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Zusammenfassung

Diese Arbeit trägt zu einem besseren Verständnis assoziativen Lernens in der Honigbiene (Apis
mellifera) bei. Kapitel 2 und 3 dieser Doktorarbeit beinhalten eine statistische Datenanalyse
von individuellem Verhalten während klassischer Konditionierung des Proboscisstreckungsre-
flexes. Es wird gezeigt, dass individuelle Tiere die konditionierte Antwort im Verlauf der
Konditionierungsphase schnell und dauerhaft erlernen. Der Gedächtnisabruf in Individuen
gleicht einer stetigen Fortsetzung des während der Konditionierung gezeigten Verhaltens. Es
wurden keine Anhaltspunkte dafür gefunden, dass ein 24-Stundengedächtnis, welches durch
mehrere Konditionierungstrials induziert wurde, stärker oder spezifischer ist als ein durch
einen Trial induziertes Gedächtnis. Diese Ergebnisse erweitern das gegenwärtige Lern- und
Gedächtnismodell in der Honigbiene, welches auf Basis der Analyse von Gruppenmittelwerten
entwickelt wurde. Die Analyse von Verhaltensdaten liefert zudem die Grundlage für ein
erneuertes theoretisches Bild von assoziativem Lernen in der Honigbiene. In Kapitel 2 und 3
wird die Rescorla-Wagner Theorie erweitert und auf dem Niveau von Einzeltieren angewendet.
Kapitel 4 stellt ein computationales Modell vor, anhand dessen sich die Auswirkungen von
externen Stimuluseigenschaften, interner Enkodierung und Prinzipien neuronaler Computation
auf den zeitlichen Verlauf von Verhaltensänderungen während klassischer Konditionierung in
einer Vielzahl unterschiedlicher Lernaufgaben untersuchen lassen. Kapitel 4 liefert damit die
Grundlage für die Zusammenführung von Verhaltensdaten und neurophysiologischen Daten zu
assoziativem Lernen in der Honigbiene.

Summary

This research contributes to a better understanding of learning and memory in the honeybee
(Apis mellifera). Chapters 2 and 3 of this thesis include a statistical data analysis of individual
behavior during classical conditioning of the proboscis extension response. It is shown that
individual honeybees rapidly acquire a stable conditioned response during the conditioning
phase. Memory retention in individuals resembles a steady continuation of the behavior
expressed during training. No behavioral evidence is found for a more stable or specific
24-hour-memory after multiple-trial than after single-trial conditioning. These results extend
the current model on learning and memory in the honeybee, which has been established at
the group-average level of analysis. The behavioral data analysis also provides the basis for
a renewed theoretical account of associative learning in the honeybee. In chapters 2 and 3,
the Rescorla-Wagner theory of associative learning is extended and applied at the level of
individuals. Chapter 4 introduces a computational model for investigating the effect of external
stimulus properties, internal encoding schemes, and principles of neuronal computation on
the dynamics of behavioral plasticity during classical conditioning in a variety of different
learning tasks. By this, chapter 4 introduces a computational framework for the integration of
behavioral and neurophysiological data on associative learning in the honeybee.

Keywords:
behavioral neuroscience, classical conditioning, insect brain, honeybee, associative learning,
plasticity, neuronal computation, computational modeling
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Chapter 1

General introduction

1.1 Statement of the problem

The behavioral study of associative learning under controlled laboratory conditions in vertebrate

and invertebrate animal models has greatly advanced our understanding of the nervous system.

The long-term goal of this research lies in explaining behavior by neuronal functioning. However,

behavior only provides an indirect measure of the state of the brain. The question arises, what

and how can we learn about the brain when monitoring behavior?

To date, one problem lies in the poor correspondence between the found properties of

associative learning observed in behavior, and neuronal plasticity measured in the brain,

which hinders the attempt to explain the first by the latter (Gallistel and Matzel, 2012). For

example, the induction of long-term-potentiation, a well-studied form of synaptic plasticity,

requires several repetitions of a stimulation protocol (Feldman, 2012). On the other hand,

learning at the behavioral level is often complete within a single training trial (see Table 1

in Gallistel and Matzel, 2012, for a list of disparate properties of long-term-potentiation and

associative learning). To point to another problem, experiments on animal learning typically

make use of group-average performance scores in order to evaluate the temporal evolution

of learning across training trials. However, Gallistel et al. (2004) showed that group-average

performance did not capture the characteristics of individual learning for several vertebrate

learning paradigms. As a consequence, the search for the neuronal correlates of learning

in the individual brain may be misinformed. To address a third problem, Carandini (2012)

pointed out that explaining behavior by neuronal processes may be impossible without first

establishing an understanding of the computations performed by the neurons or neuronal

circuits under investigation. Carandini argues that “researchers of circuits and of behavior go

furthest when they speak a common language of computation”.

This thesis tries to refine and extend the current understanding of behavioral plasticity

during classical conditioning in the honeybee (Apis mellifera), which in turn may contribute

to a better understanding of neuronal plasticity in this animal model. Chapters 2 and 3 of this

1
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thesis present a detailed analysis of behavior in order to establish a reference for the dynamics

of associative learning in individual honeybees under various different training conditions.

Chapter 3 explains how the analysis of individual behavior can provide more informative

constraints for molecular hypotheses on memory consolidation. Finally, Chapter 4 follows the

suggestion by Carandini (2012) and implements a computational model of associative learning

which may build a bridge between findings on behavioral plasticity on one hand, and neuronal

processes in the honeybee brain on the other.

1.2 A canonical assay for associative learning: Classical

conditioning of the proboscis extension response in the

honeybee

Classical conditioning assays provide an invaluable tool for the investigation of learning and

memory, both at the behavioral and physiological level. Current research in the honeybee

now builds on more than fifty years of experience in training honeybees to learn contingencies

between sensory stimuli and gustatory reinforcement: classical conditioning of the proboscis

extension response (PER) was first introduced by Kimihisa Takeda in 1961 (Takeda, 1961), and

since then has undergone continuous improvement and alterations in scope (Giurfa and Sandoz,

2012). Today, PER conditioning in honeybees is a canonical paradigm enabling the parallel in-

vestigation of learning and of its neuronal correlates (Sandoz, 2011). Numerous comprehensive

reviews describe the details of the experimental procedure (Frost et al., 2012; Matsumoto et al.,

2012; Giovanni Galizia, 2011), and video material showing the training of harnessed honeybees

in the laboratory is available online (Felsenberg et al., 2011; www.jove.com/video/2282).

The most basic version of this Pavlovian conditioning paradigm makes use of only one

olfactory stimulus during training, which is referred to as absolute conditioning. In the

conditioning phase, individual harnessed honeybees receive several paired presentations of

an odorant (conditioned stimulus CS) and a sucrose reward (unconditioned stimulus US).

Typically, the CS onset precedes the US onset by a few seconds, such that both stimuli overlap

for 1 or 2 seconds. The US is delivered to the honeybee by the experimenter by first touching

the antennae with a toothpick (or needle) soaked in sucrose solution and than delivering a

few droplets of sugar solution to the proboscis (see for example Matsumoto et al., 2012). The

conditioned response (CR) of an individual, namely the proboscis extension or non-extension

prior to the onset of the US, is visually recorded by the experimenter in a binary format.

Measuring the average probability of a proboscis extension in a group of honeybees across

several conditioning trials results in the acquisition function, or learning curve. This curve

provides a measure of learning or behavioral plasticity during training at the group-average

level. Analogous, the group-average CR probability after training, for example at 24 hours,

provides a measure of memory retention (Menzel, 1990). The vast majority of behavioral
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studies on learning and memory in the honeybee has so far followed this methodology, which

is based on averaging binary conditioned responses. Some studies showed that more subtle

differences in learning can be found in non-binary measures of the proboscis extension. Smith

and Menzel (1989a,b) determined the duration and onset latency of the PER by high-speed

video recordings, as well as by measuring the electromyogram of the M17 muscle, which is one

of the muscles of the mouthparts involved in the proboscis extension. Absolute conditioning

experiments sometimes also compare response levels between the conditioned and a novel odor

in the retention test (Biergans et al., 2012; Matsumoto et al., 2012), which allows the separation

of non-associative components of the conditioning procedure from the purely associative ones

(Tully, 1984).

Although only one odorant is involved during the training phase, absolute conditioning

already spans a large experimental parameter space for possible investigations. The effect of

several parameters on learning and memory have already been described in the experimental

literature, such as the number of conditioning trials (Menzel, 1990; Menzel et al., 2001), the

inter-trial-interval between conditioning trials (Menzel et al., 2001), the inter-stimulus-interval

between CS and US (Szyszka et al., 2011), the concentration of the conditioned odorant

or the concentration of the sucrose solution employed as reinforcement (Bitterman et al.,

1983; Scheiner et al., 2005). Early work in the honeybee showed that honeybees rapidly

learn during absolute conditioning: typically 30%− 80% of all animals acquire the CR after

the first conditioning trial (Bitterman et al., 1983). To make the task more difficult for the

animal, researchers moved to non-absolute (or non-elemental) conditioning protocols from

experimental psychology (Rudy and Sutherland, 1992, 1995). Surprisingly, honeybees can cope

extremely well with these more demanding or “cognitive” learning tasks (Giurfa, 2003; Menzel

et al., 2007). For example, in a negative patterning protocol honeybees have to learn that

two olfactory stimuli presented together are not followed by reinforcement, whereas individual

stimuli alone are rewarded. Unlike other insect species such as the fruit fly (Young et al., 2011),

honeybees are able to learn this task (Deisig et al., 2001, 2002). Several other non-absolute

protocols have been tested in honeybees, such as positive patterning (Deisig et al., 2001),

learning of ternary and quaternary mixtures (Deisig et al., 2003), blocking (Gerber et al., 1998;

Guerrieri et al., 2005), and biconditional discrimination (Chandra and Smith, 1998; Hellstern

et al., 1998).

As outlined above, the study of learning and memory in the honeybee has mainly followed

the methodology of group-average learning curves and retention scores. Consequently, be-

havioral plasticity in absolute and non-absolute PER conditioning has been predominantly

described at the group-average level. However, as demonstrated by Gallistel et al. (2004) (see

above), behavioral plasticity at the group-average level does not necessarily coincide with

the learning dynamics in individuals. Several insightful features of individual learning may

be missed by only relying on the group-average perspective. Interestingly, for the honeybee,
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several sources of learning variability in individuals have already been described, such as behav-

ioral role (Scheiner et al., 1999; Scheiner and Malun, 2001; Scheiner et al., 2003), age (Behrends

and Scheiner, 2012), or genetic factors (Dukas, 2008; Liang et al., 2012). Scheiner et al. (2005)

showed that measuring the sensitivity to sucrose in individuals prior to conditioning provides

a possibility to uncover and calibrate inter-individual differences in learning performance. The

authors also noticed that this pre-assessment of individuals may have important consequences

for the correct comparison of group-average memory retention in different experimental groups.

However, to date only little emphasis has been put on a refinement of methodology in this

respect (Matsumoto et al., 2012).

Chapters 2 and 3 of this thesis provide a detailed analysis of inter-individual learning

differences during PER conditioning in absolute and non-absolute conditioning tasks. This

analysis shows how current hypotheses about the effect of training parameters on memory

retention can be refined. The analysis of Chapters 2 and 3 also provides the basis for the

modeling work presented in Chapter 4, which tries to explain the dynamics of behavioral

plasticity by principles of neuronal computation in the honeybee brain circuitry.

1.3 Computational modeling of associative learning in the

insect brain

The massive amount of data on behavioral plasticity in the honeybee obtained in absolute

and non-absolute conditioning experiments naturally calls for a comprehensive integration by

computational theories or models. Models of associative learning come in different levels of

biological detail. The ultimate goal of any model approach consists in a better understanding

of a specific aspect of a complex problem (Gluck and Myers, 2001), and hence more detailed

models cannot be per se considered superior to simpler ones (Dayan and Abbott, 2001). The

Rescorla-Wagner model (Rescorla and Wagner, 1972) is probably one of the most famous

“simple” models from associative learning theory. In its essence, this model assumes that

learning is driven by prediction errors, a hypothesis which has found widespread use in the

computational neuroscience community (Gluck and Myers, 2001). In the second and third

chapter of this thesis I will explain how this model can be fit to behavioral data in the honeybee,

while taking into account inter-individual differences in learning performance.

Descriptive models of the Rescorla-Wagner type make quantitative predictions for the

temporal evolution of learning as a function of stimulus-reward contingencies as defined by a

given conditioning protocol. This type of model has been successfully applied to conceptualize

behavioral findings on non-elemental learning in the honeybee (Deisig et al., 2003) and the fruit

fly (Young et al., 2011). While these models provide insights into the computations performed

by the brain at an abstract level, they do not touch the issue of how these computations may

be implemented in the biological system.
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Olfactory stimulus processing and associative learning in the honeybee has been charac-

terized by numerous physiological studies (Sandoz, 2011; see Table 2 in Himmelreich and

Grünewald, 2012, for a list of learning-related events in the honeybee brain). The entire

honeybee brain spans less than a cubic millimeter in volume and comprises about one million

neurons. Computational studies in insects typically concentrate on a subset of neurons from

the whole sensor-to-motor circuitry, which are believed to implement functions such as stimulus

detection and preprocessing (Schmuker et al., 2011; Assisi et al., 2012; Locatelli et al., 2012),

or high-order stimulus representation and associative learning (Smith et al., 2008; Huerta and

Nowotny, 2009; Wessnitzer et al., 2012; Smith et al., 2012; Arena et al., 2012; Huerta, 2013).

In the honeybee brain, olfactory stimuli are detected by olfactory receptor neurons in the

antennae (see Sandoz, 2011, for a comprehensive review on the honeybee olfactory pathway).

Olfactory receptor neurons project to 165 olfactory glomeruli in the antennal lobe, the primary

olfactory center in the honeybee brain. Each glomerulus is assumed to receive information

from only one receptor type in the ORNs. Odor identities and concentrations are represented

by spatio-temporal activation patterns in these glomeruli (Galizia et al., 1999). The Antennal

lobe circuit, which consists of local interneurons and projection neurons, implements several

stimulus preprocessing steps, such as gain control and lateral inhibition, which provide a better

discrimination of odor concentrations or identities, respectively (Schmuker et al., 2011; Assisi

et al., 2012). Refined olfactory information from this circuitry is relayed to higher brain centers

such as the mushroom body and the lateral horn by different types of projection neurons

(Sandoz, 2011). The intrinsic neurons of the mushroom body, the Kenyon cells, then converge

on a small number of extrinsic neurons, which in turn are believed to target pre-motor centers

that drive the extension of the proboscis.

The simplified sensor-to-motor circuit described here has been the focus of several compu-

tational studies (Huerta and Nowotny, 2009; Wessnitzer et al., 2012; Smith et al., 2012). From

a theoretical viewpoint, the architecture of the insect brain makes the mushroom body an

ideal location for a high-dimensional sparse representation of combinatorial activation patterns

from the antennal lobe. Moreover, this enables behaviorally relevant values of these high-order

representations to be easily learned by some type of reward-dependent synaptic plasticity at

the mushroom body output. This idea complies well with the current working hypotheses on

associative learning in biology, which locates the olfactory memory trace at the mushroom

body output (Heisenberg, 2003; Gerber et al., 2004). Importantly, appetitive reinforcement

during associative learning has been shown to be provided by a giant octopaminergic neuron

(Hammer, 1993), similar to dopaminergic neurons in the mammalian brain (Schultz, 2006).

Based on these ingredients, namely a sparse odor representation by Kenyon cell firing and a

teacher signal at the mushroom body output, several different theoretical accounts of synaptic

plasticity have been proposed in the insect brain. Non-spiking models make use of so-called

three-factor learning rules, in which weight changes depend on pre- and post-synaptic activity
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(Hebb, 1949), as well as on a teacher signal (Huerta and Nowotny, 2009; Smith et al., 2012).

Spiking implementations, on the other hand, make use of spike-timing-dependent plasticity

(Smith et al., 2008; Wessnitzer et al., 2012), as observed in the mammalian brain (Caporale

and Dan, 2008; Feldman, 2012).

Computational work in the honeybee cannot draw from direct experimental evidence of

spike-timing-dependent plasticity at the mushroom body output (in contrast to for example

work in the locust by Cassenaer and Laurent, 2012). In Chapter 4 of this thesis, I will

present a computational model of associative learning in the honeybee at a level of detail

comparable to the study by Huerta and Nowotny (2009), hence without an implementation of a

neuronal spiking mechanism. The model intends to explain the temporal evolution of learning

during absolute and non-absolute conditioning by a simple stimulus processing and associative

learning scheme along the sensor-to-motor pathway in the honeybee. In my model approach I

investigate how stimulus properties, mushroom body encoding, and neuronal computations

such as different associative learning rules or divisive normalization affect behavioral plasticity.

As suggested by Carandini (2012), this chosen level of model complexity may provide a bridge

between biological details on neuronal functioning on the one side and the emergent properties

of behavior on the other.



Chapter 2

Average group behavior does not

represent individual behavior in

classical conditioning of the

honeybee

Abstract

Conditioned behavior as observed during classical conditioning in a group of identically

treated animals provides insights into the physiological process of learning and memory

formation. However, several studies in vertebrates found a remarkable difference between

the group-average behavioral performance and the behavioral characteristics of individual

animals. Here, we analyzed a large number of data (1640 animals) on olfactory conditioning

in the honeybee (Apis mellifera). The data acquired during absolute and differential

classical conditioning differed with respect to the number of conditioning trials, the

conditioned odors, the inter-trial intervals, and the time of retention tests. We further

investigated data in which animals were tested for spontaneous recovery from extinction.

In all data sets we found that the gradually increasing group-average learning curve did

not adequately represent the behavior of individual animals. Individual behavior was

characterized by a rapid and stable acquisition of the conditioned response (CR), as well

as by a rapid and stable cessation of the CR following unrewarded stimuli. In addition,

we present and evaluate different model hypotheses on how honeybees form associations

during classical conditioning by implementing a gradual learning process on the one hand

and an all-or-none learning process on the other hand. In summary, our findings advise

that individual behavior should be recognized as a meaningful predictor for the internal

state of a honeybee - irrespective of the group-average behavioral performance.

7
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2.1 Introduction

Learning and memory formation in vertebrates and invertebrates have been studied on the

basis of a large range of classical and operant conditioning paradigms. Typically, the in-

terpretation of experimental results relies on performance measures that were derived by

averaging over behavioral observations from identically treated animals. However, several

studies have recognized the inadequacy of group-average measures to capture the character-

istics of individual behavior and, consequently, the learning- induced changes in individual

brains (Krechevsky, 1932; Restle, 1965; Hanson and Killeen, 1981; Estes, 2002; Brown and

Heathcote, 2003; Cousineau et al., 2003). Most notably, Gallistel et al. (2004) found that the

gradually increasing learning curve observed in many vertebrate learning paradigms reflected

an artifact of group averaging. The behavioral performance of individuals appeared to be

characterized by an abrupt and often step-like increase in the level of response.

To our knowledge and in contrast to the vertebrate literature (see Gallistel et al.,

2004), surprisingly little is known of a possibly heterogeneous expression of behavior for

the most frequently applied invertebrate conditioning paradigms. For the fruit fly (Drosophila

melanogaster) it appears to be common sense that the group-average behavioral measures

adequately represent the probabilistic expression of behavior in individuals - a notion that

goes back to an early study by Quinn et al. (1974). In the following, we focus on a classical

conditioning paradigm in the honeybee (Apis mellifera) - the reward-based olfactory condi-

tioning of the proboscis extension response (Takeda, 1961; Bitterman et al., 1983). In this

paradigm, a group of harnessed honeybees is individually trained by forward pairings of an

olfactory stimulus (CS) with a sucrose reward (US). The conditioned response (CR), namely,

the extension or nonextension of the proboscis at each of these conditioning trials, is typically

documented in a binary form. Additional characteristics of the proboscis extension can be

captured by using a high-speed video or by recording the electromyogram of the muscles

involved in the proboscis extension (Rehder, 1987; Smith and Menzel, 1989a,b). Importantly,

conditioning of the proboscis extension response allows one to simultaneously measure brain

activity by means of electrophysiology or calcium imaging (Giurfa, 2007; Menzel et al., 2007),

giving access to the neuronal correlates of learning and memory. The molecular mechanisms of

memory consolidation in the honeybee brain can be studied by combining classical conditioning

with in vivo pharmacological interventions or postmortem biochemical analysis (Stollhoff et

al., 2005; Eisenhardt, 2006; Schwärzel and Müller, 2006).

In the present study, we determine the behavioral characteristics of individual honeybees

during classical conditioning on the basis of a large collection of experimental data. Specif-

ically, we ask: (1) How well does the group-average behavioral performance represent the

behavioral performance of individuals during absolute conditioning, differential conditioning,

and extinction? (2) How do individual animals learn during absolute conditioning, and how

does this learning translate into behavior? The Results section is divided into two parts. In
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the first part, we answer the first question by means of an exploratory data analysis. In the

second part, we consider three different answers to the second question by evaluating the

eligibility of three different generative models. The implications of our findings for the analysis

and interpretation of behavioral and physiological data from the honeybee are discussed.
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2.2 Results

2.2.1 Experimental data

We analyzed data from a number of independent experiments that were conducted at the

Institute of Biology - Neurobiology of the Freie Universität Berlin between the years 1999

and 2009. None of the experiments were originally designed for the purpose of the present

study. We collected a total of 17 data sets comprising 1640 animals (see Table 2.1). The

animals in data sets 1-15 were trained by using an absolute classical conditioning protocol,

while the animals from the data sets 16 and 17 were differentially conditioned (see Materials

and Methods). The data sets differ with respect to the number of conditioning trials m, the

temporal inter- trial interval during acquisition (ITI), the time-point of the memory retention

test (T ), and the odor that was used as the conditioned stimulus (CS). A subset of animals

(n = 217) from data set 1 was subjected to an extinction protocol.

2.2.2 For absolute conditioning, the group CR probability does not

represent individual behavior

For each of the data sets 1-15 (absolute classical conditioning), we asked how well the group

CR probability P (xt = 1) in a given trial t represented the CR probability of subgroups of

animals. We compared the behavioral performances of two disjoint subgroups defined by their

response in the previous trial (xt−1 = 1 or xt−1 = 0). Figure 2.1 A shows an example of the

standard data analysis (see Materials and Methods) for the data set 10. While performing

this analysis for data sets 1-15 we found a remarkably uniform pattern during conditioning

and in the memory retention test (Fig. 2.1 B,C): Animals that responded in the previous trial

t− 1 always had a higher chance for responding in trial t than animals that did not respond

in trial t − 1. The differences between the subgroup CR probabilities P (xt = 1|xt−1 = 1)

and P (xt = 1|xt−1 = 0) were statistically significant (χ2 test, α = 0.05) in 39 out of 39 cases

during conditioning (Fig. 2.2 B), and in 15 out of 20 cases during memory retention (Fig. 2.2

C). For each of the 15 data sets we also computed the mean probabilities for the observations

(xt = 1|xt−1 = 0) and (xt = 1|xt−1 = 1) across all possible trials. Computing the average of

these mean probabilities across data sets 1-15 yielded (± SD): P (xt = 1|xt−1 = 1) = 0.98±0.05

and P (xt = 1|xt−1 = 0) = 0.43± 0.14.

2.2.3 Differential conditioning is consistent with absolute conditioning

We next asked whether the results obtained for absolute conditioning also applied to data

from differential conditioning experiments. For the data sets 16 and 17 we separately analyzed

the CS+ and CS- trials using the standard data analysis (see Materials and Methods). We

found that animals that responded to the CS+ (CS-) in the previous trial t− 1 (t′ − 1) had

a higher chance for responding to the CS+ (CS-) in trial t (t′) than animals that did not
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respond to the CS+ (CS-) in the previous trial (Fig. 2.2). Once animals responded to the

CS+, or once animals did not respond to the CS- anymore, the response probability remained

rather constant in the following trials. Thus, the group CR probability does not adequately

represent the behavioral characteristics of individual animals during differential conditioning.

2.2.4 The cessation of the CR is abrupt in individuals during extinction

A subset of animals (n = 217) from data set 1 was presented in five extinction trials 24 h after

conditioning (Fig. 2.3 A,B). After the extinction session, the animals were divided into five

groups, each of which was tested for spontaneous recovery from extinction at a different time

point (Fig. 2.3 C; see also Fig. 2.3 in the original study by Stollhoff et al., 2005). By using

the standard data analysis (see Materials and Methods) we asked whether the heterogeneous

expression of behavior observed during conditioning was also present during extinction and

subsequent memory retention. For all trials, we again found that animals that responded in

the previous trial t− 1 had a higher chance for responding in the trial t than animals that

did not respond in the previous trial (Fig. 2.3 A-C). The analysis also revealed that once

individual animals had ceased to respond during extinction (t = 4− 8), they had a high chance

of remaining nonresponding in subsequent extinction trials (Fig. 2.3 B). Hence, analogous to

our findings for the acquisition of a CR during conditioning, the cessation of the CR during

extinction is characterized by an abrupt rather than gradual change of CR probability in

individuals.

On the basis of our previous analysis, we hypothesized that the presence or absence of the

CR in the retention test (t = m+ 1) may serve as a binary indicator for the actual learning

success of individual animals. Consequently, showing a CR on this trial (t = 4) may indicate

that an associative memory has been induced by the conditioning procedure, while not showing

a CR on this trial may indicate that no association or only a poor association has been formed.

To test our hypothesis we divided the 217 animals into two disjoint subgroups that were

defined by their response on trial t = 4 (x4 = 1 and x4 = 0). As expected, our heuristic

selection criterion yielded a steady performance difference between the two subgroups during

conditioning (Fig. 2.3 D): the animals in the first subgroup (x4 = 1) had a higher response

probability than the animals in the second subgroup (x4 = 0). This performance difference

also persisted during extinction and memory retention (Fig. 2.3 E,F), which may provide

evidence for the heterogeneity of the 217 conditioned animals with respect to the associative

memories formed. We tested the differences of the two subgroups for statistical significance by

a χ2 test and found that the differences were always significant during acquisition (t = 2, 3)

and extinction (t = 5 − 8), but only significant once in the subgroups tested for memory

retention (25 h). It should be noted that the test power was much lower in the retention tests

because the group sizes were reduced by a factor of 4.
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2.2.5 The simple learning-curve model must be rejected

Given the typical asymptotic rise of the group CR probability in a classical conditioning

experiment, one may assume that the shape of the curve reflects a gradual increase of associative

strength AS(t) across trials in individuals. One may further assume that all animals are

identical with respect to this learning process and that individual animals express a CR at trial

t with probability PLCM1(xt = 1) = AS(t). We tested the eligibility of this model hypothesis,

termed the simple learning-curve model, on data sets 1-15 (see Fig. 2.4 A and Materials and

Methods for the full model description). While this model fit the group CR probabilities

very accurately (Fig. 2.6 A, below), it did not capture the CR probabilities at the level of

subgroups. As we expected from our data analysis in the previous sections, the empirical

subgroup probabilities P (xt = 1|xt−1 = 1) and P (xt = 1|xt−1 = 0) significantly deviated

(two-tailed binomial test, α = 0.05) from the model predictions in 89 out of 104 cases (Fig.

2.5 A).

2.2.6 The learning-curve model can be saved by two additional features

In this section we maintain the previous notion of a gradual increase of associative strength

in individuals across conditioning trials; however, we add the possibility that the rate of

learning may not be the same in all individuals. Furthermore, we use a simple performance

rule, effectively a threshold criterion, which maps the associative strength in individuals to

the CR probability (see Fig. 2.4 B and Materials and Methods for a full description of this

model). By fitting this extended learning-curve model to data sets 1-15 we found that it

provided a possible explanation for the observed behavioral sequences. The empirical subgroup

probabilities P (xt = 1|xt−1 = 1) and P (xt = 1|xt−1 = 0) deviated significantly from the model

predictions in only nine out of 104 cases (Fig. 2.5 B). We also noticed that the estimated

probability distributions were skewed to the highest learning-rate interval (see Fig. 2.7, below).

Computing an average probability distribution over data sets 1-9, we found that the highest

resolvable learning-rate interval is adopted by 48% of the animals, while the second, third, and

fourth highest intervals are adopted by 26%, 18%, and 8% of the animals, respectively. For

data sets 10-15, in which the lower learning-rate intervals were resolvable, we always found

another peak of the distribution at the respective lowest interval.

2.2.7 A two-state hidden Markov model captures the behavioral

sequences

Our data analysis revealed that once animals were responding in a given trial, they had a

very high probability of again responding in the next trial. We hypothesized that this type of

response behavior could be adequately captured by a hidden Markov model with two hidden

states, k = 1 and k = 2, and two possible observations, xt = 0 and xt = 1 (see Fig. 2.4 C
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and Materials and Methods for a full description of this model). Fitting the two-state hidden

Markov model to data sets 1-15, we found that the parameter estimation yielded highly similar

results for each of the data sets. Furthermore, for each data set the estimated parameters

did not depend on the chosen starting values. We report here their mean values averaged

over data sets 1-15 (±SD): P (k1 = 1) = 1.00, P (kt = 2|kt−1 = 1) = 0.43 ± 0.16, P (kt =

2|kt−1 = 2) = 0.96 ± 0.04, P (xt = 0|kt = 1) = 1.00 ± 0.01, P (xt = 1|kt = 2) = 0.94 ± 0.04.

These values express the following prototypic scenario: At t = 1 all animals are in the state

k = 1. Animals in this state have a very low probability for showing a CR and a moderate

probability for making a transition into the state k = 2. The second state is characterized by

a very high probability for showing a CR and a very high probability for remaining in this

state. As a consequence, once an individual animal has made a transition to the second state

k = 2, it will show a stable expression of the CR in the subsequent trials. As in the case of the

extended learning-curve model, we found that the hidden Markov model provided a possible

explanation for the observed behavioral sequences. The empirical subgroup probabilities

P (xt = 1|xt−1 = 1) and P (xt = 1|xt−1 = 0) only significantly deviated from the model

predictions in 11 out of 104 cases (Fig. 2.5 C).

2.2.8 Model comparison by cross-validation

The more complex an explanation, the better it can capture a given set of data. Simple

explanations, however, are often the best. In terms of complexity, the simple learning-curve

model is the simplest, comprising only two free parameters. In turn, the extended learning-

curve model is the most complex because it uses an unconstrained empirical probability

estimate for the learning-rate distribution. For a data set with L trials, the extended learning

model has L+ 1 free parameters. With four free parameters, the hidden Markov model lies

between the other two models in terms of complexity. By fitting the three models to data

sets 1-15 we found that the extended learning-curve model and the hidden Markov model

could capture the behavioral observations, while the simple learning-curve model could not

(Figs. 2.5, 2.6). However, this finding may result from their higher complexity rather than

from their higher explanatory power. To directly compare the eligibility of the three models,

we computed their log likelihoods by a cross-validation algorithm for each of the data sets

1-15 (see Materials and Methods). This procedure confirmed that the simple learning-curve

model had to be rejected, since it performed worse than each of the other two models in all

cases (see Table 2.2). We also found that the extended learning-curve model was more likely

than the hidden Markov model in 12 out of 15 cases.
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2.3 Discussion

The group CR probability is a poor estimate for the behavior of individual hon-

eybees Gallistel et al. (2004) analyzed several vertebrate learning paradigms for how well

the group-average performance measures represented the behavioral performance of individuals.

They found that the gradual and negatively accelerated increase seen at the population level

defining the empirical learning curve was an artifact of group averaging. Individual behavior

was characterized by an abrupt and often step-like change in the level of responding. Since at

each time point the population comprises two types of animals, those that have acquired the

CR, and those that have not, the investigators suggest describing the experimental data by

individual onset latencies rather than by group-average measures.

As we have shown, the case is very similar for classical conditioning of the proboscis

extension response in the honeybee. For both absolute and differential conditioning, we found

a very high probability that a bee would again extend its proboscis, given that it had done

so in the previous trial. This high probability clearly excludes the adequacy of using the

gradually increasing group CR probability to represent the response probability of individuals

during the training phase. Most importantly, we found that the heterogeneous expression of

behavior observed during the conditioning phase persisted during memory retention, which

indicates a heterogeneity in a group of identically treated animals with respect to long-term

memory formation. Analyzing data in which animals were tested for spontaneous recovery

from extinction provided additional evidence for this notion. Interestingly, we also observed

a rapid and stable change of the response probabilities when honeybees had to learn that

stimuli were not followed by a reward, as was the case for the unrewarded stimuli presentations

during differential conditioning and extinction. Thus, once individual animals did not respond

to an unrewarded stimulus in a given trial, they had a high probability of not responding

in subsequent trials. In summary, individual behavior is characterized by abrupt and stable

changes in response probabilities, contrary to the gradual changes in group CR probability

observed at the population level.

How representative is the mean in the fruit fly? Our results differ from the commonly

held notion of a homogeneous expression of conditioned behavior in the fruit fly, as first reported

in a study by Quinn et al. (1974). For a binary choice olfactory-conditioning paradigm, Quinn

et al. (1974) asked whether the group-average performance observed after conditioning arose

from some heterogeneity in the population, or whether it was due to a stochastic component

in the behavior of all of the flies. To answer this question, the investigators separated the flies

that made the correct choice from those that did not, and 24 h later retrained and retested

each group. Since the performance of both groups was the same, the investigators concluded

that the expression of behavior was probabilistic in each fly, and that there was no evidence

for an intelligent subset of the population. A recent study by Chabaud et al. (2010) made
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a more ambiguous observation when tracking the choice behavior of individual fruit flies

during memory retention. For two types of training protocols, the investigators found that

the expression of behavior was probabilistic during the test, because the choice of individual

flies at the end of the test was not determined by their first choice in the test. However, for a

third training protocol, the final memory score was determined by the first choice, yielding

a bipolar distribution of the individual memory scores. It remains to be more thoroughly

investigated whether serial correlations in the behavior of individuals during training, and

between training and testing as reported here, is a specific result for the honeybee or whether

it also applies to other invertebrates.

How do individual honeybees learn? For the honeybee, several experimental parameters

and conditions have been described as having a decisive effect on the strength, specificity, and

stability of associative memories by com- paring group-average CR probabilities in differently

treated groups (for the number of conditioning trials and intertrial inter- vals, see Bitterman

et al., 1983; Sandoz et al., 1995; Gerber et al., 1998; Menzel, 1999, 2001; for bee age or season

see Behrends and Scheiner, 2010; Hadar and Menzel, 2010; for US strength, see Menzel, 2001;

Scheiner et al., 2004). To pick the most basic experimental parameter, if one group A is

trained with more conditioning trials than another group B, this typically yields a higher

group CR probability in group A at the end of the conditioning phase, as well as in the

memory-retention test compared with group B. The classical interpretation of this canonical

observation is that more training yields stronger memories, implicitly assuming that each of

the two groups is rather homogenous with respect to learning and memory formation under

given experimental conditions. However, both of the extended learning-curve model and the

hidden Markov model are at odds with this line of reasoning.

According to the extended learning-curve model, the population is heterogeneous with

respect to learning rates (see Fig. 2.7). Consequently, in any trial t, the population will

comprise animals with associative strengths below threshold that do not show a CR, and

animals with associative strengths above threshold that show a CR with high probability.

Hence, the group CR probability reflects the ratio between the sizes of the two subsets of

animals at any trial t. If group A is trained with more trials than group B, then this results in

a higher group CR probability at the end of the conditioning phase as well as in the memory

retention test in group A, however, not because stronger memories have been induced in

individuals of group A, but simply because the ratio between the sizes of the two subsets

has been shifted to a larger value. To be more specific, the extended learning-curve model

assumes that animals with an associative strength above threshold increase their associative

strength with further conditioning trials, but this process does not contribute to the shift

of the observed ratio, nor is it visible in the individual behavioral sequences. To conclude

that associations in individuals have been strengthened, would at least require nonbinary

behavioral measures. For example, when recording the potentials of the M17 muscle involved
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in the proboscis extension response, Smith and Menzel (1989a,b) observed a gradual rise of

the muscle potentials and a gradual decrease of the response latencies with the number of

conditioning trials.

The hidden Markov model assumes all-or-none learning, which is that at each trial t,

a given animal has a certain success rate P (k = 2|k = 1) for learning a stimulus-reward

association in an all-or-none fashion. Whenever an association has been learned by an animal,

this association is highly stable across the remaining trials. According to this view, more

training trials increase the number of success opportunities for each animal and, consequently,

more training trials will increase the number of animals in the second state. At each trial t,

the group CR probability then simply reflects the ratio between the number of animals in

the naive state (k = 1) and in the learned state (k = 2); however, the group CR probability

does not contain any information about the state of an individual animal. (There are two

exceptions: when all animals occupy either the first or the second state). It should be noted

that in the hidden Markov model view, individual animals only need one successful trial to

establish a stable association. Some experimental support for this possibility comes from a

study that showed honeybees can form a stable and longlasting memory even after a single

conditioning trial (Sandoz et al., 1995). One can further hypothesize that the success rate

P (k = 2|k = 1) depends on a large number of experimental conditions, as well as on intrinsic

conditions of the respective animal such as hunger, motivation, hormonal status, health, or

age, while the probability for maintaining a formed association is possibly invariant to these

factors.

To summarize, the extended learning-curve model and the hidden Markov model represent

two alternative hypotheses for the dynamics of associative learning in the honeybee during

classical conditioning. Further experiments to test the various consequences of the two

hypotheses are underway.

Implications for data analysis Our findings advise that individual behavior should be

recognized as a meaningful predictor for the internal state of a honeybee - irrespective of the

group CR probability. In particular, this suggests that the analysis of parallel behavioral and

physiological recordings should be carried out at the level of individual animals. Several studies

have demonstrated how this can lead to a more informative analysis. For a rule-learning task in

rats, Durstewitz et al. (2010) found that neuronal activity recorded from the prefrontal cortex

was in tight temporal relation to behavioral performance shifts in individuals. For the honeybee,

two recent studies divided groups of identically treated animals into subgroups of so-called

learners and nonlearners on the basis of a heuristic behavioral selection criterion (Roussel

et al., 2010; Rath et al., 2011). Both studies then found differences in the simultaneously

recorded CA-imaging signals between the two subgroups. Here, we also suggest that behavioral

studies that use in vivo pharmacological interventions or post-mortem biochemical analysis

of honeybee brains should take into account individual behavior as a possibly discriminative
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factor.

Our analysis offers several possibilities to illustrate the heterogeneity in a given set of

behavioral data. Adopting the extended learning-curve model, the distribution of learning

rates across individuals can be empirically estimated and visualized. Adopting the hidden

Markov model, the transition and observation probabilities for the naive and the conditioned

state can be determined. Under a model-free perspective, conditional probabilities can be

computed as demonstrated in the exploratory data analysis part of this study. Commented

Matlab code for all analysis carried out here is available on request.
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2.4 Materials and methods

2.4.1 Absolute classical conditioning

The exact experimental procedure used during conditioning of the proboscis extension response

has been described elsewhere (Menzel, 2001; Stollhoff et al., 2005; Felsenberg et al., 2011).

During absolute classical conditioning (data sets 1-15), honeybees were exposed to m forward

pairings of the conditioned stimulus (CS, odor) with the unconditioned stimulus (US, sucrose).

The CS and US durations, as well as the CS-US overlaps slightly differed in the data sets (data

sets 1-13: 5 sec CS, 4 sec US, 2 sec CS-US overlap; data sets 14-15: 4 sec CS, 3 sec US, 1 sec

CS-US overlap). Since the CS onset preceded the US onset by a few seconds, the occurrence

of the proboscis extension during this time span was documented in a binary form as the CR.

For a certain trial t, we denote the presence (absence) of the CR with xt = 1(xt = 0). After

conditioning, memory retention was tested by exposing the bees to the CS alone at time T .

The animals from data sets 9-13 were tested two times at T = 1h and at T = 24h. In this

study we only included animals that (1) did not respond to the first CS during acquisition, (2)

survived the entire experiment, and (3) showed the proboscis extension response elicited by

sucrose feeding at the very end of the experiment. We made one exception to this rule: data

sets 14 and 15 comprise 63 and 64 animals that were conditioned, but only 29 and 23 animals

were tested at T = 94h.

2.4.2 Differential conditioning

In the differential conditioning paradigm (data sets 16 and 17) honeybees experienced two

different odors during conditioning, the first one being rewarded (CS+) and the second one

being unrewarded (CS-). Each data set comprised 12 conditioning trials (6 CS+ and 6 CS-

in alternating order, starting with CS+ , ITI = 14 min), as well as a retention test for both

odors at T = 1h and T = 24h. In the data set 16, 1-hexanal and 1-octanol were used as CS+

and CS-, respectively, while in the data set 17, the odor- reward contingencies were reversed.

The CS+ and CS- durations were 5 sec, the US duration was 4 sec, and the overlap between

the CS+ and the US was 2 sec.

2.4.3 Standard data analysis

Each data set was independently analyzed by the following standard procedure: In a given

trial t we distinguished between group CR probabilities and subgroup CR probabilities. To

compute the group CR probability P (xt = 1) we divided the number of bees that showed

a CR in trial t by the total number of bees N . Plotting P (xt = 1) against trial order t

results in the so-called learning curve (see, e.g., Figs. 2.1 A, 2.3 A). The subgroup probability

P (xt = 1|xt−1 = 1) is conditioned on the expression of the CR in trial t− 1. It was computed

by dividing the number of bees that showed a CR in both trials t and t− 1 by the number



Chapter 2 Page 19

of bees that showed a CR in trial t − 1. The subgroup probability P (xt = 1|xt−1 = 0) was

computed by dividing the number of bees that showed a CR in trial t but not in trial t− 1 by

the number of bees that did not show a CR in trial t − 1. The difference between the two

subgroup CR probabilities was tested for statistical significance by a χ2 test. The significance

level was set to 0.05.

We specify three amendments to this analysis: (1) For the experiments in which animals

were presented to two retention tests (data sets 9-13, 16, 17), the subgroup CR probabilities

in the tests were always conditioned on the response in the last conditioning trial (t = m).

(2) For the data sets 16 and 17 (differential conditioning), the analysis was separately used

for CS+ and CS- trials. We introduced an apostrophe in the respective terms to indicate CS-

trials. (3) For the data from the extinction experiment (a subset of 217 animals from data set

1) the analysis was used for trials t = 1− 8 without any changes. The subgroup probabilities

in the five retention tests were conditioned on the respective behavior in trial t = 8.

2.4.4 The simple learning-curve model

The simple learning-curve model (LCM1) hypothesizes that the gradual rise of the CR

probability P (xt = 1) observed at the population level reflects the gradual rise of associative

strength in individuals (see Fig. 2.4 A). Furthermore, all animals in a given population of

identically treated animals are assumed to be identical with respect to learning and behavioral

performance probabilities. The gradual increase of associative strength (AS) across trials is

defined by the learning-rate ε and the asymptotic value r. For each data set the two parameters

ε and r are computed by fitting the equation

AS(t) = r(1− exp(−ε(t− 1))) (2.1)

to the group CR probabilities P (xt = 1) on the range t = 1...m+1 by nonlinear regression. For

the data sets 9-13, in which animals were tested twice, the trial t = m+ 1 equaled the first test,

while the second test was discarded. (It should be noted that for estimating the parameters

of the other two models [see below] we also did not make use of the second test.) Finally,

the expression of behavior in each animal is assumed to be probabilistic, with probability

PLCM1(xt = 1) = AS(t) for expressing a CR, and probability PLCM1(xt = 1) = 1−AS(t) for

not expressing a CR, respectively. It should be noted that the equation for the associative

strength used here has an identical outcome as the Rescorla-Wagner delta rule for associative

learning (Rescorla and Wagner, 1972).

2.4.5 The extended learning-curve model

The extended learning-curve model (LCM2) extends the simple learning-curve model by the

following two features (see Fig. 2.4 B): First, learning rates can differ within a population
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of identically treated animals, which is described by a discrete probability distribution P (εi).

Second, for a given animal with learning-rate εi the probability for expressing or not expressing

a CR at a given trial t is defined by a simple threshold function:

PLCM2(xt = 1) =

{
0 for AS(t) < 0.5

K for AS(t) ≥ 0.5
and

PLCM2(xt = 0) = 1− PLCM2(xt = 1),

(2.2)

with

AS(t) = r(1− exp(−εi(t− 1))) (2.3)

Setting the threshold to 0.5 and the asymptotic value r to unity ensures an optimal dynamic

range for any possible distribution of learning rates. According to the extended learning-curve

model, different animals can have different associative strengths at a given trial t; however, the

behavioral performance rule (Eq. 2.2) is assumed to be the same for all animals: Animals with

an associative AS(t) < 0.5 will not show a CR at trial t, while animals with AS(t) ≥ 0.5 will

show a CR with probability K. The parameter K is a heuristic estimate and equals the mean

probability for making the observation (xt = 1|xt−1 = 1) across all possible trials and animals

in a data set. Given these model specifications, it follows that the probability distribution of

learning rates has to be estimated on the discrete learning-rate intervals:

[− ln(1−0.5)/L, − ln(1−0.5)/(L−1)[, [− ln(1−0.5)/(L−1), − ln(1−0.5)/(L−2)[, ..., [− ln(1−
0.5)/2, − ln(1− 0.5)/1[, [− ln(1− 0.5)/1,∞[, where L is the maximum number of trials in a

data set. (For example, for a data set with m conditioning trials and one test trial L equals

m+ 1.) Any two animals with learning rates from the same interval cannot be dissociated

because they will have equal probabilities for any binary behavioral sequence of length L.

The highest learning-rate interval contains all possible learning rates that would result in an

associative strength equal to or larger than the threshold of 0.5 in trial 2. The second highest

learning-rate interval contains all possible learning rates that would result in an associative

strength equal to or larger than the threshold in trial 3, and smaller than the threshold in

trial 2, and so forth. The lowest learning-rate interval contains all possible learning rates that

would result in an associative strength equal to or larger than threshold in trial L+ 1 and

smaller than the threshold in trial L. (The lower interval limit of the lowest interval was set

to − ln(1− 0.5)/L instead of zero in order to make the minimal resolution explicit.)

For estimating p(εi) we use a simple search and count algorithm. For each behavioral

sequence in a given data set we search for the most likely learning-rate interval. The probability

distribution p(εi) then equals the histogram of most likely counts for each interval, normalized

by the total number of animals in a data set.
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2.4.6 The two-state hidden Markov model

The two-state hidden Markov model hypothesizes that at each trial t an animal can occupy

one of two possible hidden states, k = 1 or k = 2 (see Bishop 2006 for a textbook account

of hidden Markov models). Each of the two states is characterized by two probabilities for

showing (xt = 1) or not showing (xt = 0) a CR, as well as by two probabilities for remaining

in the same state or making a transition to the respective other state (see Fig. 2.4 C).

In total, the model comprises 10 parameters: two a priori state probabilities P (k1), four

transition probabilities between states P (kt|kt−1), and four observation probabilities P (xt|kt)
for observing the behavioral outcome xt stemming from state kt. Five of these 10 parameters

are independent and were estimated by the Baum-Welch algorithm (Welch 2003) implemented

in the hidden Markov model toolbox by Kevin Murphy for Matlab (University of British

Columbia, Canada). Parameter estimation was insensitive to the choice of initial parameters

for the data sets 1-15.

2.4.7 Cross-validation

For each data set we computed the average log likelihood of the three models after 50 rounds

of cross-validation. At each round, the data was split into four sets of equal size, each of which

was then used once for testing and three times for training.

Data analysis and modeling was performed in Matlab (The MathWorks).
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2.5 Tables and table captions

Data set m ITI
(min)

T (h) N Odor Data origin

1 3 10 24 517 Carnation oil Stollhoff et al. (2005)
2 3 10 25 98 Carnation oil Stollhoff et al. (2005)
3 3 10 26 113 Carnation oil Stollhoff et al. (2005)
4 3 10 28 92 Carnation oil Stollhoff et al. (2005)
5 3 10 48 85 Carnation oil Stollhoff et al. (2005)
6 3 10 72 94 Carnation oil Stollhoff et al. (2005)
7 3 10 24 87 Carnation oil KB Gehring and D Eisen-

hardt,unpubl.
8 3 2 24 58 Carnation oil L Morgenstern, J Felsenberg,

and D Eisenhardt, unpubl.
9 3 2 24, 48 64 Carnation oil V Antemann, J Felsenberg,

and D Eisenhardt, unpubl.
10 4 30 1, 24 56 Isoamyl Acetate NK Chakroborty,unpubl.
11 4 30 1, 24 66 Isoamyl Acetate NK Chakroborty,unpubl.
12 5 30 1, 24 48 7-pentadecene NK Chakroborty,unpubl.
13 5 30 1, 24 37 6-pentadecene NK Chakroborty,unpubl.
14 12 0,5 96 63 Hexanol Menzel (2001)
15 12 15 96 64 Hexanol Menzel (2001)
16 6,6’ 15 1,24 48 Hexanol, octanol’ NK Chakroborty,unpubl.
17 6,6’ 15 1,24 50 Octanol, hexanol’ NK Chakroborty,unpubl.

Table 2.1 Data analyzed from absolute (data sets 1-15) and differential (data sets 16-17)
conditioning experiments. The 17 data sets differed with respect to several experimental
parameters. (m) Number of conditioning trials in the acquisition session, ITI inter-trial
interval in the acquisition session; (T ) time of the retention test; (N) number of animals in
each data set. For the data sets 16 and 17, the apostrophe indicates CS- trials. The data were
contributed by the individual co-investigators as indicated.
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Data set log(PLCM2) − log(PLCM1) log(PLCM2) − log(PHMM)

1 19.3 0.0
2 3.6 0.4
3 5.4 1.2
4 3.3 0.7
5 2.7 0.5
6 5.0 0.9
7 1.7 0.9
8 4.0 0.8
9 2.3 0.9
10 6.0 -0.2
11 6.3 0.3
12 12.6 1.9
13 14.6 3.4
14 14.0 -20.9
15 31.4 -17.8

Table 2.2 Differences between the mean log-likelihoods of the three models after 50 rounds
of fourfold cross-validation. (LCM1) Simple learning-curve model; (LCM2) extended learning-
curve model; (HMM) two-state hidden Markov model. The extended learning-curve model
was chosen as a reference point because it was the best model for 11 of the 15 data sets. The
extended learning-curve model performs better than the simple one in all 15 cases, and it also
performs better than the hidden Markov model in 11 out of 15 cases.
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2.6 Figures and figure captions

Figure 2.1 For data sets 1-15, the group CR probability is a poor estimate for individual
behavior during conditioning and in the memory retention tests. Animals that responded
in the previous trial t− 1 always showed a higher probability for responding in trial t than
animals that did not respond in the previous trial t− 1. (A) Group CR probabilities P (xt = 1)
and the two subgroup CR probabilities P (xt = 1|xt−1 = 1) and P (xt = 1|xt−1 = 0) for data
set 11. The data were analyzed by the standard data analysis (see Materials and Methods).
Black triangles indicate a significant difference between the two subgroup probabilities in the
respective trial (α = 0.05). Gray triangles indicate a nonsignificant difference. (B) Subgroup
CR probabilities P (xt = 1|xt−1 = 1) and P (xt = 1|xt−1 = 0) computed for all conditioning
trials and for all 15 data sets. For display, we subtracted the group CR probabilities from
the subgroup CR probabilities. (C) Subgroup CR probabilities during memory retention
conditioned on the outcome of the final conditioning trial computed for data sets 1-15. For
data sets 9-13, the asterisk indicates the second memory retention test (see Table 2.1).
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Figure 2.2 During differential conditioning, animals that responded to the CS+ (CS-) in the
previous trial t−1 (t′−1) showed a higher probability for responding to the CS+ (CS-) in trial
t (t′) than animals that did not respond to the CS+ (CS-) in the previous trial. The apostrophe
indicates CS- trials. (A) Group and subgroup probabilities during conditioning for data set
16. Behavioral responses in CS+ and CS- trials were independently analyzed by the standard
data analysis (see Materials and Methods). Black triangles indicate a significant difference
between subgroup probabilities (α = 0.05). Gray triangles indicate a nonsignificant difference.
(B) Animals from data set 16 were repeatedly tested for memory retention by presenting the
CS+ and the CS- at T = 1h and 24h. The subgroup probabilities were conditioned on the
response to the last CS+ (CS-) presentation during conditioning. (C,D) Same analysis as in A
and B, but for a different group of animals (data set 17), which was differentially conditioned
to the reversed odor-reward contingencies.
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Figure 2.3 A subset of animals (n = 217) from data set 1 was presented to five extinction
trials 24 h after conditioning (A,B). After extinction (t > 8), animals were divided into five
groups, each of which was tested for spontaneous recovery at a different time point (C). (A-C )
During acquisition, extinction, and the retention tests, animals that responded in the previous
trial t − 1 showed a higher probability for responding in trial t than animals that did not
respond in the previous trial. The standard data analysis was used without change from trial
t = 1...8 (see Material and Methods). The subgroup probabilities in the five retention tests
were conditioned on the response in trial t = 8. Black triangles indicate a significant difference
between subgroup probabilities (α = 0.05). Gray triangles indicate a nonsignificant difference.
(D-F) Group CR probabilities as in A, B, and C. The two dashed curves show the response
probabilities for the two disjoint subgroups defined by their behavior in trial t = 4. The
employed selection criterion (black circles) results in a steady performance difference between
the two subgroups of animals in all other trials.
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Figure 2.4 Three model hypotheses for the observed binary sequences of conditioned responses.
(A) The simple learning-curve model (LCM1) hypothesizes that the gradually increasing group
CR probability P (xt = 1) reflects the gradually increasing associative strength in individual
animals. All animals are the same and at a given trial t express the CR with probability
PLCM (xt = 1). (B) The extended learning-curve model (LCM2) assumes that individual
animals in a given group can differ with respect to their learning rates, which is described by
a discrete probability distribution P (εi). The probability for observing or not observing a CR
is described by a simple performance function that is the same for all animals of the group.
(C ) The hidden Markov model assumes that individual animals can be in one of two discrete
hidden states. At the beginning of the conditioning experiment all animals are in the naive or
unlearned state k = 1. At each conditioning trial, animals in this state have a certain success
rate P (k = 2|k = 1) for making a transition to the learned state k = 2. The probability
P (k = 2|k = 2) for remaining in the learned state is typically very high. The probability
P (x = 1|k = 2) for expressing a CR is high in the state k = 2, while the CR probability
P (x = 1|k = 1) is low in the state k = 1. (See Materials and Methods for a description of how
parameters are estimated for the three models.)
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Figure 2.5 Differences between the empirical subgroup’s CR probabilities and the respective
model estimations for data sets 1-15. The differences were tested for statistical significance
with a two-tailed binomial test. Black triangles denote statistical significance (α = 0.05).
Gray triangles denote no statistical significance. (A) The simple learning-curve model (LCM1)
cannot capture the experimental data at the level of subgroups. (B,C ) Both the extended
learning-curve model (LCM2, B) and the hidden Markov model (HMM, C) provide a good fit
for the experimental data.
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Figure 2.6 Illustration of the performance differences between the simple learning-curve
model (LCM1), the extended learning-curve model (LCM2), and the hidden Markov model
(HMM) for data set 1 (n = 517). (A) All three models can describe the behavioral data at the
population level. (B) The data set 1 contains eight different binary behavioral sequences. (Left
column) Absolute sequence frequencies as counted in the data. (Middle and right column)
Absolute sequence frequencies as computed by the three models rounded to integers. The
distribution of sequences in the experimental data is best captured by the hidden Markov
model (75 errors), followed by the extended learning-curve model (99 errors) and the simple
learning-curve model (252 errors). Errors are the sum over the absolute differences between
frequencies in the data and in the respective model prediction.
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Figure 2.7 Empirical probability distribution estimates P (εi) for data sets 1-15. The x-axis
has been scaled logarithmically. The values of εi on the x-axis always denote the lower
limits of the respective learning-rate intervals (see Materials and Methods, “The extended
learning-curve model”).



Chapter 3

Rapid learning dynamics in

individual honeybees during

classical conditioning

Abstract

Associative learning in insects has been studied extensively by a multitude of classical

conditioning protocols. However, so far little emphasis has been put on the dynamics of

learning in individuals. The honeybee is a well-established animal model for learning and

memory. We here studied associative learning as expressed in individual behavior based

on a large collection of data on olfactory classical conditioning (24 datsets, 3,005 animals).

We show that the group-averaged learning curve and memory retention score confound

three attributes of individual learning: the ability or inability to learn a given task, the

generally fast acquisition of a conditioned response in learners, and the high stability of

the conditioned response during consecutive training and memory retention trials. We

reassessed the prevailing view that more training results in better memories and found that

multiple-trial conditioning did not enhance 24h memory retention or discriminative power

over single-trial conditioning in individuals. Previous studies suggested that honeybees

vary in learning performance due to subjective differences in perceived reinforcement by

the sucrose reward. Following this hypothesis we explain how inter-individual differences in

learning can be accommodated within the Rescorla-Wagner theory of associative learning.

In both data-analysis and modeling we demonstrate how the conflict between population-

level and single-animal perspectives on learning and memory can be disentangled.

31
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3.1 Introduction

Classical conditioning relies on the assumption that changes in conditioned response (CR)

probability observed during training adequately represent neuronal plasticity (Dubnau et

al., 2003; Dudai, 2004) Commonly, behavioral plasticity is quantified by averaging over a

population of identically treated animals. However, average performance scores can obscure

the learning dynamics in individuals (Gallistel et al., 2004). Animals in a given sample can

vary considerably in several attributes of individual learning, such as in the ability to learn

a task, the speed of learning, the asymptotic performance (Dukas, 2008) and the latency

until a CR is initiated for the first time (Gallistel et al., 2004). To give a simple example:

A group of animals may only contain individuals exhibiting optimal performance as well as

individuals lacking the ability to learn a given task. Averaging will then misleadingly display

a moderate learning performance. To give a second example: Averaging over individuals that

exhibit rapid changes in response probability at different time-points during training will yield

a gradual learning curve at the population level, leading to the false assumption of a gradual

performance improvement over training trials in individuals (Gallistel et al., 2004).

Based on a large collection of classical conditioning data (Table 3.1) we here studied the

disparity between individual and group-average learning dynamics in the honeybee (Apis

mellifera). Classical conditioning of the proboscis extension response (PER) combined with

electrophysiology, biochemistry and pharmacology has proven to be a powerful tool for

studying the neuronal mechanisms of learning and memory in this animal model (Menzel,

2001; Schwärzel and Müller, 2006; Giurfa, 2007; Giurfa and Sandoz, 2012; Menzel, 2012).

Our study follows four objectives: (1) Previous analysis has shown that average behavior

does not represent individual behavior in the honeybee (Pamir et al., 2011). Alternative

to the prevailing use of group-average learning curves and retention scores we present a

novel parametric description for learning in individuals. (2) The current model of memory

phases in the honeybee distinguishes between single-trial and three-trial induced memories

(Menzel, 1999; Müller, 2012). Using a novel experimental protocol we tested the hypothesis

that differences in memory retention after single-trial and three-trial conditioning at the

group-average level are caused by a recruitment effect, that is three-trial conditioning may

allow more animals to acquire a conditioned response than single-trial conditioning. (3) We

analyzed the modulation of individual learning parameters under altered training conditions,

such as in differential conditioning, delay conditioning and massed conditioning trials. (4)

Within-group heterogeneity in learning is often neglected in theoretical models. For the

honeybee, several studies showed that factors such as satiation level, behavioral role or age

have an effect on individual sensitivity for sucrose, which in turn affects learning performance

(Friedrich et al., 2004; Scheiner et al., 1999; Behrends and Scheiner, 2012). We implemented

the hypothesis that honeybees vary in learning performance due to a differential evaluation of

the sucrose reward (Scheiner et al., 2005) within the Rescorla-Wagner model for associative
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learning (Rescorla and Wagner, 1972).
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3.2 Materials and methods

3.2.1 Classical conditioning of the proboscis extension response in the

honeybee

Olfactory classical conditioning of the proboscis extension response (PER) in the honeybee

has been described in detail (Bitterman et al., 1983; Scheiner et al., 2003; Stollhoff et al., 2005;

Szyszka et al., 2011; Felsenberg et al., 2011). Briefly, during the conditioning session, a group

of n animals was individually exposed to m forward pairings of the conditioned stimulus (CS,

odor) with the unconditioned stimulus (US, sucrose). Memory retention was measured by

presenting the CS alone at time point T (h) after conditioning. Only animals responding to

sucrose alone at the end of the experiment were included in the analysis. Typically the CS

duration was in the range of 3-5 seconds, the US duration equaled 3-5 seconds, and the CS-US

overlap equaled 1-2 seconds. The occurrence of the proboscis extension during the CS not

overlapping with the US was documented in a binary form as the conditioned response (CR).

For conditioning trial t we denote the absence or presence of the CR with xt = 0 or xt = 1

respectively. Table 3.1 provides an overview over the experimental data analyzed in this study.

Details for each dataset are provided in the following.

3.2.2 Experimental data

Absolute conditioning (datasets 1-12)

Datasets 1-12 comprise data on olfactory classical conditioning. Animals in data sets 1, 10,

11 and 12 were tested twice for memory retention (see Table 3.1). For consistency we do not

further regard the first test. CS duration, US duration and CS-US overlap equaled 5, 4 and 2

seconds respectively.

Trace and delay conditioning (dataset 13-15)

Dataset 13 comprises data on trace conditioning (compare with Figure 2Aii (trace) in Szyszka

et al., 2011). CS duration and US duration equaled 0.5 and 3 seconds respectively. The CS

and the US did not overlap. The gap between CS offset and US onset was 4.5 seconds. Dataset

14 comprises data on delay conditioning (compare with Figure 2Aii (delay) in Szyszka et al.,

2011). CS duration, US duration and CS-US overlap equaled 6, 3 and 1 seconds respectively.

Dataset 15 comprises data in which the time difference between the onset of the CS and the

US was systematically varied in 8 subgroups of animals (compare with Figure 2Bii in Szyszka

et al., 2011, CS-US onset differences equaled -6, 0, 1, 2, 3, 6, 10 and 15 seconds). CS durations

and US durations equaled 0.5 and 3 seconds respectively.



Chapter 3 Page 35

Olfactory and tactile conditioning (dataset 16, 17)

Dataset 16 and 17 comprise data on olfactory and tactile conditioning (compare with Table 1

in Scheiner et al., 2001a). Here we did not differentiate between high-strain and low-strain

bees. For tactile conditioning small rectangular copper plates with vertical grooves were used

as the CS (for details see Erber et al., 1998; Scheiner et al., 1999, 2001a) and sucrose was used

as US and reward. The US was the same in olfactory and tactile conditioning. Prior to the

conditioning session individuals were tested for their responsiveness to sucrose by touching

their antennae with 9 different sucrose concentrations (1, 1.6, 2.5, 4, 6.3, 10, 16, 25 and

40% (w/v)). Between the sucrose stimulations, antennae were touched with water to test for

sensitization effects. The inter-trial-interval was 2 minutes to avoid intrinsic sensitization. For

each animal the total number of proboscis responses to the first water and the nine sucrose

stimulations was counted. This sum is referred to as the gustatory response score (GRS) of a

bee (Scheiner et al., 2004). In the conditioning session, animals were trained by 10 pairings

of CS (citral, 2 µl added to airstream for 3 seconds before onset of the sucrose stimulation)

and US (0.2 µl 30% sucrose solution) at an inter-trial-interval of 5 minutes. 24 hours after

conditioning, bees were exposed to five unreinforced CS. In the present analysis we only

included the first CS only trial as a memory retention test and disregarded all subsequent

trials.

In each trial, the CS was given 3 seconds before the onset of the US at the antennae,

which was followed by a proboscis stimulation with sucrose. The CS-US overlap was 1s and

the US duration at the proboscis was 1s. It should be noted that for dataset 16 and 17

equal proportions of animals from different ranges of gustatory response scores were collected.

Consequently, neither of the two datasets is treated as an unbiased sample of animals in our

analysis.

Massed and spaced conditioning (datasets 18, 19)

Datasets 18 and 19 comprise animals from massed and spaced training conditions (Menzel et

al., 2001). Under massed training conditions inter-trial-intervals equaled 30 seconds, while

under spaced training conditions inter-trial-intervals equaled 15 minutes. We included all

animals that survived the conditioning session in our analysis (group sizes differ from Menzel

et al., 2001). CS duration, US duration and CS-US overlap equaled 4, 3 and 1 seconds,

respectively.

Differential conditioning (datasets 20)

Dataset 20 comprises data on differential classical conditioning where two groups of animals

were conditioned by 6 rewarded (CS+) and 6 unrewarded (CS-) odor presentations. The first

group received 1-hexanal and 1-octanol as CS+ and CS- respectively, while in the second
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group the odor reward contingencies were reversed. Conditioning started with a CS+ trial

and then alternated between CS- and CS+. The inter-trial-interval between identical stimuli

equaled 14 minutes. Animals were tested for memory retention and discrimination at 1 and

24 hours. CS+ (CS-) duration, US duration and CS-US overlap equaled 5, 4 and 2 seconds

respectively.

3.2.3 Experiment 1 (datasets 21, 22)

Experiment 1 was performed in the summer of 2011 with honeybee foragers (Apis mellifera)

from outside hives. During classical conditioning bees were trained to associate either 1-hexanol

or 1-nonanol (CS) with a 1 M sucrose reward (US). The odorants were diluted 1:100 in mineral

oil (Sigma-Aldrich, Deisenhofen, Germany), and were presented as 4-second long stimuli with

a custom-made olfactometer (Szyszka et al., 2011). US duration and CS-US overlap equaled 3

and 2 seconds respectively.

Experiment 1 was designed to obtain bees that fall into one of the following 4 subgroups:

0111, 01, 001, 0001. The binary notation equals the sequence of conditioned responses during

the conditioning session, referred to as the CR-history. The leftmost number equals the CR in

the first conditioning trial, while the rightmost number equals the CR in the last conditioning

trial. To obtain these subgroups at comparable sample sizes we chose the following experimental

protocol: In each experimental run, 16 bees were conditioned in parallel. Out of these bees,

four animals were conditioned four times without interfering with the conditioning process

(dataset 21). Another eight bees were conditioned until the first CS-evoked proboscis extension,

yielding the CR histories 01, 001, 0001 and 0000. The remaining 4 bees were conditioned 4

times in case they showed a proboscis extension in the second trial or until the first proboscis

extension otherwise. The 12 animals per plate conditioned by the latter two protocols are

referred to as dataset 22.

Memory retention was tested 24 hours after training. During the test, each bee was

stimulated with the CS and a new odorant which in addition allowed the calculation of a

discrimination index (DI, see below) by subtracting the response to a new odorant from

the response to the CS (Biergans et al., 2012; Matsumoto et al., 2012). This procedure

eliminates all non-associative effects of the conditioning procedure, such as sensitization or

pseudoconditioning, which would also increase animals responsiveness (Tully, 1984). 1-hexanol

and 1-nonanol were equally often used as CS and new odorant. For each behavioral response

we also recorded its duration to capture possible differences in memory strength (Smith and

Menzel, 1989a). Response duration was measured as time (in one-second intervals) between

the beginning of the proboscis extension until its first retraction below the imagined horizontal

line. In case of no response, no duration value was incorporated. The inter-trial interval was

10 minutes both in training and in the test.
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The discrimination index DI was computed as

DI =
1

N

N∑
i=1

xiCS − xinew (3.1)

where xi denotes the CR of animal i to the presentation of the CS and new odorant, and N

equals the number of animals in a given subgroup defined by the CR history. The discrimination

index based on the CR duration was computed as

DIdur =
1

N

N∑
i=1

diCS − dinew
max(diCS , d

i
new)

(3.2)

where di denotes the duration of the proboscis extension of animal i to the CS and new

odorant. Differences between durations of proboscis extensions were normalized individually

by the maximum duration of animal i to either stimuli.

3.2.4 Experiment 2 (datasets 23, 24)

Experiment 2 was performed in late autumn/winter 2011 with honeybee foragers (Apis

mellifera) from indoor hives. Animals either experienced two-trial conditioning (dataset 23)

or single-trial conditioning plus a CS presentation without sugar reward 10 minutes after

conditioning (dataset 24). This yielded the CR-history subgroups 01 and 0(1). The bracket

notation indicates the CR in the CS-only trial. Memory retention and discriminatory power

was measured as described in Experiment 1, and 1-hexanol and 1-nonanol were used equally

often as CS and new odorant. Animals of data sets 23 and 24 were conditioned in parallel.

3.2.5 Data analysis

An example raw dataset of binary CRs from absolute conditioning is depicted in Figure 3.1

A. The data was analyzed by the following standard procedure: The notation xt=1 (xt=0)

denotes the presence (absence) of the CR on trial t. The trial index t ranges from 1 to the

maximum number of trials, including the memory test. The average CR probability equals

the percentage of animals showing a CR in trial t. Average CR probabilities across trials were

fitted by the equation

p(CR) = a(1− e−b(t−1)) + c(t− 1) (3.3)

where the three free parameters a, b and c were estimated by least-squares minimization.

The point in trial time at which the regression curve assumes its maximum pmax is denoted

as tmax (Figure 3.1 B). Animals in each dataset were divided into disjunctive subgroups

defined by the trial tfirstCR at which animals showed their first CR (see Figure 3.1 C for a

histogram of first CRs). Animals that did not show a response in any of the trials constituted
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the subgroup of non-responders. For all occurring first CR indexes j, we computed the

conditional probabilities p(xt=1|tfirstCR=j) with t > j. Figure 3.1 B exemplifies this analysis

for p(xt = 1|tfirstCR = 2) and p(xt = 1|tfirstCR = 3). Taking the mean over all conditional

probabilities p(xt=1|tfirstCR=j) with t > j results in the CR stability of a subgroup defined

by tfirstCR = j. Taking the weighted mean of the CR stabilities of all subgroups results in

the overall CR stability of a given dataset. The CR stabilities of subgroups were weighted

according to subgroup sizes. The CR stability is a measure of how constantly individuals of a

given dataset responded once they had started to respond. From the definition follows that

neither bees that do not show a CR in any of the trials (non-responders), nor animals that

only respond in the last trial contribute to this parameter.

3.2.6 The classical Rescorla-Wagner model

The Rescorla-Wagner (RW) model assumes that associative learning during classical condi-

tioning is driven by prediction errors (Rescorla and Wagner, 1972; Sutton and Barto, 1990).

At each conditioning trial t the animal experiences a prediction error (λ − vt) defined as

the difference between the maximum associative strength λ supported by the unconditioned

stimulus (US), and the associative strength vt of the conditioned stimulus (CS) at the current

trial. In the following we refer to the parameter λ ∈ [0, 1] as the US effectiveness. After each

trial, the associative strength vt is updated according to the rule

vt+1 = vt + α(λ− vt) (3.4)

where α ∈ [0, 1] is the learning rate, defined in the original theory as the product of CS and

US salience (Rescorla and Wagner, 1972). The update rule leads to a gradual strengthening

of associative strength across conditioning trials (3.6 A). Here we assume a linear mapping

between associative strength and CR probability, hence the probability of animal i to show a

CR on trial t is pi(xt=1) = vt, and the probability for not showing a CR is pi(xt=0) = 1− vt.
In Equation 3.4 the value vt denotes the associative strength at precisely the time of trial t,

hence before the actual learning induced in this trial has become effective. This is analogous

to the experimental situation in which the behavior observed in trial t is taken as a monitor of

the associate strength induced in all previous trials.

The two free parameters α and λ were estimated by minimizing the negative log-likelihood

of the model on a given dataset by the L-BFGS-B algorithm for bound constrained optimization

(Byrd et al., 1994; Zhu et al., 1997). The bounds for α and λ were set to [0, 1]. The starting

value for α and λ were determined by a grid search on the range [0, 1] with a grid distance of

0.1.
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3.2.7 The Rescorla-Wagner model with heterogeneous learning

performance

In order to account for heterogeneous learning performance within a group of identically

treated animals we considered two simple extensions of the classical Rescorla-Wagner model:

(1) Different animals learn at equal rates, but vary in their experience of the same physical

US. (2) Different animals experience a common US effectiveness, but vary in their learning

rates. For the first case we described the heterogeneity in US effectiveness λ by estimating

a probability distribution P (λ): For each binary behavioral sequence in a given dataset, we

estimated the probability density function of this sequence over the range λ ∈ [0, 1]. The

normalized sum of these individual probability density functions then equals the probability

distribution P (λ). The most likely learning rate α ∈ [0, 1] for a given dataset was estimated

by minimizing the negative log-likelihood of the model by the L-BFGS-B algorithm for bound

constrained optimization (Byrd et al., 1994; Zhu et al., 1997). The bounds for α were set to

[0, 1] and the starting value for α was determined by a grid search on the range [0, 1] with a

grid distance of 0.1.

For the second model (heterogeneity in learning rate) the probability distribution P (α)

and the common US effectiveness λ were estimated fully analogous to the first model. We

computed the eligibility of the classical Rescorla-Wagner model and of the two extended

models by a four-fold cross-validation algorithm. Data analyses were carried out in Python.
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3.3 Results

3.3.1 The conditioned response is stable within individual honeybees

A typical dataset of binary behavioral responses (CR matrix) from absolute classical condi-

tioning is depicted in Figure 3.1 A, while Figure 3.1 B and C exemplify the performed data

analysis. We first asked how persistently individuals kept responding during conditioning

once they had shown their first response. Quantifying this behavioral feature by a parameter

termed CR stability (see Materials and Methods), we found that the mean CR stability across

all datasets with standard training conditions equaled (86.4± 6.5)% (datasets 1-12, 14, 19, 21).

Hence once individuals had elicited their first response, they kept responding in all subsequent

trials with a high probability (Figure 3.1, 3.2; Table 3.2).

Dissecting the CR stability further we found a trend that animals responding early had

a higher CR stability than animals responding later: The CR stability of animals showing

their first CR on the second trial equaled (89.7± 5.4)% (datasets 1-12, 14, 19, 21), for animals

showing their first CR on the third trial it equaled (83.4± 10.3)% (datasets 1-12, 14, 19, 21),

and for animals showing their first CR on the forth trial it equaled (66.3± 14.2)% (datasets

10, 12, 14, 19, 21). In individual datasets this overall decrease was seen in 11 out of 15 cases

between the second and third trial, and in four out of five cases between the third and fourth

trial.

3.3.2 54% of the animals start to respond after a single conditioning trial

Next we analyzed at which trial individuals typically showed their first CR. Histograms of first

CRs in trial time are displayed in Figure 3.1 C and in the lower panels of Figure 3.2. We found

that (54.1 ± 11.4)% of the animals which showed at least one response in any of the trials

started to respond in the second trial, i.e. after having experienced a single CS-US paring.

(datasets 1-12, 14, 19, 21). By the third trial (80.6 ± 8.7)% of all responding animals had

started to respond, and by the forth trial (95.9± 6.4)% had started to respond. On average,

the first CR was shown after 2.8± 0.4 trials (datasets 1-12, 14, 19, 21, Table 3.2). First CR

histograms of datasets with many conditioning trials (5 to 12) furthermore imply that there is

a population of animals that cannot be recruited even by prolonged conditioning (Figure 3.2

E-L, black histogram bars denote non-responders). The average percentage of non-responders

equaled (21.5± 7.6)% (datasets 10, 12, 14, 19, 21, only datasets in which the maximum of the

regression curve (Equation 3.3) was reached during conditioning were considered).

In some of the raw datasets animals that extended their probosces to the first CS presenta-

tions were not excluded by the experimenter (total N=96, datasets 3-12, 14). For consistency

we have so far not included these animals in our analysis. We asked if these spontaneous

responders (tfirstCR=1) reliably responded to the CS in subsequent trials. We found that this

was the case by computing the CR stability of these animals, which equaled (85.0± 12.8)%.
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We furthermore found that spontaneous responders discriminated well between the CS+ and

the CS- during differential conditioning as well as in a subsequent memory test (21 animals of

dataset 20, Figure 3.3).

3.3.3 The average learning curve reflects the recruitment of individual

honeybees with a stable CR

As described in the previous two sections, individual animals acquired a stable conditioned

response within the first few conditioning trials. However, a portion of animals did not respond

in any of the trials. How can these learning dynamics in individuals be reconciled with the

learning dynamics apparent at the population level, often referred to as the “learning curve”

or “acquisition function”? We described the learning dynamics at the population level by

two parameters: The maximum pmax of the regression curve (Equation 3.3) on the average

CR probabilities, typically referred to as the asymptote of learning, and the position of this

maximum tmax in trial time (Materials and Methods, this analysis is exemplified in Figure

3.1 B). We found that tmax reflected a saturation in the recruitment of honeybees showing a

stable CR. By this time-point, (91.3± 5.2)% of the animals that showed at least one CR in

any of the trials had started to respond (datasets 10, 12, 14, 19, 21, only datasets in which

the maximum was reached during conditioning were considered).

The value of pmax reflected two behavioral characteristics at the level of individuals, the

proportion of non-responding animals (Nnon−responders/N) and the CR stability. We found

that the following rule of thumb

pmax ≈ CRstability (1−Nnon−responders/N). (3.5)

holds for all datasets with only a small error of (0.8± 1.8)% (datasets 10-12, 14, 16, 19, 21).

This relation illustrates that the parameter pmax does not equal a performance asymptote

of individual learning, instead it represents the percentage of animals having acquired a CR

during conditioning, modulated by the CRstability of these animals.

The same finding applies to the memory retention test. The group-average CR probability

in the retention test did not represent memory retention in individual honeybees. For animals

that showed at least one CR in any of the conditioning trials the CR probability in the

retention test equaled (72.0± 6.7)% (datasets 10, 11, 12, 14, 19*, 21. Only datasets in which

the maximum pmax was assumed during conditioning were taken into account. Dataset 19*

consisted of a subgroup of animals from dataset 19 that survived until the retention test at

72h). However, memory retention in animals that did never respond during conditioning

equaled only (24.2± 13.7)%.
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3.3.4 24h memory retention and discriminatory power did not differ for

multiple-trial and single-trial conditioning

How does the number of conditioning trials affect the stability or strength of the induced

memory? The prevailing hypothesis states that three-trial conditioning induces a stable

memory, expressed in a high CR probability 24h after training, whereas single-trial conditioning

induces a weaker memory with a low 24h retention probability (Menzel, 1990, Fig. 9.8; Müller,

2012, Fig. 1; Menzel, 2012, Fig. 2).We asked whether the commonly found difference between

group-average retention probability after three-trial and single-trial conditioning indeed reflects

enhanced memory retention in individuals after more training, or whether it actually reflects

a recruitment effect. The term recruitment effect refers to the hypotheses that three-trial

conditioning may allow more animals to acquire a stable CR during conditioning, whereas

single-trial conditioning may allow fewer animals to acquire a stable CR.

In order to study the effect of single-trial and multiple-trial conditioning on 24h memory

retention and discriminatory power in individuals we carried out two experiments (Experiments

1 and 2, see Materials and Methods). We found that memory retention after four-trial

conditioning in individuals with a CR-history of 0111 did not significantly differ from memory

retention after two-trial conditioning (CR-history 01) (Figure 3.4 Ai). The CR-history denotes

the sequence of CRs during conditioning with the symbols 0 (no response) and 1 (response).

The leftmost symbol represents the outcome of the first conditioning trial and the rightmost

symbol represents the outcome of the last conditioning trial. In addition we found that memory

retention after two-trial conditioning (CR-history 01) did not significantly differ from memory

retention after single-trial conditioning (CR-history 0(1)) (Figure 3.4 Bi, Bii). A CR-history

of 0(1) denotes animals that experienced one CS-US pairing in the first trial, and extended

their proboscis to an unrewarded CS in the second trial of the training phase.

We obtained the same result when looking at the discriminatory power of the induced 24h

memories (Figure 3.4 Bii): The discrimination index (Equation 3.1) did not differ significantly

between four-trial conditioning (CR-history 0111) and two-trial conditioning (CR-history 01),

nor between two-trial (CR-history 01) and single-trial conditioning (CR-history 0(1)). Hence,

for honeybees that responded after the first conditioning trial a single CS-US pairing was

sufficient to induce a stable and odor-specific 24h memory.

We also analyzed graded measures for 24h memory retention and discrimination based on

proboscis extension durations. These measures overall confirmed our previous results (Figure

3.4 Aiii, iv and Figure 3.4 Biv). However, we found a significantly shorter proboscis extension

duration to the CS after single-trial conditioning than after two-trial conditioning (Figure 3.4

Biii).
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3.3.5 Honeybees responding early show higher 24h memory retention

than those responding later

We asked whether the time-point during conditioning at which individual honeybees acquired

the CR would have any effect on 24h memory retention and discriminatory power. In

particular, we wanted to know whether associative learning during classical conditioning

shares the dynamics of an Aha! effect-like learning process, referring to the hypothesis that

animals may comprehend the causality between the CS and the US at a certain time-point,

and as a consequence reliably respond to the CS in subsequent trials. Importantly, in the

strict sense, this implies equal CR stabilities across animals with different first CR latencies.

This hypothesis was formalized by a two-state hidden Markov model in a previous study

(Pamir et al., 2011). Here, we explicitly compared memory retention and discrimination in

animals that did not receive further training after their first CR during conditioning, assuming

that the first CR indicates that an individual has switched from the näıve to the learned

state (Experiment 1, Material and Methods). Both in binary and graded measures we found

that animals responding early (CR-history 01) showed higher memory retention than those

responding later (CR-history 001 and 0001) (Figure 3.4 Ci, iii). At the first glance, this finding

argues against the Aha! effect hypothesis. However, we found no significant differences between

memory’s discriminatory power in animals responding early and those responding later (Figure

3.4 Cii, iv). The discriminatory power captures the pure associative effect of the conditioning

procedure, devoid of non-associative effects such as sensitization (Tully, 1984). Together, these

results indicate that early responders have a higher general response probability, while the

truly associative component of learning is compatible with the dynamics of an Aha! effect-like

learning process.

3.3.6 The effect of different training conditions on individual learning

dynamics

We further asked how individual learning dynamics were affected by altered training condi-

tions such as in trace conditioning, conditioning with massed training trials and differential

conditioning.

In trace conditioning animals experienced a 4.5-second long stimulus-free gap between

the CS and the US (dataset 13), whereas animals in the control group (delay conditioning)

experienced a 1-second overlap between the CS and the US (dataset 14,). At the popula-

tion level, this resulted in a lowered maximum of the regression curve pmax during trace

conditioning (Figure 3.2 G, H). We asked whether in this more difficult learning task the

decrease was observed because individuals responded with lower probability to the CS, because

fewer animals acquired a response at all, or because of a combination of both factors. We

found that both a decreased CR stability and an increase in the number of non-responders

were responsible for the decrease of pmax (Table 3.2, dataset 13, 14). The same trend was
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observable in 6 subgroups of dataset 15, in which the delay between the CS and US onset was

systematically varied between 1 and 15 seconds (Table 3.2). On average animals started to

respond earlier during delay conditioning compared to trace conditioning (Table 3.2, dataset

13, 14).

Comparing massed and spaced training conditions, we observed that massed trials at an

inter-trial interval of 30 seconds (dataset 18, Figure 3.2 K) resulted in a decrease of pmax

as compared to the control group with spaced trials at an inter-trial interval of 15 minutes

(dataset 19, Figure 3.2 L). We again found that this decrease resulted from a decrease of

CR stability in individuals as well as from a higher percentage of non-responding animals.

Under massed conditioning trials animals responding early (tfirstCR=2, 3) initially had high

CR probability in subsequent trials but later on their CR probabilities were lowered, which

may indicate a stimulus satiation effect.

Analyzing data from differential conditioning we found that the alternating presentation of

unrewarded stimuli (CS-) during conditioning had no effect on the rapid and stable acquisition

of a CR to the CS+ (dataset 20 Table 3.2, Figure 3.3).

3.3.7 Sucrose responsiveness correlates with learning performance

Our analysis showed that equally treated honeybees varied substantially in their learning

performances both during simple absolute conditioning and more difficult conditioning tasks

such as trace and differential conditioning. What was the reason for these learning differences

across individuals? Several studies demonstrated that the responsiveness to sucrose correlates

with learning performance in individual harnessed honeybees (Scheiner et al., 1999, 2001a,b,

2003, 2004, 2005; Behrends and Scheiner, 2012). We here reanalyzed data on olfactory and

tactile conditioning in which individual responsiveness to sucrose of bees was determined prior

to the conditioning phase (dataset 16, 17, see Materials and Methods). For both datasets

we sorted animals into subgroups of equal size defined by 4 ranges of individual gustatory

response scores (GRS). Subgroups with higher GRS reached higher asymptotes of average CR

probability than subgroups with lower sucrose responsiveness (Figure 3.5 A, C, compare with

Fig. 1, 2 in Scheiner et al. (2001a) in which learning performance was measured by acquisition

scores). At the level of individuals we find that animals with higher sucrose responsiveness

respond more persistently to the CS than animals with lower sucrose responsiveness (dataset

16, 17, Table 3.2). We also found that the percentage of non-responding animals was inversely

correlated to the GRS (dataset 16, 17, Table 3.2, Figure 3.5 B, D). Both for olfactory and tactile

conditioning we found that all animals started to respond within the first few conditioning

trials (Figure 3.5 B, D), consistent with our previous results.



Chapter 3 Page 45

3.3.8 A heterogeneous Rescorla-Wagner model captures the learning

dynamics of honeybees

The Rescorla-Wagner model (Rescorla and Wagner, 1972) provides a simple and yet influential

theoretical account of associative learning during classical conditioning. Applying this theory

in a straightforward way to any of our datasets from absolute conditioning allows us to estimate

two parameters: the learning rate α and the US effectiveness λ (Materials and Methods,

Equation 3.4). However, given the substantial degree of heterogeneity in learning performance,

these two group-average parameters provided an invalid description of associative learning

within the population. Formally this can be shown by cross-validating the classical form of the

Rescorla-Wagner model against extended versions that are able to account for heterogeneity

in learning performance (Table 3.3).

In order to make the Rescorla-Wagner theory applicable to our type of data we implemented

a simple extension of the model. Following the hypothesis by Scheiner et al. (2005) and our

analysis shown in Figure 3.5 we assumed that different animals varied in their evaluation of the

same physical sucrose reward, and as a consequence differed in their learning performances. We

expressed the heterogeneity in US effectiveness λ by a probability distribution P (λ) (Materials

and Methods). In our model, the parameter λ captures several factors in an unspecified way:

physical US properties such as concentration, duration, and temporal relationship to the

CS (Sutton and Barto 1990); but also the subjective evaluation of these physical properties

by an individual. Since we observed that animals always started to respond early during

conditioning we further assumed that animals in a given dataset did not differ drastically

in their speed of learning, which was expressed by a common learning rate α. Fitting the

extended Rescorla-Wagner model to data that was recorded under standard training conditions

we typically found a bimodal shape of the distribution P (λ) (Figure 3.6 B). The first peak at

λ = 0 represented non-responding animals while the second peak at λ = 1 represented animals

that started to respond in the second trial and kept responding in all subsequent trials.

Under changed training conditions we found that probability distributions were tilted

towards the first peak (see Figure 3.6 C for trace vs. delay conditioning and Figure 3.6 D for

massed vs. spaced conditioning). For a given animal the US effectiveness λ decreased when

the time between the CS and US onset was increased (trace conditioning), but also when

the US was presented at shorter inter-trial intervals (massed conditioning). The estimated

probability distributions P (λ) replicated our previous data analyses showing a decrease of CR

stability on the one hand and an increase of the percentage of non-responders on the other

hand.

Originally, the Rescorla-Wagner model was proposed as a model that could explain various

behavioral phenomena observed during the conditioning phase (Rescorla and Wagner, 1972).

In the case of our data, where the CR in the test phase resembles a steady continuation of the

behavior expressed during training, the extended Rescorla-Wagner model can also be employed
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to explain memory retention in individuals as observed in Experiment 1 and 2. Given a high

learning rate of α = 0.94 (as in dataset 21 of Experiment 1), animals with λ close to unity

reach high values of associative strength after only a single conditioning trial (Figure 3.6 A).

Hence the observation of an individual extending its proboscis to the second rewarded or

unrewarded CS presentation already indicates a high and near asymptotic associative strength

in that animal, irrespective of further training. This matches well with our observations in

Experiment 1 and 2, where we observed that both 01 and 0111 subgroups and 0(1) and 01

subgroups showed high retention probabilities.

Finally, the extended model captured the general trend that animals responding later

expressed lower CR stabilities than those responding earlier, which was observed both when

comparing different data sets from absolute conditioning as well as in Experiment 1 (Figure

3.4 Ci). The observation of a first CR on the third or fourth trial is more likely to be emitted

by an animal with a smaller value of λ, as compared to the observation of a first CR on the

second trial which is more likely to be emitted by an animal with a value of λ close to unity.
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3.4 Discussion

Group-average learning curves confound three parameters of individual learning in the honeybee:

the ability to learn a task (as indirectly observed in the percentage of non-responders), the

latency in trial time until the first response is initiated, and the stability of subsequent

responses. Learning curves implied that honeybees required at least three conditioning trials to

reach asymptotic levels of responding, however these population dynamics were not supported

at the individual level. The majority of animals that showed any response at all already

extended their probosces in the second trial, i.e. after the experience of a single CS-US

pairing. Once having responded for the first time, honeybees continued to respond with a

high probability during training as well as in the retention test, irrespective of the number

of experienced conditioning trials. In summary, three conclusions can be drawn: (1) The

gradual rise of the group-average learning during the first few trials reflects the recruitment of

individuals with a stable CR. It does not however provide evidence for a gradual performance

increase in individuals. (2) The asymptote of the group-average learning curve mostly reflects

a saturation in the recruitment of responding animals, but does not represent a performance

maximum in individuals. (3) Memory retrieval in individuals resembles a constant continuation

of the behavior expressed in the conditioning phase. Consequently, group-average memory

retention mostly reflects the number of individuals that acquired a stable CR during training.

It does not however provide a measure of memory strength or stability within the population.

A distinction between single-trial and three-trial induced 24h memories is not

supported by individual behavior The effect of the number of conditioning trials on

memory formation in the honeybee has been studied in behavior and biochemistry (for reviews

see Menzel, 1999; Müller, 2012). The current model predicts lower 24h group-average memory

retention after single-trial than after three-trial conditioning (Menzel, 1990 Fig. 9.8; Müller,

2012 Fig. 1; Menzel, 2012 Fig. 2). However, in individuals we could not find evidence that

24h retention probability or discriminatory power was enhanced after more training trials

(Experiment 1 and 2). We suggest that the conflict between our findings at the individual

level and the prevailing population-level model can be explained by a recruitment effect: After

one conditioning trial typically at most half of the animals in a given conditioning group have

acquired a stable CR, which leads to only moderate retention scores when the whole group is

tested. On the other hand, three-trial conditioning typically recruits most of the animals that

are able to learn the task, which then results in high group-average memory retention. The

recruitment effect could also provide an explanation for a controversial finding by Sandoz et al.

(1995), showing that honeybees can form a life-long memory even after a single conditioning

trial. Group-average memory retention after single-trial conditioning drastically depends on

the amount of recruitment after the first conditioning trial. It seems reasonable to assume that

recruitment was high under the experimental conditions in this study (see Fig. 1 in Sandoz et



Chapter 3 Page 48

al., 1995), and that consequently group-average retention did not differ after single-trial and

three-trial conditioning.

Different biochemical signatures between single-trial and multiple-trial induced memories

have been repeatedly demonstrated in the honeybee: Long term memory formation requires

PKA activation during conditioning (Fiala et al., 1999). In the antennal lobe PKA activity

transiently increases with an increasing number of sucrose stimuli (Hildebrandt and Müller,

1995), and it is prolonged after multiple-trial, but not after a single-trial conditioning (Müller,

2000). Correspondingly, long-term memory can be induced artificially with single-trial condi-

tioning when PKA activity is artificially prolonged during the CS-US pairing by photorelease

of cAMP (Müller, 2000). In these studies, memory retention and PKA activity was measured

across bees and thus represent the group average. Our findings are compatible with the current

biochemical model of long term memory formation, if one assumes that the effectiveness of the

underlying signal cascades differs across individuals. A bee which forms a long term memory

after a single conditioning trial might have a more effective cAMP-PKA signaling cascade than

a bee which requires multiple conditioning trials. Thus, our data suggests that an activation

of PKA to a level that is sufficient for long term memory formation does not require multiple

learning trials per se. This is also supported by a study showing that honeybees with a higher

gustatory responsiveness had a higher baseline PKA activity than those with a lower gustatory

responsiveness (Scheiner et al., 2003).

It would be highly desirable to test differences in PKA levels or other molecular signatures

of memory consolidation under knowledge of individual behavior. The effect of training

intensity could be elucidated by comparing animals with a CR history of 0(1) and 0111. In

this context it should be noted that several recent studies in the honeybee enhanced their

analysis of neuronal activity by taking into account individual behavior (Roussel et al., 2010;

Rath et al., 2011; D’Albis et al., 2011).

The extended Rescorla-Wagner model is compatible with individual behavior

Learning dynamics in individual honeybees, i.e. the temporal change in a hidden learning

variable or state during training, can be estimated by employing simple descriptive models

(see also Pamir et al., 2011). Formally, the eligibility of different model hypotheses, such as

for example different Rescorla-Wagner-type models, can be determined by a cross-validation

algorithm. Taking into account both formal (Table 3.3) and biological evidence (Figure 3.5),

we proposed a minimal extension of the classical Rescorla-Wagner model, which was fully

compatible with our behavioral observations. Following the hypothesis of Scheiner et al. (2005)

we implemented a model in which different animals varied in learning performance due to

their difference in perceived US effectiveness λ. A model-based data analysis allowed us to

estimate the heterogeneity P (λ) in a given conditioning group, and to visualize modulations

in heterogeneity under altered training conditions (Figure 3.6).

In a previous study we hypothesized that associative learning in the honeybee may evolve
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in an Aha! effect like manner, which we formally expressed by a two-state hidden Markov

model (Pamir et al., 2011). Correspondingly, Smith et al. (2012) suggested Aha! effect-like

learning dynamics for the case of appetitive differential conditioning (Fernandez et al., 2009)

and for conditional withholding of the proboscis extension during discriminative punishment

(Smith et al., 1991). Our data support this hypothesis, as the purely associative memory

component - measured by the discrimination index - was equal in animals with late and early

first CRs (Figure 3.4 Cii, iv).

Implications for future research Several factors, such as satiation level (Page et al.,

1998; Ben-Shahar and Robinson, 2001; Friedrich et al., 2004), behavioral role (Scheiner et al.,

1999, 2001b, 2003) or age (Behrends and Scheiner, 2012) have been shown to affect sucrose

responsiveness in the honeybee, which in turn can affect learning performance. A sample of

wild-type honeybees caught at the entrance to the hive will naturally consist of individuals

that vary in several if not all of these factors. While satiation levels can be calibrated by

standardized feeding routines before the start of an experiment (Friedrich et al., 2004), the

sample will still contain an unknown composition of different types of foragers at different ages,

which may cause unexplainable variability in learning performance when different experimental

groups are compared. Experimentally one can control for the actual learning abilities of

individuals in a given sample by testing honeybees for their responsiveness to sucrose prior

to conditioning, or by selecting animals based on their performance in a preconditioning

phase (Chandra et al., 2010). Complementary to this experimental approach, we suggest

that analyzing data at the single-animal level may help to resolve the problem of inter- and

intra-group variability, as often encountered in classical conditioning of the proboscis extension

response (Frost et al., 2012; Matsumoto et al., 2012). Our analysis showed that an early

and stable CR was the most salient and invariable behavioral feature of individual learning

during standard training conditions. This finding may be exploited by explicitly studying the

effect of altered training parameters or in vivo pharmacological (Schwärzel and Müller, 2006;

Felsenberg et al., 2011) or epigenetic interventions (Lockett et al., 2010; Biergans et al., 2012)

on this behavioral performance benchmark.

Computational models of plasticity in the insect brain have not been constrained by

individual learning dynamics to date. In Drosophila, a long-held notion exists that the

expression of behavior in individuals follows the group-average (Quinn et al., 1974), and only

recently has this issue been touched on again (Chabaud et al., 2010). Consequently theoretical

studies tend to rely on group-average performance, as for example observed in a final test

phase after aversive classical conditioning in the T-maze (Young et al., 2011; Wessnitzer et

al., 2012). Our study described several characteristics of associative learning in individual

honeybees, and yet more data from different classical conditioning protocols may be shared by

other laboratories. Integrating these behavioral constraints into current models of plasticity in

the insect brain is the focus of ongoing research.
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3.5 Tables and table captions

Dataset N m T (h) ITI(min) CS Experimenter Reference

1 64 3 24,48 2 clove oil VA, JF, DE Pamir et al., 2011
2 58 3 24 2 clove oil LM, JF, DE Pamir et al., 2011
3 87 3 24 10 clove oil KBG, DE Pamir et al., 2011
4 517 3 24 10 clove oil NS, DE Stollhoff et al., 2005; Pamir et al., 2011
5 98 3 25 10 clove oil NS, DE Stollhoff et al., 2005; Pamir et al., 2011
6 113 3 26 10 clove oil NS, DE Stollhoff et al., 2005; Pamir et al., 2011
7 92 3 28 10 clove oil NS, DE Stollhoff et al., 2005; Pamir et al., 2011
8 85 3 48 10 clove oil NS, DE Stollhoff et al., 2005; Pamir et al., 2011
9 94 3 72 10 clove oil NS, DE Stollhoff et al., 2005; Pamir et al., 2011
10 122 4 1,24 30 isoamyl acetate NKC Pamir et al., 2011
11 37 5 1,24 30 6-pentadecene NKC Pamir et al., 20111
12 48 5 1,24 30 7-pentadecene NKC Pamir et al., 2011
13 95 6 0.25 10 1-nonanol PS Szyszka et al., 2011
14 75 6 0.25 10 1-nonanol PS Szyszka et al., 2011
15 281 6 0.25 10 1-octanol or 2-heptanone PS Pamir et al., 20111
16 100 11 24 5 citral RS Scheiner et al., 2001a
17 100 11 24 5 tactile conditioning RS Scheiner et al., 2001a
18 63 12 none 0.5 hexanol RM Menzel et al., 2001; Pamir et al., 2011
19 64 12 none 15 hexanol RM Menzel et al., 2001; Pamir et al., 2011
20 120 6 1,24 14 1-hexanal,1-octanol NKC Pamir et al., 2011
21 118 4 24 10 1-hexanol or 1-nonanol PS Unpublished data
22 335 2-4 24 10 1-hexanol or 1-nonanol PS Unpublished data
23 121 2 24 10 1-hexanol or 1-nonanol PS Unpublished data
24 118 1 24 10 1-hexanol or 1-nonanol PS Unpublished data

Table 3.1 Overview over analyzed data from classical conditioning of the proboscis
extension response. Abreviations: number of animals (N), number of conditioning trials in
the acquisition session (m), time of the retention test in hours after the end of the conditioning
session (T ), inter-trial-interval during conditioning trials in minutes ITI, conditioned stimulus
(CS), Experimenters: Victoria Antemann (VA), Johannes Felsenberg (JF), Dorothea Eisenhardt
(DE), Katrin Barbara Gehring (KBG), Laura Morgenstern (LM), Nicola Stollhoff (NC), Neloy
Kumar Chakroborty (NKC), Ricarda Scheiner (RS), Randolf Menzel (RM), Paul Szyszka
(PS); See Materials and Methods for details on individual data sets.
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Dataset N CRstability (%) CRstability(tfirstCR=2) (%) mean(tfirstCR) (%) Nnon−responders/N (%)

1 64 82.5 (40) 80.8 (26) 2.8 17.2
2 58 95.6 (45) 94.3 (35) 2.5 8.6
3 87 91.7 (60) 87.9 (33) 2.8 8
4 517 87.8 (389) 91.8 (261) 2.6 9.1
5 98 90.3 (77) 91.7 (54) 2.6 7.1
6 113 92.6 (81) 96.0 (50) 2.8 7.1
7 92 87.9 (66) 90.0 (40) 2.7 9.8
8 85 90.1 (71) 93.9 (49) 2.5 4.7
9 94 94.2 (69) 97.5 (40) 2.7 8.5
10 122 70.9 (86) 77.8 (45) 2.9 20.5
11 37 81.9 (23) 91.2 (17) 2.3 37.8
12 48 81.5 (37) 86.5 (26) 2.7 16.7
13 95 52.2 (57) 54.8 (23) 3.5 35.8
14 75 83.1 (62) 82.9 (35) 2.8 14.7
15, 1s 35 76.5 (26) 80.0 (6) 3.7 20
15, 2s 34 65.0 (17) 70.0 (4) 3.8 44.1
15, 3s 34 62.9 (19) 80.0 (4) 3.8 44.1
15,6s 42 71.8 (10) 60.0 (1) 3.6 73.8
15, 10s 34 37.1 (7) 80.0 (2) 4 76.5
15, 16s 31 34.5 (10) 31.4 (7) 3 64.5
16, GRS 10 33 91.8 (31) 95.6 (25) 2.2 6.1
16, GRS 8-9 25 69.1 (17) 80.8 (11) 2.5 32
16, GRS 5-7 22 73.8 (16) 100.0 (5) 3 27.3
16, GRS 2-4 20 37.0 (3) 37.0 (3) 2 85
17, GRS 10 42 86.4 (40) 95.6 (20) 3 4.8
17, GRS 8-9 29 77.6 (21) 82.2 (5) 3.5 27.6
17, GRS 5-7 16 73.4 (8) 94.4 (2) 4.2 50
17, GRS 2-4 13 - (0) - (0) - 100
18 63 52.6 (42) 58.3 (24) 3 33.3
19 64 77.9 (51) 91.3 (15) 4 18.8
20, CS+ 98 93.7 (87) 97.0 (61) 2.8 6.1
21 118 88.4 (85) 91.7 (64) 2.6 20.3

Table 3.2 Summary of estimated parameters describing the dynamics of associa-
tive learning in individuals. N : Number of animals in each dataset. The parameter
CRstability equals the mean probability to respond in subsequent trials, given that animals
have started to respond in any of the trials. Numbers in brackets denote numbers of responding
animals. The parameter CRstability(tfirstCR=2) denotes the mean probability to respond in
subsequent trials, given that animals have started to respond in the second conditioning trial.
Numbers in brackets indicate the numbers of animals starting to respond in the second trial.
mean(tfirstCR): Mean time-point in trial time at which animals display their first CR, given
that animals respond in any of the trials. Nnon−responders/N : Proportion of animals that do
not respond in any of the trials. For dataset 15 (trace conditioning) parameters were computed
independently for different delays between CS and US onset as indicated. For datasets 16
and 17 parameters were computed for 4 subgroups defined by gustatory responsiveness scores
(GRS). For dataset 20 parameters were computed for CS+ trials only.
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Dataset Mean negative log-likelihood on test data α λ

RW RWP (λ) RWP (α) RWP (λ) RWP (α)

10 82.6 (0) 73.3 (2) 73.5 (1) 0.77 0.86

11 32.2 (0) 18.3 (2) 19.0 (1) 0.98 0.98

12 40.6 (0) 30.9 (2) 31.3 (1) 0.92 0.91

13 86.6 (0) 72.3 (2) 74.4 (1) 0.74 0.74

14 69.4 (0) 53.2 (1) 52.6 (2) 0.72 0.93

15, 1s 31.4 (0) 24.5 (1) 23.0 (2) 0.48 1.0

15, 2s 29.0 (0) 20.8 (1) 20.0 (2) 0.49 1.0

15, 3s 29.6 (0) 21.8 (1) 21.3 (2) 0.48 1.0

15,6s 25.3 (0) 18.0 (1) 17.8 (2) 0.36 1.0

15, 10s 16.7 (0) 12.8 (2) 14.1 (1) 0.86 0.86

15, 16s 18.3 (1) 14.3 (2) 18.3 (0) 1.0 0.64

16, GRS 10 40.0 (0) 25.8 (2) 30.6 (1) 0.94 0.94

16, GRS 8-9 47.7 (0) 26.4 (2) 31.0 (1) 0.99 0.81

16, GRS 5-7 39.5 (0) 22.1 (2) 23.3 (1) 0.63 1.0

16, GRS 2-4 16.2 (0) 9.8 (2) 12.9 (1) 1.0 0.61

17, GRS 10 59.0 (0) 41.2 (2) 43.2 (1) 0.72 0.95

17, GRS 8-9 53.8 (0) 30.5 (2) 31.8 (1) 0.52 0.97

17, GRS 5-7 29.5 (0) 13.7 (1) 13.2 (2) 0.52 1.0

17, GRS 2-4 0.0 (2) 1.8 (0) 1.2 (1) 1.0 1.0

18 108.8 (0) 70.6 (2) 80.8 (1) 0.9 0.77

19 119.2 (0) 71.4 (1) 70.8 (2) 0.52 0.98

21 76.5 (0) 59.8 (1) 59.0 (2) 0.94 0.94

SCORE 3 34 29

Table 3.3 Performance comparison of three Rescorla-Wagner-type models. The
performance of the classical Rescorla-Wagner model (RW) was compared with two extended
versions that assumed a heterogeneity in US effectiveness λ (RWP (λ)), or a heterogeneity in
learning rate α (RWP (α)). For each model and data set, the mean negative log-likelihood on the
test data was calculated after 500 rounds of four-fold cross-validation. Numbers in parenthesis
indicate the performance rank of each model for a given dataset, where 0 indicates worst
and 2 indicates best model performance. For the two extended Rescorla-Wagner models, the
two rightmost columns display the common learning rate α or US effectiveness λ respectively,
estimated on the whole dataset. Only datasets in which the maximum of the regression curve
pmax was obtained during the conditioning session were taken into account.
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3.6 Figures and figure captions

Figure 3.1 Group-average CR probabilities do not adequately represent the CR probabilities
in individual honeybees during classical conditioning of the proboscis extension response. A
Binary conditioned response matrix from a typical dataset consisting of four conditioning
trials and one memory retention test at 24h (dataset 21). A gray entry indicates no CR, a
black entry indicates a CR. B Average CR probability p(1) and conditional CR probabilities
p(1|tfirstCR=2) and p(1|tfirstCR=3). Once animals have initiated their first response, they
remain responding in subsequent trials with high probability. The dotted line indicates the
time point in trial time tmax at which the regression curve (Equation 3) on the average CR
probabilities assumes its maximum. C Histogram of first responses. The largest proportion
of animals starts to respond on the second trial. D Binary conditioned responses matrix of
a hypothetical dataset, which was generated by randomly permuting the CRs of dataset 21
across animals for each trial separately. E, F Analog analysis to B, C. Group-average behavior
represents individual behavior in the hypothetical dataset. Conditional probabilities do not
reveal a serial dependency. The percentage of non-responders is drastically reduced.
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Figure 3.2 Fast dynamics of associative learning during classical conditioning of the proboscis
extension response. [Figure caption continues on next page.]
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[Continuation of Figure 3.2 caption] For each data set the upper panel shows the average
CR probabilities and the CR probabilities in two subgroups of animals that start to respond
on the second (tfirstCR=2) or third trial (tfirstCR=3). The black line depicts a regression
curve (Equation 3) on the average CR probabilities (open square symbols). The dotted line
depicts the position tmax of the maximum of the regression curve in trial time. The lower
panel displays the percentage of animals that showed their first CR in a given trial. Animals
that did not show a CR in any of the trials are represented by the black bar (none). Across all
data sets, the largest proportion of animals starts to respond after only a single conditioning
trial. Once animals have responded for the first time they have a high probability to continue
responding in subsequent trials. The percentage of non-responding animals varies across
datasets. Bees which responded to the first CS before the CS-US pairing were excluded
from the analysis. A Dataset 4. B Dataset 6. C Dataset 21. D Dataset 10. E Dataset 11.
F Dataset 12. G Dataset 13: The CR stability is decreased under trace conditioning (4.5
seconds gap between CS offset and US onset). H Data set 14: Control group for dataset
13 (CS and US overlap by 0.5 seconds).I, J Datasets 16 and 17: The dynamics of olfactory
associative learning resemble the dynamics of tactile associative learning. K Dataset 18: The
stability of the CR is decreased under massed training conditions (inter-trial-interval equals
30 seconds). L Dataset 19: The stability of the CR is high under spaced training conditions
(inter-trial-interval equals 15 minutes).
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Figure 3.3 Dynamics of discriminative learning during differential conditioning (data set 20).
A CR probabilities to the CS+ and the CS- during the conditioning phase in three subgroups
of animals, defined by their first response trial to the CS+ (tfirstCR=1, 2, 3). Once animals
have started to respond to the CS+, they have a high probability to continue responding to
the CS+ in consecutive trials (curves with square markers). Animals responding to the CS+
(tfirstCR=1, 2, 3) show high CR probabilities to the CS- in the first conditioning trials, and
low CR probabilities to the CS- at the end of the conditioning phase. (curves with round
markers). CS- trials are indicted by an apostrophe. B CR probabilities to the CS+ and the
CS- of the three subgroups at 1h and 24h.
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Figure 3.4 Effect of single-trial and multiple-trial conditioning on 24h memory retention
and discriminatory power under examination of individual CR histories during conditioning.
[Figure caption continues on next page.]
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[Continuation of Figure 3.4 caption] Ai CR probability to the trained odor in subgroups 01,
0111 and 0000 of Experiment 1. Memory retention after four-trial and two-trial conditioning
is not significantly different (0111 vs 01 subgroup, χ2 = 0.000960 with 1 degrees of freedom,
P = 0.975). Animals that did never respond during four-trial conditioning showed poor memory
retention. Aii Discrimination index (DI) in subgroups 01, 0111 and 0000. Discriminatory
power of the memory after four-trial conditioning and two-trial conditioning is not significantly
different (0111 vs 01 subgroup, Mann-Whitney Rank Sum Test, T = 10379.000, P = 0.095).
Animals that did not respond during four-trial conditioning show poor memory discrimination.
Aiii Duration of the proboscis extension to the trained odor in subgroups 01, 0111 and 0000.
The CR duration is not significantly different after four-trial and two-trial conditioning (0111 vs
01 subgroup, Mann-Whitney Rank Sum Test, T = 11901.500, P = 0.238). Aiv Discrimination
Index computed on CR duration (DIdur) in subgroups 01, 0111 and 0000. The CR duration
does not reveal significant differences in memory discrimination after four-trial and two-trial
conditioning (0111 vs 01 subgroup, Mann-Whitney Rank Sum Test, T = 10652.500, P = 0.248).
Bi Memory retention after two-trial and single-trial conditioning is not significantly different
(Experiment 2, 01 vs 0(1) subgroup, χ2 = 2.935 with 1 degrees of freedom, P = 0.087).
Bii The discrimination index after two-trial and single-trial conditioning is not significantly
different (01 vs 0(1) subgroup, Mann-Whitney Rank Sum Test, T = 8346.000, P = 0.146).
Biii The duration of the proboscis extension response to the trained odor is significantly longer
after two-trial than after single-trial conditioning (01 vs 0(1) subgroup, Mann-Whitney Rank
Sum Test, T = 7265.500, P =< 0.001). Biv The duration of the proboscis extension response
did not reveal significant differences in discriminatory power after two-trial and single-trial
conditioning (01 vs 0(1) subgroup, Mann-Whitney Rank Sum Test, T = 8256.500, P = 0.093).
Ci Animals that started to respond early during conditioning showed significantly more
memory retention than animals that started to respond later during conditioning (Experiment
1, 01 vs (001, 0001) subgroup, χ2 = 7.246 with 1 degrees of freedom, P = 0.007). Cii Early
and late responders do not significantly differ in memory discrimination (Mann-Whitney Rank
Sum Test, T = 5489.000, P = 0.346). Ciii The duration of the proboscis extension response
to the trained odor is significantly longer in early than in late responders (Mann-Whitney
Rank Sum Test, T = 4925.500, P = 0.016). Civ The duration of the proboscis extension
response does not reveal significant differences in memory discrimination between early and
late responders (Mann-Whitney Rank Sum Test, T = 5428.000, P = 0.271).
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Figure 3.5 Sucrose responsiveness correlates with learning performance in olfactory and tactile
classical conditioning (compare to Figs. 1 and 2 in Scheiner et al., 2001a). A Average CR
probabilities in four subgroups of animals from olfactory conditioning (dataset 16). Animals
were divided into subgroups on the basis of individual gustatory response scores (GRS). Small
numbers indicate low responsiveness to sucrose. Animals with high responsiveness to sucrose
reach higher plateaus in CR probability than animals with low responsiveness to sucrose. B
Histogram showing the percentage of animals for each subgroup that start to respond in a
given trial. Animals showing at least one CR in any of the trials start to respond early during
conditioning. Most non-responders have a low responsiveness to sucrose. C Average CR
probabilities in four subgroups of animals from tactile conditioning (dataset 17). D Histogram
showing the percentage of animals for each subgroup that start to respond in a given trial.
The dynamics of tactile learning resemble the dynamics of olfactory learning.
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Figure 3.6 An expanded Rescorla-Wagner model can capture the dynamics of associative
learning in individual animals during classical conditioning. A Across conditioning trials
animals gradually learn the association between the conditioned stimulus (CS) and the sucrose
reward (US). The effectiveness of the US λ differs across animals and hence different animals
reach different plateaus of associative strength (AS). All animals are assumed to learn at
the same speed. For the depicted example traces the learning rate equals α = 0.94 (as in
dataset 21). The observed CR probability in individuals is assumed to directly reflect the
associative strength. B The heterogeneity in US effectiveness is estimated by a probability
distribution P (λ) (see Materials and Methods). The typical bimodal shape (B) of the
probability distribution is tilted under altered training conditions (C-F). The distribution
assumes the shape of a normal distribution if the CR histories at each trial are permuted across
animals (dotted line for dataset 21, λmean = 0.79, compare with permuted CR matrix in Figure
1D). C Probability distribution for trace (dataset 13) and delay conditioning (dataset 14). D
Probability density function under massed (dataset 18) and spaced conditioning trials (dataset
19). E Probability distributions in four subgroups of animals from olfactory conditioning
(dataset 16). Animals have been grouped into subgroups on the basis of individual gustatory
response scores (GRS). Small numbers indicate low responsiveness to sucrose. F Probability
density function in four subgroups of animals from tactile conditioning (dataset 17).
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From neuronal computation to

behavioral plasticity: A

model-based investigation of

associative learning in honeybees

Abstract

Honeybees possess a remarkable repertoire of associative learning faculties, many of which

have been characterized by classical conditioning of the proboscis extension response.

Behavioral studies were accompanied by numerous physiological studies that provided

insights into olfactory information processing and reward-dependent plasticity in the

honeybee brain. Despite the wealth of data on behavioral and neuronal plasticity in this

animal model, no explicit link has yet been made between the two by a computational

model or theory. We here collected several key findings on behavioral plasticity as

observed over consecutive training trials in various different absolute and non-absolute

classical conditioning protocols. We try to explain these learning dynamics by a set of

biologically motivated computations in a simple circuit model of the honeybee brain. We

present a basic model hypothesis which is compatible with behavior for most simulated

conditioning protocols. This model provides insights into the effect of external stimulus

properties, internal stimulus encoding schemes, and computational principles such as

divisive normalization or associative learning rules on the emergence of behavior over

conditioning trials in the honeybee. Our study defines a framework for the quantitative

comparison of different model hypotheses on the basis of a large collection of trial-

resolved behavioral data. This framework can be employed in future studies to evaluate

computational models that are implemented at higher degrees of biological realism.

61
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4.1 Introduction

The honeybee brain hosts a remarkable repertoire of associative learning faculties, and the link

to cognition in higher animals has been repeatedly made (Giurfa, 2003; Menzel et al., 2007;

Menzel, 2012). Learning under various experimental conditions has been characterized exten-

sively by olfactory conditioning of the proboscis extension response (Bitterman et al., 1983;

Giurfa and Sandoz, 2012; Matsumoto et al., 2012). In this classical conditioning paradigm,

honeybees have to learn that an odorant (conditioned stimulus CS) is followed by a sucrose

reward (unconditioned stimulus US). The learning performance during training is monitored by

computing the group-averaged probability for a proboscis extension (conditioned response CR)

on each conditioning trial. The multitude of different variants of this protocol can be roughly

categorized into absolute and non-absolute conditioning protocols. In absolute conditioning,

honeybees are presented to only one conditioned stimulus during training. The effect of

several experimental parameters on learning can be studied in this type of protocol, such as

the concentration and duration of sensory and gustatory stimuli (Pelz et al., 1997; Wright

and Smith, 2004; Wright et al., 2009), the inter-stimulus interval between odor and sucrose

reward (Szyszka et al., 2011) or the inter-trial-interval (Menzel et al., 2001). Non-absolute

conditioning on the other hand entails learning stimulus-reward contingencies for more than

one odorant during training. For example, in differential conditioning, the animal has to learn

that one odorant is followed by a reward, while another is not. This task can be made more

difficult by reducing the concentration of odorants, or by employing a mixture of odorants

at different ratios as the rewarded and unrewarded stimulus, respectively (Fernandez et al.,

2009). Even more complicated variants of this protocol introduce an ambiguity in the value of

individual stimuli by presenting them both in rewarded and unrewarded trials, as in negative

or positive patterning protocols (Deisig et al., 2001).

The wealth of observations on behavioral plasticity in the honeybee is accompanied by

numerous neuroanatomical, biochemical and physiological studies on olfactory information

processing and learning in the honeybee circuitry (Sandoz, 2011; see also Table 1 in Him-

melreich and Grünewald, 2012, for a list of learning-related events in the honeybee brain).

Despite the huge amount of data on trial-resolved behavioral plasticity on the one hand, and

neuronal information processing on the other, no theoretical attempt has been made so far to

explicitly link the two by a computational model. We here try to explain the observed changes

in conditioned response probabilities over training trials by neuronal computation in a simple

network model of the honeybee brain. Our study builds on recent modeling work in the insect

(Huerta and Nowotny, 2009), in particular in the fruit fly (Young et al., 2011; Wessnitzer et

al., 2012). In the fly, behavioral plasticity in individuals over training trials is typically not

monitored, and consequently models are only constrained by group-averaged behavioral perfor-

mance scores measured after training (Young et al., 2011; Wessnitzer et al., 2012). The case is

different for classical conditioning in harnessed honeybees, where the experimental procedure
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allows to follow and record the behavior of each individual over training trials (Felsenberg

et al., 2011; Matsumoto et al., 2012). The existence of raw data at the level of individuals

also provided the basis for studying inter-individual differences in learning performance in the

honeybee (Scheiner et al., 2001b, 2004; Pamir et al., submitted manuscript). As we will show,

knowledge on group heterogeneity is essential for the correct definition of behavioral model

constraints. In Drosophila, inter-individual differences in learning performance are typically

not considered by theoretical studies because individual behavior is not recorded, but also

because the expression of behavior in a sample of fruit flies is assumed to be homogeneous

(Quinn et al., 1974).

Our study concentrates on several key findings on behavioral plasticity in the honeybee

(Table 4.1), which were observed under various different training protocols (Table 4.2). We aim

at a minimal model of biologically motivated computations that can reproduce or potentially

explain the behavioral dynamics of learning in these data sets. In terms of model complexity

we implement a simple information processing scheme along the sensor-to-motor circuitry

in the honeybee, which allows us to investigate the effects of stimulus parameters, network

geometry, and computational principles such as divisive normalization or associative learning

rules on the emergence of behavior (Carandini, 2012). Future model extensions towards a

full-blown spiking neuronal network implementation of the current model are discussed in the

discussion section. The following methods section describes the settings of the minimal model,

also referred to as the basic model. The results section investigates how well this model fits to

behavioral data.
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4.2 Model methods

4.2.1 Behavioral model constraints

Classical conditioning of the proboscis extension response in the honeybee was introduced more

than fifty years ago (Takeda, 1961; Giurfa and Sandoz, 2012). Details on this experimental

procedure can be found elsewhere (Scheiner et al., 2001b; Felsenberg et al., 2011; Matsumoto

et al., 2012). We collected a large set of classical conditioning protocols from the experimental

literature (Table 4.2).

For some of these experimental conditions the experimental raw data at the level of

individual animals was available. For these cases we computed and plotted the average CR

probabilities over training trials in order to obtain a target trace for the simulations (Figure

4.6 black curves). In some of these datasets (absolute, massed, delay, differential, negative

patterning A+) we excluded non-responding animals, which results in a more homogeneous

sample of animals with respect to learning performance (Pamir et al., submitted). This

procedure was not applicable to datasets in which the learning task was made more difficult

by increasing the inter-stimulus interval (trace 1 second, 5 seconds, 10 seconds, data from

Szyszka2011). In these datasets we subtracted a hypothetical basic level of non-responders,

which was estimated based on the delay conditioning group.

In the datasets in which the gustatory response score of individual animals was determined

prior to conditioning (absolute with GRS, data from Scheiner et al., 2001b), we did not exclude

any non-responders. (In this case, a specific correlation exists between the GRS and the

percentage of non-responders. See also discussion.)

For some conditioning protocols the raw data was not available (latent inhibition, differential

conditioning at low concentratins and mixtures, negative and positive patterning). To obtain

target traces for the simulations we transcribed the CR probabilities manually from the original

studies (Fernandez et al., 2009; Deisig et al., 2001; Chandra et al., 2010).

4.2.2 Model geometry

The geometry of the basic model is depicted in Figure 4.2, and a summary of all model

parameters is listed in Table 4.3. We used a simple three-layer feed-forward network model

with excitatory connections only: 49 projections neurons (PN) in the antennal lobe connect to

5000 Kenyon cells (KC) in the Mushroom body via the two-dimensional connection matrix

c of size 5000 × 49. The probability for a connection between a PN and a KC was set to

pPN→KC = 0.204, which ensures that each KC receives input from 10 PNs. This resembles

experimental observations in the fruit fly (Turner et al., 2008). We employed a fixed and

pseudo-randomized connection matrix (Fig. 4.3 B) such that each KC received input from

exactly 10 projection neurons, and each PN connected to exactly 1020 KCs. Connection

strengths were set to unity. Employing a fixed connection matrix removed all stochastic
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components from our model, and hence no repeated simulation runs were required for a given

conditioning protocol.

All Kenyon cells converge on a single extrinsic neuron via the synaptic weight vector w of

size 5000. Initial weights were set to zero and underwent changes during classical conditioning.

Al Kenyon cells receive a global reinforcement signal, which mimics the activity of a giant

octopaminergic neuron in the honeybee brain that signals reward to the Mushroom bodies as

well as other regions in the honeybee brain (Hammer, 1993; Kreissl et al., 1994).

4.2.3 From antennal lobe input to motor output

Our mathematical formulation for the processing and transformation of olfactory information

in the insect brain builds upon previous modeling work by Huerta and Nowotny (2009),

Schmuker et al. (2011), Young et al. (2011), and Wessnitzer et al. (2012). For studying the

effect of external stimulus properties on behavioral performance we made use of three toy

olfactory stimuli of size 49, referred to as A, B and AB (Figure 4.3 A). Stimuli are constructed

by a sinus function on the interval [1, 49]. The i-th entry of stimulus A is computed as

Ai(t) = a(t)

[
sin

(
2π i)

49

)]+
, (4.1)

where a(t) equals the temporal trace of stimulus A, as defined by the parameters stimulus

onset, duration and intensity (see Table 4.2 and Figure 4.3 A). The parameter overlap ∈ [0, 1]

allows adjusting the similarity between stimulus A and B (Figure 4.3 A). The i-th entry of

stimulus B is computed by shifting the phase of the sinus function:

Bi(t) = b(t)

[
sin

(
2π i− overlap π)

49

)]+
, (4.2)

where b(t) equals the temporal trace of the presentation of stimulus B. The compound stimulus

AB is constructed by adding A and B.

Experimental observations in Drosophila showed that the activation of PNs saturates as

a function of increasing firing in the olfactory receptor neurons in the antenna (Bhandawat

et al., 2007; Kazama and Wilson, 2008). As in modeling work by Schmuker et al. (2011) we

account for this behavior by computing the activation of the i-th glomerulus in the antennal

lobe GLi by a logarithmic transfer function:

GLi(t) = ln(1 +Xi(t)), (4.3)

where X equals the sum of all stimuli that are present at time t. In the case of the compound

stimulus AB, this corresponds to assuming a linear superposition of stimuli at the olfactory

receptor level, which is in line with experimental observations in the honeybee (Deisig et al.,

2006; see also Schmuker et al., 2011).
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At each simulation time step t, the activation of the i-th glomerulus normalized by the

total glomerular activation defines the activation of the i-th projection neuron:

PNi(t) =
GLi(t)√∑NGL
j=1 GLj(t)

2
j = 1, ..., NPN (4.4)

We here employed the same normalization rule as Wessnitzer et al. (2012). Activity of the

i-th Kenyon cell KCi(t) is defined as:

KCi(t) = Θ

(NPN∑
j=1

cijPNj(t)− θKC
)

i = 1, ..., NKC (4.5)

where c is the 2-dimensional connection matrix of size (NKC ×NPN ), θKC is the Kenyon cell

activity threshold, and Θ(x) is the Heaviside function with:

Θ(x) =

{
1 if x ≥ 0;

0 if x < 0.
(4.6)

The chosen Kenyon cell activity threshold of θKC = 1.5 ensures that on average (2 − 5)%

of all Kenyon cells are active for any stimulus presentation which resembles experimental

observations (Wilson et al., 2004; Turner et al., 2008). The activity in the single extrinsic

neuron (EN) equals:

EN(t) = f

(NKC∑
i=1

wiKCi(t)

)
, (4.7)

where wi ∈ [0, 1] is the synaptic weight of the i-th KC, and f implements a linear threshold

function for the EN activation:

f(x) =

{
x/168 if x/168 ≤ 0.95;

0.95 if x/168 > 0.95.
(4.8)

For the chosen parameters the argument of the transfer function f will be below threshold for

most simulated conditioning protocols. Our choice of f readily allows taking the EN activation

as a measure of the conditioned response (CR) probability on trial T :

pCR(T ) = 〈EN(t)〉observation window, (4.9)

The observation window refers to the time interval in trial T in which the experimenter records

the CR, typically the CS presentation not overlapping with the US. The time-step for all

simulations was set to 0.1 seconds.
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4.2.4 Reward-dependent learning in the mushroom-body output

For the basic model we assume that synaptic plasticity primarily depends on two factors: (1)

the amount and timing of KC activation, which is expressed by an eligibility trace, and (2) the

presence of a global reinforcement signal at the KC synapses. The eligibility trace ei(t) ∈ [0, 1]

of the i-th synapse is implemented as

ei(t+ 1) = ei(t)− ei(t)/τe + αe KCi(t) (1− ei(t)), (4.10)

where αe is the growth rate, and τe is the decay constant of the eligibility trace. Our formulation

of an eligibility trace that holds the information about the odorant stimuli in the KCs until

the arrival of the reward signal deviates from the mechanism proposed by Wessnitzer et al.

(2012). In their spiking neuronal network model, the eligibility trace (or synaptic tag) was set

depending on both pre- and postsynaptic activity via spike-timing-dependent plasticity. In

our formulation, the eligibility of a KC to undergo changes in synaptic efficacy depends on KC

activity only. Izhikevich (2007) pointed out several molecular mechanism that may implement

an eligibility trace, and Yarali et al. (2012) proposed a detailed biochemical model which could

explain the effect of inter-stimulus-interval on behavioral performance in Drosophila.

The octopamine concentration at the synapse OCT (t) ∈ [0, 1], which signals reinforcement,

is defined as

oct(t+ 1) = oct(t)− oct(t)/τoct + αoct S R(t) (1− oct(t)), (4.11)

where αoct is the growth rate, τoct is the decay constant of the octopamine concentration,

R(t) ∈ [0, 1] is the sucrose stimulus as defined by the simulated classical conditioning protocol,

and S is a linear factor that represents the subjective evaluation of the sucrose reward by a

given honeybee (Scheiner et al., 2004).

On the basis of the eligibility trace and the reinforcement signal we compute the triggered

short-term memory (STM) target weight wtargeti (T ) for the i-th synapse as

wSTMi (T ) = 0.04
trial end∑

t=trial start

ei(t) oct(t), (4.12)

The factor 0.04 ensures that wSTM ∈ [0, 1] for all simulated conditioning protocols (given the

simulation time step equals 0.1 seconds). The formulation of a target weight expresses the

finding that weight changes induced on a given conditioning trial require a certain period time

to consolidate (Menzel, 2001). Hence, the target rate depends on the inter-trial-interval (ITI),

which is modeled by a linear function

fSTM (x) =

{
x ITI/36 s if ITI < 36 s

x if ITI ≥ 36 s
(4.13)
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Finally, after each conditioning trial T , the i-th synaptic weight wi ∈ [0, 1] is changed according

to the learning rule

wi(T + 1) = wi(T ) + αw

[
fSTM

(
wSTMi (T )

)
− wi(T )

]+
, (4.14)

where αw ∈ [0, 1] is the learning rate.

4.2.5 Parameter search and model comparison by an error function

We implemented a simple brute search parameter optimization algorithm that minimizes the

squared errors e2 between the observed and the simulated conditioned response probabilities.

For a given classical conditioning protocol x and model h the sum of the squared errors over

trials equals

e2(x, h) =
Ntrials∑
T=1

(
pCR, data(T )− pCR, sim(T )

)2

. (4.15)

In addition, the parameter search can be performed by minimizing the total squared error E2

on a collection of classical conditioning protocols given a model h:

E2(h) =
∑
x

e2(x, h). (4.16)

Optionally, individual error terms in Equation 4.16 may be weighed depending on data size

or other heuristic factors such as data credibility. Finally, the total error of a given model

hypothesis h is defined as the sum of the squared errors over all classical conditioning protocols

that were considered in the present study (Table 4.1). In the following we abbreviate the basic

model by h1.
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4.3 Results

In this section we try to establish a quantitative link between neuronal computation in the

honeybee brain circuitry and the observed dynamics of behavioral plasticity over consecutive

training trials. We will first configure the basic model h1 on a collection of data recorded in

different absolute conditioning protocols, and than study how well the model generalizes when

simulating behavior in non-absolute conditioning protocols. In this process we will introduce

and discuss necessary extensions of the basic model.

4.3.1 Model configuration on data from absolute conditioning

Average network activity We first confirm that our network configurations and employed

stimuli reproduce the sparse activity of KCs in the Mushroom bodies, as reported in several

insect species (Perez-Orive et al., 2002; Wilson et al., 2004; Turner et al., 2008). For the

first toy stimulus A, the average activity of a PN that receives non-zero glomerular input

(Equation 4.4) equals 0.19. In order to meet the KC activation threshold of θKC = 1.5, a KC

requires around 8 non-zero PN inputs to fire. For the presentation of stimulus A, 168 KCs are

above threshold, which equals 3.4% of the total KC population. As defined by our learning

rule (Equation 4.14), the synaptic weights of these 168 KCs will change during absolute

conditioning. Given the fixed connectivity matrix c, the network activation for stimulus B is

almost similar: 174 KCs are above threshold, which equals 3.9% of the total KC population.

For the compound stimulus AB the number of active KCs depends on the overlap between

stimulus A and B. For overlap = 0.1, 539 KCs are active (11.9%), for overlap = 0.5, 329 KCs

are active (6.6%), and for overlap = 0.9, 179 KCs are active (3.6%).

Fitting the parameters αw and τe Given our choice of model settings, the performance

of the model h1 during absolute classical conditioning can be adjusted by two free parameters:

the learning rate for the change in synaptic weights αw, and the decay constant of the eligibility

trace τe. Figure 4.4 B shows the outcome of the parameter search for these two parameters on

five conditioning protocols (absolute, delay, trace 1 second, trace 5 seconds, trace 10 seconds).

Parameters were optimized by minimizing the sum of the normalized squared errors between

simulated and observed CR probabilities for the five protocols (Equation 4.16).

Figure 4.4 A illustrates the effect of the eligibility trace (τe = 6.9 s) on the synaptic weight

change. If the reward shortly follows the olfactory stimulus, the product of the eligibility

trace and the octopamine trace will be large (Equation 4.12), which results in a high target

weight in the learning rule (Equation 4.14). If however, in trace conditioning (Szyszka et al.,

2011), the inter-stimulus interval between odor and reward increases, the target weight will be

reduced, which then results in poorer learning. The actual difference between experimental

and simulated CR probabilities for the five absolute conditioning protocols is shown in Figure

4.6 A,C,D and E.
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The basic model captures the rapid and stable acquisition of the conditioned

response in individuals Behavioral plasticity in individual honeybees during absolute

classical conditioning can be characterized by two features (Pamir et al., submitted): First,

animals start to respond very early during conditioning. Typically 94% of all animals that show

at least one response in any of the trials start to respond within the first four conditioning trials.

Second, once a honeybee has elicited its first CR, it continues to respond in subsequent trials

with a high probability of around 86%. As shown in Figure 4.5, the basic model reproduces

these behavioral features. It should be noted that the model assumes identical learning

dynamics for all 63 simulated animals. Previous analysis showed that this may not be the case

in the actual sample of trained animals, because animals that responded early (tfirstCR=2)

tend to have higher response probabilities in subsequent trials than those responding later

(tfirstCR=3, 4) (Pamir et al., submitted). As it can be seen in Figure 4.5 B, for high learning

rates (αw = 0.68), these subtle inter-individual differences are less pronounced and hence

neglectable (see Discussion).

The effect of sucrose sensitivity and inter-trial interval on learning Several studies

showed that honeybees can differ in learning performance due to a differential evaluation of the

sucrose reward (Scheiner et al., 2001b, 2004). We account for this behavior by an additional

linear factor in Equation 4.11, referred to as the sucrose sensitivity S. For the basic model h1,

this parameter was set to unity. In some of the data, the gustatory response score (GRS) of

individuals was determined prior to the conditioning phase (see Scheiner et al., 2001b for data

origin and details on experimental procedures). On the basis of these datasets, our formalism

allows determining a mapping between experimentally assessed GRS and reward evaluation

within the circuitry. Figure 4.7 shows this mapping for three intervals of GRS. The factor

S has been treated as a free parameter in the parameter search (Equation 4.15). Having

determined this mapping, the basic model hypotheses can reproduce the correlation between

GRS value and learning performance as observed at the group-average level (Figure 4.6 B).

It should be noted that the lowered asymptote observed in subgroups with lower gustatory

response scores (Figure 4.6 B) is only partially caused by a decrease in CR probability in

individuals. The main contribution comes from an increased percentage of non-responding

animals (Pamir et al., submitted). The current model does not entail this level of detail (see

Discussion).

Behavioral data from classical conditioning at short or long inter-trial intervals shows that

changes in synaptic efficacy induced in a given conditioning trial require a critical time period

to consolidate (Menzel, 2001). If the time interval between two training trials is too short, this

process will be impaired. We implemented this mechanism by introducing a dependency of the

target weight change on the inter-trial interval (Equation 4.13) in the learning rule (Equation

4.14). As a consequence, the model h1 reproduces poor learning under massed conditioning

trials (Figure 4.6 C) as described in Menzel (2001).
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4.3.2 Model performance in non-absolute conditioning protocols

The previous section described the calibration of the basic model h1 on absolute conditioning

data. The model now captures a wide range of behavioral phenomena in a quantitative way.

The effect of different model parameters and computational functions on behavior can be

studied, and quantitative predictions for untested classical conditioning protocols can be made.

However, the model has no explanatory power so far, because the formalism was designed

to reproduce the behavioral phenomena. In the present section we investigate how well the

calibrated model h1 generalizes to non-absolute conditioning tasks.

Differential conditioning Figure 4.6 G shows the performance of the model h1 for a dif-

ferential conditioning protocol. Notably, the model readily captures the response probabilities

for the rewarded stimulus A, although the learning rate αw was determined on absolute

conditioning data only. This again confirms that learning of rewarded stimuli in absolute and

differential conditioning share the same fast dynamics (Pamir et al. 2011, (submitted)). In

our model, generalization between the rewarded and the unrewarded stimulus depends on our

choice of the connection matrix c (MB encoding scheme), as well as on the overlap between

the two toy stimuli. Treating the overlap as a free parameter allows fitting the amount of

generalization observed in the behavioral traces (Figure 4.6 G). For overlap = 0.8, 100 KC

will be activated exclusively by stimulus A, 105 KCs will be activated exclusively by stimulus

B, and 68 KCs will be activated both by the presentation of stimuli A in rewarded trials, and

by the presentation of stimulus B in unrewarded trials (Figure 4.3). (The latter population is

responsible for the generalization between stimulus A and B. Changing the stimulus overlap

results in a vertical shift of CR probabilities to stimulus B.)

The model so far captures the approximate degree of generalization, however it cannot

explain the increase in discrimination between rewarded and unrewarded stimuli which is

typically observed in differential conditioning at high odor concentrations. We now introduce

two biological mechanisms that may be responsible for the observed increase in discrimination

over training trials.

(1) Several studies found evidence for reward dependent plasticity during differential

conditioning in the antennal lobe (Faber et al., 1999; Fernandez et al., 2009; Rath et al.,

2011). We here implement a simple stimulus decorrelation mechanism by shifting stimulus

B by the phase ∆overlap after every second conditioning trial. (Hence after the experience

of a rewarded an an unrewarded trial.) Treating ∆overlap as a free parameter we find that

a phase increment of ∆overlap = 0.05 is compatible with the observed behavioral dynamics

(Figure 4.8 A). (See discussion for more sophisticated implementations of reward-dependent

pattern decorrelation mechanism in the antennal lobe.)

(2) As a second biological mechanism we consider the possibility that the Mushroom body

stores information about unrewarded stimuli in the form of inhibitory synaptic weights. In
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analogy to Equation 4.12, we implement this hypothesis by assuming that activity in the KCs

which is not followed by a reward induces a target inhibitory weight in trial T :

winhibit, STMi (T ) = 0.017
tend∑

t=tstart

KCi(t). (4.17)

Negative weight changes are then implemented by the following rule for inhibitory learning:

wi(T + 1) = wi(T )− αinhibit fSTM
(
winhibit ,STMi (T )

)
, (4.18)

where αinhibit ∈ [0, 1] is the inhibitory learning rate, and the maximum negative synaptic

weight is set to -1.3. (Alternatively to this formulation with negative synaptic weights, one may

implement a second inhibitory MB output pathway targeting a second extrinsic neuron that

inhibits the first one.) In order to fit this extended model to the differential conditioning data,

we first set the overlap between stimulus A and B to 0.9, which ensures a correct degree of

generalization on trial T = 2 (Figure 4.8 B). We then treat both the learning rate αw and the

inhibitory learning rate αinhibit as free parameters (Equation 4.16) and find that the parameter

combination (αw = 0.82, αinhibit = 0.27) best reproduces the behavioral observations (Figure

4.8 B). Figure 4.3 C shows the KC stimulus encoding scheme for this simulation. In rewarded

trials (stimulus A), a total of 168 KCs is activated and hence undergoes positive changes in

synaptic weights. In unrewarded trials (stimulus B), 111 KCs that were already activated by

stimulus A are again active and undergo relatively small negative changes in synaptic weight.

In addition, 55 KCs which are exclusively active to stimulus B gain negative synaptic weights.

The net effect is an increase in discrimination over trials as observed in experimental data.

In summary both decorrelation in the antennal lobe, and inhibitory learning in the

Mushroom body are compatible with behavior. Importantly, each of the two model extensions

has its own distinctive fingerprint under changed conditioning protocols. For example, the

second extension can also explain a retarded acquisition after a pre-exposure to unrewarded

stimuli, as observed in a study by Chandra et al. (2010), while the first extension will not

account for this observation.

Figure 4.6 H and I show observed and simulated behavior for differential conditioning

at low odor concentrations, and with mixture stimuli. The data does not provide evidence

for an increase in discrimination over training trials, and consequently none of the two

mechanisms implemented above was presumably operating under these more difficult learning

tasks. It should be noted that unlike for all other datasets considered so far, the percentage

of non-responders for the two differential conditioning datasets was not excluded, because

the raw data was not available. Notably, we obtain an accurate fit between observed and

simulated behavior if we rescale the behavioral traces by a factor of 1.3, which corresponds

to excluding a hypothetical population of 23% non-responders (Figure 4.9 A). Hence, the
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model h1 which was calibrated on absolute conditioning data provides an explanation for this

differential conditioning experiment: The model suggests a biologically plausible high degree

of generalization between rewarded and unrewarded stimuli at low odor concentrations, and

no operating mechanism for stimulus differentiation during training. It should be noted that

the original study by Fernandez et al. (2009) found a significant degree of discrimination in a

subsequent test phase, which may be explained by a retarded discrimination mechanism.

Negative and positive patterning We here consider two datasets on negative patterning.

In the first dataset only one of the two stimuli of the unrewarded compound stimulus AB

was presented with reinforcement (Figure 4.6 J). In the second dataset both stimuli A and B

were presented with reinforcement (Figure 4.6 K). Treating the overlap between stimuli A and

B as a free parameter (Equation 4.15, overlap = 0.5), we can readily explain the observed

learning dynamics in the first dataset by the model h1. Interestingly, the model suggests

that the observed discrimination between rewarded (A) and unrewarded (AB) stimuli in this

protocol results from only moderate generalization, however not from an active discrimination

mechanism.

For the second negative patterning dataset, the model can explain a constant degree

of discrimination between rewarded (A,B) and unrewarded stimuli (AB), however it is not

compatible with the decreasing CR probabilities towards the end of the conditioning phase

(Figure 4.6 K, T > 12). We recognize that our choice of MB encoding scheme creates a large

substrate for inhibitory learning. For overlap = 0.5, 174 KCs are active exclusively to the

compound stimulus AB (Figure 4.3 D). Adding this mechanism to the basic model h1 allows

to capture the decrease in CR probabilities to the unrewarded compound stimulus (Figure

4.9 B). As an alternative, we also found that a gradual decrease of AL activity to all stimuli

increases the compatibility of simulated and observed behavior for this protocol (traces not

shown). This decrease of AL activity may stem from a failed attempt to categorize between

rewarded and unrewarded stimuli in the antennal lobe, which is presumably impossible during

negative patterning. The implementation of biologically inspired categorization mechanisms

in the AL may be the focus of future work (see Discussion).

The basic model h1 can explain a constant degree of discrimination between rewarded

(AB) and unrewarded (A,B) stimuli observed in positive patterning (Figure 4.6 L). Again,

this is not a result of an active mechanism that learns to discriminate between non-rewarded

elemental stimuli and rewarded compound stimuli, but simply results from the amount of

generalization in our network. We also noticed that discrimination in positive patterning was

high over a wide range of possible stimulus overlaps, and hence “easier to learn” than negative

patterning, which resembles experimental observations in the fruit fly (Young et al., 2011).

A further analysis of learning during negative and positive patterning would require the raw

data sets, because only then the behavior of responding animals to unrewarded stimuli can be

assessed. Unfortunately the raw data was not available at the time of this study.
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4.4 Discussion

The goal of this study was to capture and explain behavior as observed in a variety of different

conditioning protocols in the honeybee by a set of computational functions in a neuronal

network model. After calibrating this model on behavioral data from absolute conditioning,

we explored how well our model generalized to non-absolute conditioning protocols, such as

differential conditioning and negative or positive patterning. We found that the basic model

could readily account for behavior in non-absolute conditioning paradigms, if the degree of

odorant similarity between the two employed toy stimuli was treated as a free parameter.

We also explored two possible model extensions that were necessary to account for a gradual

improvement of discrimination in differential conditioning, namely stimulus decorrelation in

the antennal lobe, and inhibitory learning at the Mushroom body output. As we showed, both

mechanisms were compatible with behavior in differential conditioning. Due to the increased

model complexity, this result is little surprising, however our approach enables us to further

test the eligibility of both extended models on any other conditioning protocol. For example,

the second model extension (h1+MB inhibitory learning) also correctly predicts observations

in other protocols, such as latent inhibition (Chandra et al., 2010) or extinction (Stollhoff

et al., 2005), whereas the first model extension (h1+AL learning) cannot account for these

findings.

The process of finding the best general model of associative learning during PER condi-

tioning in honeybees naturally requires a more complete set of behavioral data first. Several

important training conditions are missing in the current study, such as blocking (Guerrieri

et al., 2005; Smith and Cobey, 1994; Gerber and Ullrich, 1999), reversal learning (Hadar

and Menzel, 2010), backward conditioning (Hellstern et al., 1998), or conditioned inhibition.

Quantitative predictions can be readily computed for these additional training conditions

and compared to the actual behavioral observations. For example, for a blocking protocol, in

which prior training to one stimulus (A+) is followed by training to a compound stimulus

(AB+), our model would predict facilitated learning of the compound stimulus (traces not

shown). It should be noted that this behavior is a consequence of our learning rule which does

not make use of a total value signal. In contrast, Rescorla-Wagner-like learning rules in which

learning is driven by the difference between the reward and the value of all present stimuli

predict an impaired learning process for the compound stimulus. In our model, value could be

implemented by post-synaptic activity in a three factor learning rule (Young et al., 2011).

In our study we employed group-averaged CR probabilities over trails as target traces

for the simulations (Equation 4.15). For some of the protocols, in which the raw data was

available, we excluded the proportion of non-responders from the raw data prior to computing

these targets. For cases in which the raw data was not available, we exemplified that rescaling

the target traces may substitute the exclusion of non-responders at the level of raw data

(Figure 4.9 A). These procedures removed a large proportion of learning heterogeneity from
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each dataset. However, several subtle differences in learning performance between individuals

are not captured in these traces, and consequently missed by the model. For example, in

absolute conditioning, animals responding early (tfirstCR = 2) show higher subsequent CR

probabilities than animals responding later (tfirstCR = 3, 4) (Pamir et al. submitted). To

give a second example, in differential conditioning, animals responding early also show higher

amounts of initial generalization to the unrewarded odor, than animals responding later (Pamir

et al. submitted). (This trend was also observed in another unpublished dataset which was

recorded by Neloy Kumar Chakraborty). Our current model does not address these subtle

differences in individual behavior among responding animals. Alternative to the employed

error function (Equation 4.15), one may also compute an error on the basis of the raw data,

which then allows formulating model hypotheses that can capture inter-individual differences

in learning performance. However, this approach requires the raw data for all simulated

conditioning protocols, which was not available at the time of this study. It should be noted

that when comparing behavioral data from different studies our approach suffers from a typical

high degree of variability across different PER conditioning experiments (Matsumoto et al.,

2012; Frost et al., 2012). Preferentially, our study would build on a collection of data which

was recorded in parallel, as in similar theoretical work in the fruit fly (Young et al., 2011;

Wessnitzer et al., 2012). This would then also enable a more thorough analysis of the effect

of stimulus parameters such as odorant similarity or relative size on learning under different

conditions. Future experiments in this direction are under way.

Smith et al. (2012) identified an important computational problem in the in honeybee

brain: “How can a neuropil (e.g. the MB) that receives a reinforcement (teaching) signal

encode a memory for a pattern of input when that pattern may be changing as a result of the

same reinforcement signal operating at an earlier stage of processing (e.g. the AL)?” In one of

our model extensions (h1+AL learning) we implemented a simple scheme for such a distributed

plasticity mechanism, however at a high level of abstraction. More detailed hypotheses on

reward dependent preprocessing in the antennal lobe exist (Rath et al., 2011), which may

be implemented in our model. Theoretical studies also described non-reward dependent

pre-processing (Linster et al., 2005; Schmuker et al., 2011) and plasticity in the antennal

lobe (Assisi et al., 2012). Studying plasticity mechanisms that act on biologically realistic

spatio-temporal odor traces in the antennal lobe (Fernandez et al., 2009) will ultimately require

a spiking implementation of the current model.
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4.5 Tables and table captions

Conditioning protocol Key finding Reference

Absolute conditioning Individuals rapidly acquire a stable
CR

Pamir et al. 2011, submitted

Absolute conditioning with
GRS pretest

Honeybees with high GRS show op-
timal learning, honeybees with low
GRS show poor learning

Scheiner et al., 2001b, 2004;
Pamir et al., submitted

Massed training trials Short inter-trial-intervals reduce ac-
quisition

Menzel, 2001; Pamir et al.,
submitted

Trace conditioning Increasing the CS-US gap results in
poorer acquisition

Szyszka et al., 2011; Pamir et
al., submitted

Latent inhibtion Pre-exposure to the unrewarded CS
results in retarded acquisition

Chandra et al., 2010

Differential conditioning Response probabilities to the CS+
are unaffected, response probabilities
to the CS- decrease over trials

Pamir et al., submitted

Differential conditioning with
low concentrations

Poor discrimination between CS+
and CS- during training

Fernandez et al., 2009

Differential conditioning to
mixtures at different ratios

Poor discrimination between CS+
(9:1) and CS- (1:9) during training

Fernandez et al., 2009

Negative patterning Honeybees show differential re-
sponses, but no increase in discrimi-
nation

Unbublished data by Paul
Szyszka

Negative patterning Honeybees show differential re-
sponses, but no increase in discrimi-
nation

Deisig et al., 2001

Positive patterning Honeybees show differential re-
sponses, but no increase in discrimi-
nation

Deisig et al., 2001

Table 4.1 Key findings on behavioral plasticity during classical conditioning of the proboscis
extension response.
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Protocol ITI (min) Trial sequence Odors Odor

conc.
Odor
onsets (s)

Odor dur.
(s)

Scrose
conc.

Reward
onset

Reward
dur.

absolute 30 6×A+ 6- or 7-
pentadecene

0 5 30% 3 4

absolute
GRS test

5 10×A+ citral 1µl/10ml 0 4 30% 3 2

massed 0.5 12×A+ 2-hexanol 0 4 1.25 M 3 3
delay 10 6×A+ 1-nonanol 1:100

mineral oil
0 6 1 M 5 3

trace 10 6×A+ 1-nonanol 1:100
mineral oil

0 0.5 1 M 1,5,10 3

differential 15 6×(A+,B-) 1-hexanal,1-
octanol

0 5 30% 3 4

differential
low conc.

6 A+,B-,B-,A+,B-
,A+,A+,B-,A+,B-
,A+,B-

1-hexanol,
2-octanone

0.02 M 0 4 2 M 3 3

differential
mixture

6 A+,B-,B-,A+,B-
,A+,A+,B-,A+,B-
,A+,B-,B-,A+,B-,A+

9:1, 1:9, (1-
hexanol,2-
octanone)

0.02 M 0 4 2 M 3 3

negative
patterning
only A+

10 5×(A+,AB-) 0 6 5 3

negative
patterning

8 6×(A+,B+,AB-,AB-) linalool,
limonene,
1-hexanol,2-
octanol

pure 0 6 1.25 M 3 3

positive pat-
terning

8 6×(AB+,AB+,A-,B-) linalool,
limonene,
1-hexanol,2-
octanol

pure 0 6 1.25 3 3

Table 4.2 Summary of parameters of the simulated classical conditioning protocols. Abbreviations: inter-trial interval (ITI), seconds
(s), molar (M);
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Parameter Value Description

NPN 49 Number of projection neurons
NKC 5000 Number of Kenyon cells
NEN 1 Number of Extrinsic neurons
pPN→KC 0.204 Connection probability between PNs and KCs
θKC 1.5 Activity threshold of KCs
αe 0.05/s Growth rate of KC eligibility trace
τe 6.9 s Decay constant of KC eligibility trace
αoct 0.03/s Growth rate of octopamine signal
τoct 0.5 s Decay constant of octopamine signal
τSTM 36 s Time constant of short-term consolidation
aEN 0.006 Scaling factor of EN activity
ENmax 0.95 Maximal EN activity
S 1.0 Sensitivity to sucrose
αw 0.68/trial Learning rate of KC weights

Table 4.3 Summary and description of parameters of the basic model h1.
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4.6 Figures and figure captions

Figure 4.1 A neuronal network approach to cognitive neuroethology in the honeybee. Cogni-
tive learning faculties of honeybees have been assessed in a multitude of classical conditioning
protocols. The employed conditioning protocols (e.g. differential conditioning as shown)
define the sensory input to the neuronal network model at each trial. The sensory input is
transformed to motor output via a series of computations, that mimic the computations in
the honeybee brain. The motor output from the network is compared to the experimentally
observed behavior during classical conditioning. Physiological observations on olfactory stim-
ulus processing and neuronal plasticity in the honeybee brain constrain the computational
functions performed by the neuronal network model.



Chapter 4 Page 80

PN

KC

EN

Antennal
lobe

w
c

OCT

Mushroom
body

Figure 4.2 Network geometry of the basic model h1. On each trial, olfactory stimuli define
a spatial activation pattern in the antennal lobe, which is represented by a 2-dimensional
grid of size 7× 7. 49 projection neurons (PN) project glomerular activation patterns to the
Mushroom body Kenyon cells (KC) via a connection matrix c. Each KC receives input from
exactly 10 PNs. All 5000 Mushroom body KCs connect to a single extrinsic neuron (EN) via
a synaptic weight vector w. An octopaminergic neuron (OCT) provides a reinforcement signal
to the KC synaptic weights. The activation of the extrinsic neuron equals the probability for
a proboscis extension.
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Figure 4.3 The effect of stimulus overlap on Mushroom body encoding. A Stimuli set
employed for the simulations. The glomerular activation patterns for odor A and B are defined
by the positive part of a sinus function (Equation 4.1, 4.2). The overlap in glomerular activation
between odor A and B is adjusted by shifting odor B to the right side, the depicted case has
an overlap of 0.5. The compound stimulus AB is defined by adding the activation patterns
of the two stimuli. Activation patterns of all three stimuli are transformed by a logarithmic
transfer function (lower panel) (Equation 4.3). Activation patterns can be displayed on a
7× 7 dimensional grid, that mimics the spatial activation patterns in the antennal lobe. B
Pseudo-randomized connectivity matrix c between 49 projection neurons and 5000 Kenyon
cells. A white entry denotes a connection strength of unity, and a black entry denotes a
connection strength of zero. The connection probability equals pPN→KC = 0.204. Each
Kenyon cell receives input from exactly 10 projection neurons, and each projection neuron
connects to 1020 Kenyon cells. C MB encoding scheme for the elemental stimuli A and B as
a function of stimulus overlap between A and B. D MB encoding scheme for the elemental
stimuli A and B, and the compound stimulus AB as a function of stimulus overlap between A
and B. The small pictogram shows the encoding scheme without normalizatin in the antennal
lobe. No Kenyon cells are exclusively active to the elemental stimuli A and B. Values learned
for the elemental stimuli are always retrieved when the compound AB is presented.
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Figure 4.4 A Example traces for an odor (first trace) and a reward stimulus (second trace).
The third trace shows the eligibility trace for the change in synaptic weight of a KC activated
by odor A. The forth trace shows the trace of the octopamine concentration at the synapse
signaling reinforcement. The weight change depends on the temporal overlap between the
eligibility trace and the reinforcement signal. B Outcome of the parameter search for the
learning rate αw and the decay constant τelig of the eligibility trace. Shown are the summed
normalized squared errors (4.16) estimated on five absolute classical conditioning protocols
(absolute, delay, trace 1s, trace 5s, trace 10s). The red square marks the parameter combination
of the basic model h1, which minimizes the error (τelig = 6.9s and αw = 0.716).
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Figure 4.5 The model h1 is compatible with the behavioral features of individual learning
during absolute classical conditioning, as described in Pamir et al. (submitted). The left
column shows experimental data and the right column shows simulated data for the protocol
absolute. Ai, Aii Binary CR matrix. A gray entry denotes no CR, and a black entry denotes a
CR. Bi, Bii Group-average response probabilities (p) and conditional probabilities for animals
showing their first CR on the second (p(tfirstCR=2)), or third trial (p(tfirstCR=3)) respectively.
Ci,Cii Histograms of first CR latencies in trial-time.
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Figure 4.6 Observed and simulated dynamics of associative learning in several different
classical conditioning protocols. The black curves show the experimentally observed CR
probabilities, and the red curves show the simulated CR probabilities of the basic model h1.
For the non-absolute classical conditioning protocols (G-L), the overlap between the two odors
A and B was treated as a free parameter. Stimulus onsets and durations in each trial are
depicted by colored pictograms. [Caption continues on next page]
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[Continuation of Figure 6 caption] A A typical absolute conditioning protocol. The colored
pictogram shows the first trial. Behavioral raw data by Neloy Kumar Chakraborty. B Absolute
conditioning protocol with sucrose sensitivity pretest. The gustatory responsiveness score
(GRS) of individuals was measured before the conditioning phase. Behavioral raw data by
Ricarda Scheiner (Scheiner et al., 2001b). The chosen learning rule (Eq. 4.14) captures the
correlation between GRS and learning performance. C Absolute conditioning protocol with
short inter-trial intervals (massed conditioning trials). Behavioral raw data by Randolf Menzel
(Menzel, 2001). A triggered change in synaptic weight requires a certain time to consolidate.
Implementing this mechanism (4.13) captures the dependence of learning performance on
the inter-trial-interval. D, E Delay conditioning and trace conditioning at three different
inter-stimulus intervals (1, 5, 10 seconds). Behavioral raw data by Paul Szyszka (Szyszka
et al., 2011). By implementing an eligibility trace in the KCs, the basic model captures the
dependence of the learning performance on the inter-stimulus interval. F Latent inhibition
protocol (pre-conditioning phase with 40 unrewarded trials (A-) is not shown). The behavioral
traces were transcribed manually from Figure 3B in Chandra et al. (2010). The basic model is
not compatible with the observation of a retarded acquisition after 40 unrewarded conditioned
stimuli, as described in Chandra et al. (2010). G Differential conditioning protocol at high odor
concentrations. The colored pictogram shows the first two trials. Behavioral raw data by Neloy
Kumar Chakraborty. The basic model captures the learning dynamics of the rewarded stimulus
A+, however it does not capture the gradual increase in discrimination between rewarded
(A+) and unrewarded stimuli (B-) which is typically observed in differential conditioning.
H, I Differential conditioning with odors at low concentrations and mixture stimuli at low
concentrations. The behavioral traces were transcribed manually from Figure 1 A and B in
Fernandez et al. (2009). The basic model captures the poor degree of discrimination during
the training phase for the two conditions. J Negative patterning protocol in which only one of
the two stimuli (A+) of the unrewarded compound (AB-) was rewarded. Behavioral raw data
by Paul Szyszka (unpublished). The basic model captures the learning dynamics observed
under this protocol. K, L Negative and positive patterning. The colored pictograms show the
first three trials. The behavioral traces were transcribed manually from Figure 1B and 2B in
Deisig et al. (2001). The basic model captures stronger responses to the rewarded than to the
unrewarded stimuli in negative and positive patterning. However, the model does not account
for a gradual decline of response probabilities observed in the two protocols.
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Figure 4.7 Mapping between experimentally assessed gustatory response scores (GRS) and
reward evaluation within the neuronal network model h1.
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Figure 4.8 Two different hypotheses can explain the gradual increase in discrimination
between rewarded and unrewarded stimuli observed during differential conditioning. A
Employed conditioning protocol for experiments and simulations. B The basic model h1
captures the behavioral data if one assumes an additional learning mechanism in the antennal
lobe, which decreases the overlap between rewarded and unrewarded stimuli. C As an
alternative, the basic model plus an inhibitory learning mechanism in the Mushroom body
KCs also captures the behavioral data.
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Figure 4.9 Additional assumptions that increase the compatibility of the basic model h1 with
behavioral data. A The basic model captures the behavior observed in differential conditioning
with odors at low concentrations if one excludes a hypothetical proportion of non-responders
from the dataset. Since the raw data was not available, we rescaled the behavioral traces by a
factor of 1.3, which corresponds to excluding a hypothetical proportion of 23% non-responders.
Data origin as in Figure 4.6 H. B The gradual increase in discrimination between rewarded
(A+,B+) and unrewarded stimuli (AB-) observed in negative patterning can be captured by
adding an inhibitory learning mechanism to the basic model. Data origin as in Figure 4.6 K.



Chapter 5

General discussion

5.1 A new perspective on behavioral data and learning in

the honeybee

It has long been recognized that honeybees rapidly learn the association between the conditioned

and unconditioned stimulus during classical conditioning of the proboscis extension response.

Bitterman et al. (1983) found that about 30% to 80% of the honeybees in each group of

trained animals showed a conditioned response already on the second trial. In order to clarify

the dynamics of this seemingly fast learning process, the authors of this study looked at

group-average learning curves in different training groups, and suggested that the associative

strength would probably require several, possibly eight, conditioning trials in order to reach

its asymptotic value. In Chapters 2 and 3 of this thesis I presented an alternative view on the

behavioral data in the honeybee. As was impressively proven for several learning paradigms

in vertebrates, group-average learning curves or acquisition functions can hide the actual

dynamics of learning in the individual (Gallistel et al., 2004). As I showed, the same applies to

the honeybee. Analyzing first-order serial correlations in conditioned responses I showed that

average behavior does not represent individual behavior during classical conditioning of the

proboscis extension response (Chapter 2). Importantly, and as also noted by Scheiner et al.

(2005), the high degree of inter-individual variability found in learning performance questions

the predominant use of group-average memory retention scores in the experimental literature.

To provide an alternative to the group-average perspective on learning and memory in the

honeybee, Chapter 3 presents a novel parametric description for associative learning. In a

given dataset, individual learning can be characterized by three parameters: (1) The ability of

the individual to learn the task, as indirectly measured by the percentage of non-responders, (2)

the response latencies of individuals measured in trial time, (3) and the stability of subsequent

responses in responding animals. Based on these parameters, Chapter 3 presented a detailed

analysis of the dynamics of individual learning in a large collection of data on absolute

89
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and non-absolute conditioning. From this analysis followed that individual behavior was

characterized by a rapid and stable acquisition of the conditioned response. On average, 94%

of all animals showing any response at all acquired the conditioned response within the first

four conditioning trials. Subsequent responses in these animals were very stable, irrespective

of when the conditioned response had been acquired during conditioning. In each data set,

a stable proportion of animals (typically 10% to 30%) did not respond in any of the trials.

Based on experimental work by Ricarda Scheiner (Scheiner et al., 1999, 2001a), I showed that

non-responders were characterized by a poor sensitivity to sucrose.

Given these results, the group-average learning curve has to be reinterpreted as follows:

(1) The gradual rise of the curve on the first few conditioning trials cannot be taken as

behavioral evidence for a gradual increase in associative strength in individuals. The gradual

rise simply reflects the trial-by-trial recruitment of honeybees with a stable response. (2)

The asymptote of the group-average learning curve reflects the percentage of non-responders

in each data set, as well as the actual stability of the conditioned response in responding

animals. However, it does not reflect a performance asymptote of individual learning. Shifting

the focus of analysis from the training phase to memory, in Chapters 2 and 3 I found that

memory retention in individuals complies with a constant continuation of behavior expressed

during the conditioning phase. Importantly, this means that group-average memory retention

does not represent memory strength or stability in individuals, but mainly the percentage of

animals that acquired a stable CR during the training phase.

This new perspective on learning and memory at the level of individuals called into question

some long-held assumptions about the effect of training parameters on the induction of different

memories in the honeybee. The current standard model distinguishes between single-trial

and three-trial induced memories, which are characterized by different properties both at

the behavioral and physiological level of analysis (Menzel, 1990; Müller, 2012; Menzel, 2012).

At the group-average behavioral level, evidence for this memory model was provided by the

observation of higher memory retention after three-trial conditioning than after single-trial

conditioning when tested 24 hours after training (Menzel, 1990, Fig. 9.8). In an experimental

collaboration with Paul Szyszka from the University of Konstanz I could show that memory

retrieval at this time point did not depend on the number of conditioning trials per se.

Animals that underwent single-trial conditioning showed equal levels of memory retention and

discriminatory power as animals that underwent two-trial or four-trial conditioning, given that

animals acquired the conditioned response during training (Chapter 3). Taken together, no

behavioral evidence has been found in this thesis that more training results in a more stable

or specific behavioral expression of memory in individuals. On the contrary, typically early

responders were found to show slightly higher levels of response probabilities in subsequent

trials than late responders (Chapter 3).

Regarding evidence from biochemistry (as reviewed in Müller, 2012), the role of training
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intensity on molecular events in individual brains remains unclear. From the experimental

literature, it is difficult to understand to what extent individual behavior has been factored into

the biochemical analysis of brain tissues from honeybees that underwent classical conditioning.

To give an example, Müller (2000) found a prolongated activation of protein kinase A after

three-trial, but not after single-trial conditioning. The author employed fast-freezing techniques

(Hildebrandt and Müller, 1995), which allowed capturing the molecular state of the brain

directly after training. However, brain tissues were analyzed at the group-average level,

probably without knowledge of individual behavior. One can speculate that a more informative

or possibly different experimental result could be obtained by comparing molecular signatures

of memory consolidation in individuals with a conditioned response history of 0(1) and 0111

(see Chapter 3). This would then elucidate the effect of training intensity on the induction of

molecular processes in the actual individual brain, in contrast to the described effects on the

“group-average brain”. The same sort of speculative reasoning may be applicable to the current

model of memory in the fruit fly (Davis 2011), which has been predominantly established

at the group-average level. It seems that only recently studies in the fruit fly (Chabaud et

al., 2010), and in the honeybee (Roussel et al., 2010; Rath et al., 2011; D’Albis et al., 2011;

Mota and Giurfa, 2010) have started to incorporate individual behavior in their analysis of

experimental data, and maybe this thesis provides further impulses in this direction.

5.2 What can be learned about learning by computational

modeling?

Understanding how neuronal functioning in different areas of the insect brain gives rise to

associative learning in the behaving animal is a complex puzzle to solve. As pointed out by

two recent theoretical studies, solving this puzzle requires a computational framework, in

which both behavioral and neurophysiological evidence can be integrated (Smith et al., 2012;

Wessnitzer et al., 2012). For this, the establishment of a detailed understanding of the temporal

dynamics of associative learning in individual animals seems to be a basic prerequisite. In

this thesis, I tried to establish a refined account of behavioral plasticity as observed during

classical conditioning of the proboscis extension response in the honeybee (Chapters 2, 3). In

turn, this had direct consequences for the theoretical account of associative learning at all

levels of model complexity (Chapters 2, 3, 4).

The Rescorla-Wagner model (Rescorla and Wagner, 1972), which was originally developed

to conceptualize various behavioral phenomena observed in classical conditioning experiments,

has to date provided an influential theory of associative learning (Dayan and Abbott, 2001;

Gluck and Myers, 2001). Fitting this model to classical conditioning data results in a description

of learning by two parameters: the learning rate, which is assumed to depend on the salience

of the conditioned stimulus and the unconditioned stimulus, and the maximum asymptotic
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value of associative strength supported by the unconditioned stimulus (Rescorla and Wagner,

1972). As I showed in Chapter 2 and 3 of this thesis, the informative value of this approach

crucially depends on how the model is fit to a sample of data from identically treated animals.

In the case of the honeybee, where the probabilistic expression of behavior in the individual

does not follow the group-average performance (Pamir et al., 2011), fitting and interpreting

this theory at the group-average level is erroneous. The Rescorla-Wagner theory, however, can

be easily rescued by fitting the model at the level of individuals, for example by introducing

some sort of learning heterogeneity in the formalism (Chapters 2, 3). By this approach, one

can then compute and illustrate the learning heterogeneity in a sample of honeybees as well

as its modulation under altered experimental conditions (Chapter 3). A final distinction

between different alternative hypotheses on the actual type of heterogeneity was hard to

establish based on the experimental data. Cross-validating different hypotheses against each

other did not reveal a definite result, except that some sort of heterogeneity is absolutely

required to correctly model the data, and that slow learning is not a plausible explanation for

non-responders (Chapters 2, 3). In Chapter 3, I discussed a “final version” of an extended

Rescorla-Wagner model which, considering all experimental evidence, presents the most likely

working hypothesis so far.

As I showed in Chapter 2, the behavioral dynamics of learning in individual honeybees

can also be well captured by a two-state hidden Markov model. However, in contrast to

the Rescorla-Wagner model, in which learning is driven by prediction errors, the Markov

model does not advise any biologically motivated mechanisms for learning. Rather it advises a

dynamical system, defined by a set of constant transition and observation probabilities, which

after the initiation of the experiment relaxes to its equilibrium state. It seems that this type

of model is better suited to study the probabilistic expression of behavior within a constant or

innate behavioral repertoire, as for example observed during chemotaxis in larval Drosophila

(Gomez-Marin et al., 2011).

The modeling approach outlined so far (Chapters 2, 3) provided a better understanding

of the behavioral dynamics of associative learning in individuals. However, it did not make

contact with the experimental literature on neuronal functioning in the insect brain, which

is the goal of building integrative models (Wessnitzer et al., 2012). In Chapter 4 of this

thesis I presented a model hypothesis on olfactory information processing and associative

learning in the honeybee brain circuitry. This model provides a framework for studying the

effect of external stimulus parameters, internal stimulus encoding schemes and computational

principles such as divisive normalization or associative learning rules on the dynamics of

behavioral plasticity observed during various different learning tasks. As was already the case

for the preceding model approach (Chapter 2, 3), a detailed analysis of behavior provided

the basis for this. Computational research in the honeybee can therein draw from an ample

collection of learning data (reviewed in Menzel et al., 2007; Sandoz, 2011) that was recorded
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at the level of individuals over the full time course of the experiment. The same is not

true in Drosophila. Due to differences in methodology, computational studies have to rely

on singular group-average performance scores, typically assessed only after the end of the

training phase (Young et al., 2011; Wessnitzer et al., 2012). This may be problematic for the

computational approach: In learning tasks such as differential conditioning and positive or

negative patterning, a final performance score does not reveal if individuals actually learned

to discriminate rewarded from non-rewarded conditions. A significant performance score may

as well be a sole product of moderate stimulus generalization within the circuitry, as also

noticed by Wessnitzer et al. (2012). As an alternative, in the honeybee, the model constraints

collected for Chapter 4 include explicit temporal dynamics during training, which provides a

more informative behavioral fingerprint of neuronal functioning.

Admittedly, also in the honeybee, the goal of building integrative models suffers from

several limitations and drawbacks. As pointed out in the general introduction of this thesis

(Chapter 1), it is often difficult to establish a causal linkage between findings on neuronal

plasticity in the brain and learning at the behavioral level (Gallistel and Matzel, 2012). This

problem of disparate properties of neuronal and behavioral plasticity is also evident in the

experimental literature in the honeybee. Plasticity is typically detected and quantified by

comparing neuronal activity that was recorded before and after the conditioning phase, and

hence the observed induction time of plasticity rather reflects experimental routines than

biological kinetics. For example, changes in neuronal activity to conditioned and unconditioned

stimuli were observed 24 hours after differential conditioning in the antennal lobe (Fernandez

et al., 2009), and 3 hours after differential conditioning in the mushroom body (Strube-Bloss

et al., 2011). It remains an open question how model constraints on neuronal plasticity during

the actual training phase can be extracted from these findings.

To point to another problem, although behavioral plasticity has been recorded over trials in

individuals, findings on learning are distributed across several decades of learning experiments.

At the same time, the experimental routines have been further developed (Matsumoto et

al., 2012; Frost et al., 2012), and possibly a direct comparison between different findings is

inappropriate. Ideally, the approach detailed out in Chapter 4 would build on a large collection

of data on absolute and non-absolute learning tasks with conserved stimuli sets. Chapter 4

may give advise for future combined experimental and theoretical work in this direction.

To put forward a final objection, computational approaches generally seem to lag behind

experimental research. Following the working hypothesis in the field (Heisenberg, 2003; Gerber

et al., 2004), computational studies have so far located associative learning in the mushroom

body (Huerta and Nowotny, 2009; Wessnitzer et al., 2012). However, memory traces are

distributed in time and space in the insect brain (Davis, 2011; Smith et al., 2012), and recently,

the role of the mushroom body as the site of the memory trace has been challenged (Davis

and Giurfa, 2012). What really can be learned about learning through theoretical approaches
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remains the subject of future work, but possibly a renewed interest in behavioral plasticity

may contribute to solving the puzzle.
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Gerber B, Wüstenberg D, Schütz A, Menzel R (1998) Temporal determinants of olfactory

long-term retention in honeybee classical conditioning: nonmonotonous effects of the training

trial interval. Neurobiology of learning and memory 69:71–8.

Gerber B, Tanimoto H, Heisenberg M (2004) An engram found? Evaluating the evidence

from fruit flies. Current opinion in neurobiology 14:737–44.

Giovanni Galizia C (2011) Honeybee Neurobiology and Behavior Springer.

Giurfa M (2003) Cognitive neuroethology: dissecting non-elemental learning in a honeybee

brain. Current Opinion in Neurobiology 13:726–735.

Giurfa M (2007) Behavioral and neural analysis of associative learning in the honeybee: a

taste from the magic well. Journal of comparative physiology A 193:801–24.

Giurfa M, Sandoz JC (2012) Invertebrate learning and memory: Fifty years of olfactory

conditioning of the proboscis extension response in honeybees. Learning & Memory 19:54–66.

Gluck MA, Myers CE (2001) Gateway to Memory: An Introduction to Neural Network Modeling

of the Hippocampus and Learning (Issues in Clinical and Cognitive Neuropsychology) A

Bradford Book.

Gomez-Marin A, Stephens GJ, Louis M (2011) Active sampling and decision making in

Drosophila chemotaxis. Nature communications 2:441.

Guerrieri F, Schubert M, Sandoz JC, Giurfa M (2005) Perceptual and neural olfactory

similarity in honeybees. PLoS biology 3:e60.

Hadar R, Menzel R (2010) Memory formation in reversal learning of the honeybee. Frontiers

in behavioral neuroscience 4:186.

Hammer M (1993) An identified neuron mediates the unconditioned stimulus in associative

olfactory learning in honeybees. Nature 366:59–63.

Hanson S, Killeen P (1981) Measurement and modeling of behavior under fixed-interval

schedules of reinforcement. J. Exp. Psychol.: Anim. Behav. Process. 7:129–39.



Bibliography Page 99

Hebb DO (1949) TheOrganization of Behavior: A Neuropsychological Theory. New York:

Wiley.

Heisenberg M (2003) Mushroom body memoir: from maps to models. Nature reviews.

Neuroscience 4:266–75.

Hellstern F, Malaka R, Hammer M (1998) Backward inhibitory learning in honeybees: a

behavioral analysis of reinforcement processing. Learning & Memory 4:429–444.

Hildebrandt H, Müller U (1995) PKA activity in the antennal lobe of honeybees is regulated

by chemosensory stimulation in vivo. Brain research 679:281–288.
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