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Abstract
Network analysis of protein structures has provided valuable insight into protein folding
and function. However, the lack of a unifying view in network modelling and analysis
of protein structures and the unexploited advances in network theory prompted me to
address three important challenges:

1. Rationalise the choice of network representation of protein structures.

2. Propose a well fitting null model for protein structure networks.

3. Develop a novel graph-based whole-residue empirical potential.

Graphlets, a recently introduced and powerful concept in graph theory, are a fun-
damental aspect of this thesis. The topological similarity between protein structure
networks or individual residues was assessed using graphlet-based methods in order to
propose an optimised null model and develop a novel potential.

Chapter 2 unifies the view of network representations by means of a controlled vocab-
ulary and outlines the motivation behind the details of constructing such networks,
and the popularity and optimality of the representations. In Chapter 3, an exhaustive
set of 945 network representations is systematically analysed with respect to their sim-
ilarity and fundamental network properties. The similarity between commonly used
representations can be quite low and specific representations may exhibit high number
of orphan residues and residues lying in ”separate” components. Additionally, proteins
with different secondary structure topologies have to be treated with caution in any
network analysis. This work allows for a rational selection of a network representation
based on certain principles, popularity, optimality and desired network properties and
on its similarity to successfully utilised representations.

Chapter 4 shows that 3-dimensional geometric random graphs, that model spatial re-
lationships between objects, provide the best fit to protein structure networks among
several random graph models. The fit is overall better for a structurally diverse pro-
tein data set, various network representations and with respect to various topological
properties. Geometric random graphs capture the network organisation better for
larger proteins and proteins of low helical content and low thermostability. Choosing
geometric random graphs as a null model results in the most specific identification of
statistically significant subgraphs. This work has formed part of published literature.

In Chapter 5, a novel knowledge-based potential is developed by generalising the single-
body contact-count potential to a whole-residue pure-topological one. The proposed
scoring function outperforms the contact-count potential. The improved performance
is consistent across various methods of generating decoys with respect to most perfor-
mance metrics and is more prominent for the most successful fragment-based methods.
The potential is also on par with a traditional four-body potential and exhibits strong
complementarities with it, highlighting the capacity for further improvement.

Overall, this dissertation establishes the basis for the analysis of protein structures
as networks and opens the door to new avenues in the quest for the perfect energy
function.
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Chapter 1

Introduction

Summary

This first chapter introduces the field of network biology and in particular
its impact on structural bioinformatics. General concepts in protein struc-
ture and graph theory are presented, a concise background on modelling
protein structures as networks is provided, and the primary literature re-
garding the impact of network analysis of protein structures is reviewed.
Graphlets, a new concept in graph theory and a fundamental aspect of this
thesis, are explained in detail. Finally, an outline of the work presented in
this thesis is provided.

1.1 Networks in biology

Biological research has been always driven by reductionism. Despite the inherent com-
plexity of cellular organisation, the cell has been viewed as an un-coordinated bag of
genes that act and can be studied in isolation. In the past decade high throughput
experimental techniques have led to an exponential growth of molecular data that
revolutionised biology with a new holistic perspective. Cellular components are not
randomly connected together but rather exhibit certain functional interdependencies.
Network science provided the means to describe and study the complexity of the
functional dynamics of cells, organs and organisms. A network or a graph is a set
of system components (nodes) that models their interactions as edges. In biology,
nodes are genes, proteins, metabolites, RNA molecules, phenotypes. Protein-protein
interaction networks model the physical interactions between proteins, signalling net-
works the capacity of molecules to (de)activate other molecules, regulatory networks
the physical binding between transcription factors and regulatory elements, metabolic
networks the biochemical reactions. Co-expression, phenotypic, and any other biolog-
ical information can be further integrated to facilitate the study of the interplay of
various effects.

Network analysis targets the laws and organising principles that biological networks
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follow. Quantitative description demonstrated that biological networks show mani-
festly non-random properties while modelling the networks helped to understand and
explain the origin and evolution of their properties. Protein-protein interactions net-
works are scale-free; only a few proteins are highly connected while the majority has
only a few interactions [19]. These networks are also ultra-small [57] in the sense
that most of the cellular components (nodes) are only a few interactions away from
any other component [314]. The scale-free nature has been shown to originate from
gene duplication [229, 301]. Moreover, over-represented network patterns constitute
essential units in regulatory networks [200]. Highly interconnectivity between proteins
is indicative of their functional similarity and the formed modules carry specific cel-
lular functions [134, 246, 329]. Topological centrality of proteins in a network may
also unravel their biological importance, such as being disease related [133, 143, 279].
Finally, the architecture of biological networks provided insights into their robustness
with respect to various perturbations [6, 20, 323].

The avalanche of research work in network biology inevitably influenced the view and
understanding of protein structure space. Despite the fact that network analysis of
protein structures has been extremely successful, limited analysis has been performed
to establish the overarching principles of the network representations. The main aim
of the work presented here is to address these overlooked aspects and to examine
whether novel graph-based methods utilised in genomic networks offer the possibility
of significant advances in structural bioinformatics.

1.2 Protein structure

Amino acids are small molecules containing three chemical groups and a hydrogen
atom bound to a central α carbon. Amino group (NH2) and carboxyl group (COOH)
constitute the backbone while the R group, the side chain, defines the specific chemical
properties of the amino acid. There are 20 amino acids that can be described as
hydrophobic/hydrophilic, (a)polar, (un)charged. Additional sub-classifications refer
to the size and reactivity.

Proteins are polypeptides, chains of amino acid residues that are linked to each other
by a covalent bond. The distinct sequence of amino acids defines the three-dimensional
structure and protein function is directly dependent on its structure. Apart from the
covalent bonds between residues that are quite planar and rigid, numerous non-covalent
forces impose constraints and influence the folded state of a protein. Hydrogen bonds
are formed between backbone atoms as well as between the side-chain atoms and
the surrounding aqueous medium. Hydrophobic interactions are entropically driven.
Hydrophobic residues aggregate into the interior of the protein, while hydrophilic ones
remain exposed to solvent [150]. Ionic bonds are either electrostatic repulsions between
residues similarly charged or attractions between oppositely charged residues. Van der
Waals forces summarise weak attractive and repulsive forces, a combination of dipole-
dipole, dipole-induced dipole, and induced dipole-induced dipole forces.

There are four recognised levels of protein structure (Figure 1.1). Primary sequence
is the linear sequence of amino acids. Secondary structure refers to local regularly oc-
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curring conformational units. α-helices and β-strands are stabilised through hydrogen
bonds between the backbone atoms. β-strands are long and planar and occur in the
core of the proteins, while α-helices are regular and spiral like structures and their
hydrophobic and polar “faces” orient them towards both the interior and the surface
of the protein. The complete three-dimensional structure of the protein is its tertiary
structure. Often proteins contain more than one polypeptide chains. In such cases,
quaternary structure is the way in which the folded monomer subunits form a complex.

Several classification schemes for the protein structure universe exist. Protein class
is usually the highest level in the hierarchy and refers to the secondary structure
composition. There are four major classes: all-α and all-β that are dominated by
α-helices and β-strands respectively, α / β in which α-helices and β-strands alternate,
and α + β in which α-helices and β-strands are rather segregated. In this work, the
protein structural class as defined by Structural Classification of Proteins (SCOP)
database [210] is frequently utilised to examine the generality or the specificity of our
conclusions with respect to the structural architecture.

1.3 Network representation of protein structure

In network representation of protein structures, nodes represent amino acid residues
and edges describe pair-wise contacts between residues. The resulting network is
known as a Residue Interaction Graph (RIG) [8]. Different methods have been pro-
posed to decompose protein structures into RIGs. These usually depend on the atoms
selected to represent each residue, the definition of spatial proximity that denotes
residues to interact and other properties of the interacting residues like their prox-
imity in sequence or their secondary structure assignment. Figure 1.2 illustrates an
example of interacting residues and of a RIG based on specific criteria. For example,
protein 1l2y is decomposed into a network (Figure 1.2B) by considering all Cα atoms
that are within 8Å and ignoring neighbouring residues in sequence. All networks
considered in this work are undirected, unweighted graphs.

Although formal network representation of protein structures has been recently intro-
duced, coarse-grained representations that are conceptually identical to RIGs, such as
contact maps, have been widely used the last 40 years. In Chapter 2, we revise net-
works in structural bioinformatics field and we systemise the criteria used in modelling
protein structures as networks.

1.4 Network properties

Several network measures are mentioned frequently throughout this work. Most of
these measures have been used to quantify the importance of nodes and to characterise
the overall topology of the network in network biology. In the following, these measures
and properties are briefly introduced.

The degree of a node, its most elementary property, is the number of edges incident
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Figure 1.1: Protein structure levels.
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(A)

(B)

Figure 1.2: Residue-residue interactions (A) and Residue Interaction Graph (B). A.
Large sphere denotes all blue coloured Cα atoms with 8Å from the central, red coloured
Cα of Isoleucine 95 in 1a1m protein and lines denote the interatomic distances. Two
residues may interact based on the atoms selected (e.g. yellow coloured Cβ atoms or
red coloured Cα atoms) and how spatially close they are. Reproduced from [167]. B.
The network of interacting residues for 1l2y protein based on Cα atoms within 8Å and
ignoring neighbouring residues in sequence. Residues (nodes) are modelled as spheres
positioned at Cα atoms and residue-residue interactions as edges between spheres.
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to the node. The degree distribution P(k) describes the probability that a node has
degree k. Different network models may have distinct degree distributions. Random
networks have Poisson degree distribution, while scale-free networks have a power-law
degree distribution:

P (k) ∝ k−γ, (1.1)

where γ is the degree exponent and usually is in the range (2, 3). In scale-free networks,
only a few nodes are highly connected and are known as hubs, while the majority of
the nodes have low degree. Many real-world networks have been shown to be scale-free
[19].

The clustering coefficient Cz of node z in a network is the probability that two nodes
i and j connected to the node z are themselves connected. The clustering coefficient
of node z is defined as

Cz =
2nz

Nz(Nz − 1)
, (1.2)

where Nz and nz are respectively the number of neighbouring nodes of z (degree) and
the number of edges between the neighbours of z. The average of Cz over all nodes z
of a network is the clustering coefficient C of the network. C indicates the propensity
of nodes to form clusters and the resulting hierarchical nature of the network topology.

The smallest number of links that have to be traversed to get from node i to node j
in a network is called the distance dij between nodes i and j and a path through the
network that achieves this distance is called the shortest path between i and j. The
average of shortest path lengths over all pairs of nodes in a network is called the mean
geodesic distance l (also known as characteristic path length, average shortest path
length, average network diameter). l is indicative of the “navigability” of a network.

Both mean geodesic distance l and clustering coefficient C are used to identify small-
world networks [319], networks in which any node can be reached by any other node
in a few steps. Small world networks have small mean geodesic distance l that grows
proportionally to the logarithm of the number of nodes N in the network and high clus-
tering coefficient C. Random graphs are small-world networks but scale-free networks
have been shown to be ultra-small [57].

To identify central nodes in a network, two centrality measures have been developed
based on the shortest paths. Closeness centrality of node i is the average of shortest
path lengths from node i to every other node in the network. Betweeness centrality of
node i is the fraction of shortest paths between residues other than i that pass through
i. Closeness centrality indicates how fast a node can spread information to every
other node in the network, while betweeness centrality the extent to which controls
information within the network. The idea of centrality was originally introduced in
1948 [26].

Finally, a network is said to be assortative if nodes prefer to be connected to other
nodes of similar characteristics [213]. A network may show assortative mixing on the
node degree, i.e. high-degree nodes to favour connections with other high-degree nodes.
When high-degree nodes prefer to be connected to low-degree ones, then the network is
said to show disassortative mixing on the node degree. Pearson correlation coefficient
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of the degrees of the nodes connected measures the degree correlation. Assortative
mixing has implications on network robustness [186].

1.5 Network analysis of protein structures

Vendruscolo et al. first constructed RIGs using only Cα atoms found within 8.5Å
and demonstrated that RIGs with respect to the specific definition have small average
shortest path length and high clustering coefficient [303]. The small world character
of RIGs have been confirmed for other definitions: Cα atoms and 7Å distance cutoff
[14], Cα atoms and 8Å distance cutoff [15], Cβ atoms and 7Å or 8.5Å distance cutoffs
[12], as well as all-atom representations and 4Å, 5Å, and 6Å cutoffs [106]. Although β-
strands result in lower characteristic path length and clustering coefficient, secondary
structure composition does not have any significant effect on the small-world nature of
RIGs [14, 106]. As the distance cutoff increases for definitions based on Cβ or all atoms,
the networks exhibit weaker small-world character [12]. The small-world character was
examined also with respect to the sequence separation of interacting residues. Greene
and Higman showed that only short-range contacts, contacts between residues close in
sequence, contribute significantly to the high clustering coefficient and thus, when only
long-range interactions are considered, networks abolish their small-world character
[106]. Bagler and Sinha argued that the addition of sequence connectivity in long-
range networks is adequate for them to regain even partially their small-world-ness
[14].

Greene and Higman also analysed the degree distribution for an all-atom represen-
tation, various distance cutoffs (4Å, 5Å, and 6Å) and various sequence separation
thresholds (4, 6, 10, 14, 18) used for filtering out short-range contacts [106]. When
considering all contacts independent of sequence separation, RIGs follow a bell-shaped
Poisson distribution. For small sequence separation thresholds, the distribution is still
Poisson. However, when only medium- and long- range contacts are considered (se-
quence separation ≥ 6), degree distribution is long-tail scale-free with an exponential
cutoff. Secondary structure composition and distance cutoff have no significant effect
on the form of degree distribution. These results have been verified for other defini-
tions: Cα atoms and 7Å distance cutoff [14], Cα atoms and 8Å distance cutoff [15] and
long-range version of the latter while preserving sequence connectivity [15].

Finally, Bagler and Sinha showed that RIGs have positive assortativity coefficient even
when considering only long-range interactions [15]. This assortativity can be partially
attributed to the observed degree distribution.

Despite the fact that previous network analyses of RIGs have provided valuable insight,
our understanding of the impact of RIG definition upon network topology is far from
complete. Each study utilises a different data set, focuses on a specific representation
of a residue and examines a limited range of distance cutoffs or sequence separation
thresholds. In Chapter 3, we set out a rigorous large-scale comparison of networks
resulting from an exhaustive set of RIG definitions.
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1.6 Applications in protein folding and function

Graph-theoretical measures have proved useful in the identification of critical residues
for function as well as functional and viable split sites in proteins. Closeness cen-
trality is one of the most prominent network properties utilised for prediction of
functionally important residues [8, 51, 68, 283]. The precision in prediction can be
increased by combining “local” network properties, such as the number of residues in
direct contact or close in the network [274]. Closeness is also capable of identifying
residues suitable for circular permutation [230] or highly flexible ones [12]. Interface
residues with high betweenness centrality coincide with hot spots or are in direct
contact with them [71]. Residues that mediate signalling significantly increase the
average shortest path length upon removal [69], while shortest path analysis coupled
with molecular dynamics reveals communication pathways [97]. The modular archi-
tecture of protein domains with respect to function has been also carefully investigated
[40, 42, 49, 66, 67, 147, 247, 256, 258]. Decomposition of a protein domain into modules
by clustering the corresponding RIG can successfully identify functional sites [66, 147]
and binding regions [40, 42, 67, 256, 258], while modules are interconnected by residues
important for allosteric communication [66].

Network analysis has provided also a broader insight into protein folding. Clustering
[122, 147] as well identification of residues with many long-range contacts [112] can lead
to putative nucleation centers. In transition state, nucleation centers can be identified
as residues having high betweenness in the corresponding network [303, 308]. The
average shortest path length has been also utilised as a topological determinant that
discriminates between pre- and post-transition conformations [76]. Contact order, the
average sequence separation over all interactions, calculated in the transition state
ensemble has been shown to correlate well with folding rate showing that native-like
topologies dominate the ensemble [226].

Other coarse-grained representations of protein structures that are conceptually iden-
tical to RIGs have been widely used in various aspects of structural bioinformatics.
In Chapter 2, we revise the structural bioinformatics field from a network perspective
and provide a thorough review of the importance of decomposing protein structures
into networks.

1.7 Graphlets

Graphlet based network measures have been extensively applied to biological networks
other than RIGs. Graphlets are small connected non-isomorphic induced subgraphs
of large networks. They have been first introduced by Pržulj in [241]. Graphets differ
from network motifs [200]. Motifs are partial subgraphs and thus may contain only
some of the edges of the large network. They are network sub-patterns that occur
in a network more or less frequently than expected at random. On the contrary,
graphlets are induced and must contain all edges connecting its nodes as in the large
network. Moreover, graphlets do not need to be over- or under- represented in the
data compared with “randomised” networks. Motif approaches ignore subnetworks
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with “average” frequencies and thus only graphlets can be used for comparing two
networks with respect to their full topology.

The number of graphlets on n nodes increases exponentially with n. Many real-world
networks [319] and among them RIGs [303] have small world nature. Morover, the
mean maximum shortest path length between any two nodes in the most common
network representations over 60 proteins (Chapter 3) has value 9.8 ± 2.7. Therefore,
using a relatively small graphlet size is sufficient to capture a large portion of a network
without increasing the computational complexity unnecessarily. Figure 1.3 shows all
30 graphlets for 2- to 5-nodes, denoted by G0, G1, . . . , G29. G0, the only 2-node
graphlet, is actually the edge of a network.

Figure 1.3: Graphlets and automorphism orbits. All 30 2- to 5- node graphlets and
the corresponding 73 automorphism orbits. Nodes belonging to the same orbit have
the same shade. Adapted from [240].
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It is topological relevant to distinguish between nodes in a graphlet. For example,
the two nodes at the periphery of G1 are identical from a topological point of view
compared to the middle node. We have to take into account the symmetries of each
graphlet. An isomorphism f from graph X to graph Y is a bijection between their
sets of nodes such that any two nodes x and y in X and Y are connected if and
only if f(u) and f(v) are also connected. Automorphism is an isomorphism of a
graph to itself, a permutation of its nodes that preserves its structure, and the set
of all automorphisms forms the automorphism group. The equivalence classes of the
nodes of a graph under its automorphism group are called automorphism orbits. G1
has therefore two orbits distinguishing middle node from the end-ones. Figure 1.3
illustrates all 73 automorphism orbits (0, 1, . . . , 72) for 2- to 5-node graphlets. Nodes
belonging to the same orbit have the same shade.

Graphlets and their automorphism orbits have been the basis for developing three
graph theoretic measures. The relative graph frequency distance (RGF-distance) [241]
and the graphlet degree distribution agreement (GDD-agreement) [240] are highly
sensitive measures of local structural similarity between networks. The graphlet degree
vector similarity can be used to identify topological similar nodes in a network or
across networks [196]. All these measures have been designed by Pržulj and have been
implemented in the network analysis software tool called GraphCrunch [163, 192].

RGF-distance and GDD-agreement have been used for modelling protein-protein inter-
action (PPI) networks [240, 241]. It has been also shown that neighbourhood topolog-
ical similarity implies functional similarity in PPI networks and thus, graphlet degree
vector similarity has been used to predict protein function [115, 196], identify can-
cer genes [193] and uncover melagonesis-related pathways [125]. Morever it has been
adapted in a network alignment method called GRAAL [195] for topological alignments
of biological networks [162, 195]. Recently a graphlet-based measure called graphlet
degree centrality has been introduced to identify central genes in topologically complex
and dense regions of PPI networks that are also biologically important [194].

Here, all these measures are employed in a novel way for protein structure networks.
In Chapter 4, we use RGF-distance and GDD-agreement to identify an optimal null
model for RIGs. In Chapter 5, we adapt the graphlet degree vector similarity to an
empirical potential for discriminating native protein structures from decoys. All three
measures are discussed in detail respectively in the fore-mentioned chapters.

1.8 Work presented

The primary focus of this work is to address three important problems.

Despite the fact that network analysis of protein structures has been extremely suc-
cessful, there is lack of a unifying view. Different researchers adopt often arbitrarily
different representations and usually neglect to demonstrate the impact of the rep-
resentation itself upon results. Moreover, coarse-grained representations of protein
structures that are conceptually identical to RIGs have been widely used the last 40
years. In Chapter 2, we revise the structural bioinformatics field from a network per-
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spective and we systemise the network representations of protein structures by means
of a controlled vocabulary. In Chapter 3, we systematically analyse the similarity
of various representations and investigate the impact of the representation upon fun-
damental network properties. Both chapters rationalise the selection of the network
representation, either based on the literature and the justification, popularity and op-
timality of a representation for a certain research problem or based on desired network
properties and similarity to already successfully utilised representations.

A well fitting null model is also crucial in order to assess as accurately as possible the
statistical significance of network properties. In Chapter 4, a reproduction of published
work by this author, we examine the fit of various networks models to protein structure
networks with respect to a multitude of local and global properties. We also illustrate
the importance of the choice of the appropriate null model for motif analysis of protein
structures.

Finally, a key element to successful protein structure prediction is an accurate energy
function. In Chapter 5, we examine the efficacy of local network organisation as
encoded in graphlets for discriminating native protein structures from decoys.

The overall aim of this research is to establish the basis for the analysis of protein
structures as networks. The choice of a network representation, the similarity and
network properties of various representations and an optimised null model are of fun-
damental scientific interest and are crucial for the further development of this research
field. We also examine whether novel graph-based methods utilised in genomic net-
works offer the possibility of significant advances in structural bioinformatics by means
of developing a novel knowledge-based potential.
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Chapter 2

Systemising network
representations of protein
structures

Summary

Network analysis of protein structures is a relatively new field of struc-
tural bioinformatics. However, the same underlying principles apply when
constructing a Residue Interaction Graph or modelling protein structure
by means of other coarse-grained representations widely used the last 40
years. Thus far, despite the widespread applications of all these reduced
representations, an overview of the criteria utilised to define a valid residue-
residue interaction and subsequently a RIG has not been published. Here,
we address the challenge of systemising network representations of pro-
tein structures. We manually collect 220 articles, annotate them with a
controlled vocabulary and extract a manually curated data set of RIG def-
initions. Based on this data set, a detailed review of the research areas,
the criteria used, the various selections for these criteria and their justi-
fication is provided. Additionally, cases of RIG definitions optimised for
specific applications are discussed. Information provided here allows for an
informed choice of network representation based on the current literature
rather than arbitrarily adopting a representation. This chapter provided
all essential background information to guide subsequent analysis in the
following chapters. The proposed vocabulary will also contribute to a con-
sistent notation of the RIG definitions and facilitate rigorous comparisons
in the future.
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2.1 Introduction

The view and understanding of protein structural space is three-dimensional per se.
Yet, over the last 40 years it has been very popular to model protein structures as a
set of spatially interacting residues. Phillips in 1970 [233] as well as Nishikawa et al. in
1972 [218] introduced the notion of distance matrix and contact map. Distance matrix
is a matrix of all inter-residue distances while the contact map is a boolean matrix
with non-zero values only for residues in contact. Similarly, Kannan and Vishvesh-
wara defined the protein structure graph, a network where nodes represent residues
and edges describe interactions between residues [147]. Later, Amitai et al. success-
fully introduced the Residue Interaction Graphs (RIGs) as a more accurate term for
such networks [8]. There is a need to discriminate between RIGs and network represen-
tations of protein structures where nodes are atoms [137] or even secondary structure
elements [107]. Distance matrices, contact maps and RIGs are almost equivalent con-
cepts. The adjacency matrix of a RIG is actually a contact map that may be derived
from a distance matrix.

Reduction of the three-dimensional structure of a protein to a two-dimensional coarse-
grained representation simplifies analysis. Less computational resources are required
and the representation is independent of the coordinate frame. Several methods have
been developed to predict contact maps from sequence [53, 83, 86, 87, 100, 116, 136,
165, 178, 197, 222, 235, 238, 243, 263, 264, 267, 285, 288, 309, 313, 325]. There is a
plethora of research areas where reduced representations have been applied successfully.
Contact map facilitates structure alignment [46, 126, 138, 156, 270, 326] and automatic
domain identification [2, 60, 79, 90, 95, 127, 272, 295, 327]. Knowledge-based potentials
extracted from sets of interacting residues, are widely used for structure modelling and
prediction of changes in stability [50, 88, 94, 119, 141, 151, 155, 159, 181, 187, 203–
205, 209, 269, 271, 282, 307]. Network analysis identifies residues or regions critical
for folding [112, 122, 147, 303, 308], stability [41, 47, 48, 54, 121, 122] and function
[8, 12, 40, 42, 49, 51, 66–69, 71, 97, 147, 230, 247, 256, 258, 274, 283]. Topological
properties calculated from a contact map or RIG, correlate well with folding kinetics
[15, 75, 109, 114, 144, 146, 202, 234, 320, 335] and fold designability [80, 81, 262, 291].

To date, different methods with varying parameters have been proposed for decom-
posing protein structures into networks and contact maps. As the same principles
can be applied to construct any of these reduced representations, hereafter there is no
distinction between them: the term RIG is broadened to include contact maps or even
simple sets of inter-residue interactions. Despite the widespread application of RIGs
and the resulting advances in the structural bioinformatics field, limited analysis has
been performed to provide an overview of the various RIG definitions: the different
ways utilised so far for converting protein structures into RIGs.

In this review, we extract a manually curated data set of RIG definitions from 220 arti-
cles. This data set contains 70 basic definitions and additional criteria may extend the
definitions up to 1,260. Unfortunately, no consistent notation is used in the literature
neither for the definitions or even for the representations themselves. A lot of manual
effort was necessary for the collection of the related articles, while manual curation
was the only reliable option for the extraction of the definitions. Therefore, a large
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volume of text had to be analysed and the development of a controlled vocabulary was
necessary for consistent annotation and subsequent analysis. These problems imposed
certain limitations to the final number of publications analysed.

Based on the curated dataset, a detailed review of the research problems that are
addressed utilising RIGs, is provided. The different RIG definitions are presented
with emphasis given to the principal criteria that define a residue-residue interaction.
The most popular choices for the criteria are outlined, while the justification of each
choice is discussed if applicable.

2.2 Methodology

2.2.1 Literature search

Searching the literature via PubMed and using only keywords strictly related to the
coarse grained representations did not yield satisfactory results. The search did not
return any articles that refer to residues being in contact but without a specific refer-
ence to the reduced representation itself. Relaxing the keywords led to the retrieval
of articles that do not actually provide any RIG definition. Identifying the definition
within an article or the lack of it, is time consuming: no consistent notation is used and
thus, the whole text has to be analysed. Therefore, the articles analysed were collected
based on: a) the publications of researchers known to utilise reduced representations,
b) a PubMed search using as keywords specific research areas and/or topological prop-
erties related to RIGs and c) articles that cite or are cited by the already collected
ones. Articles that solely contain definitions under which residues in different chains
are in contact were ignored.

2.2.2 Controlled vocabulary

During text analysis, a controlled vocabulary was developed for the efficient annotation
and subsequent analysis of RIG definitions. Three different structural criteria called
contact type, definition and range are used to define residue-residue interaction, while
a fourth one called contact weight is also mentioned for the sake of completeness.
Contact type (CT ) defines the atoms that represent a residue, contact definition (CD)
defines whether two residues are close enough to interact and contact range (CR) may
exclude specific interactions based on properties of the interacting residues such as
their sequence separation. A RIG definition is named basic when only CT and CD
are specified. In general, a RIG definition will be notated as:

RIG = (CT )CRCD

In the following, each of the structural criteria is explained in detail.
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Contact type

Two residues are considered to be in contact if they have at least a pair of specific
atoms close in space. The atoms considered to interact or not and thus representing
the residue, constitute the contact type. A residue can be represented from a single
atom up to all its atoms in increasingly fine granularity. In all cases, non-heavy atoms
(i.e. hydrogens) are not considered. Interactions between Cα atoms are denoted by
Cα contact type. Similarly, Cβ, BB, SC and ALL contact types are used to denote
interactions mediated through Cβ, backbone, side-chain and all atoms, respectively.
A contact type may also refer to interactions between atoms of different type: e.g.
interactions between Cα and Cβ atoms are denoted by Cα/Cβ. Moreover, sets of
interacting atom types can be combined into a single contact type. For example,
Cα + Cβ denotes interactions between Cα atoms and interactions between Cβ atoms,
while Cα.Cβ all possible interactions with Cα and Cβ atoms (i.e. Cα, Cβ and Cα/Cβ).

A residue may also be represented by a single virtual atom, the centroid of the coordi-
nates of a specific set of atoms. For example, SCc refers to the centroid of side-chain
atoms. The position of the centroid can be calculated as the geometric center or the
center of mass of specific atoms. An “average” centroid per residue type may also
be calculated as the average of the centroids for all residues of the same type in a
representative data set. The cs subscript is used to denote representation by a special
centroid. In the case of BBcs, the backbone of a residue i is represented either by a
sphere placed at the carbonyl atom [171] or by a point in the middle between the Cα
atoms of the residues i− 1 and i+ 1 [44]. For the SCcs contact type, the side chain is
represented by a point [44] or a sphere [171] centered at a specific distance from the Cα
atom and in the direction of the Cα−Cβ bond. Rarely, the residue is represented by a
“functional atom” (FA), a single real atom that approximates the centre of functional
activity [252, 316]. Residues with only hydrogen and carbon atoms in their side-chains
are not considered as not commonly occurred in functional sites.

In the case of glycine and for contact types based on real side-chain atoms, the Cα
atom is commonly utilised as a Cβ. In rare cases, glycines are ignored [253] or a virtual
Cβ atom is constructed [3, 11, 44, 135, 208]. This atom can be placed at the hydrogen
atom of the side chain [135] or its position might be calculated from the backbone
[3, 44].

Contact definition

Contact definition specifies whether the atomic sites are spatially close enough, so
that the corresponding residues are considered to interact. Two atoms may interact
if they are within a certain distance cutoff. For example, when two residues are in
contact if their Cα atoms are within 8.0Å, the resulting RIG is denoted as (Cα)

8.0Å
. An

interaction may also be defined if the distance between their van der Waals spheres is
less than a cutoff. In (SC)∑

ij rvdW+0.5Å
RIG, the distance between the side-chain atoms

of the interacting residues is less than the sum of their van der Waals radii plus 0.5Å.
In case the residue is represented by a sphere, the radius of the sphere may be used
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instead (e.g. (SCcs)∑
ij rsphere+0.5Å

). Among the previous definitions, only the definitions

that do not take into account the radii of the van der Waals spheres or of other special
spheres, will be considered hereafter as distance cutoff based. The subscript DC is
used to denote this definition class (e.g. (Cα)DC).

Delaunay tessellations [72] and Voronoi diagrams [311] have also been used to capture
proximity relations between atoms in protein structural space. A Voronoi tessellation
divides protein structure into convex polyhedra (called Voronoi cells), one per each
atom (or site in general). All points in each cell are closer to the corresponding atom
rather than to any other atom. In other words, space is decomposed into regions with
the same set of closest neighbor sites. A topological dual to Voronoi partitioning, is the
Delaunay tessellation that partitions space into tetrahedra called Delaunay simplices.
A group of four atoms whose Voronoi polyhedra meet at a common point forms actually
a simplex. The sphere defined by those four atoms/points contains no other points on
its interior. Delaunay tessellation actually defines an ensemble of sets of four nearest
neighbour atoms. A Voronoi and Delaunay tessellation in 2D is illustrated in Figure
2.1. Delaunay tessellation has been used to decompose protein structure into a set of
interacting residues [131, 219] and especially for development of four-body potentials
[50, 94, 159, 209, 269, 294]. Voronoi diagrams have been widely used to study packing
and volume distributions [55, 89, 248]. Voronoi diagrams can also be used for RIG
construction. It is possible to define contacting residues based on the contact area
between the corresponding polyhedra [337]. Here, there is no discrimination between
these two approaches and both are denoted by the subscript DT.

Figure 2.1: Voronoi/Delaunay tessellation in 2D space (Voronoi tessellation - red line,
Delaunay tessellation - black line).
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There are also three more contact types/definitions that do not comply with the vo-
cabulary presented so far. CSU definition actually refers to the Contacts of Structural
Units (CSU) software [276]. CSU defines contacts based on the contact surface area of
putative interacting atoms and the atoms’ biochemical properties. MCd and MCc are
the discrete and continuous versions of a contact definition developed by Maiorov and
Crippen [61, 181]. In this definition, only the backbone atoms (N , C ′, O) and Cβ are
considered. The following distance requirements d(O, N) < 3.2Å and d(C ′, N) > 3.9Å,
d(NorO, Cβ) < 5.0Å, and d(Cβ, Cβ) < 9.0Å define a backbone-backbone, a backbone-
side-chain and a side-chain-side-chain contact, respectively. The last two types of con-
tact are valid when there is no interfering atom: any atom closer than 1.4Å to the line
that connects the interacting atoms. In the continuous case, lower and upper distance
cutoff bounds are defined.

The choice of contact type and contact definition constitutes a basic RIG definition.
For distance cutoff based contact definitions, the choice of the actual cutoff value is
highly dependent on the choice of contact type. A basic RIG definition can be further
parameterised by choosing a particular contact range.

Contact range

Contact range defines whether a residue-residue interaction is filtered out according
to sequence separation or secondary structure assignment. Sequence separation is the
absolute difference of the residues’ sequence numbers and if the sequence separation
is less than a threshold, the contact might not be taken into account. For example,
in (Cα)

|i−j|≥3

8.0Å
RIG all interacting residues have sequence separation 3 or more. The

motivation behind sequence separation filtering depends on the actual threshold used
(see Section 2.3.5). The secondary structure assignment can also be used to filter

explicitly contacts within the same secondary structure fragment (e.g. (Cα)
si 6=sj

8.0Å
). The

all superscript denotes that no filtering is applied (e.g. (Cα)all
8.0Å

).

Contact weight

It must be pointed out that here all RIGs are treated as unweighted, undirected
networks. However, in some articles the original RIGs are actually weighted. An
interaction between residues i and j can be weighted by the number of atomic contacts
[1, 327] or in a directed fashion by the number of atoms of residue j interacting with i
normalised by the expected maximum atomic density (the average over a representative
set of proteins of the maximum number of interacting atoms with a residue of same
type with i) [121, 122]. The latter weighting scheme removes any bias due to large
side-chains. It can be also modified so that weight is the same independent of direction.
In the modified version (called interaction strength), the number of atomic contacts
is used instead of the number of atoms of j interacting with i [147]. The sum of
weighted atomic contacts can also be used to bias towards highly specific contacts: e.g.
by weighting more the side-chain-side-chain atomic contacts than the backbone-side-
chain ones [247]. Finally, another variation of contact weight is the use of a sigmoid or
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linear function of the corresponding distance in space that transforms boolean values
to continuous ones [61, 95, 103, 122, 152, 154, 181].

2.2.3 Annotation and analysis

Contact type and contact definition are highly interrelated. On the contrary, the
choice of contact range is per se independent of the choice of contact type and def-
inition. However, there are cases where the selection of the contact range is result
of optimising the RIG definition with respect to a specific application. Despite these
cases, contact type and definition are annotated together while contact range sepa-
rately. Moreover, sequence separation thresholds implicitly classify contacts to short-,
medium-, and long-range ones. In addition to annotating the values of sequence sep-
aration thresholds, the corresponding contact classification is recorded as well. In
the case of a single threshold, all contacts below the threshold are considered to be
short-range contacts excluded from the RIG, while contacts above the threshold are
long-range taken into account. In the case of a second threshold, the contacts between
the two thresholds are short-range included in the RIG and in case of a third thresh-
old, the contacts between the second and the third are medium-range. Any contact
classification specified within an article supersedes the previous classification scheme.

Articles concerning distant-dependent potentials are ignored in general. However, if
there is a maximum distance cutoff above which all interactions are ignored, then
this cutoff is considered as the contact definition choice. Also in cases where sequence
separation thresholds are explicitly used to discriminate between short-, medium-, and
long-range contacts, contact range is annotated as well. Finally, for articles where the
RIG definition is optimised with respect to a specific application, only the optimal
definition is considered.

The number of occurrences of a RIG definition is calculated based on the number of
last authors that use the specific definition and not on the actual number of articles
annotated with that definition. In this way, RIG definitions can be analysed without
any bias due to redundant articles with the same definition and published by the same
research group. The name of the last author was preferred to discriminate among
research groups as the last authors (128) are less than the first authors (164).

2.3 Results

2.3.1 Network perspective of structural bioinformatics

In total, we collected 220 articles and we extracted 70 basic RIG definitions and 18
contact ranges. The definitions along with the articles are listed in Appendix Tables
A.1 and A.2. The research topics encountered cover every aspect of the protein struc-
tural bioinformatics. Protein structural alignment, domain decomposition, structure
prediction and reconstruction, stability, function, folding, fold designability and con-
tact map prediction are the main areas where coarse-grained representations have been
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extensively used.

The contact map was introduced as a manageable representation that outlines the
tertiary topology in the form of a characteristic pattern of secondary elements [218,
233]. It was utilised to visually inspect putative nucleation centers [233] and to compare
alternative or homologous conformations [215, 218]. Methods based on the distance
matrix similarity [126, 270] and the contact map overlap [46, 138, 156, 326] were
successfully developed for protein structure alignment and comparison. Recently, it
was shown that it is possible to align structures using a vectorial representation that
is based on contact map’s eigenvalues [286].

Apart from protein comparison methods, approaches for automatic domain decompo-
sition use contact maps and networks [2, 60, 79, 90, 95, 127, 272, 295, 327]. Evaluation
of the putative domains is usually based on the underlying principle that domains are
highly compact with intra-domain contacts dominating the network. Domain iden-
tification was successfully formulated as network problem solved by identifying the
minimum cuts [327], maximising the cycle distributions [79], and clustering using a
graph spectral method [272].

Although contact maps are reduced representations, they contain sufficient information
to successfully reconstruct the three-dimensional structure. Distance geometry [62]
based methods [11, 33, 117, 118, 238, 254], monte carlo approaches [172, 305, 306],
heuristic methods [297, 299, 300], and discrete molecular dynamics [52] accomplish this
task. Interestingly, it is possible to obtain a good reconstruction even from incomplete
or noisy contact maps [52, 257, 299, 305] and to rationally identify a minimal subset
of contacts for optimal structure recovery [257].

Vectorial representations extracted from contact maps also allow for accurate 3D re-
construction. The underlying structure can be recovered from: a) the contact number
vector, a vector containing the number of contacts for each residue (known as con-
tact number, degree, and coordination number) [254], b) the contact number vector
combined with two other vectors that contain per each residue the average sequence
separation over all its contacts (known as residue-wise contact order) and the secondary
structure assignment [153], c) the contact map’s principal eigenvector, the one corre-
sponding to the maximum eigenvalue [239], and d) the effective connectivity profile
that is a linear combination of the eigenvectors [324].

For over 30 years, pseudo-energy functions have been derived from empirical analysis
of contact maps and have been widely applied in template based as well as template
free structure modelling. Statistical analysis of the observed interactions is used for
deriving such functions [119, 141, 155, 204, 205, 271, 282]. Alternatively, the en-
ergy parameters are optimised to select the native structure as the most energetically
favourable among decoy structures [181, 203, 307]. Knowledge-based potentials usually
are two-body in the sense that they define the energy of residue-residue interactions.
Single-body potentials denote the propensity of a specific residue type to have a specific
contact number. Such potentials correlate well with residue burial and hydrophobicity
and can be utilised either alone or in combination with higher-order potentials. Four-
body potentials [88, 94, 159, 209, 269] as well as whole-residue ones [171, 187] have
been developed to allow for more cooperative models.
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Contact potentials can also be applied to predict stability changes upon mutation
[50, 151]. The contact number of the mutated residue correlates well with the change
in stability [110, 111, 180]. Clustering [41, 121, 122], network analysis [54], as well as
machine learning approaches [47, 48] are able to identify residues or regions critical
for maintaining structural stability. Increased thermostability is also related to certain
topological properties. Thermophilic proteins have more contacts at the solvent acces-
sible surface [99], more highly connected residues [249], more long-range contacts [108],
and higher average sequence separation over all interactions [249, 250], compared to
mesophilic homologs.

The number of topological properties related to folding kinetics is overwhelming. Many
network properties correlate well with folding rates: the average sequence separation
over all interactions (contact order) [234], the fraction of short range contacts [202], the
average number of long range contacts per residue (long range order) [114], the product
of contact order and long range order (total contact distance) [335], the number of
non-local contact clusters [146], the degree-degree correlation [15], and the fraction
of residues with many long-range contacts [109]. Folding rates can be also predicted
from a simple model based on the average shortest path over all contacting residues
(effective contact order) [75, 320] and from a statistical mechanical model whose energy
function is partially based on a contact map [220]. The impact of edge removal, that
demonstrates the robustness of a network to maintain its average shortest path length,
correlates with protein unfolding rates [144]. Contact order and long range order can
successfully discriminate between two-state and multi-state proteins [177]. Moreover,
α / β proteins have more contacts due to their compactness and thus, higher contact
order and slower folding rates compared to proteins of the same size and of different
structural class [93].

Graph-theoretical measures have proved useful in the identification of critical residues
for function as well as functional and viable split sites in proteins. Network analysis
has provided also a broader insight into protein folding. The importance of RIGs in
understanding protein folding and function has been discussed in detail in Section 1.6.

The shape of sequence evolution has been related to topological characteristics of
protein structural space [80, 81, 262, 291]. The sum of a series in traces of the powers
of the contact matrix (i.e. the total number of length-2 closed loops, the total number
of length-3 closed loops, etc.) determines fold designability. Structures with higher
sum can be encoded by a higher number of sequences. This sum can be approximated
by its first term that is actually the average contact number or by the maximum
eigenvalue of the contact matrix.

It has become clear how important contact maps, networks and corresponding vectorial
representations have been over the last 40 years. Inevitably, prediction of these reduced
representations from sequence has grown into a field of its own importance. Contact
map prediction is a separate category in the Critical Assessment of Techniques for
Protein Structure Prediction (CASP) [136]. Many contact map prediction methods
use correlated mutation analysis [83, 86, 87, 100, 116, 165, 222, 264, 267, 288, 309]:
structurally and functionally important residues that are close in space should co-
evolve to conserve the fold and the function, leading to highly co-varying positions
in multiple sequence alignments. When structural information is included, correlated
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analysis is actually combined with empirically derived contact propensities [83, 267].
More sophisticated methods are based on machine-learning approaches resulting often
in more accurate predictions [53, 86, 87, 116, 178, 197, 235, 238, 243, 263, 285, 313, 325].
Some of the methods use correlated mutations as training data [86, 87, 116]. Various
methods have been also developed for the prediction of contact number [152, 154, 216,
236, 237, 331], residue-wise contact order [154, 277] and principal eigenvector [313]
from sequence.

The forementioned methods are complementary rather than redundant with respect
to structure prediction approaches. Given that structure can be reconstructed from
contact maps, it is extremely important that there are cases where the best contact
predictions are better than 3D model predictions and that consensus contacts can be
derived from predicted models [136]. Predicted residue interactions [197] and predicted
contact numbers [135] have also been used for model selection. Finally, folding rates
can be estimated from predicted contact maps [244] as well as from predicted residue-
wise contact orders.

2.3.2 Contact types

The most striking result from the analysis of contact types is that the top five utilised
types cover more than 90% of all occurrences (Figure 2.2A). These are the Cα, ALL,
Cβ, SC, and SCc in decreasing order of popularity. The SCc contact type is almost
exclusively used in developing potentials.

Single/dual atom residue representations are ∼1.6 times more encountered than multi-
atom ones while the preference for more coarse-grained representations seems to be
independent of publication year (Figure 2.2B). Single real atom contact types were
originally preferred compared to multi-atom or centroid ones due to noticeable com-
putational speedup and limited resources. Additionally, a considerable amount of the
structures deposited in Protein Data Bank (PDB) [29] used to be of low quality, with
only Cα coordinates reported or with many SC atomic coordinates missing. Although
these restrictions do not apply anymore, single atom contact types still occur fre-
quently in the literature. Contact map prediction methods predict Cα or Cβ mediated
contacts and thus, structure recovery methods focus on these contact types. Protein
models submitted to CASP are mainly evaluated based on the Cα coordinates and
developed model selection methods utilise the same coordinates as well.

The popularity of a contact type is not related to is utility. Cα is fully dependent
on backbone conformation, while Cβ is sensitive to side-chain directionality. However,
Cβ atoms are still fixed by residue’s backbone. SCc considers both directionality and
differences in shape and volume of the side-chain. In general, backbone contacts are not
sequence specific due to chemical identity of the backbone for each residue. Moreover,
multi-atom contact types are more fine-grained representations of the protein structure
compared to single-atom ones. These observations are reflected in the performance
of different contact types in the context of potentials. Cβ performs better than Cα
[34, 148, 155], SCc better than Cβ or Cα [155, 280], SC better than SCc [322] or Cα
[166], and ALL better than Cα [23, 307].
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2.3.3 Contact definitions

Surprisingly enough, distance cutoff (DC) based definitions dominate the literature
(Figure 2.3A). As explained later in Section 2.3.4, van der Waals (rvdW) definitions are
more physically meaningful especially in the case of multi-atom contact types, while
Delaunay (DT) definitions are based on a statistical geometry approach. Despite
these facts, these definitions are not commonly deployed. The van der Waals based
ones are encountered in only nine articles out of which seven are published before 1999.
Moreover, in six out of the nine Delaunay related articles there is a common co-author.

Examining the distance cutoffs utilised, the dependence of the cutoff upon contact
type becomes clear (Figure 2.3B). For multi-atom contact types, the cutoff is placed
in the lower region [4.0, 6.0]Å and it peaks at 5.0Å. In contrast and for single/dual
atom contact types, the cutoff peaks at 8.0Å and generally occurs in the upper region
[6.0,12.0]Å. The most commonly used cutoffs for the top 5 populated contact types
Cα, ALL, Cβ, SC, and SCc are 8.0Å, 5.0Å, 8.0Å, 4.5Å and 8Å respectively. Unusually
high cutoffs are almost all result of optimising the RIG definition with respect to a
specific application (see Section 2.3.6).

2.3.4 Basic RIG definitions

The distribution of all basic RIG definitions is presented in Figure 2.4 summarising all
previous observations. All definitions with more than five occurrences in the literature
are mainly based on Cα and ALL contact types (Figure 2.5). The top three most
frequent ones are (Cα)

8.0Å
, (ALL)

5.0Å
and (Cβ)

8.0Å
.

The most common physically based motivation behind choosing a particular basic
RIG definition is the exclusion of non specific solvent-mediated interactions. Among
all contact definitions, the ones based on the van der Waals radii of the potentially
interacting atoms are the most physically meaningful. In the rather strict case, two
atoms are in contact if the distance between their van der Waals spheres is less than or
equal to 0Å. This can be relaxed by increasing the cutoff to 0.5Å [295], 1.0Å [160, 268,
317] or 2.8Å [281, 282] which is the diameter of a water molecule. The increased cutoff
allows for slight coordinate errors [268, 317] but it is too short to allow for a third atom
to intervene. The overall definition ensures that all atoms in the first contact shell,
atoms that are nearest-neighbours in space, are included, while atoms in the second
shell are neglected. Similarly, Cα atoms in direct contact are within 6.5Å as the atom
radius in this case is 2.0Å [248], with the water-mediated contacts to be placed in
the [6.5, 9.5]Å distance interval [227]. In MCd and MCc contact types, special care is
taken to ensure that there is no interfering third atom, while in the case of multi-atom
RIGs such as ALL or SC, the 4.5Å threshold is utilised to guarantee that there is no
other residue or solvent molecule between interacting residues [124, 201]. Moreover,
the upper limit for attractive London-van der Waals forces is approximated by a 5.0Å
cutoff [106, 292].

Miyazawa and Jernigan examined the residue packing in (SCc)
|i−j|≥2 RIGs with respect

to the distance cutoff [204]. The average number of contacts for residues in the interior
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of proteins peaks at 6.5Å and has the closest value to the expected number of contacts
under the smoothed density assumption. For larger distances, the area outside protein
surfaces is covered and the radial distribution becomes lower than one. The radial
distribution function was studied as well by Atilgan et al. for (Cβ)all networks [12].
The first local minimum or simply “hump” occurs at 6.7Å denoting the region of inter-
residue contacts of the highest probability. Second, third, and fourth coordination
shells were shown to be located at 8.5Å, 10.5Å, and 12.0Å, respectively. Chea and
Livesay used 8.5Å threshold for Cα RIGs as the best approximation for the average
side-chain size [51].

Manavalan and Ponnuswamy analysed the preferred environment of each of the 20
different amino acids and its non-polar nature [183]. Based on a (Cα)|i−j|≥4 reduced
representation and varying distance threshold, they showed that the influence of each
residue extends effectively up to 8.0Å: between 6.0Å and 8.0Å there is a clear preference
for hydrophobic interactions while above 8.0Å energetically unfavourable interactions
become statistically favourable.

Finally, the motivation behind preferring Delaunay tessellation over the other contact
definitions is that it provides an objective and robust definition of nearest neighbours
in three-dimensional space and it is not dependent on any specific parameterisation.
Especially for large distance cutoffs, the number of interactions for a residue becomes
larger than the number of actual geometric nearest neighbours.
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2.3.5 Contact ranges

Filtering based on secondary structure assignment occurs only in two articles and thus,
are excluded from the Figures in this section. In these articles, the RIGs are actually
transformed to networks where nodes are secondary structure fragments [79, 156].

The distribution of sequence separation thresholds is presented in Figure 2.6A. In
almost half of the cases, all inter-residue contacts are taken into account (|i− j| ≥ 1).
Sequence thresholds 2 and 3 are used to remove the backbone connectivity and contacts
mainly defined by it. Higher thresholds 4 and 5 exclude effects of the helix/turn
content. The repeating structural unit of an α-helix is 3.6 residues in length and α-
helices are dominated by (i,i+3) and (i,i+4) inter-residue hydrogen bonds. At the
same time, a turn is in general formed by 3 or 4 residues. Sequence separation of 10 is
used as a conservative estimate based on the average length of an α-helix (11) and β-
strand (6) [106]. In this way, interactions between residues within the same secondary
structure fragment are removed and only contacts important for the tertiary structure
are taken into account. Sequence separation thresholds 6, 12 and 24 are utilised for
evaluation of contact map prediction in CASP. The probability of two residues to be
in contact decreases with increasing sequence separation. Sequence-distant contacts
are harder to predict and are expected to be more useful as constraints for structure
prediction. Threshold 13 is result of optimising the RIG definition for prediction of
folding rates [114], while the highest cutoff 31 is encountered in potentials.

Figure 2.6B shows for each RIG definition how many sequence separation thresh-
olds are used if any, how these classify contacts into short-, medium-, and long-range
ones and which contacts are excluded from the actual network. It becomes obvious
that when filtering out contacts, a single threshold is commonly used to exclude the
short-range ones. Rarely, contacts are classified into short-, medium-, and long- range
contacts as for example in CASP (short: 6 ≤ |i− j| < 12, medium: 12 ≤ |i− j| < 24,
long: |i− j| ≥ 24).

2.3.6 Optimal RIG definitions

Apart from physically motivated definitions, the curated data set contains optimised
definitions with respect to a specific research problem such as predicting folding rate
and developing a potential. Such definitions may give rise to unusually high distance
thresholds previously observed, while they heavily depend on the particular data sets
and the overall methodology utilised. The optimisation usually refers to the choice of
a distance threshold or the contact range with the remaining two criteria being fixed.

Plaxco et al. outlined that variation of the distance threshold in (ALL)all RIGs (from
3.5Å to 8.0Å) does not significantly affect the correlation of the relative contact order
with folding rate [234]. In contrast, Mirny and Shakhnovich showed that relative con-
tact order has lower correlation when the cutoff is smaller than 6.5Å or larger than 9.0Å
[202]. The highest correlation for the fraction of short-range contacts ((ALL)|i−j|≥4) is
also achieved at 7.0Å. Long range order calculated from (Cα)

8.0Å
RIGs has the best

correlation with folding rates when long range contacts are defined as the ones with
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Figure 2.6: Distributions of the sequence separation thresholds (A) and the related
contact classifications (B).
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sequence separation at least 13 [114]. Among various (Cα)|i−j|≥13 RIG definitions the
one with 8.0Å cutoff gives the best correlation as well. The sequence separation is
further optimised to 28, 45 and 11 for all –α, all – β and mixed proteins respectively.
Gromiha also analysed the correlation for the number or fraction of well-connected
residues in Cα RIGs with respect to both the distance cutoff and the contact range
[109]. (Cα)

|i−j|≥13

7.5Å
and (Cα)

|i−j|≥4

6.5Å
RIGs gave the best correlation to folding rate for

two-state and three-state proteins respectively. Zhou and Zhou utilised contacts of
sequence separation at least 15 ((ALL)

|i−j|≥15

6.0Å
) for better prediction of folding rates

based on the total contact order [335].

Kinjo et al. [152] and Yuan et al. [331] used 12.0Å as the optimal cutoff radius
of (Cβ)|i−j|≥3 RIGs for the prediction of contact numbers from sequence. The contact
number of a residue shows the highest anti-correlation with its distance from the center
of mass of a protein for 14.0Å distance cutoff in Cα RIGs [217]. Similarly, the residue
burial expressed as the contact number yielded the best performance in fold recognition
at 14.0Å cutoff for Cβ RIGs [148]. Bolser et al. thoroughly examined different RIGs
definitions with respect to contact type, distance cutoff and contact range, and the
performance of the extracted single-body and two-body potentials in discriminating
native structures from decoys [34]. Cα, Cβ, Cα + Cβ RIGs, including and excluding
short range contacts (all and |i− j| ≥ 10 contact ranges), and with varying distance
threshold were compared. The best performance for the single-body and two-body
potentials was obtained using (Cβ)all

14.0Å
and (Cβ)all

12.0Å
respectively. Vendruscolo et al.

demonstrated that a two-body contact potential extracted from (ALL)all RIGs best
stabilises native proteins against decoys for 4.5Å distance cutoff [307]. In the case of
(Cα)all, the optimal threshold is 8.5Å. Bastolla et al. also optimised the RIG definition

for an energy function [23]. (ALL)
|i−j|≥3

4.5Å
and (Cα)

|i−j|≥3

11.0Å
guarantee the highest stability

among various distance thresholds. Berrera et al. analysed the performance of two-
body potentials in fold recognition utilising RIG definitions based on van der Waals
radii [30]. Among the Cα, Cβ, BB, Cα+SC, and ALL contact types and with varying
cutoff, (Cα + SC)all∑

ij rvdW+1.0Å
was the optimal RIG definition.

Williams and Doherty demonstrated that pairwise contact propensities correlate well
with evolutionary substitution costs [322]. The correlation is higher for SC (SCc)
potentials for 4.5Å (8.0Å) distance cutoff. Lin et al. trained a neural network to
calculate the probability of a residue of a certain type to be in a given structural
environment based on a (SCcs+SCcs/BBcs)

all∑
ij rsphere

RIG definition [171]. The default

radius for the side-chain sphere was set to 4.0Å to minimise the uncertainty about the
type of the central residue given the residue’s structural environment. Thomas et al.
applied a distance-dependent potential based on Cβ contacts to protein recognition
tests with the optimal upper distance threshold found in the [11.0, 13.0]Å region [289].
Kuznetsov and Rackovsky tested the performance of distance-dependent Cβ and SCc
potentials on the recognition of the residues’ preferred environment [166]. The optimal
upper bound for distance was found to be 12.0Å.

The contact number of a mutated residue as the number of methyl(ene) groups within
6.0Å, correlates well with the change in stability independent of the extent of burial
of the mutated residue [180]. For (Cα)all RIGs the highest correlation of the contact
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number with stability changes occurs at 8.0Å, 6.0Å and 7.0Å for mutated residues
in helical, strand and coil segments respectively [111]. Capriotti et al. developed
machine learning approaches to predict whether a mutation is stabilising, destabilising
or neutral based on the residue’s structural environment [47, 48]. This environment
as encoded in (ALL)all

9.0Å
RIGs gives rise to the best prediction accuracy.

Crippen analysed the Cα RIG definition with respect to both the distance cutoff and
the sequence separation for the protein structure decomposition into domains [60].
Domains are defined based on a hierarchical tree of sequence segments and for the
(Cα)

|i−j|≥7

9.0Å
definition, the segments best match the secondary structure assignment.

Vassura et al. investigated how native-like the reconstructed protein structures from
(Cα)all RIGs are with respect to the distance threshold [300]. Reconstructions are more
similar to the native structure when the threshold is within [10.0, 18.0]Å. Caprara et
al. compared the automatic clustering of proteins into families based on (ALL)all

contact maps and the contact map overlap, with the SCOP [210] classification [46].
7.5Å was shown to be the best distance threshold. Finally, Cusack et al. showed
that (ALL)all

5.0Å
RIGs give rise to the most reliable prediction of functional residues

compared to alternative distance thresholds [64].

2.4 Discussion

Collecting all articles where coarse-grained representations of protein structures are
utilised, annotating the RIG definitions with a controlled vocabulary, and analysing
the data is a daunting task. The lack of consistent annotation and the inevitable man-
ual curation of articles may lead to a highly biased data set of RIG definitions. Here,
the collected articles are relatively non-redundant with respect to the corresponding
research groups. 259 researchers are cited either as first or last authors compared to
the expected 431 ones for a totally non-redundant collection. The diverse research ar-
eas covered guarantee as well the generality of the data set. Although it is difficult to
draw conclusions of general applicability, outlining the principal criteria used to define
a residue-residue interaction and examining the selections so far and the motivation
behind each one is crucial for understanding the ruling principles of reduced represen-
tations. This review and the related manually curated data set of RIG definitions is
the only one publicly available so far. It can be used in order to make an informed
choice of RIG definition instead of arbitrarily adopting a representation. The future
extension of the controlled vocabulary to include information about the application
field and the justification of the definition will facilitate a more rigorous comparison.
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Chapter 3

Systematic comparison of network
representations of protein
structures

Summary

To date, limited analysis has been performed to rationalise the choice of
the network representation of a protein structure. A randomly chosen defi-
nition will not necessarily exhibit identical network properties with certain
other definitions and will not reproduce published results based on them.
Here, we establish a unifying view for the network representations of pro-
tein structures. We compose a non-redundant, representative and of high
quality data set of 60 proteins that ensures the generality of our analy-
sis. We utilise an exhaustive data set of 945 RIG definitions and assess
quantitatively the similarity of the resulting networks as well as fundamen-
tal properties for their connectivity. We demonstrate that the similarity
between commonly used network representations can be in certain cases
quite low. We investigate the impact of the RIG definition upon similar-
ity and connectivity and in conjunction with protein structural class. In
particular, when only long-range interactions are considered, RIG defini-
tions usually exhibit lower similarities to each other, more residues do not
have any interactions and residues may lie in “separate” components. The
impact upon similarity and connectivity is more severe for all-α proteins
than for all-β proteins as short-range interactions are dominant in helical
structures. Based on the work presented here, researchers will be able to
make an informed choice of representation necessary to achieve the desired
network properties and to rationally compare results produced using dif-
ferent representations. Moreover, we provide open source software tools
for converting protein structures to networks and for subsequent network
analysis. To our knowledge, this is the first study that addresses the chal-
lenge of establishing the overarching principles of network representations
by a large-scale, fine-grained comparison and analysis of RIGs.
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3.1 Introduction

Despite the fact that network analysis of protein structures has been extremely suc-
cessful, limited analysis has been performed to establish the overarching principles of
the network representations. Different researchers adopt often arbitrarily different rep-
resentations and often neglect to demonstrate the impact of the representation itself
upon results. The impact of RIG definition has only been studied with respect to the
form of the degree distribution and the small-world character and for a limited set of
distance cutoffs, contact types and contact ranges (see Section 1.5).

The lack of a unifying view prompted a systematic analysis of various network repre-
sentations. Here, we utilise an exhaustive data set of 945 RIG definitions and assess
quantitatively the similarity of the resulting networks as well as fundamental prop-
erties for their connectivity. We investigate the impact of the RIG definition upon
similarity and connectivity and in conjunction with protein structural class. Analysis
in Chapter 2 facilitates the selection of a RIG definition among the ones utilised in
the literature based on their justification, their popularity and their optimality for a
certain research problem. Based on the work presented here, it is feasible to make an
informed choice of representation necessary to achieve the desired network properties
and to rationally compare results based on different representations.

To our knowledge, a large-scale analysis of RIG definitions with respect to their simi-
larity and fundamental network properties has not been previously carried out.

3.2 Methodology

Here, we present how we perform a fine-grained analysis and comparison of RIGs.
We discuss in detail how we select a representative and of high quality data set of
60 protein structures and 945 RIG definitions according to which 56,700 RIGs are
constructed. We explain how we systematically assess the similarity of RIG definitions,
how we provide general rules for the similarity of two contact types, and the network
properties calculated for each RIG.

3.2.1 The data set of protein structures

To allow for a systematic analysis of a wide range of RIG definitions (see Section
3.2.2), a small, non-redundant, representative, and high quality data set of 60 protein
structures was selected. A series of filtering and validation steps were performed
based on various publicly available databases [29, 36, 39, 210] to eliminate any biases
with respect to RIG parameters and their analysis, achieve quality goals, minimise
redundancy and maximise coverage.

Initially, three publicly available databases were merged; Macromolecular Structure
Data Search Database (MSDSD) [36] (MySQL version released on February 2006
containing PDB data as of April 2006), SCOP database (version 1.73 released on
November 2007) and remediated PDB data (as of October 2007). Out of the 35,936
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PDB entries (84,356 polymer chains) associated with valid biological units in MSDSD,
30,872 (66,757) remained after data integration. This was due to obsolete PDB entries,
proteins without SCOP annotation and various inconsistencies across the databases.

The merged data set was filtered in several ways (Table 3.1). All protein chains
stabilised by interactions that could not be possible taken into account in the RIG
construction were not considered. Protein chains that according to MSDSD, their
corresponding molecules can be assembled in non-monomeric biological units or other
molecules are bound to them in monomeric assemblies, were removed. Disulphide-
stabilised chains, multidomain chains, as well as folds not assigned to one of the main
four structural classes, were filtered. For practical reasons, apart from the multidomain
chains, monodomain ones consisted of more than one fragments, were removed as well.

To select structures of high quality, more filtering criteria were applied: (1) structures
are solved by X-ray crystallography; (2) the resolution is better than 3.0Å; (3) the R
factor is lower than 0.3; (4) sequences do not include any unknown or non-standard
amino acids; (5) all backbone and side-chain atomic coordinates must be available
for observed residues; (6) chains with any unobserved non-terminal residues are not
allowed; (7) chains containing amino acids of multiple locations (“altLoc” field in
ATOM records according to Protein Data Bank (PDB) [29] file format) are not allowed.
Criteria 4-7 ensured additionally an unbiased analysis of RIGs. Missing or ambiguous
conformational data affect the comparison of RIGs with respect to the representation
of the residue and the corresponding atomic interaction sites. Moreover, the presence
of unobserved residues bias the effect of filtering contacts based on residues’ sequence
separation. Out of the 30,872 PDB entries (66,757 chains), only 365 (534) were left
after applying all criteria.

Table 3.1: Summary of the selection process of the data set of protein structures. The
number of the PDB entries and chains in the merged data set that satisfy the corre-
sponding criteria is given. The corresponding percentage is reported in parenthesis.

Merged Data Set

Selection PDB Entries PDB Chains

All 30872 (100) 66757 (100)

Monomeric proteins not stabilised by any bound molecule 4797 ( 16) 5712 ( 9)
No disulphide-stabilised proteins 22989 ( 75) 50766 ( 76)
Single-fragment monodomains 24180 ( 78) 49366 ( 74)
Domains of one of the four main structural classes 27663 ( 90) 58539 ( 88)
X-ray proteins 26746 ( 87) 61408 ( 92)
Resolution better than 3.0Å 25071 ( 81) 54381 ( 82)
R-factor lower than 0.3 26110 ( 85) 59434 ( 89)
No unknown or non-standard amino acids 27789 ( 90) 59585 ( 89)
Coordinates for all atoms of observed residues 24027 ( 78) 49659 ( 74)
No unobserved non-terminal residues 26307 ( 85) 55160 ( 83)
No alternative coordinates 26056 ( 84) 57455 ( 86)

Remaining 365 ( 1) 534 ( 1)

The final selection was restricted to 60 proteins. Each structure was selected from
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different SCOP fold to ensure non-redundancy and conformational diversity. Although
the SCOP database is depleted in all-α domains, a data set of 15 proteins for each
one of the four main structural classes (all-α, all-β, α / β, α + β) was preferred. Such
a balanced data set would facilitate RIG analysis with respect to structural class.
From the folds of the remaining 534 domains and to maximise coverage, the 15 most
populated domains were selected for each of the four structural classes. The population
of a fold was defined based on the number of non redundant domains having that fold.
This was calculated from the ASTRAL [39] set of domains having less than 40%
sequence identity to each other. To break a tie, the number of domains of that fold
with less than 95% sequence identity was utilised. One protein per fold was finally
selected biasing towards: (1) similar CATH protein structure classification [63] with
respect to the number of assigned domains; (2) better resolution; (3) non intrinsically
disordered termini.

The oligomeric state of the selected folds was additionally manually verified by two
other sources of data: the Protein Quaternary Structure (PQS) database [120] and
the Protein Interfaces, Surfaces and Assemblies (PISA) server [161]. In cases whether
the putative momeric state was not confirmed by both, the specific protein chain was
removed from the data set and the selection procedure was repeated.

Summary

The final set of 60 protein chains encompasses a non-redundant, diverse in sequence and
structure, set of monomeric, monodomain structures. The selected non homologous
structures, each one of different fold, cover all main four structural classes equally. The
preference for highly populated folds ensures that the selected folds are well studied in
the literature, as well as a high coverage of the SCOP data set. The total number of
all SCOP domains assigned to one of the four main classes and with pairwise sequence
similarity less than 40% (95%) are 8,619 (13,676). The selected 60 folds cover 3,862
(6,503) domains representing more than 44% of all domains for both sequence similarity
thresholds. Although the applied criteria for high structural quality are very strict and
not commonly satisfied, the high coverage ensures the generality of this study.

The 60 protein folds, their population and the corresponding protein chains are listed
in Appendix Table B.1. Ribbon drawings of the selected structures are presented in
Figure 3.1. Appendix Figure C.1 shows the protein size distribution for certain size
ranges and with respect to the four structural classes: all –α, all – β, α / β, and α+ β.

3.2.2 The data set of RIGs

In total, we construct 56,700 RIGs based on 945 RIG definitions for each one of the
60 proteins in the data set. RIG definitions are based on combinations of 9 contact
types, 21 contact definitions and 5 contact ranges. The selected criteria cover almost
all RIG definitions as occurring in the literature (see Chapter 2) and capture various
different features of the protein structure.
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(1) 1a32A (2) 1ad6A (3) 1bkrA (4) 1cemA (5) 1d1mB

(6) 1elkA (7) 1iapA (8) 1i2tA (9) 1irmC (10) 1jmwA

(11) 1o3xA (12) 1oddA (13) 1sv4B (14) 1werA (15) 2bwbA

(16) 1agjA (17) 1dslA (18) 1eurA (19) 1grwA (20) 1kqxA

(21) 1ntgA (22) 1onlA (23) 1p3rA (24) 1phtA (25) 1pzcA

(26) 1qznA (27) 1wmxA (28) 1xndA (29) 2i1bA (30) 3msiA

Figure 3.1: Ribbon drawings of the selected proteins. Proteins 1-15, 16-30, 31-45,
and 46-60 are all-α, all-β, α / β, and α + β respectively. Structures are labeled with
their PDB identifier followed by the chain code. Drawn using distinct colours (blue-
red-grey) to indicate different secondary structure conformations (helix-strand-other).
(continued on next page)
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(31) 1ak1A (32) 1ba2A (33) 1c25A (34) 1cwyA (35) 1e6kA

(36) 1edeA (37) 1goaA (38) 1hyqA (39) 1jlnA (40) 1o8wA

(41) 1pdbA (42) 1ri5A (43) 1uiuA (44) 1v77A (45) 1yrgA

(46) 1erkA (47) 1fvaB (48) 1iu4A (49) 1iv9A (50) 1jssA

(51) 1oqzB (52) 1pxwA (53) 1r9hA (54) 1rf5A (55) 1t4oA

(56) 1ugmA (57) 1wg0A (58) 1wvnA (59) 1yprA (60) 2uczA

Figure 3.1: continued from previous page
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Contact types

The following nine contact types are selected: Cα, Cβ, Cα/Cβ, Cα.Cβ (Cαβ), BB,
SC, BB/SC, ALL, and Cα + SC. These contact types include backbone-backbone
(Cα, BB), backbone-sidechain (Cα/Cβ, BB/SC), and sidechain-sidechain (Cβ, SC)
mediated interactions. Moreover, both single-/dual- atom (Cα, Cβ, Cα/Cβ, Cα.Cβ) and
multi-atom (BB, SC, BB/SC, ALL) residue representations are analysed. Cα + SC
has been shown to be the optimal among various contact types with respect to the
performance of two-body potentials [30], and so it was included here.

Contact definitions

Although extremely low or high distance cutoffs are rarely used (Figure 2.3B), for the
sake of completeness we set cutoffs to range from 2.5Å to 15.0Å. Increments of 0.5Å
are used in the range [2.5, 10.0]Å and of 1.0Å in the less common [10.0, 15.0]Å.

Contact ranges

Based on the contact ranges frequently utilised in literature and the motivation behind
their choice (see Section 2.3.5), we select five representative contact ranges: either all
interactions are taken into account (all contact range) or interactions are filtered based
on sequence separation thresholds 2, 4 and 10 (|i− j| ≥ {2, 4, 10}) or interactions
within the same secondary structure fragment are not considered (si 6= sj). Non-
filtering is far the most frequent choice. Sequence separation threshold 2 removes
the sequence connectivity, threshold 4 excludes hydrogen bonds and effects of the
helix/turn content and threshold 10 potentially excludes interactions within the same
secondary structure based on the average length of α-helix and β-strand. The si 6= sj
contact range is expected to provide an accurate implementation of the latter.

3.2.3 Similarity

The choice of a similarity measure is a contentious one. Here, we primarily assess the
similarity of two RIGs using the Tanimoto coefficient T (also known as the extended
Jaccard coefficient) [284]. The similarity T between two RIGs i and j is defined as:

T (i, j) =
Nc

Ni +Nj −Nc

, (3.1)

where Ni and Nj are the number of edges of i and j RIGs respectively and Nc is
the number of common edges. The Tanimoto coefficient has been widely used in
chemoinformatics for comparison of molecules as well as for assessing the similarity of
RIGs in CMview, an interactive software tool for RIG visualisation and analysis [302].

We also utilise the Meet/Min coefficient M (also known as Simpson coefficient), that
is defined as:

M(i, j) =
Nc

min{Ni, Nj}
. (3.2)
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Both coefficients are based on the size of the common edges. Tanimoto normalises the
intersection size over the size of the union while Meet/Min over the size of the smaller
RIG. Maximum Meet/Min similarity value of 1 means that one graph is subgraph of
the other. Meet/Min coefficient allows us to assess the similarity unbiased from any
difference in size, i.e. the number of interactions.

Both similarity metrics consider only the presence of interactions. Another class of
metrics like the Hamming similarity treats equally the presence and absence of inter-
actions. As RIGs are sparse graphs (for reasonable selected distance cutoffs), such met-
rics would lead to non-intuitive high similarities due to dominance of non-interacting
residues. Moreover, Tanimoto and Meet/Min coefficients are “directional”. For ex-
ample, the distance cutoff value x that maximises the Tanimoto similarity of (Cα)all

xÅ

with (Cβ)all
8.0Å

does not necessarily imply that 8.0Å is the optimum value for distance

cutoff y that maximises (Cβ)all
yÅ

with (Cα)all
xÅ

. Although the intersection size is maxi-

mum for a specific pair of distance cutoffs, the denominator value in equations 3.1 and
3.2 changes based on the “reference” cutoff. Using the number of all possible interac-
tions as denominator to address this issue, would lead to non-intuitive low similarities
due to the sparseness of RIGs.

For each protein and for each contact range, we calculate both Tanimoto andMeet/Min
similarity for each pair of RIGs with respect to all pairs of contact types and across
all distance cutoffs. Specifically, for each of the five contact ranges and for each of the
36 pairs of contact types we compare 441 RIG definitions with respect to 21 different
cutoffs. Therefore, 5 x 36 x 441 = 79,380 pairs of RIG definitions are compared for
each protein. For each contact range and for each pair of RIG definitions we calculate
the mean similarity over the 60 proteins and construct the similarity matrix. Each cell
in this matrix contains the mean similarity for a specific pair of cutoffs, one for each
contact type. The similarity matrix is not symmetric.

Best similarity

Defining a single similarity value that “best” describes the overall similarity of two
contact types over all pairs of cutoffs and with respect to a certain contact range
is a difficult decision. Similarly, the definition of the “best” distance-intercept, the
distance difference of the cutoffs that provides the “best fit” between two contact types
is far from trivial. Both definitions are important as they can provide general rules
independent of the choice of cutoffs and facilitate the comparison of RIG definitions
across pairs of contact types. Various factors influence the choice for these definitions.
The “best” similarity and distance-intercept must be “undirectional” as opposed to
the similarity metrics mentioned above. The similarity value is expected to increase
as the distance cutoff increases and thus its maximum value does not best describe
the overall similarity of two contact types. The “best” distance-intercept might also
vary across different ranges of cutoffs. The “diagonal” in the similarity matrix that
maximises the mean similarity might be biased by high similarities at high cutoffs or
by outliers at low cutoffs.

We identify all local maxima in each similarity matrix S. A cell value S(i, j) is a local
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maximum if it is the maximum value over all values in row i and all values in column j.
In practise, local maxima are all “undirectional” similarities for specific pairs of cutoffs.
Driven by the fact that the mean similarity does not increases monotonically as the
cutoff increases (see Section 3.3.1), the “best” similarity is defined as the first local
maximum over the set of local maxima ordered by increasing cutoff. In case the local
maxima are monotonically increasing, the first local maximum value that corresponds
to lowest cutoffs is selected. The “best” distance intercept is defined based on the pair
of cutoffs for which the “best” similarity occurs. Although this approach is heuristic to
some extent, the “best” similarity and distance-intercept selected are manually verified
to be correct and correspond to reasonable cutoffs.

3.2.4 Network properties

The impact of RIG definition and in particular of contact range on connectivity, al-
though fundamental, has not been assessed so far. For each RIG, we calculate the
mean degree, the percentage of oprhan nodes, the number of connected components
and the size of the giant component. Orphan (isolated) nodes are nodes without any
edges. Connected components are induced subgraphs in which each node is reachable
by every other node. The largest connected component is commonly referred to as
the giant component. Both the number of connected components and the size of the
giant component are important network properties. We also calculate the characteris-
tic path length, the clustering coefficient and the assortativity coefficient for both the
whole RIG and the giant component.

3.2.5 Implementation

All RIGs analysed in this work are constructed using OWL [225]. OWL is a Java
library and a set of command line tools for the analysis of biological macromolecules.
It provides functionality for analysing protein sequences and structures using built-in
algorithms and interfaces to external tools and particular emphasis is given on analysis
of RIGs. This author is among the main developers of this Java library. OWL is
licensed under the GNU Lesser General Public License. The similarity calculation is
integrated in OWL. The calculation of all network properties is implemented separately
in a C++ standalone program based on the Boost Graph Library [265].

3.2.6 Remark

It is not feasible with respect to the scope of this thesis to present all results derived
from this exhaustive analysis. Key novel aspects are discussed and illustrated in the
results section. All network properties and all pair-wise RIG similarities calculated for
the complete data set of RIGs as well as additional figures are publicly available as
part of OWL [225].
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3.3 Results and Discussion

3.3.1 Similarity

In the direction of rationalising the selection of a RIG definition, similarity matrices
address two fundamental questions. Given two contact types and a specific contact
range, it is feasible to quantify how similar the RIG definitions are for a certain pair of
distance cutoffs, one for each contact type. Moreover, in a similarity matrix one may
determine the distance cutoff that maximises the similarity of a certain contact type
and range with a RIG definition of the same contact range, different contact type and
fixed distance cutoff.

The mean Tanimoto similarity matrices over all proteins are illustrated for all pairwise
comparisons between the four most frequent contact types (Cα, Cβ, SC, ALL), for all
distance cutoffs and with respect to all contact ranges. Figure 3.2 demonstrates the
similarity between Cα and ALL RIGs, while Appendix Figures C.2 - C.6 cover the
rest of the comparisons. Appendix Figure C.7 shows the similarity matrices for other
selected pairs of contact types and for all distance cutoffs but with respect to a single
contact range (all). It should be pointed out that all Tanimoto similarity matrices
for the complete data set of RIGs are available in OWL [225]. For brevity, unless
otherwise specified, the term similarity refers to the Tanimoto similarity.

Similarity matrices clearly show that different network representations of the same
protein are never 100% similar. With respect to the RIG definitions compared and
illustrated here and for all contact range, the lowest similarities are observed for the
pairs BB-SC, Cα-SC and Cβ-BB in order of increasing similarity. Their similarity
does not exceed 70% and can be as low as 50% for reasonable selected cutoffs. On the
contrary, the similarity of Cα and Cβ with Cα/Cβ and Cαβ can be as high as 90%. The
similarity is also quite robust across the different proteins for all network comparisons.
The standard deviation of the similarity has a mean value of 2.39± 2.16 (%) based on
all RIG comparisons.

Outliers in the similarity matrices are often observed in the lower left corner, i.e.
for low distance cutoffs. For example in Figure 3.2A, (Cα)all

4.0Å
and (ALL)all

2.5Å
have

98% similarity as at such low cutoffs the interactions simply reproduce the sequence
connectivity. In general, similarity values for cutoffs less than 4.0Å for single-/dual-
atom residue representations and less than 5.0Å for multi-atom residue representations
are not meaningful.

Dependence on RIG definition

As the distance cutoffs increase and the networks become denser, similarity increases.
This also means that the maximum similarity of a contact type x across all cutoffs
with a certain RIG definition y increases as the distance cutoff for y increases as well
(Appendix Figure C.8A). At the same time the distance cutoff for x that maximises
its similarity with y also increases (Appendix Figure C.8B). However, it must be noted
that the maximum similarity does not increase monotonically. From the similarity
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Figure 3.2: The mean similarity matrices between Cα and ALL RIGs, over all proteins, for all
distance cutoffs and for contact ranges: A. all, B. |i− j| ≥ 2, C. |i− j| ≥ 4, D. |i− j| ≥ 10, E.
si 6= sj. Grey filled circles correspond to local maxima.
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matrix in Appendix Figure C.2A, it is obvious that the maximum mean similarity of
(Cβ)all with (Cα)all increases up to 8.0Å for Cα, then decreases up to 9.5Å and increases
again. This behaviour is recurrent in almost all similarity matrices and probably results
from the first and second coordination shells occurring at different cutoffs for different
contact types. Therefore, the network density does not increase at the same rate with
distance cutoff for the contact types being compared.

When RIGs contain similar types of residue-residue interactions, then higher similarity
is observed as expected. For example, Cβ RIGs have higher similarity with SC RIGs
compared to Cα ones (Appendix Figures C.3 and C.4) as both Cβ and SC contain
side-chain mediated interactions. Similarly, Cα RIGs have higher similarity with BB
RIGs compared to Cβ (Appendix Figure C.7, panels A and B). Moreover, the more
fine-grained the residue representation in contact type selection, the lower similarity
is observed. For example, Cα and Cβ RIGs (Appendix Figure C.2A) have higher
similarity with each other compared to the pair of BB and SC RIGs (Appendix
Figure C.7C).

Contact range has significant effect in the observed similarity. Figure 3.3 shows the
maximum mean similarities of Cα RIGs for each distance cutoff with respect to ALL
RIGs of any cutoff, over all proteins, and for all contact ranges. The more interactions
are filtered based on contact range, the lower the maximum similarity. The lowest
similarity is almost always observed for sequence separation threshold of 10. Networks
of interactions between secondary structure elements exhibit similar level of similarity
with sequence separation thresholds 2 and 4. As the distance cutoff increases and es-
pecially at extremely high distance cutoffs, the effect of contact range diminishes. The
impact of contact range upon similarity is identical for many pairs of RIG definitions.

However, there are cases that do not follow this rule. The impact of contact range is
highly interrelated with the contact types being compared. For example, backbone-
mediated interactions are primarily short-range ones as opposed to side-chain mediated
interactions that are long-range. In Appendix Figure C.9A we plot the mean similari-
ties of BB, SC, and BB/SC RIGs with ALL ones, over all proteins, for 5.0Å distance
cutoff and for all contact ranges. The similarities of Cα, Cβ, and Cα/Cβ with Cαβ for
8.0Å are also plotted (Appendix Figure C.9B). As the sequence separation of interact-
ing residues being filtered increases, the lower the similarity of Cα and BB with Cαβ
and ALL respectively. On the contrary, the similarity of Cβ and SC with Cαβ and
ALL respectively either remains constant or even increases. It is striking also that
both ALL and Cαβ RIGs are dominated by the backbone-sidechain mediated inter-
actions and thus their similarity with BB/SC and Cα/Cβ respectively is extremely
robust with respect to contact range.

Contact range seems to have an effect on the standard deviation of the similarity. The
more interactions that are filtered based on contact range, the higher the deviation.
Deviation reaches its maximum mean value of 3.11 ± 2.68 for sequence separation
threshold of 10.
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Figure 3.3: The maximum mean similarities of Cα RIGs for each distance cutoff with
respect to ALL RIGs of any cutoff, over all proteins, for all contact ranges.

Dependence on structural class

Appendix Figure C.10 demonstrates the effect of structural class on the maximum
mean similarity and with respect to contact range. All –α Cα RIGs have significantly
higher maximum mean similarity with ALL RIGs compared to all – β Cα RIGs for all
and |i− j| ≥ 2 contact ranges. However, at higher sequence separation threshold 10
similarity decreases significantly more for all –α RIGs compared to all – β RIGs. An
unpaired Wilcoxon rank sum test for the maximum mean similarity of (Cα)

8.0Å
with

ALL RIGs of any cut-off for the all –α and for the all – β proteins yielded p-values
lower than 10−3 for the fore-mentioned differences. This is expected as in beta-sheet
structures interactions are formed between residues that are well separated in sequence
compared to alpha-helix structures that are dominated by short-range interactions.
Moreover, the effect of contact range is independent of structural class. The effects of
both contact range and structural class are summarised in Figure 3.4. The means of
the maximum mean similarities for all combinations of RIG definitions over all proteins
are plotted separately for each contact range and structural class.

Structural class also has an effect on the standard deviation itself. The standard
deviation has increasing mean values 1.39±1.25, 1.63±1.28, 1.96±1.61 and 2.56±2.06
in the order of α / β, all – β, α+ β, all –α structural classes. This order remains
consistent independent of contact range.
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Dependence on network density

High Tanimoto similarity is a result of high Meet/Min similarity and high agreement in
network density. Appendix Figure C.11 shows matrices with the mean Tanimoto sim-
ilarity, mean Meet/Min similarity and mean percentage difference in density between
(Cβ)all and (Cα)all RIGs, over all proteins, and for all distance cutoffs. Distance cutoff
value 7.5Å maximises the mean Tanimoto similarity of (Cα)all with (Cβ)all

7.0Å
to 67%

having 91% mean Meet/Min similarity and 21% mean percentage difference in density.
It is obvious that (Cα)all

6.5Å
has the highest agreement in density (96%). However, only

81% of the (Cα)all
6.5Å

RIGs overlaps on average with the (Cβ)all
7.0Å

RIGs leading to lower

Tanimoto similarity of 65%. This is a clear example that the agreement in network
density itself is necessary but not adequate condition for high Tanimoto similarity.

Similarity for commonly used RIG definitions

Due to the avalanche of information provide here and in order to facilitate the selection
of RIG definition, we provide look up tables for the ten most frequent basic RIG
definitions and the four most frequent contact types as determined in Sections 2.3.2
and 2.3.4. Table 3.2 provides the mean Tanimoto similarities for all pairs of the most
frequent basic RIG definitions separately for each contact range. Their similarity lies
in the range [18%, 80%] demonstrating the importance of the work presented here. In
Table 3.3 we present for each one of four most frequent contact types (Cα, Cβ, SC, and
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Table 3.2: Mean Tanimoto similarity for all pairs of the ten most frequent basic RIG
definitions for all contact ranges (all, |i− j| ≥ 2, |i− j| ≥ 4, |i− j| ≥ 10, si 6= sj).

RIG definition A RIG definition B all |i− j| ≥ 2 |i− j| ≥ 4 |i− j| ≥ 10 si 6= sj

(Cα)
6.0Å

(ALL)
4.0Å

62 50 32 30 44

(Cα)
6.0Å

(ALL)
4.5Å

57 45 29 28 40

(Cα)
6.0Å

(ALL)
5.0Å

52 40 26 26 36

(Cα)
6.0Å

(ALL)
6.0Å

43 32 20 20 28

(Cα)
7.0Å

(ALL)
4.0Å

73 65 52 41 57

(Cα)
7.0Å

(ALL)
4.5Å

74 67 52 41 57

(Cα)
7.0Å

(ALL)
5.0Å

71 64 49 41 56

(Cα)
7.0Å

(ALL)
6.0Å

62 55 41 36 48

(Cα)
8.0Å

(ALL)
4.0Å

70 62 54 46 56

(Cα)
8.0Å

(ALL)
4.5Å

75 69 59 51 62

(Cα)
8.0Å

(ALL)
5.0Å

76 70 58 53 64

(Cα)
8.0Å

(ALL)
6.0Å

71 66 54 51 61

(Cα)
8.5Å

(ALL)
4.0Å

65 58 49 44 52

(Cα)
8.5Å

(ALL)
4.5Å

72 66 57 52 60

(Cα)
8.5Å

(ALL)
5.0Å

75 71 61 56 64

(Cα)
8.5Å

(ALL)
6.0Å

75 70 61 58 66

(Cβ)
8.0Å

(ALL)
4.0Å

73 66 58 51 60

(Cβ)
8.0Å

(ALL)
4.5Å

79 74 67 62 69

(Cβ)
8.0Å

(ALL)
5.0Å

78 74 67 66 70

(Cβ)
8.0Å

(ALL)
6.0Å

71 66 59 60 63

(Cβ)
8.0Å

(Cα)
6.0Å

56 44 29 28 39

(Cβ)
8.0Å

(Cα)
7.0Å

75 69 57 47 60

(Cβ)
8.0Å

(Cα)
8.0Å

80 75 69 63 70

(Cβ)
8.0Å

(Cα)
8.5Å

77 73 67 65 69

(SC)
4.5Å

(ALL)
4.0Å

36 41 52 57 48

(SC)
4.5Å

(ALL)
4.5Å

40 45 60 68 55

(SC)
4.5Å

(ALL)
5.0Å

35 39 50 58 47

(SC)
4.5Å

(ALL)
6.0Å

29 31 36 42 36

(SC)
4.5Å

(Cα)
6.0Å

19 19 20 18 21

(SC)
4.5Å

(Cα)
7.0Å

24 25 29 27 27

(SC)
4.5Å

(Cα)
8.0Å

26 28 34 35 32

(SC)
4.5Å

(Cα)
8.5Å

26 27 32 34 31

(SC)
4.5Å

(Cβ)
8.0Å

33 36 44 47 42

45



T
ab

le
3.

3:
D

is
ta

n
ce

cu
to

ff
s

th
at

m
ax

im
is

e
m

ea
n

T
an

im
ot

o
si

m
il
ar

it
y

fo
r

th
e

fo
u
r

m
os

t
fr

eq
u
en

t
co

n
ta

ct
ty

p
es

(C
α
,
C
β
,
S
C

,
an

d
A
L
L

)
an

d
w

it
h

re
sp

ec
t

to
th

e
te

n
m

os
t

fr
eq

u
en

t
b
as

ic
R

IG
d
efi

n
it

io
n
s.

B
as

ic
R

IG
d
efi

n
it

io
n
s

ar
e

sh
ow

n
in

co
lu

m
n

1
w

h
il
e

d
is

ta
n
ce

cu
to

ff
s

ar
e

p
ro

v
id

ed
w

it
h

re
sp

ec
t

to
al

l
5

co
n
ta

ct
ra

n
ge

s
(a

ll
,
|i
−

j|
≥

2,
|i
−

j|
≥

4,
|i
−

j|
≥

10
,

s i
6=

s j
).

C
u
to

ff
s

fo
r

id
en

ti
ca

l
co

n
ta

ct
ty

p
es

co
m

p
ar

ed
ar

e
n
ot

sh
ow

n
as

tr
iv

ia
l.

R
IG

d
efi

n
it

io
n

a
ll

|i
−

j|
≥

2
|i
−

j|
≥

4
|i
−

j|
≥

10
s i
6=

s j

C
α

C
β

S
C

A
L
L

C
α

C
β

S
C

A
L
L

C
α

C
β

S
C

A
L
L

C
α

C
β

S
C

A
L
L

C
α

C
β

S
C

A
L
L

(C
α
) 6
.0
Å
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ALL) the distance cutoffs that maximise their similarity with the ten most frequent
RIG definitions, separately for each contact range. This table allows researchers to
select the optimal cutoff for their favourite contact type and with respect to published
work based on a certain RIG definition.

3.3.2 Best similarity

Best similarity matrices summarise in a higher, more abstract level the pair-wise sim-
ilarities between all contact types for a certain contact range independent of distance
cutoffs. Each cell in the upper triangular part of the matrix contains the “best” simi-
larity, the value that describes “best” the overall similarity of two contact types over
all pairs of cutoffs. The lower triangular part contains the cutoffs at which the “best”
similarities occurs and their difference or else distance-intercept. The values of the
matrix are calculated as described in Section 3.2.3. Figure 3.5 shows the best simi-
larity matrix for all pairs of contact types with respect to all contact range and all
proteins. The matrices for the other contact ranges as well as structural class specific
matrices are publicly available in OWL [225].

Contact types
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Figure 3.5: “Best” mean similarities and distance-intercepts between all contact types,
over all proteins, and for all contact range. The upper triangular part of the matrix
contains the best similarities. The lower triangular contains the cutoffs at which the
best similarity occurs and their difference. For star denoted cells, the cutoffs are
selected based on the first local maximum over the local maxima in the similarity
matrix. Otherwise, the first local maximum in the similarity matrix is used.

The “best” similarities are in agreement with previous observations. For all contact
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range and according to Figure 3.5, the lowest “best” similarities are observed for the
pairs BB-SC and Cα-SC, while Cα-Cα/Cβ, Cα-Cαβ, Cβ-Cα/Cβ, Cβ-Cαβ, Cα/Cβ-Cαβ,
BB/SC-ALL, and SC-Ca+SC pairs have the highest “best” similarities. The highest
similarity of 96% occurs between SC and Ca + SC and the lowest similarity of 55%
between BB and SC RIGs.

Although the approach for the calculation of the “best” similarity matrices is heuristic
to some extent, the “best” similarity and distance-intercept values have been manually
verified to be correct and to correspond to reasonable cutoffs. For example, the best
distance intercept between (Cα)all and (Cβ)all RIGs is 0, i.e. identical distance cutoffs
provide the best similarity. This can be confirmed by visual inspection of the similarity
matrix in Appendix Figure C.2A. Other approaches such as selecting the diagonal with
the highest average mean similarity lead to non optimal distance-intercepts.

3.3.3 Connectivity

Although the effect of the contact range on network properties like the degree distribu-
tion, the characteristic path length and the clustering coefficient has been previously
studied, the effect on fundamental properties that capture the overall network connec-
tivity has not been investigated. Here, we calculate four network properties, the mean
degree, the mean percentage of orphan residues, the mean number of connected com-
ponents and the mean giant component size as the percentage of the protein length,
over all proteins and for each contact range.

Table 3.4 displays the mean values for the ten most frequent basic RIG definitions and
for all contact ranges. For the highest sequence separation threshold, the mean degree
is decreased significantly, the percentage of orphan residues lies in the range [12%,
55%], there are up to eight connected components, and the giant component contains
from 33% up to 88% of all residues. These observations are of dual importance. First,
any network analysis of long-range RIGs that aims to unravel important residues
for protein function, stability and folding must take into consideration the effect of
orphan residues in the sensitivity of the approach. Second, residues may lie in separate
components in the network and thus rigorous calculation of network properties must
treat with caution non reachable nodes. Network analysis on the whole network might
yield different results compared to analysis on individual connected components.

We further examine the effect of distance cutoff, contact range and structural class on
the fore-mentioned network properties. Appendix Figures C.12 - C.15 show the mean
values over all proteins for Cα RIGs and all distance cutoffs and with respect to each
contact range and each structural class separately. Distance cutoff and contact range
have opposite effects. As the distance cutoff increases, the mean degree increases, the
number of orphan residues decreases, the number of connected components decreases
and the size of the giant component increases. However, as the sequence separation of
interacting residues being filtered increases, the exactly opposite effect occurs. Most
important and as similarly observed for similarity, the effect of the contact range is
more severe for all –α proteins than for all – β proteins. All –α proteins have signifi-
cantly higher percentage of orphan residues and lower giant component size compared
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Å

1
0

8
5

4
6

0
0

4
27

7
1

1
2

2
1

10
0

10
0

93
70

92

(C
α
) 8
.5
Å
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to all – β for (Cα)
|i−j|≥10

8.0Å
and (Cα)

si 6=sj

8.0Å
RIGs and significantly higher number of con-

nected components for (Cα)
|i−j|≥10

8.0Å
RIGS. Moreover and independent of contact range,

the mean degree in all –α (Cα)
8.0Å

RIGs is significantly lower compared to all – β

(Cα)
8.0Å

ones. An unpaired Wilcoxon rank sum test for all network properties of

(Cα)
8.0Å

RIGs for the all –α and for the all – β proteins yielded p-values lower than

10−3 in the fore-mentioned cases. Figure 3.6 clearly illustrates the difference in the
number of non-orphan residues and in the giant component size between all –α and
all – β proteins for (Cα)|i−j|≥10 RIGs.
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Figure 3.6: Mean number of non-orphan residues (solid lines) and giant component
size (dashed lines) for (Cα)|i−j|≥10 RIGs, over all proteins, with respect to all structural
classes.

All network properties mentioned in Section 3.2.4 have been calculated for all proteins
and are publicly available in OWL [225].

3.3.4 Small world character

Greene and Higman [106] have shown that long-range RIGs exhibit no small world
character. Here, we examine whether this conclusion is valid also with respect to the
giant component of long-range RIGs. As in [106], we calculate the characteristic path

length L and clustering coefficient C for (ALL)
|i−j|≥10

5.0Å
RIGs as well as for random and

regular graphs with the same number of nodes N and the same mean degree k as the
RIGs. The C and L values for random and regular graphs are calculated based on the
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following formulas [303]:

Crandom ∼ k

N

Lrandom ∼ ln(N)

ln(k)

Cregular ∼
3(k − 2)

4(k − 1)

Lregular ∼
N(N + k − 2)

2k(N − 1)

The results are shown in Figure 3.7, confirming that long-range interaction networks
and their giant components essentially do not differ from random networks. The
choice of RIG definition has no effect on the non small-world character of the giant
components. In Figure 3.7, giant components in both (ALL)

|i−j|≥10

5.0Å
and (Cα)|i−j|≥10

RIGs have small clustering coefficient.
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Figure 3.7: Mean characteristic path length and clustering coefficient for giant compo-
nents in (ALL)

|i−j|≥10

5.0Å
RIGs (red circles) and (Cα)

|i−j|≥10

8.0Å
RIGs (red squares), and for

random (green circles/squares) and regular (blue circles/squares) networks with equal
number of nodes and edges as the RIGs, over all proteins. Values for random and
regular networks are obtained based on a theoretical model [318]. Error bars represent
the standard deviations over all 60 proteins.
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3.3.5 Comparison with related work

Bartoli et al. [21] have shown that (Cα)all
7.0Å

RIGs are most similar to (ALL)all
5.0Å

ones with respect to the mean Hamming similarity over a large set of 1,753 non-
redundant protein structures. The distance cutoffs for the Cα contact type analysed
ranged from 6.0Å to 9.0Å in increments of 0.5Å. Moreover, they demonstrated that
the proposed cutoff maximises their similarity with respect to clustering coefficient C
and characteristic path length L and that actually (Cα)all

7.0Å
and (ALL)all

5.0Å
RIGs have

exactly the same values: CCα = 0.56± 0.03, LCα = 5.3± 1.4, CALL = 0.56± 0.04 and
LALL = 5.3± 1.4.

However, our calculations demonstrate that (Cα)all
8.0Å

RIGs have the maximum mean

Tanimoto and Hamming similarity with (ALL)all
5.0Å

RIGs (Appendix Figure C.16A).

The 8.0Å distance cutoff also maximises their similarity with respect to their small-
world character (Appendix Figure C.16B). However, the C and L values are not identi-
cal: CCα = 0.56±0.03, LCα = 4.15±0.93, CALL = 0.53±0.03 and LALL = 3.71±0.79.
We hypothesise that the difference in the results is due to the difference in the data sets
of protein structures and especially with respect to their structural class composition.
The lack of missing or ambiguous coordinates in our high quality data set ensures the
most accurate assessment of the similarity between RIGs of different contact types.

Heringa and Argos [121] as well as Brinda and Vishveshwara [41] have also studied
connected components that emerge after applying a filtering threshold on weighted
edges of RIGs that represent the strength of a residue-residue interaction. However,
this analysis differs from connected components that arise from applying sequence
separation thresholds on commonly used network representations of protein structures
and thus, comparison was not feasible.

3.4 Conclusion

The choice of the network representation of a protein structure is not trivial. Here,
we rationalise this choice by comparing and analysing 56,700 RIGs resulting from 945
RIG definitions for a representative data set of 60 protein structures.

We assess quantitatively the similarity of all RIG definitions and we demonstrate that
the similarity between commonly used network representations can be in certain cases
quite low. The observed similarity levels re-enforce the importance of the choice of RIG
definition. An arbitrarily chosen definition will not necessarily reproduce published
results based on certain other definitions. Furthermore, the quest for an optimal
definition is of great importance and can lead to results of higher sensitivity and
specificity with respect to a certain application.

We also analyse the effect of contact type, distance cutoff, contact range, and structural
class on similarity between RIGs. Decrease in the granularity of residue representa-
tions, increase of the distance cutoffs and less filtering of interactions with respect to
contact range lead to higher similarity. Increased helical content also bias the level
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of similarity, being high when short-range interactions are included and low when
excluded. Short-range interactions are dominant in helical structures compared to
beta-sheet structures where long-range interactions are formed.

Contact range and structural class affect the connectivity of RIGs. Network properties
like the number of orphan residues, the number of connected components, and the
giant component size, have never been systematically studied before. As the sequence
separation threshold increases, more residues are excluded from the RIG and residues
may lie in “separate” components. The impact is more severe for all –α proteins
than for all – β proteins. Orphan residues might significantly affect the sensitivity of
network-based methods, while pairs of residues that cannot be reached from each other
have to be treated with caution for certain network analyses.

The data set analysed contains highly populated folds; folds that are well studied
and that provide high coverage of the SCOP database. The high coverage as well
as the low standard deviations of the observed similarities across all proteins ensure
the generality of this work. A preliminary investigation of similarity and connectivity
based on a data set of nine different protein folds (see Data Set 1 in Section 4.2.3)
leads to qualitatively identical conclusions. However, it must be pointed out that the
structural class composition of a data set as well as the selection of proteins that
are stabilised by interactions not commonly modelled in RIGs may bias any network
analysis.

Overall, we establish a unifying view for the network representations of protein struc-
tures. We provide researchers with open source software tools for converting protein
structures to networks and for subsequent network analysis. The proposed data set can
be utilised in studies that aim to optimise the RIG definition for a certain application
[78]. Our large-scale analysis allows the rational selection of RIG definition as well as
the rational comparison of results produced using different definitions. In future we
will extend our work to multi-domain proteins as well as to protein complexes.
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Chapter 4

Optimized null model and motif
detection for protein structure
networks

Summary

Finding a well-fitting null model is crucial for assessing the statistical sig-
nificance of topological features observed in networks. Thus far, the chal-
lenge of finding an optimised null model for Residue Interaction Graphs
has not been addressed. Degree-preserving randomised models have been
widely used for analysis of other biological networks. However, such a sin-
gle summary network property may not be detailed enough to capture the
complex topological characteristics of protein structures and their network
counterparts. Here, we investigate a variety of topological properties to
find a well fitting null model for RIGs. Two graphlet-based properties are
highly constraining measures of the topological similarity between two net-
works. The RIGs are derived from a structurally diverse protein data set
at various distance cutoffs and for different contact types. We compare
the network structure of RIGs to several random graph models. We show
that 3-dimensional geometric random graphs, that model spatial relation-
ships between objects, provide the best fit to RIGs. We investigate the
relationship between the strength of the fit and various structural features.
Geometric random graphs capture the network organisation of RIGs bet-
ter for larger proteins and for proteins of the same size, the fit is better
when helical content is lower. The tighter packing of the solvent accessible
surface in thermostable proteins leads to a worse fit, while the quaternary
association has no significant impact. A null model has important impli-
cations for finding statistically significant subgraphs (motifs) that play an
important role in protein folding, stability and function. We demonstrate
that choosing geometric graphs as a null model results in the most spe-
cific identification of motifs. To our knowledge, this is the first study that
addresses the challenge of finding an optimised null model for RIGs.

54



4.1 Introduction

Much attention has recently been given to the statistical significance of topological
features observed in biological networks. In order to assess the statistical significance,
modelling biological networks and finding a well-fitting null model is of crucial im-
portance. A good model should generate graphs that resemble real data as closely as
possible across a wide range of network properties. Only a well-fitting network model
that precisely reproduces the network structure and laws through which the network
has emerged can enable us to understand and replicate the underlying biological pro-
cesses. A good null model can be used to guide biological experiments in a time-
and cost-optimal way and to predict the structure and behaviour of a system. Since
incorrect models lead to incorrect predictions, it is vital to have as accurate a model
as possible.

Thus far, graph null models that take into account the network size and the overall
degree distribution have been formulated in the field of protein-protein interaction
networks [186, 200]. These random models were utilised as the reference state to
identify interaction patterns that are over-represented in the experimentally observed
networks [200] and to compare the behaviour of certain topological properties [186].
It has been argued that such a realistic but simple approach for defining a null model
might wrongly identify as significant the motifs that result from other topological
features not taken into account by the null model [10].

As already discussed, network analyses of protein structures have been mainly focused
on the degree distribution. It has been shown that the Poisson probability model
best describes the degree distribution of RIGs [12, 70, 106]. However, when only
long-range interactions are considered, an exponential distribution with a single-scale,
fast decaying tail is observed. This distribution exhibits, to some extent, scale-free
properties [106]. Moreover, a random rewiring of RIGs, that keeps the number of
contacts of each residue fixed, affects the characteristic path length and clustering
coefficient and thus such random networks loose the observed small-world character of
RIGs [12].

Despite the fact that previous network analyses of RIGs have provided valuable insight,
a null model that captures the network organisation of protein structures has not been
established. Here, we address this important challenge of finding an appropriate null
model for protein structure networks. Degree-preserving null models may not be de-
tailed enough to capture the complex topological characteristics of protein structures.
In this direction, we utilise two sensitive graph theoretic measures based on graphlets
for assessing the topological similarity between two networks. These measures, the rel-
ative graphlet frequency distance and the graphlet degree distribution agreement, have
been successfully applied to modelling protein-protein interaction networks [240, 241].
Moreover, we illustrate the importance of choosing an appropriate null model in motif
detection. The only related work suggested that a coarser representation of protein
structures, in which nodes correspond to secondary-structure elements, has the same
network motifs as does a variant of geometric graphs [199].
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4.2 Methodology

Here, we present how we determine which random graph keeps the observed topolog-
ical characteristics of RIGs. We compare each RIG with five different random graph
models. To overcome the limitations introduced by using a single network property
(such as the degree distribution), we perform a fine-grained analysis of RIGs that is
based on a multitude of network properties. We perform systematic analysis on vari-
ous RIG definitions and on various fold types to ensure the generality of our analysis.
In total, we compare 1,973 RIGs to 295,950 network models. Also, we examine how
protein size, structural class, protein thermostability, and quaternary structure affect
the strength of the fit for the best null model. Finally, we perform network motif
search in RIGs with different random graph models to demonstrate the importance of
choosing our proposed null model. In the following, the graph models and properties
and all individual steps are explained in detail.

4.2.1 Network models

For each RIG, we evaluated the fit of five different random graph models. In Erdös-
Rényi random graphs (“ER”), edges between pairs of nodes are added uniformly at
random with the same probability p. “ER” graphs are generated by using the LEDA
[188] implementation of Gn,m, a random graph G with n nodes and m edges. Random
graphs with the same degree distribution as the data (“ER-DD”) are generated by
using the “stubs” method. “Stubs” are attributed to the nodes based on the degree
distribution of the real network and each edge is created at random between nodes
with stubs [214]. Scale-free networks (“SF-BA”) are generated by using the Barabási-
Albert preferential attachment model [18]. Geometric random graphs are defined as
follows: nodes correspond to uniformly randomly distributed points in a metric space
and edges are created between pairs of nodes if the corresponding points are close
enough in the metric space according to some distance norm. A variant of geometric
random graphs in this study uses 3-dimensional Euclidean boxes and the Euclidean
distance norm (“GEO-3D”). Finally, “stickiness network model” (“STICKY”) is based
on stickiness indices, numbers that summarise node connectivities [242].

Model networks were generated and compared to RIGs using GraphCrunch [192].
For all random graph models, parameters are chosen in such way that each of the
generated model networks that corresponds to a RIG has the same number of nodes
and the number of edges within 1% of those in the RIG. We generated 30 networks
per random graph model for each of the 1,973 RIGs. Thus, in addition to analysing
1,973 RIGs, we also analysed 5× 30× 1, 973 = 295, 950 model networks corresponding
to the RIGs and compared them to the RIGs.

4.2.2 Network properties

Exact comparisons of large networks are computationally infeasible due to NP com-
pleteness of the underlying subgraph isomorphism problem [58]. Thus, to evaluate the
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fit of the data to the model networks, we compare the RIGs to the model networks
with respect to easily computable network properties. We use GraphCrunch [192] to
evaluate the fit of different models to the data. RIGs are compared to the correspond-
ing model networks with respect to two graphlet-based local and five standard global
network properties.

Local network properties

We used the following two measures of local structural similarities between two net-
works: relative graphlet frequency distance (RGF-distance) [241] and graphlet degree
distribution agreement (GDD-agreement) [240]. They have been introduced by Pržulj
and are based on graphlets. Since the number of graphlets on n nodes increases expo-
nentially with n, the RGF-distance and GDD-agreement computations are based on
2- to 5-node graphlets (Figure 1.3).

RGF-distance compares the frequencies of the appearance of all 30 2- to 5-node
graphlets in two networks. The RGF-distance between two networks G and H is
defined as:

RGF (G,H) =
29∑
i=0

|Fi(G)− Fi(H)|, (4.1)

where

Fi(G) = −log Ni(G)∑29
i=0Ni(G)

(4.2)

and Ni(G) is the number of graphlets of type i in graph G. The distance is based
on the differencies between the relative frequencies of the graphlets and logarithmic
function ensures that the distance is not dominated by the most frequent graphlets.
The smaller the RGF-distance, the more similar two networks are.

GDD-agreement generalises the notion of the degree distribution to the spectrum of
graphlet degree distributions (GDDs). The degree distribution measures the number
of nodes of degree k, i.e. the number of nodes “touching” k edges, for each value of
k, where an edge is the only graphlet with two nodes. GDDs generalise the degree
distribution to other graphlets: they measure for each graphlet on 2 to 5 nodes, the
number of nodes “touching” k graphlets at a particular node. The “symmetries”
between nodes of a graphlet need to be taken into account. This is summarised by
the 73 automorphism orbits for 2- to 5-node graphlets (see Section 1.7). For each
of the 73 orbits j and for graph G, we measure the jth GDD or else the sample
distribution djG(k), i.e. the distribution of the number of nodes “touching” k times the
corresponding graphlet at orbit j. The distribution is normalised and defined as

N j
G(k) =

djG(k)

k∑∞
k=1

djG(k)

k

. (4.3)

Dividing by k decreases the contribution of more frequent orbits, while the denomi-
nator normalises the distribution to the fraction of the total area under the curve for
specific k. The normalised jth GDDs of two networks for all j orbits are compared
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and combined into the GDD-agreement of two networks. Specifically, the agreement
between networks G and H for a specific orbit j is defined as:

Aj(G,H) = 1−Dj(G,H) = 1− 1√
2

(
∞∑
k=1

[
N j
G(k)−N j

H(k)
]2)1/2

. (4.4)

The agreement is in [0, 1], where 1 means that the two networks are identical with
respect to jth GDD-agreement. The total GDD-agreement is the arithmetic or the
geometric average of the jth GDD-agreements for all j. Since GDD-agreement en-
compasses the fit of each of the 73 GDDs of the networks being compared, it is a
very strong measure of structural similarity between two networks. The larger the
agreement, the more similar the networks.

As our analysis is consistent with respect to both the arithmetic and geometric ver-
sions of GDD-agreement, hereafter we present results only for the geometric GDD-
agreement.

Global network properties

We used the following global network properties: the degree distribution, the average
clustering coefficient, the clustering spectrum, the average network diameter (shortest
path length), and the spectrum of shortest path lengths. These properties have been
explained in detail in Section 1.4. The distribution of the average clustering coefficients
of degree k nodes is the clustering spectrum C(k). The spectrum of shortest path lengths
is the distribution of shortest path lengths between all pairs of nodes in a network.

4.2.3 Data sets

We analyse three data sets of RIGs for identifying the best-fitting null model and for
assessing the quality of its fit with respect to various structural features. In total, we
analyse 1,973 RIGs corresponding to 1,469 proteins.

Best-fitting null model

First, we analyse single chain RIGs for nine structurally diverse proteins with the
following PDB [28] codes, followed by the chain identifier whenever applicable: 1agd:B,
1fap:B, 1ho4:A, 1i1b, 1mjc, 1rbp, 1sha:A, 2acy and 3eca:A. Atomic coordinates were
taken from the Macromolecular Structure Data Search Database (MSDSD) [36]. All
structures are solved by X-ray crystallography and their resolution lies in the range
[1.5, 2.7] Å. These proteins are a subset of the non-redundant data set that Greene
and Higman examined [106]. Specifically, they analysed 65 proteins that cover nine
different protein folds, all structural classes and the three kingdoms of life. Moreover,
these proteins are diverse in terms of protein sequence and function as well. Since
our main concern is our results to be applicable for structurally diverse proteins, we
selected one structure from each protein fold randomly for further analysis.
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We perform systematic analysis on multiple RIG definitions. We consider three multi-
atom residue representations, BB, SC and ALL contact types, and we do not apply
any filtering with respect to contact range. We set distance cutoffs to range from 4.0Å
to 9.0Å in increments of 0.5Å. Most of the studies that involve RIGs with multi-atom
residue representation use distance cutoffs that lie in the range [4.0, 5.0] Å [106, 122,
201, 230, 267]. This is also evident from the analysis in Section 2.3.3 (Figure 2.3B).
Therefore, in this range, we choose a finer increment of 0.1Å. For low distance cutoffs of
2Å, 2.5Å, 3Å, and 3.5Å, RIGs with BB contact type reproduce the polypeptide chain
connectivity while SC RIGs become highly disconnected and sparse. We excluded
from our analysis all RIGs defined with distance cutoff less than 4.0Å to ensure that
in all networks at least 80% of the residues have non-covalent contacts. In total and
with respect to this data set, we analyse 9× 19× 3 = 513 RIGs for the nine proteins,
for 19 distance cutoffs and the three contact types (BB, SC, and ALL). Henceforth,
we refer to this data set as Data Set 1.

Next, to ensure that our results are applicable to a wide range of proteins, we analyse
an additional data set of 1,272 RIGs corresponding to 1,272 proteins. These RIGs are
constructed with the most commonly used multi-atom basic RIG definition, (ALL)all

5.0Å

(Figure 2.5). This non-redundant, representative set of X-ray structures from the PDB
was pre-compiled by the PISCES server [315]. All proteins have resolution better than
1.8Å, reliability factor (R-factor) less than or equal to 0.25, and their pairwise sequence
similarity does not exceed 20%. Henceforth, we refer to this data set as Data Set 2.

Quality of the fit

We examine whether the strength of the fit of the best-fitting null model to RIGs
changes with respect to protein size and structural class. We use Data Set 2 and we
analyse 744 out of the 1,272 proteins that consist of domains with identical structural
class and for which SCOP [210] annotation covers more than 90% of the residues. Out
of 744 proteins, 141 are all –α, 161 are all – β, 221 are α / β, and 221 are α+ β. The
distribution of protein size for the analysed proteins with respect to their structural
classes is presented in Appendix Figure D.36A. Only 47 out of the 744 proteins are
multi-domain ones and thus are unlikely to bias our analysis.

Furthermore, we analyse the relationship between the strength of the fit of GEO-3D
to RIGs and the quaternary structure of the corresponding proteins. Out of the 744
proteins, we examine 75 pairs of monodomain monomeric and monodomain multimeric
proteins. Proteins within a pair are of equal size and belong to the same structural
class, while proteins across pairs may differ in size and class. Proteins in different pairs
have from 64 to 390 residues, with average size of 157± 77 residues. 13 protein pairs
are all –α, 12 are all – β, 21 are α / β, and 29 are α+ β.

Finally, we study the relation between structural features of thermostable proteins and
the degree of fitting. We analyse a high quality data set of 94 pairs of T. maritima
proteins, a representative of thermophiles, and their close homologs from mesophilic
species [249]. Although these mesophilic homologs are distinguished to 62 orthologs
and 32 paralogs, the statistically significant differences for structural features respon-
sible for thermostability are consistent in both cases [249]. Therefore, we analyse all
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94 pairs as a single data set. We construct (ALL)all
4.5Å

RIGs. Although the same basic

RIG definition was used by Robinson-Rechavi et al. [249], our RIG definition is differ-
ent with respect to contact range; we do not filter out interactions between residues
that are less than four residues apart in the primary sequence. Henceforth, we refer
to this data set as Data Set 3.

4.2.4 Motif detection

To illustrate the importance of the choice of the appropriate null model for a network-
based analysis of protein structures, we examine the issue of identifying network motifs
in RIGs. Since motifs (anti-motifs) are over-represented (under-represented) subgraphs
that appear in a real-world network at frequencies that are much higher (lower) than
those of their randomised counterparts [200], motif discovery requires comparing real-
world networks with randomised ones, i.e. with model networks. Thus, using an
inadequate model may identify as over-represented (under-represented) subgraphs that
otherwise would not have been identified as motifs (anti-motifs).

We use mfinder [149] to search for all undirected subgraphs on 3, 4, and 5 nodes
(Appendix Figure D.39) in nine (ALL)all

5.0Å
RIGs corresponding to the nine proteins of

Data Set 1. In addition to our five network models, we use the three standard models
supported by mfinder. We denote these three models as follows: “UA-ER-DD” is the
random graph model that preserves the degree distribution of a real-world network,
while “CLUST” and “MET” network models, in addition to the degree distribution,
preserve the clustering coefficient of all nodes and the number of appearances of all
3-node subgraphs of a real network, respectively.

We detect the statistically significant subgraphs according to their P -values, absolute
Z-scores, and absolute M -factors, the motif selection criteria proposed by Milo et al.
[200] and Kashtan et al. [149]. P -value is defined as:

Pi = Prob[(Nreali ≤ Nrandi) ∪ (Nreali > Nrandi)] < 0.01, (4.5)

where Nrandi is the number of appearances of the pattern i in a randomised net-
work, and Nreali is the number of its appearances in the real network. If the sub-
graph i is over-represented (under-represented) in the real network with respect to
randomised networks with probability lower than 0.01, then the subgraph is a mo-
tif (anti-motif). To estimate the empirical p-value, we generate 1,000 networks per
random graph model.

For plotting purposes as well as for the significance profiles described below, we use
Z-scores instead of P -values. Z-score is defined as:

|Zi| =
|Nreali − N̄randi|

sd(Nrandi)
, (4.6)

where N̄randi is the mean number of appearances of the pattern i in the randomised
networks, and sd(Nrandi) is their standard deviation.
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M -factor is defined as:

|Mi| =
|Nreali − N̄randi|

N̄randi
> 0.1. (4.7)

The percentage difference between the number of appearances in the real and the
randomised networks must be higher than 0.1. M -factor ensures that subgraphs with
just small standard deviation will not be considered misleadingly as significant.

We do not consider the third criteria for network motif selection – uniqueness. Unique-
ness is the number of times a subgraph appears in the real network with disjoint set
of nodes. Even if uniqueness is less than 4, which is the default threshold in mfinder,
there is no reason to reject such subgraphs as non-significant. On the contrary, in
RIGs we do not expect motifs that are biologically important to occur many times
with completely different set of residues. When a subgraph does not appear in ran-
domised networks of a specific network model, we exclude that subgraph from further
motif analysis for that network model.

Also, we address the question of whether different random graph models attribute
similar significance to the subgraphs, independent of the magnitude of the significance
itself. Similar to the significance profile method [199], we construct 29-dimensional
vectors of absolute Z-scores corresponding to 29 3- to 5-node subgraphs where each
coordinate represents the Z-score for a given subgraph. For each RIG, we define these
vectors with respect to each of the eight network models. Thus, we construct eight
vectors of Z-scores for each RIG. Then, we compute Pearson correlation coefficients
between all pairs of Z-score vectors for a given RIG. Since the network size is constant
in each comparison, there is no need to normalise the Z-scores [199]. High Pearson
correlation coefficients between Z-score vectors that correspond to two different net-
work models for the same RIG would indicate that both network models assign similar
significance, independent of the magnitude of the significance, and thus, by adjusting
the Z-score threshold, the same (anti-)motifs would be identified.

4.2.5 Implementation

All RIGs are constructed using OWL [225] (see Section 3.2.5). Model networks are
generated and compared to RIGs using GraphCrunch [192]. We use mfinder [149] for
motif detection. The accessible surface area and the volume are calculated using the
programs calc-surface and calc-volume [312]. Secondary structure is assigned using
the program DSSP [145]. Then, the 8-states of DSSP are converted to three secondary
structure states according to EVA conversion scheme [251]. Structural class assignment
is based on SCOP release 1.73 [210]. Quaternary structure is predicted by PISA server
[161], version 1.14.
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4.3 Results

4.3.1 Best-fitting null model

RIG-definition wide topological analysis

We find that all network properties offer support to the superiority of the GEO-3D
network model to a large number of RIGs constructed using various contact types and
a wide range of distance cutoffs. Given that BB and SC RIGs are quite different from
one another with respect to the set of interacting residues, the robustness of our result
across various RIG definitions is quite surprising.

For all of the RIGs in Data Set 1, RGF-distances and GDD-agreements between the
RIGs and the model networks strongly favour geometric random graphs. Based on
RGF-distances (with minimal exceptions described below), the fit of the GEO-3D
model is the best for all nine proteins, all three contact types and all of the distance
cutoffs; the exceptions are the lowest distance cutoffs ([4.0, 4.2]Å) for SC contact
type for four out of nine proteins only. GDD-agreement favours GEO-3D model for
all proteins, all three contact types, and all of the distance cutoffs between 4.0Å and
9.0Å, except for RIGs of ALL contact type and distance cutoffs higher than 6.5Å.
Above a certain distance threshold, residues that are not physically interacting are
defined to be in contact. Thus, ALL RIGs, that contain more interactions than BB
and SC RIGs, become more “random-like” for large distance cutoffs. For this reason,
GDD-agreement rarely favours GEO-3D graphs for such high distance cutoffs. On the
contrary, in BB and SC RIGs, that consider fewer atoms in inter-residue interactions,
the direct neighbourhood of a residue does not encompass as many not physically
interacting residues at higher distance cutoffs compared to ALL RIGs. Therefore,
even above 6.5Å, GEO-3D provides a good fit for most of the BB and SC networks.
Illustrations showing GDD-agreements and RGF-distances of 1i1b protein with the
five network models are presented in Figure 4.1. The fit of the network models to
the other eight proteins with respect to these two network properties is presented in
Appendix Figures D.1 to D.8.

The magnitude of GDD-agreement between RIGs and GEO-3D graphs seems to be re-
lated to protein size. The two smallest proteins, 1mjc and 1fap, have GDD-agreements
of up to around 0.7, while the largest protein, 3eca, has much higher GDD-agreements
of up to 0.85. Following this observation, in Section 4.3.2, we analyse the effect of
protein size on the strength of the fit of GEO-3D to RIGs in more detail. Moreover,
the RGF-distances between the RIGs and the geometric random graphs are usually
higher (meaning worse fit) for SC networks compared to networks of other contact
types. Since side-chains are more mobile compared to the rigid backbone [174], we
expect that SC networks form more complex interaction patterns compared to net-
works that contain backbone interactions. There is also a general trend that RGF-
distance decreases with increasing distance cutoff, independent of the network model.
Equivalently, GDD-agreement increases as the distance cutoff increases for most of the
models. Since both the smaller RGF-distance and the larger GDD-agreement indicate
improved fit of the network model to RIG, these observations might suggest that for
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Figure 4.1: GDD-agreements and RGF-distances between model networks (ER, ER-DD, GEO-
3D, SF-BA, and STICKY) and RIGs corresponding to 1i1b protein that are constructed for each
of the three contact types (ALL, BB and SC) and a series of distance cut-off values between
4.0 and 9.0 Angstroms: A. GDD-agreement for ALL contact type. B. RGF-distance for ALL
contact type. C. GDD-agreement for BB contact type. D. RGF-distance for BB contact type.
E. GDD-agreement for SC contact type. F. RGF-distance for SC contact type. The larger the
GDD-agreement in panels A, C, and E the better the fit. The smaller the RGF-distance in panels
B, D, and F the better the fit.
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higher distance cutoffs, graphlets of higher order are needed to improve the quality of
the fit to the data.

We also examine the fit of the network models to the RIGs with respect to five standard
network properties. Illustrations showing Pearson’s correlation coefficients between the
degree distributions of 513 RIGs constructed for the nine proteins and the correspond-
ing model networks are presented in Appendix Figures D.9 to D.17. Note that the
perfect fit of the degree distributions of ER-DD model networks to those of RIGs is
trivial, since ER-DD networks are constructed to have exactly the same degree distri-
bution as the data. Similarly, STICKY model networks are constrained to have the
expected degree distribution of real networks [242]. ER and GEO-3D model networks
have Poisson degree distributions, and they both reproduce the degree distributions
of all of the 513 RIGs of Data set 1. BA-SF model networks have scale-free degree
distributions and they do not reproduce the degree distributions of any of the 513
RIGs that we analysed.

Also, GEO-3D model networks reproduce well the clustering spectra of the RIGs for
distance cutoffs smaller than 8Å (Appendix Figures D.9 to D.17). Similarly, the aver-
age clustering coefficients of almost all of the 513 RIGs are generally best reproduced
by GEO-3D networks (Appendix Figures D.18 to D.26). There exist very few excep-
tions to this observation. For a very small number of distance cutoffs lower than 5.0Å
in the SC RIGs of five proteins, the clustering coefficients of BA-SF networks describe
the best those of the corresponding RIGs. Interestingly, all small proteins with size
less than 105 residues (1agd, 1fap, 1mjc, 1sha, 2acy) are included in the set of these
five proteins. Also, we notice the trend that for all proteins and all contact types,
the higher the cutoff, the better the fit of clustering coefficient between the GEO-3D
model and the data. The average diameters of all RIGs are best reproduced by the
GEO-3D networks for all distance cutoffs of BB and ALL contact types (Appendix
Figures D.18 to D.26). The same is true for almost all of the RIGs of SC contact type;
only for the lowest distance cutoffs of several proteins, ER and ER-DD models provide
a better fit. Note also that for these SC RIGs of low distance cutoffs, the diameters of
the RIGs are close to being within one standard deviation of the average diameters of
GEO-3D networks. Finally, GEO-3D model provides the best fit to RIGs with respect
to shortest path length spectra. This is true for all nine proteins, all three contact
types, and all 19 distance cutoffs with the exception of the lowest distance cut-offs for
SC contact type (Appendix Figures D.27 to D.31).

Protein-fold wide topological analysis

To examine the fit of model networks to RIGs corresponding to a larger number of
proteins, we analyse Data Set 2. We summarise the results of the fit of each of the
five network models to these 1,272 RIGs with respect to each of the above described
network properties, by measuring the percentage of RIGs for which a given network
model is the best-fitting null model for a given property, the percentage of RIGs for
which a given network model is the second best-fitting null model for a given property,
etc. (Figure 4.2). GEO-3D is the best-fitting null model for almost all RIGs with
respect to all network properties except for the degree distribution. With respect to
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(A) (B)

(C) (D)

(E) (F)

(G)

Figure 4.2: The ranking of five network models (ER, ER-DD, GEO-3D, SF-BA, and STICKY)
for 1,272 (ALL)all

5.0Å
RIGs based on GDD-agreements (A), RGF-distances (B), and agreements

between degree distributions (C), clustering spectra (D), clustering coefficients (E), average di-
ameters (F) and spectra of shortest path lengths (G).
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this property, ER-DD is by definition the best-fitting null model for all RIGs (Figure
4.2C). Since STICKY networks are defined to have the expected degree distributions of
real-world networks, and ER and GEO-3D networks have Poisson degree distributions
as all-atom RIGs do [12, 70, 106], all three of these models reproduce the degree
distributions of all RIGs. As expected, BA-SF model networks that have power-law
degree distributions do not reproduce the degree distributions of any of the 1,272 RIGs
(Figure 4.2C). Table 4.1 summarises the results for the fit of geometric random graphs.

Table 4.1: The ranking of GEO-3D graphs for 1,272 (ALL)all
5.0Å

RIGs based on seven

network properties. Rank, the most frequent rank of GEO-3D among five network
models (ER, ER-DD, GEO-3D, SF-BA, and STICKY); Freq., the percentage of RIGs
for which GEO-3D has the specific rank. The effective rank with respect to degree
distribution is given in parentheses; ER-DD and STICKY are expected to have the
degree-distribution of RIGs.

Property Rank Freq.(%)

GDD-agreement 1 96
RGF-distance 1 100
Pearson correlation between 4(2) 73
Degree Distributions
Percentage difference of 1 100
Clustering Coefficients
Pearson correlation between 1 66
Clustering Spectra
Percentage difference of 1 100
Average Diameters
Pearson Correlation between 1 99
Shortest path lengths Spectra

Similar results are obtained for all RIGs in Data set 3. GEO-3D is the best-fitting
null model for almost all RIGs corresponding to both thermophilic (Appendix Figure
D.32) and mesophilic proteins (Appendix Figure D.33). This is true for all network
properties, with the exception of the degree distribution, which behaves as explained
above.

4.3.2 The quality of the fit of geometric random graph model

Here, we examine how protein size, structural class, protein thermostability, and qua-
ternary structure affect the strength of the fit of geometric random graphs.

Protein size

We first analyse whether the strength of the fit of GEO-3D to RIGs changes with
RIG size. Here, we consider all 1,272 RIGs from Data Set 2. Our data points are
network property values describing the agreement of a RIG of a given size and the
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GEO-3D model. If there exist more than one RIG of a given size, we average the
network property value over all such RIGs. We find that the fit of GEO-3D is strongly
correlated with RIG size and that this correlation can be expressed as a power-law
function f = a ∗ xb + c. We find such function that fits the data in the least-squares
sense, minimising the sum of squares due to error (also called the summed square of
residual), for each of the network properties (Figure 4.3 and Appendix Figure D.34).
We quantify the goodness of fit of each of the power-law functions to the observed
correlation data with R-Square (RS) measure (Appendix Figures D.34 and D.35). R-
Square illustrates how successful the fit is in explaining the variation of the data; it
takes values between 0 and 1, with larger values indicating a better fit. The fit is
good for almost all network properties (RS values above 0.76). The only exceptions
are RGF-distance (RS of 0.43), the clustering spectrum, and the spectrum of shortest
path lengths (RS values of about 0.17).

As protein size increases, the fit also noticeably increases with respect to GDD-
agreement and degree-distribution (Figure 4.3, panels A and C). This trend is also
observed, in somewhat less pronounced way, with respect to RGF-distance (Figure
4.3B). Surface residues are less well packed compared to buried residues, leading to
a heterogeneous density distribution. However, for larger proteins, the percentage of
buried residues, as well as the packing density of the solvent-exposed residues increase
[91]. Therefore, for larger proteins, the degree distribution and the interaction pat-
terns of the residues become more homogeneous, and thus, the network topology is
better reproduced by the geometric random graphs. In these cases where the fit of the
GEO-3D graphs to RIGs correlates well with size, the fit itself improves rapidly up to
approximately 200 residues and then it slowly converges (Figure 4.3). This behaviour
has also been observed in the average protein packing as a function of the size and has
been attributed to the size distribution of mono-domain proteins [91].

Average diameters of both RIGs and GEO-3D graphs increase with protein size, while
clustering coefficients slightly decrease (Figure 4.3, panels E and F). The fit of GEO-3D
to RIGs with respect to these properties is independent of protein size. The small world
character of the RIGs is not severely affected by increase in protein size [12]. This is
also why the “small-worldness” of GEO-3D graphs agrees almost equally well with that
in RIGs, independent of size. Similarly, the fit of GEO-3D shows no correlation with
protein size with respect to clustering spectrum and spectrum of shortest path lengths
(Figure 4.3, panels D and G). It must be pointed out that as protein size increases,
GEO-3D graphs have slightly higher clustering coefficient compared to the RIGs. This
means that the random graphs are more compact than expected and probably more
“spherical”.

Fold class and secondary structure

We also examine whether the strength of the fit of GEO-3D depends on the protein
secondary structure. We analyse RIGs in Data Set 2 that belong to the four structural
classes all –α (a), all – β (b), α / β (c), and α+ β (d). Since GDD-agreement is not
only the most constraining network property, but also encompasses all other network
properties [240], we perform this analysis with respect to GDD-agreement only. First,
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Figure 4.3: Network property values describing the fit of RIGs to GEO-3D graphs and the fitted
power-law functions with respect to protein size. 1,272 RIGs from Data Set 2 were analysed
with respect to: (A) GDD-agreements, (B) RGF-distances, (C) agreements between degree dis-
tributions, (D) agreements between clustering spectra, (E) clustering coefficients of RIGs and the
corresponding GEO-3D model networks, (F) average diameters of RIGs and the corresponding
GEO-3D model networks, and (G) agreements between spectra of shortest path lengths.
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we calculate the mean GDD-agreement, density and volume-to-surface ratio per struc-
tural class and for various ranges of protein size (Appendix Figure D.36). We verify for
our data set, that α / β proteins are more compact compared to proteins of equal size
from other structural classes, similar to [93]. Despite our previous observation that
the change in volume to surface area as protein size increases leads to better fitting
for larger proteins, the fit of GEO-3D graphs is not higher for more compact proteins
of equal size.

We evaluate the statistical significance of the difference of the fit of GEO-3D across
structural classes. As before, we find that within each structural class, there exists a
strong correlation between the fit of GEO-3D and protein size and that its correlation
can be expressed as a power-law function (Appendix Figure D.34). We remove any
bias that might exist due to differences in the distribution of protein size for different
classes in the following way. We compare the power-law functions that were fitted to
the four classes with respect to GDD-agreement (Appendix Figure D.34 and D.35).
The functions are evaluated on the RIG size interval that is common to all classes,
with protein size ranging from 87 to 501 residues. We assess the statistical significance
of the difference between two functions by performing ANOVA statistical test, with
p-values close to 0 strongly suggesting that the values of two functions on a given RIG
size interval are drawn from different populations. That is, low p-values indicate that
the fit of GEO-3D to proteins of a given size belonging to the classes being compared
is significantly different.

The p-values illustrating the differences in the fit of GEO-3D over all class pairs are
presented in Figure 4.4A. The difference in the fit is statistically significant over all
class pairs (p-values < 0.077) apart from all –α, α / β (p-value of 0.74) and all – β,
α+ β (p-value of 0.87) pairs. In α / β proteins, the percentage of residues that are in
α-helices is higher than the percentage of residues that are in β-strands compared to
α+ β proteins (Appendix Figure D.37A). Thus, all –α and α / β proteins have higher
helical content than all – β and α+ β proteins. This further validates the correctness
of our GEO-3D model that successfully distinguishes between structurally different
classes.

Overall, for proteins of the same size the fit is better for proteins with low helical
content, i.e. all – β and α+ β proteins. For large proteins with more than 300-350
residues, the fit of GEO-3D is the highest for all – β proteins followed by α+ β (Figure
4.4B). However, for smaller proteins with less than 300-350 residues, the fit of GEO-3D
to α+ β proteins is higher than to all – β proteins, even though they are less compact
and have lower β-strand content compared to all – β proteins. This could be attributed
to the higher percentage of non-regular secondary structural elements, being neither
helix nor strand (e.g. loop), in all – β proteins of small size (Appendix Figure D.37B).

Protein thermostability

Thermophilic proteins are on average shorter and have higher average connectivity
and clustering coefficient compared to mesophilic ones [249]. Moreover, the increase
in packing density is observed only for already highly connected residues [249] and for
solvent-exposed ones [99]. After verifying that GEO-3D is the best fitting model for al-
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(A)

(B)

Figure 4.4: The fit of GEO-3D to RIGs in different structural classes. (A) P -values
quantifying the difference in the fit of GEO-3D to proteins of a given size belonging to
four different structural classes, all –α (A), all – β (B), α / β (C), and α+ β (D), with
respect to GDD-agreement. Low p-values indicate that the difference in the fit between
two classes is significant. (B) The functions that are fitted to GDD-agreements between
GEO-3D and RIGs in different classes, from which these p-values are computed.
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most all RIGs corresponding to both mesophilic and thermophilic proteins, we evaluate
the effect of the structural features responsible for protein thermostability on the de-
gree of fitting. We observe difference in the fit of GEO-3D graphs to thermophilic and
the corresponding mesophilic proteins (Appendix Figure D.38). We examine the sta-
tistical significance of the difference with respect to all network properties, using Stu-
dent’s pairwise t-test. The results are presented in Table 4.2. We observe significantly
higher fitting for mesophilic proteins with respect to GDD-agreement (diff = 0.0087,
p < 10−4), degree distribution (diff = 0.0125, p = 0.0006) and clustering coefficient
(diff = 0.5484, p = 0.0054). Consistent to our results described above, it is possible
that the higher fit of GEO-3D to mesophilic proteins is partially due to their larger
size. However, clustering coefficient tends to decrease as protein size increases and
thus, we conclude that the observed difference could be also attributed to the tighter
packing of highly connected, solvent-exposed residues in thermophilic proteins. We
also verify that thermophilic proteins are shorter and have higher average connectivity
compared to mesophilic proteins. Although we use different contact range, this is in
agreement with the original study [249].

Table 4.2: Pairwise comparison of the fitting of GEO-3D to RIGs and of feature
of RIGs, between thermophilic proteins and their mesophilic homologs. Tma, mean
value for thermophilic (T.maritima) proteins; Meso, mean value for mesophilic pro-
teins; Difference, the mean paired difference between thermophilic and mesophilic
values; p-value, p-value for Student’s paired t-test; Statistically significant differences
are shown in bold and are determined with a threshold of p=0.05/9=0.0055 (including
the Bonferroni correction over 9 tests for 5% significance threshold).

Property Tma Meso Difference p-value

GDD-agreement 0.7586 0.7673 -0.0087 p < 10−4

RGF-distance 12.1262 12.1483 -0.0221 p = 0.4379
Pearson correlation between 0.8244 0.8369 -0.0125 p = 0.0006
degree distributions
Percentage difference of 9.0433 8.4949 0.5484 p = 0.0054
clustering coefficients
Pearson correlation between 0.4966 0.5282 -0.0316 p = 0.0176
clustering spectra
Percentage difference of 6.1568 6.5928 -0.436 p = 0.1183
average diameters
Pearson correlation between 0.964 0.9628 0.0013 p = 0.2625
shortest path lengths spectra

Protein size 252.6702 261.8936 -9.2234 p = 0.0029
Average degree 4.6679 4.6029 0.065 p < 10−4

Quaternary structure

We determine the effect of the quaternary structure to the fit of GEO-3D to RIGs. The
network topology on the surface of a protein is expected to differ between monomers
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and multimers. Protein-protein interfaces tend to be more hydrophobic than the non-
interface surface, while interface residues are more well packed [142]. We analyse 75
pairs of monomeric and multimeric proteins from Data Set 2. Proteins in each pair
have equal size and belong to the same structural class, eliminating any bias due to
these structural features. We compare the strength of the fit of GEO-3D to monomers
with its fit to the corresponding multimers using Student’s pairwise t-test over all pairs.
We do this with respect to each of the network properties. Additionally, we compare
clustering coefficients and average diameters of monomers with those of multimers
using the same test. The results are presented in Table 4.3. Although monomers
have significantly higher number of contacts per residue and lower average diameter
compared to multimers, we observe no significant difference in the fit of GEO-3D
between monomers and multimers, with respect to any of the network properties.

Table 4.3: Pairwise comparison of the fitting of GEO-3D to RIGs and of feature of
RIGs, between monomeric and multimeric proteins. Mono, mean value for monomeric
proteins; Multi, mean value for multimeric proteins; Difference, the mean paired dif-
ference between monomers and multimers; p-value, p-value for Student’s paired t-test;
Statistically significant differences are shown in bold and are determined with a thresh-
old of p=0.005 (including the Bonferroni correction over 10 tests for 5% significance
threshold).

Property Mono Multi Difference p-value

GDD-agreement 0.7171 0.7153 0.0018 p = 0.2584
RGF-distance 11.2578 11.2188 0.039 p = 0.4377
Pearson correlation between 0.7285 0.73 -0.0014 p = 0.3964
degree distributions
Percentage difference of 7.4296 7.323 0.1067 p = 0.3865
clustering coefficients
Pearson correlation between 0.3736 0.4062 -0.0325 p = 0.0288
clustering spectra
Percentage difference of 5.0247 5.8833 -0.8586 p = 0.1416
average diameters
Pearson correlation between 0.9718 0.967 0.0048 p = 0.1081
shortest path lengths spectra

Number of edges 813.2733 798.9467 14.3267 p = 0.0038
Clustering coefficient 0.5317 0.5364 -0.0048 p = 0.0226
Average diameter 3.4331 3.6439 -0.2108 p = 0.0002

4.3.3 Application to motif detection

We perform network motif search in nine (ALL)all
5.0Å

RIGs corresponding to the nine

proteins of Data Set 1. We compare the frequencies of all 3- to 5- node subgraphs in
RIGs to eight network models. Since we have already shown that GEO-3D networks
provide the best fit to RIGs with respect to graphlet-based measures, subgraphs exhibit
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low Z-scores and low M -factors when RIGs are compared against geometric random
graphs, as expected. On the contrary, with all other network models, a large number of
subgraphs have exceptionally high Z-scores and M -factors. Therefore, GEO-3D model
exhibits the highest “specificity” in the selection of network motifs. The absolute Z-
scores and absolute M -factors of all 3- to 5- node subgraphs are presented in Appendix
Figures D.40 to D.48.

The number of motifs and anti-motifs identified in the nine RIGs with respect to the
eight network models are presented in Figure 4.5. We used the same P -value and
M -factor thresholds for detection of all (anti-)motifs in all RIGs and with respect to
all network models. In all nine RIGs, the fewest number of subgraphs are identified
as (anti-)motifs when GEO-3D graphs are used as the null model for (anti-)motif
detection. Interestingly, in the case of GEO-3D only anti-motifs are identified for
all nine proteins. The CLUST model, that preserves the clustering coefficient of all
residues, and the GEO-3D model exhibit the lowest and second lowest number of anti-
motifs. We hypothesise that the majority of significant anti-motifs emerge due to null
models that do not capture well the packing density of proteins.

Furthermore, we compare the statistical significance the network models assign to sub-
graphs, independent of the magnitude of the significance itself. We compute Pearson
correlation coefficients between all pairs of Z-score vectors corresponding to all pairs
of network models for each RIG. We observed Pearson correlation coefficients lower
than 0.5 between vectors corresponding to GEO-3D model and vectors corresponding
to all other network models (Figure 4.6). Therefore, the results obtained by using
geometric network model can not be reproduced with other network models by simple
adjustment of the motif selection criteria.

In conclusion, random graph models that preserve only some topological properties
of RIGs tend to identify as significantly (under-)over-represented almost all analysed
subgraphs (Figure 4.5). That is, the statistical significance of the majority of the sub-
graphs is markedly reduced when being assessed against GEO-3D graphs, especially
when compared to commonly used null models that only preserve the size and the
degree distribution of a network. Therefore, it is questionable whether non-geometric
network models could be used to accurately assess the statistical significance of bio-
logically relevant subgraphs in RIGs.

4.4 Discussion

In summary, we tackle the important issue of finding a well fitting null model for protein
structure networks. From the above analyses, we conclude that GEO-3D graphs are
the best-fitting null model for various graph representations of protein structures.
Our result concurs with previous studies focusing on degree distributions and network
properties of protein structure networks [12, 70, 106]: GEO-3D graphs have Poisson
degree distributions and exhibit small-world character. We also analyse in detail the
relationship between the strength of the fit of GEO-3D to RIGs and protein size,
secondary structure, and compactness as observed in thermostable proteins. We have
found that structural features of proteins such as the high surface area in comparison
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Figure 4.5: The total number of (A) motifs and (B) anti-motifs identified in nine
(ALL)all

5.0Å
RIGs corresponding to the nine proteins (1adg, 1fap, 1ho4, 1i1b, 1mjc,

1rbp, 1sha, 2acy, and 3eca). The motifs and anti-motifs were identified with respect to
eight network models (ER, ER-DD, GEO-3D, BA-SF, STICKY, UA-ER-DD, CLUST,
and MET). The threshold values used for motif selection (P -value lower than 0.01 and
M -factor greater than 0.1) are displayed within the colored textbox.
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Pearson correlation coefficients of the vector of absolute Z-scores of all subgraphs for
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correspond to proteins 1adg, 1fap, 1ho4, 1i1b, 1mjc, 1rbp, 1sha, 2acy, and 3eca.

to the buried core in small proteins, the high helical content, and the high packing
density for solvent exposed residues give rise to topological features that are not well
captured by the GEO-3D graphs. Although our proposed null model is far from ideal,
its fit is overall much better than the other investigated network models. GEO-3D
graphs model spatial relationships of objects, and therefore, they are expected to
mimic well the underlying nature of packed residues in proteins. Our result is even
more encouraging considering how specific the geometric random graphs are in the
identification of (anti-)motifs.

Our geometric random graph null model will facilitate further graph-based studies of
protein conformation. This analysis may also have important implications for pro-
tein structure comparison and prediction. For example, Contact Map Overlap (CMO)
problem [105] measures protein structural similarity based on a graph alignment of
contact maps. A correct random graph model could provide means of assessing the sta-
tistical significance of contact map similarity. Additionally, our results may facilitate
the structural motif discovery, even in the absence of homologs. Instead of comparing
the protein of interest against existing structures, it might be sufficient to compare the
observed structural network against the randomised counterparts. Finally, it would be
interesting to investigate to what extent our analysis could contribute to reliable dis-
criminatory functions that can distinguish near-native conformations from non-native
ones. Graph properties of RIGs have been already utilised in this direction [298]. Sim-
ilarly, the strength of the fit of geometric random graphs to the RIG of a predicted
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conformation might indicate how native-like the specific protein conformation is.

The null model proposed here is only topologically similar to protein structure net-
works. A possible area for improvement is to refine it based on additional biophysical
properties. According to the model, nodes correspond to points in space distributed
uniformly at random and without any preference. In reality, two residues prefer to
be connected based on their sequence separation, their residue type, their secondary
structure, or even their neighbourhood. Moreover, the chain connectivity imposes
constraints that are currently neglected. Thus, further refinements of the geometric
model, that would incorporate these biological properties, are expected to yield an
even better fitting null model for protein structure networks.

Acknowledgments

The work presented in this chapter with respect to the fitting of the null models
(Section 4.3.1) and the dependence of the quality of the fit of GEO-3D graphs on
protein size and structural class was performed in collaboration with Nataša Pržulj
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Chapter 5

A graphlet-based whole-residue
empirical potential for
discriminating native structures
from decoys

Summary

The quest for an accurate energy function, the key element to successful
structure prediction, remains open after over 35 years of research. Recently,
it has been shown that the single-body contact-count potential is as effective
as the two-body residue-residue interaction potential. Here, we develop a
novel knowledge-based potential that generalises the single-body contact-
count potential by considering the extended neighbourhood topology of a
residue. In this direction, we utilise a recently developed graphlet-based,
highly constraining measure of the similarity of the topology of two nodes
and their near vicinities in a network. The “nativeness” of a residue con-
formation is determined by comparing its neighbourhood topology against
∼300,000 residues in a non-redundant, representative data set of 1,473 na-
tive proteins. Using a large and standard set of protein decoys we investi-
gate in-depth the performance of our whole-residue potential. It performs
sufficiently well outperforming the contact-count potential and exhibiting
at least 1.8-fold improvement in the mean performance. This improvement
is consistent across various methods of generating decoys with respect to
two out of three performance metrics and is more prominent in the most
successful fragment-based methods. We show also that our potential can
be as competitive as a traditional four-body potential and most important
exhibits certain strong complementarities with it. Although the overall
performance is far from ideal, this novel investigation open new avenues
in the research field and could eventually lead to a significantly improved
potential by optimising the RIG definition and by incorporating the strong
points of other multi-body approaches.
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5.1 Introduction

A key element to successful protein structure prediction is an accurate energy function.
The function must capture the relationship between sequence and structure and have
the global free energy minimum at the native state [9]. Although a plethora of energy
functions has been developed over the last 35 years, the quest for the perfect energy
function continues and novel approaches have become crucial.

There are two main classes of energy functions, the physics-based and the knowledge-
based approaches. In physics-based approaches, a molecular mechanics force field
treats the protein at the atomic level summarising information regarding electrostatics,
van der Waals interactions, bonds, and torsion angles. Such force fields as ECEPP [212,
338], MM [4, 5], AMBER [59, 321], CHARM [43, 179, 275] and GROMOS [173] have
been developed from small molecular structural data. As physics-based approaches are
extremely time consuming, knowledge-based potentials have been developed. The key
concept in such potentials is extracting features from known protein structures and
performing statistical analysis with respect to random predictions [119, 141, 155, 204,
205, 271, 282]. Maximising the discrimination between a native structure and a decoy
may also be used to develop an empirical potential [181, 203, 307]. Knowledge-based
potentials are defined either at residue [17, 204, 282] or at atomic level [84, 176, 189]
and refer to various features of protein structures such as bond angles [73], solvent
accessibility [65, 336], and distance between residues [17, 141, 204] or atoms [176, 189].

Most knowledge-based potentials are based on the sum of two-body interactions [204,
273, 282]. Residue-residue interaction potentials encode the probability of two residues
being in contact, e.g. interactions between hydrophobic residues are preferable com-
pared to interactions between hydrophobic and hydrophilic ones. Two-body potentials
ignore the protein/solvent boundary [102, 290, 334] and thus, usually are combined
with single-body potentials [141, 205] that correlate well with residue burial and hy-
drophobicity. Still, it has been concluded that two-body potentials are not sufficient for
reliable protein structure prediction [31, 187, 304]. The assumption that interactions
are independent is inaccurate and the cooperativity of residue contacts needs to be
modelled. In this direction, multi-body potentials have been developed. Three-body
[169], four-body [88, 94, 159, 209, 269], and even whole-residue potentials [171, 187]
may take into account the residue types of all residues in contact, their sequence sep-
aration and even the solvent accessibility and have often demonstrated an advantage
compared to pair-wise methods.

Recently, it has been shown that the single-body contact-count potential that simply
denotes the propensity of a residue type to have a specific number of contacts, is as
effective as the two-body residue-residue interaction potentials [34]. It even carries
more information in a statistical sense and thus should be studied more. Driven by
these observations, we address the challenge of developing a knowledge-based potential
that generalises the contact-count energy function and attempts to take into account
the cooperativity of residue contacts. We utilise a sensitive graph theoretic measure
for quantifying the topological similarity of the extended neighbourhood of two nodes.
The graphlet degree vector [196], a generalisation of the node degree, describes the
interconnectedness of the neighbourhood of a node up to 4 hops. Therefore, it enables
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the identification of topologically similar nodes and equivalently of residues that have
similar conformation in protein structures. This graph theoretic measure has been
successfully applied to predict the biological function of a protein in PPI networks
[115, 196], to identify new cancer genes in melanogenesis-related pathways [125, 193]
and to facilitate network alignments of biological networks [162, 195].

5.2 Methodology

Here, we present how we tailor the graphlet degree vector to a knowledge-based poten-
tial and how we assess its performance and compare it with the contact-count potential.
Our approach follows this sequence: in order to implement the scoring function, we
construct a library of “native” graphlet degree vectors from 1,437 (Cα)all

8.0Å
RIGs, corre-

sponding to a non-redundant data set of 1,437 proteins. The scoring function is tested
on multiple decoy data sets. Each decoy is converted to (Cα)all

8.0Å
RIG and each residue

is scored by assessing the similarity of its graphlet degree vector against the library. To
measure the performance of the scoring function three different performance metrics
are used. In the following Sections, the graph theoretical measures and all individual
steps are explained in detail.

5.2.1 Graphlet degree vector and similarity

The graphlet degree vector and its similarity with another vector have been intro-
duced by Pržulj [196]. The graphlet degree vector (or signature) (GDV) of a node
describes the topology of a node and its neighbourhood up to distance 4. It counts
the number of all 2- to 5- node graphlets the node “touches”, taking into account the
corresponding 73 different automorphsim orbits. Figure 5.1 shows an example for the
first 14 automorphism orbits. GDV is a 73-dimensional vector where each coordinate
corresponds to an orbit and with different weights assigned to each orbit. An orbit
can essentially affect other orbits: e.g. occurrences of orbit 0 affect the occurrences
of all other orbits and similarly orbit 15 depends on occurrences of orbits 0, 1 and 4.
In order to remove this bias, the more an orbit is affected by other orbits, the less
important it is and lower weight must be assigned to its occurrences. The weight wi
of an orbit i is defined as

wi = 1− log(oi)

log(73)
, (5.1)

where oi is the number of orbits affecting orbit i. For example, o15 = 4 taking into
account that each orbit affects itself. Logarithmic function of oi in the formula increases
the weight for more important orbits (those with lower oi), dividing by log(73) scales
the weight to [0, 1] and subtracting from 1 correctly assigns higher weight to more
important orbits. Maximum weight 1 is assigned to an orbit that is not affected by
any other orbit, i.e. orbit 0.

Comparing the GDV of two nodes is a highly constraining measure of the similarity of
their local neighbourhood. The distance Di(u, v) between nodes u and v for a specific
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(A)

(B)

Figure 5.1: Graphlet degree vector example based on 2- to 4- node graphlets. A. All
9 2- to 4- node graphlets and the corresponding 15 automorphism orbits. B. Table
corresponds to the graphlet degree vector for a particular node v, i.e. the number of
graphelts the node v “touches” for each automorphism orbit. Graphlets 0, 2 and 5
that have a single orbit and that node v “touches” are illustrated in pink, orange and
green respectively. Adapted from [125].

orbit i is defined as

Di(u, v) = wi ∗
|log(ui + 1)− log(vi + 1)|
log(max{ui, vi}+ 2)

, (5.2)

where wi the weight for orbit i and ui(vi) the occurrences of orbit i for node u(v).
By using the logarithm of the occurrences of an orbit, the distance measure cannot
be dominated by cases where occurrences differ by several orders of magnitude. The
relative difference of the occurrences is scaled to [0, 1) and weighted by the orbit
importance. The logarithmic function imposes the addition of 1 or 2 to the number of
occurrences to prevent it from being infinite or 0.

Consequently, the signature similarity S(u, v) between nodes u and v is defined as:

S(u, v) = 1−D(u, v) = 1−
∑72

i=0Di(u, v)∑72
i=0wi

, (5.3)

where D(u, v) is their total distance. The similarity as expected is in (0, 1].
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5.2.2 The data sets of native proteins and protein decoys

A diverse set of 1,437 proteins was selected to develop the pseudo-potential. A non-
redundant, representative set of X-ray structures from the PDB was pre-compiled by
the PISCES server [315]. All proteins have resolution better than 1.5Å, reliability
factor (R-factor) less than or equal to 0.3, and their pairwise sequence similarity does
not exceed 30%. All proteins with less than 30 observed standard amino acids were
removed. For each protein, the solvent accessible surface area was calculated using
the program NACCESS [132] and each residue was classified to buried when having
accessibility lower or equal to 25%, otherwise as exposed. Secondary structure was
assigned using the program DSSP [145] and the 8-states of DSSP were converted to
three secondary structure states according to EVA conversion scheme [251]. Each
protein was converted to RIG using “Ca” contact type and distance cutoff of 8.0Å.
For each residue in the dataset, the graphlet degree vector was calculated forming the
library of native GDVs.

The Decoys ‘R’ Us database [255] contains 10 multiple decoy sets where multiple al-
ternative, non-native conformations are provided for each native structure for a set
of proteins. In total, this dataset contains 153 proteins and 125,404 decoys. Decoys
are generated using widely different methods, one per decoy set. The sets hg-structal,
ig-structal and ig-structal-hires are generated using homology modelling and have the
lowest median RMSD across all sets, as most of the models are very close to the na-
tive. The sets 4state-reduced and lattice-ssfit are based on exhaustive conformational
enumeration on lattice models and subsequent filtering. The sets lmds and vhp-mcmd
have been obtained by energy minimisation after randomisation (lmds) or molecular
dynamics simulation (vhp-mcmd). The set semfold has been assembled using fragment
insertion method, while the sets fisa and fisa-casp based on fragments and simulated
annealing. The semfold set is the largest one having on average 12,900 decoys per
protein. It is obvious that such a diverse data set is sufficient for evaluating energy
functions for protein structures in a rigorous way.

5.2.3 Scoring function

Any knowledge-based potential converts the observed properties of known structures
and the corresponding randomly expected propensities into an energy-like quantity.
For example, the residue contact-count potential is defined as

San = log

(
P obs
an

P exp
an

)
, (5.4)

where P obs
an and P exp

an are the observed and expected probabilities of a residue of amino
acid type a having n contacts. P obs

an is defined as

P obs
an =

number of residues of type a and degree n

number of residues of degree n
, (5.5)

while P exp
an is defined as

P exp
an =

number of residues of type a

number of all residues
. (5.6)
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The expected values assume the amino acid composition to be independent of degree.
The free energy or score of a protein can be calculated as the sum of the score for each
residue.

The scoring function of a residue of type a and of GDV g can be defined in a similar
way. The observed value of Pag is defined as

P obs
ag =

number of residues of type a and with GDV similar to g

number of residues with GDV similar to g
, (5.7)

while the expected value as previously is the fraction of residues of type a. In order
to identify residues with similar GDV, the signature similarity is utilised.

The scoring matrix for San can be easily calculated based on a data set of native
structures. In order to calculate a similar matrix for Sag the residues in the native
structures must be clustered based on their GDV similarities. Then, a residue in a
decoy structure can be scored after identifying the cluster it belongs to and based
on the scoring matrix. Here, instead of pre-clustering the “native” residues and pre-
calculating a scoring matrix, scoring is performed “simultaneously” with a signature
threshold-based clustering [196] approach. For each residue in the decoy structures,
we identify all residues in the library of native structures that have signature similar-
ity with it above a certain threshold. Then, the residue is scored based on P obs

ag as
calculated for the set of similar residues. We set thresholds to range from 0.7 to 1.0
in increments of 0.01 and assess the performance separately for each threshold.

Undersampling

The problem of limited number of observations may arise due to calculating proba-
bilities based on a background data set. For example, the number of residues of a
specific residue type a and degree n in the data set might be low or even 0 leading to
potentially false probabilities. Similarly, the instances of residues of type a and with
similar signatures may become rare, especially after a certain similarity threshold. To
address this issue of sparse data, we consider two approaches. All cases with less than
5 observed or expected instances are discarded as in [34] and thus, the corresponding
residue is neither penalised nor rewarded. In the second approach, we select to pe-
nalise such cases with the minimum score for any residue of the examined structure
at a specific threshold.

We also address the undersampling issue by introducing two variations of the scoring
function. Instead of calculating the score for a specific threshold, we calculate it for
the range of thresholds examined and we keep either the maximum score or the score
of the maximum threshold for which there are sufficient instances. In the first case, we
select the most favourable score for a residue. In the second case, we assume that with
increasing threshold the cluster of residues of similar neighbourhood topology becomes
more indicative of the nativeness of the conformation of the residue under scoring.
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Validation

In order to evaluate the quality of an energy function, various criteria and correspond-
ing performance metrics are important [98]. It must be pointed out that the structure
with the lowest energy corresponds to the structure with the maximum score. The
native structure should have the lowest energy among all conformations and thus a
Rank of 1 when conformations ordered by decreasing score. Second, an energy function
should clearly discriminate between the native structure and all decoys. The Z-score
of the score of the native structure compared to the average score of decoys should be
large and positive. Third, the energy of a conformation should decrease as its struc-
tural similarity to native increases. High Spearman rank correlation of the energy with
RMSD ensures that the quality of the energy function is independent of the variation
in the structural similarity of decoys to native. Here, we use all three performance
metrics, Rank, Z-score and Spearman rank correlation, to assess the performance of
our scoring function.

5.2.4 Implementation

All RIGs were constructed using OWL [225] (see Section 3.2.5). The code written
for performing all calculations reported in this chapter was adapted from software
provided by Pržulj [196]. This was an early version of the implementation of graphlet
degree vector and signature similarity calculation and of signature threshold-based
clustering in GraphCrunch2 [163]. The code was modified so that GDV calculation
is integrated in OWL and scoring was implemented separately in a C++ standalone
program.

5.3 Results

5.3.1 The “native” graphlet degree vector library

Each structure in the data set of native proteins is converted to a (Cα)all
8.0Å

RIG and

the GDV is calculated for each residue. The resulting “native” GDV library contains
309,085 GDVs. The degree distribution is important in studying networks. Similarly
and in order to understand the extent of topological similarity between residues in
the data set and select reasonable signature similarity thresholds, we undertake the
demanding challenge of calculating the signature similarity for all ∼48 billion pairs
of GDVs. The distribution of the signature similarities is plotted in Figure 5.2. The
peak is observed in the range [0.80, 0.81) while the number of residues with signature
similarities greater than 0.8 decreases exponentially. For our scoring, we select thresh-
old to range from 0.7 to 1.0 in increments of 0.01. Although 42% of residue pairs have
similarity less than 0.7, every residue in the data set has signature similarity greater
than 0.7 with at least one other residue and on average with ∼90k other residues.
Thus, at 0.7 the signature similarities are expected to be uninformative.
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Figure 5.2: Distribution of signature similarities for all pairs of residues in the data
set of native structures.

The specificity and statistical “power” of a scoring function is related to the degree
to which observed propensities deviate from random. If any residues can have highly
similar neighbourhood topology at random and independent of residue type, then the
score would be equal to zero. In order to assess the consistency of residue types within
clusters of residues of high signature similarity, we perform signature threshold-based
clustering of the native GDV library at various thresholds and with a leave-one-out
approach. For each residue we identify the cluster of all other residues that have
signature similarity with it above a certain threshold. For each cluster i we calculate
its redundancy R [232] with respect to a classification scheme s as

Ri = 1−
(
− (
∑n

s=1 pslog2ps)

log2n

)
, (5.8)

where n is the number of classes (possible values) of s and ps is the relative frequency
of the class. R values are in range [0, 1] and the most consistent the classification of
residues in a cluster the higher the value of R. We examine four classification schemes:
the amino acid type (20 classes), the secondary structure assignment (3 classes), the
solvent accessibility (2 classes as buried or exposed) and the degree (23 classes). The
average redundancy for each classification scheme and for similarity thresholds in range
[0.7, 1] with increments of 0.01 is plotted in Figure 5.3. As expected, as the similarity
threshold increases, the redundancy of the clusters increases as well. Clusters are
more consistent with respect to the degree of the residues followed by the solvent
accessibility, the secondary structure and the amino acid type. Redundancy scores
heavily depend on the number of the classes of a scheme. Moreover, amino acids
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of different type but for example of same hydrophobicity may have similar topology.
Despite these, the redundancy values for amino acid type are surprisingly low.
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Figure 5.3: Mean cluster redundancy for four classification schemes and with varying
signature similarity threshold.

We further investigate the range of signature similarities between residues in the same
class and residues in different classes. Figure 5.4A shows, for each residue type, the
boxplots of signature similarities with residues of same type, with hydrophobic residues
and with hydrophilic residues. Residues are classified to hydrophobic (C, M, F, I, L,
V, W, Y) and to hydrophilic (A, G, T, S, N, Q, D, E, H, R, K, P) as in [168]. Residues
of same type have much higher similarity when both hydrophobic compared to when
hydrophilic. Residues’ similarity is on average higher but not notably different for
residues of the same type compared to hydrophobic or hydrophilic residues. There
is also a trend that a hydrophilic residue has slightly higher similarities with other
hydrophilic residues than with hydrophobic ones, while a hydrophobic residue is more
similar to hydrophilic residues rather than other hydrophobic ones. It seems that hy-
drophilic residues, tending to be on the surface of the protein, have a wide variability
in neighbourhood interconnectedness independent of residue type. On the contrary,
hydrophobic residues have limited variability in neighbourhood topology and rather
specific topology to residue type. Figure 5.4B shows the boxplots of signature simi-
larities with respect to the secondary structure. The highest similarities are observed
when both residues are in extended conformations, while the lowest when any residue
is in loop regions. As expected, regarding solvent accessibility (Figure 5.4C), buried
residues have much higher similarity with each other compared to any other case.
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Figure 5.4: Boxplots of signature similarities for all pairs of residues in the data set
of native structures with respect to amino acid type (A), secondary structure (B) and
solvent accessibility (C). A. For each residue type the boxplots of signature similarities
with residues of same type, with hydrophobic (H) residues and with hydrophilic (P)
residues are shown. Whiskers are plotted only for residues of same type to visually
discriminate between residue types. B. Regarding secondary structure assignment, H,
E, and L denote residues in Helical, Extended and Loop conformation. C. Regarding
solvent accessibility, B and E denote Buried and Exposed residues. (continued on next
page)
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Figure 5.4: continued from previous page

5.3.2 Scoring decoy structures

Each decoy structure is converted to (Cα)all
8.0Å

RIG and each residue is scored after

calculating its GDV and identifying all residues in the native library with signature
similarity above a certain threshold. 65 different scores are calculated for each protein.
64 of them are variations of the proposed energy function denoted hereafter as GDVS
(i.e. Graphlet Degree Vector Similarity). 31 scores correspond to each one of the
thresholds in the range [0.7, 1.0]. Two different strategies in handling sparse data,
either discarding such cases (GDVSthresh) or penalising (GDVSpenthresh) them doubles
the total number of scoring functions. Two additional approaches are independent of
specific similarity threshold and consider either the maximum (GDVSmax) or the last
(GDVSlast) valid score as described in Methods Section 5.2.3. The residue contact-
count potential was also implemented to allow for a fair comparison with GDVS,
unbiased from the choice of the data set of native structures.

In the following section we examine: i) the issue of sparse data in scoring with respect
to the choice of similarity threshold, ii) the comparative mean performance of all 65
scoring functions across all decoy sets, and iii) the consistency of the best performing
GDVS variations per decoy set.

Undersampling

The choice of the signature similarity threshold can have a large and significant ef-
fect on the number of residues not scored due to sparse data. Figure 5.5 clearly
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demonstrates that the mean percentage of residues not scored per structure increases
significantly as the similarity threshold increases as well. At 0.93 almost 60% of the
residues are not scored on average per decoy structure. At such high level of sparse
data, the scoring function is expected not to perform well. This disagrees with the
need for high similarity thresholds where clusters are expected to become more homo-
geneous. As expected, more residues are not scored on average in decoys rather in the
native conformations of the decoy sets.

Signature similarity threshold

M
e
a
n
 p

e
rc

e
n
ta

g
e
 o

f 
re

s
id

u
e
s

n
o
t 
s
c
o
re

d
 p

e
r 

s
tr

u
c
tu

re

0.7 0.75 0.8 0.85 0.9 0.95 1

0
2
0

4
0

6
0

8
0

1
0
0

Decoys

Native

Figure 5.5: Mean percentage of residues not scored per structure in the decoys sets
due to undersampling and with varying signature similarity threshold. Solid line cor-
responds to the decoy structures while dashed line to the native conformations.

The mean performance

The score performance is benchmarked using three different metrics: Rank (R), Z-score
(Z) and Spearman rank correlation (S). The decoy quality is independently measured
based on the Ca RMSD of the decoy to its corresponding native structure. For each
scoring function and for each decoy set we calculate the mean value of the metric over
all native proteins in the set. The overall mean performance corresponds to the mean
of the mean values for decoy sets. In this way, we assess the performance independently
of the method used to generate a decoy.

Figure 5.6 shows the mean performance for all 65 scoring functions based on all three
metrics. The trend in performance with respect to similarity threshold is the same
for all three performance metrics. As the threshold increases, our scoring function
performs better up to a specific threshold value, after which performance deteriorates.
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Figure 5.6: Mean performance over all decoy sets. The mean value of Rank (A),
Z-score (B) and Spearman rank correlation (C) over all decoy sets using GDVS and
contact-count for scoring. The mean is actually the mean of the mean values per decoy
set. Dashed lines correspond to threshold independent scoring functions. (continued
on next page)
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Figure 5.6: continued from previous page

This is independent of the handling of the sparse data. GDVSpenthresh performs slightly
better than GDVSthresh in the region where performance improves, then much worse.
Penalising sparse cases with the minimum score for a decoy is a reasonable choice
only as long as most of the residues for a decoy are scored. The threshold values for
which performance peaks for GDVSthresh (GDVSpenthresh) are 0.92 (0.91), 0.91 (0.89) and
0.85 (0.85) with respect to R, Z and S. GDVSmax and GDVSlast are independent of
similarity threshold and always perform better or equal to threshold-specific scores for
any threshold. The best performing functions are GDVSpen0.91 (followed by GDVSlast)
with respect to Rank, GDVSmax (followed by GDVSlast) with respect to Z-score, and
GDVSlast with respect to Spearman rank correlation. All GDVSthresh scoring functions
(for reasonable thresholds) as well as GDVSmax and GDVSlast perform better than
the residue contact-count potential. GDVSlast, the GDVS scoring function with the
best overall mean performance, outperforms residue contact-count potential. Rank,
Z-score and Spearman show on average 2.5-fold, 1.8-fold and 1.8-fold improvement in
performance of GDVSlast compared to contact-count.

Performance per decoy set

It is important that scoring functions perform equally well on all decoy sets. Here, we
select four scoring functions, GDVSpen0.89, GDVSmax, GDVSlast and contact-count and
evaluate how consistent their mean performances per decoy set. Figure 5.7A shows
the mean Rank for each decoy set for each one of the four functions. Contact-count
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Figure 5.7: Mean performance per decoy set. The mean value of Rank (A), Z-score
(B) and Spearman rank correlation (C) per decoy set using GDVS and contact-count
for scoring.
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Figure 5.7: continued from previous page

performance is competitive to GDVS only for the homology modelling decoy sets (hg-
structal, ig-structal, ig-structal-hires). In these sets, most of the decoys are near-native
structures. Interestingly, GDVS performs much better for fragment-based decoy sets
(fisa, fisa-casp3, semfold). GDVSmax and GDVSlast have consistently higher mean Z-
score than the contact-count independent of the decoy set (Figure 5.7B). Regarding
the Spearman rank, contact-count performs equally well with GDVS functions (Figure
5.7C). In this case, the 1.8-fold improvement is biased by GDVS performance for two
decoy sets, fisa and vhp-mcmd.

5.3.3 Comparison with four-body potential

GDVS scoring function performs consistently much better than the contact-count po-
tential with respect to Rank and Z-score. Despite this, its performance its far from
ideal. Comparison of GDVS with other potentials that are known to perform better
than contact-count or contact-type is difficult. For a fair comparison, the potentials
must all be derived from the same data set of native structures and must be applied to
the same data set of decoy structures. Moreover, certain features that are integrated
in the score and do not lie within the objectives of the comparison, must be handled
exactly in the same ways, e.g. RIG definition or the undersampling issue.

Here, we compare GDVS with a four-body potential developed by Tropsha [159].
This potential is based on Delaunay tetrahedra occurring in tessellation of protein
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structures. Five classes of tetrahedra are defined based on the sequence separation of
the interacting residues. The observed amino acid types of all residues in a tetrahedron
are utilised in the scoring function. It has to be pointed out that a tetrahedron is
conceptually identical to graphlet 8 and automorphism orbit 14. Only Rank and Z-
scores for 4state-reduced, lattice-ssfit and lmds decoy sets are provided in [159]. Thus,
the comparison does not include decoy sets for which the improved performance of
GDVSlast compared to contact-count is prominent.

In Table 5.1, we compare the performance of GDVSlast with the four-body potential.
Both mean Rank and Z-score are better for the four-body potential for the 4state-
reduced decoy set and worse for the ldms one. For the lattice-ssfit, GDVSlast performs
better with respect to the Rank and worse with respect to the Z-score. It must be
pointed out that the performance is also strongly complementary. In 10 out of the 12
cases where the Rank for the four-body potential is greater than 6, GDVS performs
much better. In 10 cases, four-body performs well and much better than GDVS. Only
in 5 cases, both GDVS and four-body perform equally well.

5.4 Discussion

The importance of single-body residue environment potentials has been recently re-
vised in a positive way [34]. As the quest for an accurate energy function remains open
after over 35 years of work, we investigate a novel way of generalising the contact-count
potential into a whole-residue one. This has been made feasible based on a recently
developed graph theoretic measure that describes the topology of a residue and its
near vicinity in a network. Here, we implement a novel scoring function, we attempt
to understand its biological significance and the relations to structural features, we
identify potential issues in scoring and propose alternative strategies to address them
and we assess the scoring performance based on a data set of decoy structures.

We have clearly demonstrated that the major bottleneck in the performance of our
scoring function is the undersampling issue. As the similarity threshold increases, the
clusters of residues of similar signatures become more homogeneous and the scoring
function carries more information in a statistical sense. At the same time, the number
of sparse clusters increases and derived probabilities for such cases will be inaccurate.
At threshold value of 0.9, there are few, if any, observations for more than 20% of
the residues in a decoy on average. Therefore, corrections for sparse data are of
crucial importance. Penalising based on scores specific to each decoy is preferable to
ignoring such cases but only for decoys with a low percentage of penalised residues.
The threshold independent strategies improve the mean performance significantly, but
not consistently for each decoy set. There are cases where threshold based scores are
better than threshold independent ones.

The calculation of a traditional scoring matrix based on pre-clustering of the native
library of GDVs would help in this direction. Clustering approaches such as hierar-
chical clustering, k-medoids, and Markov Cluster Algorithm [82, 296] can be utilised
to perform the clustering based on a signature distance matrix [193]. First, such
clustering methods might allow for more biological relevant residues to be clustered
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Table 5.1: Comparison of performance of GDVS potential with a four-body potential.
Four-body potential has been developed by Tropsha based on Delaunay Tessellation
[159]. The number of decoys, the Rank and Z-score are shown for each native structure
in the 4state-reduced, lattice-ssfit and lmds multiple decoy sets from Decoys ‘R’ Us
database [255]. The mean values per decoy set are also provided and shown in bold.

GDVS Four-body

Proteins Number of Decoys Rank Z-score Rank Z-score

1ctf 630 1 3.57 7 2.62
1r69 675 48 1.60 3 2.90
1sn3 660 46 1.50 113 1.04
2cro 674 174 0.64 1 3.04
3icb 653 52 1.49 1 2.90
4pti 687 8 2.49 1 3.18
4rxn 677 39 1.60 5 1.60

4state-reduced 665 53 1.84 19 2.61

1beo 2000 3 3.49 1 5.35
1ctf 2000 1 5.33 1 4.18
1dkt-A 2000 1 3.74 89 1.67
1fca 2000 385 0.83 1 4.91
1nkl 2000 1 3.67 1 4.38
1pgb 2000 1 3.69 14 2.58
1trl-A 2000 179 1.42 1179 -0.23
4icb 2000 2 3.36 1 5.47

lattice-ssfit 2000 72 3.19 161 3.54

1shf-A 437 1 3.06 28 1.48
1b0n-B 497 47 1.22 488 -1.93
1bba 500 95 0.84 205 0.20
1ctf 500 1 3.54 1 2.63
1dkt 215 167 -0.85 4 2.06
1fc2 500 239 0.01 372 -0.71
1igd 501 1 4.58 189 0.32
2cro 500 428 -1.04 1 3.88
2ovo 352 103 0.48 46 0.99
4pti 343 17 1.71 7 1.98

lmds 434 110 1.36 134 1.09
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together as a fixed threshold might be too stringent [193]. Second, a scoring matrix
enables the usage of existing correction methods for sparse data. For example, the
background probability of any residue in a specific conformation (cluster) can be used
for an unreliable residue-specific probability [271].

Based on the redundancy analysis for clusters and the range of similarity values with
respect to various classification schemes, one would expect that the proposed scoring
function will not distinguish well between the 20 amino acid types placed in the same
environment, i.e. having similar GDVs. On the contrary, we have shown that our
whole-residue potential outperforms the contact-count potential exhibiting at least
1.8-fold improvement in the mean performance. This improvement is consistent across
various methods of generating decoys with respect to two out of three performance
metrics. It is also evident that GDVS can be as competitive as a traditional four-body
potential and most important exhibits certain strong complementarities with it. The
four-body potential uses extra information about the protein structure like the amino
acid types of all residues in contact and their sequence separation. Integration of such
information will enhance the performance of our scoring function.

Interestingly, our scoring function outperforms contact-count especially in fragment-
based decoy sets. This has been shown for both Rank and Z-score metrics. The most
successful structure prediction method over the last years has been a fragment-based
called Rosetta [266]. Rosetta uses a library of three- and nine- residue fragments
to assemble various conformations based on these fragments using fragment-insertion
method. Each new conformation is evaluated using a low-resolution scoring function
based on protein-like features and nonlocal interactions. Recently, it has been argued
that the current limitations of Rosetta should be attributed to the low-resolution
scoring functions that could be improved [37]. Our scoring function could help in this
direction. We hypothesise that the improved performance in fragment-based decoys is
attributable to the assessment of nativeness of the spatial neighbourhood of a residue
up to 4 hops. Such a deep neighbourhood traverses short structural fragments and
captures their interconnectedness. Our scoring function can be also adapted to ignore
all interactions between residues within the same fragment.

The proposed scoring function is far from optimal. There are several questions that
need investigation and several ways that this work can be extended. The perfor-
mance of GDVS should be assessed across various RIG definitions. Single-body and
two-body potentials have been shown to perform better at higher distance cutoffs, for
side-chain based contact-types and when ignoring non-specific short-range interactions
[23, 27, 30, 34, 148, 166, 190]. It would be also interesting to assess the independent
contribution of each automorphism orbit and the performance with respect to the
choice of neighbourhood size in GDV. As already discussed, pre-clustering can poten-
tially improve the accuracy. It will also certainly improve the computationally speed,
as the residue preferred conformation will be identified based on the signature simi-
larity with all cluster-centroids and the corresponding score will be selected from the
scoring matrix. Incorporation of more structural features such as residue burial, sec-
ondary structure and more amino acid types may improve the accuracy of our scoring
function. For example, instead of calculating graphlet degree vectors for each residue
and defining 20 categories based on amino acid type, we could extend the score to a
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function of backbone triplets of specific amino acid and solvent accessibility composi-
tion [88]. Extending the current work to protein-protein docking will be an important
task for the future. It remains to be seen whether GDVs across interfaces have a
diverse neighbourhood topology suitable for scoring.

The objective of this work has not been to provide an energy function that outperforms
all existing ones but rather to perform a novel investigation that could potentially open
new avenues in this research area. The proposed scoring function has been shown to
perform sufficiently well and in future it should be feasible to extend it to an even
better potential by incorporating the strong points of other multi-body approaches,
optimising the RIG definition and addressing more efficiently the undersampling issue.
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Chapter 6

Summary and outlook

At this point in time, genomics data are being generated at an unprecedented pace. At
the same time, and after 50 years of intensive research, our understanding of protein
folding and function is far from complete. Novel and efficient approaches in structural
bioinformatics have never been more important. In the past decade, the network
view of protein structure space has provided valuable insight. Further development is
crucial in order to fully understand the biological significance behind the overwhelming
complexity in network representations of protein structures.

To make progress, we need to address some fundamental aspects of the network analysis
of protein structures and exploit the avalanche of network theory advances in other
research fields and in particular other biological networks. This dissertation tackles
three important problems that have not been addressed before:

1. Rationalising the choice of network representation of protein structures and the
comparison between various representations.

2. Proposing a well fitting null model for protein structure networks.

3. Developing a novel knowledge-based potential by means of generalising the single-
body contact-count potential to a whole-residue pure-topological potential.

The methodology that addresses the last two challenges benefits from recently intro-
duced graph theoretic measures. These are highly constraining measures of the topo-
logical similarity either between whole networks or between individual nodes based
on their extended neighbourhood. These measures have been successfully applied to
protein-protein interaction networks and are based on graphlets, small connected in-
duced subgraphs of large networks. Here, we apply them for the first time to protein
structures.

In Chapter 2, the field of structural bioinformatics was revised from a network per-
spective. All representations, including non-formal network ones, that treat protein
structures as sets of interacting residues have been unified by means of a controlled
vocabulary. The principal criteria that define a residue-residue interaction have been
outlined and the choices for these criteria, their popularity, the motivation behind
each one and their optimality with respect to specific research areas were thoroughly
discussed. In Chapter 3, the similarity and fundamental network properties for an
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exhaustive set of network representations were assessed. It has been shown that simi-
larity between different commonly used representations can be quite low. The details
of the network representation can have significant impact upon the similarity and the
connectivity of the resulting networks, leading often to disconnected components and
residues without any interactions. Additionally, we showed that proteins with different
secondary structure topologies have to be treated with caution in any network analy-
sis. Overall, it has been clearly demonstrated that an arbitrarily chosen representation
is not necessarily similar to other representations, does not exhibit identical network
properties, and will not reproduce all results. This work highlighted the importance
of selecting an optimal representation for a given application. Both Chapters 2 and
3, allow researchers to rationally select a network representation, either based on the
literature and the justification, popularity and optimality of a representation or based
on desired network properties and similarity to successfully utilised representations.

Chapter 4 shows that 3-dimensional geometric random graphs, that model spatial re-
lationships between objects, provide the best fit to protein structure networks among
several random graph models. The fit has been assessed for a structurally diverse
protein data set, various network representations, and with respect to various topo-
logical properties. The multitude of local and global network properties, including
the graphlet-based highly constraining measures of local topology, overcome the com-
mon bias of using a single summary network property for defining a null model. The
relationship between the strength of the fit and various structural features has been
also investigated. Geometric random graphs capture better the network organisation
of larger proteins. Between proteins of equal size, the fitting improves for proteins
with low helical content, while the tighter packing of the solvent accessible surface in
thermostable proteins leads to worse fitting. Interestingly, quaternary association of
proteins plays no significant role in the fitting. Overall, the well fitting null model pre-
sented here can be used to accurately assess the statistical significance of topological
features observed in networks of protein structures. In this direction, it was shown
that choosing geometric random graphs as a null model results in the most specific
identification of motifs.

The final chapter in this work reports a novel knowledge-based potential for dis-
criminating native structures from decoys. This potential generalises the single-body
contact-count potential to a pure topological whole-residue one. The contact-count
potential has been recently shown to perform as well as two-body ones and to be even
more informative from a statistical point of view. Its generalisation has been feasi-
ble based on graphlet-based measures that describe the topology of a residue and its
extended neighbourhood and assess their similarity. The results clearly demonstrate
that the proposed scoring function outperforms the contact-count potential. Most im-
portant, the improvement in the performance is independent of the methodology of
generating decoys and with respect to most performance metrics. The improvement is
more prominent in the successful fragment-based methods of generating decoys, mak-
ing our methodology even more appealing. Although the overall performance is far
from ideal, the whole-residue potential has been shown to be on par with a traditional
four-body potential and exhibits strong complementarities with it. This highlights
that our potential can be further improved since it does not utilise the residue types
of interacting residues and their sequence separation as multi-body potentials do.

98



The analysis performed throughout this thesis has prompted the development of a
Java library that focuses on the conversion of protein structures to networks based on
various definitions. This library also facilitates subsequent network analysis of protein
structures. It is available as Open Source Software and will support further research
in this field.

The work presented here can be extended in numerous ways. Network analyses of
this thesis have been focused on monomeric, monodomain proteins. The null model
has been shown to be optimal, independently of the oligomerisation order of proteins.
However, the rational selection of network representation can be extended to multi-
domain proteins as well as to protein complexes. Moreover, we plan to extend our
scoring function for protein-protein docking. It remains to be seen whether residues in
interfaces have more diverse neighbourhood topologies leading to better performance
for the potential.

In its present form, the null model proposed in Chapter 4 is topologically accurate. A
possible area for improvement is to refine it based on additional biophysical properties.
Chain connectivity imposes certain constraints and residues prefer to be connected
based on their sequence separation, their residue type, and their secondary structure.
Refinements of the geometric model, that would incorporate these biological properties,
are expected to yield an even better fitting null model. Furthermore, motif application
in Chapter 4 has been utilised only to unravel the specificity of null models. Further
analysis of statistically significant under-represented and over-represented subgraphs
may reveal biologically significant building blocks for protein folding, function and
stability.

There are also three promising avenues for further improvement of our scoring func-
tion. Our potential has been examined with respect to the most popular network
representation. As has been clearly demonstrated in this work, it is imperative to
assess the impact of the representation upon performance and identify the optimal
network representation. Alternative strategies that identify clusters of topologically
similar residues and a-priori clustering in the set of native proteins may improve the
accuracy and certainly the computational speed of the proposed scoring function. Fur-
ther refinement of the scoring function to include structural features as the majority
of multi-body approaches do, is expected to lead to better performance. Apart from
adapting the scoring function for protein-protein docking, another topic of future re-
search is to develop our methodology into a low-resolution energy function for Rosetta,
the most successful structure prediction method to date.

All in all, the aim of this dissertation has been to establish the basis for the analysis of
protein structures as networks. The choice of a network representation, the similarity
of various representations, the optimised null model and the respective tools developed
here are of fundamental scientific importance and are crucial for further development
of this research field. This work also opens the door to new avenues in the quest for
the perfect energy function.
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Appendix A

Supplementary tables for Chapter 2
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Table A.1: Citations for the basic RIG definitions

RIG definition Citations

(Cα)
8.0Å

[2, 15, 33, 45, 53, 95, 108, 110–114, 116, 144, 164, 177,
184, 187, 216, 235–238, 263, 285, 313, 325]

(ALL)
5.0Å

[1, 21, 23, 46, 49, 64, 66–71, 106, 123, 146, 207, 283,
287, 330]

(SC)
4.5Å

[40–42, 96, 97, 121, 147, 223, 256, 258, 259, 272, 273,
310, 322, 333]

(Cβ)
8.0Å

[35, 56, 86, 87, 135, 136, 178, 197, 221, 222, 243, 253,
257, 261, 288]

(ALL)
4.5Å

[22–25, 32, 85, 124, 201, 203, 239, 249, 250, 286, 307]

(Cα)
8.5Å

[51, 76, 144, 172, 303, 304, 307, 308, 324, 336]

(Cα)
6.0Å

[111, 130, 182, 235–237, 249, 250, 309]

(ALL)
6.0Å

[75, 93, 99, 198, 226, 234, 309, 335]

(Cβ)
7.5Å

[12, 52, 74, 77, 151, 208, 262, 291]

(ALL)
4.0Å

[90, 127, 198, 220, 228, 230, 327]

(Cα)
10.0Å

[172, 235–237, 254, 299, 300]

(Cα)
12.0Å

[38, 235–237, 285, 297, 313]

(Cα)
7.0Å

[14, 16, 21, 111, 129, 326, 332]

(Cα)DT [94, 131, 159, 209, 219, 269, 294]

(Cβ)
12.0Å

[34, 152–154, 166, 277, 331]

(Cα)
9.0Å

[60, 175, 245, 257, 305, 306]

(SC)
5.0Å

[101, 103, 104, 122, 185, 253]

CSU [8, 83, 247, 276]

(Cα)
11.0Å

[23, 156, 211]

(Cα)
6.5Å

[109, 231, 272]

(SCc)
10.0Å

[139, 140, 293]

(SCc)
6.5Å

[204–206]

(SCc)
8.0Å

[88, 140, 322]

(ALL)
8.0Å

[93, 99]

(ALL)
9.0Å

[47, 48]

(Cα)
14.0Å

[217, 254]

(Cα)
7.5Å

[80, 109]

(Cβ)
10.0Å

[141, 266]

(FA)
12.0Å

[252, 316]

MCd [61, 181]

(SC)
4.2Å

[157, 274]

Continued on next page
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Table A.1 – continued from previous page

RIG definition Citations

(SC)
6.0Å

[165, 180]

(SC)∑
ij rvdW+1.0Å

[160, 268]

(SC)∑
ij rvdW+2.8Å

[281, 282]

(SCc)DT [50, 159]

(ALL)
12.0Å

[330]

(ALL)
3.0Å

[330]

(ALL)
4.1Å

[138]

(ALL)
4.2Å

[274]

(ALL)
7.0Å

[202]

(ALL)
7.5Å

[46]

(ALL)∑
ij rvdW

[260]

(ALL)∑
ij rvdW+0.5Å

[295]

(ALL)∑
ij rvdW+1.0Å

[317]

(SC)∑
ij rvdW+2.8Å

[224]

(ALLc)
6.0Å

[309]

(Cα)
16.0Å

[33]

(Cα)
5.5Å

[328]

(Cα)
6.2Å

[79]

(Cα)
9.5Å

[131]

(Cα + Cβ)
6.0Å

[320]

(Cα + SC)
4.75Å

[267]

(Cα + SC)∑
ij rvdW+1.0Å

[30]

(Cβ)
13.0Å

[289]

(Cβ)
14.0Å

[148]

(Cβ)
6.0Å

[309]

(Cβ)
6.7Å

[13]

(Cβ)
7.0Å

[3]

(Cβ)
8.5Å

[12]

(Cβ)
9.0Å

[27]

(Cβ)DT [337]

MCc [181]

(SC)
4.75Å

[158]

(SCc)
12.0Å

[166]

(SCc)
5.0Å

[11]

Continued on next page
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Table A.1 – continued from previous page

RIG definition Citations

(SCc)
6.0Å

[264]

(SCc)
8.5Å

[7]

(SCcs)∑
ij rsphere+2.8Å

[170]

(SCcs + SCcs/BBcs)∑ij rsphere
[171]

(SCcs.BBcs)
10.0Å

[44]
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Table A.2: Citations for the contact ranges

Contact range Citations

all [1–3, 7, 8, 12–16, 21, 27, 30, 33, 34, 38, 46–51, 64, 66–71, 74–
77, 80, 83, 88, 90, 92–95, 99, 101, 103, 104, 106, 108, 110–113,
119, 121, 122, 124, 127, 130, 131, 135, 138–141, 144, 148, 151,
157, 159, 160, 164, 170–172, 180, 184, 185, 187, 198, 201, 207–
209, 216, 217, 219, 221, 222, 224, 230, 234–238, 245, 247, 249,
250, 252–254, 257, 260, 262, 266, 267, 269, 272, 273, 276, 280,
281, 283, 285, 287, 289, 291, 293, 294, 297, 299, 300, 303, 305–
307, 310, 316, 320, 324, 326–328, 330, 336, 337]

|i− j| ≥ 2 [32, 40–42, 96, 97, 147, 155, 166, 172, 198, 202–206, 223, 226,
256, 258, 259, 274, 317, 322, 333]

|i− j| ≥ 3 [22, 23, 25, 35, 52, 61, 108, 112, 113, 146, 152–154, 158, 164, 175,
181, 220, 227, 231, 239, 277, 286, 304, 308, 331]

|i− j| ≥ 4 [24, 85, 109, 128, 129, 228, 249, 263, 268, 288, 295, 332]

|i− j| ≥ 5 [3, 11, 44, 45, 56, 61, 108, 112, 113, 116, 164, 181, 198, 201, 202,
281, 282]

|i− j| ≥ 6 [53, 136, 165, 197, 243, 313, 325]

|i− j| ≥ 7 [60, 86, 87, 92]

|i− j| ≥ 8 [61, 178, 181, 309]

|i− j| ≥ 9 [155, 261]

|i− j| ≥ 10 [66, 92, 106, 123, 166, 211, 257, 280]

|i− j| ≥ 11 [119, 141, 264, 281]

|i− j| ≥ 12 [53, 136, 182, 197, 243, 313, 325]

|i− j| ≥ 13 [15, 109, 114, 177, 227]

|i− j| ≥ 15 [335]

|i− j| ≥ 20 [280]

|i− j| ≥ 24 [53, 136, 243, 313, 325]

|i− j| ≥ 31 [119, 141]

si 6= sj [79, 156]
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Appendix B

Supplementary tables for Chapter 3
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Figure C.1: Protein size distribution with respect to structural class.
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Figure C.2: The mean similarity matrices between Cα and Cβ RIGs, over all proteins, for all
distance cutoffs and for contact ranges: A. all, B. |i− j| ≥ 2, C. |i− j| ≥ 4, D. |i− j| ≥ 10, E.
si 6= sj. Grey filled circles correspond to local maxima.
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Figure C.3: The mean similarity matrices between Cα and SC RIGs, over all proteins, for all
distance cutoffs and for contact ranges: A. all, B. |i− j| ≥ 2, C. |i− j| ≥ 4, D. |i− j| ≥ 10, E.
si 6= sj. Grey filled circles correspond to local maxima.
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Figure C.4: The mean similarity matrices between Cβ and SC RIGs, over all proteins, for all
distance cutoffs and for contact ranges: A. all, B. |i− j| ≥ 2, C. |i− j| ≥ 4, D. |i− j| ≥ 10, E.
si 6= sj. Grey filled circles correspond to local maxima.
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Figure C.5: The mean similarity matrices between Cβ and ALL RIGs, over all proteins, for all
distance cutoffs and for contact ranges: A. all, B. |i− j| ≥ 2, C. |i− j| ≥ 4, D. |i− j| ≥ 10, E.
si 6= sj. Grey filled circles correspond to local maxima.
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Figure C.6: The mean similarity matrices between SC and ALL RIGs, over all proteins, for all
distance cutoffs and for contact ranges: A. all, B. |i− j| ≥ 2, C. |i− j| ≥ 4, D. |i− j| ≥ 10, E.
si 6= sj. Grey filled circles correspond to local maxima.
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Figure C.7: The mean similarity matrices over all proteins, for all distance cutoffs and all contact
range between: A. Cα and BB, B. Cβ and BB, C. BB and SC, D. BB and ALL, E. BB and
BB/SC, F. SC and BB/SC, G. Cα and Cα/Cβ, H. Cα and Cαβ, I. Cβ and Cα/Cβ, J. Cβ and
Cαβ, K. Cα and BB/SC, L. Cβ and BB/SC. Grey filled circles correspond to local maxima.
(continued on next page)
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Figure C.7: continued from previous page
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Figure C.8: Boxplots of the maximum mean similarities (A) and the corresponding
distance cutoffs (B) over all RIGs for all distance cutoffs.
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Figure C.9: A. The mean similarities of BB, SC and BB/SC RIGs with ALL ones,
over all proteins, for 5.0Å distance cutoff and for all contact ranges. B. The mean
similarities of Cα, Cβ and Cα/Cβ RIGs with Cαβ ones, over all proteins, for 8.0Å
distance cutoff and for all contact ranges.
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Figure C.10: The maximum mean similarities of Cα RIGs for each distance cutoff with respect to
ALL RIGs of any cutoff, over all proteins, for all contact ranges and for all structural classes.
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Figure C.11: The mean Tanimoto (A) and Meet/Min (B) similarity matrices, and the mean
percentage difference in density (C) between Cβ and Cα RIGs, over all proteins, for all distance
cutoffs and for all contact range. White filled circles denote the position of the maximum mean
Tanimoto similarity per column. Circles with overlapping black stars correspond to the local
maxima of the maximum mean Tanimoto similarities.
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Figure C.12: The mean degree of Cα RIGs for all distance cutoffs and contact ranges, over all
proteins, with respect to all structural classes.
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Figure C.13: The mean percentage of orphan residues of Cα RIGs for all distance cutoffs and
contact ranges, over all proteins, with respect to all structural classes.
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Figure C.14: The mean number of connected components of Cα RIGs for all distance cutoffs and
contact ranges, over all proteins, with respect to all structural classes.
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Figure C.15: The mean giant component size of Cα RIGs for all distance cutoffs and contact
ranges, over all proteins, with respect to all structural classes.
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Figure C.16: Comparison of (Cα)all with (ALL)all RIGs with respect to their similarity
(A) and their small-world character (B) for a certain range of distance cutoffs. A. Mean
Tanimoto and Hamming similarity between (ALL)all

5.0Å
RIGs and (Cα)all RIGs with

distance cutoff in the range [6.0, 9.0]Å over all proteins. B. Mean characteristic path
length and clustering coefficient for (Cα)all RIGs with distance cutoff in range [6.0,
9.0]Å and (ALL)all RIGs with distance cutoff in range [4.0, 5.0]Å, over all proteins.
Error bars represent the standard deviations.
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Figure D.1: GDD-agreements and RGF-distances between model networks (ER, ER-DD, GEO-
3D, SF-BA, and STICKY) and RIGs corresponding to 1ho4 protein that are constructed for each
of the three contact types (ALL, BB and SC) and a series of distance cut-off values between
4.0 and 9.0 Angstroms: A. GDD-agreement for ALL contact type. B. RGF-distance for ALL
contact type. C. GDD-agreement for BB contact type. D. RGF-distance for BB contact type.
E. GDD-agreement for SC contact type. F. RGF-distance for SC contact type. The larger the
GDD-agreement in panels A, C, and E the better the fit. The smaller the RGF-distance in panels
B, D, and F the better the fit.

128



(A)

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

9.08.58.07.57.06.56.05.55.04.94.84.74.64.54.44.34.24.14.0

G
e
o
m

e
tr

ic
 a

v
e
ra

g
e

 o
f 
a

g
re

e
m

e
n

t

Distance cut-off [ °A]

Graphlet degree distribution agreement for 1agd protein with "ALL" contact type

ER
ER-DD

GEO-3D
BA-SF

STICKY

(B)

 0

 20

 40

 60

 80

 100

 120

9.08.58.07.57.06.56.05.55.04.94.84.74.64.54.44.34.24.14.0

G
ra

p
h

le
t 

 f
re

q
u
e
n

c
y
 d

is
ta

n
c
e

Distance cut-off [ °A]

Graphlet  frequency distance for 1agd protein with "ALL" contact type

ER
ER-DD

GEO-3D
BA-SF

STICKY

(C)

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

9.08.58.07.57.06.56.05.55.04.94.84.74.64.54.44.34.24.14.0

G
e

o
m

e
tr

ic
 a

v
e
ra

g
e

 o
f 
a

g
re

e
m

e
n

t

Distance cut-off [ °A]

Graphlet degree distribution agreement for 1agd protein with "BB" contact type

ER
ER-DD

GEO-3D
BA-SF

STICKY

(D)

 0

 20

 40

 60

 80

 100

 120

9.08.58.07.57.06.56.05.55.04.94.84.74.64.54.44.34.24.14.0

G
ra

p
h

le
t 

 f
re

q
u

e
n

c
y
 d

is
ta

n
c
e

Distance cut-off [ °A]

Graphlet  frequency distance for 1agd protein with "BB" contact type

ER
ER-DD

GEO-3D
BA-SF

STICKY

(E)

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

9.08.58.07.57.06.56.05.55.04.94.84.74.64.54.44.34.24.14.0

G
e

o
m

e
tr

ic
 a

v
e

ra
g
e
 o

f 
a

g
re

e
m

e
n
t

Distance cut-off [ °A]

Graphlet degree distribution agreement for 1agd protein with "SC" contact type

ER
ER-DD

GEO-3D
BA-SF

STICKY

(F)

 0

 20

 40

 60

 80

 100

 120

9.08.58.07.57.06.56.05.55.04.94.84.74.64.54.44.34.24.14.0

G
ra

p
h

le
t 

 f
re

q
u

e
n
c
y
 d

is
ta

n
c
e

Distance cut-off [ °A]

Graphlet  frequency distance for 1agd protein with "SC" contact type

ER
ER-DD

GEO-3D
BA-SF

STICKY

Figure D.2: GDD-agreements and RGF-distances between model networks (ER, ER-DD, GEO-
3D, SF-BA, and STICKY) and RIGs corresponding to 1agd protein that are constructed for each
of the three contact types (ALL, BB and SC) and a series of distance cut-off values between
4.0 and 9.0 Angstroms: A. GDD-agreement for ALL contact type. B. RGF-distance for ALL
contact type. C. GDD-agreement for BB contact type. D. RGF-distance for BB contact type.
E. GDD-agreement for SC contact type. F. RGF-distance for SC contact type. The larger the
GDD-agreement in panels A, C, and E the better the fit. The smaller the RGF-distance in panels
B, D, and F the better the fit.
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Figure D.3: GDD-agreements and RGF-distances between model networks (ER, ER-DD, GEO-
3D, SF-BA, and STICKY) and RIGs corresponding to 1fap protein that are constructed for each
of the three contact types (ALL, BB and SC) and a series of distance cut-off values between
4.0 and 9.0 Angstroms: A. GDD-agreement for ALL contact type. B. RGF-distance for ALL
contact type. C. GDD-agreement for BB contact type. D. RGF-distance for BB contact type.
E. GDD-agreement for SC contact type. F. RGF-distance for SC contact type. The larger the
GDD-agreement in panels A, C, and E the better the fit. The smaller the RGF-distance in panels
B, D, and F the better the fit.
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Figure D.4: GDD-agreements and RGF-distances between model networks (ER, ER-DD, GEO-
3D, SF-BA, and STICKY) and RIGs corresponding to 1mjc protein that are constructed for each
of the three contact types (ALL, BB and SC) and a series of distance cut-off values between
4.0 and 9.0 Angstroms: A. GDD-agreement for ALL contact type. B. RGF-distance for ALL
contact type. C. GDD-agreement for BB contact type. D. RGF-distance for BB contact type.
E. GDD-agreement for SC contact type. F. RGF-distance for SC contact type. The larger the
GDD-agreement in panels A, C, and E the better the fit. The smaller the RGF-distance in panels
B, D, and F the better the fit.
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Figure D.5: GDD-agreements and RGF-distances between model networks (ER, ER-DD, GEO-
3D, SF-BA, and STICKY) and RIGs corresponding to 1rbp protein that are constructed for each
of the three contact types (ALL, BB and SC) and a series of distance cut-off values between
4.0 and 9.0 Angstroms: A. GDD-agreement for ALL contact type. B. RGF-distance for ALL
contact type. C. GDD-agreement for BB contact type. D. RGF-distance for BB contact type.
E. GDD-agreement for SC contact type. F. RGF-distance for SC contact type. The larger the
GDD-agreement in panels A, C, and E the better the fit. The smaller the RGF-distance in panels
B, D, and F the better the fit.
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Figure D.6: GDD-agreements and RGF-distances between model networks (ER, ER-DD, GEO-
3D, SF-BA, and STICKY) and RIGs corresponding to 1sha protein that are constructed for each
of the three contact types (ALL, BB and SC) and a series of distance cut-off values between
4.0 and 9.0 Angstroms: A. GDD-agreement for ALL contact type. B. RGF-distance for ALL
contact type. C. GDD-agreement for BB contact type. D. RGF-distance for BB contact type.
E. GDD-agreement for SC contact type. F. RGF-distance for SC contact type. The larger the
GDD-agreement in panels A, C, and E the better the fit. The smaller the RGF-distance in panels
B, D, and F the better the fit.
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Figure D.7: GDD-agreements and RGF-distances between model networks (ER, ER-DD, GEO-
3D, SF-BA, and STICKY) and RIGs corresponding to 2acy protein that are constructed for each
of the three contact types (ALL, BB and SC) and a series of distance cut-off values between
4.0 and 9.0 Angstroms: A. GDD-agreement for ALL contact type. B. RGF-distance for ALL
contact type. C. GDD-agreement for BB contact type. D. RGF-distance for BB contact type.
E. GDD-agreement for SC contact type. F. RGF-distance for SC contact type. The larger the
GDD-agreement in panels A, C, and E the better the fit. The smaller the RGF-distance in panels
B, D, and F the better the fit.
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Figure D.8: GDD-agreements and RGF-distances between model networks (ER, ER-DD, GEO-
3D, SF-BA, and STICKY) and RIGs corresponding to 3eca protein that are constructed for each
of the three contact types (ALL, BB and SC) and a series of distance cut-off values between
4.0 and 9.0 Angstroms: A. GDD-agreement for ALL contact type. B. RGF-distance for ALL
contact type. C. GDD-agreement for BB contact type. D. RGF-distance for BB contact type.
E. GDD-agreement for SC contact type. F. RGF-distance for SC contact type. The larger the
GDD-agreement in panels A, C, and E the better the fit. The smaller the RGF-distance in panels
B, D, and F the better the fit.
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Figure D.9: The Pearson correlation coefficients of degree distributions and clustering spectra of
model networks (ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 1i1b
protein that are constructed for each of the three contact types (ALL, BB and SC) and a series
of distance cut-off values between 4.0 and 9.0 Angstroms: A. degree distribution for ALL contact
type. B. clustering spectrum for ALL contact type. C. degree distribution for BB contact
type. D. clustering spectrum for BB contact type. E. degree distribution for SC contact type.
F. clustering spectrum for SC contact type.
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Figure D.10: The Pearson correlation coefficients of degree distributions and clustering spectra of
model networks (ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 1ho4
protein that are constructed for each of the three contact types (ALL, BB and SC) and a series
of distance cut-off values between 4.0 and 9.0 Angstroms: A. degree distribution for ALL contact
type. B. clustering spectrum for ALL contact type. C. degree distribution for BB contact
type. D. clustering spectrum for BB contact type. E. degree distribution for SC contact type.
F. clustering spectrum for SC contact type.
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Figure D.11: The Pearson correlation coefficients of degree distributions and clustering spectra of
model networks (ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 1agd
protein that are constructed for each of the three contact types (ALL, BB and SC) and a series
of distance cut-off values between 4.0 and 9.0 Angstroms: A. degree distribution for ALL contact
type. B. clustering spectrum for ALL contact type. C. degree distribution for BB contact
type. D. clustering spectrum for BB contact type. E. degree distribution for SC contact type.
F. clustering spectrum for SC contact type.
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Figure D.12: The Pearson correlation coefficients of degree distributions and clustering spectra of
model networks (ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 1fap
protein that are constructed for each of the three contact types (ALL, BB and SC) and a series
of distance cut-off values between 4.0 and 9.0 Angstroms: A. degree distribution for ALL contact
type. B. clustering spectrum for ALL contact type. C. degree distribution for BB contact
type. D. clustering spectrum for BB contact type. E. degree distribution for SC contact type.
F. clustering spectrum for SC contact type.
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Figure D.13: The Pearson correlation coefficients of degree distributions and clustering spectra of
model networks (ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 1mjc
protein that are constructed for each of the three contact types (ALL, BB and SC) and a series
of distance cut-off values between 4.0 and 9.0 Angstroms: A. degree distribution for ALL contact
type. B. clustering spectrum for ALL contact type. C. degree distribution for BB contact
type. D. clustering spectrum for BB contact type. E. degree distribution for SC contact type.
F. clustering spectrum for SC contact type.
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Figure D.14: The Pearson correlation coefficients of degree distributions and clustering spectra of
model networks (ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 1rbp
protein that are constructed for each of the three contact types (ALL, BB and SC) and a series
of distance cut-off values between 4.0 and 9.0 Angstroms: A. degree distribution for ALL contact
type. B. clustering spectrum for ALL contact type. C. degree distribution for BB contact
type. D. clustering spectrum for BB contact type. E. degree distribution for SC contact type.
F. clustering spectrum for SC contact type.
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Figure D.15: The Pearson correlation coefficients of degree distributions and clustering spectra of
model networks (ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 1sha
protein that are constructed for each of the three contact types (ALL, BB and SC) and a series
of distance cut-off values between 4.0 and 9.0 Angstroms: A. degree distribution for ALL contact
type. B. clustering spectrum for ALL contact type. C. degree distribution for BB contact
type. D. clustering spectrum for BB contact type. E. degree distribution for SC contact type.
F. clustering spectrum for SC contact type.
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Figure D.16: The Pearson correlation coefficients of degree distributions and clustering spectra of
model networks (ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 2acy
protein that are constructed for each of the three contact types (ALL, BB and SC) and a series
of distance cut-off values between 4.0 and 9.0 Angstroms: A. degree distribution for ALL contact
type. B. clustering spectrum for ALL contact type. C. degree distribution for BB contact
type. D. clustering spectrum for BB contact type. E. degree distribution for SC contact type.
F. clustering spectrum for SC contact type.
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Figure D.17: The Pearson correlation coefficients of degree distributions and clustering spectra of
model networks (ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 3eca
protein that are constructed for each of the three contact types (ALL, BB and SC) and a series
of distance cut-off values between 4.0 and 9.0 Angstroms: A. degree distribution for ALL contact
type. B. clustering spectrum for ALL contact type. C. degree distribution for BB contact
type. D. clustering spectrum for BB contact type. E. degree distribution for SC contact type.
F. clustering spectrum for SC contact type.
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Figure D.18: The agreements of average clustering coefficients and diameters of model networks
(ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 1i1b protein that are
constructed for each of the three contact types (ALL, BB and SC) and a series of distance cut-off
values between 4.0 and 9.0 Angstroms: A. average clustering coefficients for ALL contact type.
B. average diameters for ALL contact type. C. average clustering coefficients for BB contact
type. D. average diameters for BB contact type. E. average clustering coefficients for SC
contact type. F. average diameters for SC contact type.
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Figure D.19: The agreements of average clustering coefficients and diameters of model networks
(ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 1ho4 protein that are
constructed for each of the three contact types (ALL, BB and SC) and a series of distance cut-off
values between 4.0 and 9.0 Angstroms: A. average clustering coefficients for ALL contact type.
B. average diameters for ALL contact type. C. average clustering coefficients for BB contact
type. D. average diameters for BB contact type. E. average clustering coefficients for SC
contact type. F. average diameters for SC contact type.
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Figure D.20: The agreements of average clustering coefficients and diameters of model networks
(ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 1agd protein that are
constructed for each of the three contact types (ALL, BB and SC) and a series of distance cut-off
values between 4.0 and 9.0 Angstroms: A. average clustering coefficients for ALL contact type.
B. average diameters for ALL contact type. C. average clustering coefficients for BB contact
type. D. average diameters for BB contact type. E. average clustering coefficients for SC
contact type. F. average diameters for SC contact type.
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Figure D.21: The agreements of average clustering coefficients and diameters of model networks
(ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 1fap protein that are
constructed for each of the three contact types (ALL, BB and SC) and a series of distance cut-off
values between 4.0 and 9.0 Angstroms: A. average clustering coefficients for ALL contact type.
B. average diameters for ALL contact type. C. average clustering coefficients for BB contact
type. D. average diameters for BB contact type. E. average clustering coefficients for SC
contact type. F. average diameters for SC contact type.
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Figure D.22: The agreements of average clustering coefficients and diameters of model networks
(ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 1mjc protein that are
constructed for each of the three contact types (ALL, BB and SC) and a series of distance cut-off
values between 4.0 and 9.0 Angstroms: A. average clustering coefficients for ALL contact type.
B. average diameters for ALL contact type. C. average clustering coefficients for BB contact
type. D. average diameters for BB contact type. E. average clustering coefficients for SC
contact type. F. average diameters for SC contact type.
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Figure D.23: The agreements of average clustering coefficients and diameters of model networks
(ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 1rbp protein that are
constructed for each of the three contact types (ALL, BB and SC) and a series of distance cut-off
values between 4.0 and 9.0 Angstroms: A. average clustering coefficients for ALL contact type.
B. average diameters for ALL contact type. C. average clustering coefficients for BB contact
type. D. average diameters for BB contact type. E. average clustering coefficients for SC
contact type. F. average diameters for SC contact type.
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Figure D.24: The agreements of average clustering coefficients and diameters of model networks
(ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 1sha protein that are
constructed for each of the three contact types (ALL, BB and SC) and a series of distance cut-off
values between 4.0 and 9.0 Angstroms: A. average clustering coefficients for ALL contact type.
B. average diameters for ALL contact type. C. average clustering coefficients for BB contact
type. D. average diameters for BB contact type. E. average clustering coefficients for SC
contact type. F. average diameters for SC contact type.
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Figure D.25: The agreements of average clustering coefficients and diameters of model networks
(ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 2acy protein that are
constructed for each of the three contact types (ALL, BB and SC) and a series of distance cut-off
values between 4.0 and 9.0 Angstroms: A. average clustering coefficients for ALL contact type.
B. average diameters for ALL contact type. C. average clustering coefficients for BB contact
type. D. average diameters for BB contact type. E. average clustering coefficients for SC
contact type. F. average diameters for SC contact type.
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Figure D.26: The agreements of average clustering coefficients and diameters of model networks
(ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 3eca protein that are
constructed for each of the three contact types (ALL, BB and SC) and a series of distance cut-off
values between 4.0 and 9.0 Angstroms: A. average clustering coefficients for ALL contact type.
B. average diameters for ALL contact type. C. average clustering coefficients for BB contact
type. D. average diameters for BB contact type. E. average clustering coefficients for SC
contact type. F. average diameters for SC contact type.
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Figure D.27: The Pearson correlation coefficients of the shortest path lengths spectra of model
networks (ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 1i1b and
1ho4 proteins that are constructed for each of the three contact types (“BB”, “ALL”, and “SC”)
and a series of distance cut-off values between 4.0 and 9.0 Angstroms: A. spectra of shortest
path lengths for ALL contact type and 1i1b. B. spectra of shortest path lengths for ALL contact
type and 1ho4. C. spectra of shortest path lengths for BB contact type and 1i1b. D. spectra
of shortest path lengths for BB contact type and 1ho4. E. spectra of shortest path lengths for
SC contact type and 1i1b. F. spectra of shortest path lengths for SC contact type and 1ho4.
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Figure D.28: The Pearson correlation coefficients of the shortest path lengths spectra of model
networks (ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 1agd and
1fap proteins that are constructed for each of the three contact types (“BB”, “ALL”, and “SC”)
and a series of distance cut-off values between 4.0 and 9.0 Angstroms: A. spectra of shortest path
lengths for ALL contact type and 1agd. B. spectra of shortest path lengths for ALL contact
type and 1fap. C. spectra of shortest path lengths for BB contact type and 1agd. D. spectra
of shortest path lengths for BB contact type and 1fap. E. spectra of shortest path lengths for
SC contact type and 1agd. F. spectra of shortest path lengths for SC contact type and 1fap.
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Figure D.29: The Pearson correlation coefficients of the shortest path lengths spectra of model
networks (ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 1mjc and
1rbp proteins that are constructed for each of the three contact types (“BB”, “ALL”, and “SC”)
and a series of distance cut-off values between 4.0 and 9.0 Angstroms: A. spectra of shortest path
lengths for ALL contact type and 1mjc. B. spectra of shortest path lengths for ALL contact
type and 1rbp. C. spectra of shortest path lengths for BB contact type and 1mjc. D. spectra
of shortest path lengths for BB contact type and 1rbp. E. spectra of shortest path lengths for
SC contact type and 1mjc. F. spectra of shortest path lengths for SC contact type and 1rbp.

156



(A)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

9.08.58.07.57.06.56.05.55.04.94.84.74.64.54.44.34.24.14.0

P
e
a
rs

o
n
 c

o
rr

e
la

ti
o
n

Distance cut-off [
 °
A]

Correlations of diameter spectra for 1sha protein with "ALL" contact type

ER
ER-DD

GEO-3D
BA-SF

STICKY

(B)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

9.08.58.07.57.06.56.05.55.04.94.84.74.64.54.44.34.24.14.0

P
e
a
rs

o
n
 c

o
rr

e
la

ti
o
n

Distance cut-off [
 °
A]

Correlations of diameter spectra for 2acy protein with "ALL" contact type

ER
ER-DD

GEO-3D
BA-SF

STICKY

(C)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

9.08.58.07.57.06.56.05.55.04.94.84.74.64.54.44.34.24.14.0

P
e
a
rs

o
n
 c

o
rr

e
la

ti
o
n

Distance cut-off [
 °
A]

Correlations of diameter spectra for 1sha protein with "BB" contact type

ER
ER-DD

GEO-3D
BA-SF

STICKY

(D)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

9.08.58.07.57.06.56.05.55.04.94.84.74.64.54.44.34.24.14.0

P
e
a
rs

o
n
 c

o
rr

e
la

ti
o
n

Distance cut-off [
 °
A]

Correlations of diameter spectra for 2acy protein with "BB" contact type

ER
ER-DD

GEO-3D
BA-SF

STICKY

(E)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

9.08.58.07.57.06.56.05.55.04.94.84.74.64.54.44.34.24.14.0

P
e
a
rs

o
n
 c

o
rr

e
la

ti
o
n

Distance cut-off [
 °
A]

Correlations of diameter spectra for 1sha protein with "SC" contact type

ER
ER-DD

GEO-3D
BA-SF

STICKY

(F)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

9.08.58.07.57.06.56.05.55.04.94.84.74.64.54.44.34.24.14.0

P
e
a
rs

o
n
 c

o
rr

e
la

ti
o
n

Distance cut-off [
 °
A]

Correlations of diameter spectra for 2acy protein with "SC" contact type

ER
ER-DD

GEO-3D
BA-SF

STICKY

Figure D.30: The Pearson correlation coefficients of the shortest path lengths spectra of model
networks (ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 1sha and
2acy proteins that are constructed for each of the three contact types (“BB”, “ALL”, and “SC”)
and a series of distance cut-off values between 4.0 and 9.0 Angstroms: A. spectra of shortest
path lengths for ALL contact type and 1sha. B. spectra of shortest path lengths for ALL contact
type and 2acy. C. spectra of shortest path lengths for BB contact type and 1sha. D. spectra
of shortest path lengths for BB contact type and 2acy. E. spectra of shortest path lengths for
SC contact type and 1sha. F. spectra of shortest path lengths for SC contact type and 2acy.
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Figure D.31: The Pearson correlation coefficients of the shortest path lengths spectra of model
networks (ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 3eca protein
that are constructed for each of the three contact types (“BB”, “ALL”, and “SC”) and a series
of distance cut-off values between 4.0 and 9.0 Angstroms: A. spectra of shortest path lengths
for ALL contact type. B. spectra of shortest path lengths for BB contact type. C. spectra of
shortest path lengths for SC contact type.
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Figure D.32: The ranking of five network models (ER, ER-DD, GEO-3D, SF-BA, and STICKY)
for 94 (ALL)all

4.5Å
RIGs corresponding to the 94 thermophilic proteins. Ranking is based on GDD-

agreements (A), RGF-distances (B), and agreements between degree distributions (C), clustering
spectra (D), clustering coefficients (E), average diameters (F) and spectra of shortest path lengths
(G).
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Figure D.33: The ranking of five network models (ER, ER-DD, GEO-3D, SF-BA, and STICKY)
for 94 (ALL)all

4.5Å
RIGs corresponding to the 94 mesophilic proteins. Ranking is based on GDD-

agreements (A), RGF-distances (B), and agreements between degree distributions (C), clustering
spectra (D), clustering coefficients (E), average diameters (F) and spectra of shortest path lengths
(G).
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Figure D.34: The coefficients a, b, and c for the fitted power-law functions a∗xb+c and
R-Square values measuring the goodness of fit with respect to the following network
properties: GDD-agreement (GDDA), RGF-distance (RGFD), agreements between
degree distributions (DD), agreements between clustering spectra (CS), clustering co-
efficients of RIGs (CC DATA) and the corresponding GEO-3D model networks (CC
GEO), average diameters of RIGs (AD DATA) and the corresponding GEO-3D model
networks (AD GEO), and agreements between spectra of shortest path lengths (DS).
The statistics are presented for the entire Data Set 2 of 1,272 RIGs, as well as for
individual groups of proteins belonging to the four structural classes: all –α (class A),
all – β (class B), α / β (class C), and α+ β (class D).
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Figure D.35: The goodness of fit of the fitted power-law functions, expressed in terms
of R-squares, for the following network properties: GDD-agreement (GDDA), RGF-
distance (RGFD), agreements between degree distributions (DD), agreements between
clustering spectra (CS), clustering coefficients of RIGs (CC DATA) and the correspond-
ing GEO-3D model networks (CC GEO), average diameters of RIGs (AD DATA) and
the corresponding GEO-3D model networks (AD GEO), and agreements between spec-
tra of shortest path lengths (DS). The entire Data Set 2 of 1,272 RIGs was analysed,
as well as for individual groups of proteins belonging to the four structural classes:
all –α (A), all – β (B), α / β (C), and α+ β (D).
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Figure D.36: (A) Distribution of protein size for 744 proteins from Data Set 2 that belong to
one of the four structural classes: all –α (A), all – β (B), α / β (C), and α+ β (D). (B) Average
degree, (C) average volume-to-surface ratio, and (D) average GDD-agreement between GEO-3D
graphs and the corresponding RIGs, with respect to each size range and each of the four structural
classes. The standard error of the mean is plotted.
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Figure D.37: (A) Average percentage of residues in α-helices and β-strands for all α / β
(C), and α+ β (D) proteins in Data Set 2, with respect to each protein size range. (B)
Average percentage of residues in loop regions for 744 proteins in Data Set 2 belonging
to the four structural classes, all –α (A), all – β (B), α / β (C), and α+ β (D), with
respect to each size range and each class. The standard error of the mean is plotted.
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Figure D.38: Boxplots of the paired difference, between thermophilic and mesophilic
proteins, in the degree of fitting of GEO-3D graphs to RIGs, with respect to following
network properties: GDD-agreement (GDDA), RGF-distance (RGFD), agreements be-
tween degree distributions (DD), agreements between spectra of shortest path lengths
(DS), agreements between clustering spectra (CS), agreements between average diam-
eters (AD), and agreements between clustering coefficients (CC). Grey dashed lines
denote the mean, while values above (below) the green dotted line denote that the
value is higher for thermophiles (mesophiles). The values of agreements between RGF-
distances, average diameters and clustering coefficients have been scaled to range from
zero to one.
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Figure D.39: Motif dictionary: all 3- to 5-node subgraphs. Each subgraph is labelled
with its size followed by its ID according to mfinder.
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Figure D.40: Absolute (A) Z-scores and (B) M -factors for all 3- to 5-node subgraphs
in the (ALL)all

5.0Å
RIG corresponding to 1i1b protein. These statistics were computed

with respect to eight network models (ER, ER-DD, GEO-3D, BA-SF, STICKY, UA-
ER-DD, CLUST, and MET). Y-axis is shown in a logarithmic scale to facilitate the
comparison of different models. The threshold value used for motif selection (M-factor
greater than 0.1) is displayed as the grey dash-dot line.
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Figure D.41: Absolute (A) Z-scores and (B) M -factors for all 3- to 5-node subgraphs
in the (ALL)all

5.0Å
RIG corresponding to 1ho4 protein. These statistics were computed

with respect to eight network models (ER, ER-DD, GEO-3D, BA-SF, STICKY, UA-
ER-DD, CLUST, and MET). Y-axis is shown in a logarithmic scale to facilitate the
comparison of different models. The threshold value used for motif selection (M-factor
greater than 0.1) is displayed as the grey dash-dot line.
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Figure D.42: Absolute (A) Z-scores and (B) M -factors for all 3- to 5-node subgraphs
in the (ALL)all

5.0Å
RIG corresponding to 1agd protein. These statistics were computed

with respect to eight network models (ER, ER-DD, GEO-3D, BA-SF, STICKY, UA-
ER-DD, CLUST, and MET). Y-axis is shown in a logarithmic scale to facilitate the
comparison of different models. The threshold value used for motif selection (M-factor
greater than 0.1) is displayed as the grey dash-dot line.
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Figure D.43: Absolute (A) Z-scores and (B) M -factors for all 3- to 5-node subgraphs
in the (ALL)all

5.0Å
RIG corresponding to 1fap protein. These statistics were computed

with respect to eight network models (ER, ER-DD, GEO-3D, BA-SF, STICKY, UA-
ER-DD, CLUST, and MET). Y-axis is shown in a logarithmic scale to facilitate the
comparison of different models. The threshold value used for motif selection (M-factor
greater than 0.1) is displayed as the grey dash-dot line.
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Figure D.44: Absolute (A) Z-scores and (B) M -factors for all 3- to 5-node subgraphs
in the (ALL)all

5.0Å
RIG corresponding to 1mjc protein. These statistics were computed

with respect to eight network models (ER, ER-DD, GEO-3D, BA-SF, STICKY, UA-
ER-DD, CLUST, and MET). Y-axis is shown in a logarithmic scale to facilitate the
comparison of different models. The threshold value used for motif selection (M-factor
greater than 0.1) is displayed as the grey dash-dot line.
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Figure D.45: Absolute (A) Z-scores and (B) M -factors for all 3- to 5-node subgraphs
in the (ALL)all

5.0Å
RIG corresponding to 1rbp protein. These statistics were computed

with respect to eight network models (ER, ER-DD, GEO-3D, BA-SF, STICKY, UA-
ER-DD, CLUST, and MET). Y-axis is shown in a logarithmic scale to facilitate the
comparison of different models. The threshold value used for motif selection (M-factor
greater than 0.1) is displayed as the grey dash-dot line.
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Figure D.46: Absolute (A) Z-scores and (B) M -factors for all 3- to 5-node subgraphs
in the (ALL)all

5.0Å
RIG corresponding to 1sha protein. These statistics were computed

with respect to eight network models (ER, ER-DD, GEO-3D, BA-SF, STICKY, UA-
ER-DD, CLUST, and MET). Y-axis is shown in a logarithmic scale to facilitate the
comparison of different models. The threshold value used for motif selection (M-factor
greater than 0.1) is displayed as the grey dash-dot line.
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Figure D.47: Absolute (A) Z-scores and (B) M -factors for all 3- to 5-node subgraphs
in the (ALL)all

5.0Å
RIG corresponding to 2acy protein. These statistics were computed

with respect to eight network models (ER, ER-DD, GEO-3D, BA-SF, STICKY, UA-
ER-DD, CLUST, and MET). Y-axis is shown in a logarithmic scale to facilitate the
comparison of different models. The threshold value used for motif selection (M-factor
greater than 0.1) is displayed as the grey dash-dot line.
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Figure D.48: Absolute (A) Z-scores and (B) M -factors for all 3- to 5-node subgraphs
in the (ALL)all

5.0Å
RIG corresponding to 3eca protein. These statistics were computed

with respect to eight network models (ER, ER-DD, GEO-3D, BA-SF, STICKY, UA-
ER-DD, CLUST, and MET). Y-axis is shown in a logarithmic scale to facilitate the
comparison of different models. The threshold value used for motif selection (M-factor
greater than 0.1) is displayed as the grey dash-dot line.
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Appendix E

Zusammenfassung
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Zusammenfassung

Netzwerkanalysen von Proteinstrukturen erlauben wichtige Einblicke in Proteinfaltung
und -funktion. Da bisher eine einheitliche Sichtweise auf die Netwerkmodellierung und
Analyse von Proteinstrukturen fehlt und neuere Erkenntnisse der Netzwerktheorie bislang
unberücksichtigt blieben, werden in dieser Arbeit die folgenden wichtigen Ziele bearbeitet:

1. Die rationale Auswahl geeigneter Netzwerkdarstellungen von Proteinstrukturen

2. Die Ausarbeitung eines optimierten Nullmodells für Proteinstrukturnetzwerke

3. Die Entwicklung einer neuen graphenbasierten empirischen Potentialfunktion

Die Theorie der Graphlets, ein kürzlich eingeführtes, mächtiges Konzept in der Graphen-
theorie bildet die Grundlage dieser Arbeit. Mit Hilfe der Graphlets werden die topologis-
chen Ähnlichkeiten verschiedener Netwerkdarstellungen untersucht. Dies führt zu einem
optimierten Nullmodell und schließlich zu einer neuen empirischen Potentialfunktion.

Kapitel 2 vereint verschiedene Netzwerkdarstellungen über ein kontrolliertes Vokabu-
lar. Dabei werden die Details der Netzwerk-Konstruktion motiviert sowie deren Popu-
larität und Optimalität erläutert. In Kapitel 3 wird ein umfassender Satz von insgesamt
945 verschiedenen Netzwerkdarstellungen systematisch hinsichtlich ihrer Ähnlichkeit und
ihrer grundlegenden Netzwerkeigenschaften analysiert. Es wird gezeigt, dass verschiedene
häufig verwendete Darstellungen eine geringe Ähnlichkeit zueinander aufweisen. Zudem
tauchen in einigen Darstellungen mehrere Zusammenhangskomponenten und nichtver-
bundene Knoten auf. Insbesondere Vergleiche zwischen Proteinen mit unterschiedlichen
Sekundärstrukturtopologien sollten mit Vorsicht gezogen werden. Dieser Teil der Arbeit
legt die Grundlagen für eine rationale Auswahl nach Kriterien wie Häufigkeit, Opti-
malität wünschenswerter Netzwerkeigenschaften sowie Ähnlichkeit zu bereits erfolgreich
eingesetzten Darstellungen.

In Kapitel 4 wird gezeigt, dass unter einer Reihe von Zufallsgraphmodellen die three-
dimensionalen geometrischen Zufalls-Graphen am besten den Eigenschaften von Protein-
strukturnetzwerken entsprechen. Die Übereinstimmung, gemessen an einem strukturell
diversen Datensatz, bleibt unter den verschiedensten Darstellungen und den verschiede-
nen topologischen Eigenschaften erhalten. Geometrische Zufallsgraphen entsprechen in
ihrer Netzwerkstruktur am ehesten großen Proteinen, Strukturen mit einem geringen An-
teil an alpha-helices oder solchen mit geringer Thermostabilität. Die Wahl geometrischer
Zufalls-Graphen als Nullmodell erlaubt die sehr spezifische Identifikation statistisch sig-
nifikanter Teilgraphen. Dieser Teil der Arbeit wurde bereits erfolgreich publiziert.

In Kapitel 5 wird eine neue empirische Potentialfunktion entwickelt, indem die Kontak-
tzahl als Potentialfunktion in eine rein topologische und residuen-basierte Form verall-
gemeinert und verbessert wird. Die verbesserten Eigenschaften sind konsistent und ro-
bust gegenüber verschiedenen Methoden zur Generierung von Decoys und verschiedenen
Qualitätsmaßen. Die Ergebnisse liegen insgesamt etwa gleich auf mit denen vorhandener
Vier-Körper-Potentiale, verhalten sich jedoch im Einzelfall mitunter stark komplementär
zueinander. Dies deutet auf weiteres Entwicklungspotential hin.

Insgesamt werden mit dieser Arbeit die Grundlagen für die systematische Analyse von
Proteinstrukturen als Netzwerke gelegt und neue Ansatzmöglichkeiten für die Suche nach
einer optimalen Energiefunktion eröffnet.
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