6 Drag in Double-Layer Systems

The advent of sophisticated epitaxial growth techniques has enabled the fabri-
cation of double-layer (or, more generally, multi-layer) GaAs/AlGaAs quantum
well heterostructures and opened the road towards an investigation of the inter-
action between two or multiple 2DEGs. When two parallel 2DEGs are brought
into close proximity, a current in one of the layers is able to induce a response
in the other layer.! This effect is due to interaction between the electrons in
the active (current-carrying) and the passive (responding) layer and was first
predicted in a semiconductor-insulator-semiconductor system by Pogrebinskii
[79] and in heterolayer structures by Price [80]. In general, the response of the
passive layer consists of a current, which is induced by the electrons of the ac-
tive layer through Coulomb and/or electron-phonon interaction. Naively, one
would expect — on the basis of momentum conservation — that the electrons
in the active layer “drag along” the electrons in the passive layer, leading to
a current which points in the same direction as that in the active layer, hence
the name of the effect: “drag”. If the current induced in the passive layer flows
in the same direction as the current in the active layer, one speaks of positive
drag.

Although this simple scenario is valid in numerous situations, there are situ-
ations for which this picture ceases to hold true. By applying a perpendicular
magnetic field to the bilayer system, the behavior of drag can be changed dra-
matically. A prominent example is the case of two quantum Hall layers close
to half filling, which form a new, strongly correlated ground state reminiscent
of an excitonic condensate [81]. Another example is the oscillating sign of drag
observed in high Landau levels at sufficiently low temperatures. This anoma-
lous drag effect was subject to a number of experimental studies [82, 83, 84] and
can be explained as an effect of different fillings of the two layers [85, 86, 87].

The information provided by drag measurements in a perpendicular mag-
netic field is complementary to conventional transport measurements and thus
constitutes a valuable additional tool for the investigation of quantum Hall
systems. It directly probes the electron-electron interaction between different
layers and provides information about inelastic scattering and correlations be-
tween the layers. Most experimental and theoretical work is focused on the
study of Coulomb drag, i.e. the effect of Coulomb interlayer interactions, which
is dominant for small interlayer separations d. For larger d, the effect of the
Coulomb interaction gets weaker up to a point where also phonon interaction
or other types of interaction might become relevant.

In what follows, we first address a number of important conventions adopted
when talking about drag phenomena (Section 6.1). We then discuss the state of

IThe interlayer spacing should still be large enough to prevent direct charge transfer between
the two subsystems by tunneling.
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Figure 6.1: Sketch of a double layer system. The two parallel layers, separated by
a distance d, behave as 2DEGs. Drag experiments are carried out in systems of this
type by applying a current to one of the layers and measuring the induced current in
the other layer (or, equivalently, the induced voltage in an open-circuit setup).

experiment and theory of Coulomb drag in Section 6.2, focussing on the oscillat-
ing sign of drag for two 2DEG layers of mismatched densities. In Section 6.3, we
provide a brief introduction to phonon drag. Section 6.4 introduces the linear
response theory for frictional drag. All considerations serve as background for
our study of phonon drag in high Landau levels presented in Chapter 7. Tech-
nical details, such as the analytical continuation of the drag conductivity and
the so-called triangle vertices, as well as an introduction to the self-consistent
Born approximation (SCBA) are deferred to Appendices A-D.

6.1 Conventions

Conventionally, drag experiments on double-layer systems are carried out in
an open-circuit setup, which differs slightly from the simple picture discussed
above. Instead of a current, a voltage V' develops in the passive layer to balance
the momentum transfer from the active layer. For like (unlike) charges of the
current carriers in both layers, the voltage sign in the passive layer is expected
to be opposite (equal) to that of the voltage in the active layer. In accordance
with the convention adopted in the literature, we refer to the sign resulting for
like (unlike) charges as positive (negative) drag.
In this way, the drag resistivity (or transresistivity) is defined as

D E2,i
Pi; W (6.1)
where the indices 1, 2 label the layers and ¢, j the cartesian x- and y-components.
j1 denotes the current in the active layer and FE5 the induced electric field in
the passive layer. Within the Kubo formalism, it is more convenient to study
the drag conductivity '
J2,i
UZ] = —E—l’] . (62)
Experiments, in turn, usually measure the dc drag resistivity ,05 , which is
related to the drag conductivity via

1 2
oD =py) of o2 (6.3)
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Figure 6.2: Drag resistivity (or transresistivity) pr (bottom curve) and diagonal
resistivity p.. (top curve) as a function of magnetic field B for matched densities of
the two 2DEG layers (n; = ng = 2.13 x 10*! cm~2) from an experiment in high LLs
by Lok et al. [83]. The curves were taken at temperatures T' = 0.26 K (solid lines) and
T = 1K (dotted lines). The inset shows pr at the lower temperature, 7' = 0.26 K, and
the appearance of spin-split double-peak structures for magnetic fields B 2 0.11 T.
This figure has been taken from Ref. [83].

(1) (2)

where p,,” and p,;’ are the usual resistivities of the two layers.?

The main parameters governing the drag response of a double-layer system
are:

e the interlayer spacing d, controlling the strength of the interlayer interac-
tion,

e the charges ¢1, ¢2 (and, possibly, the spins) of the carriers in active and
passive layers,

e the carrier densities ni, no and, in a perpendicular magnetic field, the LL
filling factors v, vy of the two layers.

2The usual minus sign corresponding to standard tensor inversion is absent in this expression
due to our specific choice of sign conventions. Based on this, the transresistivity is positive
in the absence of a magnetic field.
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Figure 6.3: Drag resistivity (or transresistivity) pr (bottom curve) and diagonal
resistivity p.. (top curve) as a function of magnetic field for mismatched densities
of the two 2DEG layers (n; = 2.27 x 10 em™2, ny = 2.08 x 10! ¢cm™?) from an
experiment by Lok et al. [83] at T = 0.25 K. The inset shows the transresistivity at
fixed magnetic field B = 0.641 T as a function of filling-factor difference Av. This
figure has been taken from Ref. [83].

6.2 Coulomb Drag

In the regime of high Landau levels, the sign of the drag resistivity depends
on whether the densities of the two 2DEG layers are matched (n; = ng) or
mismatched (n; # na). These two cases are shown in Figs. 6.2 and 6.3, re-
spectively. For matched densities, the drag resistivity pp (denoted by pr in
the figures, the subscript T' denoting the transresistivity) is always positive (see
Fig. 6.2). For increasing magnetic field, Fig. 6.2 shows the usual Shubnikov-
deHaas oscillations in the diagonal resistivity p,, for magnetic fields B 2 0.1 T.
Spin-splitting of these oscillations is resolved at magnetic fields B 2 0.5 T. The
drag resistivity is roughly two orders of magnitude smaller than the diagonal
resistivity. As shown in the inset of Fig. 6.2, which details the behavior of pr at
low magnetic fields, spin-splitting in pr sets in for considerably lower magnetic
fields (B 2 0.11 T) than in py,.

In the case of mismatched layer densities, shown in Fig. 6.3, the drag resis-
tivity assumes positive and negative values, the sign varying in an oscillatory
manner as a function of the inverse magnetic field. These slow oscillations are
accompanied by fast oscillations reflecting the underlying LL density of states.
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Figure 6.4: Temperature dependence of drag from an experiment by Muraki et al.
[84]. Strong deviations from the monotonic T?-dependence expected for ideal Fermi
liquids are observed. As opposed to matched layer densities (dv = 0), the sign of
drag may change with temperature at mismatched densities (§v # 0). This figure is a
modified version of a figure taken from Ref. [84].

Positive maxima appear whenever the filling factor difference Av between the
two 2DEG layers is even, while negative minima appear when it is odd. This
behavior is emphasized in the inset of Fig. 6.3 which shows the filling factor
dependence of the drag resistivity for fixed magnetic field.

The dependence of the drag resistivity on the filling factor of the topmost
filled LLs has been studied experimentally by Feng et al. [82], who find positive
drag when the topmost LLs in both layers are either both more than half filled
or less than half filled and negative drag if one is more and the other less than
half filled.

It is interesting to study the temperature dependence of drag. If the scat-
tering took place between two layers behaving as ideal Fermi liquids, the tem-
perature dependence of the drag resistance would be monotonic and behave
as

Rp xT? |

since the available phase space for interlayer scattering would be proportional
to T in either layer. In particular, since the available phase space for electron-
electron scattering tends to zero at low temperatures, Coulomb drag is expected
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to decrease with decreasing temperature.

There are, however, important deviations from this behavior [88]. In high
magnetic fields, there are strong deviations from this temperature dependence,
consisting of nonmonotonic behavior of pp(7") [84]. In addition, depending on
the matching of the layer densities, the sign of the drag resistivity may also
change with temperature as depicted in Fig. 6.4. Apparently, the tempera-
ture dependence is nonmonotonic and deviates strongly from the T2-behavior
predicted by the simplified consideration above.

Historically, the theoretical investigation of drag initially was centered on
Coulomb drag in coupled electron systems in the absence of a magnetic field
[89]. Coulomb drag can be treated within linear response theory. It can be
shown that the Coulomb drag conductivity is governed by momentum transfers
q < 1/d. This is due to the specific form of the interlayer Coulomb interaction,

exp(—qd)

Ul(q) 7 :

(6.4)
which is suppressed at large momenta by a factor exp(—gd). Recently, consid-
erations were expanded to the case of Coulomb drag at finite magnetic fields

85, 86].

6.3 Phonon Drag

For large interlayer separations, the Coulomb interaction, Eq. (6.4), is sup-
pressed and additional mechanisms of interlayer momentum transfer become
more important. Fig. 6.5 shows experimental results for the total drag scat-
tering rate® as a function of temperature (scaled by T—2) in a sample with
rather large interlayer separation (at zero magnetic field). The dashed line
in Fig. 6.5 indicates the expected contribution from Coulomb drag,* which
by itself is unable to account for the observed temperature dependence. The
weak dependence of the additional contribution to the total drag scattering
rate on interlayer separation, depicted in the inset of Fig. 6.5, strongly sug-
gests phonon-mediated interlayer interactions. This additional mechanism of
interplay between the two layers of a bilayer system is known as phonon drag
[90] and has been studied at zero magnetic field in Ref. [91]. It stems from the
indirect interaction of electrons in the two layers via bulk phonons. In Chapter
7, we will study phonon drag in finite magnetic fields, more precisely in the
regime of high Landau levels.

The most striking observation in Ref. [90] is a distinct peak in the temper-
ature dependence of phonon drag near T' = 2 K, which, qualitatively, can be
understood as follows. At low temperatures 7, only phonons with small wave

3The drag scattering rate 7'51 is closely related to the drag resistance Rp via

L m 1
—— T
Wner P
where L and W are length and width of the sample, m is the effective electron mass, and
n the electron density in the active layer [88].
4This contribution is constant, due to the 7' ~2-scaling.

Rp =
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Figure 6.5: Measured temperature dependence of the drag scattering rate 751, scaled
by T2, for a double-quantum-well sample with interlayer separation of 500 A in absence
of a magnetic field from an experiment by Gramila and co-workers [90]. The dashed
line denotes the estimated Coulomb contribution, indicating that Coulomb interactions
alone are unable to account for the temperature dependence of drag. The inset shows
results for the additional contribution to 7, ! /T? at three different interlayer separations
(500 A (A), 225 A (B), and 175 A (C)). Here, the (spacing-dependent) contribution of
Coulomb drag to 7'51 /T? has been subtracted for all three interlayer separations. The
dependence of the additional contribution on interlayer separation turns out to be very
weak. This points towards phonon interlayer interactions as the possible source of the
additional contribution. This figure has been taken from Ref. [90].

vectors ¢ < 2kpr can be thermally excited and participate in the interlayer
momentum transfer. As T increases, phonon states with higher wave vectors
become occupied, leading to larger momentum transfers and, simultaneously,
opening access to a larger portion of the electron phase space. This leads to an
increase of phonon drag. The strong increase continues until phonons with wave
vector g ~ 2kp can be thermally excited. Since, to lowest order in the phonon-
mediated interaction, there are no scattering processes involving phonons of
momenta g > 2k, the increase of phonon drag is slowed down at higher tem-
peratures. The temperature at which the transition between these two behav-
iors takes place can be determined from the condition g ~ 2kr together with the
phonon dispersion w = cq, where c is the phonon velocity. Equating the typical
phonon frequency with the temperature, this yields T35 = 2ckp, the subscript
bs standing for backscattering, since a momentum transfer of 2kg corresponds
to complete momentum inversion of the scattered electron.
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As for Coulomb drag, the theoretical description of phonon drag relies on
linear response theory. In contrast to Coulomb drag, as evident from the previ-
ous considerations, the momentum transfer in phonon drag is not restricted to
small momenta. We therefore have to generalize the theory of Coulomb drag to
arbitrary momentum transfers. In Chapter 7, we will demonstrate that phonon
scattering indeed affects frictional drag predominantly at temperatures in the
vicinity of Tps = 2ckp, and that the main contribution to phonon drag is due
to momenta q < 2kp.

6.4 Linear Response Theory of Drag

In this section, we describe the linear response theory of frictional drag.® It is
based on the theory of Coulomb drag in high Landau levels [86] and will be
generalized to the treatment of phonon drag in the present thesis.

6.4.1 Drag Conductivity

Within the Kubo formalism, the dc drag conductivity 05 can be written in
terms of a current-current correlation function (see Appendix A), which, after
analytical continuation (see Appendix B), evaluates to

2 00
A ‘ duw 1) o
UZ] 167TS Z /—oo Sinh2 (i) { % (q7w + ZO,W 20)
q 2T

x T (q,w — i0,w + i0) [ W (q, w)lz} : (6.5)

Here, T is the temperature, S is the area of the sample and W(q,w) is the
interlayer interaction, which is assumed to be weak and might be screened. In
Eq. (6.5), the vector TV (q,w) = 'V (q,w + i0,w — i0) denotes the so-called
triangle vertex of layer [ as defined by the sum of the two diagrams in Fig. 6.6.

6.4.2 Triangle Vertex

We now turn to the evaluation of the disorder-averaged triangle vertex I'(q,w).
The result of the analytical continuation (see Appendix C) of the triangle vertex
can be written as

r=r@.r® | (6.6)

5 Frictional drag is a term often used to describe the entirety of drag phenomena irrespective
of the underlying mechanism (e.g., Coulomb or phonon-mediated interactions).
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Figure 6.6: Diagrams defining the three-leg triangle vertex I'(q,w1,ws). The vector
(current) vertices are labeled by the velocity operator v;. This figure has been taken
from Ref. [86].

where
'@ (q,w /—tanh<€+w ”)
X tr{vg+(e + W) TG () eI TGH (¢ + w)
— VG (e + W) TG (e TG (e +w) |
+ (w,q— —w,—q) , (6.7)
and

r®(q,w) :/4d—6 [tanh (ﬁ%) —tanh< 2TM>]
i

X tr{vG (e + w)e'T[G () — G (e)]e TG (e +w)}
+(wa——w,—q) . (6.8)

Here, G*(¢) = G(e=+10) are the advanced and retarded electron Green functions
for a specific realization of the disorder potential, respectively, and v is the
velocity operator.

6.4.3 Triangle Vertex in the Low Temperature Limit

We are interested specifically in the drag conductivity in the low temperature
limit T w < A < w,, where A is the Landau level broadening (see Appendix
D).% In this low temperature limit, the e-integration in Egs. (6.7-6.8) is trivial”

SNote that in previous chapters, the Landau level broadening was denoted by I'. We chose
to shift our notation to A to avoid confusion with the triangle vertex denoted by I'.

"In the low temperature limit, the traces in Eqs. (6.7-6.8) do not depend on the integration
variable € and can thus be evaluated at € = Ef.
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Figure 6.7: The diagrams contributing to the triangle vertex within SCBA to leading
order in the limit of well-separated Landau levels A/w. < 1 and large N. This figure
has been taken from Ref. [86].

and the two contributions to the triangle vertex simplify to

I‘(“)(q,w) _ 2iﬂ.itr{vg-l-(EF)eiclrg—i—(EF)e—iOlI‘g"‘(EF)
_(g-i- _>g—)} ’ (6.9)
rOqw) = —te{vg™(Br)e (G~ (Er) - GF(Ep)le ™G (Br) | (6.10)

Here, Er is the Fermi energy (or chemical potential) located in the Nth LL.
The disorder-averaging of the triangle vertex I' is performed within the self-
consistent Born approximation (SCBA, see Appendix D) . The calculation of
the traces appearing in the above expressions involves matrix elements (between
LL eigenstates) of the impurity-averaged Green functions (which are diagonal
in the Landau gauge) and of ¢’ and the velocity operator v (see Appendix
D). To leading order in A/w., two of the three Green functions in Egs. (6.9-
6.10) have to be evaluated in the Nth Landau level in which the Fermi energy
is situated.® However, since the velocity operator has matrix elements only
between states in neighboring Landau levels,

(nk|vgln £ 1K)~ q:z‘akk,%F , (6.11)
(nkloy|n + 1K) ~ 5%,%‘” , (6.12)

one of the Green functions adjacent to the vector vertex must be taken in
Landau levels N + 1, as illustrated in Fig. 6.7.

We find that T'%) gives a purely longitudinal contribution (parallel to q)
to the triangle vertex. To see that the transverse contribution to I'® indeed
vanishes, one can use the fact that T'®) (q, w) can be expressed as (see Eq. (C-9))

I‘(a)(q’w) _ %Vqlmtr {eiQrg—i-(EF)e—iqrg-i-(EF)} ) (6.13)

8This is due to the fact that matrix elements of Green functions outside the Nth Landau
level are smaller by a factor of 1/we.
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Eq. (6.13) can be derived by noting that
Vqtr {eiqrnge*iqrng} = itr {eiqr [r, ng] B eiiqrng)} (6.14)

and using the fact that

2g*zQ*vQ* . (6.15)

e 5

The trace in Eq. (6.13) only depends on the absolute value of q, and thus the
gradient with respect to q ensures that I'(%) is parallel to q. By contrast, I'®)
generally yields both longitudinal and transverse contributions to the triangle
vertex.
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