Find a full partition of C into m core sets C1, . . . ,Cm .

By examining (B.1), we see that we should choose C in step (1) in such a way that tR =
supx∈X\C Ex [τC ] is small, i.e. C is always reached quickly from T. To select such a C , one starts

with a uniform distribution µ0 on X, propagates µ0 for some time with the dynamics and

then identifies regions where probability has accumulated. More algorithmically, we select a

lagtime parameter α> 0 and set

Cα = {
x ∈X : P T

αµ0(x) >µ0(x)
}

where Pα is the transition matrix of the RW process (X t )t with lagtime α. This condition is

more restrictive the larger α is. We comment on the choice of parameters below. For step (2),

we consider the RW process (X t )t on Cα only, that is we construct the transition matrix

P̂α(x, y) = ∑
z∈X

P (x, z)qy (z), x, y ∈Cα
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where qy (z) is the probability that z is the next node in Cα that is hit by (X t )t conditioned

on X0 = y . P̂α describes the dynamics of (X t )t restricted to Cα. To compute Pα, we must

compute k = |Cα| committor functions qy . With P̂α at hand, we need to specify the number

m of core sets we want to partition Cα into. Some hard clustering method, e.g. [DHFS00],

can then be used to partition Cα into the core sets C1, . . . ,Cm . As a final step, MSM clustering

computes m committor functions qi (x) = P(Xτ =Ci |X0 = x), where τ= inf{t > 0 : X t ∈Cα}, as

fuzzy affiliation functions that tell how much any node x ∈ X is affiliated with each of the

cores Ci . All committor functions are computed by solving linear systems of the form (1.48).

MSM clustering requires the specification of two input parameters m and α. The larger α

is, the more modules one will find, so different values of α can be used in order to find a

hierarchy of different clusterings. One way to obtain a good value for m once α is selected is

the following: For some not too large k, compute the k largest eigenvalues λ1 = 1 > . . . >λk of

P̂α. Select m in such a way that the gap ∆m =λm −λm+1 is maximal.

B.2 Alternative Module Detection Methods

Module detection in networks is a huge area of research, see e.g. [For10, SLB12, SDYB12,

DYB10, EL09, New06, NBW06]. A comprehensive review of the different approaches that exist

in the literature would be well beyond the scope of this thesis. A nice review can be found in

[For10, vL07]. We will focus on methods based on random walks and describe a few of the

most important ones briefly.

Modularity Optimization. This is one of the most popular methods, originally developed by

Newman [New06]. Given a full partition ofX into m sets A1, . . . , Am , we define the modularity

of the partition to be

Q =
m∑

i=1

[
Pµ(X1 ∈ Ai , X0 ∈ Ai )−Pµ(X1 ∈ Ai )Pµ(X0 ∈ Ai )

]
. (B.2)

To find the best partition, Q is optimized over all full partitions A1, . . . , Am of X. The optimiza-

tion problem is NP-hard, but fast greedy heuristics exist [NBW06]. Modularity optimization

is a one-step method, and if we apply it to an irreversible process with transition matrix P , it

effectively performs a symmetrisation P s = 1
2 (P +P−).

Markov Stability. Markov stability (MS) [LDB09] is a state-of-the-art approach for com-

munity detection based on revealing communities at different scales by looking at how the

probability flow spreads out over time. At the heart of MS is stability function

r (t ) =
m∑

i=1

[
Pµ(X t ∈ Ai , X0 ∈ Ai )−Pµ(X t ∈ Ai )Pµ(X0 ∈ Ai )

]
, (B.3)
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which is optimized for every fixed t > 0 over all full partitions A1, . . . , Am in the same way as

the modularity function Q (in fact Q = r (1)). For any fixed t > 0, r (t) encodes information

about paths of length t , and the method uses t as a resolution parameter: The optimization of

r (t) is carried out for all values of t in the desired range, and one searches for communities

which persist for a range of values of t .

Infomap. Infomap [DYB10] is a popular method for detecting communities, relying on the

idea that community structure can be used to describe the position of a random walker on

the network compactly by reusing codewords in different communities. Given a full partition

A1, . . . , Am , Infomap computes the average description length l that a two-level code would

need to describe a realization (X t )1≤t≤T of length T of the RW. The code uses an alphabet

to describe the position of the random walker within each module Ai (and compression is

achieved because this alphabet is smaller then the alphabet we would need to describe a

position in all of X), and it uses special codewords for jumps between modules. Compression

is maximal if these jumps are rare, so the modules found by Infomap are typically metastable

sets.

Infomap can deal with directed networks and performed very well in a recent benchmark

[LF09] with clique-like communities, but despite its information-theoretic origin it is inher-

ently a one-step method and as such it can fail at detecting non-clique-like communities

[SDYB12] by displaying an overpartitioning effect.
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C.1 Proof of Theorem 3.4

Here we give the proof of Theorem 3.4 from Section 3.2.2. For ease of notation, let ‖ ·‖ = ‖ ·‖µ.

Proof. Let φ be the solution to (3.27), and write φ = Qφ+φ⊥ = φ||+φ⊥ with φ⊥ ∈ D⊥. The

first step is to show that ‖φ−φ||‖ = infψ∈D ‖φ−ψ‖, i.e. the infimum in the definition of ε0 is

attained at φ||. But this is clear since for any ψ ∈ D , by orthogonality we have

‖φ−ψ||2 = ‖φ||−ψ+φ⊥‖2 = ‖φ||−ψ‖2 +‖φ⊥‖2

which attains its minimum of ε2
0 = ‖φ⊥‖2 for ψ=φ||. By (3.27), φ|| solves the equation

B(φ,ψ) =B(φ||,ψ)+B(φ⊥,ψ) = 0 ∀ψ ∈ D,

and if we write φ|| =∑n
i=1 φ̂

∗
i χi +1χn+1 with n unknown coefficients φ̂∗

i (note that a general

element of D is of this form), this takes the matrix form

B̂φ̂∗− c = F,

where in components we have B̂i j = B(χi ,χ j ), ci = −B(φ⊥,χi ) = −〈φ⊥,Bχi 〉µ and Fi =
−〈χi ,Bχn+1〉µ. On the other hand, the Galerkin solution φ̂ = ∑

i φ̂iχi satisfies B̂φ̂ = F by

3.28, hence we obtain

B̂(φ̂∗− φ̂) = c. (C.1)
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Now we can write

ε2 = ‖φ||+φ⊥− φ̂‖2 = ‖φ||− φ̂‖2 +‖φ⊥‖2

=
〈∑

i
(φ̂∗

i − φ̂i )χi ,
∑

j
(φ̂∗

j − φ̂ j )χ j

〉
µ

+ε2
0

= (φ̂∗− φ̂)T M̂(φ̂∗− φ̂)+ε2
0

where M̂i j = 〈χi ,χ j 〉µ. The scalar product 〈·, ·〉µ on D0 ⊂V induces a natural scalar product on

Rn by the isomorphism φ̂ 7→∑
i φi χ̂i :〈∑

i
φ̂iχi ,

∑
j
φ̂′

jχ j

〉
µ

= φ̂T M̂φ̂′ =: 〈φ̂, φ̂′〉M

The error ε2 is exactly ε2
0 plus the distance between Galerkin solution and best approximation

measured in this scalar product. There is also a natural bilinear form inherited from B on Rn :

B

(∑
i
φ̂iχi ,

∑
j
φ̂′

jχ j

)
= φ̂T B̂φ̂′ = 〈φ̂, M̂−1B̂φ̂′〉M

The Matrix M̂−1B̂ is symmetric since B(·, ·) is symmetric. Moreover, since B(·, ·) is elliptic,

〈φ̂, M̂−1B̂φ̂〉M = A

(∑
i
φ̂iχi ,

∑
j
φ̂ jχ j

)
≥α2

〈∑
i
φ̂iχi ,

∑
j
φ̂ jχ j

〉
µ

=α2〈φ̂, φ̂〉M (C.2)

In particular, M̂−1B̂ is positive, hence it has a positive and symmetric square root Ŝ2 = M̂−1B̂ .

Now, for any φ̂ ∈Rn it holds by virtue of (C.2),

〈φ̂, φ̂〉M ≤ 1

α2
〈φ̂, M̂−1B̂φ̂〉M = 1

α2
〈Ŝφ̂, Ŝφ̂〉M

≤ 1

α2
2

〈Ŝφ̂, M̂−1B̂ Ŝφ̂〉M = 1

α2
2

〈M̂−1B̂φ̂, M̂−1B̂φ̂〉M . (C.3)

Now we apply the inequality (C.3) to φ̂∗− φ̂ and use (C.1):

ε2 ≤ ε2
0 +

1

α2
2

〈M̂−1c, M̂−1c〉M . (C.4)

Now for some final simplifications, note that the orthogonal projection Q onto D0 can be

written as

Qψ=
n∑

i , j=1
M̂−1

i j 〈χ j ,ψ〉µχi .

144



C.2. Best-approximation error bound

Using this we can write

〈M̂−1c, M̂−1c〉M = ∑
i j

ci M̂−1
i j c j =

∑
i j
〈χi ,Bφ⊥〉µM−1

i j 〈χ j ,Bφ⊥〉µ

=
〈∑

i j
M−1

i j 〈χ j ,Bφ⊥〉µχi ,Bφ⊥

〉
µ

= 〈QBφ⊥,Bφ⊥〉µ

= 〈QBφ⊥,QBφ⊥〉µ

To arrive at the final result, notice that

〈QBφ⊥,QBφ⊥〉µ ≤
(

sup
φ′
⊥∈D⊥

〈QBφ′
⊥,QBφ′

⊥〉µ
〈φ′

⊥,φ′
⊥〉µ

)
· 〈φ⊥,φ⊥〉µ

=
(

sup
φ′
⊥∈D⊥

〈QBQ⊥φ′
⊥,QBQ⊥φ′

⊥〉µ
〈φ′

⊥,φ′
⊥〉µ

)
· 〈φ⊥,φ⊥〉µ

≤
(

sup
φ′∈V

〈QBQ⊥φ′,QBQ⊥φ′〉µ
〈φ′,φ′〉µ

)
· 〈φ⊥,φ⊥〉µ

= ‖QBQ⊥‖2〈φ⊥,φ⊥〉µ

Plugging these inequalities into (C.4) and dividing by ε2
0 completes the proof. ■

C.2 Best-approximation error bound

In this appendix, we prove lemma 3.7:

ε0 = ‖Q⊥φ‖µ ≤ ‖P⊥φ‖µ+µ(T)1/2 [
κ‖ f ‖∞+2‖P⊥φ‖∞

]
.

Recall that κ = supx∈TEx [τC ] and P is the orthogonal projection onto the subspace Vc =
{v ∈ L2(X,µ), v = const on every Ci } ⊂ L2(X,µ). Note that P⊥φ = 0 on C . The errors ‖P⊥φ‖
and ‖P⊥φ‖∞ measure how constant the solution φ is on the core sets. We write ‖ · ‖ = ‖ · ‖µ
throughout the proof for convenience.

Proof. The proof closely follows the proof of theorem (12) in [Sar11]. The first step of the

proof is to realize that the committor subspace D where Q projects onto can be written as

D = {v ∈ L2(X,µ), v = const on every Ci ,Lv = 0 on C }. To see this, note that the values v takes

on the Ci can be used as boundary values for the Dirichlet problem Lv = 0 on T. A linear

combination of committor functions is obviously a solution to this problem. But the solution

to the Dirichlet problem must be unique, otherwise one can construct a contradiction to the

uniqueness of the invariant distribution, see [Sar11].

By definition we have ‖Q⊥φ‖ ≤ ‖φ−Iφ‖ for every interpolation Iφ ∈ D ofφ. With the definition

145



Appendix C. Appendix C

of P from above, we will take q = Iφ such that

Lq = 0 onT, q = Pφ onX\T. (C.5)

Now D ⊂V , therefore q ∈Vc and P q = q . Therefore (C.5) is equivalent to

PLP q = 0 onT, q = Pφ onX\T. (C.6)

Now define e := Pφ−q . Then we have

PLPe = PLP (Pφ−q) = PLPφ−PLP q = PLφ−PLP⊥φ−PLP q

and by (C.6) and since Lφ= f φ on X\ A ⊃T, we have

PLPe = P f φ−PLP⊥φ onT, e = 0 onX\T. (C.7)

Therefore, e ∈ EΘ = {v ∈ L2(X,µ), v = 0 onX \T} and with Θ being the orthogonal projection

onto EΘ, e has to fulfil

ΘPLPΘe =ΘP f φ−ΘPLP⊥φ.

SinceΘP = PΘ=Θ, this can be written as

Re :=ΘLΘe =Θ f φ−ΘLP⊥φ.

The operator R =ΘLΘ is invertible on EΘ: If this wasn’t the case, there would be a nontrivial

solution v to

Lv = 0 onT, v = 0 onX\T.

But the solution to this boundary value problem is again unique, and hence there is only the

trivial solution. This gives

e = R−1Θ f φ−R−1ΘLP⊥φ, (C.8)

and ‖R−1‖ = 1
|λ0| where λ0 is the principal eigenvalue of R . Due to an estimate by Varadhan we

have

1

|λ0|
≤ sup

x∈T
Ex [τX\T] =: κ,

see e.g. [Bov09]. To complete the derivation we need to focus on the second term in (C.8).

Since R−1 is an operator on EΘ, we can write it as R−1ΘLP⊥φ=:Θg , where the function Θg

solves

ΘLΘg = RΘg =ΘLP⊥φ⇔ΘL[Θg −P⊥φ] = 0
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by the definition of R andΘg . Therefore w :=Θg −P⊥φ solves the boundary value problem

Lw = 0 onT, w =−P⊥φ onX\T (C.9)

which implies that ‖w‖∞ ≤ ‖P⊥φ‖∞, this follows from Dynkin’s formula or Lemma 3 in [Sar11].

Finally,

‖Θg‖ ≤µ(T)1/2‖Θg‖∞ ≤µ(T)1/2(‖P⊥φ‖∞+‖w‖∞) ≤ 2µ(T)1/2‖P⊥φ‖∞

holds by the triangle inequality and the above considerations. Now focus on the first term in

(C.8). Note that by the maximum principle, φ achieves its maximum of 1 on the boundary of

X\ A ⊃T, therefore maxx∈T |φ(x)| ≤ 1. Then we have

‖Θ f φ‖ ≤µ(T)1/2‖ f ‖∞ max
x∈T

|φ(x)| ≤µ(T)1/2‖ f ‖∞.

Now putting everything together, we arrive at

‖e‖ ≤ ‖R−1‖‖Θ f φ‖+‖R−1ΘLP⊥φ‖
≤ κ‖Θ f φ‖+‖Θg‖
≤ µ(T)1/2 [

κ‖ f ‖∞+2‖P⊥φ‖∞
]

.

Finally, note that by the triangle inequality

‖Q⊥φ‖ ≤ ‖φ−q‖ ≤ ‖φ−Pφ‖+‖Pφ−q‖ = ‖P⊥φ‖+‖e‖

which completes the proof. ■
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