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Preface

In this thesis we study approximation problems for curves and surfaces. The

goal of geometric approximation is to replace a given complex geometric object

by a simpler object while capturing the significant features of the original. If

the original object is given by a set of sample points, this problem is also called

reconstruction. Approximating and reconstructing objects is a problem that

arises in many applications such as computer graphics, computer vision, medical

imaging and cartography, to name only a few. The problem goes back decades

and is one of the major challenges in computational geometry.

For a polygonal curve an approximation can be done either by a simpler

polygonal curve (a curve with less segments) or by a higher order curve. The

approximation of polygonal curves is a wide topic and many results have already

been presented in the past. There is a wide range of publications on the ap-

proximation of polygonal curves or ordered set of points by polygonal curves, for

example, the publications of Imai and Iri [51, 52], or Guibas and Hershberger [44],

to mention only a few. There are two types of optimization problems associated

with the polygon approximation problem:

• Min-# problem: Given ε ≥ 0, construct an approximate curve with “error”

within ε and having the minimum number of line segments.

• Min-ε problem: Given m, construct an approximate curve consisting of at

most m line segments with minimum approximation “error”.

As these optimization problems were answered for polygonal approximation, the

same questions arise for approximation with curves of higher order. The approx-

imation of polygonal curves with curves of higher order, especially with arcs and

biarcs, has been mostly heuristic [38, 47, 58, 59, 60, 66, 68, 77].

Higher-order approximations of polygonal curves come into place in areas as,

e.g., computer-aided manufacturing environments, geometric modeling and robot

path planing. One major task is to smooth the path of, e.g., cutting machines

or robots. For example in computer-aided manufacturing environments, tool

paths are usually made of line segments and circular arcs, see Mekk and Walton

[58, 59, 60]. Now the question of how to approximate polygonal curves with

circular arcs or biarcs with certain guarantees arises. We were able to answer

the min-# problem for approximating open polygonal curves with circular arcs

vii



viii PREFACE

and also for biarcs.

The approximation of surfaces and, especially, the reconstruction from scat-

tered data points has received a lot of attention in the past. The problem of

reconstructing a surface from a set of sample points is ill-posed by nature. With-

out certain constraints the given point cloud can be interpolated by infinitely

many shapes with differing topology. The notion of a sufficiently dense sample,

the r-sample, introduced by Amenta and Bern [7], introduces a constraint on

the input data set. With this constraint the corresponding set of reconstructible

shapes have all the same topology type as the surface. A large range of algorithms

are based on the r-sample theory, see for example [9, 7, 10, 11, 30, 23, 41, 76],

again naming only a few. The Delaunay triangulation of the input point set plays

another major role in all of these methods, as it does in the α-shape theory of

Edelsbrunner [37]. The α-shape is a subcomplex of the Delaunay triangulation

of the input point set. If the circumsphere of a Delaunay simplex (vertex, edge,

face) has radius at most α, the simplex belongs to the α-shape of the input point

set. The optimal value for α depends on the sampling density, therefore the

α-shape algorithm works best for uniformly sampled surfaces. Our approach to

surface reconstruction, which is similar to the work of Chazal and Lieutier [23],

is also based on Delaunay triangulation of the input point set, and we require

that the sampling is an r-sample. We construct an approximating polytope P

that uses a subset of the input sample points as its vertices and preserves the

topology of the sampled surface. Our goal is, on the one hand, to use as few

points of the input set as possible and, on the other, to get a flexible approxi-

mation with a level of detail that can be tuned from coarse to fine. In contrast

to [23], where prior knowledge of the local feature size of the sampled surface is

assumed, we obtain an estimation of this function from the data, by using dis-

tances to poles [7] (certain vertices of the Voronoi diagram for the input sample).

Using a tailored technique of pruning the surface balls, we obtain a coarse-to-fine

approximation of the surface by polytopes. This is the first result that uses, from

a practical point of view, approximations of local feature size and medial axis to

obtain locally adaptive reconstructions of an unknown surface.

Overview

The work is organized in two parts which can be read independently of each

other. The introduction to each of the parts gives a short problem description

and motivation.

Part I. In the first part of the thesis we deal with approximating polygonal

curves in 2-dimensional space.

In Chapter 1 we answer the min-# problem for approximating open polygonal
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curves with circular arcs. We prove the following result.

Theorem. Given an open polygonal curve P = (p1, . . . , pn), a polygonal toler-

ance boundary of size O(n), and a gate for each pi, we can approximate P by a

minimum number of valid circular arcs in O(n2 log n) time and O(n) space.

A polygonal tolerance boundary is the boundary of a simple polygon that

encloses our polygonal curve P . The gates are segments through the points pi

of P , each gate crosses P . The precise formulation for the tolerance boundary

and the gates is given in Chapter 1.

In Chapter 2 we answer the min-# problem for approximating open polygonal

curves for biarcs and prove the following result:

Theorem. Given an open polygonal curve P = (p1, . . . , pn), a polygonal toler-

ance boundary of size O(n), a gate and a tangent direction for each pi, we can

approximate P by a minimum number of valid biarcs in O(n2 log n) time and

O(n2) space.

Part II of this thesis consists of three chapters.

In the second part of the thesis we move on to the 3-dimensional space and to

polytope approximations. We initiate the study of this problem by considering

convex surfaces only, for simplicity, before moving on to non-convex surfaces.

A first natural step to higher-order approximation of convex polytopes is the

approximation with spheres or spherical patches.

In Chapter 3 we can show that deciding the existence of an approximation of

a convex polytope with a given upper error bound ε and not more than a given

number of spherical patches is NP-hard.

In Chapter 4 we present a new technique for constructing a curved surface

based on inscribed polytopes resulting in a convex surface consisting of spherical

patches.

To tackle the approximation problem for non-convex polytopes we pick up the

idea of an incremental approximation algorithm introduced in Chapter 4. This

induces the problem of finding a simple and topologically correct start polytope,

the seed polytope, for non-convex polytopes.

In Chapter 5 we describe how to construct for a surface in 3D space, given

by sample points S, a coarse approximating polytope P . P uses a subset of the

points as vertices and preserves the topology. In contrast to surface reconstruc-

tion we do not use all sample points, but try to use as few points as possible.

We also show how the method can be used to construct triangular surfaces from

point clouds in a scalable manner.
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Approximation of polygonal

curves in 2-dimensional space
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Introduction

A polygonal curve in 2-dimensional space, which is given by an ordered set of

points, can either be approximated with a polygonal curve with less segments

or by a higher-order curve. The approximation algorithms can be further cat-

egorized by the optimization problems they solve (min-# problem and min-ε

problem, see Preface) and the way they choose vertices for the approximating

curve. Further there are several error criteria defined for the approximation with

a polygonal curve with less segments, the error criteria refer to the way the error

of an approximating segment is measured.

The motivation for approximating a polygonal curve is based on various ap-

plications in cartography, computer-aided manufacturing environments, geomet-

ric modeling and robot path planing. In engineering design the approximation

of data by curves of various forms is an essential step in the design process.

One area where higher-order approximations of polygonal curves come into play

are computer-aided manufacturing environments. In computer-aided manufac-

turing environments, tool paths are usually made of line segments and circular

arcs, see Meek and Walton [58, 59, 60]. Therefore the question of how to ap-

proximate polygonal curves with circular arcs or biarcs arises. Many results

achieved in higher-order approximation of polygonal curves are motivated by

these computer-aided manufacturing environments, for example, see the results

presented by Eibel[38], Held and Eibel [47], Meek and Walton [58, 59, 60], Piegel

[66], Schönherr [68] and Yeung and Walton [77].

In contrast to approximation by polygonal curves, the theoretical bounds of

these problems are not so well studied, but without theoretical bounds it is diffi-

cult to say anything about the quality of these algorithms. There are two types of

optimization problems associated with the polygon approximation problem, the

min-# and the min-ε problem. As these optimization problems were answered

for polygonal approximation, for example by Chan and Chin [20], Guibas and

Hershberger [44], Imai and Iri [51, 52], Melkman and O’Rourke [61], Toussaint

[73] and Varadarajan [75], the same questions arise for approximation with curves

of higher order. We were able to answer the min-# problem for approximating

open polygonal curves with circular arcs and also for biarcs. In Chapter 1 we

introduce an algorithm for approximating a given open polygonal curve with a

minimum number of circular arcs. We present an algorithm which finds a series

of circular arcs that approximate the polygonal curve while remaining within

a given tolerance region. This series contains the minimum number of arcs of

any such series. Our algorithm takes O(n2 log n) time for an original polygonal

chain with n vertices. Using a similar approach, we design an algorithm with a

runtime of O(n2 log n), for computing a tangent-continuous approximation with

the minimum number of biarcs, for a sequence of points with given tangent di-

rections. This biarcs algorithm is presented in Chapter 2. The results on arc and

biarc approximation were published by Drysdale, Rote and Sturm in the journal
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Computational Geometry, Theory and Applications in October 2008 [34].



Chapter 1

Approximation with a Minimum

Number of Circular Arcs

We assume that we are given an open polygonal curve in two dimensions with a

tolerance region around the given curve. The tolerance region is split into subre-

gions by gates through the given points, see Figure 1.1. The precise formulation

is given below.

Our algorithm for the optimal approximation by circular arcs determines a

subsequence of the input vertices and connects them by a sequence of circular

arcs, lying in the tolerance region and intersecting the gates in proper order,

thereby remaining close to the input polygon chain. The algorithm finds the

approximation with the minimum number of arcs, subject to these constraints.

The main idea for this algorithm is the use of a Voronoi diagram of the

tolerance boundary. We have to incrementally maintain one cell in this Voronoi

diagram of line segments as we process along the tolerance boundary segment

by segment. Recomputing the entire Voronoi diagram in each iteration step

would be to expensive, but we can iteratively add n consecutive segments of

the tolerance boundary and update the cell in the Voronoi diagram in O(n)

total time. Geometric considerations (Lemma 1.8) make the location step in

the update easy, leading to constant amortized time per insertion. In total, the

algorithm takes O(n2 log n) time and O(n) space.

1.1 Problem Setting

We wish to approximate a polygonal chain P = (p1, . . . , pn) by a series of circular

arcs (which could include straight line segments, as the limiting case of circles of

infinite radius). The endpoints of the arcs are vertices of P . Ideally, we want our

approximating curve to have distance at most ε from P . As a first approximation

to this problem, one can look at a region formed from strips of width ε centered

at the polygon edges. However, in the vicinity of sharp corners, this does not

guarantee that the curve remains close to the given points. Figure 1.1 shows a

5



6 CHAPTER 1. APPROXIMATION WITH CIRCULAR ARCS

p1

p2

p3

p4

p5

p6

p7

p8

ε

Figure 1.1: Polygonal tolerance region R with gates

circular piece of a hypothetic curve that can shortcut the bend at p4 if it is only

required to remain in the strips. (Also, it might overshoot the bend, as indicated

in the vicinity of p6, although this looks like a theoretical possibility only.) To

avoid this, we introduce a gate through every vertex. The approximating curve

is required to pass through all gates in succession, and the curves are not allowed

to pass through a gate twice. This will guarantee that any curve into a point pi

can be joined with any curve out of pi without danger of an intersection other

than at pi.

For our problem, we assume that we are given a polygonal “tolerance re-

gion” R and a sequence of gates g1, g2, . . . , gn, which are segments through the

points pi. Each gate crosses P . We will refer to endpoints of gates lying to the

left of P as we walk from p1 to pn as left endpoints and the other endpoints as

right endpoints. We require that the gates do not cross each other. We require

that the input satisfies the following assumptions:

(A) R is a simple polygon passing through all gate endpoints; the boundary of

R goes through g1 and gn.

(B) R does not intersect the interior of gates or cross the segments connecting

corresponding endpoints of successive gates.

(C) No line through two points on successive gates gi and gi+1 crosses the

portion of R connecting gi with gi+1.

(Assumption (B) is actually a consequence of (C).) Ideally, the gate gi at vertex pi

is a line segment of length 2ε centered at pi that bisects the angle pi−1pipi+1. For

a convoluted curve with sharp bends close together, we might have to to reduce

the width of R in order to fulfill condition A; and we might have to shorten the

gates in order to fulfill condition B, as shown in the right part of Figure 1.1 and
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g1
g3

g4
g2

Figure 1.2: Polygonal tolerance region R with gates. Gate g2 has been “short-

ened” to fulfill condition B between g1 and g2. Condition C is violated between

g2 and g3.

in the left part of Figure 1.2. In contrast, condition C, beyond what is required

for condition B, is likely not an issue in practice: it prevents the boundary of

R from making “wild” turns like in the middle of Figure 1.2. The end gates g1

and gn partition the boundary of R into a left boundary and a right boundary.

In the illustrations, P will usually be oriented from left to right; then the left

boundary is on top and the right boundary is below.

Modeling the curve approximation problem by an appropriate tolerance re-

gion with gates is a problem of its own, which we do not treat here. Eibl and

Held [38, 47] have methods that can be adapted to produce such gates and toler-

ance regions. In Figure 1.1, we have chosen to approximate the “ideal” circular

boundary at the outer angle of each vertex by a single edge of R. One can use

more edges to get a finer approximation, or one could also choose to approximate

the circular arc from inside, to get a guaranteed upper distance bound of ε. Our

time bounds assume that R has constant complexity between successive gates

and thus the total size of R is proportional to n.

Definition 1.1 (proper gate stabbing). A circular arc stabs gates gi, gi+1, . . . ,

gj properly, if:

1. the circular arc passes through each gate gm ∈ {gi, . . . , gj} from the side of

pm−1pm to the side of pmpm+1

2. the circle on which the arc lies intersects each gate only once.

Condition 2 of this definition is necessary for our algorithm, but it excludes

arcs that might seem reasonable: an arc from pi to pj might intersect each

intermediate gate only once, but the continuation of the arc beyond pj might

bend back and intersect, say, gj and gj−1 a second time, see Figure 1.3. This

would be a sensible arc, but it is excluded by our definition. But such a situation

can only happen if the gates are very close together (relative to their length).

Definition 1.2 (valid circular arc). A circular arc aij with starting point pi and

endpoint pj is a valid arc if:
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p3
p4

p5
p1

p2

Figure 1.3: A circular arc in a hypothetical tolerance region R that is not valid

because it violates Condition 2 of Definition 1.1.

• the arc stabs the gates gi+1, . . . , gj−1 properly,

• the arc does not cross the boundary of the tolerance region R.

• the arc reaches pi from the correct side of gi and reaches pj from the correct

side of gj.

Note that because R passes through the gate endpoints, any arc that goes

through a series of gates without crossing the tolerance boundary must go through

them in the correct order, so we do not need to test this separately. In contrast

to the intermediate gates, we allow the circle on which the arcs lies to intersect

gi and gj more than once.

We can split the problem of determining if a valid circular arc connects pi

with pj into three parts. First, we compute the set of all arcs between pi and pj

that stab all intermediate gates properly (Sect. 1.2). Second, we compute all arcs

that start at pi and end at pj , reaching both from the correct side (Sect. 1.3).

Third, we compute all arcs between pi and pj that do not intersect with the

tolerance boundary (Sect. 1.4). A valid circular arc has to be a member of all

three result sets.

1.2 Stabbing the Gates

Given a point p and a gate g, denote by bl the bisector of p and g’s left endpoint,

and by br the bisector of p and g’s right endpoint.

Lemma 1.1. The centers of all circles passing through a vertex pi and inter-

secting a gate gj exactly once lie in a double-wedge whose boundary is bl and br.

Specifically, they lie in the parts of the double wedge where one of the half planes

bounded by bl and br includes pi and the other excludes it. (Figure 1.4 illustrates

this.) In the degenerate case where bl is parallel to br the region containing all

centers is the strip between the bisectors.
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Proof. Consider the intersection of the half plane bounded by bl that includes pi

and the half plane bounded by br that excludes pi. Points in the interior of this

region are closer to pi than the right endpoint of the gate and are also closer to

the left endpoint than to pi. Disks centered in this region which have pi on their

boundary include the left endpoint and exclude the right endpoint of the gate.

Therefore all circles centered in the wedge intersect the gate exactly once. The

case for the second wedge is symmetric. This argument works for the degenerate

case, also, but in this case all circles will include the nearer gate endpoint and

exclude the further one.

Centers of circles that are located in the same region as pi outside of the

double-wedge are always closer to pi than to the endpoints of the gate. Therefore

these circles exclude the endpoints if they pass through pi. These circles can not

intersect the gate only once, unless the circle is tangent to the gate. Looking at

the other side of the double-wedge boundary, all centers of circles located here

are closer to the endpoints of the gate than to pi. Each disk which includes pi has

to include the endpoints and its boundary does not intersect the gate at all.

Lemma 1.2. The region of the centers of all circles passing through a vertex p

which are tangent to the gate g or intersect it twice forms a parabolic region (in

Figure 1.4 the parabolic region is the filled region to the left of the double-wedge).

The boundary of the parabolic region is given by a parabolic piece, defined by

the centers of the circles which are tangent to the gate, and by two pieces of the

boundary double-wedge. In the degenerate case when the bisectors are parallel the

parabolic region is empty.

Proof. Geometric analysis proves the claim. To find the centers of circle which

are tangent to the gate, we are looking for points which are equidistant from a

point (p) and a line (g), which is the geometric definition of a parabola. Let cl

be intersection point of the parabola and the bisector bl. Then cl is the center of

a circle which is tangent to g at the left boundary point of g. Symmetrically the

intersection point cr of the parabola with the bisector br is the center of a circle

which is tangent to g at the right boundary point. These intersection points are

two corners of the parabolic region. The intersection point cm of the bisectors

bl and br is the center of the circle which passes through p and both boundary

points of the gate. This is last corner of the parabolic region. The edge connecting

cl, cm corresponds to points which are equidistant from the left boundary point

and p and are closer to the gate than the points on the parabola. Therefore

circles centered at these points pass through the left boundary point and have

to intersect the gate in one additional point. Symmetrically the circles centered

on the edge cm, cr pass through the right boundary point and also intersect the

gate in one additional point. So all the points in the interior of the parabolic

region are centers of circles which intersect the gate twice.

In the degenerate case p and the left and right endpoints of g are collinear,

so no circle is tangent to g or intersects it twice.
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pi pj

gj

brbl

left wedge

right wedge

Figure 1.4: The shaded area is the region of all centers of circles passing through

pi and gate gj. The circles with centers close to the intersection of bl and br, in

the region with the curved boundary, intersect gj twice and are not considered

as centers of valid arcs.

By Definition 1.1, an arc stabs the gates properly only if every gate is inter-

sected only once. Therefore the centers of circular arcs stabbing an intermediate

gate are located in the double wedge of the gate. For the first and last gates of

the arc we insist that the arc goes through the original point located at the gate.

Thus the first and last gates are treated differently from the intermediate gates

(see Subsection 1.3).

According to Lemma 1.1, one wedge is the region of the centers of disks

including the left endpoint of the gate and excluding the right endpoint. Circular

arcs centered in this region pass the gate from the correct side, according to

the stabbing condition, if they are in CCW (counter-clockwise) orientation. In

CW (clockwise) orientation, the arc would walk around the left endpoint before

intersecting the gate. The unbounded part of this wedge lies to the left of P .

Symmetrically the circular arcs in the other wedge need CW orientation to pass

the gate in the correct direction, and the unbounded part of this wedge lies to

the right of P .

So from now on we talk about the left wedge and the right wedge. A circular

arc stabbing through the gates cannot change its orientation.

Lemma 1.3. A circular arc α starting at a point p stabs gates gi, . . . , gj properly

if and only if its center lies in the intersection of the left wedges or the intersection

of the right wedges defined by p and the gates.

Proof. Any point in the intersection of the left wedges of all the gates is the

center of an arc that passes through p and all of the gates in a CCW direction.

Any CCW arc that passes through all of the gates will have its center in each

left wedge, so the intersection of these wedges will include it. The argument for

right wedges is symmetric.
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pi pj

si

sj

gi
gj

b

tjti

Figure 1.5: Illustration for Lemma 1.5. In this example, the centers of valid

CW arcs form the line segment sisj . There are no valid CCW arcs. A few

representative candidate arcs are shown.

Computing the intersection of the left wedges and symmetrically of the right

wedges, corresponds, according to the proof of Lemma 1.1, to computing the

intersection of half planes. So the intersection of n wedges is the intersection of

2n half planes. This gives us the following bound:

Lemma 1.4. Incrementally computing the two regions of centers of all valid

circular arcs passing through a point pi and stabbing all gates gi, gi+1, gi+2 . . . , gj

properly, for j = i + 1, . . . , n, can be done in O(n log n) time and O(n) space.

Proof. It is the incremental intersection of O(n) half-planes.

1.3 Arc Endpoints

All arcs that start at pi and end at pj have their centers on the bisector of the

segment connecting pi and pj . Since a valid circular arc from pi to pj must reach

each endpoint from the correct side of its gate, we know for each circle whether the

arc from pi to pj must go in the CW or in the CCW direction, or if none of the arcs

is valid. (When the circle is tangent to both gates, both directions are possible.)

Straightforward geometric arguments lead to the following characterization of

the desired arcs, see Figure 1.5.
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Lemma 1.5. Let b be the perpendicular bisector of the segment between pi and

pj. Let si be the point of b which is the center of a circle tangent to gi at pi, and

let sj be defined symmetrically. The centers of all CW arcs that reach both pi

and pj from the correct side lie in the intersection of two rays that are subsets of

b. One has si as its endpoint and the other has sj as its endpoint. The same is

true for CCW arcs.

Proof. This ray is the intersection of the CW rays for both endpoints of the arc.

1.4 Staying within the Tolerance Boundary

The tolerance boundary R consists of two polygonal chains, one on each side of

the original polygonal chain P . For a CW arc we will only check that it does not

cross the boundary on the left side of P . It cannot cross the boundary on the

right side of P if it passes through all gates, by assumption (B), and therefore we

need not check for such an intersection explicitly. (For a CCW arc, the situation

is symmetric.)

A circle passing through point p does not intersect or contain any edge on a

polygonal chain C if its center lies closer to p than to any point on C. That is,

if we compute the Voronoi diagram of C ∪ p, the center of the circle must lie in

point p’s region, V (p).

This is not quite the condition that we want, namely that a circular arc does

not cross chain C. The Voronoi region guarantees that an entire circle does not

cross C. However, in our case these are equivalent.

Lemma 1.6. If an arc from gi to gj does not intersect a tolerance boundary

between gi and gj then neither does the circle on which that arc lies.

Proof. Look at the arc between consecutive gates gk and gk+1. Let q and q′ be

the intersection points with these gates. By assumption (C), the line � through

q and q′ does not intersect the tolerance boundary between gk and gk+1, i.e., the

tolerance boundary lies entirely on one side of �. For a CW arc, the tolerance

boundary in question lies on the left side of �. On the other hand, � is the line

that splits the circle into the arc from q to q′ (on the left side) and into the

opposite part which is not used. Thus the part of the circle which is not used

can never intersect the relevant part of the tolerance boundary.

While we could compute the entire Voronoi diagram of C ∪ p to determine

V (p), this would be too expensive. Fortunately, we can iteratively add n consec-

utive segments of C and update p’s Voronoi region V (p) in O(n) total time.

As shown by Drysdale [32], Voronoi regions are “generalized star shaped”.

This means that a shortest segment from a boundary point to a nearest point in

the shape defining the region lies entirely within the region.
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V (p)

V (S)

C
S

x
y

Figure 1.6: Schematic illustration for Lemma 1.7.

Lemma 1.7. Each segment added will either cause no change to V (p) or will

replace a section of V (p) by at most three new segments (two straight lines and

a parabola). (If V (p) is unbounded we think of an edge “at infinity” connecting

the two infinite rays, so that these three “segments” are considered consecutive.)

Proof. Suppose we add a new segment S to the end of C. First we show that

the added pieces on the boundary of V (p) are connected. Let x and y be two

points on the boundary between V (p) and V (S) (x and y can also be chosen “at

infinity”). Draw shortest segments (or rays for the piece “at infinity”) from x

and y to S. Because Voronoi regions are generalized star shaped, both of these

segments lie within V (S) and cannot be crossed by another Voronoi region. S

itself cannot be crossed by another Voronoi region. There is a closed curve formed

by a part of S, the two segments, and the boundary of V (p) between x and y,

cutting the plane into two parts, see Figure 1.6. Since S is the (current) last

segment of C, one of these parts contains no other segments of C. It follows that

the corresponding part on the boundary of V (p) belongs completely to V (S),

establishing a connection between x and y.

The Voronoi bisector between a point p and a segment S is formed by 2

straight rays and a parabolic arc. The new parts on the boundary of V (p) must

be a part of this bisector.

There are two parts to updating p’s Voronoi region V (p) when adding a

segment S to the diagram. First, we find a place on the boundary of V (p) that

is equidistant from p and S, if such a place exists. If so, we walk around the

boundary of V (p), eliminating boundary sections until we reach the other place

on the boundary where p is equidistant from S. (Note that either of these places

could be “at infinity”.)

The second part is easy — walk around the boundary of V (p) from the

starting point, eliminating obsolete bisector segments until you get to the finish

point.
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Because C is a polygonal chain, the first part is also easy. V (p) is bounded

by bisector pieces between p and a subset of the segments in C. Of the segments

in this subset, there is a first segment F and a last segment L, according to the

order along the chain.

Lemma 1.8. If V (p) changes, then its boundary with either V (F ) or V (L) must

change.

Proof. The intuition is, if you can’t go through the chain C, then the only way

to get to V (p) is through V (F ) or V (L).

If the chain from F to L consists of only F and L (which could be the same

segment), the lemma is trivially true. Otherwise consider the union of the chain

C between F and L exclusive, the boundary of V (F ) from the endpoint it shares

with the next segment on C to the end of its boundary with V (p), and the

boundary of V (L) from the endpoint it shares with the segment before it on C

until the end of its boundary with V (p). If V (p) is bounded these two boundaries

end at the same point — the point where V (p), V (F ), and V (L) meet. If V (p)

is unbounded then its boundaries with V (F ) and V (L) end in infinite rays. In

either case, this union separates the plane into two parts, one including p (the

inside) and the other not including p (the outside). We will call this union the

separator. Note that F and L are defined to lie outside of this separator (except

for the endpoint that is part of the separator).

Suppose that a segment S is added that changes V (p). The previous segment

on C is either L or some segment that did not modify V (p). In either case, the

endpoint shared with that previous segment is outside of the separator, so we

know that at least part of S lies outside of separator.

If S crosses the separator, then it cannot cross C, because the chain is simple.

If it crosses the Voronoi boundary of V (F ) then the part of the boundary between

the crossing point and the end of the boundary between V (p) and V (F ) will be

eliminated. A similar argument holds for L. Thus if S crosses the separator then

the boundary of V (p) with either V (F ) or V (L) must change.

If S does not cross the separator, pick some point q that is on the boundary

of the new V (p) that was not on the boundary of the old V (p) and let E be the

shortest segment from q to a point on S. E must lie entirely in V (S) and must

cross the separator. It cannot cross C. The rest of the analysis is exactly as in

the paragraph above, with E replacing S.

Lemma 1.9. For a fixed gate gi, we can incrementally compute the regions of

centers of all circular arcs that pass between gi and each gate gj, without crossing

the tolerance boundary, for j = i + 1, i + 2, . . . , n, in O(n) time and space.

Proof. Incrementally add segments from C and amortize the update time. We

have shown that the centers of CW [CCW] arcs are the region of V (pi) in the
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Voronoi diagram of p along with the CW [CCW] boundary between gi and gj.

We can compute these regions incrementally. It takes constant time to test if

segment S changes the boundary between p and either F or L, so the total time

for finding starting points is O(n).

Walking along the boundary of V (p) will take time proportional to the number

of pieces eliminated. Because an eliminated piece is removed and never reappears,

the total time for this step in all n insertions is bounded by the number of

boundary pieces added. This is at most 3n, because a bisector curve between p

and a segment consists of at most three pieces. Thus this requires time O(n).

1.5 Computing the Shortest Path

To determine the approximation with the minimum number of arcs we look at

the directed acyclic graph of all possible valid arcs and find the shortest path

from p1 to pn. The following theorem summarizes how to find the valid arcs from

pi to pj .

Theorem 1.1. A point c is the center of a valid CW circular arc from pi to pj

if and only if it is in the intersection of :

• the intersection of the right wedges between pi and each of the gates gi+1

through gj−1;

• the region of V (pi) in the Voronoi diagram of pi and all of the segments on

the left boundary between gi and gj; and

• all points in the intersection of two rays contained in b, one with endpoint

si and the other with endpoint sj, where b, si, and sj are as defined in

Lemma 1.5.

The conditions for valid CCW arcs are symmetric.

Proof. Direct consequence of earlier lemmas.

The first condition guarantees that the arc passes through gates gi+1 through

gj−1. The second guarantees that it does not intersect the tolerance boundary.

The final condition guarantees that it has pi and pj as endpoints and approaches

each from the correct side.

We find the possible arcs from a point pi to all points further along P in-

crementally. We maintain the intersection of the right wedges, the intersection

of the left wedges, the Voronoi region of pi with the left boundary, and the

Voronoi region of pi with the right boundary. At each step we update each of

the four items. We intersect each bisector ray with an intersection of wedges and
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with a Voronoi region, and then test if the intersections overlap. Because wedge

intersections and V (pi) are convex these intersections require O(log n) time.

Note that we can quit early as soon as both wedge intersection regions become

empty. This may lead to a better behavior of the algorithm in practice than the

worst-case time bound proved in the theorem below.

Theorem 1.2. Given an open polygonal curve P = (p1, . . . , pn), a polygonal

tolerance boundary of size O(n), and a gate for each pi, we can approximate P

by a minimum number of valid circular arcs in O(n2 log n) time and O(n) space.

Proof. For each starting point pi we can determine the points pj (j > i) that

can be reached by a valid arc in O(n logn) time and O(n) space. In the shortest

path algorithm, it is sufficient to scan the outgoing arcs of p1, p2, p3, and so on,

in succession. Therefore, once the valid arcs out of pi are scanned, they need not

be stored any longer, and hence the algorithm needs only O(n) space.

For the min-# problem for polygonal approximation the best known running

time is O(n2 log n) for three out of the four common error criteria , see the

results of Eu and Toussaint [39] as well as Imai and Iri [51, 52]. Our algorithm

solves this problem with curves of higher order with the same time complexity.

The error criteria refer to the way the error of an approximating segment is

measured. Only for the E1 error criterion (the maximum distance between the

approximating segment and the vertices of the original polygonal curve that lie

between start and endpoint of the segment) there is an algorithm with a faster

running time of O(n2) presented by Imai and Iri in [52].

Remark. The algorithm can be extended to optimize other criteria than the

number of arcs, e.g. the arc length, or some weighted mixture of criteria. When

the interval of possible centers of valid arcs from pi to pj has been determined,

one must be able to pick the best one of them and compute its “weight”, which

is used for the shortest path calculation.

As Held mentioned in [47] conventional biarc algorithms (also used in indus-

try) operate on discrete sets of points (and tangent vectors), by fitting biarcs

between selected pairs of points. Therefore the restrictions of our algorithms

are common. Nevertheless, we are aware that certain restrictions of the solution

are not completely natural. In particular, one might allow arcs and biarcs that

do not start and end at original points. Using these restrictions simplifies the

problems, and we do not know to solve them otherwise.

The results on arc approximations have been presented at the 22nd European

Workshop on Computational Geometry (EWCG) in Delphi, in March 2006 [33].



Chapter 2

Approximation with a Minimum

Number of Biarcs

The sequence of arcs produced in the previous algorithm may have arbitrary

corners at the vertices. In many situations, a smooth curve is desired. We now

assume that an oriented tangent direction is specified for each vertex of the open

polygonal curve. (If such tangent information is not available, it can also be

computed from the point data alone, using various tangent estimation methods.)

Our algorithm will select a subsequence of the input points and interpolate

between them smoothly by biarcs, pieces consisting of pairs of circular arcs,

respecting the tangent directions at the points which are used. Our algorithm

will find such an approximation with the minimum number of biarcs given a set

of gates and a tolerance region in O(n2 log n) time and O(n2) space.

2.1 Problem Setting

We wish to approximate a polygonal chain P = (p1, . . . , pn) with given oriented

tangent direction ti for every vertex pi by a series of biarcs. The endpoints of the

biarcs are vertices of P . Like for the approximation with circular arcs, we assume

that we are given a polygonal “tolerance region” R and a sequence of gates

g1, g2, . . . , gn, which are segments through the points pi. Each gate crosses P .

In this setting the gates would ideally be perpendicular to the tangent directions

ti, but we do not require this. We require that the input satisfies the following

assumptions:

(A′) R is a simple polygon passing through all gate endpoints;

(B′) R does not intersect the polygon or the interiors of the gates.

(C′) Each tangent ti passes through gate gi in the same direction as the original

polygonal chain P ; that is, from the side of the gate on which pi−1pi lies to

the side on which pipi+1 lies.

17
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pi

pj

a1

a2

Figure 2.1: The joint circle, and an S-shaped biarc with both tangents pointing

outside the joint circle

Again, we first find all valid biarcs and then build the directed graph of these

biarcs from the start point to the end point of the polygonal curve. The last step

is the computation of the shortest path as in the previous chapter. The main

difference between the two algorithms is the computation of the valid arcs/biarcs.

2.2 Biarcs

Biarc curves were introduced by Bolton [16] and are used for curve approximation

in a tangent-continuous manner. A biarc consists of two circular arcs that share

an endpoint with a common tangent. This common endpoint is called the joint

of the biarc. Given two points pi and pj with two tangent vectors ti, tj at these

points, a biarc Bij between pi and pj is characterized in the following way [16, 47]:

• Bij consists of two consecutive circular arcs, a1, a2

• a1 is an oriented arc from pi to point pjoint and a2 is an oriented arc from

pjoint to pj;

• a1 matches the tangent vector ti at the point pi and a2 matches the tangent

vector tj at pj;

• both arcs have a common tangent at pjoint.

These conditions leave one degree of freedom.

2.2.1 Joint Circle

The locus of possible joints forms a circle J that passes through pi and pj [21,

70, 78], see Figure 2.1. For each point on this joint circle J , there is a unique

biarc which uses this point as the joint. There are some degenerate cases: as a

limiting case, the joint could be one of the points pi or pj; the joint circle might

be a line; if there is a circle through pi and pj with the given tangents, this is

the joint circle, but all joints on this circle lead essentially to the same biarc.
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pi

pj

ti

tj
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β

Figure 2.2: Moving the point-tangent pairs pi, ti and pj , tj to a local coordinate

system.

After moving the biarc to a local coordinate system, so that pi is the ori-

gin and the vector
→

pipj is the positive direction of the x-axis, the center point

CJ(cx, cj) of the joint circle is defined as follows (see Young et al. [79]):

Let α be the CCW angle from ti to
→

pipj and β the CCW angle from
→

pipj to tj ,

as shown in Figure 2.2. The center of the joint circle CJ(cx, cj) is:

cx =
‖pipj‖

2
(2.1)

cy =
−‖pipj‖ cos θ

2 sin θ
, with θ =

−α − β

2
and θ ∈ (−π, π) . (2.2)

The unsigned radius of the joint circle is:

|R| =
‖pipj‖
2 |sin θ| . (2.3)

For implementation issues it is important to distinguish between the joint

circle and the degenerate cases of a segment or just a point as locus of the joints.

Therefore we present how to distinguish and construct them with a few geometric

routines. The case distinction is based on the orientation of the tangents ti,tj
and their relative positions.

• The tangents ti and tj are parallel with the same orientation:

The locus of the joints is the segment pipj, see Figure 2.3.

• The tangents ti and tj are parallel with opposite orientation:

The locus of the joints is the circle through pi and pj centered at the

midpoint of the segment pipj ,see Figure 2.4.

• The tangents ti and tj are the same :

The locus of the joints is a point, either pi or pj.



20 CHAPTER 2. APPROXIMATION WITH BIARCS

x

ypi pj

ti tj

Figure 2.3: The segment pipj is the locus of all joints.

pi
pj

ti

tj

Figure 2.4: The center of the joint circle is the midpoint of the segment pipj.
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pi
pj

ti tj

α

β
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α

Ds

Figure 2.5: Rotating the tangents ti, tj around the points pi, pj at the same pace,

the intersection points of the tangents are located on a circle D. Let s be any

point on D. The tangent ti and the ray from pi to s and the tangent tj and the

ray from s to pj form the same angle.

• The tangents ti and tj are neither parallel nor the same:

First construct the circle which is defined through the point triple pi, pj

and the intersection point of the two tangents ti, tj . Let s be any point on

this circle D. The angles between ti and the ray from pi to s and tj and

the ray from s to pj are by construction the same, see Figure 2.5. Next

intersect D with the bisector of the segment pipj. The two intersection

points correspond to two possible centers for the joint circle, but only one

of these centers is feasible. Looking at the two tangents ti, tj , only one

of the two intersection points is on the same side (regarding the tangent

directions) of the two tangent lines ti and tj . This point is the center of

the joint circle, see also Figure 2.6.

The circle with the second intersection point as center forms only equal angles

with the tangent lines if the orientation of one of the tangents is flipped, see also

Figure 2.7. Therefore the construction of the joint circle can be geometrically

done with a few simple routines: first the construction of a circle through a

point triple, then construction of the bisector of a segment, next the intersection

of circle and bisector, last check which intersection point lies on the same side of

two given lines.

We will ignore in the sequel the degenerate cases and will only refer to the

joint circle.
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pi

pj

ti

tj
I1

I2

Figure 2.6: Construction of the joint circle defined through the two point-tangent

pairs pi, ti and pj, tj . The intersection point I1 is to the right of ti and to the

right of tj and therefore the center of the joint circle. In this example the joint

circle is a circle through pi and pj with the given tangents, but all joints on this

circle lead essentially to the same arc as biarc.

pi

pj

ti

tj

I1

I2

Figure 2.7: Construction of the joint circle with the point-tangent pairs like in

Figure 2.6 but the orientation of the tangent tj is flipped.The intersection point

I1 is to the right of ti but to the left of tj and therefore the center of the joint

circle is I2.
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Figure 2.8: We allow a biarc to intersect an intermediate gate three times.

Proposition 2.1. One circular arc of the biarc lies outside the joint circle J ,

and the other lies inside J , except for their endpoints, which lie on J . Both

tangents ti and tj point to the same side (either inside or outside) of J , and

they form equal angles with J . (In fact, the last property characterizes the joint

circle.)

2.2.2 Valid Biarcs

Definition 2.1 (Valid biarc). A valid biarc Bij from pi to pj consists of two

circular arcs a1 and a2 and satisfies the following conditions:

• a1 matches ti at the point pi, a2 matches tj at pj, and they meet at a point

on the joint circle.

• Bij stays inside the tolerance boundary.

• Bij intersects the gates gi and gj only in pi and pj.

The joint, which is the ending point of a1 and the starting point of a2, is not

required to be an original point. The joint must of course lie inside the tolerance

region. Note that in comparison to the arc approximation of Definition 1.2, we

have relaxed the gate stabbing condition. The arcs a1 and a2 are allowed to

intersect the gates of the starting and ending points only once, but intermediate

gates can be intersected more than once. Forbidding these multiple intersections

would mean that, in a family of biarcs with the same endpoints, some biarcs

that lie between permitted biarcs might be excluded, which is not natural. See

Figure 2.8. The restrictions on intersecting gi and gj guarantee that successive

biarcs will not intersect except at endpoints.

2.3 Circular Visibility Regions

For each possible starting point pi of a biarc, the tangent direction ti is fixed. The

pencil of circular arcs starting in this direction forms a circular visibility region
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ti
pi

Figure 2.9: A circular visibility region Wi

Wi inside the feasible region R, see Fig. 2.9. The arcs forming Wi terminate when

they reach pi; since we want to construct valid biarcs, we are not interested in

arcs that intersect pi a second time.

To find a valid biarc that starts at pi and ends at pj we need to reach a point

on the joint circle J via a valid arc from pi and then continue via a valid arc to

pj. The possible joints from the perspective of pi are the intersection of J and

the circular visibility region of pi. By reversing the direction of the second arc

and tangent we can compute the second arc in the same way. We will use arc

ã2, which has opposite orientation and whose tangent at pj is t̃j , the reverse of

tj. We will call this circular visibility region W̃j . Our goal is to find all points

on J which are in both circular visiblilty regions Wi and W̃j .

As a first step in this process we determine the portion of each gate that is

within Wi for each point pi and the portion of each gate that is in W̃j for each

point pj. These portions consist of at most three intervals and can be stored in

O(n2) space (see Lemma 2.1). In the second step we check the existence of a

valid biarc between every pair of vertices pi and pj . For each pair pipj, we will

identify an interval gl−1, . . . , gr+1 of gates where the joint is restricted to lie. In

this interval, the joint circle is not intersected by the boundary of R. This makes

it easy to test for the existence of a valid joint. This step uses the pre-computed

information about the intersection of circular visibility regions with gates.

We could compute the intersection of Wi with all later gates by using inter-

sections of wedges and Voronoi regions, as we did in chapter 1. However, because

we know the tangent at pi we can do this more efficiently by computing Wi di-

rectly. The pencil of circular arcs consists of an interval of possible curvatures.

As we proceed from gate to gate and walk along the left and right tolerance

boundaries, the interval of curvatures either remains unchanged or shrinks, but

it always remains a single interval.

Lemma 2.1. For a given point pi, the oriented circular visibility regions of Wi

and their intersection with all gates can be computed in O(n) time. The part of

a gate that is visible in Wi consists of at most three intervals: one interval where

the gate is reachable in the forward direction, and two segments where the gate
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is reachable in the backward direction by clockwise and counter-clockwise arcs,

respectively. These intervals may be adjacent.

Proof. We cut each oriented visibility region into two pieces, forward and back-

ward visibility. The forward visibility region is the part of the visibility region

which is reached by portions of arcs that do not intersect any gate twice. The

backward visibility is the part reached by portions of arcs after they have inter-

sected a gate twice, so they are moving backwards through the gates.

We walk along the left and right boundaries of the tolerance region, deter-

mining the intersection between each boundary and the pencil of arcs, and in this

way compute the forward visible region. When the last reachable gate is known,

we can compute for each gate moving backwards the arcs that build the backward

visibility region. The backward part of the visibility region for a gate gi consists

of the arcs that intersect gate gi+1 a second time (possibly after passing through

even higher-numbered gates twice) and reach back to gi, plus the arcs that don’t

cross gi+1 but intersect the gate gi a second time. These arcs correspond to a

connected piece of the pencil of arcs and we need to determine the intersection of

this pencil part with the corresponding boundary of the tolerance region moving

from gi+1 to gi. Because the complexity of the tolerance boundary between two

gates is constant we can do the forward and backward visibility computations

between two gates in constant time, so the total time required is O(n). The

intervals on the gates can be stored for all point pairs in O(n2) space.

Note that the interval on a gate reachable by forward portions of arcs is

disjoint from the interval reachable by backward portions of arcs, because a

given point is reachable by exactly one arc leaving pi with tangent ti. These

regions (if non-empty) may join at the point where an arc is tangent to the gate,

but if this arc is invalid (because it intersects the boundary) the regions will be

separated. See Fig. 2.10.

2.4 Computing Valid Biarcs

We now look at a fixed pair pipj test for a valid biarc between pi and pj. The

tangent directions ti and tj define a joint circle J . For the rest of the chapter we

will deal with the situation that the first arc starting at pi is outside the joint

circle J and the second arc is inside. The other case is symmetic.

Each gate gi+1, . . . , gj−1 may or may not fulfill the following conditions:

Condition (Out)

The visibility region Wi from pi intersects the gate OUTSIDE the joint circle.

Condition (In)

The visibility region W̃j from pj intersects the gate INSIDE the joint circle.

We can test the conditions (In) and (Out) in constant time for every gate.
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pi

ti

gi
gk

Figure 2.10: Forward and backward visibility segments of region Wi on gate gk.

The intervals of forward visibility and counter-clockwise backward visibility are

adjacent.

In the following, we will refer to the region bounded by two successive gates

gk−1 and gk and the boundary of R, as the cell between these gates, or simply

the cell gk−1, gk.

Lemma 2.2. (a) If the joint circle contains a joint point for a valid biarc in

the cell between gk−1 and gk then gk−1 satisfies (Out), and gk satisfies (In).

(b) If gk satisfies (In) then so does gk+1, . . . , gj−1. If gk satisfies (Out) then so

does gk−1, . . . , gi+1.

Proof. We prove only the statements regarding (Out). The arcs starting at pi in

direction ti start outside the joint circle J . If such an arc enters the joint circle, it

remains inside until it returns to pi (see figure 2.11). Thus, if an arc has reached

gk outside J , the initial part must have passed through gi+1, . . . , gk−1 outside J .

This establishes part (b) of the lemma. The same argument works for an arc

that reaches J in the cell between gk−1 and gk (part (a) of the lemma).

It follows that the sequence gi+1, . . . , gj−1 can be partitioned into three con-

secutive parts:

(a) an initial part gi+1, . . . , gl−1 (possibly empty) satisfying (Out) but not (In);

(b) a middle part gl, . . . , gr, which is either

(b1) a nonempty sequence satisfying neither (In) nor (Out);
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pi

pj

J

Figure 2.11: A family of biarcs from pi to pj and its joint circle J

(b2) a possibly empty sequence satisfying both (In) and (Out);

(c) a final part gr+1, . . . , gj−1 (possibly empty) satisfying (In) but not (Out).

Since the conditions (In) and (Out) can be tested in constant time, the

positions l and r can be identified by binary search in O(log n) time. From

Lemma 2.2a it is clear that in case (b1), there can be no valid biarc, and in case

(b2), the joint must be in the cells between gl−1 and gr+1.

Let us now concentrate on case (b2): We treat the cells gl−1, gl and gr, gr+1

separately, and test whether some point of J is reachable from pi and pj, in

constant time. (These two cells are the same if the middle part is empty, i.e.

l − 1 = r.)

It may happen that gl or gr intersect J twice, and both pieces outside J are

reachable in Wi. In this case, it is certain a valid biarc exists, and we need not

proceed.

Lemma 2.3. Let g be a gate that satisfies (In) and (Out) and intersects J twice,

and suppose that both pieces outside J are reachable in Wi. Then there is a valid

biarc between pi and pj.

Proof. Let s1, s2 be two arcs in Wi, such that s1 reaches one side of the gate

g outside of J and s2 the other. F denotes the segment on g between the two

intersections of J (see Figure 2.12). If s1 or s2 reaches g as part of the backward

visibility segment on g, then it must reach the same outer piece of g as part of the

forward visibility segment. We can thus assume that s1 and s2 extend from pi

until they hit g for the first time. The region bounded by s1, s2 and the segment
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gs1

s2

s

J

Figure 2.12: A joint circle J intersecting a gate g twice. The shaded region is

contained in R.

g is contained within R, and therefore the part of J between the intersections

with g is completely in Wi. Let us sweep the circular arc s from s1 to s2. Each

of these arcs is a valid arc and it can be extended to a biarc ending in pj (not

necessarily valid). These biarcs sweep over the segment F . By condition (In),

we know that at least one of the complementary arcs s̃ is a valid arc, at least to

the point where it hits F . Since the region between F and J lies within R, the

whole biarc is in R.

We show that this biarc is also valid biarc, since it does not intersect gi and

gj except at pi and pj : By construction, the first arc s (up to the joint on J) does

not intersect gi twice, since its endpoint is in Wi, and it does not intersect gj at

all, since it terminates before crossing g. Similarly, the second arc s̃ does not

intersect gj twice, its endpoint being in separated from gj by g. It could possibly

intersect gi only in the circular segment between F and J , but since this region

is part of Wi, this is impossible.

So, the final case that we have to deal with is the following. We have a

sequence of gates gl, gl+1, . . . , gr, that satisfy (In) and (Out). We therefore know

that gl and gr (as well as all intermediate gates) intersect J in points Ql and

Qr (see Figure 2.13). It may happen that gl or gr intersects J twice, but then

only one of the outer parts is intersected by Wi. (Otherwise we are done, by the

previous lemma.) We denote by gout
l and gout

r that outer segment of gl and gr

that is intersected by Wi. The intersection Ql and Qr is chosen (in case there

are two intersections) as the one that is incident to gout
l and gout

r , respectively.

We know that there is a valid arc from pi to gout
r . If the arc reaches gout

r as

part of the backward visiblity, it must have passed through gout
r as part of the

forward visibility region. Thus we denote the first intersection of the arc with

gout
r by Sout

r . Similary, there is an arc from pj that reaches gl inside J for the
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Figure 2.13: The region R̂ between gl and gr

first time in some point S in
l , after passing through gr in the point S in

r inside J .

Now, the two segments S in
l Sout

l and S in
r Sout

r and the two circular arcs Sout
l Sout

r

and S in
l S in

r are contained within R. It follows that the four-sided region G en-

closed by these curves (shaded in Figure 2.13) contains no part of the boundary

of R, and in particular, the arc QlQr of the joint circle that lies in this region is

not intersected by the boundary of R.

Lemma 2.4. In the situation described above, a joint in the region R between gl

and gr can only lie on the arc QlQr.

This lemma seems obvious at first sight, but it is conceivable that this region

contains parts of J besides the arc QlQr, as in the example of Figure 2.13.

Proof. Let R̂ denote the region R between gates gl and gr. We denote by Bl and

Br the endpoints of gout
l and gout

r , and by B̄l and B̄r the opposite endpoints of gl

and gr. Since the region G lies inside R̂, it follows that the boundary of R̂ must

connect Bl with Br and B̄l with B̄r. (The opposite connection, Bl with B̄r and

B̄l with Br, would lead to a crossing.)

A valid arc starting from pi enters R̂ through gout
l . This arc is then in the

region R̂out that is bounded by gout
l , gout

r , the arc QlQr, and the boundary of R̂

between Bl and Br. The arc may leave this region through gout
r , but then it has

to reenter through gout
r in order to become a valid arc ending in R̂. If the arc

hits QlQr it terminates there. The arc must therefore meet J in the region R̂out.



30 CHAPTER 2. APPROXIMATION WITH BIARCS

B̄r

B̄l

Bl Br

Ql

Qr

J

pi
pj

gr

gl

gout
l

G

A1

A2

Sout
l Sout

r

Figure 2.14: Determining the valid joint points

We can apply a similar argument for the backward arc from pj . This arc is

caught in the complementary region R̂in that is bounded by the arc QlQr, the

boundary of R̂ between B̄l and B̄r, and part of the segments gl and gr. Since

the regions R̂out and R̂in intersect only in the arc QlQr, the joint can only lie on

this arc.

Now we can easily determine the points on the arc QlQr that are joints of

valid biarcs.

We have established that the region G does not contain any obstacles. Now

consider the point on gout
l closest to Ql that lies in Wi, and extend the arc from

pi through this point until it hits J in some point A1 (see Figure 2.14). It may

happen that A1 = Ql if this point is in Wi.

If A1 lies beyond Qr, we conclude that no arc can reach QlQr, because such

an arc would have to intersect gout
l closer to Ql. Otherwise, by stretching the

arc and sweeping out till the arc piS
out
l Sout

r , we see that the complete interval

between A1 and Qr is reachable from pi by an arc that stays inside R. (It also

follows that A1 cannot lie before Ql: by the above argument, Ql would then be

in Wi, and A1 = Ql would have been chosen instead.)

Similarly, we can look for the point on gr that lies in W̃j , inside J , and is

closest to Qr, and we extend the arc from pj to a point A2 on J . We conclude

that the whole sub-arc QlA2 is reachable from pj, or that no point on the arc

QlQr is reachable.

By intersecting the arcs A1Qr and QlA2, we eventually find the arc A1A2 of

possible joints, or we find that no joints are possible. The joints on the arc A1A2

correspond to biarcs that lie in R. To get valid biarcs, we have to ensure that

they do not intersect gi and gj other than in their endpoints. It is straightforward

to reduce the interval A1A2 in order to exclude the biarcs violating this condition,

in constant time.
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We summarize what we have achieved.

Lemma 2.5. After the intersections of all visibility regions Wi and W̃i with all

gates gk have been computed (Lemma 2.1), the existence of a valid biarc between

two given endpoints pi and pj can be tested in O(log n) time.

Proof. We do binary search on the gates between gi and gj to find the locations of

gl and gr. This is the part of the procedure that takes O(log n) time. If r < l−1

there are no valid biarcs between the gates. Otherwise we test the cell between

gl−1 and gl and the cell between gr and gr+1 to see if any part of J within these

cells is a joint for a valid biarc. (The two cells could be the same cell.) Because

the cells have constant complexity these tests can be done in constant time. We

check if gl or gr intersects J twice and Wi intersects the gate on both sides of

J . If so there is a valid biarc. If not, we compute A1 and A2 as described above

and see if the arc A1A2 is non-empty. If not, there is no valid biarc. If so, we

reduce it if necessary to eliminate biarcs that intersect gi or gj in points other

than their endpoints. If any points remain in the interval we report that a valid

biarc exists. All work after finding gl and gr requires O(1) time.

With the help of this test, we can now define the directed graph of reachable

arcs, and the shortest path will give us the approximation with the fewest biarcs:

Theorem 2.1. Given an open polygonal curve P = (p1, . . . , pn), a polygonal

tolerance boundary of size O(n), a gate and a tangent direction for each pi, we

can approximate P by a minimum number of valid biarcs in O(n2 log n) time and

O(n2) space.

Proof. For each point pi, determine which part of every other gate is reachable

by computing Wi and W̃i in O(n2) time and space. For each point pair pi, pj we

check whether a valid biarc exists, by Lemma 2.5. This requires O(log n) time,

for a total run time of O(n2 log n). We use these tests to set up a directed acyclic

graph and compute the shortest path, in O(n2) time.

As for arcs, there are instances where this bound is overly pessimistic. The

visibility regions Wi and W̃j will often not extend beyond a few gates, and the

calculation can be shortcut.

The biarc as well as the arc algorithm can be easily adapted to solve the

problem of finding the minimum number of arc/biarcs approximating a closed

polygonal curve. The main bottleneck of both solutions would be finding the

shortest cycle in the graph of all valid arcs/biarcs. Using the results for comput-

ing the all pairs shortest paths by Zwick [80] would lead to a total O(n2.575 log n)

runtime for both algorithms.
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2.5 The Tolerance Boundary

The “approximation error” ε enters our problem only through the tolerance re-

gion R. The definition of a useful tolerance boundary for a given curve is a

modeling question that depends very much on the application. For some ap-

plications, like cutting, it makes sense to use asymmetric, one-sided tolerance

boundaries. In these settings it can be also more useful to not use the points of

the original polygonal curve as start and endpoints for the arcs/biarcs. Both of

our algorithms can deal with any sequence of ordered points as input points for

the algorithm, if they are inside the tolerance region and in consecutive order

form the beginning to the end of the tolerance region, e.g., so called “a-nodes”

defined in terms of the tolerance region. They take the role of the points pi. For

a detailed introduction into computing tolerance regions and a-nodes, see for ex-

ample the results of Held and Heimlich [46]. As long as the boundary meets the

requirements specified in the beginning of this chapter, our algorithm can deal

with it. Note that the width of the tolerance boundary may change within R.

Therefore depending on the tolerance boundary our algorithm can answer the

classical question for ε approximation (our solution has absolute guarantees for

the minimum number of biarcs that are at most ε away from the original curve),

as well as for approximations with changing precision requirements. More sensi-

tive parts of the polygonal curve can be approximated with smaller ε than less

important ones. Allowing variations of the width of the approximation bound-

ary has no impact on the theoretical complexity of the problem. This ability to

vary the width of the approximation boundary makes our algorithm useful for

smoothing paths in robotics motion planning. The corridor used for the robotics

is usually defined by the obstacles which have to be avoided. This leads naturally

to corridors with non-constant width.
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Approximation of polytopes in
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Introduction

In this second part of the thesis we move on from 2-dimensional to 3-dimensional

space. We deal with recovering structural information for a 3-dimensional object

that is represented by a sample point cloud. The motivation for studying these

problems is based on open problems in object simplification and surface recon-

struction, two fundamental challenges in several areas of computer science, e.g.,

computer graphics and geometric modeling [1, 3, 7, 8, 14, 27, 29, 40, 45, 48, 54,

57, 65]. A lot of research has been done in the field of approximation of three-

dimensional point sets with polytopes with surfaces of higher order [35, 55], e.g.

Bézier surfaces [49, 71]. Recent advances in graphics hardware allow the render-

ing of algebraic surfaces by their polynomial representation without computing

approximating triangles [56].

We initiate the study of this problem by considering convex surfaces only,

for simplicity, before moving on to non-convex surfaces. A first natural step

to higher-order approximation of convex polytopes is the approximation with

spheres or spherical patches. Since polyhedral facets can be seen as spherical

patches with infinite radius, spherical patch approximation is a generalization

of polytope approximation and a natural followup to the biarc algorithm. Most

approaches to modeling with balls or spheres are closely related to the union

of balls [37, 35] (as is our approach to non-convex polytopes). Our goal is to

model convex or nearly convex parts of a surface by a convex surface formed by

spherical patches. This approach is closely related to the intersection of balls.

In particular the resulting surface can be used for separating convex shapes, i.e.,

for constructing bounding volumes.

The polytopes used in this theses are solids bounded by a surface. The surface

is a 2-manifold and each face of the surface is a simple planar polygon.

We require that the surface is triangulated, closed and bounded. We make

the following assumptions about the intersection of components and the local

topology (similar to [64]):

• For each pair of faces, we require that either

– they are disjoint, or

– they have a single vertex in common, or

– they have two vertices, and the edge joining them, in common.

• The neighborhood of each vertex is homeomorphic to a disk. Every vertex

is the apex of a number of triangles. The link of a vertex v is the collection

of edges opposite v in all triangles incident to v. We require that the link

of every vertex be a simple, closed polygonal path.

A convex polytope is a polytope, which lies entirely on one side of any plane

defined by its faces. Each face is a simple convex polygon.
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In Chapter 3 we can show that deciding the existence of an approximation of

a convex polytope with a given upper error bound ε and not more than a given

number of spherical patches is NP-hard. The complexity of the approximation

problem is closely related to open problems in polytope approximation, in partic-

ular to the complexity of polytope approximation with the minimum number of

facets. In future we hope to use our new methods from the NP-hardness proof of

the more generalized problem to solve the complexity question of the minimum

facet polytope approximation.

In Chapter 4 we present a new technique for constructing curved surfaces

based on inscribed polytopes resulting in a convex surface consisting of spherical

patches. The inscribed polytope approach makes our construction suitable for

various incremental algorithms.

These results on convex polytope approximation were presented at the 23nd

European Workshop on Computational Geometry (EWCG) in Graz, in March

2007 [19].

To tackle the approximation problem for non-convex polytopes we pick up

the idea of an incremental approximation algorithm. This induces the problem

of finding a simple and topologically correct start polytope, the ‘seed polytope’,

for non-convex polytopes. Our work is strongly related to the results of Amenta

and Bern [7] and is based on several of their results.

For a surface F in 3-space that is represented by a set S of sample points,

we construct a coarse approximating polytope P that uses a subset of S as its

vertices and preserves the topology of F . In contrast to surface reconstruction we

do not use all the sample points, but we try to use as few points as possible. Such

a polytope P can then be used as a seed polytope for starting an incremental

refinement procedure to generate better and better approximations of F based

on interpolating subdivision surfaces or, e.g., Bézier patches.

Our algorithm starts from sample S (an r-sample, which is defined in Chap-

ter 5) of F . Based on S, a set of surface covering balls with maximal radii is

calculated such that the topology is retained. From the weighted α-shape of a

proper subset of these highly overlapping surface balls we get the desired poly-

tope. As there is a rather large range for the possible radii for the surface balls,

the method can be used to construct triangular surfaces from point clouds in a

scalable manner. The seed polytope algorithm and the surface reconstruction are

joint work with Oswin Aichholzer, Franz Aurenhammer, Bernhard Kornberger,

Simon Plantiga, Gert Vegter and Günter Rote, we describe the algorithms in

Chapter 5.

These results on non-convex polytope approximation have been accepted for

presentation at the Eurographics Symposium on Geometry Processing (SGP)

2009 (July) in Berlin [6]. The algorithm has been implemented by Bernhard

Kornberger.



Chapter 3

Approximation by Spherical

Patches: An NP-hardness proof

The optimization problem we are considering is the Approximation by Spherical

Patches (ASP): the approximation of a convex point set with a given number

g of spherical patches resulting in a convex surface with all points within some

specified tolerance to the surface. We show that deciding if a surface can be

approximated by g patches is NP-hard. In our reduction from grid 3SAT, we

use consecutive patches to encode the Boolean information by alternating flat

and bulbous patches. The same decision problem for facets of an approximating

polytope is assumed to be NP-hard due to its close relation to the minimum facet

separator problem. It is known that finding a minimum facet separator for two

convex polytopes is NP-hard [25, 24, 26, 62]. A polytope can be approximated

by separating the inner and outer boundary of the “fattened” polytope surface.

This special case of the minimum separator problem remains an open problem [2].

Since a convex polytope can be seen as the intersection of spherical patches

with infinite radius our NP-hardness proof resolves a generalized version of the

problem.

Problem Statement. We are given a set P of n points in convex position. We

want to find a convex approximating surface S that consists of spherical patches.

A spherical patch is part of the boundary of a ball. There are two quality criteria

that we want to optimize: (a) the approximation error, which is defined as the

maximum distance from a point of P to S; and (b) the number of patches.

Our approach is closely related to the intersection of balls. In our specific

construction, we use only spheres with the following constraints: some points of

P lie on each sphere, the spheres are large enough to contain all other points of P

inside. Thus, we can construct the approximating surface simply as the boundary

of the intersection of all approximating balls and halfspaces (balls with infinite

radius) that contribute in the construction.

37
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Outline Starting from a planar 3SAT instance, we construct a point set defin-

ing an instance of the ASP with zero tolerance such that - in the satisfiable case

- a minimal solution of the approximation problem corresponds to a truth as-

signment in the grid-3-SAT problem. We split the grid in four types of grid cells:

fill cells, variable cells, wire cells and clause cells. Further we associate point

triples to the first three types of cells, and single points to the third type. This

point set is then lifted to a paraboloid and extended with additional points (to

be specified later).

The points are constructed such that they can be approximated with one

spherical patch for each grid cell, except for the clause cells. The points corre-

sponding to clause cells will be covered by this set of patches, exactly if they

correspond to a truth assignment to the grid 3SAT instance. Finding an approx-

imation with a minimal number of patches therefore results in finding a truth

assignment for grid 3SAT.

We describe the minimal solution in the satisfiable case and prove that more

patches than g are needed in the non-satisfiable case for the ASP.

Our approximating surface can be seen as the surface of intersection of g

spheres. Therefore the boundaries of the patches are defined by the intersection

curves of neighboring patches.

3.1 Grid-3-Satisfiability

3-SAT statements consist of a Boolean conjunction of clauses, where each clause

consists of a disjunction of three Boolean variables, each of which may be negated.

Such a statement can be represented by a bipartite graph, where variables and

clauses are represented by vertices. Each clause vertex is connected to its three

variable vertices by an edge marked + or − depending on whether this variable

occurs negated in that clause (see Figure 3.1). Planar 3-SAT consists of all 3-SAT

problems represented by a planar graph. Finding a valid variable assignment is

NP-hard. Furthermore, Grid-3-Satisfiability (grid 3SAT) is NP-hard [42, 74]

where the variable-clause graph of a formula of length n in 3-conjunctive normal

form can be embedded on a c1n × c1n grid with c1 some constant.

3.2 Modifying the grid

We start with a grid of squares of side length 1. The first step of the reduction

requires a refinement of the grid by factor c2 = 30 (see Figure 3.2).Vertices cor-

respond to facets and edges correspond to rectilinear paths on the grid. Further

we disperse the grid cells by a small constant factor δ = 0.1 which creates gap

rectangles between the cells. Depending on the label of the edge in the variable

clause graph, we change the number of facets in the path on the grid correspond-

ing to the edge. A negatively labeled edge is represented by a path with an odd
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Figure 3.1: Planar embedding of a 3-SAT problem: The variable-clause graph of

the formula F .

number of cells and a positively labeled edge corresponds to a path with an even

number of cells. To achieve this correspondence we need sufficiently many cells

on a straight path. The inclusion of an additional cell is done by reducing the

gap size δ to δ′ in a straight segment of the path. The size of δ′ depends on the

number of cells in the considered path segment, 0.064 < δ′ < 0.1. We compute δ′

in such a way that we gain a gap of size 1 + δ′, so that we can fit in another cell

of unit size. We do the same procedure with the grid cells which are adjacent

to the changed path segment. The grid has a size 30c1n × 30c1n and consists of

four kind of cells: variable cells, wire cells (cells of the paths), clause cells and

fill cells. Next we delete all grid cells corresponding to clauses (the clauses will

be represented later by a single point). We also drop the lower right vertex of

each grid cell. For each grid cell i we have therefore a triple Pi.

Lifting to a paraboloid The next step is a lifting of the point triples of the

grid cells onto a very flat paraboloid. The paraboloid depends on the size of

the grid. We pick a paraboloid of the form z = −λ · (x2 + y2). (We use the

mirrored paraboloid for easier illustration.) Let Di be the circumcircle of the

lifted point triple Pi. The parameter λ has to be chosen in such a way that

for two neighboring point triples Pi, Pj the disks of Di and Dj intersect (their

circumcircles do not necessarily intersect), see Figure 3.3. This guarantees the

existence of valid spherical patches.

For a lifting of a δ dispersed cn × cn grid, with c = c1 · c2 = 30c1, this leads

to a bound on λ:

λ <

√(
1 − 1/

√
2
)2 − δ2

δ2 + 2δ(c + δ)n
.

In order to satisfy this inequality, δ has to be chosen less than 1 − 1/
√

2. This

gives us a point set in convex position in 3D (see Figure 3.4). For our explicit

construction we choose δ := 1/10 and λ := 1/(10m) with m = c(1+ δ)n a bound

on the width and length of the dispersed grid (see Theorem 3.1 below).
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(a) Schematical figure of the embedding

on a c1n × c1n grid.

(b) Schematical figure of a refined grid.

For clarity, the grid is only refined by a

factor of 3.

(c) The associated point set to (b).

clause

inclusion of negation cell variable

δ′

δ

clause

variable

gap rectangle

Figure 3.2: Refinement of the grid.

3.3 Fill points

Looking at the lifted point set we place additional points: We place one point

into each triangular face corresponding to fill cells. We refer to these four points

as a set of fill-points.

Lemma 3.1. Each set of fill points induces exactly one spherical patch and all

sets cannot be covered with less than one patch per set.

Proof. A convex surface containing the four points must contain the whole trian-

gle. Hence the spherical approximation must contain a planar face that includes

this triangle.

There are five more facets of the convex hull of the lifted point set to consider:

the flat bottom facet with the four adjacent border facets. To ensure that they

get covered with exactly one patch each, we place four additional, non co-circular

points into each of them.
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Di
Dj

Figure 3.3: Intersection of the disks of Di, Dj. The disk are induced by the lifted

point triples Pi, Pj.

Figure 3.4: Lifting of the (undispersed) grid to a paraboloid.

3.4 Wire

The wire corresponds to edges in the variable-clause graph, which are represented

by sets of lifted point triples. We build a wire out of consecutive spherical patches

to propagate information from the variables to the clauses. We will prove that,

if there is a solution with g patches, each lifted point triplet will be covered by a

single patch. The main idea of the reduction is to place additional points between

consecutive triplets in the wire, that narrow down the choice to only two spheres

for each patch: a flat patch or a bulbous patch. We choose for a flat patch the

sphere with center at infinity, the plane defined by the lifted point triplet Pi.

The common radius of the bulbous spheres is r := 10m (see Theorem 3.1 below).

We place a set of four points, P FF , on the intersection line of consecutive

flat patches, four points, P FF ill, on each intersection line of flat patches and

their adjacent fill cell patches and one point, P BB, on the intersection circle of

bulbous patches, as described below. These additional points force the patches

to alternate between flat and bulbous patches (see Figure 3.5).

To avoid exact computation of the intersection of two bulbous spheres we

place the point P BB approximately on the intersection. We deal with a specific

ε = 1/m2 that is calculated carefully, ensuring that all previous lemmas still hold

(see Theorem 3.1 below). Regarding Lemma 3.1, note that ε is chosen in such a

way, that no patch can contain two or more whole triangles.

The bulbous spheres are large enough to contain all other points inside. Thus,

we can construct the approximating surface simply as the boundary of the in-
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Figure 3.5: Two different cross-sections through two adjacent patches, which can

be flat (Fi and Fj) or bulbous (Bi and Bj), respectively. In the central cross-

section (left), an FF intersection point is covered by all pairs of patches except

BiBj . In the off-center cross-section (right), a BB intersection point is covered

by all pairs of patches except FiFj .

tersection of all approximating balls and halfspaces that contribute in the con-

struction.

We need to guarantee that the additional points, P FF , P FF ill and P BB, on the

flat and bulbous patches will lie on the approximating surface (see Lemma 3.2).

The points P FF lie on the intersection of the disks (the disks corresponding to

the circumcircles of the point triples) and the point P BB lies on the circular arc

outside the intersection (see Figure 3.6). The point sets P FF ill are placed on the

intersection lines of the flat wire patches and their neighboring fill cell patches

(see Figure 3.7).

Construction of the point P BB. If at least one of the two bulbous spheres

is chosen the point must lie on the intersection surface of the construction. In

the following we formulate conditions under which a point lies on the intersection

surface. Then we pick such a point and prove that the conditions hold.

Since the radii of the bulbous spheres have been chosen in such a way that

they only come close to the grid polytope at the face by which it is defined, it

suffices to consider the local configuration. The grid polytope is the convex hull

of all the lifted variable and wire grid vertices.Thus, for a point to lie on the
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Figure 3.6: Top view of two neighboring wire cells: Placing of the points on the

FF and BB patch intersection. The light gray point is on BB.

wire cell
disk

fill cell diks

PFFill

Figure 3.7: Top view on adjacent wire/fill cell:Placing of the points P FF ill on

the intersection of flat patches and fill cell patches.

intersection surface the following conditions are sufficient:

(1) The point lies below both of the planes defined by the two triplets of points.

(2) The point lies above the face of the gap rectangle between the two faces

defining the spheres.

(3) The projection of the point lies within (possibly on the boundary of) the

gap rectangle between the two faces defining the spheres.

These conditions guarantee that the point chosen will lie on the convex hull

of the point set and that all other points remain on the convex hull.

For two neighboring triplets of points there are two points p1 and p2, one of

each triplet, neighboring in the grid (see Figure 3.8 (a)). Consider the vertical

plane e through these two points. We place as the point P BB the intersection

point of this plane and the two spheres outside of the grid polytope.

The point P BB fulfills the third condition by definition. To see that the other

two conditions hold consider Figure 3.8 (b). The two triplets of points define

two planes eT1 and eT2 . These two planes and the plane e intersect in a point

p3. The triangle defined by p1, p2, and p3 lies in the plane e. The intersection
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(a) Vertical View
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(b) Configuration in
the plane e

Figure 3.8: Construction of a valid intersection point of the “bulbous” spheres.

point of the two spheres and plane e fulfills conditions (2) and (3) if it lies in this

triangle.

Intersecting each of the two spheres with e yields two circles C1 and C2. Since

p1 lies on the sphere, C1 passes through p1. The circle C1 cannot cross the edge

(p1, p3) and by the construction of the spheres does not cross (p1, p2). Thus it

intersects the edge (p2, p3). Analogously C2 passes through p2 and intersects

(p1, p3). Therefore, the circles intersect in the triangle.

3.5 The variable and clause gadgets

Variable. A variable is a point triplet which is handled as a wire point set.

Choosing the flat patch corresponds to a false assignment and the bulbous patch

to a true assignment. A flat patch results in a covering of all points P FF around

the variable point triplet, therefore all consecutive wire patches will propagate

the same information – all wires starting from this variable will start with a

bulbous patch. Picking a bulbous patch for a variable point triplet is symmetric.

Clause. Before the lifting, a clause corresponds to a grid cell in the plane which

is connected to three wires (from three variables). We deleted the vertices of the

clause grid cells, they do not contriubte to the construction. We place a single

point in the free space between the three wire point triplets, at the intersection

of the bulbous patches of these point sets (Note that because of the bigger free

space the intersection of the bulbous patches lies below the intersection of flat

patches in contrast to the situation between wire patches). Like for the point

P BB, to avoid exact computation of the intersection of now three bulbous spheres

we place the point approximately on the intersection, with ε = 1/m2.

3.6 NP-hardness proof

To prove that an approximation of the constructed point set with a minimum

number of patches corresponds to a truth assignment in the grid-3-SAT problem
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we need to show three things:

• The surface constructed only out of fill cell patches and alternating wire

patches covers the entire constructed point set.

• Only alternating wire patches can lead to a minimum number of patches

for the surface overall.

• There exists a satisfying assignment for the grid 3SAT instance if and only

if the lifted point set with all additional points can be approximated with

g spherical patches. For a 30cn × 30cn grid, with k clauses and t cells

included for negation, g = 30cn × 30cn + t − k + 5

Lemma 3.2. If we choose alternating flat and bulbous spherical patches in every

wire, all point sets P FF , P FF ill and points P BB are on the approximating surface.

Proof. The point sets are only placed between consecutive point triplets in the

wire (variable patches are handled as wire patches) and between adjacent wire/fill

cells. The intersection of the wire patches can be of two kinds: flat/bulbous or

bulbous/flat. Consider points P FF placed on the intersection line of two adjacent

flat patches Fi and Fj. If we shrink the radius of Fj , the patch becomes more

bulbous. The intersection of the two patches moves continuously toward Fj.

If we shrink instead the radius of Fi, this patch grows more bulbous and the

intersection moves toward Fi. So the intersection of the two patches moves away

from the points P FF toward the bulbous patch. Therefore the points P FF stay

on the part of the flat patch that contributes to the surface (see Figure 3.5).

Symmetric arguments hold for P BB and for the point sets P FF ill. The fill cells

always have a flat patch, therefore the intersection of the wire patch with the fill

patch can only be either flat/flat, in this the case the points are on the surface

by construction, or flat(the fill patch)/bulbous(the wire patch). For the second

case the intersection curve of the two patches moves toward the bulbous patch

and the points P FF ill are on the part of the fill patch that contributes to the

surface.

Lemma 3.3. The minimum number of patches for a wire with l point triplets is

l. This minimum can be achieved only if each wire triplet is covered by a separate

patch and adjacent wire patches have different types, either bulbous or flat.

Proof. Point triplets neighboring a wire triplet correspond either to fill grid cells

or to the same wire, because of the embedding of the 3SAT instance on the

dispersed grid. Each wire triplet has exactly two neighboring fill cells. According

to Lemma 3.1, we need exactly one patch for every set of fill points and because

of the convexity of the point set, these patches cannot cover any point of the wire

point triplets. So a wire is a band of points, the point triplets plus the additional

points we placed, see Figure 3.9.
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(a) Three neighboring wire triplets with fill cells.

(b) The set of points in this wire part.

Figure 3.9: The points in the wire induced by three wire grid cells. All of these

points have to be on the approximating surface.

All points in a band are in convex position and we require that all of these

points lie on the surface. As shown in Lemma 3.2 we constructed the additional

point sets in such a way, that alternating flat and bulbous spherical patches in

the wire fulfil this request. To show that any other choice of patches leads to

more patches in total we make a case distinction. The essence of the minimum

patch construction lies in the alternation of the patches. Therefore we need to

look at the number of points and the length of the band we can cover with two

alternating patches and show that with no other patch construction we can cover

the same amount of points or band size with two or less patches.

Counting the number of points covered with two alternating patches:

By construction a bulbous patch covers the defining triplet Pi and additionally

the points P BB, so five points in total. Furthermore, as shown in Lemma 3.2, the

triplet adjacent two sets P FF ill are on the part of their fill patches that contributes

to the surface. A flat patch covers the defining triplet Pj and additionally the

two set of points P FF , the two sets P FF ill are on the intersection line of the

flat patch with the fill patch and contribute therefore to the surface. So the

alternating patches together cover all points in the band which are adjacent to



3.6. NP-HARDNESS PROOF 47

two neighboring wire triplets, a total of 16 points. Additionally all adjacent

sets of P FF ill contribute to the surface as required, so the complete wire band

spanning these two triplets is covered with two patches. We denote this covered

wire band by η.

Covering the points in η with two bulbous or two flat patches: A

bulbous patch defined by Pi cannot cover any additional point out of P FF because

they are by construction inside the disk Di (see Figure 3.6) and therefore inside

the bulbous patch. Two bulbous patches cover only their defining wire triplets

plus three points P BB which is not only just a total of 9 points, but also the

set of points P FF between the triplets Pi, Pj does not contribute to the surface

and at least one more patch is needed to correct this. So we need a total of 3

patches. As the points P BB are not on the same plane as the point triplets Pi, Pj,

any two flat patches covering these triplets would not cover P BB. Although two

neighboring flat patches would cover a total of 18 points, we have a point P BB

in the band between the patches that is not covered and therefore requires an

additional patch. So we need a total of three patches two cover the same length

of wire band we can cover with just two alternating patches.

Covering the points in η with a set of patches where at least one patch

is none of our constructed patches: Lets assume we could cover the same

length of wire band with two or less patches, at least one of which is not defined

by a wire triplet (Pi is left of Pj as in Figure 3.9). The points P FF between the

triplets are collinear, so any construction covering these points with a bulbous

patch could always just cover a maximum of two points out of the set of four,

and only one point of the triplet Pj. The point triplet Pj and the adjacent points

P FF lie in the same plane by construction, therefore any combination of three

non collinear points define a circle, any sphere through this circle covers only the

points on the circle but no other points on the circle plane. Therefore a patch G

could cover a maximum of 6 points if it covers also the points P BB, to cover the

same length of wire band we still need to cover two points of the Pj triplet plus

at least a part of the Pi triplet. The only patch that can cover the two remaining

points of the set P FF and the triplet Pi is the plane through the wire triplet,

therefore we need at least an additional patch to cover the remaining points of Pj.

Constructing a bulbous patch to cover the remaining points of Pi, Pj instead of

the flat patch leads always to a patch which can cover at most 4 of the remaining

7 points, which again will require at least one more patch, so a total of 3 patches

to cover the point sets and the desired length of the wire band.

Constructing the patch G by taking no point out of a wire triplet, e.g. Pi, we

can take a maximum of two points of the two Pi adjacent sets P FF and the two

points P BB. The points of the sets P FF and P FF ill are placed by construction

inside the disk Di (see Figure 3.9). Therefore we cannot cover the points of Pi
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and the at least 4 uncovered points of P FF with one flat or bulbous patch in

such a way that all points contribute to the approximating surface. So it is easy

to see that we need at least three patches to cover the wire band of Pi, Pj.

Any flat patch that is suppose not to cover a wire triplet, can cover only two

points of the 11 coplanar points (the triplet plus the two sets P FF ), and at most

one point of either an adjacent wire triplet or a point P BB . It can be easily seen

that these planar patches always lead to more patches in total as they leave to

many points uncovered.

Theorem 3.1. There exists a satisfying assignment for the grid 3SAT instance

if and only if the lifted point set with all additional points can be approximated

with g spherical patches. For a 30c1n × 30c1n grid, with k clauses and t cells

included for negation, g = 30c1n × 30c1n + t − k + 5

Proof. According to Lemma 3.1 we need exactly one patch for every set of fill

points. By Lemma 3.3 each grid cell which contributes to the wire is approxi-

mated by exactly one spherical patch. Point sets representing variables count as

wire sets, therefore each variable is covered with exactly one patch.

The point representing the clause is covered by the wire patches if and only

if at least one literal of the clause is true. If no literal is true the clause needs

an additional spherical patch. The last patch of the wire before the clause point

represents the assignment of the literal. If a literal in the clause is true the last

wire point triplet has a bulbous patch. A bulbous patch covers the clause point

because the point is on the intersection of all three bulbous patches and therefore

on the surface of each. No additional patch is needed for the clause. If no literal

is true, the clause point is not on the surface of any of the last three wire patches.

In this case at least one more patch is needed to cover the clause, corresponding

to a false assignment.

Looking at the dispersed 30c1n × 30c1n grid this gives us a total of g =

30c1n × 30c1n + t − k + 5 with k clauses and t included cells for negation and

5 cells for the upper bounding facets of the convex polytope of the lifted point

set. Only if all clauses have a truth assignment, all points representing a clause

are already covered by the spherical patches of the wire. Therefore if the 3SAT

instance has a truth assignment, we need exactly g patches to approximate the

constructed point set. By exact computation we get the following bounds: For a

SAT instance on a 30c1n×30c1n grid let P be the set of points in convex position

constructed as above with δ := 1/10, λ := 1/(10m), m :=
√

2(1 + δ)30c1n, and

the common radius of the bulbous spheres r := 10m. Let P ′ equal P with the

exception that the points on the bulbous-bulbous sphere intersections might be

displaced by ε := 1/m2. For sufficiently large m the following holds: If the SAT

instance is feasible, then there is a surface with g patches such that all points

have distance at most ε to a patch. If the SAT instance is infeasible, then for

every surface with at most g patches there is at least one point which has distance
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more than 100ε from all patches. For the values for δ, λ, m, and r we compute a

bound of 1/(1000m)−1/m2O(1) (by exact computation) on the distance between

any point p in P and any valid sphere not corresponding to p. Since the points

in P ′ are perturbed by at most ε = 1/m2 the bound still holds.
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Chapter 4

Convex Approximation by

Spherical Patches

Since finding an optimal solution to the spherical approximation is NP-hard, it

makes sense to try heuristic approaches for finding good solutions. In this chapter

we present a construction of curved surfaces based on inscribed polytopes, result-

ing in a convex surface consisting of spherical patches. The inscribed polytope

approach makes our construction suitable for various other incremental algo-

rithms, for example incremental construction of an approximating subdivision

surface. We start with an inscribed polytope consisting of a single tetrahedron,

and incrementally extend this polytope until the corresponding surface is a valid

approximation. We do not have a guarantee for the quality of the solution in

terms of the number of patches required. Nevertheless, the construction involves

some non-trivial geometric arguments, which make this algorithm interesting.

The approximating surface is generated by a convex triangulation, in partic-

ular the convex hull of a subset of the input points. The triangles of this hull are

called supertriangles. Our goal is to ‘inflate’ this polytope by replacing its faces

with curved, spherical patches that go through the vertices of each supertrian-

gle. These spherical patches are the part of the caps contributing to the surface.

Once we have fixed the polytope, the only thing that remains to decide is the

radius of each sphere.

4.1 Constructing a curved surface

In order to produce a valid surface, we require that spherical caps fulfill two

main conditions, explained in more detail later. Let a be a spherical cap that

goes through the vertices of a supertriangle ti.

1. Intersection condition: The intersection of the circumcircle of an adjacent

supertriangle tj with the outer halfspace of supertriangle ti, has to lie out-

side the spherical cap a (see Figure 4.1), i.e., the spherical cap a should

51
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pass below the circular arcs of its three neighboring triangles. This ensures

that neighboring patches intersect properly, resulting in a closed, convex

surface.

2. Pyramid condition: The supporting planes of the three adjacent supertri-

angles intersect in a pyramid above supertriangle ti. We require that the

cap does not intersect the edges of this pyramid. As we will see later, this

ensures that each supertriangle corresponds to exactly one patch of the

surface (Figure 4.2). This condition prevents quadratic complexity of the

resulting surface.

First we construct the spherical caps. The supporting plane of each supertriangle

ti splits space into an inner halfspace H+
i containing the convex hull, and an outer

halfspace H−
i (see Figure 4.3 a). For each supertriangle we construct a spherical

cap by first taking a sphere Si through its vertices with its center in the inner

halfspace. Then we take the intersection of this sphere with the outer halfspace.

Figure 4.1: Supertriangle with spherical cap.

Figure 4.2: The dark gray area is the part of the patch inside the pyramid. The

pyramid is defined by the intersection of the halfspaces of the three neighboring

supertriangles.

4.2 Determining the radius

The center of the spherical cap has to lie on a halfline perpendicular to the

supertriangle. For each neighboring supertriangle, the circumcircle and dihedral

angle give a lower bound on the radius of the spherical cap, to ensure that the

cap is flat enough to pass below that circumcircle (the intersection condition).

Taking the maximum over the three adjacent supertriangles results in a single

lower bound rmin
i for the cap radius. For technical reasons, we considere for each

sphere Si the union of the ball BSi
with its inner halfspace H+

i defined by the
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supertriangle. We define the approximating body as the intersection of these

unions : ⋂
i

(H+
i ∪ BSi

)

This defines a bounded solid. We show that the halfspaces don’t actually con-

tribute to the boundary of this solid:

Lemma 4.1. If neighboring spherical caps intersect properly, the intersection of

the union of balls with their inner halfspace forms a convex solid.

Proof. The three neighboring spherical caps of a supertriangle pass below its cir-

cumcircle, and so does the union of the corresponding balls/halfspaces. There-

fore, the three arcs of this circumcircle don’t contribute to the intersection of the

union of balls/halfspaces (see Figure 4.3). All caps are convex and have proper

intersections consisting of circular arcs. The circular arcs of the intersection are

also convex, resulting in a convex surface.

Si Sj

(H+
i ∪ Si)

⋂
(H+

j ∪ Sj)

cap

Si

H−
i

H+
i

a
b

Figure 4.3: a) The union of a ball and the inner halfspace. The darker gray part

is the spherical cap. b) The intersection of two unions of ball/halfspace.

4.3 Pyramid condition

Although this construction results in a valid spherical patch surface, we intro-

duce the pyramid condition to deal with the following potential difficulty: As

illustrated in Figure 4.4, it is possible that a cap contributes disconnected pieces

to the surface. Here, the caps a and d are the flattest of the four caps. Cap

b consists of a narrow, bulbous patch, that gets cut in two by patch d. In the

worst case, this phenomenon can result in a number of patches quadratic in the

number of facets of the inscribed polytope.

The intersection of the inner halfspaces of the three neighboring supertrian-

gles of triangle i, defines a pyramid above this supertriangle. This pyramid lies

inside the intersection of all inner halfspaces H+
j , j �= i, and therefore also inside

∩j �=iH
+
j ∪ Sj. As a result, the part of the spherical cap inside this pyramid con-

tributes to the surface. We require that this cap passes below the three edges of

this pyramid. Then, the part inside the pyramid is a single piece connected to



54 CHAPTER 4. CONVEX APPROXIMATION BY SPHERICAL PATCHES

the three vertices of the supertriangle. As a result, the cap contributes a single

connected patch to the surface. This pyramid condition can be expressed as

another lower bound on the radius of the cap.

patch d

patch c

patch b

patch a

Figure 4.4: The two outer most patches (patch a and d) cut the dark gray patch

b into two separated pieces.

4.4 Incremental construction

We now construct a curved convex surface from a subset S of the input points P .

The convex hull of S generates a surface as long as the patch radii are chosen large

enough, to ensure proper intersection (circumcircle property) and connectedness

(pyramid condition).

For an incremental approach, we initialize S to the four extremal points of the

point set P , in the directions of the normals of a regular tetrahedron. Respecting

the lower bound on the radii, we try to choose cap radii such that the caps are

closer than ε to the remaining input points. If this is not possible we add more

input points to S.

It is not sufficient to test if every input point is ε close to some cap, since it

would still be possible that they are not ε-close to the approximating surface of

these caps, in particular if adjacent supertriangles have a large dihedral angle.

We therefore require a slightly smaller distance δ for input points outside the

caps. This δ is a fraction of ε depending on the dihedral angles of the polytope,

increasing toward ε as the polytope gets refined and the dihedral angles decrease.

A supertriangle i is valid if there exists a corresponding spherical cap with

radius larger than its lower bound rmin
i , such that all points inside the outer

halfspace H−
i of the supertriangle are closer than δi = ε/cos(min {α1, α2, α3} /2)

to this spherical cap, where α1, α2, α3 are the three dihedral angles incident to a

supertriangle i.

Lemma 4.2. If all supertriangles are valid, every input point is closer than ε to

the approximating surface.

Points inside the outer halfspace of a supertriangle do not always end up

near the corresponding patch in the final surface, since adjacent patches cut
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away parts of the patch. This means that we may test too many points for ε-

closeness. For a sufficiently dense set of input points taken from a smooth convex

surface however, we expect points close to a cap to be close to the approximating

surface as well. Also, if points lie outside the circumcircle of a supertriangle, it

might not be possible to find a valid cap at all. As an alternative to testing too

many points, we could reduce the set of points we have to test for ε-closeness, by

examining the neighboring supertriangles. Again, for smooth input this is not

expected to happen.

For a sufficiently dense sample of a smooth surface we expect points ε-close

to caps to be sufficiently close to the approximating surface as well, since we

expect the approximating surface to have small dihedral angles. In this case, the

overlapping parts of adjacent caps lie close to each other. In practice testing all

points in the outer halfspace therefore shouldn’t be a problem.

Testing supertriangles for validity results in more bounds for the correspond-

ing patch radius. The center of the spherical cap has to lie on the center line of

the supertriangle, which is the line passing through the circumcenter and is per-

pendicular to that triangle. If an input point inside the corresponding halfspace

needs to be ε-close to the spherical cap, this condition gives an interval of valid

cap centers on the center line. If the intersection of all of these intervals together

with the half-line defined by the lower bound is nonempty, the supertriangle is

valid. Since the lower bound rmin
i for proper intersection of caps ensures that

the surface is convex, we expect the intersection of these intervals to lie within

that valid half-line.

First we test all supertriangles for validity. If there are invalid supertriangles,

we add an input vertex to S and update the convex hull incrementally. There

are different criteria by which the new vertex can be chosen. Note that refining

a supertriangle makes the pyramid condition for adjacent supertriangles stricter,

thus a valid supertriangle can become invalid. We test the validity for the newly

constructed supertriangles and for all neighbors of new supertriangles. This way,

we gradually refine the polytope and the approximating curved surface without

having to revalidate the entire structure.

For an invalid supertriangle we have to choose an outlying input point to add

to the polytope. We have tried combinations of different measures. The most

succesful measure is the distance to the supporting plane, similar to the Douglas-

Peucker algorithm for planar curves [31]. That is, for an invalid supertriangle we

insert the vertex furthest above the supporting plane of that supertriangle.

Lemma 4.3. The greedy algorithm terminates.

Proof. All triangles of the convex hull of P are valid supertriangles, since its

three vertices are the only vertices inside the halfspace. Choosing the radius

of the spherical cap sufficiently large, we have a proper intersection with the

neighboring caps. After adding at most all vertices of P to S we therefore have

a valid approximating surface.
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4.5 Results

We have tested the greedy algorithm on different convex point sets. We used

point samples on an ellipsoid, a paraboloid and a cylinder, with part of the

sample points perturbed (maintaining convexity) by at most a given distance

κ. Each set consists of 1000 vertices. The following table shows the number of

vertices used in the polytope for different approximation errors ε:

data set ε = 0.1 ε = 0.05 ε = 0.01

cylinder, 10% perturbed with κ = 0.05 63 125 173

cylinder1, 20% perturbed with κ = 0.08 107 127 195

ellipsoid, 10% perturbed with κ = 0.5 90 156 246

ellipsoid1, 20% perturbed with κ = 0.8 86 146 241

paraboloid, 10% perturbed with κ = 0.05 163 244 391

paraboloid1, 10% perturbed with κ = 0.05 143 257 430

paraboloid2, 20% perturbed with κ = 0.08 95 190 370

All data sets were constructed with generators which construct random points

on an ellipsoid, a paraboloid and on a cylinder. The points were perturbed by

a routine that constructs from a convex point cloud a convex polyhedron and

perturbs a user specified number of vertices of the polyhedron without disturbing

the convexity. The difference in the point sets displayed in the table above of

paraboloid and paraboloid1 is in the height h and coefficient b (z = b(x2 +y2), z ≤
h) used to generate the paraboloids. For paraboloid we used h = 3, b = 10 and

for paraboloid1 and paraboloid2 we used h = 2, b = 5. The two data sets for

cylinders use as parameters for the height h = 5 and for the radius r = 2.5. The

data sets for ellipsoids use a = 2, b = 2, c = 1, with x2/a2 + y2/b2 + z2/c2 = 1.

Figure 4.5 is an example for an output of our greedy algorithm for the ellipsoid

data set.

4.6 Conclusion and future work

As a first step towards approximation with non-planar patches we have pre-

sented an algorithm using spherical patches to approximate convex point sets.

We have shown that finding the optimal solution for this restricted case is NP

hard. Furthermore, this case revealed several difficulties related to non-planar

approximation, such as constructing a closed surface and preventing quadratic

complexity of the number of patches. These problems have been solved using a

greedy algorithm based on an inscribed polytope.

The greedy approach gives rise to various variations in how to build up the

polytope. We can choose between locally improving a single supertriangle or
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Figure 4.5: Output of the greedy algorithm for the ellipsoid data set .

finding the worst invalid supertriangle globally, experiment with different cri-

teria for picking an input point to add to the polytope, or even add multiple

input points to the polytope simultaneously. Further experiments are required

to examine the various heuristics.





Chapter 5

Approximation by Surface Balls

In this chapter we deal with recovering structural information for a 3-dimensional

object that is represented by a sample point cloud. More specifically, given an

object O in 3-space and an r-sample S of its boundary, we want to find an

approximating polytope P that uses a subset of the points in S as its vertices

and preserves the topology of O. In contrast to the previous chapter, where

point clouds in convex position are approximated by spherical patches, we now

can deal with non-convex objects. Our goal is, on the one hand, to use as few

points of S as possible and, on the other, to get a flexible approximation whose

level of detail can be tuned from coarse to fine.

The main support structure we use is an approximation of the object in ques-

tion with a union of balls. In the context of object simplification, this approach

is used for many purposes, e.g. collision detection [50], shape matching [69],

and shape interpolation [67], to name a few. Regarding surface reconstruction,

approximating objects with balls also plays a major role, see for example the

power crust algorithm [9], related work [7, 10, 11] and also [23], naming again

only a few.

In our approach, which is similar to work in [23], we build a union of so-called

surface balls, centered at the points in our r-sample S on the surface F of O,

whose radii adapt to the local feature size of F . The desired approximating

polytope P is then extracted from the weighted α-shape[35](a short explanation

of α-shapes is given in the Preface) of a carefully chosen subset of these balls. In

contrast to [23], where prior knowledge of the local feature size of F is assumed,

we obtain an estimation of this function from the data, by using distances to

poles [7] (certain vertices of the Voronoi diagram for S). Using a tailored tech-

nique of pruning the surface balls, we obtain a coarse-to-fine approximation of F
by polytopes. This is the first result that uses, from a practical point of view,

approximations of local feature size and medial axis to obtain locally adaptive

reconstructions of an unknown surface.

The polytopes we construct are topologically correct reconstructions of F .

Thus our results differ from existing multi-scale surface reconstruction techniques

59
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in [63, 23, 22, 43] where topological filtering occurs in such cases. Topological

filtering implies that small topological features of the surface are ignored in a

corase reconstruction, which only accounts for larger features. At the coarsest

level, the polytope we obtain is what we call seed polytope, as it provides not only

a coarse approximation of F but also a mapping of the non-used sample points

in S to the vertices of the polytope. Such a mapping is needed for incrementally

generating approximations of F based on interpolating subdivision surfaces or

Bézier patches. We stress that the intended purpose of the seed polytope is not

primarily in approximating F but rather in serving as a (topologically correct

and small) starting structure for subsequent approximations by patches. We thus

do not try to keep the approximation error small for the seed polytope itself, and

use this additional freedom to keep the polytope small.

Strongly related to the surface reconstruction is the medial axis approxima-

tion; we refer to [13] for a recent survey paper on medial axes and their algo-

rithmic construction. In this area, many algorithms are based on unions of balls

as well, for example [17, 41, 76]. A variant of our approach [4], now for balls

centered at poles instead on sample points, combines with an existing medial

axis algorithm for balls [11] to an efficient and stable medial axis approximation

algorithm for general objects. It is known that sufficiently dense r-samples lead

to topologically correct medial axis approximations; see [10] and, for a result

more general than for poles, [12].

Throughout this chapter, let O denote the original solid object and let F
denote its surface. The following definitions are standard.

Definition 5.1. Medial axis transform:

The medial axis transform of O is the (infinite) set of maximal balls that avoid

O, where maximality is with respect to inclusion. The set of the centers of these

balls forms the medial axis of O.

The surface F splits the medial axis in an inner medial axis and an outer

medial axis.

Definition 5.2. Local feature size:

The local feature size lfs(x) of a point x ∈ F is the minimum distance from x to

any point on the medial axis of O.

Definition 5.3. r-sample [7]:

A finite point set S ⊂ F is an r-sample of F if every point x ∈ F has at least

one point of S within distance r · lfs(x).

From now on, we will assume that S is an r-sample of F for r = 0.08. For

each sample point s ∈ S, we define two vertices of the Voronoi diagram of S as

the poles of s, see [7]: the inner pole is the vertex of the Voronoi cell of s farthest

away from s and in the interior of O, and the outer pole is the farthest one from

s and outside O. For the inner pole p of each site s we consider the ball with
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center p and radius ‖p−s‖. We refer to the set of these polar balls as the (inner)

discrete medial axis transform DMATin. Analogously, we generate a set of outer

polar balls and denote it by DMATout.

Definition 5.4. Discrete medial axis:

The discrete medial axis DMin (DMout) is the medial axis of the union of polar

balls in the sets DMATin (DMATout).

Definition 5.5. Discrete local feature size:

The discrete local feature size l̃fs(x) of a point x ∈ F is the minimum distance

from x to DMin ∪ DMout.

Definition 5.6. Pole distance:

The pole distance D̂(x) of a point x is the distance to the nearest pole.

We will see that D̂ is a good estimate of l̃fs (Corollary 5.1), as well as an

upper bound on the true local feature size (Lemma 5.5). In practice, D̂ is easier

to compute than l̃fs, and the true local feature size is not computable at all.

The weighted α-shape is the dual shape of a union of balls [35]. It is a simpli-

cial complex whose vertices are the centers of the balls, and which is homotopy-

equivalent (defined below) to the union of balls. We will refer to the weighted

α-shape of DMATin as Ain and to the one of DMATout as Aout.

Proposition 5.1. [11] Let Ain and Aout be the weighted α-shapes of DMATin,DMATout.

Then we have

DMin ∪ DMout ⊆ Ain ∪ Aout.

If we refer to topological spaces, we focus on R
d or subsets of R

d. An intro-

duction to the theory of topologycal spaces can be found in [18, Chapter 1].

Definition 5.7. Homeomorphism [36]:

A homeomorphism is a function f : X → Y between topological spaces that is

bijective, continuous and has a continuous inverse. If a homeomorphism exists

then X and Y are homeomorphic.

Definition 5.8. Homotopy [27]:

A continuous function g : X → Y is homotopic to another continuous function

h : X → Y if there is a continuous function H : X× [0, 1] → Y so that H(x, 0) =

g(x) and H(x, 1) = h(x). The continuous function H is called a homotopy

between g and h .

A homotopy equivalence is another notion of similarity among topological

spaces which is weaker than homeomorphism.

Definition 5.9. Homotopy equivalence [27]:

Two spaces f : X and Y are homotopy equivalent if there exist continuous func-

tions g : X → Y and h : Y → X so that h◦g is homotopic to the identity function

I1 : X → X and g ◦ h is homotopic to the identity function I2 : Y → Y.
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Input: r-Sampling

Compute poles and polar balls

Largest possible
surface balls

Surface balls within
some range

Pruning

Weighted Alpha Shape

Extract triangular mesh

Pointers from
facets to sample
points

Seed polytope Scalable surface recon-
struction

Figure 5.1: Work flow

5.1 Our approach

The main focus in this chapter is on two tasks: Computing a seed polytope, and

a scalable surface reconstruction, see also the flowchart in Figure 5.1.

In both cases we start with an r-sample S of the object O as input and

compute from it the two discrete medial axis transforms DMATin and DMATout.

For seed polytopes and scalable surface reconstruction we use them in order to

estimate bounds on the local feature size of the sample points.

5.1.1 The union of surface balls.

A surface ball is a ball with center at a sample point s ∈ S. For seed polytopes,

our goal is to represent the surface F of O in a topological correct way with as

few faces as possible. We try to make the surface balls as large as possible, while

guaranteeing correct topology of the the union U(BF ) of the set BF of surface

balls. A subsequent pruning step will throw away some of these balls whenever

the sample is denser than necessary. For surface reconstruction, we will output

meshes of scalable complexity. The only modification necessary to reach this

goal is to choose surface balls with smaller radii.
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α

F

Figure 5.2: A wiggly curve F with a point sample on a straight line. (Adapted

from [10].)

5.1.2 Pruning.

To decide which balls to keep, we solve a combinatorial problem. We (virtu-

ally) shrink the balls in BF and compute a minimal subset B′
F of BF such that

the shrunk balls cover the sample S. This is a set covering problem, which is

solved by a heuristic. The advantage of this approach is that the selection of the

pruned subset proceeds now in a purely combinatorial manner, without regard

to geometry and topology. The radii of the shrunk balls are chosen in such a

way that covering of S by a subset of shrunk balls guarantees that the original,

unshrunk, surface balls cover the surface F , and moreover, their union represents

the topology of F correctly.

5.1.3 The polyhedral approximation.

Finally we compute the weighted α-shape of B′
F , which has the same topology

as F and which gives the desired seed polytope. The vertices of the weighted

α-shape are points in S, because the centers of the balls in B′
F have been chosen

from S. We use the power diagram of B′
F to find out which vertex of the polytope

each sample point s ∈ S belongs to and provide a list of pointers representing

this relation. With this mechanism we provide a mapping of the non-used sample

points in S to the vertices of the polytope.

5.1.4 Obtaining the local feature size.

A distinguishing feature of our problem setting is that we cannot get a lower

estimate on the local feature size. Figure 5.2 shows a section of a curve F that

consists of alternating short circular arcs. The horizontal lines are part of the

medial axis. The points of the r-sample S are aligned vertically. By reducing

the angle α, such an example can be built for any r > 0. The algorithm sees

only these samples. Thus, to the algorithm, this input is indistinguishable from

a very densely oversampled straight line.
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5.2 Technical results

In order to generate adequate sets of polar balls and surface balls (in both cases,

the topology must be maintained), we need to derive certain information concern-

ing the local feature size of the sampled object. The present and the subsequent

section are devoted to this issue. We obtain several new properties of r-sampled

objects for suitable values of r.

Let Min and Mout denote the inner and the outer medial axis of the given

object O, respectively. We start by bounding the distance of poles to the respec-

tive parts of the medial axis—a result crucial for bounding the radii of surface

balls in Section 5.3.

Theorem 5.1. For an r-sample S, let p be an inner (resp. outer) pole of a

sample point s ∈ S, and denote with Bp the inner (outer) polar ball of s, with

radius Rp. The distance from p to Min (Mout) is at most O(r) · Rp.

In the limit, when the sampling density approaches zero, poles and the medial

axis coincide, as has already been shown by Amenta et al. [9, Theorem 35]. In

contrast to this result, we give an explicit quantitative analysis in terms of r.

Results similar to Theorem 5.1 have been shown (see e. g. [9, Lemma 34], on

which Theorem 35 is based, or [15, Proposition 16]). However, we could not use

these results, since they hold only when the angle between the two closest surface

points to a given point on Min (Mout) is not too small, (These points form the

γ-medial axis.)

Proof. The idea of the proof is to turn the polar ball Bp into a medial ball, while

not moving its center too much. The proof is based on several technical lemmas

which are given subsequently. We proceed in three steps, see Figure 5.3:

1. While keeping the center of Bp fixed we shrink the radius of Bp until the

ball becomes empty, touching the surface F of O at some point x0. By

Lemma 5.1 below, the difference Δ1 between the new radius and the original

radius Rp is at most Δ1 = O(r2) · Rp.

2. We expand the shrunken ball from the touching point x0 by moving its

center in the direction
→

x0p until either

(2a) the ball has the original radius Rp of Bp, or

(2b) the ball touches the surface at another point. If this occurs we have

found a point of Min within distance Δ1, and we are done.

3. In case (2a), we “roll” the new ball B′
p (with radius Rp) on the surface.

More precisely, let K1 be the component of Bp ∩ F which contains x0.

Consider the balls of radius Rp that are tangent to F in a point of K1 and

lie on the same side of F as p. The locus of the centers of these balls is
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p

F

K1

Bp

O(r2)

B′
p

p′ ∈ F
mx ∈ F

Rp Rp

Rp

my ∈ F

x0

Figure 5.3: After shrinking and expanding the ball Bp we roll the new ball B′
p

on K1 (e.g. the gray ball).

the inner parallel surface F̄ of K1. We claim that the rolling ball touches

another point of F , and therefore F̄ contains a point of Min.

We prove this by contradiction. Let us suppose that the ball can roll on

K1 without ever touching a second point of F . K1 cuts Bp into two parts:

B+ containing p, and the rest B−. By Lemma 5.4 below, B+ is completely

covered by the tangent balls of K1. Since by assumption these balls never

hit another point of F , it follows that K1 is the only component of F ∩Bp.

Let s ∈ Bp be the sample point whose pole is p. This point must lie on

K1 and therefore we can roll the empty tangent ball of radius Rp to s.

The radius RM of the medial ball at s is therefore at least Rp. On the

other hand, each point of the medial axis is contained in the Voronoi cell

of the nearest sample point, therefore ‖p − s‖ = Rp ≥ RM . This implies

Rp = RM and the tangent ball at s has its center on Min, and we are done.

We remark that this last case can actually never arise, since Rp > RM

unless the medial axis branches and the ball touches F in several points.

We have established that F̄ contains a point mx of Min which is the center

of a medial ball with radius Rp touching K1 in x. We know by Lemma 5.3a

that the angle γ = ∠mxxp is at most 3r + O(r). Thus, ‖p − mx‖ ≤
Rp · (3r + O(r2)).

In the following, we will assume that p is an inner pole. (The situation is

symmetric for outer poles.)

Lemma 5.1. Let p be a pole with polar radius Rp. The surface F cannot get
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Figure 5.4: Deepest penetration into Bp

closer to p than

Rp

(√
1 − 4(r2 − r4

4
) − r2

)
≥ Rp

(
1 − 3r2 − O(r4)

)
.

For an r-sample with r = 0.08 the distance between the center p of a polar ball

with radius Rp and F is larger than 0.9807 · Rp.

Proof. Let x be the point on F closest to p. Let BT be an empty outer ball

tangent to x with center c and radius l = lfs(x). By the sampling condition,

there must be a sample t within distance rl of x. t lies outside the balls Bp and

BT and therefore the distance from x to the circle ∂Bp ∩ ∂BT is at most r · l

(see Figure 5.4). Thus, the angle α = ∠cpt is bounded by sin α
2
≤ r

2
. For fixed

l and Rp, the point x is closest to p when α is maximized. We thus analyze the

situation for sin α
2

= r
2
:

sin α = 2 sin
α

2
cos

α

2
≤ 2 · r

2

√
1 − r2

4
=

√
r2 − r4

4

‖v − p‖ =
√

R2
p − (l · sin α)2 =

√
R2

p − l2 · (r2 − r4

4
)

‖v − x‖ =
√

(l · r)2 − (l · sin α)2 =√
(l · r)2 − l2 · (r2 − r4

4
) =

l · r2

2

‖x − p‖ ≥ ‖v − p‖ − ‖v − x‖
√

R2
p − l2 · (r2 − r4

4
) − l · r2

2

The inner polar ball Bp contains a point of Min ([9, Corollary 13]), therefore

l ≤ 2Rp. It follows that the distance between p and F is at least

√
R2

p − 4 · R2
p · (r2 − r4

4
) − Rp · r2 =

Rp ·
(√

1 − 4 · (r2 − r4

4
) − r2

)
,

as claimed in the lemma.
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Figure 5.5: The tangent balls of K1 cover B+

Lemma 5.2. Let Bp denote a polar ball with center p. For r < 0.25, the normal

at a surface point x ∈ Bp is never perpendicular to the ray −→px.

Proof. By contradiction: We assume that lfs(x) = l. The points m1, m2 are

centers of two tangent balls in x of radius l, both balls are empty, one is located

inside F and the other one is outside. The surface must cross the path m1pm2

at least once. Assume it crosses m1p in some point y. Then the following holds

(see Figure 5.6):

Rp−‖p − m1‖ + ‖m1 − y‖ = Rp − ‖y − p‖
= dist(y, boundary of Bp)

≤ dist(y, closest sample) ≤ r · lfs(y)

≤ r(l + ‖x − y‖) ≤ r(l + ‖x − m1‖ + ‖m1 − y‖)
= r(2l + ‖m1 − y‖).

Therefore,

‖p − m1‖ − Rp ≥ ‖m1 − y‖ (1 − r) − 2rl

≥ l(1 − r) − 2rl ≥ l(1 − 3r)

and also (according to Lemma 5.1)

‖p − m1‖ − l ≥ ‖p − y‖ ≥ Rp

(√
1 − 4(r2 − r4

4
) − r2

)
.

If ∠pxm1 is a right angle, then ‖p − m1‖2 = ‖p − x‖2 + l2 ≤ R2
p + l2. We have

l > 0, Rp > 0, ‖p − m1‖ > 0, so

‖p − m1‖2 ≥ (l(1 − 3r) + Rp)
2 therefore we get (l(1 − 3r) + Rp)

2 = R2
p + l2. For

l < 2Rp and r ≤ 0.25 this leads to a contradiction.
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Figure 5.6: An absurd situation; the normal in x is perpendicular to the ray px.

The points m1 and m2 can lie inside Bp (as in the picture) or outside.
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Figure 5.7: Bounding the angle γ. Intersection of the polar ball Bp and the

empty tangent ball BT .

Lemma 5.3. Let x be a surface point x inside a polar ball Bp with center p.

a) The angle γ between −→xp and the surface normal at x is bounded by 3r +

O(r2) = O(r).

b) (The penetration bound) The distance from x to the boundary of Bp is is

bounded by 3
2
lfs(x)(r2 + O(r3)).

Part b of the lemma is similar to Lemma 5.1, except that the penetration of

the surface point x into the pole ball Bp is measured in terms of lfs(x), and not

in terms of the radius of Bp.

Proof. Since the two parts have the same assumption, we start with calculations

which are common to both claims. Consider the empty tangent ball BT at x

of radius lx = lfs(x) on the opposite side of p and let m denote its center, see

Figure 5.7. For any surface point z inside Bp the ray −→pz intersects the surface
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transversely and never tangentially by Lemma 5.2, therefore the surface patch

around x must pass between p and BT and cannot fold back. In particular, it

must intersect the segment mp at some point y. The distance from y to the

closest sample point s is ‖y − s‖ ≥ ‖y − x0‖, where x0 is the closest point of the

circle Bp ∩ BT . By the sampling condition we know

‖y − x0‖ ≤ ‖y − s‖ ≤ r · lfs(y)

and using the Lipschitz condition we get

r · lfs(y) ≤ r · (lfs(x) + ‖x − y‖) ≤ r · (lfs(x) + ‖y − x0‖)

Thus

‖y − x0‖ ≤ r

1 − r
lx

The intersection point y = mp ∩ F for which ‖y − x0‖ is smallest is y0 with

‖y0 − m‖ = lx,

‖y0 − x0‖ ≤ ‖y − x0‖ ≤ r

1 − r
lx.

We get for the angle α = ∠pmx0:

α = ∠pmx0 = 2 arcsin
‖y0 − x0‖ /2

lx
≤ 2 arcsin

r/2

1 − r
.

We now continue with the proof of part (a). A similar assertion [9, Lemma 17]

says that the angle at which BT and Bp intersect is at most 2 arcsin(2r), which

is less than π
2

for r < 0.35. Therefore, if x varies on the tangent sphere BT ,

the largest possible γ (within Bp) is achieved when x is on x0. From now on we

assume x = x0 (see Figure 5.8). We have

γ = α + β. sin β =
lx sin α

Rp
≤ 2 sinα

because lx ≤ 2Rp according to [9, Corollary 13], so

β ≤ arcsin(2 sinα)

β + α ≤ 3r + 3r2 + 33
8
r3 + 51

8
r4 + O(r5) = 3r + O(r2)

γ ≤ 3r + O(r2) = O(r),

as claimed in the lemma.

(b) The distance d from x to Bp is no more than the distance of y0 to Bp.
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Figure 5.8: Bounding the angle γ.

We can therefore use Figure 5.8:

d = Rp(1 − cos β) + lx(1 − cos α)

= Rp(1 −
√

1 − sin2 β) + lx(1 −
√

1 − sin2 α)

= Rp(1 −
√

1 − sin2 α · l2x/R2
p) + lx(1 −

√
1 − sin2 α)

= 1
2
· [Rp(sin

2 α · l2x/R2
p + O(α4)) + lx(sin

2 α + O(α4))]

= 1
2
· [(sin2 α · lx(lx/Rp) + O(α4)) + lx(sin

2 α + O(α4))]

≤ 1
2
· [(sin2 α · 2lx + O(α4)) + lx(sin

2 α + O(α4))]

= lx · (3
2
r2 + 3r3 + O(r4)).

To complete the proof of Theorem 5.1, we still need to show that the tangent

balls of K1 cover all parts of B+. Recall that K1 cuts Bp in two parts: B+

containing p, and the rest B−.

Lemma 5.4. The tangent balls of K1 completely cover B+.

Proof. Let w ∈ B+ and let x be the closest point of K1. We claim that the

tangent ball at x covers w. If x lies in the interior of K1, then wx is perpendicular

to F , and the claim is obvious. Let us assume that x is at the boundary of K1,

that is Bp ∩ F (see Figure 5.5). Assume that the surface normal nx does not

go through p; otherwise it is obvious that w is covered. Consider the plane σ

through nx and through the point p. Figure 5.5 shows the projection on this

plane. Locally around x, F is approximated by the tangent plane T and Bp ∩F
is the halfspace of T that projects onto the ray xy in Figure 5.5. It follows that

x can only be the point of K1 closest to w, if w lies in the plane σ and in the

closed halfplane σ+ of σ which is bounded by nx and does not contain p.
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5.3 Construction of balls

5.3.1 Polar balls

For the set DMATin of inner polar balls, it is well known [10] that the union

of the balls in this set is homeomorphic to the original object O. Recall that

each ball in DMATin is the circumball of a Delaunay tetrahedron and therefore

has at least four points of S on its boundary and no such point in its interior.

From DMATin we generate a set DMAT′
in of slightly enlarged balls which are still

centered on S. Such a ball typically covers tens or even hundreds of points of S.

In a subsequent set covering step, this redundancy in covering will be eliminated,

and thereby only a small and stable subset of DMAT′
in will be kept. We have to

ensure, for the goal of topologically correct medial axis approximation, that the

union of DMATin and the union of DMAT′
in are topologically equivalent. Using

the lower bound on the discrete local feature size of sample points developed in

Lemma 5.8 below, it is easy to check whether DMAT′
in ∩ Aout = ∅.

5.3.2 Surface balls

In order to maintain correct topology of the piecewise linear surface reconstruc-

tion, the surface balls we generate have to be large enough such that their union

does not only cover S but also F and, on the other hand, these balls avoid the

medial axis of the union of the balls in DMATin and DMATout. The above re-

strictions limit the possible radii to a certain range. Maximizing the radii within

this range will lead to a coarse result (which is desirable for seed polytopes),

while minimizing the radii of the surface balls will lead to a faithful and detailed

representation of the object. The choice of the radii determines the degree by

which the surface balls are pruned in a subsequent set covering step.

Lower bound on the radii

To ensure that F is completely covered by surface balls we choose the radii of the

surface balls such that they cover at least the intersection of their site’s Voronoi

cells with F . For a point s in an r-sample, this intersection is covered by a sphere

around s whose radius is ρ ≥ r
1−r

· lfs(s), see [7], and so the surface balls need to

have at least that radius. As lfs(s) is unknown, we need to estimate it in terms

of the distance D̂(s) between s and the nearest among the poles of all sample

points. Using Lemma 5.5 below, we get

lfs(s) ≤ 1.2802 · D̂(s)

and so we must choose the radius ρ of a surface ball around s to be at least

ρ ≥ r
1−r

· 1.2802 · D̂(s).
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Figure 5.9: Distance from pole p to the medial axis point mx

The distance D̂(s) can be calculated relatively easily using a spatial search struc-

ture.

Lemma 5.5. Let s ∈ S be a point of an r-sample S with r ≤ 0.08, and let

D̂(s) = ‖s − p‖ denote its distance to the nearest pole p. Then

lfs(s) ≤ 1.2802 · D̂(s).

Proof. The local feature size of s cannot be larger than D̂(s) plus the distance

from p to the medial axis. To bound the latter distance for a specific value of r, we

revisit the cases developed in Theorem 5.1 (and we use the notation introduced

there). If case (2a) occurs we know that F̄ contains a point mx ∈ Min (Mout);

see Figure 5.9. By Lemma 5.3a, the maximum angle between the touching point

x ∈ K1 of the medial ball centered at mx and p is γ = ∠mxxp < 14.99◦ if

r ≤ 0.08. By Lemma 5.1,

d = ‖x − p‖ ≥
(√

1 − 4(r2 − r4

4
) − r2

)
· Rp > 0.9807 · Rp.

Therefore

‖p − mx‖ ≤ 2 · Rp · sin(
γ

2
) + (1 − 0.9807)Rp < 0.2802 · Rp

which is at most 0.2802 · D̂(s) because s lies outside the polar ball centered at p.

Otherwise, case (2b) occurs and by Lemma 5.1, p is not farther from Min (Mout)

than

Rp · (1 −
√

1 − 4 · (r2 − r4

4
) + r2) < 0.0193 · Rp.

The lemma follows.

Upper bound on the radii

To prevent surface balls from ”different” parts of F from intersecting we want

to ensure that they don’t reach the discrete medial axis DMin (resp. DMout).
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v
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Figure 5.10: A point v that is not covered by the polar ball must lie close to the

surface.

Thus, the discrete local feature size l̃fs(s) is an upper bound on the radius that

we can use. We will replace l̃fs(s) by a smaller value, that is easier to compute,

see Proposition 5.1.

Consequently, the minimum distance from s to any of the two weighted α-

shapes is a lower bound on l̃fs(s). Computing Ain and Aout and determining the

minimum distance directly would consume too much time and memory, however.

We show how to estimate this distance, again using the distance D̂(s) to the

nearest pole to s.

Lemma 5.6. Let s be a sample point, and let v be a point with the following

properties

• v lies in the Voronoi cell of s.

• v is not in the interior of the polar ball around the pole p of s that lies on

the same side of F as v.

Then

(a) ‖v − s‖ = O(r) · lfs(s). In particular, for r = 0.08, the distance to s is at

most 0.123 · lfs(s).
(b) The distance from v to the closest point v̄ on the surface is O(r2 lfs(s)) =

O(r2 lfs(v̄)). For r = 0.08, the distance ‖v − v̄‖ is at most 0.0355 · lfs(s) ≤
0.0424 · lfs(v̄).

Proof. (of Lemma 5.6)

We perform the calculation for r = 0.08, and only indicate the asymptotic

dependence on r. We will first show part (a).

‖v − s‖ ≤ 0.123 · lfs(s) = O(r lfs(s)).
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Figure 5.11: Schematic figure of an intersection of two polar balls such that their

intersection point v is not covered by the union of polar balls.

Let p be the pole of s on the same side of the surface as v. If ‖v−s‖ > kr·lfs(s)
for k = 1.536, the angle between sv and the surface normal is at most

arcsin
1

k(1 − r)
+ arcsin

r

1 − r
< 47.2◦,

see [7, Lemma 4]. Similarly, the angle between the normal and sp is at most

2 arcsin r
1−r

< 12.8◦. In total the angle vsp is less than 60◦. Since ‖v − s‖ ≤
‖p − s‖, by the definition of the pole, it follows that v must be contained in the

polar ball around p, whose radius is ‖p − s‖, a contradiction. We thus conclude

that v is contained in a ball of radius

kr · lfs(s) ≤ 0.123 · lfs(s) (= O(r lfs(s)))

around s. Since v avoids the polar ball Bp around p, it lies in the shaded region

indicated in Figure 5.10. The direction sp of the polar ball deviates at most

2 arcsin r
1−r

< 12.8◦ (= O(r)) from the normal direction n at s. Thus the “high-

est” possible position of v is as indicated in the figure. We know that the surface

must pass above the opposite medial ball Pm of s, and thus we can estimate the

distance from v to the surface and prove (b). A straightforward calculation gives

the bound ‖v − v̄‖ ≤ 0.0355 lfs(s) (= O(r2 lfs(s))). By the Lipschitz condition,

0.0355 lfs(s) ≤ 0.0355
1−0.123−0.0355

lfs(v̄) ≤ 0.0424 · lfs(v̄)

is obtained.

Lemma 5.7. Let pq be an edge of the weighted α-shape Ain (Aout). Then the

exterior angle of intersection between the polar balls Bq, Bp around p and q is at

least 120◦.
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Proof. Since pq is an edge of the weighted α-shape, there is a point v on the

intersection of the boundaries of the two polar balls Bp and Bq which is not

covered by any other polar ball, see Figure 5.11. Therefore, the neighborhood of

v contains points outside all polar balls and, by Lemma 5.6.

v is close to F : For the closest surface point v̄ we have

d = ‖v − v̄‖ ≤ 0.0424 · lfs(v̄).

Without loss of generality, we assume lfs(v̄) = 1. Consider the medial ball B of

v̄ on the opposite site, with center m and radius ‖v̄ − m‖ ≤ lfs(v̄) = 1. By [9,

Lemma 17], a polar ball Bp or Bq intersects a medial ball D on the opposite site

at angle β ≤ 2 arcsin 2r. Let us focus on one ball Bp and the angle φp between

this ball and the surface normal vm. The other ball is treated in the same way,

and the total exterior angle is then φp + φq.

We have φp = γ − π, where γ = ∠pvm. To get an upper bound on φp (or

on γ), let us fix the angle γ and try to find circles Bp and D that are consistent

with this situation. We have the following constraints:

(i) 1 = lfs(v̄) ≥ ‖v̄ − m‖;

(ii) d := ‖v − v̄‖ ≤ 0.0424 · lfs(v̄) ≤ 0.0424;

(iii) The intersection angle between Bp and D is β ≤ 2 arcsin 2r.

This gives us a distance ‖c − v‖ = 1 + d, using the triangle inequality we get

‖q − v‖ = 1− d. For the triangle qcv only the segment qc is of unknown length.

We consider also a second triangle, formed by the points q, c and one intersection

point i of the medial ball with the polar ball Bq. Again only the distance of the

segment qc is unknown. From the triangles we get the following equations:

cos β = 1+(1−d)2−‖c−q‖2
2(1−d)

, cos γ = (1+d)2+(1−d)2−‖c−v‖2

2(1−d)(1+d)
,

for β = ∠cvq = π − β = π − 2 arcsin 2r, γ = ∠qic, d = 0.0355. Solving these

equations for γ gives an angle ϕ = 2 · (γ − π/2) > 120◦.

Based on the preceding lemmas, it is possible to derive the following bound

on l̃fs(s).

Lemma 5.8. If m is a point on an edge pq of DMATin (or in a triangle pqr of

DMATin) and v is outside or on the boundary of U(DMATin) then

‖m − v‖ ≥ 0.817 · min{‖p − v‖, ‖q − v‖},

(or ‖m − v‖ ≥ 0.817 · min{‖p − v‖, ‖q − v‖, ‖r − v‖}, respectively).
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Figure 5.12: The distance from the sample point s to the weighted α-shape

Proof. We first consider the case when m lies on an edge pq,as illustrated in

Figure 5.12. Let m′ be the point on pq that is closest to v. If m′ is one of the

endpoints p or q, we are done:

‖m − v‖ ≥ ‖m′ − v‖ = min{‖p − v‖, ‖q − v‖}.
Otherwise we know that m′−v is perpendicular to pq. We know from Lemma 5.7

that the intersection of the two polar balls Bp and Bq cannot be too thin: their

angle of intersection is at least 120◦. For fixed balls Bp and Bq, the angles and

hence the ratios are minimized when s lies on the intersection between the balls

(the point v0 in the figure).

Now keeping v0 fixed at the intersection and considering a variation of the

balls Bp and Bq, maintaining min{‖v − p‖, ‖v − q‖}, it is clear that the distance

from v to the edge pq is minimized when the angle ∠pvq is at its upper bound

of 60◦ and the two distances are equal: ‖v − p‖ = ‖v − q‖. Then the ratio

‖v − v‖/‖v − p‖ = cos 30◦ > 0.866.

Now consider the case when m lies in a triangle pqr. If the point m′ on pqr

that is closest to v lies on an edge or at a vertex of the triangle, we have reduced

the problem to the previous case. Otherwise we know that m′−v is perpendicular

to pqr. The remaining argument is similar as in the case of an edge: The extreme

situation is a triangular pyramid with equal angles ∠pvq = ∠qvr = ∠rvp = 60◦

at the apex m and equal sides ‖p−v‖ = ‖q−v‖ = ‖r−v‖. The ratio between the

height of this pyramid and the length ‖p− v‖ is
√

(1 + 2 cos 60◦)/3 > 0.817.

Corollary 5.1. Let s ∈ S be a sample point, and let D̂(s) be its distance to the

nearest pole. Then

D̂(s) ≥ l̃fs(s) ≥ 0.817 · D̂(s).

Proof. Since the poles are part of the discrete medial axis, the inequality l̃fs(s) ≤
D(s) is obvious. For the other direction, we bound l̃fs by the distance from v

to the weighted α-shape A of the polar balls, which contains the discrete medial

axis. The proof of the lower bound on the ratio

l̃fs(v)

D
=

‖v − m‖
D

≥ max

{‖v − m‖
‖v − p‖ ,

‖v − m‖
‖v − q‖

}
,

follows from Lemma 5.8.
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v

m

v′

m′

Figure 5.13: Part of the fibration which is used to show isotopy. The shaded

area is the weighted α-shape.

5.3.3 Topological Correctness

To show that the union U(BF ) of surface balls is homotopy-equivalent to the

surface F , we follow the standard approach of using a fibration (a partition of

U(BF ) into a continuous family of curves, each intersecting F in a single point)

and moving the boundaries of U(BF ) along the fibers towards F .

The usual fibration by surface normals does not work since the medial axis

might be closer than it appears from looking at the sample points, see Figure 5.2.

Instead we use the fibers of the union U(DMATin) of all polar balls. It is known

that this union is homotopy-equivalent to O, and its boundary is homotopy-

equivalent to F [10].

The boundary of the union U(DMATin) is not smooth, but still, it is in a

certain sense “smooth from the inside” (it has no convex edges or vertices) and

has therefore a reasonable fibration connecting the boundary to its inner medial

axis DMATin, see Figure 5.13. We concentrate on the inner discrete medial axis

DMATin; the outer discrete medial axis DMATout is treated analogously. The

fibers are line segments that partition U(DMATin) \DMin, and they run from a

surface point v on the boundary to a point m on the inner discrete medial axis

DMin. In three dimensions, there are three types of fibers: from a point v on a

spherical patch of the boundary to a vertex m of the medial axis; from a point

v on a circular edge formed as the intersection of two spheres to a point m on

an edge of the medial axis; and from a vertex v of the boundary, formed as the

intersection of three (or more) spheres to a point m on a face of the medial axis.

Our proof treats all three cases uniformly.

We take the radius of the surface balls as ρD̂(s) where the factor ρ can be

chosen in the interval

ρmin = 0.24 ≤ ρ ≤ ρmax = 0.56. (5.1)

The upper bound ensures that the surface balls do not intersect the discrete

medial axis, and the lower bound ensures that they are large enough to cover

the surface completely. The bounds are stricter that would be required to reach
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Figure 5.14: A ball Bs that intersects the fiber vm improperly

only these two goals, since we also want to ensure topological correctness of the

union U(BF ) of surface balls:

Lemma 5.9. If ρ is chosen in the interval (5.1), every fiber from a point v on

the boundary of U(DMATin) to a point m on the medial axis of U(DMATin)

starts in the union U(BF ) of surface balls and intersects the boundary of U(BF )

precisely once.

The lemma implies that the boundary of U(BF ) can be continuously deformed

along the fibers into the boundary of U(DMATin), and thus the two boundaries

are homotopy-equivalent. The boundary of U(DMATin) is already known to be

homotopy-equivalent to F , and thus, the correct topology is established.

Proof. For simplicity we prove the bound for ρ = 0.3. The calculation for general

ρ is slightly more involved.

Let Bs be a surface ball around a sample point s such that the segment vm

enters Bs in a point x, see Figure 5.14a. We will show that this does not lead to a

violation of the lemma, because the segment vx is covered by the union of surface

balls. We assume without loss of generality that vm is vertical and ‖m−v‖ = 1.

We first show that x must have distance ‖x − v‖ ≤ k1 for k1 = 0.074.

Suppose that this is not true. The medial ball of radius 1 around m is inside

the union of balls, and hence it does not contain s: ‖s−m‖ ≥ 1. We claim that

this implies

‖s − x‖ > 0.37 · ‖s − m‖. (5.2)

We know that s must lie outside the ball of radius 1 around m; s must also lie

above the horizontal line through x. Thus, s is restricted to the shaded area in

the figure. The ratio ‖s− x‖/‖s−m‖ is minimized when x is as low as possible

(‖x − v‖ = k1) and s is at the lower right corner s0 of this area. Here we have

‖s − x‖2 + (1 − k1)
2 = 1, from which one can compute ‖s − x‖/‖s − m‖ =

‖s − x‖ > 0.37.

On the other hand, since m ∈ DMATin ⊆ Ain, we have by definition ‖s−m‖ ≥
l̃fs(s) ≥ 0.817D̂(s), by Lemma 5.8. Thus, the radius rs of Bs is rs = ‖s − x‖ ≤
ρD̂(s) ≤ ρ/0.817 · ‖s − m‖ < 0.368 · ‖s − m‖, contradicting (5.2).
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Figure 5.15: A ball Bs that intersects the fiber vm improperly, v lies either inside

F (a) or outside F (b)

Let us denote the extreme positions of s and x in the above analysis by s0

and x0.We have established that x and s lie below horizontal line s0x0, see see

Figure 5.14b. For an arbitrary x and s we now claim

‖s − x‖
‖x − v‖ ≥ ‖s0 − x0‖

‖x0 − v‖ ≥ 5. (5.3)

We know that s must always lie higher than x, For a fixed point x, we can rotate

s around x until it lies at the same height as x, without changing the above

ratio, So we can assume that s and x lie at the same height, with ‖x − v‖ ≤ k1.

The sample s cannot lie in the polar ball around m, and in particular, s must lie

below the dotted line segment. The claim (5.3) follows.

Now to complete the proof we will show that the segment vx is covered by a

surface ball, namely by the ball around the surface sample t closest to v. We are

done if we can show that the radius rt of this ball is at least ‖t − v‖ + ‖v − x‖:
rt = ρD̂(t) ≥ ‖t − v‖ + ‖v − x‖ (5.4)

This implies that rt ≥ ‖t− v‖ and rt ≥ ‖t− x‖ (by the triangle inequality), and

thus ensures that the whole segment vx is covered. It establishes also that the

starting point v of the fiber is covered, irrespective of whether another ball Bs

intersects vm “in an improper way”.

First we show that there is a sample point t with

‖t − v‖ ≤ 0.123 · lfs(t) (5.5)

We distinguish two cases:

(a) v lies inside F (on the same side as m), see Figure 5.15(a). Let t be the

sample point closest to v. The point v satisfies the assumptions of Lemma 5.6

with respect to t: By definition, v lies in the Voronoi cell of t. Moreover, v lies

in none of the polar balls around the vertices of DMATin. Thus, by Lemma 5.6a,

‖t − v‖ ≤ 0.123 · lfs(t).
(b) v lies outside F , see Figure 5.15(b). By Lemma 5.8, there is a pole p in

DMATin such that

‖p − v‖ ≤ 1

0.817
· ‖m − v‖ ≤ 1.224 · ‖m − v‖
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The segment vp must intersect F in some point v̄. Lemma 5.3b limits the

penetration of the surface point v̄ into the ball Bp:

‖v̄ − v‖ ≤ (3/2 · r2 + O(r3)) · lfs(v̄).

In particular, for r = 0.08,

‖v̄ − v‖ ≤ 0.0114 · lfs(v̄).

The nearest sample point t from v̄ is less than r · lfs(t) away:

‖v̄ − t‖ ≤ r · lfs(t)

The Lipschitz condition yields

lfs(v̄) ≤ lfs(t) + ‖v̄ − t‖ ≤ (1 + r) · lfs(t).

Therefore we get:

‖t − v‖ ≤ ‖v − v̄‖ + ‖v̄ − t‖
≤ 0.0114 · lfs(v̄) + r · lfs(t)
≤ 0.0114 · (1 + r) lfs(t) + r · lfs(t)
≤ 0.093 lfs(t) ≤ 0.123 lfs(t)

proving (5.5).

We have, by Lipschitz continuity, and using (5.3),

D̂(t) ≥ D̂(s) − ‖s − x‖ − ‖x − v‖ − ‖v − t‖
≥ ‖s − x‖/ρ − ‖s − x‖ − ‖x − v‖ − ‖v − t‖
= ‖s − x‖(1/ρ − 1) − ‖x − v‖ − ‖v − t‖
≥ 5(1/ρ − 1)‖x − v‖ − ‖x − v‖ − ‖v − t‖
= [5(1/ρ − 1) − 1] · ‖x − v‖ − ‖v − t‖
> 10.6 · ‖x − v‖ − ‖v − t‖ (5.6)

By (5.5) and Lemma 5.5, we have ‖v− t‖ ≤ 0.123 · lfs(t) ≤ 0.123 · 1.2802 · D̂(t) <

0.1575D̂(t) and hence

D̂(t) > 6.3 · ‖v − t‖ (5.7)

Multiplying (5.6) by 0.095, (5.7) by 0.175, and adding them together yields

0.27D̂(t) ≥ ‖x − v‖ + ‖v − t‖, (5.8)

implying (5.4).
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5.4 Pruning by set covering

If we have a sample that is much denser than required by our conditions, we

will get a correct “surface reconstruction”, but we would like to obtain a coarser

approximation to reduce the data, while maintaining topological correctness. We

will therefore only use a subset of the surface balls.

We establish a condition that is easy to check and guarantees the correct

topology: As before, we use balls of radius ρD̂(u) around surface points u; for

each ball we also consider a shrunk copy of radius ρ̄D̂(u), where ρ̄ = 0.03 < ρ.

We can then prove the following statement.

Theorem 5.2. If the shrunk balls around the points u of a subset S ′ ⊆ S cover

all sample points S, then the union of the original balls (of radius ρD̂(u)) around

these points is homotopy-equivalent to F .

Proof. The proof proceeds via the statement of Lemma 5.9. In that proof, we

have established the existence of a sample point t that is close enough to v such

that the ball around t covers the segment vx. This is extended to the present

setting as follows: we can now no longer be sure that the ball around t is used,

but there must be a (shrunk) ball around some sample point u that covers t.

Then the (original) ball around u is large enough to guarantee that it reaches

vx.

We know, by the pruning condition, that the covering contains a ball of

radius ρD̂(u) around a sample point u such that the shrunk ball with radius

ρ̄D̂(u) covers t:

‖u − t‖ ≤ ρ̄D̂(u)

From this, together with the above bound (5.8) on ‖t − x‖, we obtain

‖u − x‖ ≤ ‖u − t‖ + ‖t − x‖ ≤ ρ̄D̂(u) + (ρ − ρ̄)D̂(u) = ρD̂(u),

and thus the ball Bu covers x.

The same calculation shows that Bu covers v, and hence the whole segment

vx.

We try to select a minimum subset of surface balls whose shrunk copies cover

the whole sample. This is an instance of the (in general NP-hard) set covering

problem.

In practice, these problems can nevertheless be solved efficiently.

In [5] and [4]

a combination of exact and heuristic methods is described which yields not

only an approximate solution but also a lower bound on the optimal solution,

and in our setting the gap between them is typically quite small.
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Figure 5.16: The segment vm is covered by the enlarged ball around u.

To get the input data for the set covering problem, the information about

the sample points covered by each ball, we use a simple spatial search structure,

e.g. a kd-tree.

The lemma remains true if the shrinking factor 0.03 is replaced by a smaller

number. This parameter allows us to scale the algorithm to different levels of

coarseness or refinement of the approximation. If the shrinking factor approaches

0, each shrunk ball will contain no sample points except its center, and thus the

full sample will be used.

The small radius 0.03 · D̂ that we have proved may not seem very impressive,

but it must be seen in relation with the sampling constant r = 0.08. Thus, balls

will start to be eliminated as soon at the actual sampling density exceeds the

required minimum by a factor of about 4–5 (in terms of the sampling radius).

The same approach works for approximating the medial axis. Here we start

with an enlarged set of polar balls DMAT′
in, and produce an (almost) minimum

subset DMAT′′
in whose union covers S.

5.5 Experimental data

The example included shows the output produced by Bernhard Kornberger’s

implementation of our algorithm for surface reconstruction.

Figure 5.17 illustrates how different choices of radii for surface balls lead

to different levels of detail in the approximating polyhedral surface mesh. The

initial point cloud for this ‘double torus’ model consists of 85237 points. Due

to the effect of pruning, the mesh for the big ring is more and more coarsened,

whereas the necessary details are preserved for the small ring. The running times

for these computations (for a single threaded application on a Core2 Duo E6700

CPU) are shown in Table 5.1. Filtered floating point arithmetic has been used.

The observed runtimes are practical for moderately large data sets, but natu-

rally cannot compete with mesh reconstruction methods that do not come with a

topological guarantee (see e.g. [53]) or with medial axis algorithms which are not
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(a) Without pruning: 85237
balls

(b) Transparent (c) Mesh on top of 85237
vertices

(d) After moderate pruning:
4198 balls

(e) Transparent (f) Mesh on top of 4198 ver-
tices

(g) After heavy pruning:
549 balls

(h) Transparent (i) Mesh on top of 549 ver-
tices

Figure 5.17: Double torus reconstruction
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Figure 5.17abc 5.17def 5.17ghi

Surface balls 55s 55s 55s

Pruning - 35s 159s

# Remaining balls 85237 4198 549

Weighted α-shape 217s 7s 1s

Table 5.1: Runtimes for the double torus model in Figure 5.17

scalable [72]. Still, our approach compares well with mesh reconstruction meth-

ods with guarantee; see e.g. [28]. The strength of our method lies in combining

topological correctness with scalability.
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Zusammenfassung

Die Approximation eines geometrischen Objektes hat zum Ziel, ein komplexes

Objekt durch ein vereinfachtes zu ersetzen, ohne die Charakteristika des ur-

sprünglichen Objektes zu verlieren. In der Dissertation werden Approximations-

algorithmen für polygonale Kurven im 2-dimensionalen Raum und für Flächen im

3-dimensionalen Raum vorgestellt. Im ersten Teil behandeln wir die Approxima-

tion von polygonalen Kurven. Die Approximation einer polygonalen Kurve kann

durch eine ebenfalls polygonale, aber nun einfachere, Kurve (eine Kurve mit weni-

ger Segmenten), oder durch eine Kurve höherer Ordnung erfolgen. Man verbindet

typischer Weise zwei Optimierungsprobleme mit der Approximation von polygo-

nalen Kurven. Man möchte entweder die Anzahl der verwendeten Teilstücke der

approximierenden Kurve zu einer gegebenen Fehlertoleranz minimieren oder man

versucht den Approximationsfehler der approximierenden Kurve zu minimieren,

hierbei wird die Anzahl der zu verwendeten Teilstücke vorgegeben. Während

zahlreiche Algorithmen in der Literatur bekannt sind, die diese Optimierungs-

probleme für die Approximation mit polygonalen Kurven lösen, so stellen sich

die gleichen Fragen auch für die Approximation mit Kurven höheren Grades. Wir

stellen in dieser Arbeit sowohl einen Algorithmus vor, der eine polygonale Kur-

ve mit einer minimalen Anzahl and Kreisbögen, als auch einen Algorithmus der

eine polygonale Kurve mit der minimalen Anzahl Biarcs (zwei glatt miteinander

verbundene Kreisbögen) approximiert. Im zweiten Teil der Arbeit wenden wir

uns der Approximation von Flächen im 3-dimensionalen Raum zu. Wir stellen

zwei Algorithmen vor, die aus einer gegebenen Punktmenge die Oberfläche eines

Objektes rekonstruieren. Zuerst betrachten wir nur Punktemengen in konvexer

Lage und zeigen, dass die Approximation dieser Punktmengen mit einer minima-

len Anzahl an Kugelkappen NP-schwer ist. Da dieses Problem vermutlich nicht

optimal zu lösen ist, präsentieren wir einen inkrementellen Greedy-Algorithmus,

der eine gegebene Punktemenge in konvexer Lage mit einer gekrümmten Fläche

aproximiert. Als letztes betrachten wir die Rekonstruktion einer Fläche aus ei-

ner Punktmenge in nicht konvexer Lage. Hierbei nehmen wir die Idee des in-

krementellen Ansatzes auf. Um eine Startkonfiguration für einen inkrementellen

Algorithmus zu haben, stellen wir einen Algorithmus vor, der aus einer Punkt-

probe einer nicht konvexen Fläche ein möglichst kleines (aber nicht garantiert

das kleinste) Polytop erzeugt, das folgende Eigenschaften hat: die Mittelachse der

ursprünglichen Fläche ist im Polytop enthalten, das Polytop verläuft durch eine

97
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Teilmenge der Probenpunkte und die ursprüngliche Topologie bleibt erhalten.

Wie zeigen wie dieser Algorithmus nicht nur für die Erzeugung eines Startpo-

lytops genutzt werden kann, sondern auch um skalierbare Rekonstruktionen der

Fläche zu erzeugen.
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