
5 In-Plane Magnetic Field

Very recently, the application of an additional in-plane magnetic field to a
high-mobility 2DEG under microwave irradiation showing MIRO and/or ZRS
has been investigated experimentally by Yang et al. [41]. The authors observe
a pronounced suppression or even destruction of these phenomena for suffi-
ciently strong parallel components of the magnetic field. For the ultraclean
two-dimensional electron system in a AlGaAs/GaAs/AlGaAs square quantum
well sample under microwave irradiation, the oscillatory photoconductivity and
the ZRS are significantly suppressed already for moderate parallel components
of the magnetic field, B‖ ' 0.5 T.

Fig. 5.1 shows several traces of the dark and microwave longitudinal resis-
tivities at temperature T ' 0.95 K for different values of the in-plane field
directed in x-direction of the sample. Initially, for B‖ = 0, up to four ZRS
are observed at the minima of the oscillating resistivity. When increasing the
in-plane field, the amplitude of the microwave-induced resistivity oscillations
decreases quickly and, as a consequence, the width of the ZRS diminishes until
they are suppressed at fields of the order of or higher than B‖ ' 0.3 T. In ad-
dition, when increasing the in-plane field further, the position of the oscillation
maxima shifts to higher values of the perpendicular magnetic field B⊥, while
the position of the ZRS and the oscillation minima stays roughly constant. For
in-plane fields of the order of B‖ ' 0.75 T, the oscillations in the resistivity
are practically washed out and the behavior of the photoconductivity reverts
to the behavior of the dark case. Qualitatively, these results prevail also for
in-plane-fields in the y-direction as well as for different samples, in particular
also for single-interface GaAs/AlGaAs heterostructures.

Until now, the spin degree of freedom of the electrons has been neglected in
our considerations. Especially at lower magnetic fields, however, the electrons
cannot be considered to be completely spin-polarized. In a finite magnetic field,
each Landau level spin-splits into two levels separated by the Zeeman energy

∆E = gµb|B| , (5.1)

where g is the Landé g-factor and µb the Bohr magneton. In general, the filling
factor ν therefore refers to the number of occupied spin-split LLs.1

The Zeeman splitting of the spin-resolved Landau levels depends linearly on

the total magnetic field B =
(

B2
⊥ +B2

‖

)1/2
(see Eq. (5.1)). For fixed perpendic-

ular magnetic field B⊥, the application of an in-plane magnetic field therefore

1Interesting features can arise in 2D electron systems due to the spin degree of freedom. For
instance at ν = 1, the 2D electron system can be shown to assume a ferromagnetically
ordered state with a spin-polarized ground state due to the Zeeman splitting of the lowest
LL. The elementary excitations of this state are spin textures – the so-called Skyrmions
[77] – rather than individual single-spin flips.
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Figure 5.1: Experimental results for the diagonal resistivity ρxx as a function of
the perpendicular magnetic field Bz for different in-plane magnetic fields Bx under
irradiation with microwaves of frequency f = 55 GHz (thick lines) and, for comparison,
without microwave irradiation (thin lines). This figure has been taken from Ref. [41].

increases the Zeeman splitting of the spin-resolved Landau levels. This fact
could be responsible for the observed significant suppression of the microwave-
induced effects with increasing amplitude of the in-plane magnetic field.

In what follows, we attempt to explain the experiment of Yang et al. [41]
extending the approach of Ref. [50], based on an irradiation-induced change in
the electronic distribution function, by including the spin degree of freedom and
a phenomenological spin-relaxation time to account for the effect of a relative
shift of the Landau bands for different spin orientations. Section 5.1 briefly
recapitulates the approach of Ref. [50] without spin splitting, but is mainly
devoted to our theory of the photoconductivity including the spin degree of
freedom. We present the results for the photoconductivity in the presence of
an in-plane field and discuss some limiting cases in Section 5.2. In Section 5.3,
we comment on the experimental relevance of our results.

5.1 Theory

The energy of a 2D electron in a tilted magnetic field (i.e. a magnetic field hav-
ing perpendicular and parallel components) is composed of the kinetic term,
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Figure 5.2: Spin-split landau levels in a driving microwave field. Due to the applica-
tion of a sufficiently strong parallel magnetic field, the Zeeman splitting ∆E = gµBB
of the Landau bands for different spin indices can get comparable to the Landau level
broadening (due to disorder or periodic modulation) and thus cannot be neglected.
This figure schematically shows the behavior of the spin-split Landau bands of LL in-
dices N and N + 1 for spin up (↑, left) and spin down (↓, right) bands in a microwave
field of frequency ω > ωc. No relaxation between the bands has been included in the
depicted case.

which is due to the perpendicular component B⊥ leading to the cyclotron mo-
tion, and of the Zeeman term. Neglecting effects of finite layer thickness, the
parallel component of the magnetic field, B‖, only couples to the spin degree
of freedom of the electrons, making it a powerful probe for spin-related phe-
nomena in 2DEGs. The spin either aligns parallel or antiparallel with the total
magnetic field B, so that the energy of an electron of spin σ = ±1/2 is given
by

E = ε+ σgµBB , (5.2)

where ε is the kinetic energy of the electron. Note that the spin gyromagnetic
ratio g does not assume the the free-electron value g ' 2 but rather the value
g ' −0.44 appropriate for the conduction electrons in GaAs. This value might
be altered further by the application of the in-plane magnetic field, as was
pointed out in Ref. [78].

Increasing the magnitude of the in-plane magnetic field increases the Zeeman
splitting of the Landau bands. Since the perpendicular magnetic field is small
(B⊥ . 1 T) in the regime of MIRO/ZRS, the Zeeman splitting is mostly due
to the parallel field as long as B‖ � B⊥ . In general, spin splitting becomes
important if the Zeeman energy is comparable to or larger than the Landau
band broadening due to disorder or periodic modulation. A schematic view of
spin-split Landau bands is provided in Fig. 5.2.

In the case of spin-resolved Landau levels, the total dc conductivity can be
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written as

σ =

∫

dε

{

σ↑(ε)

(

−∂f↑(ε)
∂ε

)

+ σ↓(ε)

(

−∂f↓(ε)
∂ε

)}

, (5.3)

where f↑(ε) (f↓(ε)) is the distribution function for spin up (down) electrons and
σ↑(ε) (σ↓(ε)) determines the contribution of spin up (down) electrons of energy
ε to dissipative transport. Although the irradiation-induced changes in the
distribution functions can be small, the derivatives ∂εfσ(ε) appearing in Eq.
(5.3) might be large if the irradiation-induced oscillations of the distribution
function are fast enough.

In what follows, we generalize the calculation of Dmitriev and co-workers [50]
to spin-split Landau bands including the in-plane magnetic field.

5.1.1 Without Spin Splitting

First, we quickly recapitulate the calculation without in-plane magnetic field,
neglecting the Zeeman splitting due to the perpendicular magnetic field. With-
out dc field, one finds the kinetic equation

γω

∑

±

ν̄(ε± ω) [f(ε± ω) − f(ε)] =
f(ε) − fT (ε)

τin
, (5.4)

where γω = Pω/(4τin) is a measure of the strength of the ac field2 and τin
a phenomenological inelastic relaxation time [50]. The distribution function
f(ε) in general deviates from the Fermi distribution fT (ε) due to the driving
microwave field. In presence of a dc field, there would be an additional term on
the left-hand side of Eq (5.4) [50].

Assuming overlapping LLs, the normalized density of states ν̄(ε) = ν(ε)/ν0

shows a weak cosine modulation

ν̄(ε) = 1 − 2η cos

(
2πε

ωc

)

, (5.5)

where

η = exp

(

− π

ωcτs

)

� 1

is a small parameter and τs is the zero-B single particle time.

The smallness of the parameter η enables us to search for a solution to the
distribution function f(ε) in the form

f(ε) = f0(ε) + fosc.(ε) + O(η2) (5.6)

2The dimensionless measure of the strength of the microwave field is related to the amplitude
Eω of the microwave field Eω = Eω cos(ωt) via

Pω =
τin

τtr

„

eEωvF

ω

«2
ω2

c + ω2

(ω2 − ω2
c )2

,

where vF is the Fermi velocity and ω the microwave frequency [50].
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to first order in η (note that fosc. is O(η1)). To zeroth order in η, the kinetic
equation, Eq. (5.4), then reduces to

γω

∑

±

[f0(ε± ω) − f0(ε)] =
f0(ε) − fT (ε)

τin
. (5.7)

If one now assumes that the microwave field is not too strong,

Pω

(ω

T

)2
� 1 ,

the difference [f0(ε) − fT (ε)] is small, so that we can neglect the heating of
electrons by the microwaves,

f0(ε) ' fT (ε) , (5.8)

i.e., to zeroth order in η, the distribution function is simply the Fermi distribu-
tion.

To first order in η, Eq. (5.4) yields

γω

∑

±

[fosc.(ε± ω) − fosc.(ε)] −
fosc.(ε)

τin

= 2ηγω

∑

±

cos

(
2π(ε± ω)

ωc

)

[f0(ε± ω) − f0(ε)] . (5.9)

Replacing f0(ε) by the Fermi distribution fT (ε) according to Eq. (5.8), we obtain

γω

∑

±

[fosc.(ε± ω) − fosc.(ε)] −
fosc.(ε)

τin

= 2ηγω

∑

±

cos

(
2π(ε± ω)

ωc

)

[fT (ε± ω) − fT (ε)] . (5.10)

In the limit T � ωc, the right-hand side of this expression can be simplified
using

[fT (ε± ω) − fT (ε)] ' (±ω)

(
∂fT (ε)

∂ε

)

(5.11)

along with basic trigonometric identities. This yields

2ηγω

∑

±

cos

(
2π(ε± ω)

ωc

)

[fT (ε± ω) − fT (ε)]

= 2ηγω

∑

±

cos

(
2π(ε± ω)

ωc

)

(±ω)
∂fT (ε)

∂ε

= 2ηγωω
∂fT (ε)

∂ε

[

cos

(
2π(ε+ ω)

ωc

)

− cos

(
2π(ε− ω)

ωc

)]

= −4ηγωω
∂fT (ε)

∂ε
sin

(
2πε

ωc

)

sin

(
2πω

ωc

)

. (5.12)
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Thus, we obtain

γω

∑

±

[fosc.(ε± ω) − fosc.(ε)] −
fosc.(ε)

τin

= −4ηγωω
∂fT (ε)

∂ε
sin

(
2πε

ωc

)

sin

(
2πω

ωc

)

. (5.13)

For Pω(ω/T )2 � 1, the first term on the LHS is negligible, so that, in this limit,

fosc.(ε) = 4ηγωωτin
∂fT (ε)

∂ε
sin

(
2πε

ωc

)

sin

(
2πω

ωc

)

= ηωPω
∂fT (ε)

∂ε
sin

(
2πε

ωc

)

sin

(
2πω

ωc

)

. (5.14)

In general, for T � ω, the oscillatory contribution to the distribution function,
fosc.(ε) in Eq. (5.13), oscillates on the same scale as the density of states (i.e.,
with a period ωc)

fosc.(ε) = ηRe
[

f1(ε)e
i(2πε/ωc)

]

, (5.15)

where f1(ε) is a smoothly varying function which varies as a function of T and
therefore much more slowly than the fast oscillations of period ωc. Retaining
the first term in the left-hand side of Eq. (5.13), we obtain the more general
result [50]

fosc.(ε) = ηPωω
∂fT (ε)

∂ε

sin
(

2πε
ωc

)

sin
(

2πω
ωc

)

1 + Pω sin2 πω
ωc

. (5.16)

We now move on to a generalization of this calculation to the case where the
Landau bands are spin-split due to the application of a parallel magnetic field.

5.1.2 With Spin Splitting

Including the spin splitting, the two equations for the two spin orientations in
the absence of a dc field read

γω

∑

σ=±

ν̃σ(ε± ω) [fσ(ε± ω) − fσ(ε)] =
fσ(ε) − fσ̄(ε)

2τspin
+
fσ(ε) − fT (ε)

τin
, (5.17)

where σ = ±1 denotes the spin index3 (and σ̄ = −σ) and τin a phenomenological
inelastic relaxation time. The quantity τspin is a relaxation time describing the
relaxation of electrons from a spin σ to a spin σ̄ band. The factor of 1/2
in the first term of the right-hand side of Eq. (5.17) has been introduced for
convenience. As above, the quantity γω is a measure of the strength of the ac
field.

The spin-dependent density of states and the spin-dependent distribution
function can be written as

ν̃σ(ε) = ν̄(ε) + σδν̃(ε) , (5.18)

3The actual spin projection of the electrons thereby being σ/2.
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fσ(ε) = f(ε) + σδf(ε) . (5.19)

By adding and subtracting the equations for spin up and spin down in Eq.
(5.17) and using Eqs. (5.18-5.19), we arrive at

γω

∑

±

{

ν̄(ε± ω) [f(ε± ω) − f(ε)] + δν̃(ε± ω) [δf(ε± ω) − δf(ε)]
}

=
f(ε) − fT (ε)

τin
, (5.20)

γω

∑

±

{

ν̄(ε± ω) [δf(ε± ω) − δf(ε)] + δν̃(ε± ω) [f(ε± ω) − f(ε)]
}

=
τspin + τin
τspinτin

δf(ε) . (5.21)

In order to be able to discuss Eqs. (5.20-5.21) order by order in η, we now
express ν̄(ε) and δν̃(ε) from Eq. (5.18) as series in η

ν̄(ε) = ν̄0(ε) + ν̄osc.(ε) + O(η2) , (5.22)

δν̃(ε) = δν̃0(ε) + δν̃osc.(ε) + O(η2) , (5.23)

where ν̄osc.(ε) and δν̃osc.(ε) are O(η1). We find

ν̄(ε) =
1

2

[

ν̃

(

ε+
1

2
gµBB

)

+ ν̃

(

ε− 1

2
gµBB

)]

=
1

2

[

2 − 2η cos

(

2π
(
ε+ 1

2gµBB
)

ωc

)

− 2η cos

(

2π
(
ε− 1

2gµBB
)

ωc

)]

= 1 − 2η cos

(
2πε

ωc

)

cos

(
πgµBB

ωc

)

, (5.24)

and

δν̃(ε) =
1

2

[

ν̃

(

ε+
1

2
gµBB

)

− ν̃

(

ε− 1

2
gµBB

)]

= η

[

cos

(

2π
(
ε− 1

2gµBB
)

ωc

)

− cos

(

2π
(
ε+ 1

2gµBB
)

ωc

)]

= 2η sin

(
2πε

ωc

)

sin

(
πgµBB

ωc

)

. (5.25)

From Eq. (5.25), one immediately concludes that there is no contribution to
δν̃(ε) to first order in η, i.e. that δν̃0(ε) = 0

We first address Eq. (5.20), in which τspin drops out. Again, the density of
states and the distribution function are expanded in the small parameter η as
for the case without spin. To zeroth order, all terms containing δν̃ drop out
due to the above-said and we find

γω

∑

±

[f0(ε± ω) − f0(ε)] =
f0(ε) − fT (ε)

τin
. (5.26)

89



5 In-Plane Magnetic Field

If the microwave field is sufficiently weak, this again leads to

f0(ε) ' fT (ε) . (5.27)

The second equation, Eq. (5.21), yields to zeroth order in η (again terms con-
taining δν̃ drop out)

γω

∑

±

[δf0(ε± ω) − δf0(ε)] =
τspin + τin
τspinτin

δf0(ε) , (5.28)

so that for T � ω,

γωω
2 ∂

2δf0(ε)

∂ε2
=
τspin + τin
τspinτin

δf0(ε) . (5.29)

In keeping with the assumption of weak microwave fields, Pω(ω/T )2 � 1, this
leads to

δf0(ε) ' 0 , (5.30)

so that, to zeroth order in η, the distribution function is simply given by the
Fermi distribution fT (ε).

We now turn to the first order in the small parameter η. The two equations,
Eq. (5.20) and Eq. (5.21), then yield

γω

∑

±

[fosc.(ε± ω) − fosc.(ε)]

−γω

∑

±

2η cos

(
2π(ε± ω)

ωc

)

cos

(
πgµBB

ωc

)

[fT (ε± ω) − fT (ε)]

=
fosc.(ε)

τin
, (5.31)

and

γω

∑

±

[δfosc.(ε± ω) − δfosc.(ε)]

+γω

∑

±

2η sin

(
2π(ε± ω)

ωc

)

sin

(
πgµBB

ωc

)

[fT (ε± ω) − fT (ε)]

=
τspin + τin
τspinτin

δfosc.(ε) . (5.32)

Assuming again Pω(ω/T )2 � 1, we now discuss the equation for the oscillatory
contribution to the distribution function, fosc.(ε) (Eq. (5.31)). Neglecting the
first term on the left-hand side, it reads

−γω

∑

±

2η cos
2π(ε± ω)

ωc
cos

2πgµBB

ωc
[fT (ε± ω) − fT (ε)] =

fosc.(ε)

τin
. (5.33)

Using Eq. (5.11), valid in the limit T � ω, this yields

fosc.(ε) =
ηωPω

2

∂fT (ε)

∂ε
cos

(
πgµBB

ωc

)[

cos

(
2π (ε− ω)

ωc

)

− cos

(
2π (ε+ ω)

ωc

)]

= ηωPω
∂fT (ε)

∂ε
cos

(
πgµBB

ωc

)

sin

(
2πε

ωc

)

sin

(
2πω

ωc

)

. (5.34)
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Comparing this result4 to Eq. (5.14) for the case without spin splitting, we see
that it differs by a factor cos (πgµBB/ωc) oscillating with magnetic field. There-
fore, the magnetic field modulates the strength of the oscillatory contribution
to the electron distribution function. For

B =

(
2k + 1

2

)
ωc

gµB
(k = 0,±1,±2, ...) , (5.35)

we find that fosc.(ε) = 0. For these values of magnetic field, there is no oscil-
latory contribution to the spin-independent part of the electronic distribution
function. As we will see below, the photoconductivity is due to the oscillatory
part of the distribution function. This suggests a suppression of the photocon-
ductivity in the vicinity of magnetic fields fulfilling Eq. (5.35). However, there
should be a reappearance of the photoconductivity due to the fact that the
dependence of the distribution function on magnetic field is oscillatory. In ad-
dition, the behavior of the spin-dependent part of the oscillatory contribution to
the distribution function is different from the behavior of the spin-independent
part discussed above. Therefore, only a study of both contributions together
will reveal the exact B-dependence of the photoconductivity.

Not neglecting the first term on the LHS of Eq. (5.31), we find that essentially
the same happens as in Eq. (5.16) for the case without spin splitting. We obtain

fosc.(ε) = ηωPω
∂fT (ε)

∂ε
cos

(
πgµBB

ωc

) sin
(

2πε
ωc

)

sin
(

2πω
ωc

)

1 + Pω sin2
(

πω
ωc

) . (5.36)

Thus, the periodicity in B persists also in this case and only the magnitude
of the oscillations of the distribution function is changed through microwave
intensity and frequency.

Finally, we examine Eq. (5.32). This equation contains the spin relaxation
which couples the two spin-split Landau bands. Again assuming a weak mi-
crowave field, we neglect the first term on the left-hand side of Eq. (5.32), which
then reads

γω

∑

±

2η sin

(
2π(ε± ω)

ωc

)

sin

(
πgµBB

ωc

)

[fT (ε± ω) − fT (ε)]

=
τspin + τin
τspinτin

δfosc.(ε) . (5.37)

We again use Eq. (5.11), valid for T � ωc, and find

δfosc.(ε)

=
τspin

τspin + τin
ηωPω

∂fT (ε)

∂ε
sin

(
πgµBB

ωc

)

cos

(
2πε

ωc

)

sin

(
πω

ωc

)

(5.38)

4The factor cos (πgµBB/ωc) can be understood as a correction to the factor sin 2πε
ωc

(which
reflects the oscillations due to the DOS) since 2 sin x cos y = sin(x−y)+sin(x+y), the two
sines at the RHS representing the individual contributions of the two shifted bands which
are merely added in the case under study since there is no coupling between the bands.
The fact that the oscillatory component vanishes is thus simply the exact annihilation of
the contribution of the spin up band by the contribution of the spin down band.
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For the more general case, i.e. not neglecting the first term on the left-hand
side of Eq. (5.32), we obtain

δfosc.(ε)

=
τspin

τspin + τin
ηωPω

∂fT (ε)

∂ε
sin

(
πgµBB

ωc

) cos
(

2πε
ωc

)

sin
(

πω
ωc

)

1 + Pω sin2
(

πω
ωc

) . (5.39)

5.2 Results

5.2.1 Oscillatory Photoconductivity

As we have shown above, in the presence of an in-plane magnetic field, the
relative Zeeman shift of the Landau bands for different spins induces a change
in the density of states and the distribution function of the system under ir-
radiation. The photoconductivity – defined here as the correction to the dark
conductivity arising from the presence of the microwaves and not as the to-
tal conductivity under irradiation – is then due to the oscillatory part of the
distribution function

fσ(ε) − fT (ε) = fosc.(ε) + σδfosc.(ε) . (5.40)

Due to Eq. (5.30) there is no spin-dependent correction to the non-oscillatory
part of the distribution function, which under reasonable assumptions, as shown
above, is simply the Fermi distribution fT (ε). The photoconductivity is then
given by

σph =

∫

dε

(

−∂fosc.(ε)

∂ε

)

[σ↑(ε) + σ↓(ε)]

+

∫

dε

(

−∂δfosc.(ε)

∂ε

)

[σ↑(ε) − σ↓(ε)] , (5.41)

where, for ωcτtr � 1,

σ↑,↓(ε) = σDν̃
2
↑,↓(ε) , (5.42)

σD being the Drude conductivity. The density of states ν̃σ(ε) is given by

ν̃σ(ε) = ν̄(ε) + σδν̃(ε)

= 1 − 2η cos

(
2πε

ωc

)

cos

(
πgµBB

ωc

)

+2ση sin

(
2πε

ωc

)

sin

(
πgµBB

ωc

)

(5.43)

Motivated by experiment, we assume that the temperature T is much larger
than the Dingle temperature

T � TD =
1

2πτs
. (5.44)
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In this limit, the terms linear in η in the equation for the photoconductivity,
Eq. (5.41), are exponentially suppressed,

η

∫

dε cos

(
2πε

ωc

)

[∂εfT (ε)] ∝ η exp

(−2π2T

ωc

)

� η2 , (5.45)

and can be neglected [50]. The leading ω-dependent contribution to σph there-
fore is due to the O(η2)-term which is generated by the product of the O(η1) os-
cillatory part of ν̃2

↑,↓(ε) and the O(η1)-contribution to −∂εfosc.(ε) or −∂εδfosc.(ε),
respectively.

Neglecting terms of order O(η0) due to the above said, we find to first order
in η

σ↑(ε) + σ↓(ε) = −8ησD cos

(
2πε

ωc

)

cos

(
πgµBB

ωc

)

(5.46)

σ↑(ε) − σ↓(ε) = +8ησD sin

(
2πε

ωc

)

sin

(
πgµBB

ωc

)

(5.47)

The oscillating part of the distribution function contains slow oscillations due
to the term ∂εfT (ε) and fast oscillations due to the terms cos (2πε/ωc) or
sin (2πε/ωc). The derivatives with respect to ε of fosc.(ε) and δfosc.(ε) are thus
given to first order in η by

∂εfosc.(ε) ' η
2πω

ωc
Pω [∂εfT (ε)]

× cos

(
πgµBB

ωc

)

sin

(
2πω

ωc

)

cos

(
2πε

ωc

)

(5.48)

and

∂εδfosc.(ε) ' −η τspin

τspin + τin

2πω

ωc
Pω [∂εfT (ε)]

× sin

(
πgµBB

ωc

)

sin

(
2πω

ωc

)

sin

(
2πε

ωc

)

. (5.49)

Inserting these dominant contributions into Eq. (5.41), we find

σph

σD
' 8η2Pω

2πω

ωc
sin

(
2πω

ωc

)

×
{

cos2

(
πgµBB

ωc

)∫

dε [∂εfT (ε)] cos2

(
2πε

ωc

)

+
τspin

τspin + τin
sin2

(
πgµBB

ωc

)∫

dε [∂εfT (ε)] sin2

(
2πε

ωc

)}

.(5.50)

Finally performing the energy averaging

−
∫

dε cos2

(
2πε

ωc

)

[∂εfT (ε)] ' 1

2
, (5.51)
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we find the following general expression for the photoconductivity

σph

σD
' −4η2Pω

2πω

ωc
sin

(
2πω

ωc

)

×
[

cos2
(
πgµBB

ωc

)

+
τspin

τspin + τin
sin2

(
πgµBB

ωc

)]

. (5.52)

5.2.2 Limiting Cases

In this section, we discuss some limiting cases of Eq. (5.52). In the absence of
a parallel magnetic field, Eq. (5.52) reduces to

σph

σD
' −4η2Pω

2πω

ωc
sin

(
2πω

ωc

)

, (5.53)

which is in perfect agreement with the results of Ref. [50] for the case without
spin-splitting.5

Next, we address the influence of the spin relaxation on the photoconductiv-
ity. In the absence of spin relaxation (τspin → ∞) and at finite B, there is no
difference to the case without spin splitting

[
σph

σD

]

τspin→∞

' −4η2Pω
2πω

ωc
sin

(
2πω

ωc

)

. (5.54)

On the other hand, for perfect spin relaxation (τspin → 0), we obtain at finite
magnetic field

[
σph

σD

]

τspin→0

' −4η2Pω
2πω

ωc
sin

(
2πω

ωc

)

cos2
(
πgµBB

ωc

)

. (5.55)

This suggests that a dependence of the photoconductivity σph on the (in-plane)
magnetic field, as it is observed in experiment, can only be explained within our
model if some mechanism assures at least some amount of spin relaxation. If
we assume perfect spin relaxation, the B-dependence is governed by the factor
cos2 (πgµBB/ωc). The photoconductivity then vanishes at the magnetic fields
given by Eq. (5.35) and is oscillatory in B, i.e. reappears at higher fields. This
reappearance has not been observed in experiment. For finite spin relaxation,
there can still be a considerable suppression of the photoconductivity, but no
complete annihilation. The position of the minima in the photoconductivity
are then also given by Eq. (5.35).

5.3 Discussion

If we include spin relaxation, our model predicts a periodic dependence of the
photoconductivity on the total applied magnetic field whereas without inclusion

5Note that our result differs from the result obtained in Ref. [50] by a factor of two. This
is due to the fact that we did not calculate the conductivity per spin but the total photo-
conductivity for both spin indices.
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5.3 Discussion

of spin relaxation, we are not able to derive such an effect. Experimentally, a
microwave-driven 2DEG in the presence of an additional in-plane magnetic
field does not show a periodic behavior of the photoconductivity but rather a
suppression with increasing in-plane magnetic field and no reappearance of the
photoconductivity at higher fields. This suggests that the spin-splitting due to
the in-plane field does not explain the observations of Ref. [41].

Most likely, the suppression observed by Yang et al. is due to an additional ef-
fect: Due to the in-plane magnetic field, the electrons are pushed closer towards
the interface, which leads to an increase of scattering by interface imperfections.
This increase suppresses the zero resistance states due to the exponential sen-
sitivity to the single-particle time τs. Experimentally, this is reflected in an
increase of ρxx in the presence of a parallel magnetic field for the case without
perpendicular magnetic field (B⊥ = 0).

Under more favorable conditions, the periodic effects predicted in this chap-
ter as a consequence of the removal of spin degeneracy should nevertheless be
observable in experiment. To this end, the influence of interface imperfections
would have to be reduced considerably.
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