
3 Classical Model for a
Microwave-Irradiated 2DEG in the
Presence of Bichromatic Irradiation

The theoretical explanation [51, 50] of the recently observed zero resistance
states [36, 37] in GaAs samples relies on the emergence of parameter regions
with negative microscopic diagonal conductivity. The microscopic processes
most likely responsible for negative conductivity – distribution function and
displacement mechanisms – are inherently quantum mechanical. Any classical
model with a parabolic electron dispersion only shows the conventional cy-
clotron resonance and does not show any further response to the microwave
field due to Kohn’s theorem [58]. Very interestingly, however, it can be shown
that negative conductivity and, thus, zero resistance states can emerge from a
classical Drude model driven by a microwave field, if one assumes the dispersion
of the electrons to be weakly nonparabolic [59]. Due to the weak nonparabolicity
of GaAs, this model is presumably irrelevant for the explanation of the present
experiments, but could apply to other semiconductor systems with stronger
nonparabolicity.

Most experiments on microwave-driven 2D electron systems carried out so
far study the response of the system to a microwave field of a single, sharply
defined, microwave frequency ω. Only very recently, the response to bichro-
matic irradiation was studied experimentally [38]. Our work concentrates on
bichromatic irradiation, since interesting and qualitatively new effects arise in
this situation. The most important parameter in bichromatically irradiated
systems is the detuning between the two frequencies of the microwave field, i.e.
the difference between the two distinct microwave frequencies applied. We will
show in this chapter that, for weak detuning,1 there is no qualitative differ-
ence between mono- and bichromatic irradiation, whereas for strong detuning,
several novel effects arise, among which are the appearance of additional ZRS,
parametric excitation of the cyclotron mode and multistability of the conduc-
tivity. We predict that the parametric resonance can translate into a dc current,
which should be detectable in experiment. In addition, bichromatic irradiation
experiments can be used to confirm that negative microscopic conductivity is
indeed the origin of the ZRS. This test has recently been proposed and realized
by Du and co-workers [38].

Parametric resonance in semiconductors has a long history: More than twenty
years ago, Aronov et al. [60, 61, 62] proposed a way to parametrically excite
the cyclotron mode of electrons in a magnetic field via a weak time modulation

1The detuning is “weak” in the sense that both frequencies are close to the cyclotron fre-
quency ωc and thereby close to each other.
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3 Bichromatic Irradiation

of the amplitude of the dc magnetic field. The idea behind this proposal is
that a modulation of the magnitude of the dc field with a frequency Ω trans-
lates into a corresponding modulation of the cyclotron frequency, so that the
equation of motion of the electron reduces to that for a harmonic oscillator
with a weakly time-modulated eigenfrequency. The solution of this equation
is unstable, if the modulation frequency is close to Ω = 2ωc. Unfortunately,
this method of creating a parametric resonance in the electron system turns
out to be technically unfeasible: For a characteristic magnetic field of B = 0.1
T, the cyclotron frequency is ωc = 3.6 · 1011 Hz, i.e. in the microwave range, so
that conventional modulation of B with a frequency 2ωc is technically impos-
sible. To bypass this obstacle, it was proposed in Ref. [62] to use microwave
irradiation with frequency 2ωc to create a parametric resonance. The idea was
that the magnetic field component of the pumping electromagnetic wave would
provide the necessary oscillatory correction to the external magnetic field. In
this chapter, we demonstrate that two nonresonant ac sources can enforce a
parametric resonance of the type considered in Refs. [60, 61, 62] without any
time modulation of the magnetic field. Remarkably, this bichromatic-radiation-
induced cyclotron resonance emerges due to the nonparabolicity of the electron
spectrum, which played the role of a stabilizing mechanism on the parametric
resonance of Refs. [60, 61, 62].

In Section 3.1, we formulate the classical, single-electron Drude model for the
two-dimensional electron gas irradiated by microwaves and show that negative
contributions to the photocurrent can emerge in this model for nonparabolic
band structures. If these negative contributions are large enough, they may re-
sult in a negative diagonal conductivity which may lead to microwave-induced
zero resistance states (ZRS). Then, we extend these considerations to the bichro-
matic case and discuss the emergence of ZRS under bichromatic irradiation as
well as the multistability of the conductivity for weak detuning of the two mi-
crowave frequencies in Section 3.2.1. Section 3.2.2 is devoted to the case of
strong detuning and, mainly, to the parametric instability of the system. We
also demonstrate the emergence of a dc current in the system under bichromatic
irradiation and discuss a way to demonstrate the presence of negative diagonal
conductivity. This chapter is based on Joas et al. [63].

3.1 Monochromatic Irradiation

The classical equation of motion of an electron in two dimensions, subjected to
a perpendicular magnetic field B, a dc electric field E and a monochromatic,
linearly polarized microwave (ac) field E(t) = E cos(ωt), as sketched in Fig. 3.1,
is given by [59]

dp

dt
+

p

τ
− e(v × B) = eE + eE cos(ωt) , (3.1)

where e is the electronic charge and p and v denote the electron momentum
and velocity, respectively. A phenomenological relaxation time τ is included to
account for disorder scattering.
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3.1 Monochromatic Irradiation
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Figure 3.1: Sketch of the experimental setup and the relevant quantities in our model.
The electron is confined to a two-dimensional plane and subject to a magnetic field B
perpendicular to this plane, a small dc electric field E and an ac microwave field E ,
which form an angle θ.

We assume a weakly nonparabolic electron dispersion

ε(p) =
p2

2m

(

1 − p2

2mE0

)

, (3.2)

where m is the electron mass and E0 is an energy that typically is of the order
of the bandgap. The strength of the nonparabolicity is given by the parameter
(mE0)

−1. Since the electron motion is confined to a two-dimensional plane, the
momentum can be written as a complex number,

P = px + ipy , (3.3)

whose real and imaginary parts are the x- and y-components of momentum,
respectively. The equation of motion can then be cast into the complex form

dP
dt

+
P
τ
− iωcP +

iωc

mE0
P|P|2 = eEeiθ +

eE
2

(
eiωt + e−iωt

)
, (3.4)

where

ωc =
eB

m
(3.5)

is the cyclotron frequency and θ is the angle between the polarization direction
of the ac field and the dc field.

In principle, this equation of motion can be solved perturbatively to arbitrary
order in the small nonparabolicity parameter (mE0)

−1 using e.g. the Poincaré-
Lindstedt perturbative expansion [64]. In the near-resonant case ω ' ωc and
for high electron mobilities (ωcτ � 1), however, it is sufficient to consider the
following ansatz for the complex momentum

P(t) = P0 + P+ exp(iωt) + P− exp(−iωt) . (3.6)

Near the cyclotron resonance, the absolute value of the resonant momentum
component, |P+|, can be expected to be much larger than the absolute value of
the nonresonant momentum component, |P−|, both being large in comparison
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3 Bichromatic Irradiation
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Figure 3.2: Exaggerated sketch of the nonparabolic electron dispersion ε(p), Eq. (3.2).

to the absolute value of the small dc-component, |P0|, which is proportional to
the weak applied dc field |E| = E.

Substituting the ansatz, Eq. (3.6), into the equation of motion, Eq. (3.4), we
find the following system of equations for the momentum components

[

i(ω − ωc) +
1

τ

]

P+ +
iωc

mE0
P+|P+|2 =

eE
2

, (3.7)

−i (ω + ωc)P− =
eE
2

, (3.8)

[
1

τ
− iωc

(

1 − 2|P+|2
mE0

)]

P0 +

[
2iωc

mE0
P+P−

]

P∗
0 = eEeiθ . (3.9)

From Eq. (3.8), one immediately obtains for the nonresonant momentum com-
ponent

P− =
ieE
4ωc

. (3.10)

The solution of Eq. (3.7) can be formally presented as

P+ =
eEτ

2(1 + iΩτ)
, (3.11)

where

Ω = ω − ωc +
ωc|P+|2
mE0

(3.12)

is the detuning of the microwave frequency from the cyclotron resonance, which
is shifted away from ωc due to irradiation.

Substituting P+ and P− into Eq. (3.9), the longitudinal and transverse com-
ponents of the drift momentum (with respect to the applied dc field) can be
calculated from P0 to be

p‖ = Re
[

P0e
−iθ
]

=
eE

ω2
cτ

{

1 −
[
(eEτ)2
8mE0

]
Ωτ sin(2θ) − cos(2θ)

1 + (Ωτ)2

}

(3.13)
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3.2 Bichromatic Irradiation

and

p⊥ = Im
[

P0e
−iθ
]

=
eE

ωc

{

1 −
[

(eE)2τ

8mE0ωc

]
Ωτ cos(2θ) + sin(2θ)

1 + (Ωτ)2

}

. (3.14)

These momentum components are directly related to the conductivity compo-
nents2

σd =
ne2

mωc

[
1

ωcτ
−
(
δm

2m

)
Ωτ sin(2θ) − cos(2θ)

ωcτ

]

, (3.15)

σt =
ne2

mωc

[

1 −
(
δm

2m

)
Ωτ cos(2θ) + sin(2θ)

ωcτ

]

, (3.16)

where n is the electron concentration and the irradiation-induced change of the
effective mass

δm

m
=

|P+|2
mE0

=
(eEτ)2

4mE0 [1 + (Ωτ)2]
(3.17)

is a measure for the intensity of the microwave field. Within a certain interval
of magnetic fields near the cyclotron resonance, one is thus able to find negative
diagonal conductivity, σd < 0, without a significant change of the Hall conduc-
tivity σt for specific relative orientations of the fields, if a number of conditions
are fulfilled. The sign reversal of the conductivity occurs when the mobility
is high, ωcτ � 1, and when E is sufficiently strong, i.e. above some threshold
value for the intensity of the microwave field. In the vicinity of the cyclotron
resonance, σd turns negative even when the irradiation-induced change of the
electron mass is relatively weak. The diagonal conductivity σd shows bistable
hysteretic behavior as a function of the detuning from the cyclotron resonance
for sufficiently large ωcτ . For the case of monochromatic irradiation studied
in this section, ZRS can thus emerge already on classical grounds, since abso-
lute negative conductivity leads to an instability of the current pattern [51], as
outlined in Chapter 2.

3.2 Bichromatic Irradiation

Denote by E1 and E2 the amplitudes of two linearly polarized ac fields3 with
frequencies ω1 and ω2, respectively. In the presence of a dc field Edc, the
equation of motion for the electron momentum P = px + ipy takes the form

dP
dt

+
P
τ

− iωcP +
iωc

mE0
P|P|2 = eEdce

iθ +
eE1

2

(

eiω1t + e−iω1t
)

+
eE2

2

(

eiω2t + e−iω2t
)

,

(3.18)

2The elements of the resistivity tensor are connected to those of the conductivity tensor via
ρxx = σxx/(σ2

xx + σ2
xy) and ρxy = σxy/(σ2

xx + σ2
xy). This means in particular that zero

diagonal conductivity ensues zero diagonal resistivity – contrary to what one might naively
expect.

3For a rotationally invariant spectrum, the effects discussed here require irradiation by lin-
early polarized ac fields. However, it is interesting to note that similar effects would be
expected even for circularly polarized ac fields if the nonparabolicity is not rotationally
invariant, such as p4

x + p4
y. This may be relevant for the hole bands in GaAs.
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Figure 3.3: Dimensionless diagonal conductivity (in units of the Drude conductivity)
plotted from Eq. (3.30) versus the dimensionless magnetic field, defined by Eq. (3.31),
for three cases: (a) monochromatic irradiation with frequency ω1 and dimensionless
intensity A = 14.4; (b) monochromatic irradiation with the same intensity as in (a)
and frequency ω2 = 5ω1/3; (c) bichromatic case: response to simultaneous irradiation
with two microwave sources having the same intensities and frequencies as in (a) and
(b). The emerging region of negative diagonal conductivity is shaded in gray. All
three plots (a)-(c) have been calculated for (ω1 + ω2) τ/2 = 20. Full and dashed lines
correspond to stable and unstable branches, respectively.

where ωc is the cyclotron frequency, τ is the relaxation time, and θ is the
orientation of the weak dc field with respect to the fields E1, E2, which we assume
to be parallel to each other. For a monochromatic ac drive, E2 = 0, it was
demonstrated in Section 3.1 that within a certain interval of magnetic fields near
the cyclotron resonance, Eq. (3.18) implies negative diagonal conductivity, σd <
0, without significant change of the Hall conductivity. This sign reversal occurs
when the mobility is high, ωcτ � 1, and E1 is sufficiently strong. In the vicinity
of the cyclotron resonance, σd turns negative even when the irradiation-induced
change of the electron mass is relatively weak. Thus, the simple model Eq. (3.18)
exhibits negative photoconductivity without invoking Landau quantization. It
also predicts bistable hysteretic behavior of σd as a function of the detuning
from the cyclotron resonance for sufficiently large ωcτ .

We now extend these considerations to the bichromatic case. The most con-
vincing illustration that the response to irradiation by two ac fields cannot
simply be reduced to the superposition of the responses to each individual field,
is presented in Fig. 3.3. It is seen in Figs. 3.3(a,b) that the individual fields of
equal intensity and frequency ratio 5 : 3 are unable to reverse the sign of the
diagonal conductivity at any magnetic field. At the same time, upon simulta-
neous irradiation by both fields, a domain of magnetic fields emerges, within
which the diagonal conductivity is negative (see Fig. 3.3(c)).

In addition, our study reveals the following new features that are specific to
the bichromatic case:

(i) The presence of the second ac field on the right-hand side of Eq. (3.18)
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3.2 Bichromatic Irradiation

gives rise to a second domain of magnetic field, within which σd is negative.
Upon increasing the intensities of the two ac fields, the two domains of negative
photoconductivity merge into a single domain which broadens much faster with
the ac intensity than in the monochromatic case.

(ii) For monochromatic irradiation, σd could assume either one or two stable
values. By contrast, under bichromatic irradiation, we find a multistable regime
within certain domains of magnetic field.

(iii) In the vicinity of the conditions (ω1 + ω2) = 2ωc and |ω1 − ω2| = 2ωc,
a nonparabolicity-induced parametric instability develops in the system. As a
result of this instability, the components (ω1 + ω2)/2 and |ω1 − ω2|/2 emerge
in addition to the conventional frequencies ω1 and ω2 of the momentum oscil-
lations. These components, upon mixing with the components ω1, ω2, give rise
to components of P oscillating with frequencies 3ω1−ω2. Thus, for bichromatic
irradiation, two high-frequency ac driving fields can create a low frequency cur-
rent circulating in the system. In particular, for ω2 = 3ω1 ' 3ωc/2 the system
exhibits a dc response to the ac drive.

The importance of the nonparabolicity in experiment can be estimated by
studying the dimensionless quantity (eEτ)2 / (mE0), where E is the amplitude
of the microwave electric field. Assuming sample dimensions of 10−2 cm and a
microwave power of 100 µW, taken from Ref. [37], the microwave electric field
is of the order of E ∼ 1 V/cm. For the experimental mobility µ = 2.5 × 107

cm2/Vs and for a nonparabolicity parameter E0 = 1 eV, this yields a value
of (eEτ)2 / (mE0) ' 0.03 (this estimate may be too optimistic for the conduc-
tion band of GaAs). In the monochromatic case, negative σd is achieved for
(eEτ)2 / (mE0) & (ωcτ)

−1, which is compatible with the value ωcτ ∼ 50 from
Ref. [37]. This agreement can be reached in spite of the smallness of the non-
parabolicity, since the latter is compensated by the long scattering time in the
ultrahigh mobility samples studied [37, 36]. One can also estimate that for the
same parameters, the energy (eEτ)2/(2m) absorbed by an electron during the
relaxation time τ exceeds the Landau-level spacing ~ωc. Under this condition,
one expects the classical description to be appropriate.

3.2.1 Weak Detuning

For monochromatic irradiation, the cyclotron resonance develops when the mi-
crowave frequency is close to the cyclotron frequency ωc. In this section, we
consider bichromatic irradiation when both frequencies ω1 and ω2 are close to
ωc, |ω1 − ωc| � ωc and |ω2 − ωc| � ωc, so that the cyclotron resonances due to
ω1 and ω2 can interfere with each other.

Calculation of the Diagonal Conductivity

In analogy to Ref. [59], we search for solutions of Eq. (3.18) in the form

P(t) = P0 + P+
1 exp(iω1t) + P−

1 exp(−iω1t)

+P+
2 exp(iω2t) + P−

2 exp(−iω2t) ,
(3.19)
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3 Bichromatic Irradiation

where P0 is a small dc component proportional to Edc. The momentum com-
ponents P−

1 and P−
2 are nonresonant and can be found from the simplified

equations

−i(ω1 + ωc)P−
1 =

eE1

2
, (3.20)

−i(ω2 + ωc)P−
2 =

eE2

2
, (3.21)

where we neglect both relaxation and nonlinearity. However, relaxation and
nonlinearity must be taken into account when calculating the resonant mo-
mentum components P+

1 and P+
2 . Substituting Eq. (3.19) into Eq. (3.18) and

taking into account that |P−
1 |, |P−

2 | � |P+
1 |, |P+

2 |, we arrive at a system of
coupled equations for the resonant momentum components,

[

i (ω1 − ωc) +
1

τ
+

iωc

mE0

(
|P+

1 |2 + 2|P+
2 |2
)
]

P+
1 =

eE1

2
, (3.22)

[

i (ω2 − ωc) +
1

τ
+

iωc

mE0

(
2|P+

1 |2 + |P+
2 |2
)
]

P+
2 =

eE2

2
. (3.23)

Despite the inequalities |P+
1 | � |P−

1 | and |P+
2 | � |P−

2 |, it is crucial not to
neglect the nonresonant components P−

1 and P−
2 when considering the dc com-

ponent P0. This yields

[

−iωc +
1

τ
+

2iωc

mE0

(
|P+

1 |2 + |P+
2 |2
)
]

P0

+
2iωc

mE0

[
P+

1 P−
1 + P+

2 P−
2

]
P∗

0 = eEdce
iθ. (3.24)

Due to the nonlinearity, the microwave intensities induce an effective shift in the
resonance frequency ωc. Thus, it is convenient to introduce effective detunings
Ω1 and Ω2 by

Ω1 = ω1 − ωc +
ωc

mE0

(
|P+

1 |2 + 2|P+
2 |2
)

, (3.25)

Ω2 = ω2 − ωc +
ωc

mE0

(
2|P+

1 |2 + |P+
2 |2
)

, (3.26)

and to present formal solutions of Eqs. (3.22-3.23) in the form

P+
1 =

eE1τ

2 (1 + iΩ1τ)
, P+

2 =
eE2τ

2 (1 + iΩ2τ)
. (3.27)

Note that the detunings Ω1 and Ω2 themselves depend on P+
1 and P+

2 , so that
Eqs. (3.25-3.27) should be considered as a system of nonlinear equations for the
resonant momentum components P+

1 and P+
2 . Assuming that the detunings Ω1

and Ω2 are known, the solution of Eq. (3.24) yields for the dc component

P0 =
eEdc

ω2
c τ

{

(1 + iωcτ) e
iθ +

1

4mE0

[

(eE1τ)
2

1 + iΩ1τ
+

(eE2τ)
2

1 + iΩ2τ

]

e−iθ

}

. (3.28)
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3.2 Bichromatic Irradiation

The diagonal conductivity σd is proportional to Re
[
P0e

−iθ
]
. Thus, the second

term in Eq. (3.28) gives rise to a θ-dependence of the nonparabolicity-induced
contribution to the diagonal conductivity which is given by sin (2θ − φ). Here,
φ satisfies the equation

tan φ =
Ω1τ

(
1 + Ω2

2τ
2
)
E2

1 + Ω2τ
(
1 + Ω2

1τ
2
)
E2

2
(
1 + Ω2

2τ
2
)
E2

1 +
(
1 + Ω2

1τ
2
)
E2

2

. (3.29)

We deduce that the minimal value of σd is given by

σmin
d =

ne2

mω2
c τ

{

1 − e2τ2

4mE0

[(
E2

1Ω2τ + E2
2Ω1τ

)2
+
(
E2

1 + E2
2

)2

(
1 + Ω2

1τ
2
) (

1 + Ω2
2τ

2
)

]1/2}

. (3.30)

In the following, we will be particularly interested in σmin
d , since the condition

σmin
d < 0 is sufficient for the formation of the zero-resistance state.

Numerical Results: Multistability

As demonstrated in Ref. [59], the diagonal conductivity in the monochromatic
case shows a region of bistability. In the bichromatic case under study, even
multistable behavior may emerge, as will now be shown. We measure the
frequency difference of the ac fields by ∆ = (ω1 − ω2) τ and the magnetic field
by

b =

(

ωc −
ω1 + ω2

2

)

τ , (3.31)

which depends linearly on the magnetic field B. Upon substituting the formal
solutions P+

1 and P+
2 of Eq. (3.27) into Eqs. (3.25-3.26), these can be written

as a pair of coupled equations for the effective detunings Ω1τ and Ω2τ

Ω1τ =
∆

2
− b+A

[
1

1 + (Ω1τ)
2 +

2η2

1 + (Ω2τ)
2

]

, (3.32)

Ω2τ = −∆

2
− b+A

[
2

1 + (Ω1τ)
2 +

η2

1 + (Ω2τ)
2

]

, (3.33)

where η and A, given by

η = E2/E1 , A = ωcτ
(eE1τ)

2

4mE0
, (3.34)

measure the ratio of the field amplitudes and the ratio of the absolute field
intensities to the nonparabolicity of the electron spectrum, respectively. As
in the monochromatic case, the strength of the first order correction to the
Drude conductivity is proportional to the microwave intensity and thus to A.
At fixed magnetic field b and fixed ac frequencies and amplitudes, this coupled
system of two third-order equations can yield up to nine simultaneous solutions
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3 Bichromatic Irradiation

(Ω1τ,Ω2τ) for the effective detunings. Since σmin
d is directly related to these

effective detunings via

σmin
d = σD

{

1 − A

ωcτ

[

1

1 + (Ω1τ)
2 +

η4

1 + (Ω2τ)
2

+
2η2 (1 + Ω1τΩ2τ)

(

1 + (Ω1τ)
2
)(

1 + (Ω2τ)
2
)

]1/2}

, (3.35)

where σD = ne2/(ω2
c τ) is the Drude conductivity, there are up to nine individual

branches of σmin
d at any given b. This multistable behavior occurs in the vicinity

of the resonance and will be studied below for the specific case of η = 1 (i.e.,
equal field amplitudes).

We first focus on the dependence of σmin
d (b) on ∆. For large ∆, i.e. markedly

different ac frequencies, we expect two separate regions in b where σmin
d deviates

significantly from the Drude result. These are the regions where the cyclotron
frequency is in resonance with one of the two ac frequencies, i.e. either ω1 ' ωc

or ω2 ' ωc. Inside these regions, the behavior with respect to b is very similar
to the monochromatic case, except that the irradiation-induced effective shift
of ωc now depends on both external frequencies. In particular, the emergence
of bistable regions inside these two separate intervals is to be expected, in close
analogy to the monochromatic case. This can be seen in Fig. 3.4 (top), where
σmin

d is shown as a function of magnetic field b for rather large ∆. Two dips
in σmin

d can be clearly discerned, the inner branches of which are unstable.
Upon reducing ∆, the two dips move closer together up to a point where the
frequencies ω1 and ω2 are so close that the analogy to the monochromatic
case breaks down and the two dips start to interact to finally form a single
multistable dip in the limit ∆ → 0. This behavior is exemplified in Fig. 3.4
(middle and bottom). It can be seen that multiple solutions of σmin

d (b) develop
upon reducing ∆.

Next, we consider the case of negative diagonal conductivity and study the
evolution of σmin

d (b) with magnetic field b. As expected, there is a threshold
intensity below which no negative diagonal conductivity is observed. Upon
increasing the field amplitudes and thus A, the negative first order correction
to the Drude conductivity grows linearly with A/(ωcτ) as can be seen from Eq.
(3.35). When this correction exceeds unity, negative σmin

d is to be expected
in some regions of magnetic field b. Fig. 3.5 shows σmin

d (b) for three specific
values of A. It can be seen that at low A, no regions in b with negative diagonal
conductivity can be observed. At higher A, two regions in b show negative
σmin

d -branches as is also indicated by the shaded regions in Fig. 3.5(b). For
even higher A, a single large region in b shows negative diagonal conductivity.

To clarify the evolution of these regions with increasing field amplitudes, we
plotted the extension of the regions in b as a function of A. The result is shown
in Fig. 3.6. It is remarkable that above the threshold value of A, first a single
region appears that shows negative σmin

d . Then, in the immediate vicinity of
the threshold a second, well separated region develops. Upon further increasing
A, the width of these regions grows and, eventually, the two regions merge to
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Figure 3.4: Evolution of the dimensionless minimal conductivity σmin
d (in units of

the Drude conductivity σD) as a function of magnetic field b, defined in Eq. (3.31),
for three different values of ∆: ∆ = 20 (top), ∆ = 5 (middle), ∆ = 1 (bottom). The
curves have been calculated for the values of parameters η = 1, A = 5 (defined by Eq.
(3.34)), and ωcτ = 25. The distance of the two dips that can be clearly discerned in the
topmost figure is roughly ∆. When lowering ∆, the dips move closer together (middle
figure) and finally merge (bottom figure). In addition, multistable regions emerge. As
in Fig. 3.3, unstable branches are plotted as dashed lines.
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Figure 3.5: The dimensionless minimal diagonal conductivity, σmin
d (b), defined by

Eq. (3.35), plotted for three different values of the dimensionless intensity A of the two
ac fields: (a) A = 20, (b) A = 30, (c) A = 32. The domains of magnetic field b with
negative σmin

d are shaded. The dotted line indicates the boundary between positive
and negative σmin

d . Unstable branches are dashed. The curves have been calculated
for the values of the parameters η = 1, ∆ = (ω1 − ω2)τ = 25 and ωcτ = 25. In (b),
the point P is a point where a continuous stable and a continuous unstable branch
intersect without “noticing” each other, while the point P′ is a cusp which separates a
stable from an unstable branch.
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3.2 Bichromatic Irradiation

Figure 3.6: Evolution of the regions of negative σmin
d with irradiation intensity, A.

Shown are the bichromatic case (left panel) and the monochromatic case (right panel).
In both cases, only the dominant (stable) branches are shown to avoid confusion. The
parameters are the same as in Fig. 3.5.

form a single broad region of negative diagonal conductivity. For comparison,
we also show the monochromatic case in the right hand panel of Fig. 3.6.

Stability of Different Branches

The stability of the various branches of σmin
d (b) as shown by solid and dashed

lines in Figs. 3.3-3.5, can be obtained from standard stability analysis [65]. As
usual, we find that stable and unstable branches “meet” at cusps, as clearly seen
at the minima of σmin

d (b) in Figs. 3.3 and 3.4. The transitions from unstable
to stable branches at larger b in these figures are also accompanied by cusps,
although this can not necessarily be discerned within the resolution of the fig-
ures. The number of branches increases with the irradiation intensity (see Figs.
3.4 and 3.5). The basic rule that stable and unstable branches meet in cusps
remains valid, although this statement becomes less trivial. For example, in
Fig. 3.5(b), stable and unstable branches intersect at point P without “notic-
ing each other”. Accordingly, there is no cusp at this point. At the same time,
there is a cusp at P′ in Fig. 3.5(b) where the same branches switch between
stable and unstable. Figs. 3.4 (bottom) and 3.5(c) illustrate how new branches
and multistability emerge with increasing irradiation intensity. The emergence
of new stable and unstable branches occurs in pairs which meet at additional
cusps. In both Figures 3.4 (bottom) and 3.5(c), there are regions in magnetic
field with three coexisting stable solutions (tristability). Further increase of A
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would lead to up to eight cusps in Fig. 3.5(c), each of which is a meeting point
of stable and unstable branches. Thus, the tristability situation illustrated in
Fig. 3.5(c) will evolve into a magnetic field domain with “four-stability”.

3.2.2 Strong Detuning

In this section, we consider the case when both frequencies ω1 and ω2 are
tuned away from ωc. This implies that the system of coupled equations for the
resonant momentum components, Eqs. (3.22-3.23), decouples and acquires the
obvious solutions

P+
1 =

eE1τ

2 [1 + i (ω1 − ωc) τ ]
, P+

2 =
eE2τ

2 [1 + i (ω2 − ωc) τ ]
. (3.36)

The condition eE1, eE2 � ωc (mE0)
1/2 for decoupling follows from Eqs. (3.22-

3.23), assuming that |ω1 − ωc|, |ω2 −ωc| ∼ ωc � 1/τ . Interestingly, even under
this condition, the solutions are unstable for certain relations between the fre-
quencies ω1, ω2. The mechanism for this instability consists of nonparabolicity-
induced mixing of the two external drive frequencies, which results in a modu-
lation of the effective cyclotron frequency. This modulation, in turn, can lead
to parametric resonance.

To perform the stability analysis of the solutions Eq. (3.36), we introduce a
small deviation P → P + δP and linearize Eq. (3.18) with respect to δP. This
yields

d

dt
(δP) +

(

1

τ
− iωc +

2iωc

mE0
|P|2

)

δP +
iωc

mE0
P2 (δP)∗ = 0 . (3.37)

This equation couples δP to (δP)∗ via the nonparabolicity of the electron spec-
trum. The corresponding equation for δP∗ reads

d

dt
(δP∗) +

(

1

τ
+ iωc −

2iωc

mE0
|P|2

)

δP∗ − iωc

mE0
(P∗)2 δP = 0 . (3.38)

As can be seen from Eq. (3.19), the coupling coefficient P2 contains the har-
monics ±2ω1, ±2ω2, ±(ω1 + ω2), and ±(ω1 − ω2). This suggests that δP(t)
also contains a number of harmonics, namely, ±ω1, ±ω2, ±(ω1 + ω2)/2, and
±(ω1−ω2)/2. An instability might develop when either one of these frequencies
is close to ωc. Thus, in the monochromatic case, the instability develops only
in the vicinity of the cyclotron resonance ω1 ' ωc. The branches denoted by
dashed lines in Figs. 3.3(a,b) are unstable due to this instability. By contrast,
the bichromatic case offers two additional options for an instability to develop,
even if the frequencies ω1, ω2 are nonresonant, namely ωc ' (ω1 + ω2) /2 and
ωc ' | (ω1 − ω2) |/2. Both cases can be treated in a similar way. Therefore, we
mainly focus on the first case below.
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3.2 Bichromatic Irradiation

Parametric Instability at (ω1 + ω2) ' 2ωc

Upon substituting the ansatz

δP(t) = C exp

{[

Γ +
i (ω1 + ω2)

2

]

t

}

,

δP(t)∗ = C∗ exp

{[

Γ − i (ω1 + ω2)

2

]

t

}

(3.39)

into Eqs. (3.37-3.38) and keeping only resonant terms, we obtain the following
system of equations for C and C∗

[

Γ +
1

τ
+
i (ω1 + ω2 − 2ωc)

2
+

2iωc

mE0

(
|P+

1 |2 + |P+
2 |2
)

]

C

= − 2iωc

mE0
P+

1 P+
2 C

∗ , (3.40)
[

Γ +
1

τ
− i (ω1 + ω2 − 2ωc)

2
− 2iωc

mE0

(
|P+

1 |2 + |P+
2 |2
)

]

C∗

=
2iωc

mE0

(
P+

1 P+
2

)∗
C . (3.41)

The most favorable condition for instability consequently is determined by the
relation

ω1 + ω2 = 2ωc

[

1 − 2

mE0

(
|P+

1 |2 + |P+
2 |2
)
]

' 2ωc

{

1 − e2

2mE0

[ E2
1

(ω1 − ωc)
2 +

E2
2

(ω2 − ωc)
2

]}

' 2ωc

[

1 − 2e2
(
E2

1 + E2
2

)

mE0 (ω1 − ω2)
2

]

, (3.42)

where Eq. (3.36) has been used. If ω1 and ω2 fulfill this relation, the increment
Γ is maximal and takes on the value

Γmax = −1

τ
+

(
2ωc

mE0

)

|P+
1 P+

2 |

' −1

τ
+

∣
∣
∣
∣

e2ωcE1E2

mE0 (ω1 − ωc) (ω2 − ωc)

∣
∣
∣
∣

' −1

τ
+
e2 (ω1 + ω2) |E1E2|
mE0 (ω1 − ω2)

2 . (3.43)

The parametric instability develops if Γmax is positive. It is important to note
that the condition Γmax > 0 is consistent with the condition of strong detuning
when the simplified expressions, Eq. (3.36), are valid. Indeed, assuming |ω1 −
ωc| ∼ |ω2 − ωc| ∼ ωc, the two conditions can be presented as ωc (mE0)

1/2 �
eE1, eE2 � τ−1 (mE0)

1/2. Therefore, for ωcτ � 1, there exists an interval of
the amplitudes of the ac fields within which both conditions are met. Note also
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that the parametric resonance does not develop exactly at ωc = (ω1 + ω2)/2,
i.e. at b = 0. In fact, from Eqs. (3.42-3.43) it can be concluded that Γmax > 0
corresponds to b & 1. In experimental situations, when ω1 and ω2 are fixed,
Eq. (3.42) can also be viewed as a condition for the magnetic field ωc = ωopt

c at
which the parametric instability is most pronounced. The interval of ωc around
ωopt

c within which the increment assumes positive values can be found from the
dependence Γ (ωc) given by

Γ(ωc) = −1

τ
+

√
(

Γmax +
1

τ

)2

−
(

ωc − ωopt
c

)2

' −1

τ
+

√
[
e2 (ω1 + ω2) |E1E2|
mE0 (ω1 − ω2)

2

]2

−
(

ωc − ωopt
c

)2
. (3.44)

Upon setting Γ(ωc) = 0 in the left-hand side of Eq. (3.44), we find the width of
the interval to be

|ωc − ωopt
c | ≤

{[
e2ωc|E1E2|

2mE0 (ω1 − ωc)
2

]2

− 1

τ2

}1/2

'
{[

e2 (ω1 + ω2) |E1E2|
mE0 (ω1 − ω2)

2

]2

− 1

τ2

}1/2

. (3.45)

It is instructive to reformulate the condition for the parametric instability in
a different way. Assume for simplicity that E1 = E2. Then the combina-
tion e2|E1E2|/2mE0(ω1 − ωc)

2 is equal to δm/m, where δm/m is the relative
correction to the electron effective mass due to irradiation (see Section 3.1).
From Eq. (3.43) it follows that the condition Γmax > 0 can be presented as
(ωcτ) (δm/m) > 1. With ωcτ � 1 this condition can be satisfied even for
δm � m. Note that in the case of weak detuning, the same condition is re-
quired for the dc conductivity to assume negative values near the cyclotron
resonance.

Summarizing, we arrive at the following scenario: In the case of strong de-
tuning, there is no mutual influence of the responses to the ac fields E1 and
E2 as long as they are weak. However, as the product |E1E2| increases and
reaches a critical value |E1E2|c, the threshold, Γmax = 0, where Γmax is given
by Eq. (3.43), is exceeded at the magnetic field ωc = ωopt

c determined by Eq.
(3.42). Above the threshold, fluctuations with frequencies close to (ω1 + ω2) /2
are amplified. This parametric instability is solely due to the nonparabolicity.
Then the natural question arises: At which level above the threshold does the
momentum component of frequency (ω1 + ω2) /2 saturate? This question will
be addressed below.

Parametric Instability at |ω1 − ω2| ' 2ωc

We now briefly discuss the parametric instability at weak magnetic fields ωc '
| (ω1 − ω2) |/2. Without loss of generality, we assume ω1 > ω2. In this case, the
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optimal magnetic field ω̃opt
c is smaller than in the previous case and reads

ω1 − ω2 ' 2ω̃opt
c







1 − e2

2mE0






E2
1

(

ω1 − ω̃opt
c

)2 +
E2

2
(

ω2 − ω̃opt
c

)2












' 2ω̃opt
c

{

1 − 2e2

mE0

[ E2
1

(ω1 + ω2)
2 +

E2
2

(3ω2 − ω1)
2

]}

. (3.46)

At ωc = ω̃opt
c , the threshold condition for parametric instability, analogous to

Eq. (3.43), has the form

Γ̃max ' −1

τ
+

e2 (ω1 − ω2) |E1E2|
mE0 (ω1 + ω2) |3ω2 − ω1|

> 0 . (3.47)

There is no real divergence in Eqs. (3.46-3.47) in the limit ω1 → 3ω2, since they
have been derived under the assumption |3ω2 − ω1| & 1/τ .

Saturation of Parametric Resonance

As the threshold for parametric resonance is exceeded, the harmonics with
frequency (ω1 + ω2) /2 can no longer be considered as a perturbation, but rather
have to be included into the equation of motion. In other words, we have to
search for a solution of Eq. (3.18) in the form

P = P+
1 exp (iω1t) + P+

2 exp (iω2t) + P3(t) exp

[

i

(
ω1 + ω2

2

)

t

]

, (3.48)

where P3(t) is a slowly-varying function of time. Upon substituting this form
into Eq. (3.18), we obtain the following coupled system of equations for P3(t)
and P∗

3 (t)

dP3

dt
+

[

1

τ
+
i (ω1 + ω2 − 2ωc)

2
+

iωc

mE0

(
2|P+

1 |2 + 2|P+
2 |2 + |P3|2

)

]

P3

= − 2iωc

mE0
P+

1 P+
2 P∗

3 ,

(3.49)

dP∗
3

dt
+

[

1

τ
− i (ω1 + ω2 − 2ωc)

2
− iωc

mE0

(
2|P+

1 |2 + 2|P+
2 |2 + |P3|2

)

]

P∗
3

=
2iωc

mE0

(
P+

1 P+
2

)∗P3 .

(3.50)

Saturated parametric instability can be reached by setting dP3/dt = 0 and
dP∗

3/dt = 0 in Eqs. (3.49) and (3.50), respectively. The result for P3 assumes
its simplest form at the optimal magnetic field ωc = ωopt

c

|P3|(ωopt
c ) =

[

|P+
1 P+

2 |2 − 4m2E2
0

(ω1 + ω2)
2 τ2

]1/4

. (3.51)
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From Eq. (3.51), we conclude that in the vicinity of the threshold, |P3| in-

creases as
(

|E1E2| − |E1E2|c
)1/4

∝ Γ
1/4
max. Well above the threshold it ap-

proaches the value |P+
1 P+

2 |1/2. Thus, even upon saturation, the magnitude
of the nonparabolicity-induced harmonics with frequency (ω1 + ω2) /2 does not
have a “back”-effect on the magnitudes (Eq. (3.36)) of the responses to the ac
fields.

For magnetic fields in the vicinity of ωopt
c , the saturation value |P3|(ωc) is

given by

|P3|(ωc) =

{[

|P+
1 P+

2 |2 − 4m2E2
0

(ω1 + ω2)
2 τ2

]1/2

− 2mE0|ωc − ωopt
c |

(ω1 + ω2)

}1/2

'
[

|P3|2(ωopt
c ) − 2mE0|ωc − ωopt

c |
(ω1 + ω2)

]1/2

. (3.52)

In contrast to |P3|(ωopt
c ), the threshold behavior of |P3|(ωc) is slower, namely

|P3|(ωc) ∝
(

|E1E2|−|E1E2|c
)1/2

. In principle, one has to verify that the solutions

Eqs. (3.51-3.52), which describe the saturated parametric resonance, are stable.
This can be done by perturbing Eqs. (3.49-3.50) around the saturated solution.
We find that the corresponding perturbations do indeed decay.

Implications for dc Transport

As demonstrated in the previous subsection, the parametric instability that
develops in the case of two ac fields above a certain threshold results in the mo-
mentum component P3 exp [i (ω1 + ω2) t/2], which well above the threshold has
the magnitude |P3| '

√

|P1||P2|. The important consequence of the developed
parametric resonance is that the component P3 gives rise to new harmonics in
the term ∝ |P|2P in the equation of motion, Eq. (3.18). Of particular interest
are the P3-induced terms

[
P2

1P∗
3 + P1P∗

2P3

]
exp

(

i
3ω1 − ω2

2
t

)

. (3.53)

It is easy to see that, under the condition ω2 ' 3ω1, these terms act as an
effective dc field, and thus generate low-frequency circular current even without
dc drive. If the relation between the frequencies is precisely 1 : 3, then the
magnetic field, at which the developed parametric instability would give rise
to a quasistationary circular current distribution, can be determined from Eq.
(3.42)

ωc ' 2ω1

[

1 +
2e2
(
E2

1 + E2
2

)

mE0 (ω1 − ω2)
2

]

. (3.54)

If the ratio ω2/ω1 is close, but not exactly 1 : 3, there still is a certain allowance,
determined by Eq. (3.45), for the formation of the quasistationary current. The
above effect of spontaneous formation of dc-like currents under irradiation is
distinctively different from the formation of current domains when σd turns
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negative under irradiation. First, the effect is specific to bichromatic irradiation.
Second, it requires rather strict commensurability between the two frequencies,
and, finally, it develops within a very narrow interval around a certain magnetic
field.

3.3 Bichromatic Irradiation and Absolute Negative
Conductivity

Bichromatic irradiation can be used to test the assumption that absolute nega-
tive local conductivity lies at the origin of the observed ZRS. Consider a system
under the influence of two microwave fields of frequencies ω1 and ω2. We are
then interested in the following scenario: Under monochromatic irradiation with
frequency ω1, the diagonal resistance R1 is positive and no ZRS are observed as
the measured resistance is R

exp.
1 > 0, while under mononchromatic irradiation

with frequency ω2, the diagonal resistance R2 assumes negative values and thus
drives the system to the ZRS-producing instability with an experimentally mea-
sured resistance R

exp.
2 = 0. What happens if one simultaneously illuminates

the sample with both microwave fields?
In the case of bichromatic irradiation, the stability of the combined response

to both microwave fields depends on the amplitude of the corresponding contri-
butions, with R1 driving the system in one and R2 in the opposite direction. If
the positive response dominates (|R1| > |R2|), the bichromatic resistance will
be stable even though the response to the microwave field of frequency ω2 alone
would lead to an instability. The monochromatic resistance R2 can then be
extracted from the bichromatic resistance R12 via

R2 = 2R12 −R1 , (3.55)

where it has been assumed that the intensities of both fields are tuned such
that their contribution to the total resistance is equal. Certainly, this relation
is too simplistic to be exact, but nevertheless allows for a first estimate of the
magnitude of R2.

Bichromatic irradiation thus allows to extract the value of R2 masked by
the instability in the monochromatic case (through R

exp.
2 = 0) and thus can

be used as a probe for absolute negative resistance. A corresponding experi-
ment recently has been carried out by Zudov and co-workers [38], who found
evidence for absolute negative resistance by irradiating a symmetrically doped
AlGaAs/GaAs/AlGaAs quantum well mono- and bichromatically with frequen-
cies f1 = ω1/2π = 31 GHz and f2 = ω2/2π = 47 GHz, which, by their ratio
of 2 : 3 allows for multiple overlaps between microwave-induced features of the
monochromatic responses. Results of this experiment are shown in Fig. 3.7.
Shown in panels (a) and (b) are the monochromatic responses to microwaves of
frequencies ω1 and ω2 and, in panel (c), the response to simultaneous irradiation
with both frequencies. The dotted curve in panel (c) represents the average of
the mononchromatic resistances presented in panels (a) and (b). It is obvious
that the measured bichromatic resistance lies well below this average for most
magnetic fields, indicating a negative contribution by one of the two frequencies
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Figure 3.7: Results of the first experiment involving bichromatic irradiation [38].
Panels (a) and (b) show the longitudinal resistance Rxx under monochromatic irradi-
ation with the individual microwave fields of frequencies f1 and f2 and panel (c) the
resistance under bichromatic irradiation. Vertical lines mark the cyclotron harmonics
as labeled by the boxed numbers. Wherever ZRS occur in the monochromatic cases
(a)-(b), the total bichromatic resistance is reduced considerably with respect to the
sum of the individual monochromatic resistances. This figure has been taken from Ref.
[38].

and thus pointing towards the existence of absolute negative resistance. Wher-
ever ZRS are present in the monochromatic cases, the bichromatic resistance
is lowered considerably below the averaged value of the two mononchromatic
resistances. This constitutes an important argument for the validity of the
theoretical picture for the explanation of ZRS discussed in Chapter 2.

3.4 Discussion

In this chapter, we considered the problem of classical single electron motion in
a magnetic field under simultaneous irradiation by two monochromatic fields.
When the frequencies ω1 and ω2 differ only slightly, |ω1−ω2| ∼ 1/τ , the effect of
a weak nonparabolicity in the electron spectrum on the diagonal conductivity
is qualitatively the same for monochromatic [59] as for bichromatic irradiation.
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3.4 Discussion

The main qualitative effect new to the bichromatic case is the emergence of
parametric resonance at magnetic fields ωc = (ω1 +ω2)/2 and ωc = |ω1 −ω2|/2
when the detuning is strong, i.e. of the order of the cyclotron frequency. As
discussed in detail in the introduction of this chapter, it is instructive to com-
pare this effect with the parametric resonance of electrons in a magnetic field
due to a weak time modulation of the field amplitude [60, 61, 62]. The lat-
ter effect, considered more than 20 years ago, has a transparent explanation:
The modulation of the magnitude of a dc field with frequency 2ωc translates
into a corresponding modulation of the cyclotron frequency, so that the equa-
tion of motion of the electron reduces to that for a harmonic oscillator with a
weakly time-modulated eigenfrequency. The solution of this equation develops
an instability if the frequency of the modulation is close to 2ωc. For realis-
tic magnetic field strengths, this condition on the modulation frequency of the
magnetic field cannot be reached experimentally since the cyclotron frequency
lies in the microwave range. It was proposed in Ref. [62] to use microwave
illumination with frequency 2ωc to create a parametric resonance due to the
magnetic field component of the pumping electromagnetic wave.

We have demonstrated in this chapter that two nonresonant ac sources can
enforce a parametric resonance of the type considered in Refs. [60, 61, 62] with-
out any time modulation of the dc magnetic field. Remarkably, the bichromatic-
radiation-induced cyclotron resonance emerges due to the same nonparabolic-
ity, Eq. (3.2), that played the role of a stabilizing factor in Refs. [60, 61, 62].
Roughly, the time modulation of ωc in the dc field required in Refs. [60, 61, 62]
for parametric resonance emerges from the “beatings” of the responses to the
two ac signals. The nonparabolicity transforms these beatings into a modu-
lation of the cyclotron frequency. Although the increment Γ for parametric
resonance, induced by bichromatic irradiation, is proportional to the product
E1E2 of the amplitudes of the two sources, while in Ref. [62] it was proportional
to the first power of the magnetic component of the ac field, the “bichromatic”
increment is much bigger. As demonstrated above, the bichromatic increment
is Γ ∼ ωc

(
mc2/E0

) (
E1E2/B

2
)
, which has to be compared to the increment

Γ ∼ ωc (E/B) of Ref. [62]. The ratio contains a small factor (E/B) which is
offset by the huge factor

(
mc2/E0

)
.

Bichromatic irradiation can be used as a probe of the absolute negative lon-
gitudinal resistance believed to be the origin of the ZRS (see Chapter 2) by
comparing the response of a system to bichromatic irradiation with the re-
sponses to the individual microwave fields. Very recently, this idea has been
realized experimentally [38] and strong evidence for absolute negative resistance
has been found.
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