
 

Freie Universität Berlin, Department of Earth Sciences 

 

 

 

Dealing with missing data in hydrology 

- Data analysis of discharge and groundwater time-series 

in Northeast Germany 

 

 
 
 
 

 
 

 
 
 

 
 

Dissertation submitted to the Department of Earth Sciences 

 Freie Universität Berlin, Germany,  

for the academic degree of Doctor of Natural Sciences (Dr. rer. nat.) 

 

 

 

YONGBO GAO 
 

 

 

February 10th, 2017  

Berlin 

 



 



I 
 

 
 
Dealing with missing data in hydrology 
- Data analysis of discharge and groundwater time-series in Northeast Germany 
 
 
Dissertation submitted to the Department of Earth Sciences of Freie Universität Berlin, Germany, for the 
academic degree of Doctor of Natural Sciences (Dr. rer. nat) in Hydrology 
 
 
 
 
Erstgutachter : Prof. Dr. Christoph Merz  
Freie Universität Berlin, Fachbereich Geowissenschaften, Institut für Geologische Wissenschaften 
 
Zweitgutachter: Prof. Dr. Michael Schneider  
Freie Universität Berlin, Fachbereich Geowissenschaften, Institut für Geologische Wissenschaften 
 
Drittgutachter: Prof. Dr. Gunnar Lischeid 
Universität Potsdam, Institut für Erd- und Umweltwissenschaften 
Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF), Institut für Landschaftswasserhaushalt 
 
 
 
 
 
 
 
 
 
 
 
 
 
Die Disputation erfolgte am: 10. Februar 2017 
 
 
 
 
 
 

Erklärung 
 
 
Hiermit erkläre ich, Yongbo Gao, dass diese Arbeit ausschließlich auf Grundlage der angegebenen 
Hilfsmittel und Hilfen selbstständig von mir verfasst wurde. Diese Arbeit wurde nicht in einem früheren 
Promotionsverfahren eingereicht.  
 
 
 
 
 
 
 
Berlin, den 09. Januar 2017  
Yongbo Gao 

 

 



II 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



III 
 

 

Acknowledgements 
 

Firstly, I would like to express my sincere gratitude to my supervisors Prof. Dr. Christoph 

Merz, Prof. Dr. Gunnar Lischeid, Prof. Dr. Michael Schneider for the continuous support of 

my Ph.D study and related research, for their patience, motivation, and immense knowledge. 

Their guidance helped me in all the time of research and writing of this thesis.  

Besides my supervisors, I would like to thank Marcus Fahle, Tobias Hohenbrink, Steven 

Böttcher, Philipp Rauneker, Steffen Gliege, Jin Sun for all their comments, supporting and 

encouragements. Special thanks to Björn Thomas for collecting and extracting the 

meteorological and catchment properties data of the catchments in the Federal State of 

Brandenburg, Germany.  Furthermore, the whole working group at the Leibniz Centre for 

Agricultural and Landscape Research (ZALF) contributed to my work with their help. 

My sincere thanks also goes to China Scholarship Council (CSC) who provided me an 

opportunity to achieve something I have never dreamed in my life before. Without their 

precious support it would not be possible to conduct this research. 

Last but not least, I would like to thank my family: my parents for supporting me spiritually 

and financially throughout writing this thesis. In particular, I am grateful to have Stefan 

Wagner for enlightening me the first glance of research. 

 

 

 

 

 

 

 

 

 

 

 



IV 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V 
 

 

Abstract  

Hydrological missing data is a common issue for hydrologists as it poses a serious problem 

for many statistical approaches in hydrology which require complete data sources since 

missing data is often harmful beyond reducing statistical power. For reasons of convenience, 

researchers often resort to simple solutions to deal with missing data such as simply 

discarding observations characterized by missing data or by replacing missing data with a 

statistical methodology. Despite its convenience, discarding is suboptimal as it reduces the 

quality of the conclusion to be drawn when analyzing the data. Actually, a variety of 

statistical techniques are available to treat missing data. My research is about finding the 

right techniques to deal with missing data problems in Hydrology and distinguishing in which 

certain circumstances which method works better. 

First, various imputation methods available to the hydrological researchers have been 

reviewed, including arithmetic mean imputation, Principal Component Analysis (PCA), 

regression-based methods and multiple imputation methods. 

Due to the time-series nature of hydrological data often requires more flexible non-linear 

model, we therefore put an emphasis on time-series regressions approaches that exploit the 

time series nature of hydrological data.  Auto Regressive Conditional Heteroscedasticity 

(ARCH) models which originate from finance and econometrics and Autoregressive 

Integrated Moving Average (ARIMA) models are discussed regarding the applicability to 

hydrological contexts here. I focused the attention on discussing econometric time-series 

methods as they explicitly model the particular statistical properties of hydrological time-

series (autocorrelation and heteroscedasticity) which are mostly neglected in algorithmic 

machine learning approaches. 

Second, the performances of imputation techniques which are widespread and easy to use 

but ignore the time series nature of hydrological data and imputation techniques exploiting 

their time series nature are compared.  By running a hydrological model - Hydrologiska 

Byråns Vattenbalansavdelning (HBV) model we generated 5 different discharge time series 

that exhibit different patterns of volatility to analyze.  
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The combination of Mean Squared Error (MSE) and Nash Sutcliff efficiency (NSE) as 

performance measures demonstrates  that econometric time series models such as 

Autoregressive Integrated Moving Average (ARIMA) and Autoregressive Conditional 

Heteroscedasticity (ARCH) model outperform alternative imputation approaches such as 

mean imputation or Ordinary Least Squares (OLS) based regression methods.  

Furthermore, we examined how the inclusion of information beyond the time-series of the 

variable of interest itself can improve imputation results. Extensions of these models to 

incorporate additional exogenous regressors are readily available with ARIMAX and ARCHX 

models. Using discharge data from Brandenburg in the northeast of Germany, we compare 

the imputation performance of univariate ARIMA and ARCH models which have been shown 

well in hydrological settings before with the performance of extended model version. 

These results shown that the models’ performance can be further enhanced by the inclusion 

of exogenous regressors such as precipitation, potential evapotranspiration or discharge 

measures from neighboring research areas. In particular, the inclusion of discharge measures 

of neighboring areas has a bigger effect on imputation quality. Moreover, the choice 

between ARIMA/X and ARCH/X is less important than the choice of additional regressors.  

Despite they overall encouraging findings there are, however, on the conceptual level, our 

results have been obtained using data from only one catchment area (Brandenburg) and the 

results might differ for data obtained from other catchments. More comprehensive 

validation of our results using data from different settings therefore seems to be warranted. 
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Zusammenfassung 

Hydrologische Daten sind oft durch fehlende Messwerte und Datenlücken gekennzeichnet, 

was die Anwendung statistischer Methoden zur Datenanalyse erschwert. Gängige 

statistische Ansätze erforden vollständige Datensätze und fehlende  Werte können nicht nur 

ihre Präzision reduzieren sondern auch zu verzerrten bzw. falschen Ergebnissen führen. 

Einfache Ansätze zum Umgang mit fehlenden Daten beinhalten das Löschen von 

Beobachtungen mit fehlenden Werten in einer oder mehreren Variablen oder auch das 

Ersetzen fehlender Werte durch den Einsatz statistischer Prognosemethoden (Imputation). 

Das Löschen von Beobachtungen ist oft suboptimal, da es die Qualität statistischer 

Schlussfolgerungen reduziert. Aus diesem Grund wurde eine Reihe von Verfahren entwickelt, 

die fehlende Werte mit prognostizierten Werten ersetzen und somit die Daten 

komplettieren. Die vorliegende Arbeite soll einen Überblick über alternative 

Imputationsverfahren geben und deren Anwendbarkeit in verschiedenen hydrologischen 

Problemstellungen evaluieren. 

Im ersten Teil der Arbeit wird die Problematik fehlender Werte und ihr Einfluss auf die 

Anwendbarkeit statistischer Analyseverfahren dargestellt. Darauf aufbauend werden 

gebräuchliche Imputationsverfahren vorgestellt und vergleichend diskutiert. Dabei wird auf 

verschiedene Verfahren eingegangen, wie etwa das Ersetzen fehlender Werte durch den 

Mittelwert aller Beobachtungen, die Hauptkomponentenanalyse (PCA) oder 

regressionsbasierte Imputationsverfahren. Schwerpunkt dieser Untersuchungen ist die 

Darstellung zeitreihenbasierter Verfahren, da hydrologische Daten in der Regel als Zeitreihen 

vorliegen. Insbesondere werden die in der Volkswirtschaftslehre gebräuchlichen 

Autoregressive Integrated Moving Average (ARIMA) und Autoregressive Conditional 

Heteroscedasticity (ARCH) Modelle vorgestellt. Diese Modelle wurden ausgewählt, da sie 

explizit die Zeitreihencharakteristiken von Daten (Autokorrelation und Heteroskedastizität) 

modellieren, die in alternativen Verfahren oft vernachlässigt werden. 

Im zweiten Teil der Arbeit  werden die Ergebnisse von einfachen und weitverbreiteten 

Imputationsverfahren den Ergebnissen zeitreihenbasierter Imputationsverfahren 
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gegenübergestellt. Dies erfolgt in einem hydrologischen Kontext. Mittels des Hydrologiska 

Byråns Vattenbalansavdelning (HBV) Modells werden zuerst fünf verschiedene 

Abflusszeitreihen generiert, die durch unterschiedliche Volatilität gekennzeichnet sind. 

Anschließend werden zufällig generierte Werte in diesen Zeitreihen mittels alternativen 

Imputationsverfahren approximiert und die Imputationsqualität mittels des Mean Squared 

Error (MSE) und des Nash Sutcliffe Efficiency (NSE) Kriteriums verglichen. Die Ergebnisse 

belegen, dass ökonometrische Zeitreihenmodelle wie etwa das Autoregressive Integrated 

Moving Average (ARIMA) und das Autoregressive Conditional Heteroscedasticity (ARCH) 

Modell alternativen Methoden überlegen sind. 

Im dritten Teil der Arbeit werden Generalisierungen der vorgestellten ARIMA und ARCH 

Modelle in einem ähnlichen Kontext evaluiert. Diese multivariaten Modelle (ARIMAX und 

ARCHX) beziehen neben der Zeitreihe der abhängigen Variablen weitere, unabhängige 

Variablen in das Modell mit ein. Basierend auf exemplarischen Abflusszeitreihen aus 

Brandenburg wird die Imputationsleistung von ARIMA und ARCH Modellen mit denen der 

erweiterten Modelle verglichen. Die Ergebnisse zeigen, dass die Präzision von 

Zeitreihenmodellen zur Modellierung gemessenen Abflusses durch die Einbeziehung 

zusätzlicher unabhängiger Variablen wie Niederschlag, potentielle Verdunstung oder Abfluss 

in Nachbarregionen erhöht werden kann. Insbesondere zeigt sich, dass die Berücksichtigung 

von Abflussdaten aus Nachbarregionen einen größeren Effekt auf die Imputationspräzision, 

hat als die anderen Variablen. Der Unterschied zwischen ARIMA/X und ARCH/X hingegen ist 

weniger bedeutend als die Wahl zusätzlicher Regressoren.  

Trotz viel-versprechender Erkentnisse auf konzeptioneller Ebene ist anzumerken, dass die 

hier vorgestellten Ergebnisse auf den Daten eines Einzugsgebiets basieren und für Daten 

weiterer Einzugsgebiete variieren können. Eine umfassendere Validierung der Ergebnisse auf 

Basis von Daten unterschiedlicher Einzugsgebiete erscheint daher zukünftig sinnvoll. 
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1 General introduction 

1.1 Scientific background and outline  

Like almost all fields of science, hydrology has benefited to a large extent from the 

tremendous improvements of scientific instruments that are needed to collect data and an 

increase in available computational power and storage capabilities over the last decades 

(Bradbury et al., 1999). These technological developments have facilitated the development 

and the application of more advanced models of hydrological phenomena: both 

computationally intense simulation models as well as statistical approaches including 

determination of the flow duration curve, autocorrelation function, spectrum analysis, 

extreme value analysis based on the generalized extreme value distribution of annual blocks 

are ubiquitous nowadays to analyze and predict hydrological phenomena. Observed real-

world data, however, is typically needed to calibrate (in the case of simulation models) and 

to estimate (in the case of statistical models) these models before meaningful predictions 

can be derived (Marques et al., 2006; Smith, 1989; Yanik & Avci, 2004).  

Data that is required for model estimation and is usually collected in observation stations 

and stored in databases that are available for research purposes. It is a well-known fact, 

however, that numerous hydrological and research databases contain missing values for 

multiple and often idiosyncratic reasons (Elshorbagy, Simonovic, & Panu, 2002). They include 

failure of observation stations, incomparable measurements or manual data entry 

procedures that are prone to errors and also equipment errors (Johnston, 1999). Missing 

data is a challenge for empirical research in general and for hydrology in particular as it 

reduces the power and the precision of statistical research methods (Roth, Switzer, & 

Switzer, 1999). In addition to a reduction in the power of these methods, missing data can 

also lead to biased estimates of the relations between two or more variables (Pigott, 2001). 

Both problems – reduction in power and bias of estimates – can lead to inaccurate 

conclusions in analyses of datasets that contain missing data (Graham, 2009). Missing data is 

also a frequent problem in deterministic hydrological modeling which relies on observed 

historical data to model complex relations between variables relating to weather conditions 

and geographic surroundings (Gill, Asefa, Kaheil, & McKee, 2007).  
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Against this backdrop it needs to be highlighted imputation methods which attempt to ‘fix’ 

datasets characterized by missing data by replacing them with inserting numerical values 

have improved dramatically over the last decades (Peugh & Enders, 2004). The availability of 

more sophisticated imputation methods allows researchers replacing missing values with 

imputed values rather than excluding them from the analysis entirely (Saunders et al., 2006). 

It is the aim of this thesis to provide an overview over alternative imputation methods that 

are available to the researcher and evaluate the performance of selected imputation 

methods in a given hydrological settings. In this attempt, particular emphasis is laid on the 

fact that hydrological data can be characterized as time-series data in which statistical 

patterns such as autocorrelation or seasonality emerge over time and can be exploited for 

imputation purposes. Note that the three chapters of this thesis originally written as review 

and research articles are waiting publication or submission in international, peer-reviewed 

journals. 

The goal of Chapter 2 first defines patterns of the “missingness” or rather incompleteness of 

the data as it has important implications on the choice of particular imputation methods. It 

has to be diagnosed whether data in some observations is missing randomly or whether the 

observed incompleteness follows a particular pattern (R. Little & Rubin, 1987). Following 

Rubin (1976), Chapter 2 classifies distinguishes three so-called missing data mechanisms that 

describe relationship between measured variables and the probability of a missing data: 

missing completely at random (MCAR), missing at random (MAR), and missing not at random 

(MNAR).  When missing data are MNAR, however, results from statistical analyses will be 

iased and there is little what imputation techniques can do to ease the problem (Donders, 

van der Heijden, Stijnen, & Moons, 2006). After these basic discussion, Chapter 2 then 

presents an overview of different imputation methods that allow to address MCAR and MAR 

situations. They include arithmetic mean imputation, Principal Component Analysis (PCA), 

regression-based methods and multiple imputation methods. A particular focus, however, is 

laid on time-series regressions approaches such as Autoregressive Integrated Moving 

Average (ARIMA) models and Auto Regressive Conditional Heteroscedasticity (ARCH) models 

which originate from finance and econometrics.  

Chapter 3 compares the performance of the imputation techniques which have been 

introduced in Chapter 2. The aim is analyze to what extent methods that are widespread and 
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easy to use but ignore the time series nature of the data can be outperformed by imputation 

techniques that exploit the time series nature of hydrological data. In particular, Chapter 3 

focuses on the performance of advanced statistical techniques such as Autoregressive 

Moving Average/Autoregressive Integrated Moving Average (ARMA/ARIMA) models and 

Autoregressive Conditional Heteroscedasticity (ARCH) time series models. The basic idea of 

Chapter 3 is to use discharge time series data that can be found typically in hydrological 

applications as reference data. We resort to using output discharge data obtained from a 

hydrological model - Hydrologiska Byråns Vattenbalansavdelning (HBV) model so that to 

obtain the reference data that does not suffer from missing values itself. Furthermore, we 

use HBV model to create reference discharge time series with specific characteristics. In 

order to evaluate different imputation methods, a certain fraction of the observations of the 

reference data is made missing. These missing values will then be replaced by 

approximations obtained from different imputation methods. Comparing the reference time 

series data with the imputed time series will allow me to draw conclusions regarding the 

performance of different imputation methods. The findings of Chapter 3 reveal that 

imputation methods that neglect the time series nature of the underlying reference data 

perform significantly worse than imputation methods that exploit this feature of the data. 

Moreover, advanced time series methods such as ARCH significantly outperform relatively 

simple time series method such as the preceding value imputation.  

Chapter 4 exclusively focuses on time-series models that have been shown to outperform 

cross-sectional imputation methods and departs from the observation that both ARIMA and 

ARCH exclusively exploit time-dependencies in the time-series of a given variable while 

ignoring other available information that might improve the quality of imputation 

(Degiannakis & Xekalaki, 2004; Stergiou, Christou, & Petrakis, 1997). Including additional 

information (additional variables) in a statistical model of the dependent variable, however, 

might improve its quality therefore also affect imputation performance. In this chapter, we 

analyze to what extent extensions of the ARIMA and the ARCH model that incorporate 

additional exogenous regressors - ARIMAX and ARCHX models - outperform ARIMA and 

ARCH models that exclusively exploit the time-series properties of the dependent variable. In 

particular, we compare imputations for various shares of missing values in a time-series of 

daily discharge derived from alternative time-series model: In a first step, we impute missing 

values from ARIMA and ARCH models that exclusively rely on the observed time-series of 
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discharge. Second, we approximate missing values using extended ARIMAX and ARCHX 

models that include additional exogenous regressors such as precipitation, potential 

evapotranspiration or discharge measured from neighboring catchment areas. Finally, we 

compare the results from the different imputations in order to determine which approach 

yields the best results. We show that models including additional regressors seem to 

outperform more parsimonious models significantly. 

The dissertation concludes with chapter 5 which synthesizes the main results and the 

conclusions regarding different imputation methods and their application in hydrology. 

1.2 Regional framework 

The spatial scope of all Chapters in this dissertation is the federal state of Brandenburg 

located in Northeast Germany (Figure 1.1). The whole area is 29,479 km2 excluding Berlin in 

its center, has a population of 2.5 million. In this region, forest area contributes to 35% of 

the whole area. Agricultural land is another main land use type with 34% cropland and 9% 

pasture. With a mean annual precipitation of 557 mm and a mean annual temperature of 

8.7 ℃ (period: 1960-1990; German Weather Service, 2012), it is one of the areas in with the 

lowest climatic water balance in Germany. Due to high climatic water demand, the 

evapotranspiration here is approximately 510 mm per year, only leaving 100 mm per year as 

runoff (Lischeid & Nathkin, 2011). The runoff exhibits substantial spatial variability, 

depending on local meteorological conditions. Groundwater flow and groundwater 

discharge into rivers and channels are the dominating hydrological components of the 

regional water cycle. About 80 out of 100 mm runoff per year occurs as baseflow, whereas 

surface runoff plays only a minor role, accounting for less than of total runoff (Merz & 

Pekdeger, 2011).  

Water in Brandenburg is drained by rivers Elbe and Oder to the Northern Sea and Baltic Sea, 

respectively. According to climate projections, it is located in the transition zone between 

increasing streamflow in northern Europe and decreasing streamflow in southern Europe. 
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Figure 1.1: Location of the Federal State of Brandenburg in Germany and the German capital Berlin in the 
center of Brandenburg. 

The whole region is part of a postglacial landscape which formed since the last Pleistocene 

glaciations. The ground mainly consists of glacio-fluvial deposits with several Quaternary 

aquifer (Natkhin, Steidl, Dietrich, Dannowski, & Lischeid, 2012). Soils are relatively young and 

mainly consist of sands and loamy sands, but less permeable soils are also occur (U Schindler 

& Müller, 2010). Close to rivers and at discharge areas, gley and peat soils evolved. Low 

gradients in land surface as well as in surface and subsurface flows, a large number of closed 

depressions and periglacial channels exposing locally raised relief energy, complex hydraulic 

interaction of different aquifers and a rather unstable but ecologically crucial interplay 

between groundwater and streams are major hydrological characteristics of this landscape. 

Moreover, the region exhibits a wide array of anthropogenic impacts on the fresh systems. 

These include weirs, dams and locks, flood protection which result in extensive use and 

alteration of regional freshwater quantity and quality. 

For the last centuries, the hydrological system in this area has been altered by humans’ 

behavior. Some of the artificial ditches and streams have existed for more than ten decades. 

More than 100 discharge gauges are maintained by the ministry of the Environment, Health 

and Consumer Protection of the Federal State of Brandenburg. Hydrological data such as 
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precipitation, discharge or temperature is typically is collected over time at given intervals. 

For more detailed description and overview on human impacts and  hydrological changes 

within this landscape we refer to Merz and Pekdeger (2011) and Germer, Kaiser, Bens, and 

Hüttl (2011) 
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2 Dealing with missing data in hydrological data 

2.1 Introduction 

Gap-free time series are a necessary prerequisite for many statistical approaches in 

hydrology, including determination of the flow duration curve, autocorrelation function, 

spectrum analysis, extreme value analysis based on the generalized extreme value 

distribution of annual blocks, etc. The required data are usually collected in observation 

stations and stored in databases that can subsequently be accessed for research purposes. It 

is a well-known fact, however, that numerous hydrological and research databases contain 

missing values (Elshorbagy et al., 2002). The reasons behind missing data are multiple and 

often idiosyncratic. They include failure of observation stations, incomparable 

measurements or manual data entry procedures that are prone to errors and also 

equipment errors (Johnston, 1999) 

Researchers have to find a solution to missing data problems as all of the approaches listed 

above can be applied properly only using complete data. When the available time series are 

long enough researchers can use a subset of the data that contains complete observations 

for a certain period. More often, unfortunately, the available data has been collected over 

shorter observational periods. In these cases, the application of statistical methods that 

strictly require complete time-series can be severely aggravated. In order minimize the 

missing data problem, researchers often resort to imputation methods where missing values 

are replaced with a numerical value that is obtained from a more or less sophisticated 

statistical method. 

Moreover, it is quite common to encounter databases in which up to 50% of all observations 

contain missing data. It is very difficult to analyze them by using data analysis methods that 

are based on the assumption that the sample to be analyzed is a random sample from the 

population (or the entire database) and hence contains complete information (Farhangfar, 

Kurgan, & Dy, 2008). Over the last decades, imputation methods which attempt to ‘fix’ 

datasets characterized by missing data by replacing them with inserting numerical values 

.



Chapter 2 

8 
 

have improved dramatically (Peugh & Enders, 2004). The rise of more sophisticated 

imputation methods led many researchers to prefer replacing missing values with imputed 

values over excluding them from the analysis entirely (Saunders et al., 2006). Since the last 

20 years, statisticians introduced imputation methods such as regression-based imputation, 

data imputation based on principal component analysis (PCA) or maximum likelihood 

techniques using the ‘expectation – maximum’ (EM) algorithm as well as ‘multiple 

imputation’ (MI). Often, these methods offer more promising solutions depending on the 

exact application (Soley-Bori, 2013).  

In general, the choice of a specific imputation method is determined by the nature of the 

process generating the original data. For instance, often data is cross-sectional in its nature 

and a familiar statistical tool such as PCA or linear regression approaches can be used for 

imputation purposes. In hydrological settings, however, the choice of an appropriate 

imputation method needs to take into account the most important features of hydrological 

data: Hydrological data are often time-series data that are often characterized by stable 

trends over time and a high autocorrelation of the observations. Moreover, hydrological 

time-series often display random deviations from these trends and these deviations are not 

constant over time (Guzman et al., 2013). Given these features of the data generating 

process underlying the hydrological data, imputation of missing values should be based on 

statistical time-series methods that take into account the time series nature of hydrological 

data. For instance, singular spectrum analysis (SSA) or autoregressive moving 

average/autoregressive integrated moving average (ARMA/ARIMA) models have been 

applied in hydrological settings (Zhang, Wang, He, Peng, & Ren, 2011). One feature of time-

series data that has received little attention in hydrological literature so far is non-constant 

deviations around a trend which is called heteroscedasticity. For this reason, Autoregressive 

Conditional Heteroscedasticity (ARCH) time-series models which originate from finance and 

econometrics will be discussed below. So ARCH models may not only be used to explain and 

characterize observed hydrological time-series but also for the imputation of missing 

observation in existing datasets which are characterized by non-constant high variability. 

The goal of this chapter is to present an overview of different imputation methods that are 

available to researchers in hydrology. It starts with a brief introduction of the missing data 

problem. After the discussion of different patterns of missing data, a summary of the most 
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frequently used imputation methods will be presented. After this overview, imputation 

methods based on time-series regression methods will be introduced and their benefits for 

hydrological applications will be highlighted. A special focus will be laid on ARCH models and 

the discussion to what extent they might be applied to hydrological settings of missing data. 

The article concludes with a summary of the major findings and implications for hydrological 

research. 

The phenomenon of missing data has been discussed extensively within and beyond 

statistics (Schafer & Graham, 2002). This is a common problem in empirical studies in social, 

medical or geographical sciences and occurs for a number of different reasons, including 

erroneous manual data entry, and equipment errors during the collection of data or also a 

loss of data due to defective storage technologies (Tannenbaum, 2009). 

Missing data is a challenge for empirical research as it generally reduces the power and the 

precision of statistical research methods (Roth et al., 1999). In addition to a reduction in the 

power of these methods, missing data can also lead to biased estimates of the relations 

between two or more variables (Pigott, 2001). Both problems – reduction in power and bias 

of estimates – can lead to inaccurate conclusions in analyses of datasets that contain missing 

data (Graham, 2009). Missing data is also a frequent problem in deterministic hydrological 

modeling which relies on observed historical data to model complex relations between 

variables relating to weather conditions and geographic surroundings (Gill et al., 2007).  

To date, a variety of different statistical techniques are available to address the problems 

arising from missing data (Puma, Olsen, Bell, & Price, 2009). An understanding of these 

methods is increasingly important as having complete and accurate databases is often the 

prerequisite for the application of increasingly sophisticated statistical methods. Often, it is 

tempting to follow the simplest way of dealing with missing data which consists of simply 

discarding (i.e., deleting) observations where information in one or more variables are 

missing. This approach is also one of the default options for statistical analysis in most 

software packages and is called “listwise” or “pairwise” deletion (Harrington, 2008). Despite 

its convenience, this method is practical only when the data contains only a relatively small 

portion of observations with missing data. If only a negligible share of the observations 

contains missing data, the analysis of the remaining observations will not lead to serious 

inference problems (Tsikriktsis, 2005). Nevertheless, it has to be pointed out that deletion of 
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even only a small share of all observations in a dataset will reduce the statistical power and 

the accuracy of the analyses undertaken (D. B. Rubin & Little, 2002).  

2.2 Patterns of missing data 

Before any missing data imputation can be implemented, the most important question that 

a researcher has to address relates to the underlying patterns of the “missingness” or rather 

incompleteness of the data. In particular, it has to be diagnosed whether data in some 

observations is missing randomly or whether the observed incompleteness follows a 

particular pattern (R. Little & Rubin, 1987). In this context, the classification system of 

missing data which has been outlined by Rubin (1976) and colleagues remains in widespread 

use today. Following Rubin (1976), missing data can be seen as a probabilistic process and 

allows to distinguish three so-called missing data mechanisms that describe relationship 

between measured variables and the probability of a missing data: missing completely at 

random (MCAR), missing at random (MAR), and missing not at random (MNAR). 

Assume, our data contains one variable of primary interest Y and a number of additional 

variables referred to as a vector X. Following this notation, and with m being an indicator 

variable for missing observations in Y, i.e., m = 1 if a data point is missing and m = 0 if a data 

point has been observed, the probability that a value in Y is missing can be expressed as a 

function of Y and X with 

Pr (m = 1| X, Y),                                                                     (2.1) 

At first, suppose that the probability of a missing observation in Y is completely independent 

of observed or unobserved measurements of this variable or other variables X and also 

independent of the other observations in the dataset. If this is the case, the absence of a 

value in a given observation is called missing complete at random (MCAR) (Allison, 2012). 

This mechanism is what researchers consider as purely random missingness. The case of 

MCAR missing data causes the least problems for statistical analyses. In a dataset including 

missing values that are MCAR, the subset of all observations containing the missing data can 

be deleted. The remaining subset then contains all observations with complete information. 

This approach often is called listwise/pairwise deletion (McKnight, McKnight, Sidani, & 

Figueredo, 2007). As the resulting dataset containing only the observations with complete 



Chapter 2 

11 
 

data is a random sample from the initial data, it can easily be shown that results based on its 

statistical analysis will be unbiased (D. B. Rubin, 1976). Mathematically, MCAR implies that 

Pr (m = 1|X, Y) = Pr (m = 1),                                                       (2.2) 

Another pattern of missing values is called missing at random (MAR). MAR is a less restrictive 

assumption regarding the pattern of missing values compared to MCAR. When data are 

missing at random, the probability of missing data in a variable for a given observation is 

only related to any other observed variable rather than on Y itself (McKnight et al., 2007). 

This implies 

Pr (m = 1|X, Y) = Pr (m = 1|X),                                                     (2.3) 

Data that contain information MAR requires more attention than data is MCAR: all simple 

imputation methods for missing data, i.e., listwise and pairwise deletion, arithmetic mean 

imputation, will give biased results in analyses of the relations between variables in the 

dataset (Pigott, 2001). Nevertheless, unbiased results can be obtained in the case of data 

MAR. This requires the application of more sophisticated imputation methods, however, 

including single and multiple imputations (Donders et al., 2006). 

In cases where neither the MCAR nor the MAR assumption holds, data is said to be Missing 

Not At Random (MNAR) (McKnight et al., 2007). If cases are MNAR, there is a relationship 

between the variables that include missing data and those for which the values are present 

and hence the equation is valid 

Pr (m = 1|X, Y),                                                                   (2.4) 

When missing data are MNAR, results from statistical analyses will be biased and there is 

little what imputation techniques can do to ease the problem (Donders et al., 2006). 

So, it is important to investigate whether the missing pattern is random or not before any 

statistical test is conducted. For a full discussion, see D. B. Rubin and Little (2002). 

2.3 An overview of traditional missing data handling techniques 

Dozens of techniques to deal with the missing data problem have been used for decades 

(Baraldi & Enders, 2010). The more common traditional approaches to deal with missing 

data include removing the values with incomplete data/deletion or so-called single 
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imputation methods where missing values are replaced (Peugh & Enders, 2004). Whereas 

deletion methods reduce the sample size, the purpose of single imputation methods is the 

retention of the sample size and statistical power in subsequent analyses (Cool, 2000). 

However, single imputation methods have drawbacks which are addressed by more 

complicated multiple-imputation methods which are often based on Monte-Carlo-type 

simulations and require more computational sophistication than simple imputation 

methods.1 This section reviews the most important imputation methods. Despite their 

widespread use, these methods still have shortcomings in their procedures which will be 

also illustrated in this section. 

2.3.1 Listwise and pairwise deletion 

The elimination of all observations which have missing data in one or more variables is called 

listwise deletion (Mcdonald, Thurston, & Nelson, 2000). The primary benefit of listwise 

deletion is convenience (King, Honaker, Joseph, & Scheve, 1998). This approach has several 

drawbacks as addressing incomplete data by deleting observations inevitably will reduce the 

sample size (L. H. Rubin, Witkiewitz, St Andre, & Reilly, 2007).  It is a well-established fact in 

statistics that smaller sample sizes reduce  the statistical power and precision of standard 

statistical procedures (D. B. Rubin & Little, 2002). A reduction in the precision of tests and 

estimates will render inference (such as hypothesis testing) conservative. A more severe 

effect could be that it can introduce a systematic bias. If the data is MCAR, a sample 

excluding observations with missing values will be a random draw from the complete sample 

and estimates remain unbiased. If, however, the relatively strong assumption of MCAR is 

violated, the deletion of observations with missing data will bias the value of the estimates 

of interest. A simulation by Raaijmakers (1999) demonstrated that the statistical power is 

reduced between 35% (with 10% missing data) and 98% (with 30% missing data) by using 

listwise deletion. 

The elimination of observations on case-by-case basis depending on which variables are 

used in a specific analysis is called pairwise deletion. It is different than listwise deletion as 

an observation is deleted only if a variable used in the analysis contains a missing value  

                                                           
1 As in Section 2.3.3 below, multiple imputation generates multiple datasets containing imputed values which 
are enhanced by a random error term. The desired statistical analyses are then carried out multiple times on 
these different datasets and their results aggregated. This approach allows getting more appropriated standard 
errors on the estimates of the desired parameters. 
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(Wothke, 2000). For example, if a respondent is missing information on variable A, the 

respondent’s data could be used to calculate other correlations, such as the one between B 

and C. Pairwise deletion is often an improvement over listwise deletion because it preserves 

much more information by minimizing the number of cases discarded compared to the 

listwise deletion (Roth, 1994). Amongst the most important problems of pairwise deletion is 

a limited comparability of different analyses as the number of observations varies between 

different pairwise comparisons (Croninger & Douglas, 2005). Moreover, estimates of 

covariances and correlations might be biased when using pairwise deletion since different 

parts of the sample are used for each analysis (Kim & Curry, 1977).  

Despite their shortcomings, deletion techniques are the default options for missing data 

techniques in most statistical software packages, and these techniques are probably the 

most basic methods of handling missing data (Marsh, 1998). 

2.3.2 Single imputation methods 

Single imputation approaches generate a single replacement for each missing value with 

suitable values prior to the actual analysis of the data (Enders, 2010). A variety of different 

missing data imputation methods have been developed over the years, and are readily 

available in most standard statistical packages. As has been discussed above, all imputation 

methods produce biased results if the relatively strong MCAR assumption is violated. In 

particular, imputation is advantageous compared to listwise or pairwise deletion as it 

generates a complete dataset. Hence, it also makes use of the data that deletion techniques 

would discard. Nevertheless, as will be discussed below, these methods have potentially 

drawbacks and even in an ideal MCAR situation most of these approaches generate biased 

parameter estimation. 

Many different single imputation methods have been introduced and applied: arithmetic 

mean imputation, principle component analysis (PCA) and regression-based imputation are 

the most commonly known ones and will be briefly introduced below. 

Arithmetic mean and median imputation 

Arithmetic mean imputation replaces missing values in a variable with the arithmetic mean 

of the observed values of the same variable (Roth, 1994). Median imputation replaces 
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missing values with the median value of the observed values of the same variable (McKnight 

et al., 2007). Both approaches are very convenient since they generate a complete dataset 

easily (Hawkins & Merriam, 1991). Median imputation is preferable when the distribution of 

the underlying variable is not symmetric but rather skewed (McKnight et al., 2007). 

However, even in situations where the strong MCAR assumption holds, these approaches 

distort the resulting parameter estimates (Enders, 2010). For instance, they attenuate the 

standard deviation and the variance of estimates obtained from analyses of mean imputed 

variables (Baraldi & Enders, 2010). The reason for the reduction of the standard deviation of 

estimates stems from the fact that the imputed values are identical and at the center of the 

distribution which reduces the variability of the data (R. J. Little, 1988). This fact also 

attenuates the magnitude of estimated covariances and correlations between mean-

imputed variables and other variables in a dataset (Malhotra, 1987). 

Regression-based imputation  

Regression-based imputation replaces missing data with predicted values from a regression 

estimation (Greenland & Finkle, 1995). The basic idea behind this method is using 

information from all observations with complete values in the variables of interest to fill in 

the incomplete values which is intuitively appealingly (Frane, 1976). Different variables tend 

to be correlated in many applications (Allison, 2001). Exploiting information from all 

observations with complete information is a strategy which regression-based imputation 

methods share with multiple imputation and maximum likelihood imputation methods, 

although the former approach does so in a less sophisticated way (Raghunathan, 2004). Note 

that maximum likelihood imputations not refer to the estimation method used by the 

regression based imputation methods but rather to the technique of selecting among 

different values that might be chosen to assess a missing value. 

The first step of the imputation process is to estimate regression equations that relates the 

variable that contains missing data (the dependent variable of the regression) to a set of 

variables which have complete information across all observations in the dataset 

(independent variables of the regression). This regression is estimated only for the subset of 

the data that contains all observations that have complete information both for the 
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dependent variable and the independent variables. The results of the regression are 

estimates due to the relation of independent to dependent variables.  

The second step exploits this information. Using the regression results from the first step, 

missing values for the observations that could not have been included in the regression are 

replaced by predictions obtained from combining the observed values of the independent 

variables and the estimates from the first step of how they are related to the dependent 

variables. These predicted values fill in the missing values and produce a complete dataset 

(Frane, 1976). In the case of k variables with n-r missing values in the k-th variable (n being 

the total number of observations and r being the number of complete observations), a linear 

regression can be estimated based on all r complete observations. The regression yields 

estimated regression’s coefficient. Based on these estimates, missing values in the k-

th variable can be predicted, i.e., imputed with 

𝑦𝑡,𝑘̂ = 𝛽0̂ + ∑ 𝛽𝑗̂
𝑘−1
𝑗=1 𝑦𝑖,𝑗  ∀ 𝑖𝜖[𝑟, 𝑛]                                                      (2.5) 

While regression-based imputations most frequently rely on simple linear regressions, it is 

worth noting that more flexible regression approaches can equally be used and might even 

be more advantageous depending on the application. In section 2.4, we will discuss to what 

extent time-series regression approaches can be used in regression-based imputations of 

hydrological data. 

From a methodological viewpoint, regression imputation is superior to mean imputation, but 

it can lead to predictable biases (van der Heijden, Donders, Stijnen, & Moons, 2006). In 

particular, regression based imputation methods lead to the opposite problem as mean 

imputation as missing data is replaced with values that are highly correlated to other 

variables in the data. Consequently, the application of regression based imputation methods 

will lead to overestimated correlations and R2 statistics in subsequent data analysis. 

Principle Component Analysis (PCA)–based imputation 

Principle component analysis (PCA) originally has been conceived as a multivariate 

exploratory data analysis technique that can be used to extract patterns from datasets by 

transforming the data to a new coordinate system such that the greatest variance by some 

projection of the data comes to lie on the first coordinate (called the first principal 



Chapter 2 

16 
 

component), the second greatest variance on the second coordinate, and so on. Moreover, 

PCA can be used to compressed high-dimensional vectors into lower dimensional ones 

(Pandey, Singh, & Tripathi, 2011). The principal idea behind PCA here is to find a smaller 

dimensional linear representation of data vectors so that the original data can be 

approximated from the lower dimensional representation with minimal mean square error. 

Graphically, PCA can then be interpreted of a projection of the original data points on a 

lower dimensional space which minimizes the reconstruction error (I. T. Jolliffe, 1993). 

Formally, PCA can be expressed as follows. Assume that observed data points 

𝑥1, 𝑥2, … , 𝑥𝑛 𝜖 𝑅𝑝   are p-dimensional vectors. PCA defines a projection of these data on a q-

dimensional space (with q≤p) as  

𝑓(𝜆) =  𝜇 +  𝜐𝑞𝜆 .                                                                          (2.6) 

In this q-dimensional model, µ is a vector of the mean values of length p, 𝜐q is a p*q matrix 

with q orthogonal unit vectors and λ is the q-dimensional projection of each original data 

vector x. A projection of the original data can be found by maximizing the variance of the 

projection of the original data along the new (reduced) dimensions of the projection space 

𝑚𝑖𝑛
𝜇,𝜆1…𝑁,𝜐𝑞

∑ ‖𝑥𝑛 − 𝜇 − 𝜐𝑞𝜆𝑛‖𝑁
𝑛=1  .                                                      (2.7) 

Here, µ can be interpreted as the intercept of the projection space in the original space, 

λ1, …, λn are the projection coordinates of the original observations x1, …, xn. Note that PCA 

can be also be derived from a maximization of the variance of the projected data points 

along the new dimensions. The results are computationally equivalent.  

While originally not devised as an imputation method, PCA can be used to replace missing 

values in a dataset and hence also as an imputation tool. For this purpose, an iterative PCA 

algorithm has been proposed by Kiers (1997). The algorithm can be summarized as follows:  

1. Missing values are initially replaced by the sample mean. 

2. PCA is conducted on the now complete dataset by minimizing the reconstruction 

error as described above to derive µ, λn and 𝜐q. 

3. Initially missing values are replaced by imputed values based on the results from step 

(2) with xn= µ+ 𝜐q* λn. 
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4. Steps (2) and (3) are repeated until the imputed values of initially missing values 

converge. 

It can be shown that the iterative PCA corresponds to an expectation-maximization (EM) 

algorithm and is thus often named EM-PCA algorithm (de Leeuw, 1986; Dempster, Laird, & 

Rubin, 1977). This approach is computationally more efficient as it does not require the 

computation of the full covariance matrix. It needs to be stressed that one the biggest 

disadvantages of PCA is that the choice of the number of dimensions q in PCA needs to be 

done by the analyst and is not a result of the analysis. This has been identified as a core issue 

and a very difficult task that has been extensively discussed in the literature. For a treatment 

of this issue see for instance I. Jolliffe (2002). 

2.3.3 Multiple imputation 

In order to ease the negative impact of regression imputation mentioned above, more 

sophisticated approaches have been developed. The principle idea here is to replace each 

missing item with two or more plausible values, representing a distribution of possibilities. 

Therefore, these approaches are called multiple imputation(MI) (Graham & Hofer, 2000). 

Recent advances in computational power made multiple imputation available as relevant 

procedures are included in standard statistical software packages more frequently. The 

biggest advantage of multiple imputation is that inference regarding statistics such as 

correlations error obtained from multiple imputation are not overestimated because they 

incorporate uncertainty due to missing data (Lee & Carlin, 2010). However, there are some 

disadvantages in MI. The biggest disadvantage of MI is that it requires more computational 

effort since both imputation and the subsequent analyses have to be carried out multiple 

times (D. B. Rubin, 2004). It should be noted, however, that given the advances in computing 

hardware and software this is not a burden in practice and most statistical software 

packages nowadays contain routines for MI. 
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Figure 2. 1: Scheme of Multiple Imputation 

While there are different approaches to MI imputation, the underlying sequence of 

computations steps is similar (Allison, 1999):  First, the missing data are imputed by an 

appropriate model M times to produce M complete datasets. Most often, regression-based 

imputation techniques are used in this step. In each of the M steps, the predicted values 

from the regression analysis are varied by a random term of zero mean and a specified 

standard deviation. After this step, the desired statistical analysis can be carried out on each 

of the M datasets by using standard complete data analysis methods. This yields a set of M 

results of which thereafter average values and standard errors can be computed (Allison, 

1999). This approach avoids an underestimation of standard errors and hence often is 

preferable to single imputation methods.  

Despite its desirable properties, multiple imputation requires statistical and computational 

sophistication. For this reason, the remainder of this chapter focuses on single imputation 

methods which still seem to be more frequently used in hydrological settings. 
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2.4 Introduction to time series analysis and its application to 

imputation of missing values 

2.4.1 Overview 

A time series in our context is a discrete time-series defined as a series of observations of Y 

where are observations over several consecutive time-periods t=1,…,T. yt  might be the 

amount of discharge from a given measurement station that is measured on a daily basis. 

Hydrologist might be interested in analyzing run-off over time and how it depends on 

different types of boundary conditions. The assumption of independence of observations in 

the dataset then seems far-fetched. In hydrology, it is reasonable to assume that there are 

periods characterized by high run-off in which today’s run-off will be related to the amount 

of run-off the day before and hence past values are correlated with today’s value of run-off. 

Data imputation approaches can make efficient use of dependencies between different 

observations in a time-series that is defined as data resulting from the observation of 

subjects which are repeatedly measured over a series of time-points (Hedeker & Gibbons, 

1997). In contrast to conventional approaches, time-series techniques allow for the 

assumption that yt is not independent of preceding observations of y. This is called 

autocorrelation or serial correlation where yt is a function of a previous value of y. The 

adapted approaches exploit autocorrelation to model if a given phenomenon is not only 

based on conditions in t but also on its own history (for instance Yt-1). In the following, the 

adaption of PCA to time-series data which is often called Singular Spectrum Analysis (SSA) is 

discussed before moving to a more comprehensive discussion of time-series regression 

techniques. 

2.4.2 Singular Spectrum Analysis (SSA) 

The aim of Singular Spectrum Analysis (SSA) is to decompose a time-series into regular 

oscillatory components and random noise applying the principles of PCA to time-series data 

(Hassani, 2007). For this reason, SSA can be considered a time-series version of PCA. SSA, on 

the other hand, can be applied to univariate time-series yt with t=1,…,T in order to separate a 

signal in a time-series (trends or oscillatory movements) from a noise component that is 

random. To that end, so-called trajectory matrix is formed from the original data. Consider 
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the time-series Y=( y1, y2, …, yn) of length n and choose a window length L (with 1<L<n), K = n 

– L + 1 lagged vectors xj of the original time-series can be generated with xj = (yi, yi+1, …, yj+L-1) 

for j = 1 ,2, …, K. These vectors form the trajectory matrix X with 

𝑋 =  [𝑋1, … , 𝑋𝐾]′ = [

𝑦1 𝑦2

𝑦2 𝑦3
⋯

𝑦𝐿

𝑦𝐿+1

⋮ ⋱ ⋮
𝑦𝐾 𝑦𝐾+1 ⋯ 𝑦𝑛

].                                              (2.8) 

In a second step, and similar to PCA, the trajectory matrix is then subjected to a single value 

decomposition yielding a set of so-called eigentriples which contain the principles 

components of Y (Wall, Rechtsteiner, & Rocha, 2003). 

By projecting the principal components back onto the eigenvectors, a time series (referred 

to as the “reconstructed components”) can be recovered in the original time units, each one 

corresponding to one of the PCs.  

This third step of SSA splits the elementary matrices Xi into several groups and sums the 

matrices within each group. Finally, diagonal averaging transfers each of these matrices into 

a time series, which is an additive component of the initial series yt.  

It should be noted here, that the choice of window length L is a choice that has to be set by 

the researcher. The choice of L is important as it defines the maximum length of the 

oscillations that can be detected employing SSA. While the literature provides some 

guidance by providing rules of thumb for the choice of L, ultimately any ex ante choice of L 

remains arbitrary and there are no tests available that would allow conducting statistical 

inference regarding the choice of L. In the context of imputation, Kondrashov and Ghil (2006) 

propose an iterative approach to determine a suitable choice of L. In particular, they 

iteratively produce estimates of missing data points, which are then used to compute a self-

consistent lag-covariance matrix and its empirical orthogonal functions. This approach allows 

to optimize the window length L by cross-validation.  
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2.4.3 Time-series Regression 

Autoregressive and moving average models (ARMA, ARIMA) 

Similar to linear regression frameworks, for instance, time-series regressions can easily be 

used for regression-based imputations methods. Imputed values are then derived from a 

prediction based on time-series regression instead of regression to an external variable. In 

particular, one can treat time-series prediction as a problem of missing data where the 

missing data located in the future are predicted based on regression to preceding data 

(Sorjamaa, Hao, Reyhani, Ji, & Lendasse, 2007).  

Different time-series regression methods can be distinguished depending on the 

assumptions they put on the autocorrelation between different observations of Y. The most 

crucial assumptions related to the number of previous observations of Y that are considered 

in computing the contemporary value of Y (the order of the autocorrelation) and whether 

the correlation between the actual value of Y and preceding values is constant or changes 

over time. It is beyond the scope of this chapter to provide a detailed overview of these 

methods. Stock and Watson give a thorough treatment of time-series methods (Stock, 

Watson, & Addison-Wesley, 2007).  

Formally, there are different ways of specifying a stochastic process that generates time-

series where yt and yt-j are correlated over time, i.e., autocorrelation between different 

measures of y exists. One possible specification is an autoregressive process AR(p) of pth 

order with 

yt= α0 + α1yt-1 + α2yt-2 + …… + αpyt-p + εt ,                                                              (2.9) 

In (9) epsilon is a random error term that follows a standard normal distribution and is 

independent over time with E(εt,εt-i)=0 for all i≠t. p here denotes the number of lagged 

values of yt that are condidered. εt is an independent and identically distributed error term 

with zero mean and constant variance. Commonly used auto-regressive (AR) models make 

the assumption that autocorrelation is constant over time and depends only on the intervals 

j between the yt and yt-j . 
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An alternative specification of a stochastic process that generates autocorrelation in a time-

series are moving average (MA) processes in which the contemporary value of yt is a 

function of its mean µ and a sequence of random innovations with 

yt = µ + εt + ɵ1εt-1 + ɵ2εt-2 + …… + ɵpεt-q ,                                                                        (2.10) 

While in MA processes yt is not directly a function of previous values yt-q, autocorrelation 

between yt and yt-q is a consequence of the same random innovations εt-q entering the 

computation of different yt. 

In time-series modeling, there is often an explicit recognition that time-series models are 

merely intended to act as an approximation characterizing the dynamic behavior of the 

underlying series with the intention to approximate autocorrelation structures over a time 

(Adhikari & Agrawal, 2013). Only in rare circumstances it is intended to provide a “true” 

model of a time-series. Instead, the focus is often to determine whether a time-series model 

provides an approximation to observed behavior. While a “true” model may take a large 

number of lagged terms to provide a proper fit with the specification in (9), it is often 

possible to fit an observed autoregressive (AR) time-series more parsimoniously by 

combining it with a moving-average (MA) component consisting of a sum of weighted lags of 

the error term εt (Box and Jenkins 1976). The resulting ARMA model is written as  

yt= α0 + α1yt-1 + α2yt-2 + …… + αpyt-p + εt - ɵ1εt-1 - … - ɵqεt-q ,                                           (2.11) 

Equation (2.11) is often referred to as an ARMA(p,q) model as it contains a pth-order 

autoregressive component in the observable time series, yt, and a qth-order moving average 

component of the unobservable random shocks εt. It is generally assumed that εt follows a 

so-called white-noise process with zero mean E(εt) and constant variance E(εt
2)=σ2. 

Moreover, it needs to be noted that for equation (11) to be a tractable model that can be 

fitted to data is the requirement of weak stationarity of the underlying time-series yt. Weak 

stationarity is given if at least a time-serie’s mean, variance and autocovariances are 

independent of t – whereas higher moments of the distribution of yt over time might well 

depend on t. If E(yt)=µ, E(yt - µ) = σ2 and E[(yt - µ)(yt-j - µ)]=γj, then a time-series of yt is said to 

be weakly stationary. Strict stationarity, on the other hand, would imply that a time-series’ 
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distribution does not depend on t at all and hence E(yt)=µ and E(yt - µ) = σ2 and all higher 

moments are independent of t. 

In case a time series yt is not stationary, stationarity can often be achieved by differencing 

the time-series one or more times (Box & Jenkins, 1976). If differencing is required the 

ARMA (p,q) model (Autoregressive Moving Average) becomes an ARIMA (p,d,q) model 

(Autoregressive Integrated Moving Average) where d denotes the order of differencing, i.e., 

the number of time yt is differenced to achieve stationarity.  

When fitting ARIMA models the choice of p, d and q can be guided by an inspection of 

autocorrelation and partial autocorrelation (which measure the correlation between yt and 

yt-j after accounting for the correlation between yt and yt-1, yt-2, ….,yt-j+1) of yt and εt over time. 

Stationarity is achieved and hence d is determined if autocorrelations between yt and yt-j 

become insignificant for increasing j. Moreover, inspection of the partial autocorrelation 

between yt and yt-j informs about the order of the AR process p: p should be chosen as the 

number of lags for which the partial autocorrelation between yt and yt-j is still significant. In a 

similar way, the parameter q can be obtained by an inspection of the (partial) 

autocorrelation of the error terms. A comprehensive procedure to choose the right 

parameters can be found in Box and Jenkins (1976). 

ARMA and ARIMA models can easily be generalized to incorporate the influence of past, 

current or future values of exogenous factors (x variables) on the observed time-series yt. 

These approaches can be extended to ARMAX/ARIMAX by including exogenous variables 

(Feinberg & Genethliou, 2005). Formally, they can be expressed as  

yt= α0 + α1yt-1 + α2yt-2 + …… + αpyt-p + β1xt,1 + β2xt,2 + …… + βkxt,k+εt- ɵ1 εt-1 - … - ɵqεt-q ,   (2.12) 

where βk denotes the effect of the exogenous variable xk on the outcome variable yt. Both 

ARMA/ARIMA as well as ARMAX/ARIMAX models can be readily estimated using common 

statistical software packages. The estimates obtained from fitted models can then be used as 

the basis for predictions used to impute missing values as described for the linear OLS 

(ordinary least squares) regression above.  
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Autoregressive conditional heteroscedasticity (ARCH) models 

While ARMA/ARIMA models prove to be valid models in many applications, however, the 

assumption of constant variance of the error terms E(εt
2)=σ2 over time might be too 

restrictive. In finance, for instance, periods of relatively stable stock markets might be 

followed by periods of crisis and turmoil (Baur & Lucey, 2009) inducing a time-dependent 

autocorrelation of the error terms with E(εt
2)=σt

2. In stable markets autocorrelation might be 

relatively high (i.e., prices today will be similar to prices yesterday) and stock price 

movements are predictable (Fama & French, 1988). In phases of turmoil, however, price 

movements might be bigger and autocorrelation is lower (Eom, Hahn, & Joo, 2004). In 

hydrology, the local climate might be characterized by a period of stable conditions followed 

by change in weather that drastically alters relevant outcomes (Hughes, Cendón, Johansen, 

& Meredith, 2011). In both examples, the assumption of constant autocorrelation might be 

too narrow. More realistic would be an assumption of changing variance and hence changing 

autocorrelation of the observed outcomes over time (heteroscedasticity).   

For the reasons stated above, when modeling the outcome variable of interest (yt), time-

series models should focus on its variance and the changes in variance over time. The 

increased importance of risk and uncertainty considerations in water resources management 

and hydrological modeling ask for new time series techniques that allow for the modeling of 

time varying variances. 

Auto Regressive Conditional Heteroscedasticity (ARCH) models which originate from finance 

and econometrics propose a solution to the problem sketched above. Initially proposed by 

Engle (1982), ARCH models emerged from the observation of volatility clustering in financial 

markets, in which large changes in prices tend to cluster together. Stock markets often show 

periods of relative stable trends that are interrupted by periods of turmoil (sometimes 

caused by crises).   

The ARCH model is an extension of more restrictive AR-models with constant 

autocorrelation of the outcome of interest (Zhu & Wang, 2008). It is a non-linear regression 

model that in addition to past values of yt also captures time-varying volatility within the 

structure of standard time-series models described above. While it is beyond this article to 

detail the mathematical underpinnings of Engle’s work, it should be stressed that ARCH 
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models are based on the assumption - while holding the unconditional variance of εt 

constant with E(εt
2) = σ2 - its conditional variance could follow an AR process of its own with 

𝜀2 =  𝜁 + 𝛼1𝜀𝑡−1
2 + ⋯ + 𝛼𝑚𝜀𝑡−𝑚

2 + 𝜐𝑡.                                              (2.13) 

Where 𝜐𝑡 is a white noise process. Based on this specification the ARCH model extends the 

standard ARMA/ARIMA model to incorporate time-varying volatility. While they require 

more additional assumptions (see Engle 1982 for technical details), ARCH models and their 

generalizations have proved useful for modeling flexible time series characterized by non-

constant volatility. Moreover, they can generate more accurate forecasts of future volatility 

and perform better than models that ignore heteroscedascity. For this reason, they could be 

valuable for hydrological time series modeling in water resource management and flood 

control applications. Similar to ARMA/ARIMA models, ARCH models can easily be 

generalized and also allow to model the influence of past, current and future values of 

exogenous variables xt on the time-series of interest. Estimation of ARCH is again possible 

relying on standard statistical software packages and predictions can be used to impute 

missing values in a time-series.  

2.5 Conclusion 

Missing data is a common problem in hydrological data and poses a serious problem for 

many statistical approaches in hydrology. For reasons of convenience, researchers often 

resort to simple solutions to deal with missing data such as simply discarding observations 

characterized by missing data or by replacing missing data with a ‘naïve’ guess (such as the 

mean of all other observations). Despite their convenience, we have argued that these 

solutions have severe statistical shortcomings. 

Principal component analysis (PCA)-based as well as regression-based imputation methods 

can improve the accuracy of missing value imputation and reduce statistical problems 

induced by naïve imputation approaches. However, at the same time they also have 

disadvantages that should not be neglected. For instance, PCA requires the researcher to 

choose the number of dimensions on which the higher dimensional data should be projected. 

However, PCA itself offers only limited guidance on what number of dimensions is optimal 

and renders this decision in part arbitrary. Frequently, regression-based imputation methods 

used in practical work are based on linear regression approaches as they are well 
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understood and easy to implement. In a hydrological setting, however, the assumptions of 

the linear regression seem to be too restrictive. In particular, the time-series nature of 

hydrological data as well requires more flexible non-linear models such as the ARIMA and 

ARCH models that we have discussed above. It should be noted, that there is a multitude of 

alternative imputation methods based on non-linear regression approaches as well as non-

probabilistic algorithms and machine learning approaches such as neural networks, 

clustering methods or decision tree analysis. While we were not able to cover these 

approaches in this article,  a good introduction to machine learning approaches can be found 

in Flach (2012). Here we focused our attention on discussing econometric time-series 

methods as they explicitly model the particular statistical properties of hydrological time-

series (autocorrelation and heteroscedasticity) which are mostly neglected in algorithmic 

machine learning approaches. 

It needs to be stressed that there have been few studies concerning imputation of missing 

data in time series context in hydrology in general. Despite its focus on particular focus on 

selected methods, our survey clearly shows that there are methodological advances driven 

by other fields of research that bear relevance for hydrology as well. According to our 

knowledge, the hydrological community paid little attention to the imputation ability of 

neither time-series models in general and ARCH models in particular nor other advanced 

imputation approaches. 

We do not address the question of performance advantages of either of these advanced 

methods in an applied setting. However, we hope that our survey stimulates additional 

research into these methods and their applicability in hydrology. Whether and to what 

extent advanced imputation methods lead to more precise hydrological analyses in the 

presence of incomplete datasets ultimately remains an empirical question. Future research 

can easily address this question in the context of simulation-based comparisons of different 

imputation methods within a well-defined hydrological application. 
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3 Alternative imputation approaches and their 

performance differences 

3.1 Introduction 

Complete time series data are a necessary precondition for a variety of statistical 

approaches that are commonly used in hydrology. For instance, methods such as 

autocorrelation function, spectrum analysis and extreme value analysis based on the 

generalized extreme value distribution of annual blocks or principal component analysis all 

can be applied only to datasets without missing values. Typically, data is usually collected in 

observation stations over a given period of time (hence time series data) and stored in 

databases that can subsequently be accessed for research purposes. However, numerous 

hydrological and research databases contain missing values (Elshorbagy et al., 2002) and are 

therefore only of limited use to researchers seeking to apply state of the art statistical 

methods. The reasons behind missing data are multiple and often idiosyncratic. They include 

failure of observation station, incomparable measurements, manual data entry procedures 

that are prone to errors and also equipment errors (Johnston, 1999). 

Over the last decades, imputation methods which attempt to ‘fix’ datasets characterized by 

missing data by replacing them with inserting numerical values have improved dramatically 

(Peugh & Enders, 2004). The rise of more sophisticated imputation methods led many 

researchers to prefer replacing missing values with imputed values over excluding them 

from the analysis entirely (Saunders et al., 2006).  

In hydrological settings, the choice of an appropriate imputation method needs to take into 

account the most important features of hydrological data: Hydrological data are time series 

data that is often characterized by stable trends over time and a high autocorrelation of the 

observations. Moreover, hydrological time series often display random deviations from 

these trends and these deviations are not constant over time (Guzman et al., 2013). Given 

these features of the data generating process underlying hydrological data, imputation of 

missing values should be based on statistical time series methods that take into account the 

time series nature of hydrological data. 
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In this chapter, we compare the performance of commonly imputation techniques which are 

widespread and easy to use but ignore the time series nature of the data with imputation 

techniques exploiting the time series nature of hydrological data. In particular, we are 

interested in the performance of advanced statistical techniques such as Autoregressive 

Moving Average/Autoregressive Integrated Moving Average (ARMA/ARIMA) models that 

have been applied in hydrological settings (Zhang et al., 2011). Moreover, we also evaluate 

the performance of Autoregressive Conditional Heteroscedasticity (ARCH) time series 

models which originate from finance and econometrics.  

Our performance evaluation is based on hydrological data from the federal state of 

Brandenburg located in Northeast Germany. We use simulated discharge data that we 

obtain from a hydrological model for this region as reference data for our performance 

evaluation. The simulated discharge data does not contain any missing values and reflects 

typical properties of hydrological data. We randomly delete observations from the reference 

data and replace the resulting missing values by approximations obtained from different 

imputation techniques. Comparing the reference data with imputed data allows us to 

evaluate the performance of the different imputation techniques using the Mean Squared 

Error (MSE) as well as the Nash Sutcliff Efficiency (NSE) criterion. Our findings indicate that 

sophisticated time series methods perform significantly better than more commonly used 

imputation techniques. 

The remainder of this chapter proceeds as follows. In Section 3.2, we present the research 

design of this study in more detail before we move on to a discussion of the research area 

and the data used in Section 3.3. Section 3.4 is the main part of this chapter in which we 

evaluate how different imputation techniques perform under different conditions and 

discuss our findings. Section 3.5 concludes the chapter with a summary of the key findings 

and a short presentation of the most important implications of this study. 
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3.2 Working steps 

The calibration and application of hydrological researches often require input data with a 

complete set of observations. In reality, however, observational data is often characterized 

by missing values. Researchers can replace missing values by applying imputation methods 

which yield approximations for the missing values derived from the observed data points. 

There is a multitude of imputation methods available for this purpose and it is not always 

clear which of the different methods will deliver more satisfactory results in specific 

applications. We propose a simple research design that allows us to evaluate the 

performance of different imputation techniques in hydrological settings.  

The basic idea of our research design is to use discharge time series data that can be found 

typically in hydrological applications as reference data. In order to evaluate different 

imputation methods, we randomly replace a certain fraction of the observations of the 

reference data with missing values. These missing values will then be replaced by 

approximations obtained from different imputation methods. Comparing the reference time 

series data with the imputed time series will allow us to draw conclusions regarding the 

performance of different imputation methods. Despite this clear structure, it is hard to 

directly implement this research design for one simple reason: for most of our study regions 

complete discharge time series for variables of interest hardly exists. Available data often is 

either characterized by some missing values or with specific values that keep repeating for 

consecutive days or even weeks – presumably to fill in initially missing values.  Therefore, we 

adjust the basic idea of our research design slightly. In order to obtain reference data that 

does not suffer from missing values itself, we resort to using output discharge data obtained 

from a hydrological model. This simulated discharge data is likely to reflect common 

characteristics of hydrological data found in typical applications. In the following we detail 

the single steps of our research design which is also summarized in Figure 3.1.  
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Step 1: Selection of input data for hydrological model 

The reference data for the following comparison of different imputation methods is 

discharge data. As already mentioned above, discharge data without any missing values is 

hard to find and for this reason we will simulate a time series of discharge data that doesn’t 

suffer from missing values but does reflect typical properties of discharge data (see below). 

In order to simulate discharge data, we will rely on observed precipitation, temperature and 

evapotranspiration time series data for 5 years (November 2001 to October 2006) from a 

given research area.  

 

Figure 3. 1: Graphical process of the working steps 

 

Moreover, and in order to learn more about the performance of various imputation 

methods, we will vary the characteristics of the input data to simulate reference data with 

different features. In particular, we vary the variance of the original precipitation data 

(P_seasonal) and generate three different precipitation time series: one with low variance 

(P_low), one with high variance (P_high) and one time series where we preserve it’s variance 

but add white noise (P_noise). Similarly, we remove seasonality from the original 

precipitation time series (P_seasonal) and obtain precipitation time series without clear 

seasonality (P_nonseasonal). 
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Step 2: Simulation of reference data 

We use the evapotranspiration, observed temperature and the different patterns of the 

precipitation time series described above as inputs to simulate discharge data by using the 

Hydrologiska Byråns Vattenbalansavdelning (HBV) hydrology model. The reason we chose 

precipitation time series to modify because the rainfall is quite dominate during the whole 

runoff process. By changing different patterns of precipitation time series allows us to 

generate reference discharge data exhibiting different patterns of variance and seasonality. 

These differences will help us to identify under which conditions imputation methods might 

perform differently.  

Step 3: Application of imputation methods 

We randomly delete a given fraction of observations from the simulated discharge time 

series obtained in Step 2. In particular, in different steps we delete 5%, 10%, 20%, 30% and 

40% of the data. Subsequently, we impute the missing values applying five different 

imputation techniques to fill the missing values with approximations. We apply imputation 

techniques commonly used in hydrology – arithmetic mean, ordinary least squares (OLS) and 

preceding value (PV) – but also imputation techniques that received so far little attention in 

hydrology – autoregressive integrated moving average (ARIMA) and autoregressive 

conditional heteroscedasticity (ARCH) models. We are discussing these different imputation 

methods in chapter 2. The result of step 3 hence is time series including imputed values.  

Step 4: Comparison of imputation methods 

In the final step, we evaluate the performance of each of the different imputation methods 

by comparing the imputed time series with the reference time series. We will use different 

performance criteria (mean squared error and Nash-Sutcliffe efficiency) to determine which 

imputation method performs best under what conditions. 
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3.3 Study region and hydrological modeling of discharge data 

3.3.1 Study region and input data 

Overview 

             

Figure 3. 2: Location of the study area and the gaging station (Federal State of Brandenburg, Germany)  

The spatial scope of this study is the federal state of Brandenburg located in Northeast 

Germany between the rivers Elbe and Oder draining to the Northern Sea and Baltic Sea, 

respectively (Figure. 3.2). The whole area is 29,479 km2 excluding Berlin in its center. With a 

mean annual precipitation of 557 mm and a mean annual temperature of 8.7 ℃ (period: 

1960-1990; German Weather Service, 2012), it is one of the areas in with the lowest climatic 

water balance in Germany. Due to high climatic water demand, the evapotranspiration here 

is approximately 510 mm per year, only leaving 100 mm per year as runoff (Lischeid & 

Nathkin, 2011). Groundwater flow and groundwater discharge into rivers and channels are 

the dominating hydrological components of the regional water cycle. About 80 out of 100 

runoff per year occurs as ground flow, whereas surface runoff plays only a minor role, 

accounting for less than of total runoff (Merz & Pekdeger, 2011). Time series of 

evapotranspiration, observed precipitation, temperature from one of the gaging stations in 

Bad Wilsnack region in research area was chosen (5 years/ from November 2001 to October 

2006) (Figure 3.2).  
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The whole region is part of a postglacial landscape which formed since the last Pleistocene 

glaciations. Low gradients in land surface as well as in surface and subsurface flows, a large 

number of closed depressions and periglacial channels exposing locally raised relief energy, 

complex interaction of different aquifers and a rather unstable but ecologically crucial 

interplay between groundwater and streams are major hydrological characteristics of this 

landscape. Moreover, the region exhibits a wide array of anthropogenic impacts on the fresh 

systems. These include weirs, dams and locks, flood protection which result in extensive use 

and alteration of regional freshwater quantity and quality. Due to these specific 

characteristics, observed discharge time series are disturbed by anthropogenic influences. In 

order to test different imputation methods relying on more representative reference data, 

we construct discharge time series by using a hydrological model which is based on observed 

precipitation, temperature and evapotranspiration. This allows us to simulate discharge as 

the reference data that is more likely to reflect common characteristics as hydrological time 

series. For a more detailed description and overview on hydrological changes within this 

landscape we refer to Merz and Pekdeger (2011) and Germer et al. (2011). 

Input data 

We will use the HBV model (see below) to simulate a time series of daily discharge 𝑄𝑠
𝑡 which 

as reference data for the evaluation of different imputation methods. The HBV model 

requires daily rainfall, temperature and evapotranspiration as input data. These time series 

have been obtained from Bad Wilsnack region described above for a period of five years 

(November 2001 to October 2006). , 

Figure 3.3 presents the time series of the evapotranspiration and observed temperature 

over the observational time period. Note that the left vertical axis contains the temperature 

scale in degree Celsius whereas the right vertical axis contains the scale for 

evapotranspiration in mm/day. Both time series are characterized by typical seasonality 

patterns with low temperatures and low evaporation during winter months.  
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Figure 3. 3: Temperature and Evapotranspiration input data 

 

Figure 3. 4: Precipitation input data with/without seasonality 

 

Figure 3.4 presents the time series of the observed precipitation from Bad Wilsnack region 

where the date between November 2001 and October 2006 on the x-axis and precipitation 

in mm on the y-axis. Note that Figure 3.4 contains two time series. First, P_seasonal is the 

original time series of precipitation. Second, we de-trended P_seaosonal by removing 

seasonal effects on a monthly base yielding P_nonseasonal. We de-trend the time series in 

order to simulate discharge time series with different structural characteristics using the 

HBV model. This will allow us to generate insights into performance differences of the 

imputation methods depending on structural characteristics of the time series to be imputed. 
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Figure 3. 5: Generated precipitation input data with different variances 

Since we are using data from only one region - Bad Wilsnack - in this study, we further 

manipulate the original precipitation data with regard to its volatility in order to gain further 

insights how the different imputation methods perform under different conditions. Figure 

3.5 presents additional manipulations of the original precipitation data which differ 

according to the variance. The first manipulation consisted of replacing all values of the 

original time series that are higher than 10 mm by zero in order to generate a novel time 

series with low variance (P_low). Second, and departing from the derived P_low, we increase 

its variance (and mean) by multiplying P_low with a constant multiplier and obtain an 

additional time series P_high. Finally, we preserve P_high’s variance but add white noise. 

White noise here refers to an error term or shock which is drawn from a normal distribution 

with zero mean and finite variance. Adding independent draws from such a normal 

distribution to each daily observation yields an additional time series P_noise having the 

same mean as P_high but higher variance due to the addition of the random component. 

Note that Figure 3.5 displays P_low, P_high and P_noise over the full 5 year period (upper 

half) but also contains a presentation over only three months (January 2002 to March 2002) 

(lower half). The latter makes typical precipitation patterns and the differences between the 

three time series visible in a clearer way. Using these different time series as input data for 
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the HBV model described below allows us to simulate discharge data that reflects different 

characteristics despite the fact that we work with data from only one catchment.  

3.3.2 Hydrological modeling of discharge data 

Hydrologiska Byråns Vattenbalansavdelning model 

The HBV hydrological model has a long history and the model has found applications in more 

than 30 countries. Its first application dates back to the early 1970s (Bergström & Forsman, 

1973). Originally the HBV model was developed at the Swedish Meteorological and 

Hydrological Institute (SMHI) for runoff simulation and hydrological forecasting, but the 

scope of applications has increased steadily (Bergström & Singh, 1995). 

Today many versions of the HBV model exist, and new codes are constantly being developed 

by different groups, see for example Vehvilainen (1986); Killingtveit and Sand (1990); Renner 

and Braun (1990). The standard at SMHI has long been a version which is best characterized 

as a semi-distributed conceptual model. Experience has shown, however, that this version 

has some major drawbacks concerning areal representation, a fact which limits the use of 

distributed data. There are also a number of physical inconsistencies in this commonly used 

model, such as the lack of an interception routine and the lack of an elevation correction of 

evapotranspiration. These inconsistencies became questionable when the model was to be 

used for climate impact studies. 

In 1993 the Swedish Association of River Regulation Enterprises (VASO) and the SMHI 

initiated a major revision of the structure of the HBV model. The objective of the work was 

to re-evaluate the existing model and to develop a new model version for hydrological 

problems related to hydropower production and design. So, the new version of the HBV 

model, HBV light is based on the same philosophy of simplicity as the original HBV model, 

but it is more physically reasonable and up-to-date with the current hydrological and 

meteorological knowledge.  

The basic equations are in accordance with the SMHI-version HBV-6 (Bergström, 1992) with 

only two slight changes. Instead of using initial states the new version uses a ‘warming-up’ 

period. In the original version, only integer values are allowed for the routing parameter 

MAXBAS. This limitation has been removed in the new version. In order to keep the program 
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as simple as possible, several functions found in the HBV-6 software were not implemented 

in the HBV light software. It is possible to use a correction of the long-term mean of 

potential evaporation values as proposed by Lindström and Bergström (1992). The HBV-light 

version provides two options which do not exist in the HBV-6 version. The first one is the 

possibility to include observed groundwater levels into the analysis and the second is the 

possibility to use a different response routine with a delay parameter. 

 

Figure 3. 6: HBV model structure 

The model simulates daily discharge using daily rainfall, temperature and potential 

evaporation as input. Precipitation is simulated to be either snow or rain depending on 

whether the temperature is above or below a threshold temperature, TT (°C). All 

precipitation simulated to be snow, i.e. falling when the temperature is bellow TT (°C), is 

multiplied by a snowfall correction factor, SFCF. Snowmelt is calculated with the degree-day 

method according to Equation 3.1.  

𝑚𝑒𝑙𝑡 = 𝐶𝐹𝑀𝐴𝑋(𝑇(𝑡) − 𝑇𝑇)                                                        (3.1) 
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Melt water and rainfall is retained within the snowpack until it exceeds a certain fraction, 

CWH, of the water equivalent of the snow. Liquid water within the snowpack refreezes 

according to Equation 3.2  

𝑟𝑒𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔 = 𝐶𝐹𝑅 ∙ 𝐶𝐹𝑀𝐴𝑋(𝑇𝑇 − 𝑇(𝑡)) .                                      (3.2) 

Rainfall and snowmelt (P) are divided into water filling the soil box and groundwater 

recharge depending on the relation between water content of the soil box (SM (mm)) and its 

largest value (FC (mm)) (Equation 3.3)  

𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒

𝑃(𝑡)
= (

𝑆𝑀(𝑡)

𝐹𝐶
)

𝐵𝐸𝐴𝑇

 .                                                         (3.3) 

Actual evaporation from the soil box equals the potential evaporation if SM/FC is above LP 

while a linear reduction is used when SM/FC is below LP (Equation 3.4)  

𝐸𝑎𝑐𝑡 = 𝐸𝑝𝑜𝑡 ∙ 𝑚𝑖𝑛 (
𝑆𝑀(𝑇)

𝐹𝐶∙𝐿𝑃
, 1) .                                                  (3.4) 

Groundwater recharge is added to the upper groundwater box and the water percolates 

from upper to the lower groundwater box. Runoff from the groundwater boxes is computed 

as the sum of two linear outflows by linear reservoir function (Equation 3.5) 

𝑄𝐺𝑊(𝑡)
= 𝑄1 + 𝑄2 = 𝐾1 ∙ 𝑈𝑍1+𝛼 + 𝐾2 ∙ 𝐿𝑍.                                        (3.5) 

The recession components threshold of upper groundwater box is defined by a linear 

drainage equation. The runoff is finally transformed by a triangular weighting function to 

give the simulated runoff (Equation 3.6) 

𝑄𝑠𝑖𝑚(𝑡) = ∑ (∫
2

𝑀𝐴𝑋𝐵𝐴𝑆
− |𝑢 −

𝑀𝐴𝑋𝐵𝐴𝑆

2
|

4

𝑀𝐴𝑋𝐵𝐴𝑆2 𝑑𝑢
𝑖

𝑖−1
)𝑀𝐴𝑋𝐵𝐴𝑆

𝑖=1 ∙ 𝑄𝐺𝑊(𝑡−𝑖+1)
 .           (3.6) 

Where P(t), T(t), SM(t), QGW(t and Qsim(t) are precipitation, temperature, soil moisture, ground 

water discharge and simulated discharge at time t. CFMAX, CFR, FC, LP, K1, K2, 𝛼 and 

MAXBAS are model parameters. 

For both the snow and soil routine, calculations are performed for each different elevation 

zone, but the response routine is a lumped representation of the catchment.  
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Table 3. 1: Model parameters and feasible ranges 

Parameter (Unit) Explanation Feasible ranges 

Snow routine   

TT (°C) Threshold temperature (-2, 0) 

CFMAX (mm/°C/d) Degree-day factor (0.2, 1) 

SFCF Snowfall correction factor (1, 4) 

CFR Refreezing coefficient 0.05 

CWH Water holding capacity 0.1 

Soil routine   

FC (mm) Maximum of  storage in the soil (200, 850) 

LP (mm) Threshold for reduction of evaporation  (0.2, 1) 

BETA Shape coefficient (1, 4) 

Response routine   

Alpha Response box parameter (0, 0.5) 

K1 (1/d) Recession coefficient (upper storage) (0.07, 0.2) 

K2 (1/d) Recession coefficient (lower storage) (0.005, 0.07) 

PERC (mm/d) Percolation from upper to lower response box (1, 2.5) 

Routing routine   

MAXBAS (d) Transformation function parameter (2, 5) 

 

Simulation results obtained from the HBV model  

Below, we briefly summarize the simulated time series 𝑄𝑠
𝑡 we obtained from applying the 

HBV model to the original input data obtained from Brandenburg and the derived 

precipitation time series. In total, we simulated five different discharge time series. Figure 

3.7 presents 𝑄𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙
𝑡  as well as 𝑄𝑛𝑜𝑛−𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙

𝑡  based on the original as well as the de-

trended precipitation data. Note, that 𝑄𝑛𝑜𝑛−𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙
𝑡  unsurprisingly displays much less 

pronounced seasonality patterns than 𝑄𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙
𝑡 . Remaining seasonality effects are due to 

seasonality in the other input variables, temperature and evapotranspiration. 
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Figure 3. 7: Simulated discharge output data with/without seasonality 

Figure 3. 8: Simulated discharge output data with different variances 

Figure 3.8 presents the time series of the simulated discharge data which are based on 

precipitation inputs with manipulated variance, i.e., 𝑄𝑙𝑜𝑤
𝑡 , 𝑄ℎ𝑖𝑔ℎ

𝑡  and 𝑄𝑛𝑜𝑖𝑠𝑒
𝑡 . Note, that 𝑄𝑙𝑜𝑤

𝑡  

displays much less variance than 𝑄ℎ𝑖𝑔ℎ
𝑡  and 𝑄𝑛𝑜𝑖𝑠𝑒

𝑡 . Since white noise is added to the input 

data P_high for creating P_noisy, 𝑄𝑛𝑜𝑖𝑠𝑒
𝑡  is characterized by higher fluctuations than 𝑄ℎ𝑖𝑔ℎ

𝑡  

but preserves its mean.  

3.4 Evaluation of imputation methods 

3.4.1 Overview on imputation methods used 

Before applying different imputation methods to the simulated discharge time series 𝑄𝑠
𝑡 

obtained from applying the HBV model to the observed data, we briefly discuss different 

imputation methods. As described above, we will apply these methods to impute different 

shares of missing values (5%, 10%, 20%, 30%, 40%) in order to obtain a time series 𝑄𝑖
𝑡 
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including imputed values. For the following notation, we denote with 𝑄𝑚
𝑡  the time series of 

including missing values which will be the basis for our imputation exercises. After the 

discussion of the different imputation methods used, we assess their performance using the 

Mean Squared Error (MSE) and the Nash-Sutcliff Efficiency (NSE) criteria which we also 

introduce below. Pros and cons of all imputation approaches we use in this chapter have 

been discussed in chapter 2.  

Arithmetic mean imputation 

A commonly used and simple to implement imputation method for the approximation of 

missing values is the so-called arithmetic mean imputation. It replaces missing values in a 

variable with the arithmetic mean of the observed values of the same variable (Roth, 1994). 

In our context, the missing values are replaced with the arithmetic mean of the non-missing 

observed values, which is 𝑄𝑖
𝑡 =

1

𝑇
∑ 𝑄𝑚

𝑡𝑇
𝑖=1  with T being the number of non-missing 

observations here.  

Preceding value  

An alternative approach to replace missing values is using the last observed preceding value 

as best predictor for a missing values. Missing values in that case sequentially replaced 

according to 𝑄𝑖
𝑡 = 𝑄𝑚

𝑡−𝑘 where k is the difference in the number of periods between a 

missing value and the last observed value of Q. If, for instance, two missing values occur 

subsequently, the second missing value is replaced with 𝑄𝑖
𝑡 = 𝑄𝑚

𝑡−2  as 𝑄𝑚
𝑡−2  is the last 

previously observed value. 

Ordinary least squares (OLS) regression imputation 

Regression-based imputation replaces missing data with predicted values from a regression 

estimation (Greenland & Finkle, 1995). The basic idea behind this method is using 

information from all observations with complete values in the variables of interest to fill in 

the incomplete values which is intuitively appealingly (Frane, 1976). While different 

regression models can be applied to impute missing values, we start with the most basic 

regression model – the linear regression.  

The first step of the imputation process is to estimate regression equations that relates the 

variable that contains missing data (the dependent variable of the regression) to a set of 
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variables which have complete information across all observations in the data set 

(independent variables of the regression). In our context, we estimate how the non-missing 

values 𝑄𝑚
𝑡  are related to the observed precipitation data on the same day 𝑃𝑜

𝑡. The regression 

function we are estimating is then given by 𝑄𝑚
𝑡 = 𝛽0 + 𝛽1𝑃𝑚

𝑡 + 𝜀𝑡, where 𝜀0 accounts for 

measurement errors and other unobserved influences on discharge. The regression 

parameter 𝛽0  and 𝛽1  are estimated only for the subset of the data that contains all 

observations that have complete information both for the dependent variable and the 

independent variables using the ordinary least square estimator yielding the estimates 𝛽0̂ 

and 𝛽1̂. 

The second step uses the regression results from the first step and missing values for the 

observations that could not have been included in the regression are replaced by predictions 

obtained from combining the observed values precipitation and the estimates from the first 

step of how it is related to the discharge. These predicted values fill in the missing values and 

produce a complete data set in which the missing values are replace according to 𝑄𝑖
𝑡 = 𝛽0̂ +

𝛽1̂𝑃𝑜
𝑡 for all t with missing data.  

While regression-based imputations most frequently rely on simple linear regressions, it is 

worth noting that more flexible regression approaches can equally be used and might even 

be more advantageous depending on the application. We will discuss more advanced time 

series regression approaches below. 

Auto Regressive Integrated Moving Average Model 

Similar to the linear regression framework introduced above, time series regressions can 

equally be employed for imputations purposes. Imputed values are then derived from a 

prediction based on time series regression instead of a linear regression.  

A time series – such as hydrological data – can be interpreted as a stochastic process where 

yt and yt-j are correlated over time, i.e., autocorrelation between different measures of y 

exists. One possible specification is an autoregressive process AR (p) of pth order with 

yt= α0 + α1yt-1 + α2yt-2 + …… + αpyt-p + εt ,                                                                      (3.7) 

In (3.7) epsilon is a random error term that follows a standard normal distribution and is independent 

over time with E(εt,εt-i)=0 for all i≠t. 
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p here denotes the number of lagged values of yt that enter the process. εt is an identically 

distributed (iid) error term with zero mean and constant variance. An alternative 

specification of a stochastic process that generates autocorrelation in a time series are 

moving average (MA) processes in which the contemporary value of yt is a function of its 

mean µ and a sequence of random shocks with 

yt = µ + εt + ɵ1εt-1 + ɵ2εt-2 + …… + ɵpεt-q .                                                                             (3.8) 

The commonly used ARMA model fits an observed autoregressive (AR) time series by 

combining it with a moving-average (MA) component consisting of a sum of weighted lags of 

the error term εt (Box, Jenkins, Reinsel, & Ljung, 2015). The resulting ARMA model is written 

as  

yt= α0 + α1yt-1 + α2yt-2 + …… + αpyt-p + εt - ɵ1εt-1 - … - ɵqεt-q .                                               (3.9) 

Equation (3.9) is often referred to as an ARMA(p,q) model as it contains a pth-order 

autoregressive component in the observable time series, yt, and a qth order moving average 

component of the unobservable random shocks εt. It is generally assumed that εt follows a 

so-called white-noise process with zero mean E(εt) and constant variance E(εt
2)=σ2. 

It is important to highlight that ARMA models can be fitted to data only if the underlying 

time series yt is weakly stationary (see chapter 2). In case a time series yt is not stationary, 

stationarity can often be achieved by differencing the time series one or more times (Box & 

Jenkins, 1976). If differencing is required the ARMA (p,q) model (Autoregressive Moving 

Average) becomes an ARIMA (p,d,q) model (Autoregressive Integrated Moving Average) 

where d denotes the order of differencing, i.e., the number of time yt is differenced to 

achieve stationarity.  

Both ARMA and ARIMA models can be readily estimated using common statistical software 

packages such as R or STATA. Before the actual estimation, the researcher has to identify 

whether the time-series is stationary or needs to be differenced in order to induce 

stationarity. In practice, this can be done by a first visual inspection of the data. More 

formally, the unit root test of Dickey and Fuller (1979) can be used to test whether 

differencing is needed. Additionally, the researcher has to determine the appropriate 

number of lagged terms for the ARMA/ARIMA model, i.e., has to choose p and q. The choice 
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of these parameters typically is based on an analysis of the Autocorrrelation Function (AFC) 

and the Partial Autocorrelation Function (PACF). After the model has been specified by the 

researcher, its parameters need to be estimated. Since ARIMA models typically are non-

linear models, parameter estimation requires non-linear model fitting procedures. In the 

context of ARIMA models, typically maximum likelihood or method of moments approaches 

are applied.  The application of maximum likelihood estimation requires to assume a 

particular distribution of the error term εt (typically a i.i.d. normal distribution). This allows 

to formulate a joint distribution function expressed in terms of yt. The maximum likelihood 

framework chooses the unknown parameters αp and ɵq in a way joint likelihood function 

gets maximized conditional the observed data. An alternative estimation approach is to 

apply a Method of Moments estimator which equates sample moments to population 

moments and solves for the unknown parameters. Maximum likelihood estimators can be 

shown to be consistent and to be asymptotically normally distributed which allows the 

construction of confidence intervals around the point estimates in order to conduct 

hypothesis testing. Alternatively, Yule and Walker propose a Method of Moments estimator 

for ARIMA models which, however, can be shown to be not efficient (Brockwell & Davis, 

2013). For this reason, in our application, we fit ARIMA (p,d,q) models to the data and use 

the estimates obtained from maximum likelihood approaches as the basis for predictions 

used to impute missing values as described for the linear OLS regression above.  

Autoregressive Conditional Heteroscedasticity Model 

ARMA and ARIMA models are based on the assumption of constant variance of the error 

terms E(εt
2)=σ2 over time. This assumption often is too restrictive. In hydrology, the local 

climate might be characterized by a period of stable conditions followed by change in 

weather that drastically alters relevant outcomes (Hughes et al., 2011). The assumption of 

constant autocorrelation is then too narrow. More realistic would be an assumption of 

changing variance and hence changing autocorrelation of the observed outcomes over time 

(heteroscedasticity). Auto Regressive Conditional Heteroscedasticity (ARCH) models which 

originate from finance and econometrics are regression models that in addition to past 

values of yt also captures time varying volatility within the structure of standard time series 

models described above. ARCH models are holding the unconditional variance of εt constant 

with E(εt
2) = σ2 but allow its conditional variance to follow an AR process of its own with 
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𝜀2 =  𝜁 + 𝛼1𝜀𝑡−1
2 + ⋯ + 𝛼𝑚𝜀𝑡−𝑚

2 + 𝜐𝑡 ,                                                (3.10) 

where 𝜐𝑡 is a new white noise process.  

Based on this specification the ARCH model extends the standard ARMA/ARIMA model to 

incorporate time varying volatility. The estimation of ARCH is again possible relying on 

standard statistical software packages and predictions can be used to impute missing values 

in a time series. Similar to ARIMA models, the procedure most often used to estimate ARCH 

models is the maximum likelihood methods. As described above, auxiliary assumptions have 

to be made (in particular, an i.i.d. normal distribution of the error terms) in order to derive 

the likelihood function to be maximized conditional on the observed data by choosing the 

parameters of interest. If the normal distribution of the error terms is hard to justify in 

practical application, the estimation can be based on more general Quasi Maximum 

Likelihood (QMLE) approaches which, however, is not efficient. In our case, we fit an ARCH 

model that extends and ARIMA (p,d,q) model by a first-order autoregressive process for the 

variance of the error term εt
2 and estimate the unknown parameters relying on maximum 

likelihood estimation. 

3.4.2 Evaluation of imputation performance 

We will evaluate the performance of the two different imputation methods by comparing 

the imputed time series with the reference time series obtained from the HBV model 

described above. In particular, we use the Mean Squared Error (MSE) and the Nash-Sutcliffe 

efficiency (NSE) measure for this purpose. We quickly discuss the two measures below 

before we discuss the efficiency of our imputation exercise.  

Mean Squared Error (MSE) 

The Mean Squared Error is a commonly used measure in statistics to assess the quality of an 

estimator or – as in the case of imputation – a predictor (Harville & Jeske, 1992). The MSE 

measures the average of the squares of the errors or deviations, i.e., the difference between 

the predictions and the observed values (Schunn & Wallach, 2005). Note that the MSE can 

be compared across different models in order to assess which performs better.  
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Formally, let 𝑄𝑠
𝑡 be the simulated discharge time series (our reference data) and 𝑄𝑖

𝑡 be the 

time series of discharge including imputed values from one of the imputation methods for 

the periods 𝑡 = 1, ⋯ , 𝑇. The MSE is then defined as  

𝑀𝑆𝐸 =  
1

𝑇
∑ (𝑄𝑖

𝑡 − 𝑄𝑠
𝑡)2𝑇

𝑖=1 .                                                         (3.11) 

A MSE of zero would indicate error-free prediction (imputation) of missing values, but is in 

reality not to achieve.  

Nash-Sutcliffe efficiency (NSE) 

Nash and Sutcliffe (1970) proposed an efficiency measure for hydrological models. The Nash-

Sutcliffe efficiency is defined as one minus the sum of the squared differences between the 

predicted 𝑄𝑖
𝑡 and observed values 𝑄𝑠

𝑡, normalized by the variance of the observed values 

during the period under investigation with: 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑠

𝑡−𝑄𝑖
𝑡)

2𝑇
𝑡=1

∑ (𝑄𝑠
𝑡−𝑄𝑠)

2𝑇
𝑡=1

 .                                                              (3.12) 

The range of the NSE lies between 1.0 (perfect fit) and −∞. An efficiency of lower than zero 

indicates that the mean value of the observed time series would have been a better 

predictor than the model. In this case, the imputation method performs worse than a simple 

imputation based on the mean of the observed data. 

Note that the NSE is related to the MSE. It can be interpreted as dividing MSE by the 

variance of the observations and subtracting that ratio from 1 with 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑠

𝑡−𝑄𝑖
𝑡)

2𝑇
𝑡=1

∑ (𝑄𝑠
𝑡−𝑄𝑠)

2𝑇
𝑡=1

= 1 − 
MSE

𝜎𝑄𝑠
2 .                                                    (3.13) 

3.4.3 Results 

Mean Squared Error 

In a first step, we evaluate how the different imputation mechanisms perform by applying 

the MSE criterion discussed above before moving on to the NSE results. All results are 

presented both graphically (see Figures 3.9 to 3.10) and in tables (see Table 3.2). In addition 

to the simple imputation methods (naïve and mean based imputations), they have been 
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obtained from the following regression models: First, we fit a linear regression in which we 

regress 𝑄𝑠
𝑡  on 𝑃𝑜

𝑡 and use the obtained parameter estimates in order to predict missing 

values in 𝑄𝑠
𝑡  .  Second, we estimate an ARIMA(1,1,1) model which is based on the 

differenced time-series (in order to induce stationarity) of 𝑄𝑠
𝑡  and includes the first lag of 

the dependent variable (AR(1)) as well as a first-order moving average component (MA(1)). 

Again, we used the obtained parameter estimates to predict missing values in 𝑄𝑠
𝑡 . Finally, 

the presented ARCH results are derived from the an ARIMA(1,1,1) model which has been 

extended by a first-order AR process of the squared error term to allow for 

heteroscedasticity.  

Independently of which of the five reference time series 𝑄𝑠
𝑡 we focus, clear patterns from 

the imputation simulations emerge. First, the MSE monotonously increase in the share of 

data points that are missing from a data set irrespectively of the imputation technique 

applied. This is unsurprising, as by definition, a smaller share of missing values implies a 

higher share of identical values in both the reference time series 𝑄𝑠
𝑡 and the imputed time 

series 𝑄𝑖
𝑡 and hence a smaller MSE. Moreover, most imputation methods perform better in 

cases where only few observations are missing as the approximations for the missing values 

will be based on a relatively larger number of complete observations. 

Second, we observe clear performance differences in the different types of imputation 

techniques used. Most importantly, imputation techniques that ignore the time series 

character of the data to be imputed perform significantly worse than imputation methods 

that explicitly take the time series nature of the data into account. In particular, both the 

results from arithmetic mean imputations as well as the results from OLS-based imputations 

are characterized by similarly high MSEs relative to the other methods. Imputations 

techniques that account for the time series nature of the data (preceding value, ARIMA and 

ARCH) perform significantly better in terms of MSE. In fact, their MSEs are by a factor of 20 

to 40 times smaller than the MSEs observed for mean imputation and OLS-based imputation 

(see Table 3.2). Within the approaches that exploit the time series structure of the data, the 

flexible ARCH model performs best with its MSEs being clearly smaller than those of the 

ARIMA model. While the preceding value imputation clearly is superior mean value or OLS-

based imputations, it is outperformed by the more sophisticated time series models. 

Moreover, the outperformance of ARIMA/ARCH models over the preceding value technique 
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is more pronounced in situations where a large fraction of observations is characterized by 

missing values (see Figure 3.10). 

 

Figure 3. 9: Mean Squared Error of imputation methods for seasonality   

 

Figure 3. 10: Mean Squared Error of imputation methods for different scenarios 
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Table 3. 2: Results of Mean Squared Error 

Discharge time series without seasonality 
     Percentage of missing data Mean OLS PV ARIMA ARCH 

5% 3.58E-04 3.59E-04 8.49E-06 7.23E-06 6.84E-06 

10% 1.23E-03 1.23E-03 3.74E-05 2.21E-05 2.50E-05 

20% 2.21E-03 2.21E-03 7.45E-05 5.22E-05 5.21E-05 

30% 3.60E-03 3.60E-03 1.57E-04 1.34E-04 1.12E-04 

40% 4.79E-03 4.79E-03 2.21E-04 1.99E-04 1.56E-04 

 
     Discharge time series with seasonality 
     Percentage of missing data Mean OLS PV ARIMA ARCH 

5% 4.48E-03 4.32E-03 1.14E-04 5.57E-05 6.73E-05 

10% 8.50E-03 8.24E-03 3.29E-04 3.29E-04 2.28E-04 

20% 1.26E-02 1.24E-02 5.53E-04 4.85E-04 3.30E-04 

30% 1.98E-02 1.96E-02 7.61E-04 7.70E-04 4.55E-04 

40% 2.73E-02 2.71E-02 1.20E-03 1.20E-03 6.63E-04 

 
     Discharge time series with low variance 
     Percentage of missing data Mean OLS PV ARIMA ARCH 

5% 1.75E-03 1.72E-03 2.42E-05 1.03E-05 1.27E-05 

10% 3.41E-03 3.35E-03 7.54E-05 5.76E-05 3.71E-05 

20% 4.91E-03 4.88E-03 1.19E-04 9.71E-05 6.07E-05 

30% 8.45E-03 8.49E-03 2.10E-04 1.72E-04 9.80E-05 

40% 1.21E-02 1.22E-02 3.17E-04 2.35E-04 1.23E-04 

 
     Discharge time series with high variance 
     Percentage of missing data Mean OLS PV ARIMA ARCH 

5% 2.04E-02 1.99E-02 4.66E-04 2.43E-04 2.64E-04 

10% 4.04E-02 3.93E-02 1.49E-03 1.11E-03 7.76E-04 

20% 6.29E-02 6.20E-02 2.84E-03 2.39E-03 1.42E-03 

30% 1.06E-01 1.06E-01 5.36E-03 4.54E-03 2.35E-03 

40% 1.49E-01 1.49E-01 7.75E-03 6.13E-03 3.02E-03 

 
     Discharge time series with high variance 

(white noise) 
     Percentage of missing data Mean OLS PV ARIMA ARCH 

5% 3.84E-02 3.81E-02 7.86E-04 5.25E-04 4.66E-04 

10% 7.72E-02 7.69E-02 2.13E-03 1.61E-03 1.05E-03 

20% 1.30E-01 1.29E-01 4.78E-03 3.67E-03 2.51E-03 

30% 2.13E-01 2.12E-01 1.03E-02 8.44E-03 4.52E-03 

40% 3.01E-01 3.00E-01 1.48E-02 1.08E-02 5.68E-03 
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It is worth noting, that the performance differences across the different imputation methods 

are independent of the particular characteristics of the reference time series. As discussed 

above, we evaluated the performance of the different imputation techniques using five 

reference time series which differ regarding the existence of seasonal trends and their 

variance. The ranking and the relative difference between the five tested imputation 

methods is similar across all five reference time series. Not surprisingly, however, 

comparisons of the results within the different imputation methods reveal that their 

performance depends significantly on the characteristics of the reference time series. The 

higher the variance of the reference time series is, the more challenging imputation 

becomes and MSEs within a given imputation technique increase for reference time series 

with higher volatility. We also observe that MSEs are higher if seasonal trends are present 

compared to the MSEs obtained for the reference time series where we removed seasonality.  

Nash-Sutcliffe efficiency 

In addition to using the MSE criterion, we also evaluate the performance of the different 

imputation methods by applying the NSE criterion (see Section 3.4.2). Note that given the 

NSE is a function of the MSE (with 𝑁𝑆𝐸 = 1 −  
MSE

𝜎𝑄𝑠
2 ) the patterns discussed above hold also 

when the NSE criterion is applied.  

In fact, and most importantly, imputation methods that acknowledge the time series nature 

of the reference data (preceding value, ARIMA and ARCH) perform significantly better than 

the other methods (mean imputation and OLS) with the flexible ARCH model achieving NSEs 

that are closest to the maximum possible (see Figure 3.12 and Table 3.3).2 The effect of an 

increasing variance/seasonality on the performance is different when the NSE criterion is 

applied when compared to the MSE criterion as the NSE criterion uses the reference time 

series’ volatility as normalizing denominator in its definition. As a result, the observed NSE 

values across different volatility scenarios are less sensitive to changes in the volatility of the 

underlying reference data than the MSE.  

 

 

                                                           
2 The NSE’s value range is bound between minus infinity and 1. NSEs of 1 indicate that the prediction mimics 
the reference data perfectly.  
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Figure 3. 11: Nash-Sutcliffe efficiency of imputation methods for seasonality 

 

Figure 3. 12: Nash-Sutcliffe efficiency of imputation methods for different scenarios 
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Table 3. 3: Results of Nash-Sutcliffe efficiency 

Discharge time series seasonality 
     Percentage of missing data Mean OLS PV ARIMA ARCH 

5% 0.946 0.948 0.999 0.999 0.999 

10% 0.897 0.900 0.996 0.996 0.997 

20% 0.847 0.850 0.993 0.994 0.996 

30% 0.760 0.763 0.991 0.991 0.994 

40% 0.669 0.671 0.985 0.985 0.992 

 
     Discharge time series without seasonality 
     Percentage of missing data Mean OLS PV ARIMA ARCH 

5% 0.973 0.973 0.999 0.999 0.999 

10% 0.909 0.909 0.997 0.998 0.998 

20% 0.836 0.836 0.994 0.996 0.996 

30% 0.733 0.732 0.988 0.990 0.992 

40% 0.644 0.644 0.984 0.985 0.988 

 
     Discharge time series with low variance 
     Percentage of missing data Mean OLS PV ARIMA ARCH 

5% 0.953 0.953 0.999 1.000 1.000 

10% 0.908 0.909 0.998 0.998 0.999 

20% 0.867 0.868 0.997 0.997 0.998 

30% 0.771 0.770 0.994 0.995 0.997 

40% 0.672 0.669 0.991 0.994 0.997 

 
     Discharge time series with high variance 
     Percentage of missing data Mean OLS PV ARIMA ARCH 

5% 0.955 0.956 0.999 0.999 0.999 

10% 0.910 0.913 0.997 0.998 0.998 

20% 0.860 0.862 0.994 0.995 0.997 

30% 0.765 0.765 0.988 0.990 0.995 

40% 0.669 0.669 0.983 0.986 0.993 

 
     Discharge time series with high variance 

(white noise) 
     Percentage of missing data Mean OLS PV ARIMA ARCH 

5% 0.955 0.955 0.999 0.999 0.999 

10% 0.909 0.909 0.997 0.998 0.999 

20% 0.846 0.847 0.994 0.996 0.997 

30% 0.748 0.749 0.988 0.990 0.995 

40% 0.644 0.645 0.982 0.987 0.993 
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3.5 Application of ARIMA/ARCH models for groundwater time 

series 

In Section 3.4, we found that ARIMA and ARCH models perform significantly better in 

imputing missing hydrological data than alternative and widely used methods that do not 

consider the characteristic of time series data. In this section, we additionally apply ARIMA 

and ARCH models to ground water time-series which observed from Lake Bötzsee. The 

region is about 20 km northeast of Berlin, also in Brandenburg in Northeast Germany in the 

time period from January 2012 to May 2014. We do so in order to validate the performance 

advantage of time series models in an additional context beyond the one described in 

Section 3.4. In this endeavor, we not only model the observed ground water time series 

(GWBR1) in order to impute missing values following the identical approach as in Section 3.4. 

In addition, we also model artificially smoothed versions of the observed ground water time 

series in order to analyses how different degrees of volatility in a time series affect the 

relative performance of ARIMA and ARCH models. We have three additional time series that 

have been smoothed by Moving Average (MA) processes by three different levels (MA101, 

MA501, MA1001). Figure 3.13 shows the four different groundwater time-series. For each of 

these time-series, we fit an ARIMA(0,1,2) model which is based on the differenced time-

series (in order to induce stationarity) of 𝑄𝑠
𝑡 and includes a first- and second order moving 

average component (MA(2)). We found this parametrization to fit the smoothened data best. 

We use the obtained parameter estimates to predict missing values in 𝑄𝑠
𝑡. The presented 

ARCH results are derived from the an ARIMA(0,1,2) model which has been extended by a 

first-order AR process of the squared error term to allow for heteroscedasticity.  

The results from this exercise are relatively clear and can be summarized as follows: ARCH 

models consistently outperform ARIMA models in their imputation performance also in this 

setting. Additionally, the performance differences between ARIMA and ARCH models seem 

to be relatively unaffected by the applied smoothing.3  

The detailed results for comparisons according to the Mean Squared Error can be found in 

Table 3.4 whereas comparisons according to the Nash Sutcliff Efficiency criterion can be 

found in Table 3.5.  

                                                           
3 Note that we estimated ARIMA (0,1,2) models as well as ARCH (1) based on ARIMA(0,1,2) models as the best 
fit the ground water data observed.  
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Figure 3. 13: Observed ground water time-series from Lake Bötzsee and three smoothed time-series 

Table 3. 4: Mean Squared Error of imputation application for groundwater time-series 

Missing data 
percentage 

GWBR1 

 
PV MEAN ARIMA ARCH 

5% 2.34E-04 1.17E-02 1.13E-04 9.07E-05 

10% 5.58E-04 2.36E-02 2.85E-04 2.00E-04 

20% 1.42E-03 4.56E-02 9.07E-04 4.85E-04 

30% 2.82E-03 6.80E-02 1.99E-03 9.01E-04 

40% 5.39E-03 9.01E-02 4.22E-03 1.50E-03 

 
MA101 

 
PV MEAN ARIMA ARCH 

5% 8.00E-07 8.80E-03 2.00E-07 1.00E-07 

10% 2.10E-06 1.73E-02 6.00E-07 3.00E-07 

20% 5.70E-06 3.37E-02 2.70E-06 7.00E-07 

30% 1.29E-05 5.00E-02 7.60E-06 1.50E-06 

40% 2.51E-05 6.59E-02 1.76E-05 3.00E-06 

 
MA501 

 
PV MEAN ARIMA ARCH 

5% 5.01E-08 7.50E-03 1.17E-08 6.40E-09 

10% 1.11E-07 1.48E-02 3.27E-08 1.40E-08 

20% 2.65E-07 2.93E-02 1.19E-07 3.34E-08 

30% 5.76E-07 4.33E-02 3.26E-07 7.14E-08 

40% 1.09E-06 5.69E-02 7.33E-07 1.34E-07 

 
MA1001 

 
PV MEAN ARIMA ARCH 

5% 1.83E-08 0.0067645 3.69E-09 2.28E-09 

10% 4.16E-08 0.0132053 1.19E-08 5.09E-09 

20% 1.11E-07 0.0261488 5.27E-08 1.36E-08 

30% 2.37E-07 0.0389997 1.38E-07 2.89E-08 

40% 4.34E-07 0.0515033 2.87E-07 5.31E-08 
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Figure 3.14 clearly demonstrates that ARCH models are characterized by lower MSEs than 

ARIMA models. While the relative advantage of using ARCH models for imputation in the 

context of ground water data is relatively small for low shares of missing data, Figure 3.14 

shows that for increasing share of missing data ARCH models outperform ARIMA models 

more significantly. This reflects the findings we presented in Section 3.4 in the content of 

simulated discharge data. The pattern of a bigger relative advantage of ARCH models can 

also be found in the smoothed time series (MA101, MA501 and MA1001). As before, higher 

shares of missing values are accompanied by a bigger relative advantage of ARCH models 

(see again Figure 3.14 and Table 3.4).  

 

Figure 3. 14: Graphical results of Mean Squared Error of ARIMA/ARCH 

 

Figure 3. 15: Graphical results of Nash-Sutcliffe Efficiency of ARIMA/ARCH 
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Regarding the Nash Sutcliff Efficiency, we report similar results (see Table 3.5). For low 

shares of missing values the imputation performance of both ARCH and ARIMA is very 

similar. For increasing shares of missing data, however, ARCH models achieve significantly 

higher NSEs than comparable ARIMA models. Again, this pattern does not affect by the 

degree of smoothing applied to the time series as can easily be seen in Figure 3.15.  

Table 3. 5: Nash-Sutcliffe Efficiency of imputation application for groundwater time-series 

Missing data 
percentage  

GWBR1 

 
PV MEAN ARIMA ARCH 

5% 0.999 0.947 0.999 1.000 

10% 0.997 0.893 0.999 0.999 

20% 0.994 0.794 0.996 0.998 

30% 0.987 0.693 0.991 0.996 

40% 0.976 0.594 0.981 0.993 

  MA101 

 
PV MEAN ARIMA ARCH 

5% 1.000 0.946 1.000 1.000 

10% 1.000 0.894 1.000 1.000 

20% 1.000 0.793 1.000 1.000 

30% 1.000 0.693 1.000 1.000 

40% 1.000 0.595 1.000 1.000 

  MA501 

 
PV MEAN ARIMA ARCH 

5% 1.000 0.947 1.000 1.000 

10% 1.000 0.896 1.000 1.000 

20% 1.000 0.793 1.000 1.000 

30% 1.000 0.694 1.000 1.000 

40% 1.000 0.598 1.000 1.000 

  MA1001 

 
PV MEAN ARIMA ARCH 

5% 1.000 0.947 1.000 1.000 

10% 1.000 0.897 1.000 1.000 

20% 1.000 0.796 1.000 1.000 

30% 1.000 0.695 1.000 1.000 

40% 1.000 0.598 1.000 1.000 

The performance of both ARIMA and ARCH models increases with higher levels of 

autocorrelation in the time-series data to be modeled. This is intuitive as an increase in 

autocorrelation makes the behavior of the time series more “predictable”: the value of y if 

period t has a stronger link to past values and can therefore be approximated with higher 

precision. In Table 3.6 and Figure 3.16 we report detailed findings comparing the 
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performance of not only ARIMA and ARCH models but also relatively simple methods in the 

case of 40% of the observations are missing for different levels of autocorrelation. Note, that 

the original time series GWBR1 is characterized by modest levels of autocorrelation while 

the smoothed time series MA101, MA501 and MA1001 are characterized by increasing levels 

of autocorrelation. It can be clearly seen, that the performance of these methods increases 

with increasing levels of autocorrelation and is highest for MA1001 – which is the time series 

with the highest levels of autocorrelation.  

Table 3. 6:  MSE and NSE of imputation application when data have 40% missing 

MSE   40% Missing data percentage 

  
MEAN PV ARIMA ARCH 

GWBR1 
 

9.01E-02 5.39E-03 4.22E-03 1.50E-03 

MA101 
 

6.59E-02 2.51E-05 1.76E-05 3.00E-06 

MA501 
 

5.69E-02 1.09E-06 7.33E-07 1.34E-07 

MA1001   5.15E-02 4.34E-07 2.87E-07 5.31E-08 

 

NSE   40% Missing data percentage 

  
MEAN PV ARIMA ARCH 

GWBR1 
 

0.594 0.976 0.981 0.993 

MA101 
 

0.595 1.000 1.000 1.000 

MA501 
 

0.598 1.000 1.000 1.000 

MA1001   0.598 1.000 1.000 1.000 

     

Figure 3. 16: MSE and NSE of imputation application when data have 40% missing 
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3.6 Conclusion 

Complete time series data are a necessary precondition for most statistical approaches in 

hydrology, including determination of the flow duration curve, autocorrelation function, 

spectrum analysis, extreme value analysis based on the generalized extreme value 

distribution of annual blocks, principal component analysis, etc. In these cases, researchers 

need to resort to imputation methods in order to replace missing values with 

approximations as these statistical approaches require gap-free dataset. In this chapter, we 

evaluated the performance of five different imputation methods as follows. We created five 

time series of discharge data that exhibit different patterns of volatility using the HBV model. 

From these reference time series we randomly deleted a given share of observations to be 

imputed by the different approaches whose performance has been evaluated by the MSE 

and the NSE criteria. Our findings reveal that imputation methods that neglect the time 

series nature of the underlying reference data perform significantly worse than imputation 

methods that exploit this feature of the data. Moreover, advanced time series methods such 

as ARCH significantly outperform relatively simple time series method such as the preceding 

value imputation.  

These findings are important for number of reasons: First, hydrological data is by its 

definition time series data that is typically characterized by typical feature such as 

autocorrelation and seasonality. In the presence of these features, the results obtained from 

commonly used imputation methods such as the wide-spread mean-value imputation can be 

improved significantly. As our study clearly reveals, even a relatively simple imputation 

algorithm that exploits the time series nature of the data – the preceding value approach – 

performs significantly better.  

Second, we were also able to demonstrate that advanced regression-based time series 

imputation method such as ARIMA and ARCH models yield better results than the relatively 

simple preceding value imputation. Comparing the performance measures in Tables 3.2 to 

3.5 shows that the ARIMA/ARCH models achieve significantly lower MSE values and 

significantly higher NSE values. While the latter is easy to implement and still performs much 

better than mean-value or OLS imputation techniques, imputation results can be optimized 

by relying on advanced econometric techniques. This is true in particular in situations where 
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a large fraction of observations is characterized by missing values. The larger the share of 

missing values the higher the performance advantage of advanced time series methods. The 

performance advantage of econometric time series methods is noteworthy as – as of now – 

their application in hydrological settings still is limited (see chapter 2). 

Despite they overall encouraging findings there are, however, some caveats to be 

mentioned. On the conceptual level, our results have been obtained using data from only 

one catchment area (Brandenburg) and the results might differ for data obtained from other 

catchments. In order to ameliorate concerns regarding the broader applicability of our 

results, we varied the original data in order to obtain four additional time series that exhibit 

different volatility/seasonality characteristics. The results obtained are robust towards these 

variations. On the practical level, the implementation of the advanced econometric models 

(ARIMA and ARCH) requires statistical software packages such as R or STATA as these model 

typically are not implemented in standard hydrological software packages. 

 

 

 

 

 

 

 

 

 

 



Chapter 3 

60 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

61 
 

4 Multivariate time-series approaches for imputing 

hydrological data 

4.1 Introduction  

Due to the multiple reasons, hydrological data is often characterized by missing data 

(Elshorbagy et al., 2002; Johnston, 1999). A growing literature examines to what extent 

recent methodological advances in imputation approaches, i.e., techniques that 

approximate missing values using predictive models like Predictive Value Imputation (PVI) or 

unique-value imputation can be applied to hydrological data (Saar-Tsechansky & Provost, 

2007). In this context, particular attention has been paid to the fact that hydrological data 

typically is time-series data: Hydrological variables such as precipitation or discharge are 

measured over time at fixed intervals constituting a time-series of sequential measurements 

(Berne, Delrieu, Creutin, & Obled, 2004). Often, these time-series of hydrological variables 

are characterized by internal time dependencies (such as autocorrelation, trend or seasonal 

variation) that can be exploited by appropriate models for the purpose of approximating 

missing values (Machiwal & Jha, 2012). 

Statistical techniques that explicitly model such time dependencies (time-series models) 

therefore lend themselves for imputation in hydrology: Missing values in a given variable are 

approximated based on predictions derived from the underlying time-dependencies and the 

observed value(s) of a particular variable. In this context, chapter 2 applied advanced time-

series models originally developed in financial econometrics to hydrological data with 

missing values. Autoregressive Integrated Moving Average (ARIMA) models and 

Autoregressive Conditional Heteroscedasticity (ARCH) models have been found to 

significantly outperform commonly used imputation techniques such as mean imputation or 

Ordinary Least Squares (OLS) based imputations which are widespread but ignore the time-

series nature of the data (Hamilton, 1994). 

Both ARIMA and ARCH exclusively exploit time-dependencies in the time-series of a given 

variable while ignoring other available information that might improve the quality of 

imputation (Degiannakis & Xekalaki, 2004; Stergiou et al., 1997). For instance, discharge in a 

given area will be correlated to (i) additional hydrological measurements taken in the same
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area such as the amount of precipitation and also (ii) the discharge measures from 

neighboring areas. Including these additional information in a statistical model of the 

dependent variable might therefore also affect the quality of imputation performance. 

In this chapter, we analyze to what extent extensions of the time-series models can be used 

that incorporate additional exogenous regressors. For this approach, we used some specific 

model types of the ARIMA and ARCH models - ARIMAX and ARCHX models - that exclusively 

exploit the time-series properties of the dependent variable. In particular, we compare 

imputations for various shares of missing values in a time-series of daily discharge derived 

from alternative time-series model: In a first step, we impute missing values from ARIMA 

and ARCH models that exclusively rely on the observed time-series of discharge. Second, we 

approximate missing values using extended ARIMAX and ARCHX models that include 

additional exogenous regressors such as precipitation, potential evapotranspiration or 

discharge measured from neighboring catchment areas. Finally, we compare the results 

from the different imputations in order to determine which approach yields the best results. 

The comparisons are based on the commonly used Mean Squared Error (MSE) and Nash 

Sutcliff Efficiency (NSE) criteria (Harville & Jeske, 1992; Nash & Sutcliffe, 1970). 

We are using data from various small catchments in Brandenburg in the north of Germany 

over the period of ten years from November 1989 to October 1998. Our data from one 

gauge covers daily measurements of discharge, precipitation and (an estimation of) potential 

evapotranspiration. In addition, we got information on discharge measures for two 

neighboring gauges from the same catchment for the same time periods. The results from 

imputations based on differently specified time-series models indicate that both the 

performance derived from ARIMA and ARCH models can be significantly improved when 

exogenous regressors are included compared to the results that rely only on historical values 

of the specific dependent variable. Our results also indicate that including discharge measure 

from neighboring gauges as exogenous regressors has a better effect on the improvement 

rates than the inclusions of additional hydrological variables from the same gauge. These 

findings have important implications for practitioners that are confronted with missing data 

in hydrological time-series. 
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4.2 Study region and data 

4.2.1 Overview 

The study site is located in the federal state of Brandenburg located in Northeast Germany 

(Figure 4.1). Time series of potential evapotranspiration, observed precipitation and 

discharge from some of the gauges in research area were chosen. The whole area of 

Brandenburg is 29,479 km2. Water is discharged either to the Northern Sea by the river Elbe 

or to the Baltic Sea by the river Oder. The surface river networks in Brandenburg have been 

anthropogenically altered for centuries (Merz & Pekdeger, 2011; Nützmann, Wolter, Venohr, 

& Pusch, 2011). In this region, sediments that mainly consist of glaciofluvial sands and tills 

are relatively young. Luvisols, albeluvisols and cambisols are the main soil types (Lieberoth, 

1982). Forest area contributes to 35% of the whole area. Agricultural land is another main 

land use type with 34% cropland and 9% pasture (Uwe Schindler, Mueller, Eulenstein, & 

Dannowski, 2008). With an annual long-term precipitation sum of around between 600 to 

650 mm and an annual long-term potential evapotranspiration sum of 510 mm between 

1961 and 1991 (Hydrologischer Atlas von Deutschland, 2003), it is one of the areas in with 

the lowest climatic water balance in Germany. Due to high climatic water demand, the 

potential evapotranspiration only leaving 100 mm per year as runoff (Lischeid & Nathkin, 

2011). 

For the last centuries, the hydrological system in this area has been altered by humans’ 

behavior. For more detailed description and overview on human impacts and  hydrological 

changes within this landscape we refer to Merz and Pekdeger (2011) and Germer et al. 

(2011). Some of the artificial ditches and streams have existed for more than ten decades. 

More than 100 discharge gauges are maintained by the ministry of the Environment, Health 

and Consumer Protection of the Federal State of Brandenburg. Hydrological data such as 

precipitation, discharge or temperature is typically is collected over time at given intervals. 

In this chapter, we are using data from gauge Boblitz (reference Nr. 5838700) over a decade 

from November 1989 to October 1998. Our data from this gauge covers daily measurements 

of discharge (Q), precipitation (P).  Potential evapotranspiration (E) which calculated by 

measured data is also used. In addition, we get information on discharge measures for two 

neighboring gauges – Schönfeld (reference Nr. 5838800) and Vetschau (reference Nr. 
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5836900) from the same catchment for the same time periods (the location of three main 

gauges shows in Figure 4.1). 

 

Figure 4. 1: The study area (Federal State of Brandenburg, Germany) and the location of three main gauges. 
Note: the violet colored areas in the upper right panel indicate basins of observation.    

4.2.2 Data description 

Before we model the time series of discharge from Boblitz (5838700) in Section 4.4, we 

briefly present key descriptive statistics on the dependent variable and additional variables 

that we will use as exogenous regressors in the subsequent analyses. In particular, these are 

information regarding precipitation and potential evapotranspiration from Boblitz 

(P_5838700 and E_5838700) as well as discharge information from the neighboring gauges 

Schönfeld (Q_5838800) and Vetschau (Q_5836900). Table 4.1 provides first summary 

statistics and pairwise correlation between the five variables in our sample. It is worth noting 

that discharge from Boblitz (Q_5838700) is highly correlated with discharge from Schönfeld  

(Q_5838800, coefficient of correlation 0.5789) but much less and negatively with discharge 

from Vetschau (Q_5836900, coefficient of correlation -0.0091). Potential evapotranspiration 

and precipitation from the same gauge also show only moderate correlations with the 

discharge measure. However, it needs to be taken into account that the coefficients of 

correlation do not consider any dynamic effects resulting from a delay in the effect one 

variable might have on another (Box et al., 2015). For instance, potential evapotranspiration 
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in a given period might explain discharge in a subsequent period (DeMeo, Laczniak, Boyd, 

Smith, & Nylund, 2003). This would explain why we don’t observe higher correlations. 

      Mean S.D.   (1) (2) (3) (4) (5) 

(1) Discharge (5838700) 
 

0.554 0.222 
 

1 
    

(2) Precipitation (5838700) 
 

1.637 3.991 
 

-0.0211 1 
   

(3) Evaporation (5838700) 
 

1.737 1.627 
 

-0.0485 -0.0769 1 
  

(4) Discharge (5838800) 
 

0.404 0.331 
 

0.5789 -0.0355 -0.1944 1 
 

(5) Discharge (5836900)   0.495 0.137   -0.0091 0.0273 -0.3254 -0.1035 1 

Table 4. 1: Summary statistics and pairwise correlations coefficients used in the study (N=3,287). 

S.D. stands for standard deviation. 

Figure 4.2 plots the various time series. Potential evapotranspiration and precipitation follow 

the typical stable seasonal patterns that can be expected for these variables. The discharge 

time series are more volatile which is common. It is noteworthy that the discharge time 

series of the gauges Boblitz (Q_5838700) and Schönfeld (Q_5838800) follow a similar drop in 

average discharge around 1992 whereas the discharge time series of the gauge Vetschau 

(Q_5836900) is not characterized by a similar drop. The time series of discharge from Boblitz 

(Q_5838700) is characterized by strong partial autocorrelation with its first lag (0.9864 

mm/day) which quickly drops down to 0.0328 mm/day with its second lag. This lag structure 

suggest an ARIMA (1,1,1) model as an appropriate time series model.  

 

Figure 4. 2: Plot of the time series of the dependent variable (discharge in Boblitz) and additional variable 

which will be used as exogenous regressors. 
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4.3 Working steps 

 

Figure 4. 3: Graphical process of the approach 

In the context of imputation, it needs to be noted that univariate time series and respective 

models such are ARIMA and ARCH are special cases. Instead of covariates like in multivariate 

datasets, time dependencies (autocorrelations of the dependent variable) have to be 

exploited to perform an effective imputation since no additional information from 

exogenous variables is available. In chapter 2, we give an overview of alternative approaches 

to impute missing values in univariate time series and evaluate their performance in an 

empirical application. Our findings show that ARIMA and ARCH perform well compared to a 

number of alternative imputation approaches. In this section, we compare how the inclusion 

of exogenous variables can further increase the imputation performance of these time series 

models. In particular, we will compare the performance of univariate ARIMA/ARCH models 

with those of ARIMAX/ARCHX models that include additional information from the same 

gauge as the dependent variable (potential evapotranspiration and precipitation) or/and 

observations of discharge from neighboring gauges. As the values of these additional 
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variables are also observed for given time periods in which the dependent variable contains 

missing values, we expect their inclusion to considerably improve imputation performance.  

The steps of our research are summarized in Figure 4.2.  

In order to evaluate imputation performance of these models we rely on the data described 

in Section 4.2. First, we randomly delete a given fraction of observations in the dependent 

variable from the reference data set – discharge from gauge Boblitz (Q_5838700). In 

particular, we delete 5%, 10%, 20%, 30% and 40% of the reference data sequentially. This 

will yield additional insights in how performance differs between different models 

depending on the share of data missing. Second, we fit alternative specifications of ARIMA/X 

and ARCH/X models to the resulting data sets, i.e., we estimate these models based only on 

the observations which are not missing.4 In the final step, we use these fitted models to 

impute missing values of Q_5838700. Again, it needs to be highlighted that the imputations 

in the univariate models (ARIMA/ARCH) exploit only time dependencies of Q_5838700 while 

the multivariate models (ARIMAX/ARCHX) also exploit the value of the exogenous regressors 

in the same time periods where parameters in Q_5838700 were missing.  

We measure the quality of the different imputations by comparing the imputed values of 

Q_5838700 with the values of the original reference time series. For this purpose, we 

compute commonly used measures of model fit: the Mean Squared Error (MSE) and the 

Nash Sutcliff Efficiency (NSE) criterion. The MSE measures the average of the squares of the 

difference between imputed and observed values (Schunn & Wallach, 2005) and can be 

compared across different models in order to assess which performs better. Formally, let 𝑄𝑜
𝑡  

be the observed discharge time-series (reference data Q_5838700) and 𝑄𝑖
𝑡 be the time-

series of discharge including imputed values from one of the imputation methods for the 

periods 𝑡 = 1, ⋯ , 𝑇. According to Harville and Jeske (1992), the MSE is then simply defined 

as 

𝑀𝑆𝐸 =  
1

𝑇
∑ (𝑄𝑖

𝑡 − 𝑄𝑜
𝑡 )2𝑇

𝑖=1 .                                                        (4.1) 

It is a measure of the quality of the imputation and is always non-negative with values closer 

to zero being preferable. The NSE is a normalization of the MSE (Nash & Sutcliffe, 1970). It 

                                                           
4 Note, that we nevertheless present results from fitting the models to the complete dataset below in order to 
report coefficient estimates and model fit.   
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can be obtained by dividing the MSE by the variance of the observations and subtracting that 

ratio from 1. Hence, the NSE is defined as 

 𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜

𝑡−𝑄𝑖
𝑡)

2𝑇
𝑡=1

∑ (𝑄𝑜
𝑡−𝑄𝑜)

2𝑇
𝑡=1

= 1 −  
MSE

𝜎𝑄𝑜
2 .                                            (4.2) 

The range of NSE lies between 1.0 (perfect fit) and − ∞ and values closer to 1 are preferable.  

4.4 Time-series based imputation approaches including 

exogenous regressors  

4.4.1 Overview 

Statistical models can be used to impute missing values in existing datasets (D. B. Rubin & 

Little, 2002). They formally summarize patterns in the data and express statistical 

relationships between observed values of the variable. Then the models are used to project 

the patterns in the data into the missing values (Schafer & Olsen, 1998). In other words, the 

statistical models approximate missing values based on observed values.  

There are several types of statistical models in general that can be used for imputation 

purposes (Schafer & Olsen, 1998). Time series models account for the fact that data points 

taken over time may have an internal structure or time dependency (such as autocorrelation, 

trend or seasonal variation) that can be exploited in deriving a model of the underlying 

stochastic process. Generally speaking, time series models employ the statistical properties 

of the historical observations of the variable of interest in order to specify a formal model 

and estimate the unknown model parameters (Montgomery, Jennings, & Kulahci, 2015). 

Once the parameters of such models have been estimated based on observed values of a 

given variable, its missing values can be approximated. Cross-sectional regression models, on 

the other hand, make use of relationships between the variable of interest and one or more 

related predictor (or independent) variables to describe the forces that cause or drive the 

observed values of the variable of interest (Barros & Hirakata, 2003). Once these relations 

have been quantified – typically by using regression methods – missing values of the variable 

of interest can be approximated conditional on the independent variables. 

In addition to time-series and cross-sectional models, there are statistical models that 

combine the properties of these two model categories. These models can be seen as 
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regression models with a serially dependent response variable, one or more independent 

variables and a stochastic error term. They are generally termed as Transfer Function Models 

(TFM) (Box & Jenkins, 1976) and there is broad range of different TFMs available. The 

identification and the estimation of many of these models, however, can be challenging. For 

a broader discussion on TFMs please refer to Box et al. (2015) and Montgomery et al. (2015) 

as a more comprehensive discussion would be beyond the scope of this chapter. 

In this chapter, we restrict ourselves to a discussion of how statistical time-series models 

that have been previously used for the imputation of missing values in hydrological settings 

(see for instance chapter 2). The models can be extended to incorporate the effect of 

additional independent variables. In particular, we describe used extensions of the 

ARMA/ARIMA models and ARCH models – ARIMAX and ARCHX models - that not only 

capture dynamic behaviour of a given variable of interest but also allowed to model how this 

dynamic behaviour is affected by additional exogenous regressors (Note that these models 

can be considered as special cases of the more general transfer function models). After the 

introduction of these models we briefly discuss the availability of exogenous regressors that 

can potentially be included in models of a hydrological outcome variable of interest.  

4.4.2 Models set-up 

ARMA/X and ARIMA/X 

In the following we denote observed values of a variable of interest y in a given period t with 

yt. Often, observed values of yt and yt-j are correlated over time, i.e., autocorrelation 

between different measures of y exists. A commonly used specification of a random process 

that generates autocorrelation among different observations of y is the so-called 

autoregressive process of pth order AR (p) which is defined as 

yt= α0 + α1yt-1 + α2yt-2 + …… + αpyt-p + εt ,                                                                      (4.3) 

In (4.3) epsilon is a random error term that follows a standard normal distribution and is independent 

over time with E(εt,εt-i)=0 for all i≠t. 

p here denotes the number of lagged values of yt that enter the process. The random 

disturbance in the AR(p) model εt is an identically distributed (iid) error term with zero mean 

and constant variance. Alternatively, a stochastic process that generates autocorrelation in a 
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time-series can be created by specifying the contemporary value of yt as a function of its 

mean µ and a sequence of past random shocks with  

yt = µ + εt + ɵ1εt-1 + ɵ2εt-2 + …… + ɵpεt-q .                                                                             (4.4) 

AR(p) and MA(q) processes are the building block of combined models which model yt both 

as a function of prior values in the time series (AR terms) and the errors made in previous 

periods (MA terms). These combined models are known as ARMA(p,q) models (Box et al., 

2015) and are typically written as  

yt= α0 + α1yt-1 + α2yt-2 + …… + αpyt-p + εt - ɵ1εt-1 - … - ɵqεt-q .                                               (4.5) 

ARMA(p,q) models contain a pth-order autoregressive component in the observable time 

series, yt, and a qth-order moving average component of the unobservable random shocks εt. 

A general assumption is that εt follows a random process with zero mean E(εt) and constant 

variance E(εt
2)=σ2. It is important to highlight that ARMA models can be fitted to data only if 

the underlying time-series yt is weakly stationary. If yt is not stationary, stationarity can often 

be achieved by differencing the time-series one or more times (Box et al., 2015). In this case, 

the ARMA (p,q) model (Autoregressive Moving Average) becomes an ARIMA (p,d,q) model 

(Autoregressive Integrated Moving Average) where d denotes the order of differencing, i.e., 

the number of time yt is differenced to achieve stationarity.  

It needs to be noticed, that ARMA and ARIMA models only exploit the information contained 

in the observed time-series. In many applications, however, the researcher seeks to add 

additional explanatory variables x that affect the outcome yt in addition to its own history 

(Yang, Huang, & Huang, 1995). For instance, the current amount of discharge does not only 

depend on its own history but is also correlated to other variables such as temperature or 

the amount of discharge in adjacent geographical areas. In order to model the effect of so-

called independent or exogenous variables, ARMA and ARIMA can be easily extended by 

including an independent variable xt (or a vector thereof) on the right hand side of the 

equation with 

yt= βxt α0 + α1yt-1 + α2yt-2 + …… + αpyt-p + εt - ɵ1εt-1 - … - ɵqεt-q .                                               (4.6) 
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where xt is a covariate at time t and β is its coefficient. ARMA and ARIMA models that 

incorporate exogenous variables xt are typically called ARMAX and ARIMAX models. 

This straight-forward approach, however, has the disadvantage that the covariate coefficient 

β is hard to interpret. The value of β is not the marginal effect (the effect on yt when xt is 

increased by one unit) as it is in linear ordinary least squares (OLS) regressions. In fact, the 

presence of lagged values of the response variable y on the right hand side of the equation 

implies that β can only be interpreted conditional on the value of previous values of y, which 

does not have a meaningful interpretation. If these models are used for out-of-sample 

predictions or imputation purposes, however, a clear interpretation of the estimated 

coefficients is of less importance. Finally, Maximum Likelihood methods can be used to 

estimate the parameters of ARMAX/ARIMAX models and are implemented in available 

statistical software packages such as STATA. 

ARCH/X 

As we described above, both ARMA and ARIMA models are based on the relatively strict 

assumption that variance of the error terms is constant over time with E(εt
2)=σ2 over time. In 

many applications including typical hydrological settings, however, this assumption might be 

too restrictive to represent the real data generating process. For instance, local climates 

might be characterized by a period of stable conditions followed by change in weather that 

drastically alters relevant outcomes (Hughes et al., 2011) which renders the assumption of 

constant autocorrelation too narrow. More realistic would be an assumption of changing 

variance and hence changing autocorrelation of the observed outcomes over time 

(heteroscedasticity).  

Auto Regressive Conditional Heteroscedasticity (ARCH) models are generalizations of the 

ARMA/ARIMA models that in addition to past values of yt also captures time-varying 

volatility. While ARCH models are holding the unconditional variance of εt constant with E(εt
2) 

= σ2 they allow its conditional variance to follow an AR process of its own with 

𝜀2 =  𝜁 + 𝛼1𝜀𝑡−1
2 + ⋯ + 𝛼𝑚𝜀𝑡−𝑚

2 + 𝜐𝑡 ,                                                (4.7) 

where 𝜐𝑡 is a new white noise process. Similar to ARMA and ARIMA models, the ARCH model 

can easily be extended to incorporate the effect of exogenous variables by including an 
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independent variable xt (or a vector of independent variables) on the right hand side of the 

equation (Note that despite the inclusion of exogenous variables these models typically are 

called ARCH models. Taken together the ARCHX model is defined by the following two 

equations: 

𝑦𝑡 = 𝛽𝑥𝑡 +  𝛼0 + 𝛼1𝑦𝑡−1 + 𝛼2𝑦𝑡−2+. . . . . . +𝛼𝑝𝑦𝑡−𝑝 + 𝜀𝑡,                    (4.8) 

and 

𝜀2 =  𝜁 + 𝛼1𝜀𝑡−1
2 + ⋯ + 𝛼𝑚𝜀𝑡−𝑚

2 + 𝜐𝑡.                                     (4.9) 

The term ARCHX can be found but is not frequently used. Again, the coefficient β is not the 

marginal effect that a change in x has on y. Since our major purpose is using ARCH models 

for prediction purposes we are not interested, however, in an interpretation of the found 

coefficients. ARCH models can be fitted to observed data using simple OLS estimator which 

are implemented in standard statistical software packages. In our case, we fit an ARCH 

model that extends an ARIMA (p,d,q) model by a first-order autoregressive process for the 

variance of the error term εt
2 using STATA 13’s arch command. 

4.4.3 Exogenous regressors in hydrological settings 

The application of time series models with exogenous regressors naturally requires the 

existence of at least one additional exogenous variable that (i) has been observed for the 

same time period and measured in the same intervals as the dependent variable and that (ii) 

is correlated to the dependent variable to be modeled. In hydrological settings, there are 

several natural candidates for variables that fulfill these requirements. 

First, a number of variables are typically collected at the same time by hydrological 

observation stations in a given research area. Most frequently, information with regard to 

discharge (Q) and precipitation (P) are collected at the same time and are therefore available 

for equal time periods and identical measurement intervals. Moreover, potential 

evapotranspiration (Epot) which can be calculated by measured data, such as, global radiation 

(Rglob), air humidity (Rf), day length (DJ), daily average air temperature (Tm) and daily average 

wind speed (wi), can be also considered as an exogenous regressor. There are many 

different ways to calculate Epot, such as Thornthwaite equation, Penman–Monteith equation  
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(Edwards & Warwick, 1984; Thornthwaite, 1948). According to Wendling (Wendling, Schellin, 

& Thomä, 1991), the formula is: 

𝐸𝑝𝑜𝑡 = 2.4
𝑇𝑚+22

𝑇𝑚+123
(

𝑅𝑔𝑙𝑜𝑏

410
+ (0.5 + 0.54𝑤𝑖) +

(100−𝑅𝑓)𝐷𝐼

905
)                         (4.10) 

Where, Tm is daily average air temperature in oC, Rglob is global radiation in Jcm-2, wi is wind 

speed ms-1, Rf is air humidity in %, DJ is day length in h. 

Typically, the majority of collected hydrological variables can be expected to correlate one 

with each other. In fact, most hydrological models are based on functional relations between 

these variables (Devia, Ganasri, & Dwarakish, 2015). If a time series of one these variables 

have to be modeled, the other variables can then be used as additional exogenous 

regressors that might help to improve the statistical models. Second, it is reasonable to 

assume that hydrological variables are characterized by spatial correlations. In particular in 

neighboring research areas hydrological variables can be expected to be determined by the 

same regional weather conditions with variations limited by the local micro-climate. For 

instance, it cannot be expected that the amount of precipitation in neighboring regions is 

highly correlated. As discharge is a function of precipitation, also measures of discharge 

should be spatially correlated to a certain extent. For this reason, observations of the 

dependent variables in neighboring regions can be used as exogenous regressors in time-

series models of hydrological variables. 

In this chapter, we exemplarily model the time series of discharge from a given gauge in 

order to examine how additional exogenous variables can improve the model fit. More 

importantly, we will also examine whether models including exogenous regressors achieve 

better imputation performance than univariate time series models. In this application, we 

will extend the univariate model of discharge by (i) precipitation and potential 

evapotranspiration as additional measures obtained from the same gauge and (ii) discharge 

data from two neighboring gauges.  
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4.5 Evaluation of time-series based imputation approaches 

accounting for exogenous regressors 

4.5.1 ARIMA and ARIMAX models 

We present estimation results from fitting alternative ARIMA and ARIMAX models to the 

complete data set described in section 4.2 before we then discuss the performance of these 

models when used to impute missing data. Table 4.2 presents the estimation results from 

four different specifications. Since coefficients of ARIMA models don’t have an intuitive 

interpretation we focus this brief discussion of the results to the Akaike’s Information 

Criterion (AIC) and Bayesian Information Criterion (BIC) which are also reported in Table 4.2. 

AIC and BIC are commonly used criteria for model selection as they allow comparing the 

quality of the different models regression models that have been estimated on the same 

data (Akaike, 2011; Bhat & Kumar, 2010). Note that lower values of AIC and BIC are 

preferable as they indicate better model fit. 

Column (1) of Table 4.2 presents the results from fitting a parsimoniously specified ARIMA 

(1,1,1) model to the time series Q_583700.5 Both the AR(1) as well as the MA(1) term are 

highly significant reflecting the serial correlation of the dependent variable. We gradually 

add exogenous regressors to the ARIMA model in Columns (2) to (4). First, we add 

precipitation (P) and potential evapotranspiration (E) from Boblitz (5838700) as regressors to 

the ARIMA model. Their coefficients are statistically highly significant and the inclusion of 

these variables lowers both AIC and BIC indicating an improvement in model fit. Next, we 

add the discharges (Q) observed in the neighboring gauges to the ARIMA model, see Column 

(3). Their coefficients are highly significant. Interestingly, the inclusion of Q from neighboring 

gauges improves AIC and BIC measure more than the inclusion of precipitation and potential 

evapotranspiration measures from the same gauge. We therefore conclude that information 

on Q from neighboring geographic areas has higher predictive power then precipitation and 

potential evapotranspiration from the same area. Finally, Column (4) presents the results 

from a comprehensive model that contains both information on precipitation and potential 

evapotranspiration from Boblitz as well as information on Q from neighboring gauges. In this 

                                                           
5 In unreported robustness tests we estimated alternative specifications with more complex lag structures. The 
results, however, didn’t improve significantly and hence we prefer this specification.  
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model, the coefficients of all exogenous regressors are highly significant. Moreover, AIC and 

BIC are minimized when compared to the respective values of the three preceding models. 

      ARIMA Regressions 

    
 

(1) (2) (3) (4) 

Variables D.Q_5838800 
   

0.05844** 0.05764** 

     
(0.00664) (0.00670) 

 
D.Q_5836990 

   
0.1112** 0.10931** 

     
(0.01201) (0.01197) 

 
D.P_5838700 

  
-0.00044** 

 
-0.00043** 

    
(0.00010) 

 
(0.00011) 

 
D.E_5838700 

  
-0.00349** 

 
-0.00311** 

    
(0.00089) 

 
(0.00089) 

 
Constant 

 
-0.00016 -0.00016 -0.00015 -0.00015 

   
(0.00015) (0.00015) (0.00015) (0.00016) 

 ARMA AR(1)  0.83054** 0.82999** 0.82247** 0.82166** 

   
(0.01047) (0.01049) (0.01084) (0.01099) 

 
MA(1) 

 
-0.96026** -0.96024** -1.04466** -0.95633** 

   
(0.00704) (0.00706) (0.00793) (0.00748) 

 Variance Constant 
 

0.0354** 0.03526** 0.03333** 0.03470** 

   
(0.00021) (0.00021) (0.00032) (0.00021) 

N 
  

3,286 3,286 3,286 3,286 

AIC 
  

-12,573.05 -12,594.13 -12,676.70 -12,696.08 

BIC     -12,548.66 -12,557.55 -12,640.11 -12,647.30 

Table 4. 2: Results from different ARIMA/ARIMAX models of Q_583700. Note: Standard errors in parentheses.      

* denotes coefficients significantly different from 0 on the 5% level. ** denotes coefficients significantly 

different from zero on the 1% level. 

As described in Section 4.3, we ran several simulations in order to evaluate the performance 

of these four ARIMA/ARIMAX models in an imputation context. Table 4.3 summarizes the 

results for this exercise. Note Table 4.3 reports the percentage changes in MSE resulting 

from the inclusion of different exogenous regressors relative to the basic ARIMA model of 

Column (1) in Table 4.2 for different shares of missing values. For instance, the entry in line 4 

and Column (3) of Table 4.3 represents the relative change in MSE if information on Q from 

the two neighboring gauges are included into the basic ARIMA model and 30% of the data 

set has been imputed. Table 4.4 has to be read in a similar way, but reports the relative 

change in NSE rather than MSE.  
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Share of  Relative change of MSE 

missing values 
 

(1) (2) (3) (4) 

5% 
 

- -0.98% -12.71% -13.45% 

10% 
 

- 0.67% -8.80% -8.51% 

20% 
 

- -0.10% -4.90% -4.90% 

30% 
 

- -0.34% -5.25% -5.52% 

40%   - -0.06% -6.08% -5.75% 

Table 4. 3: Relative changes of MSE by inclusion of exogeonous regressors relative to a baseline ARIMA model 

of Q_583700 without exogenous regressors. 

Table 4.3 indicates that the inclusion of exogenous regressors can improve the imputation 

performance of ARIMA models. First, the inclusion of hydrological information from the 

same gauge as the dependent variable such as potential evapotranspiration or precipitation 

does not lead to a large reduction of the MSE relative to a univariate ARIMA model. The 

relative changes of the MSE criterion all remain below 1% in Column (2) of Table 4.3. The 

inclusion of information on Q from neighboring gauges, however, improves the imputation 

performance dramatically. (Note that lower values of MSEs are preferable) Imputation 

results based on both models including Q_5836990 and Q_5838800 (Columns (3) and (4) of 

Table 4.3) are characterized by significantly lower MSE measures when compared to the 

results from a pure ARIMA model. In particular, for lower shares of missing data the 

inclusion of these exogenous regressors can reduce the MSE measures by 8% to 13% which 

is a significant improvement of imputation performance. 

Share of  Relative change of NSE 

missing values 
 

(1) (2) (3) (4) 

5% 
 

- 0.09% 1.06% 1.11% 

10% 
 

- -0.15% 1.88% 1.80% 

20% 
 

- 0.06% 3.02% 3.01% 

30% 
 

- 0.29% 4.81% 5.05% 

40% 
 

- 0.07% 8.82% 8.35% 

Table 4. 4: Relative changes of NSE by inclusion of exogeonous regressors relative to a baseline ARIMA model 

of Q_583700 without exogenous regressors. 

When applying the NSE measure to evaluate the performance of the different models in an 

imputation context, we find similar results (Note that higher NSEs are preferable.) The 

inclusion of information from the same gauge does not noticeable improve NSE values. 

However, and similar to the findings regarding MSEs, the inclusion of Q values from 



Chapter 4 

 

77 
 

neighboring gauges significantly improves the imputation performance of ARIMA based 

models. Interestingly, according to the NSE values the inclusion of exogenous regressors 

outperforms univariate models in particular for a higher share of missing values. This is not 

surprising, as univariate time-series models have to rely solely on time-dependencies in Q 

which becomes more challenging as the length of gaps to be filled increases in the share of 

missing values. ARIMAX models, on the other hand, can exploit the information of the 

exogenous regressors also in periods where Q is missing. 

4.5.2 ARCH and ARCHX models 

      ARCH Regressions 

    
 

(1) (2) (3) (4) 

Variables D.Q_5838800 
   

0.06011** 0.05987** 

     
(0.00520) (0.00519) 

 
D.Q_5836990 

   
0.09191** 0.08703** 

     
(0.01213) (0.01202) 

 
D.P_5838700 

  
-0.00044** 

 
-0.00043** 

    
(0.00008) 

 
(0.00009) 

 
D.E_5838700 

  
-0.0042** 

 
-0.0040** 

    
(0.00069) 

 
(0.00068) 

 
Constant 

 
-0.00045** -0.00046** -0.00045** -0.00047** 

   
(0.00014) (0.00013) (0.00013) (0.00013) 

ARIMA AR(1) 
 

0.79817** 0.79075** 0.78475** 0.77782** 

   
(0.01094) (0.01118) (0.01141) (0.01160) 

 
MA(1) 

 
-0.94777** -0.94469** -0.9432** -0.93979** 

   
(0.00728) (0.00750) (0.00755) (0.00775) 

ARCH AR(1) 
 

0.39426** 0.41825** 0.39626** 0.42252** 

   
(0.02448) (0.02552) (0.02436) (0.02565) 

Variance Constant 
 

0.00082** 0.00079** 0.00079** 0.00076** 

   
(0.00001) (0.00001) (0.00001) (0.00001) 

N 
  

3,286 3,286 3,286 3,286 

AIC 
  

-13,024.74 -13,067.53 -13,134.86 -13,174.95 

BIC     -12,994.26 -13,024.85 -13,092.18 -13,120.07 

Table 4. 5: Results from different ARCH/ARCHX models of Q_583700. Note: Standard errors in parentheses.      

* denotes coefficients significantly different from 0 on the 5% level. ** denotes coefficients significantly 

different from zero on the 1% level. 

Similar to Section 5.1, we present the results from fitting ARCH and ARCHX models to the 

complete data set before discussing the performance of these models in the context of 

imputation. Accordingly, Table 4.5 contains the estimation results from different ARCH 
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models with differing sets of exogenous variables along with AIC and BIC measure for the 

respective models.  

Table 4.6 reports the relative change in the observed MSE values for the different ARCHX 

models when compared to the univariate ARCH model without exogenous regressors 

(Column (1) of Table 4.6) for different shares of missing values. The results largely resemble 

the findings reported for the ARIMA models in Table 4.3. The inclusion of exogenous 

regressors generally reduces MSE values but most of the reduction is due to the inclusion of 

information on Q from neighboring gauges. Moreover, MSEs increases are more pronounced 

for lower shares of missing values when compared to situations with a high share of missing 

values.  

Share of  Relative change of MSE 

missing values 
 

(1) (2) (3) (4) 

5% 
 

- 0.00% -12.65% -12.41% 

10% 
 

- -0.48% -9.63% -8.77% 

20% 
 

- 0.16% -5.16% -4.90% 

30% 
 

- -0.43% -5.23% -5.70% 

40%   - -0.27% -5.75% -6.12% 

Table 4. 6: Relative changes of MSE by inclusion of exogeonous regressors relative to a baseline ARCH model of 

Q_583700 without exogenous regressors. 

Finally, Table 4.7 reports the relative improvements of NSE measures when the different 

models are applied to imputation. Again, the results reflect the previous findings with regard 

to ARIMA models presented in Table 4.4: The inclusion of exogenous regressors improves 

the NSE measures in particular in settings where a high share of observations of the 

dependent variable is missing.  

Share of  Relative change of NSE 

missing values 
 

(1) (2) (3) (4) 

5% 
 

- 0.01% 1.08% 1.06% 

10% 
 

- 0.11% 2.06% 1.88% 

20% 
 

- -0.12% 3.21% 3.05% 

30% 
 

- 0.39% 4.78% 5.23% 

40% 
 

- 0.39% 8.33% 8.85% 

Table 4. 7: Relative changes of NSE by inclusion of exogeonous regressors relative to a baseline ARCH model of 

Q_583700 without exogenous regressors. 
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4.5.3 Comparison of ARIMA/X and ARCH/X models 

The results presented in Section 4.5.2 indicate that the predictive power of both ARIMA and 

ARCH models can be significantly improved by the inclusion additional exogenous regressors. 

Comparing AIC and BIC values for identically specified ARIMA/X and ARCH/X models in 

Tables 4.2 and 4.5 reveals that ARCH/X models are generally better fitting the data as their 

AIC and BIC values are lower for specifications containing the same set of variables. As this 

comparison is based on fitting the models to the full data set, it does not necessarily allow us 

to draw conclusions regarding their predictive power in the context of the imputation of 

missing values. For this purpose, we compare the MSE and NSE measures obtained from 

ARIMA/X with those from ARCH/X models in Tables 4.8 and 4.9.  

Share of  MSE ARIMA/X vs. ARCH/X 

missing values 
 

(1) (2) (3) (4) 

5% 
 

-2.44% -3.46% -2.52% -3.67% 

10% 
 

-0.29% 0.85% 0.63% 0.00% 

20% 
 

-1.32% -1.59% -1.04% -1.32% 

30% 
 

0.07% 0.16% 0.05% 0.26% 

40% 
 

0.24% 0.45% -0.11% 0.63% 

Table 4. 8: Relative changes of MSE between different ARIMA/X and ARCH/X models (corresponding to Tables 

4.2 and 4.5) and shares of missing values. 

Table 4.8 reports the reports the relative difference as percentage value between ARIMA/X 

and ARCH/X models under similar conditions. For instance, the entry in Column (3) and line 4 

(0.05%) indicates, that imputations based on the ARIMAX model of Column (3) in Table 4.2 

lead to a MSE measure that is 0.05% higher than the MSE obtained from imputations based 

on the ARCHX model of Column (3) in Table 4.5 when 30% of the data is missing. It becomes 

apparent, that the difference in the imputation performance between ARIMA/X and ARCH/X 

models is negligible when applying the MSE criterion. The maximum difference is a 3.67% 

lower MSE achieved by ARIMAX model (4) compared to ARCHX model (4) when only 5% of 

the data is missing. For higher shares of missing values the differences become even smaller. 

Measuring predictive power using the NSE criterion yields a similar picture. The difference 

between imputations obtained from ARIMA/X and from ARCH/X models under comparable 

conditions is negligible. The differences of the observed NSE values are within -1% and 1% 

and do not suggest the superiority of one method over the other.  
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Share of  NSE ARIMA/X vs. ARCH/X 

missing values 
 

(1) (2) (3) (4) 

5% 
 

0.20% 0.28% 0.18% 0.25% 

10% 
 

0.07% -0.19% -0.11% -0.01% 

20% 
 

0.80% 0.99% 0.61% 0.77% 

30% 
 

-0.05% -0.15% -0.03% -0.23% 

40% 
 

-0.35% -0.66% 0.13% -0.85% 

Table 4. 9: Relative changes of NSE by inclusion of exogeonous regressors relative to a baseline ARCH model of 

Q_583700 without exogenous regressors. Note: Percentage values in Table reflect percentage change of 

observed NSE. 

4.6 Conclusion 

Missing data is common phenomenon in hydrological data (Elshorbagy et al., 2002). As a 

consequence, imputation methods receive an increasing attention. Due to the time-series 

nature of hydrological data, alternative time-series models have been applied to the 

imputation of missing values (Fung, 2006). Commonly used time-series methods typically are 

purely based on time-dependencies, such as autocorrelations, of a single (dependent) 

variable and do not further information that might be available. In this chapter, we 

examined how the inclusion of information beyond the time-series of the variable of interest 

itself can improve imputation results. We have done this for a particular class of time-series 

models that has been shown to perform well in hydrological settings before: ARIMA and 

ARCH models. Extensions of these models to incorporate additional exogenous regressors 

are readily available with ARIMAX and ARCHX models and can easily be implemented even 

for large datasets as they are included in advanced statistical software packages such as 

STATA or R.  

Our simulation-based evaluation of the ARIMAX and ARCHX models is based on discharge 

data that spans a period of 10 years. Our findings clearly indicate that an inclusion of 

additional exogenous regressors such as precipitation, potential evapotranspiration and 

discharge measures from neighboring research areas considerable –ARIMAX and ARCHX - 

improves the quality of imputation when compared to simple ARIMA and ARCH models. It is 

noteworthy that, the inclusion of measurements of the dependent variable (discharge) from 

neighboring catchments has a bigger effect on imputation quality when compared to (i) the 

inclusion of additional (other) regressors taken from the same catchment area and (ii) to 
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simple ARIMA and ARCH models. This finding implies that spatial correlations between 

discharge measures from adjacent catchments are more valuable in imputing missing data 

than additional information from the area under investigation. When comparing the 

performance of ARIMA/X to this of ARCH/X models in these settings, differences between 

these two model types, on the other hand, are negligible. This suggests a minor importance 

of heteroscedasticity in the error terms for imputation purposes in time-series models which 

include additional regressors. 

These results bear important implications for both scholars as well as practitioners alike that 

seek to approximate missing values by statistical imputation methods. While statistical time-

series models have been shown to perform comparably well in existing studies we have 

shown that their performance can be further enhanced by the inclusion of exogenous 

regressors. In particular including measures of the dependent variable from other 

catchments improved the results significantly. As the additional variables we used are 

typically readily available this approach can be implemented easily in many circumstances. 

Moreover, as our results indicate that the choice between ARIMA/X and ARCH/X is less 

important than the choice of additional regressors. Our study has limitations, however. In 

particular, the results derived here have been derived using data from a single research area. 

More comprehensive validation of our results using data from different settings therefore 

seems to be warranted. In particular, the observed pattern of improvements in imputation 

precision depending on the type of additional regressors warrants further research: Knowing 

which additional variables can boost imputation precision in a more general context will 

prove invaluable as a rule of thumb for practical work. The presented results can only be a 

first step towards such a rule of thumb. 
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5 Synthesis 

Complete time series data are a necessary precondition for most statistical approaches in 

hydrology, including the determination of the flow duration curve, autocorrelation function, 

spectrum analysis, extreme value analysis based on the generalized extreme value 

distribution of annual blocks, principal component analysis, etc (McKnight et al., 2007). 

However, missing data is a common problem in hydrological data (precipitation, discharge, 

head fluctuation, etc.) and poses a serious problem for many statistical approaches require 

complete data sources in hydrology such as missing data is often harmful beyond reducing 

statistical power (Elshorbagy et al., 2002; McKnight et al., 2007). For reasons of convenience, 

researchers often resort to simple solutions to deal with missing data such as simply 

discarding observations characterized by missing data or by replacing missing data with a 

‘naïve’ guess (such as the mean of all other observations). Despite their convenience, these 

solutions have severe statistical shortcomings.  

In chapter 2, various imputation methods available to the hydrological researchers have 

been reviewed, including arithmetic mean imputation, Principal Component Analysis (PCA), 

regression-based methods and multiple imputation methods. Principal component analysis 

(PCA) - based as well as regression-based imputation methods can improve the accuracy of 

missing value imputation and reduce statistical problems induced by naïve imputation 

approaches (I. Jolliffe, 2002). Nevertheless, the discussion argues that these methods neglect 

the time-series nature of hydrological data that often requires more flexible non-linear 

models. We therefore put an emphasis on time-series regressions approaches that exploit 

the time series nature of hydrological data. Auto Regressive Conditional Heteroscedasticity 

(ARCH) models which originate from finance and econometrics and Autoregressive 

Integrated Moving Average (ARIMA) models are discussed regarding the applicability to 

hydrological contexts here. We focused our attention on discussing econometric time-series 

methods as they explicitly model the particular statistical properties of hydrological time-

series (autocorrelation and heteroscedasticity) which are mostly neglected in algorithmic 

machine learning approaches. 

It needs to be stressed that there have been few studies concerning imputation of missing 

data in time series context in hydrology in general. Despite its focus on particular focus on 
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selected methods, our survey clearly shows that there are methodological advances driven 

by other fields of research that bear relevance for hydrology as well. According to our 

knowledge, the hydrological community paid little attention to the imputation ability of 

neither time-series models in general and ARCH models in particular nor other advanced 

imputation approaches developed for the analysis of economic and financial time series data. 

In chapter 3, the performances of imputation techniques which are widespread and easy to 

use but ignore the time series nature of hydrological data and imputation techniques 

exploiting their time series nature are compared. We created five time series of discharge 

data that exhibit different patterns of volatility by using the Hydrologiska Byråns 

Vattenbalansavdelning (HBV) model. From these reference time series we randomly deleted 

a given share of observations to be imputed by the different approaches whose performance 

has been evaluated by Mean Squared Error (MSE) and Nash Sutcliff efficiency (NSE) as 

performance measures. We find that econometric time series models such as Autoregressive 

Integrated Moving Average (ARIMA) and Autoregressive Conditional Heteroscedasticity 

(ARCH) model outperform alternative imputation approaches such as mean imputation or 

Ordinary Least Squares (OLS) based regression methods. These findings hold across different 

scenarios in which we vary both the share of missing values in the data as well as crucial 

characteristics of the time series such as seasonality or volatility. Our findings in this chapter 

reveal that imputation methods that neglect the time series nature of the underlying 

reference data perform significantly worse than imputation methods that exploit this feature 

of the data. Moreover, advanced time series methods such as ARCH significantly outperform 

relatively simple time series method such as the preceding value imputation.  

These findings have important implications for scholars and practitioners who work with 

datasets characterized by missing values for number of reasons: First, hydrological data is by

its definition time series data that is characterized by typical feature such as autocorrelation 

and seasonality . In the presence of these features, the results obtained from commonly 

used imputation methods such as the wide-spread mean-value imputation can be improved 

significantly. As our study clearly reveals, even a relatively simple imputation algorithm that 

exploits the time series nature of the data – the preceding value approach – performs 

significantly better.  
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Second, we were also able to demonstrate that advanced regression-based time series 

imputation method such as ARIMA and ARCH models yield better results than the relatively 

simple preceding value imputation. While the latter is easy to implement and still performs 

much better than mean-value or OLS imputation techniques, imputation results can be 

optimized by relying on advanced econometric techniques. This is true in particular in 

situations where a large fraction of observations is characterized by missing values. The 

larger the share of missing values the higher the performance advantage of advanced time 

series methods. The performance advantage of econometric time series methods is 

noteworthy as – as of now – their application in hydrological settings still is limited. 

According to chapter 3, univariate ARIMA and ARCH models have successfully been used for 

the imputation of missing value in hydrological data. Due to the time-series nature of 

hydrological data, alternative time-series models have been applied to the imputation of 

missing values (Fung, 2006). Commonly used time-series methods typically are purely based 

on time-dependencies, such as autocorrelations, of a single (dependent) variable and do not 

further information that might be available. So in chapter 4, we examined how the inclusion 

of information beyond the time-series of the variable of interest itself can improve 

imputation results. Extensions of these models to incorporate additional exogenous 

regressors are readily available with ARIMAX and ARCHX models. Using discharge data from 

Brandenburg in the northeast of Germany, we compare the imputation performance of 

univariate ARIMA and ARCH models which have been shown well in hydrological settings 

before with the performance of extended models – ARIMAX and ARCHX models. 

First, we impute missing values from ARIMA and ARCH models that exclusively rely on the 

observed time-series of discharge from Brandenburg that spans a period of 10 years. Second, 

we approximate missing values using extended ARIMAX and ARCHX models that include 

additional exogenous regressors such as precipitation, potential evapotranspiration or 

discharge measured from neighboring catchment areas. Finally, we compare the results 

from the different imputations in order to determine which approach yields the best results.  

Relying on Mean Squared Error (MSE) and Nash Sutcliff Efficiency (NSE) as performance 

measures, our findings clearly indicate that an inclusion of additional exogenous regressors –

ARIMAX and ARCHX models- improves the quality of imputation when compared to simple 

ARIMA and ARCH models. In particular, the inclusion of discharge measures of neighboring 



Chapter 5 

86 
 

catchments has a bigger effect on imputation quality when compared to simple ARIMA and 

ARCH models. When comparing the performance of ARIMA/X to this of ARCH/X models in 

these settings, differences are negligible.  

These results from chapter 4 bear important implications for both scholars as well as 

practitioners alike that seek to approximate missing values by statistical imputation methods. 

While statistical time-series models have been shown to perform comparably well in existing 

studies it was shown that their performance can be further enhanced by the inclusion of 

exogenous regressors. The additional variables we used are typically readily available and 

therefore this approach can be implemented easily. Moreover, as our results indicate, the 

choice between ARIMA/X and ARCH/X is less important than the choice of additional 

regressors.  

Despite they overall encouraging findings there are, however, some caveats to be 

mentioned. On the conceptual level, our results have been obtained using data from only 

one catchment area (Brandenburg) and the results might differ for data obtained from other 

catchments. More comprehensive validation of our results using data from different settings 

therefore seems to be warranted. 

We do not address the question of performance advantages of either of these advanced 

methods in an applied setting. However, we hope that our survey stimulates additional 

research into these methods and their applicability in hydrology. Whether and to what 

extent the advanced imputation methods presented here lead to more precise hydrological 

analyses itself (rather than the improvement of imputation quality) in the presence of 

incomplete datasets ultimately remains an empirical question. Future research can easily 

address this question in the context of simulation-based comparisons of different imputation 

methods within a well-defined hydrological application. 

Moreover, in this dissertation we focused on imputation methods that have a strong 

statistical foundation. Other fields of research such as computer and data sciences provide 

alternative methods with different methodological underpinnings that can be applied to 

data imputation. Most prominently, neural networks (or more precisely artificial neural 

networks) have been motivated by the recognition that the human brain processes 

information in a way that is fundamentally different from the typical digital computer is 
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frequently applied. As of today, there is little evidence, to what extent artificial neural 

networks or similar methods in their spirit can be applied to the imputation of missing data 

in hydrological settings. Our study is mute on this topic, and we defer the task of evaluating 

the performance of artificial neural networks in hydrological settings to future research. 
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