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Chapter 1

Introduction

In an interview for a bookstore company in 1993 Donald E. Knuth, one of the fathers
of computer science, said about bioinformatics:

“There’s millions and millions of unsolved problems. Biology is so digital,
and incredibly complicated, but incredibly useful. [...] Biology easily has
500 years of exciting problems to work on.” [4]

So far his predictions seem to be accurate. In particular, the availability of genomic
sequences presented scientists with a large number of digital problems, which fos-
tered considerable advances in formal sciences, such as computer science, machine
learning and statistics, as well as in life sciences. Many of these problems could be
formalized as the discovery, detection or statistical analysis of patterns in a long se-
quence. This is the genetic code: in humans, a signal of about three billion symbols
in an alphabet of four letters. However today many of these problems, such as read
mapping, sequence alignment, motif discovery, or alignment statistics, are already
very well studied.

Opportunely, new experimental techniques, such as ChIP-seq, are providing a
new type of digital sequences. These are count signals: sequences as long as the
genetic code, but with the natural numbers as an alphabet. Count signals form
the basis for a new kind of challenges with at least three levels of complexity. At
the biological level, ChIP-seq and count signals shed light on gene regulation: an
intricate network of molecular processes that orchestrates the genetic code and de-
termines the identity of a cell. These processes can now be systematically assayed
and analyzed computationally. At the data analysis level, the code hidden in the
count signals is extremely complex due to experimental noise and the heterogeneity
of cell mixtures. This calls for the development of novel statistical approaches to
explore, characterize and confidently detect the patterns of interest. Lastly, at the
computational level, an unprecedented amount of data is being produced and needs
to be analyzed efficiently. Unlike the genetic code, in fact, profiling the regulatory
mechanisms in a cell type often results in more than one count signal, and these
signals also differ from one cell type to the next.

The purpose of this thesis is to formalize and address pattern discovery and
pattern detection problems in count signals. These problems are biologically relevant
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2 CHAPTER 1. INTRODUCTION

in the context of gene regulation, for understanding how genes are regulated and
what characterizes a cell type. The proposed solutions and the main contributions
of this work consist in the design and implementation of algorithms for the analysis
of these biological datasets.

This chapter serves as a general introduction to the thesis. In particular, Section
1.1 gives a brief overview about gene regulation and Section 1.2 introduces the ChIP-
seq technique and count signals; these are the common biological motivation and
the common type of input data of the proposed algorithms. Finally, Section 1.3
describes how the thesis is structured.

1.1 Biological context

1.1.1 The genome

The genome has been called the book of life, because it is what determines almost
every feature of a living organism. It is also the micro-universe where all the bio-
logical phenomena studied in this work take place. To describe where events occur
in this universe it is necessary to clarify its topology.

The eukaryotic genome resides in the cell nucleus, packaged into units called
chromosomes and constituted by double-stranded DNA molecules. A DNA strand
is a long chain of nucleotides which can be seen as a text written with only four
symbols: adenine (A), cytosine (C), guanine (G) and thymine (T). Owing to the
asymmetry of the chemical bond between two adjacent nucleotides, in a DNA strand
it is always possible to distinguish a start and an end, called respectively the 5’
end and the 3’ end. The double-stranded DNA contained in the chromosomes is
composed of two complementary strands. Complementary means that they have
the same number n of nucleotides, that the i-th nucleotide in one strand is bound to
the (n− i+ 1)-th nucleotide in the other strand, and that this bound obeys the base
pairing rules (adenine is paired with thymine and cytosine is paired with guanine).
For more information about the structure of double-stranded DNA see Watson &
Crick [5].

Today the human genome sequence, as well as that of many other species, is
almost entirely known [6, 7] and reference genome assemblies are available. The
assembly specifies the nucleotide sequence of each chromosome and defines a forward
and a reverse strand. A genomic coordinate, therefore, consists of a chromosome, a
strand, and the number of base pairs from the start of the forward strand.

1.1.2 Transcription

Transcription is the first step in the process that propagates the information in the
genome outside the cell nucleus and is one of the most important steps in gene
regulation. The central dogma of molecular biology [8], in fact, states that every
protein originates from a corresponding region in the genome called gene. During
transcription a protein complex called RNA polymerase reads the gene in the 5’-to-
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3’ direction and creates an RNA molecule called pre-mRNA (see Figure 1.1). This
molecule acts as a sort of temporary storage device for transferring information
from the cell nucleus to the cytoplasm. Inside the cell nucleus the pre-mRNA is
transformed into an mRNA by splicing and polyadenylation. In the cytoplasm the
mRNA undergoes further steps (translation) that eventually lead to the synthesis
of a protein.

Transcription is a three-step process, consisting of initiation, elongation and
termination. The initiation of transcription is mediated by a protein complex called
the preinitiation complex, and the exact site where the RNA polymerase starts
reading the gene is called transcription start site (TSS). Next, the RNA polymerase
elongates along the gene body and finally dissociates from the DNA.

RNA
polymerase

transcription
start site

nascent mRNA
(transcript)

double-stranded
DNA

single-stranded
DNA

gene

Figure 1.1: Gene transcription. The drawing shows the RNA polymerase elon-
gating through the body of a gene. The gene being transcribed is represented as the
green segment in the single-stranded DNA region. The transcription start site is
represented as an arrow. The transcript, shown in light-gray, is almost a copy of the
gene and it is free to leave the cell nucleus and to be translated into a protein.

1.1.3 Gene regulation

If the genome is the book of life, in a multicellular organism each cell has almost
the same book, but reads different pages. In fact a human is not a homogeneous
mass of cells, but rather a highly structured organism composed of distinct cell
types, such as white blood cells, neurons or muscle cells. What makes these cells
specialized is, to a large extent, their transcriptional program. In fact, even if all
cells share an almost identical genome, their genes are transcribed at different rates.
This has a direct impact on gene expression, i.e. how many proteins from each
gene are present in the cell, which in turn explains a wide range of phenotypic
differences. There are also other mechanisms that regulate gene expression and that
occur after transcription, such as microRNA- and lncRNA- mediated regulation,
mRNA degradation and post-translational modifications [9–12]. Gene regulation is
the field of molecular biology that studies these yet poorly understood mechanisms.
The central questions of this field are how are genes regulated and what determines
the identity of a cell. The computational approaches presented in this thesis are an
effort towards the answer to these questions.



4 CHAPTER 1. INTRODUCTION

1.1.4 Transcription factors

Transcription factors (TFs) are proteins of fundamental importance in gene regula-
tion. The distinctive feature of these proteins is that they can bind to the genome
and subsequently activate or repress the transcription of one or more target genes.
Transcription factors do not bind everywhere in the genome, but they are attracted
to specific genomic locations, called binding sites, where certain DNA sequences oc-
cur. Each TF recognizes a set of similar sequences, collectively called a motif, which
can be 4 to 15 base pairs long. However, motifs are not the only determinants of
TF binding. The accessibility of the DNA and the presence of other proteins can
play a major role.

TFs bind to promoters or enhancers. Promoters are located right upstream the
transcription start site, while enhancers can be even millions of base pairs away and
brought in proximity of the transcription start site by DNA looping [13]. After bind-
ing, there are many mechanisms by which a TF can affect transcription. TFs that
act as activators, for instance, can directly or indirectly recruit (attract) members
of the preinitiation complex, and thereby facilitate the initiation of transcription.
In contrast, TFs acting as repressors can block an activator by steric hindrance,
i.e., they compete with the activator for the same binding site and prevent it from
binding. Very often TFs do not act in isolation, but they need to interact with other
molecules, called cofactors, in order to perform their regulatory role.

RNA polymerase

transcription factors
cofactors
enhancer

promoter

transcription start site

Figure 1.2: TFs regulate genes by binding to promoters or enhancers. Promoters
are located right upstream of the TSS of the regulated gene, while enhancers can be
thousands of bases away from the TSS. The regulatory effect is achieved by interact-
ing with RNA polymerase and other proteins responsible for initiating transcription,
often through intermediate proteins called cofactors.

The detection of TF binding sites is a first important step in understanding how
genes are differentially regulated in different cell types. Some computational meth-
ods base their predictions on the presence of known sequence motifs [14, 15]. These
approaches, however, have several limitations. First, they require prior biological
knowledge about the TF of interest, second, they cannot explain the differences
among cell types and, most importantly, they do not take into account the accessi-
bility of the DNA and the combinatorial effect of other cofactors. Other computa-
tional methods [16, 17] are based on the ChIP-seq protocol (see Section 1.2), which
provides a more direct measurement of protein binding. However these approaches
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suffer from limited resolution. In Chapter 5 we present a novel approach that unifies
both data sources and provides accurate predictions of TF binding sites.

1.1.5 The epigenome

Without altering the DNA sequence, cells can still modify certain molecules in close
proximity with the DNA, which, in turn, are related to gene expression [18]. Col-
lectively, these modifications constitute the epigenome, and they can be seen as a
mechanism for deriving different interpretations from the same genetic code. While
the genome is passed on to daughter cells with high fidelity, the epigenome is not as
stable. How and to which extent certain epigenetic modifications can be inherited
across cell divisions is still a matter of debate [19]. Histones and histone modifica-
tions, presented in Subsection 1.1.6, are an important component of the epigenome.
There are also other modifications that constitute the epigenome, notably DNA
methylation [20]. However, in this work the word epigenome will almost always
refer to histones and histone modifications.

1.1.6 Histones

Histones are proteins found inside the cell nucleus of eukaryotic organisms. These
proteins are extremely well conserved throughout evolution, which suggests that they
are important for the cell [21]. One of their main roles is to organize and compact
the genetic material inside the nucleus. In other words, they are responsible for
fitting and organizing an entire human genome, which is about 2 meters long, into
a cellular compartment with the diameter of about 6 micrometers. This is achieved
through organizational units called nucleosomes: a complex formed by a stretch of
DNA of about 147 base pairs and by two copies each of the four core histones H2A,
H2B, H3 and H4 [22] (see Figure 1.3). The histone octamer serves as a sort of
spool around which the genome can wind, forming a structure resembling beads on
a string. Moreover, this structure can wind around itself multiple times and achieve
higher degrees of compaction.

The term chromatin refers to the structure formed by histones and DNA (as
well as other components), and it is traditionally divided into euchromatin and
heterochromatin. Euchromatin is characterized by a low degree of compaction, it
tends to localize at the center of the cell nucleus, and the genes that it hosts can
be easily transcribed. Heterochromatin, by contrast, is highly condensed chromatin
located at the periphery of the nucleus. Heterochromatic regions tend to harbor
fewer genes, and those genes tend to be repressed. In general, nucleosomes tend to
inhibit gene transcription by making the DNA less accessible [23].

What determines the position of nucleosomes along the genome is still unclear
and is the focus of ongoing research. On one hand it seems that nucleosome for-
mation is driven, at least partially, by the DNA sequence [24]. On the other hand
many molecular processes, such as transcription initiation and elongation, and many
enzymes, such as ATP-dependent chromatin modifiers, are known to be responsible
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for nucleosome formation and eviction [25–27]. In Chapter 3 we present a method
that uses ChIP-seq data (see Section 1.2) to infer where nucleosomes are bound.

The role of histones in gene regulation is much more complex than just a general
repressive mechanism. It is not only important where a nucleosome forms, but also
the presence or absence of certain chemical groups in specific residues of the histones,
called histone modifications (or marks). Modified residues tend to occur in domains
of the histones which protrude from the nucleosome and are therefore called histone
tails (see Figure 1.3). Histone modifications are named after the histone where they
occur, the position of the modified residue within the histone, and the chemical
group that is covalently bound to the residue. For instance, H3K4me3 denotes the
addition of three methyl groups in the fourth residue of histone H3, which is a lysine.

H2B

H4

H2A H3

K4
me1
me2
me3
ac

K9
me3
ac

K27
me3
ac

K36

me3

me1

K20

linker
DNA

nucleosomal
DNA

nucleosome

chromatin histones

histone tails and
histone marks

Figure 1.3: Nucleosomes, histones and histone marks. A nucleosome is a complex
formed by histone proteins (in gray) and DNA (in brown) and is the fundamental
repeating unit of the chromatin. Each nucleosome is formed by two copies of four
types of histones: H2A, H2B, H3 and H4. Certain residues of the histones, especially
in their tail domains, can be covalently modified and carry specific post-translational
modifications. The most common marks have been represented by specifying the
residue where they occur (K stands for lysine, and the number that follows specifies
how far the residue is form the N-terminus of the protein), and the covalent mod-
ifications that are typically studied (me1, me2, and me3 stand for mono-, di- and
tri-methylation and ac stands for acetylation). Note that not only the tail domains of
the histones can be modified and not only lysine residues. Note also that all histones
have tails. Here, for display purposes, only two tails have been drawn.

Because histone modifications can be recognized, added and removed by other
proteins, it has been proposed that they constitute a sort of code which orches-
trates the regulatory mechanisms in the chromatin. This idea is often referred to
as the histone code hypothesis [28]. Today many histone marks have been related
to regulatory mechanisms and to gene transcription [29, 30]. The modifications
H3K4me3 and H3K36me3, for instance, are strongly associated to transcription ini-
tiation [31, 32] and elongation [33, 34], respectively, and are therefore considered
active marks. Also acetylations are usually active marks, because they make the
nucleosome less stable and therefore the DNA more accessible [35, 36]. The mod-
ifications H3K27me3 and H3K9me3, on the other hand, are considered repressive
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histone mark relation to transcription typical location
H3K4me3 activation promoters
H3K4me1 activation promoters,enhancers
H3K36me3 activation gene bodies
H3K27ac activation promoters,enhancers
H3K27me3 repression repressed genes
H3K9me3 repression heterochromatin

Table 1.1: Some histone modifications and their association to transcription.

marks because they are involved in mechanisms that repress gene transcription [31,
37, 38]. Table 1.1 summarizes some of the most important and best understood
histone modifications together with their association to transcription.

A concept related to the histone code is the concept of chromatin state: a set
of histone marks that tend to occur in the same genomic region [39]. Chromatin
states are a convenient abstraction mainly for two reasons. First, they provide a
grammar for studying the role played by combinations of histone marks, rather
than by histone marks in isolation. Second, they allow a compact description of
the highly complex histone code. In fact, considering every possible combination of
histone marks along with their intensities can be impractical. In many applications
it is possible to reduce all possible configurations of histone marks to a small number
of states, which can be easily interpreted and analyzed. In Chapter 4 we present
an algorithm that automatically detects biologically relevant chromatin states and
segments the genome based on which marks are present in each region.

1.2 Measurement of protein binding

1.2.1 ChIP-seq

Chromatin Immunoprecipitation followed by Sequencing (ChIP-seq) is an exper-
imental method that measures from a given sample of cells the abundance of a
specific protein (a transcription factor, a histone or a histone with a specific mark)
along the entire genome [40]. Omitting many technical details, the experiment works
as follows:

1. A large number of cells is fixed using formaldehyde. This process, called
crosslinking, stabilizes the bonds between proteins and DNA.

2. The chromatin of the fixed cells is broken into small fragments through soni-
cation. Sonication consists in applying sound energy to agitate the molecules
in the sample.

3. Specific antibodies that bind only to the protein of interest are added to the
sample, and the complexes formed by the antibody, the protein of interest
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and the DNA fragment are isolated from the rest. This process is called
immunoprecipitation.

4. The proteins are removed from the sample and purified DNA fragments are
prepared for the sequencing phase. This process is called library preparation.
An important part of library preparation is DNA amplification, which consists
in duplicating the available DNA multiple times.

5. A sequencing machine decodes the stretches of nucleotides at the 5’ end of the
DNA fragments, which are called reads.

T T T A CC A A AG T GG

CGA A T T GC GA T T A

C A A CG T A T CT G A C

T GC T A A CG AT A CG

C A A CG T A T CT G A C

cells

sequencing

crosslinked and fragmented
chromatin

immunoprecipitation

purification and
library preparation

protein of interest

double-stranded DNA

antibody

single-stranded DNA
read

5' 3'

Figure 1.4: The ChIP-seq protocol. First, the chromatin is extracted from the nu-
cleus of a large number of cells. Second, the chromatin is fragmented, which results
in a large number of double-stranded DNA fragments. Some of these fragments will
be bound to the protein of interest and others not. Next, specific antibodies bind to
the protein of interest and can be subsequently isolated. This separates the antibody-
protein-DNA complexes from the rest. Next, the DNA is purified and prepared for
sequencing. Finally, the 5’ extremities of single-stranded DNA fragments (repre-
sented as brown arrows showing the 5’-to-3’ direction) are decoded by a sequencing
machine. These short sequences (typically from 20 to 50 base pairs long) are called
reads.

There exist many variations of the ChIP-seq protocol. Chapter 5 presents a
variant called ChIP-exo [41]. For the purposes of this introduction, the differences
between ChIP-exo and ChIP-seq can be ignored.
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1.2.2 Read mapping

After sequencing, the reads from a ChIP-seq experiment are mapped, that is, their
original location in the genome is determined (see Figure 1.5). Tools called read
mappers search the reference genome for a subsequence matching the read. Once a
hit is found, the read is assigned a genomic coordinate consisting of a chromosome
identifier, the position from the start of the chromosome, and the strand. Typically,
most of the reads contain enough information for a unique position in the genome
to be identified. When the reads are too short compared to the reference genome,
when they contain too many sequencing errors or when they come from repetitive
regions of the genome it might be impossible to map the read confidently.

Figure 1.5: Read mapping. In this toy example, the reads at the top are mapped to
the reference genome at the bottom consisting of two chromosomes. This is done by
searching for the subsequence of the reference genome that matches the read. Such
a match can occur in the forward or in the reverse strand of a chromosome, which
is drawn respectively with blue and red rectangles. A match does not necessarily
imply that all bases are identical; there can be small differences, such as mismatches
(drawn with an x). These can be due to sequencing errors or differences between the
reference genome and the genome of the cells where the reads originate from.

1.2.3 Count signals

The algorithms presented in this work process count signals: sequences of natural
numbers obtained by counting how many reads are mapped at each genomic coor-
dinate. The count signals obtained from ChIP-seq reads, therefore, indicate where
and to which extent proteins bind to the genome. Count signals can also be obtained
from other important experimental protocols, such as DNAse-seq and RNA-seq [42,
43]. In DNAse-seq, a count signal shows to which extent the DNA is accessible for
proteins such as TFs and the preinitiation complex. In RNA-seq read counts mea-
sure the abundance of RNA originating from a certain DNA region. Count signals
can be conveniently displayed in a genome browser, where the horizontal axis shows
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the position in the forward strand of a chromosome, and the vertical axis shows the
read count (see Figure 1.6).

There are many possible ways of assigning reads to genomic coordinates. When a
read is mapped, in fact, it overlaps more than one base in the reference genome, and
a choice has to be made as to which elements of the count signal should be increased
by one. Moreover, count signals can have different resolutions. For instance, instead
of counting reads for each base pair it is very common to partition the reference
genome into bins of a fixed size, thereby aggregating adjacent base pairs. If each bin
has a length of 100 base pairs, the resulting count signal is 100 times shorter. This
can be convenient for data analysis and visualization. Finally, count signals can be
strand-specific. That is, from one ChIP-seq sample two count signals can be defined
by considering reads mapping to the forward and reverse strand separately. Each of
these signals is a strand-specific signal. The exact way count signals are defined is
application-specific and will be clarified in each chapter.

The bamsignals package [3] was developed to obtain count signals from mapped
reads efficiently, allowing for all the above-mentioned counting criteria and many
others. Even though bamsignals is not presented in this thesis because it does
not constitute a conceptual innovation, it is an important building block for the
algorithms presented in the next chapters, as well as a technical and practical ad-
vancement for the bioinformatics community.

Figure 1.6: Example of count signals in a genome browser. On top the portion
of the reference genome under consideration can be read: in this example a window
of 2564 bases in chromosome “chr2”, about 37.5 million bases from the start of the
chromosome. Below two count signals are shown, often called tracks. In both tracks,
the vertical axis shows how many reads from a ChIP-seq experiment are mapped to a
certain position. Here, reads mapped to the forward and reverse strand are summed
together. The first track shows the abundance of a certain histone modification, the
second one shows the abundance of a certain transcription factor.

1.3 Thesis overview

This chapter explained the biological motivations behind the development of compu-
tational approaches for ChIP-seq count data and what this data represents. Chapter
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2, instead, provides the mathematical and computational foundations of the pro-
posed methods. The remainder of this thesis presents the main contributions. Each
contribution is a computational method that addresses a different biological problem
in the context of gene regulation. What unifies them is that the biological entities of
interest manifest themselves as a pattern in the count signals derived from ChIP-seq
data. Figure 1.7 summarizes the three problems addressed in the following chapters
in terms of a biological process and its corresponding pattern.

In Chapter 3 the nucleosome detection problem is presented. This problem
consists in identifying where nucleosome are positioned in the genome from one or
more ChIP-seq samples. The proposed solution is based on efficient signal processing
techniques and statistical methods. The results are used for exploring how histone
marks are related to nucleosome positions.

Chapter 4 discusses the chromatin segmentation problem. Here the input data
is a set of ChIP-seq experiments for different histone marks and the patterns to be
automatically discovered and detected are the chromatin states: recurrent config-
uration of the chromatin resulting in characteristic combinations of histone mark
abundances. The proposed solution is based on the probabilistic modeling of multi-
variate count data and on unsupervised learning techniques.

In Chapter 5 the transcription factor footprint discovery problem is introduced.
The pattern to be characterized and detected is the binding of a transcription factor
to the genome, which can be observed from a very specific pattern in the ChIP-
exo read abundances and from the presence of a sequence motif in the underlying
genomic sequence. Genome sequence and ChIP-exo read counts are, therefore, the
input data for this problem, which is approached by combining probabilistic as-
sumptions and classification methods.
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Nucleosomes Chromatin states TF footprints

ChIP−seq for a histone ChIP−seq for H3K4me3

ChIP−seq for H3K4me1

ChIP−seq for H3K36me3

ChIP−exo for a TF

genome

Figure 1.7: Three biological processes and their patterns in the count signals. On
the left, the biological entity of interest is the nucleosome. In a ChIP-seq experiment
directed against a histone protein, the presence of a nucleosome results in two related
gaussian-like peaks in the strand-specific count signals. On the middle, the goal is to
discover patterns in multiple count signals for histone modifications. These patterns
can be related to transcription initiation, transcription elongation, enhancers, and
other important biological processes. On the right the binding between transcription
factors and DNA is studied at a high resolution. Binding sites are characterized by
a very information-rich pattern in the count signal obtained from ChIP-exo data, as
well as in the underlying genomic sequence.



Chapter 2

Mathematical prerequisites

2.1 Notation

We outline here certain notational conventions that we adopt throughout the thesis.
Upper case symbols can denote random variables or sets and symbols in boldface
denote vectors. For example, random vectors are denoted by upper case boldface
symbols and scalar numbers or scalar functions by lower case letters in normal type.
Matrices are denoted in the same way as vectors, as they can be thought of as vectors
of rows. Finally, character constants are denoted in monospace. There are few
exceptions to these rules motivated by widely adopted conventions (for instance, in
Subsection 5.2.9 the cumulative distribution function of a gaussian random variable
is denoted by F ).

Most of the formulas in the next chapters illustrate the behaviour of algorithms,
therefore, a large number of symbols is used to denote data, variables and param-
eters. To keep the notation simple, in some cases, the same symbol is used in two
chapters with two different meanings (for instance, the variable µj in Subsection
3.2.6 is not related to the variable µj in Subsection 4.2.3). Moreover, the assign-
ment operator is denoted simply by =. The ambiguities are resolved by the adjacent
text.

2.2 Probabilistic models

In Figure 1.7 we saw how the biological phenomena under consideration manifest
themselves as specific patterns in the data. Probability theory provides a language
to describe these patterns and to formalize the analysis of the data as a pattern
discovery or pattern detection problem. Moreover, the models that we will consider
are interpretable, which means that not only the predictions made by the models are
useful, but also the models themselves can be used to reason about the underlying
biological phenomena. The topics presented here are by no means an introduction to
probability theory (for this purpose see [44], for instance), but rather a mathematical
introduction to the contributions of this thesis.

13
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2.2.1 Position probability matrices

In Subsection 1.1.4 we saw that transcription factors target genomic locations where
a specific set of DNA sequences occur, and in Chapter 5 we address the problem of
characterizing this set. Position probability matrices (PPMs) are among the simplest
and most used models to describe the sequence preferences of a transcription factor
[45]. Let s = (s1, s2, ...sn) denote a sequence of n symbols where si ∈ {a, c, g, t}. The
key assumption of this model is that each position of the sequence is characterized
by a random variable independent from the others. For each position i the observed
symbol follows a categorical distribution with outcomes a, c, g, t and probabilities
pia, pic, pig, pit, where all the coefficients piα are positive and their sum equals 1.

Let S be the random vector representing the whole sequence and Si the random
variable corresponding to the i-th categorical distribution. Because of the inde-
pendence assumption, the probability of the observed sequence s can be written
as:

P {S = s} =
n∏
i=1

P {Si = si} =
n∏
i=1

∑
α∈{a,c,g,t}

piα · [si = α],

where the square brackets evaluate to 1 if the enclosed expression is true and to 0
otherwise (Iverson brackets). The coefficients piα, which characterize the random
variable Si, can be arranged as a matrix p = (p1,p2, ...,pn) of n rows and 4 columns
pi = (pia, pic, pig, pit), which motivates the name PPM.

There are many examples in the literature where it is suggested that the in-
dependence assumption might be inappropriate and where alternative models are
proposed [46, 47]. Still, PPMs remain a very attractive model due to their inter-
pretability and convenience in computational approaches. Moreover, it is not clear
whether more advanced approaches bring substantial benefits in modeling transcrip-
tion factor sequence specificity [48].
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Figure 2.1: Graphical representation of a PPM via a sequence logo. This example
shows the sequence preferences of the transcription factor GATA1 in mouse cells as
reported by the JASPAR database [49]. The horizontal axis represents the different
positions of the sequence. The height of each symbol is indicative of its frequency.
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PPMs can be represented graphically with sequence logos (see Figure 2.1). For
each of the n positions of the PPM, the logo has one column with a height propor-
tional to how informative the position is. More precisely, the height of column i,
denoted Ci, is the maximum entropy (2, in this case) minus the actual entropy of
the random variable Si and it is measured in bits:

Ci = 2 +
∑

α∈{a,c,g,t}

piα log piα.

As a consequence, if at position i all symbols are equally likely, then the i-th column
has height 0, while if only one symbol can appear, the column has height 2.

Additionally, the logo shows which symbols are most likely at each position.
These, in fact, are drawn large and at the top of the column. More precisely, the
height of symbol α in column i is given by piαCi and the symbols are vertically
arranged according to their frequency.

In the literature the acronym PPM is not nearly as common as the acronym
PWM, which stands for position weight matrix. The difference between the two
is that PPMs describe a probabilistic model, while PWMs are a scoring method,
typically used to discern the sequences of interest from the rest. PWMs can be
derived as the log-likelihood ratio between two PPMs. Denoting with S(1) and S(2)

two random sequences modeled as PPMs with coefficients p(1) and p(2), respectively,
the corresponding PWM assigns to a sequence s the score:

score(s) = log P
{
S(1) = s

}
− log P

{
S(2) = s

}
=

n∑
i=1

∑
α∈{a,c,g,t}

wiα · [si = α],

where wiα = log p
(1)
iα − log p

(2)
iα are the weights characterizing the PWM. PWMs find

extensive application in the computational prediction of TF binding sites, where
one of the two PPMs describes the sequences recognized by the TF, and the other
describes the background sequence [15, 45].

2.2.2 The negative binomial distribution

Most of the problems discussed in this work deal with read counts, rather than
symbols. While symbols can be modeled with a categorical distribution, a possible
model for read counts is the negative binomial distribution.

Let X denote a random variable that follows a negative binomial distribution
with a mean parameter µ ≥ 0 and a size parameter r > 0: X ∼ NB(µ, r). The
probability of observing a non-negative integer x is:

P {X = x} =
Γ(r + x)

Γ(r)x!

(
µ

r + µ

)x(
r

r + µ

)r
,

where Γ denotes the gamma function. Note that the same distribution can be
parametrized differently. A common alternative is to use the parameter pair p and r,
where p = (r+µ)−1µ is called success probability and r in this context is often called
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number of trials, or the parameter pair µ and α, where α = r−1 can be referred to as
the dispersion parameter. The probability mass function of the negative binomial
generalizes that of the Poisson and the geometric distributions, which occur when
r →∞ and when r = 1, respectively, and it is therefore a versatile model.
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Figure 2.2: Probability mass function of the negative binomial distribution. All
distributions have the same mean (shown by the dashed line). Finite values of r lead
to an overdispersed distribution (i.e. a higher variance than the case r →∞).

The first two moments are:

E[X] = µ,

Var(X) = µ+
µ2

r
.

This suggests a clear interpretation for the parameters. The parameter µ controls
the mean, while r influences the variance relative to the mean.

A fundamental feature is that this distribution can account for overdispersion,
meaning that the variance can be considerably larger than the mean. This property
is frequently observed in count data, which explains why the negative binomial has
found extensive application in bioinformatics [50–54].

2.2.3 The negative multinomial distribution

The patterns considered in the next chapters can be represented as sequences of read
counts. These can be modeled by a negative multinomial distribution, which was
previously used in bioinformatics for modeling footprints in DNase I hypersensitivity
data [55].

Let X = (X1, X2, ...Xn) denote a random vector that follows a negative multino-
mial distribution with parameters µ, r and p = (p1, p2, ...pn), where all parameters
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are positive and
∑n

i=1 pi = 1. This can be simply written X ∼ NM(µ, r,p). Sam-
pling from this distribution is equivalent to the following procedure:

1. sample an integer x+ from a negative binomial distribution with parameters
µ and r,

2. sample the integers (x1, x2, ...xn) from a multinomial distribution with x+ trials
and probabilities p1, p2, ...pn.

Translating this into formulas, the probability of observing the vector x = (x1, x2, ...xn)
is:

P {X = x} = P {X+ = x+}P {X = x|X+ = x+}

=

{
Γ(r + x+)

Γ(r)x+!

(
µ

r + µ

)x+ ( r

r + µ

)r}{
x+!

n∏
i=1

pxii
xi!

}
, (2.1)

where x+ =
∑n

i=1 xi. This distribution can be considered the multivariate gen-
eralization of the negative binomial. In fact, by construction

∑n
i=1Xi ∼ NB(µ, r).

Moreover, the marginal distribution for each component i is also a negative binomial:

Xi ∼ NB(µpi, r).

When r → ∞, the negative multinomial converges to the product of n Poisson
distributions.

The first two moments are:

E[Xi] = µpi,

Cov(Xi, Xj) =
µ2pipj
r

+ µpi · [i = j].

These relations, together with Figure 2.3, illustrate two important properties. First,
the marginal distribution of each component is overdispersed. Second, the compo-
nents are not independent, but they are positively correlated. As it will be shown in
the next chapters, both properties are observed in count signals. Another important
practical advantage, thoroughly discussed in Chapter 4, is that the parameters can
be efficiently learned from the data.

However, the negative multinomial also has some limitations. First, it cannot
model component-specific dispersion. That means, for instance, that there is no
choice of the r parameter which yields a Poisson-distributed component Xi and at
the same time a component Xj that follows a geometric distribution. Second, the
overdispersion and correlation properties are linked by a single parameter r, which
means that it is not possible to model a large overdispersion with a weak correlation
between the components, or a weak overdispersion with a large correlation.
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Figure 2.3: Probability density function of the negative multinomial distribution.
On the left, the joint probability mass function of a bivariate negative multinomial
distribution with different values of px and py. The counts are not independent, but
they are preferentially distributed along a line and therefore positively correlated.
The px and py parameters control the slope of this line. On the right, influence of
the size parameter r. When r →∞ the marginal distributions are uncorrelated and
independent, while with finite values of r the correlation and the dispersion increase.

2.2.4 Maximum likelihood estimation

The same way probability distributions can characterize patterns, patterns can char-
acterize probability distributions. LetX denote a random variable with a probability
distribution that depends on a parameter θ, so that the probability of observing x
can be written as P {X = x; θ}. On one hand, the function fθ(x) = P {X = x; θ}
specifies how probable it is to observe x given the parameter θ. On the other hand,
the function fx(θ) = P {X = x; θ}, called the likelihood function, can suggest how
appropriate the parameter θ is given the observed data. The optimal parameter
θ(opt) can then be chosen as:

θ(opt) = arg max
θ

P {X = x; θ} . (2.2)

This criterion is called maximum likelihood estimation (MLE), and it is one of
the basic pillars of statistical inference (see for instance Casella & Berger [56]).
Often the likelihood is computed from n observations x1, x2, ..., xn that are assumed
to be drawn from independent and identically distributed (iid) random variables
X1, X2, ...Xn. In this case the maximum likelihood equation can be written as:

θ(opt) = arg max
θ

n∑
i=1

log P {Xi = xi; θ} . (2.3)
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Note that MLE is not the only possible criterion for parameter inference. When
the set of observations x is small, for instance, it is usually better to incorporate
additional knowledge about the parameter θ in the form of a prior distribution and
to use maximum a posteriori estimation (MAP) or bayesian inference [57]. In the
problems discussed in this thesis, however, the set of observations is large and MLE
will be used.

2.2.5 Expectation maximization

In some cases, Equation 2.2 is difficult to solve with standard numerical methods.
Expectation maximization (EM) is a technique for performing maximum likelihood
estimation in situations where the probability of the observed data x can be ex-
pressed as:

P {X = x; θ} =
∑
z∈SZ

P {X = x,Z = z; θ} , (2.4)

where the random vectorX represents the observed variables and the random vector
Z, taking values in the set SZ , represents the hidden variables.

EM is an iterative procedure that starts from an initial arbitrary choice of the
parameter θ(0) and produces increasingly “better” estimates θ(1), θ(2), ... until no im-
provement in the likelihood function is observed. At each iteration t, the parameters
are updated according to the formula:

θ(t+1) = arg max
θ

∑
z∈SZ

P
{
Z = z|X = x; θ(t)

}
log P {X = x,Z = z; θ}. (2.5)

The objective function in this maximization problem can be interpreted as the ex-
pected log-likelihood of the observed data, where each z is weighted by its condi-
tional probability given x and θ(t). This interpretation motivates the name expec-
tation maximization.

It can be easily shown that this update rule yields a sequence of parameters θ(t)

such that P
{
X = x; θ(t)

}
≤ P

{
X = x; θ(t+1)

}
(see, for instance, Little & Rubin

[58]). The sequence typically stops when there is no further increase in the objec-
tive function and the algorithm is said to converge. The major drawback of this
approach is that the final parameter of the sequence is not guaranteed to be a global
optimum and that different initial parameters can lead to different final parameters.
Mixture models and hidden Markov models are typical frameworks where EM can
be convenient.

2.2.6 Mixture models

Mixture models are a natural way of formulating a clustering problem in probabilistic
terms (see, for instance, gaussian mixture models (Reynolds [59] and Figure 2.4)).
In a clustering problem n datapoints x = (x1, x2, ..., xn) are given and they are
assumed to belong to k different families, called clusters. A clustering method,
therefore, needs to identify these families and to assign each datapoint to a cluster.
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In a mixture model, it is assumed that each of the n datapoints is generated by one
among k random variables. Each cluster, therefore, is characterized by a random
variable.
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Figure 2.4: Clustering with gaussian mixture models. The figure shows a set of
observations consisting of an x and y values and represented as solid circles. The
gaussian mixture model framework has been applied to separate the datapoints into
different clusters. By maximizing the likelihood of this probabilistic model it is possi-
ble to (i) assign a cluster to each observation (represented by the color of the circle)
and (ii) characterize each cluster in probabilistic terms. In this example each clus-
ter is characterized by a multivariate gaussian distribution, which is represented by
ellipsis.

Formally, let x = (x1, x2, ..., xn) denote a set of n observations and letM1,M2, ...Mk

denote k random variables with parameters ν = (ν1, ν2, ..., νk). Each cluster has a
relative frequency specified by the mixing coefficients π = (π1, π2, ...πk), which are
positive probabilities that sum to 1. The observations xi are assumed to be iid and
generated using the following procedure:

1. choose one of the random variables Mj by sampling j according to the mixing
coefficients π,
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2. draw an observation from the random variable Mj, which is controlled by the
parameter νj.

In formulas, the joint probability of choosing the random variables with indices
z = (z1, z2, ..., zn) and generating the data x is:

P {X = x,Z = z} =
n∏
i=1

P {Xi = xi|Zi = zi}P {Zi = zi}

=
n∏
i=1

P {Mzi = xi} πzi . (2.6)

If all the parameters of the model are given, it is straightforward to infer the index
zi of the random variable that most likely generated the datapoint i:

zi = arg max
j∈{1,...,k}

P {Zi = j|X = x} ,

where

P {Zi = j|X = x} = P {Zi = j|Xi = xi} =
P {Mj = xi} πj∑k
h=1 P {Mh = xi} πh

. (2.7)

The coefficients P {Zi = j|X = x} are called posterior probabilities, and they play
an important role also in learning (see next subsection).

2.2.7 EM for mixture models

Learning the parameters ν and π from the data x using MLE amounts to maximiz-
ing the likelihood function:

P {X = x;ν,π} =
∑

z∈{1,...,k}n
P {X = x,Z = z;ν,π} .

This is equivalent to Equation 2.4 if we view the parameter θ as comprising the
parameters ν and π. The expectation maximization technique can therefore be
applied to maximize the likelihood of a mixture model. We derive now update rules
for the parameters ν and π that will be used in the next chapters.

Let θ(t) = (ν(t),π(t)) denote the parameter estimates at the end of the t-th iter-
ation. Using Equation 2.6, the objective function in Equation 2.5 can be rewritten
as:

∑
z∈{1,...,k}n

P
{
Z = z|X = x; θ(t)

}
log

{
n∏
i=1

P {Mzi = xi; νzi} πzi

}

=
n∑
i=1

∑
z∈{1,...,k}n

P
{
Z = z|X = x; θ(t)

}
log {P {Mzi = xi; νzi} πzi} .
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Noting that {1, ..., k}n =
⋃k
j=1 ({1, ..., k}i−1 × {j} × {1, ..., k}n−i), the last term can

be rewritten as:

n∑
i=1

k∑
j=1

∑
z:zi=j

P
{
Z = z|X = x; θ(t)

}
log {P {Mj = xi; νj} πj} =

n∑
i=1

k∑
j=1

P
{
Zi = j|X = x; θ(t)

}
log {P {Mj = xi; νj} πj} .

The coefficients P
{
Zi = j|X = x; θ(t)

}
= P

{
Zi = j|Xi = xi; θ

(t)
}

are the previously
mentioned posterior probabilities and they can be easily computed at each iteration
t from Equation 2.7. Denoting

γ
(t)
ij = P

{
Zi = j|X = x; θ(t)

}
,

the update rule becomes simply:

θ(t+1) = arg max
θ

{{
k∑
j=1

n∑
i=1

γ
(t)
ij log πj

}
+

{
k∑
j=1

n∑
i=1

γ
(t)
ij log P {Mj = xi; νj}

}}
.

This allows to maximize each parameter set independently:

π
(t+1)
j =

(
n∑
i=1

k∑
h=1

γ
(t)
ih

)−1 n∑
i=1

γ
(t)
ij ,

ν
(t+1)
j = arg max

ν

n∑
i=1

γ
(t)
ij log P {Mj = xi; ν} , (2.8)

where the first rule follows from Lemma B.1.2. The exact way the parameters νj are
updated depends on the probabilistic assumptions on the random variablesMj. Note
also how Equation 2.8 can be considered a weighted maximum likelihood estimation
problem and a generalization of Equation 2.3. Once a method for solving this
problem has been implemented, the mixture models assumptions can be immediately
applied to obtain a probabilistic clustering algorithm. This is why we often refer
to mixture models as a framework, where additional modules can be plugged in
to completely specify the algorithm. We will see two different applications of this
framework in Chapter 3 and 4.

2.2.8 Hidden Markov models

Hidden Markov models (HMMs) are a probabilistic framework used to segment a
sequence of observations. Differently than a clustering method, a segmentation
method does not assign a class to each observation independently, but assumes a
certain dependence between adjacent observations. The classes predicted by an
HMM can be considered a sort of smoothed clustering, because they tend to form
segments, i.e. runs of adjacent observations assigned to the same class. HMMs have
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been widely applied in many different fields, most notably in signal processing [60].
They have also become a standard tool in bioinformatics, in particular for modeling
patterns in biological sequences [61].

For ease of discussion we will assume that only one sequence of observations X
is given, even though, in general, HMMs are applied to more than one sequence.
The main assumption of the model is that there are k possible states and that the
sequence of n observations x = (x1, x2, ..., xn) is explained by a hidden sequence of
n states z = (z1, z2, ..., zn).

Let the random variables Zi and Xi denote the hidden state and the random
observation at position i, respectively. The complete set of model parameters con-
sists of the parameters π, called initial probabilities and characterizing the first
hidden state of the sequence, α called transition probabilities and specifying the
transitions between hidden states, and ν, that we will call emission parameters, de-
scribing what symbols are expected to be observed from a given state. It is assumed
that the sequence of observations X = (X1, X2, ..., Xn) is generated by the following
procedure:

1. The first hidden state Zi is chosen by sampling according to the initial prob-
abilities π = (π1, π2, ...πk),

2. Given that the current state is j, an observation Xi is generated by sampling
from the random variable Mj with parameter νj,

3. Given that the current state is j, the next state is chosen by sampling according
to the transition probabilities αj = (αj1, αj2, ...αjk), which constitute the j-th
row of the square matrix α = (α1,α2, ...,αk).

Translating this description into formulas, the joint probability of the data x and
the hidden states z is:

P {X = x,Z = z} = πz1P {Mz1 = x1}
n∏
i=2

αzi−1ziP {Mzi = xi} . (2.9)

Suppose that we know the parameters and we observe the sequence x, how do
we infer which state generated each observation? This problem is called decoding.
There are two common approaches to this problem. The first, called Viterbi decod-
ing, consists in finding the state sequence z(V ) that maximizes the probability given
the data:

z(V) = arg max
z∈{1,...,k}n

P {Z = z|X = x} .

The hidden state for observation i is then simply z
(V)
i . The second method, called

posterior decoding, uses a similar criterion, but for each state separately:

z
(P)
i = arg max

j∈{1,...,k}
P {Zi = j|X = x} .

As in the mixture models, the probabilities P {Zi = j|X = x} are called posterior
probabilities and will be denoted by γij. The state sequence resulting from the
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posterior decoding (z
(P)
1 , z

(P)
2 , ..., z

(P)
n ) might be very improbable compared to others,

but the predicted state for any position i is, considering all possible paths, the
most probable. The algorithms that perform the Viterbi and posterior decoding are
called the Viterbi and forward-backward algorithm, respectively, but they will not
be described here (see [61] for a description).

2.2.9 EM for hidden Markov models

Often HMMs are used in contexts where the only given parameter is the number of
hidden states. All other parameters are unknown and need to be estimated solely
from the observations (unsupervised learning). This can be done by maximizing the
likelihood of the data:

P {X = x;ν,α,π} =
∑

z∈{1,...,k}n
P {X = x,Z = z;ν,α,π} .

As for the mixture models, the application of EM yields an iterative optimization
algorithm for the parameters of the HMM, which is typically referred to as the Baum-
Welch algorithm. In the following, the parameter θ represents the full parameter
set (ν,α,π). After using Equation 2.9, the optimization function in Equation 2.5
becomes∑
z∈{1,...,k}n

P
{
Z = z|X = x; θ(t)

}{ n∑
i=1

log P {Mzi = xi; νzi}+
n∑
i=2

logαzi−1zi + log πz1

}
.

Proceeding in a similar way as for the mixture models, the last expression can be
transformed into

n∑
i=1

k∑
j=1

γ
(t)
ij log P {Mj = xi; νj}+

n∑
i=2

k∑
u=1

k∑
v=1

ξ
(t)
iuv logαuv +

k∑
j=1

γ
(t)
1j log πj,

where

γ
(t)
ij = P

{
Zi = j|X = x; θ(t)

}
,

ξ
(t)
iuv = P

{
Zi−1 = u, Zi = v|X = x; θ(t)

}
.

These coefficients can be computed with the previously mentioned forward-backward
algorithm. Now each set of parameters can be maximized independently, which
yields the update rules:

π
(t+1)
j = γ

(t)
1j ,

α(t+1)
uv =

(
n∑
i=1

k∑
w=1

ξ
(t)
iuw

)−1 n∑
i=1

ξ
(t)
iuv,

ν
(t+1)
j = arg max

ν

n∑
i=1

γ
(t)
ij log P {Mj = xi; ν} , (2.10)
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where the first two rules follow from Lemma B.1.2. The last rule is identical to
the one in Equation 2.8, meaning that these two probabilistic frameworks are very
similar from a computational point of view. In Chapter 4 we will see an algorithm
that solves this optimization problem for the negative multinomial distribution and
which is used to perform unsupervised learning both with mixture models and hidden
Markov models.
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Chapter 3

Nucleosome detection

This chapter presents NucHunter: an algorithm that uses the data from ChIP-
seq experiments directed against many histone modifications to infer positioned
nucleosomes and to annotate each nucleosome with the intensities of the histone
modifications.

3.1 Motivation

Nucleosomes are the basic repeating units of eukaryotic chromatin. Each nucleosome
is a complex formed by 8 proteins, called the core histones, and a stretch of about
147 bps of DNA wound around the histone octamer [62]. Nucleosomes and histones
have been related to many regulatory functions [23, 63], but their role is not yet fully
understood and constitutes an active area of research [64] (see also Subsection 1.1.6).
In particular, to study how nucleosomes interact with other molecular processes and
the factors guiding nucleosome formation and eviction, it is important to detect
nucleosomes’ positions along the genome.

In the last years MNase-seq has been the method of choice for obtaining genome-
wide nucleosome maps, especially in yeast [65–68]. Briefly, crosslinked chromatin is
digested with micrococcal nuclease, an enzyme with endo- and exonuclease activ-
ity, so as to obtain mononucleosomal DNA fragments. These fragments are then
purified and sequenced and the resulting reads, which precisely map to the borders
of nucleosome formation sites, are used to infer nucleosome positions. However,
today many consortia, such as NIH Roadmap Epigenomics and ENCODE [69, 70],
are providing a large number of histone modifications ChIP-seq datasets in human,
which are specific for histones with a particular modification (see Subsection 1.2.1).
Because the core histone proteins are part of a stable protein-DNA complex, it is
natural to assume that the localization of modified histone proteins corresponds to
the position of the nucleosomes. This suggests that histone modification ChIP-seq
data can be used to infer nucleosome positions.

However, this is far from being a simple task. First, because the nucleosome
signal in ChIP-seq data is confused by sparse sampling and high noise levels. Second,
because the DNA fragments obtained with a ChIP experiment are not as tightly

27
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centered around the nucleosomal DNA as with an MNase-seq experiment. Third,
because the degree of positioning can vary considerably across the genome [25]. In
some regions, in fact, nucleosomes tend to occupy almost the same location within a
homogeneous cell population. These are called well positioned nucleosomes and they
occur, for instance, at promoters of active genes. In other regions, by contrast, such
as in the body transcribed genes, nucleosomes occupy different positions in different
cells and at different times. Using the terminology defined in Landt et al. [71],
both point-source and broad-source peaks can be detected in ChIP-seq experiments
for histones. To obtain a comprehensive and reliable set of predictions, one should
combine the information contained in as many distinct ChIP-seq experiments as
possible and allow for some plasticity in the shape of the signal.

A number of tools for the inference of nucleosome positions have already been
developed. Some of them use segmentation approaches to detect large domains of
high nucleosome abundance [72, 73]. These tools, however, are not designed to de-
tect well positioned nucleosomes. Other tools apply signal processing techniques,
such as Fourier transforms [74], wavelet decomposition [75] and ad hoc filters [76,
77], to smooth the count signal, followed by the detection of local maxima. Oth-
ers are based on Bayesian modeling of the nucleosome enrichment pattern [78, 79]
and on Monte Carlo simulations [80]. However, these methods do not control for
systematic biases by comparing the nucleosome calls with data from control exper-
iments. Furthermore, they cannot integrate data from multiple histone marks in
a straightforward manner. Finally, due to the potentially large genome size and
the high number of modified nucleosomes, especially in human cells, the runtime of
these tools may be prohibitive.

We present NucHunter: an algorithm that uses ChIP-seq data to detect well po-
sitioned nucleosomes. NucHunter overcomes the limitations of the available tools,
can detect well positioned nucleosomes more accurately, and presents unique fea-
tures. First, it can use information from a control sample to correct for systematic
biases inherent in this high-throughput technology. Second, it is designed to inte-
grate multiple histone marks to broaden the range of nucleosome positions that can
be detected. Third, it annotates each identified nucleosome with the contributing
histone modifications. We will demonstrate that these annotations can be used to
cluster nucleosomes by their histone modification patterns. These clusters can be
correlated to the function of the chromatin, such as transcriptional start sites and
enhancers, or to the underlying process, such as transcriptional elongation by RNA
polymerase II. The results support the assumption that nucleosomes serve as signal
modules for biological processes and that the corresponding histone modification
patterns are a reflection of the signaling taking place on these modules [81].

3.2 Methods

The algorithm performs a preprocessing step, where the input files, containing the
chromosomal positions of mapped reads, are turned into a single count signal, a peak
calling step, where candidate positions for nucleosome formation sites are detected,
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and additional postprocessing steps, where these candidates are filtered and scored
accounting for a number of possible sources of bias.

3.2.1 Preprocessing

Let us first consider a single ChIP-seq experiment. We denote with the symbol ci
the number of reads whose 5’ end maps at position i. For simplicity, we will treat i
as a simple integer ranging from 1 to the genome length wgen, but in practice i also
specifies a chromosome. To distinguish between reads mapping to the positive and
negative strand we use positive and negative signs. Hence, c+i and c−i, denote the
read counts at position i relative to the positive and negative strand, respectively,
and they can be considered elements of a signal c.

A well positioned nucleosome typically exhibits a peak of positive strand reads
upstream the nucleosome location, and one of negative strand reads downstream.
The distance between these two peaks roughly equals the average length of a frag-
ment in the DNA library, which will be denoted by f (see Figure 3.1). To obtain
a consensus signal, denoted by d, the counts on the positive strand are shifted to
the right, those on the negative are shifted to the left, and the sum of the two is
considered. The amount of this shift is about f/2 (rounded to the closest integer),
which yields the consensus signal:

di = c+(i−f/2) + c−(i+f/2).

Usually the average fragment length needs to be estimated from the data itself.
There are some tools that can perform this estimation (such as Zhang et al. [16]),
however, we found them unsatisfactory when applied to histone marks. Therefore,
as part of NucHunter, we also provide a method for estimating the average fragment
length (described in Section 3.2.6).

Let us now consider the case where nmark > 1 ChIP-seq samples are used. The
procedure above is applied to each sample independently, so that nmark sample-
specific signals d(1),d(2), ...d(nmark) are obtained. Finally, the consensus signal d is
simply the sum of the sample-specific signals. Note that, in general, for different
samples different fragment lengths f will be used.

3.2.2 Peak detection

In the peak detection step (see Figure 3.2) the consensus signal is smoothed, then
local maxima in the smoothed signal are detected and a threshold is applied to
discard background peaks.

Smoothing is performed using a particular filter. A filter (more precisely a linear
time-invariant filter) is characterized by a discrete signal k called impulse response.
Given a consensus signal d, the filter output o is the result of the following operation,
called convolution:

oi = (d ∗ k)i =
∞∑

j=−∞

di−jkj. (3.1)
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Figure 3.1: Preprocessing: from DNA fragments to consensus signal. The horizon-
tal axis represents the reference genome. Above, a cartoon of a nucleosome wound
around double-stranded DNA. Below, single-stranded DNA fragments relative to the
nucleosome above and isolated via immunoprecipitation (the arrow denotes the 3’
end). Reads are the 5’ portion of a fragment. Reads are counted so that c+i and c−i
denote the number of positive and negative of reads whose 5’ end maps at position
i. The consensus signal is obtained by shifting and summing the strand-specific read
counts approximately f/2 bases downstream, where f is the average fragment length.

Figure 3.2: Peak detection from the consensus signal. The consensus signal d
(shown on top) is smoothed using a linear filter, which yields the filter output o
(shown on the bottom). The local maxima in the filter output (shown with the symbol
of a nucleosome) are detected and the non-significant ones are filtered out.
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In our approach the impulse response has been chosen according to the following
two criteria: first, it must separate sharp peaks from more spread out read distribu-
tions or non-enriched regions; second, it must have good smoothing properties, so
that the convoluted signal contains a limited number of local maxima and, therefore,
the algorithm returns fewer false positives. We chose as impulse response the second
derivative of a gaussian density function, also known as the Mexican hat wavelet
(see Figure 3.3):

ki = (1− i2

σ2
mh

) exp

{
− i2

2σ2
mh

}
.

The Mexican hat wavelet removes both high- and low-frequency components (band-
pass filter) from the Fourier spectrum of the consensus signal. This is appropriate
in our case, where we interpret high frequencies as random oscillations due to noise
or insufficient coverage, and low frequencies as ambiguous domains due to broad-
source peaks or local biases (such as GC content or open chromatin [82]). The
wavelet is parametrized by the scale parameter σmh, which is an input parameter.
In our studies, we set σmh to 50 because, in general, it is a good compromise between
calling too many peaks and merging closely spaced ones.
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Figure 3.3: The Mexican hat wavelet. The plots on the left and right show respec-
tively the signal and its frequency spectrum for σmh = 50.

Obtaining the convoluted signal for large genomes poses computational problems.
In fact, using a näıve approach, a long signal as impulse response results in a slow
convolution. In NucHunter the convolution has been implemented using recursive
gaussian filters, which yields a runtime linear in the length of the consensus signal
and independent on σmh [83–85].

Once local maxima are extracted from the filter output, some of them are dis-
carded based on a simple statistical method. We model the noise by assuming
that values of the consensus signal d are realizations of independent and identically
distributed random variables D. Using this assumption, we derive the mean and
standard deviation of the convoluted signal o, and we assign a z-score to each local
maximum. Finally, peaks are discarded based on a threshold on the z-score. Let Oi
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denote the random variable that generates the value oi. The random vector O can
be expressed as a function of D using the convolution formula 3.1:

Oi =
∞∑

j=−∞

Di−jkj.

Because the elements in D are assumed to be iid, the mean and standard deviation
of Oi are:

E[Oi] = E[Di]
∞∑

j=−∞

kj,

Var(Oi) = Var(Di)
∞∑

j=−∞

k2
j .

E[Di] and Var(Di), which do not depend on i, are estimated by computing the
sample mean and sample variance of d. Finally, the z-score zi associated to the
value oi is:

zi =
oi − E[Oi]√

Var(Oi)
.

The detected peaks are all those local maxima with a z-score above a certain thresh-
old. This z-score represents the strength of a peak, and a user-defined threshold,
whose default value is 3, specifies how many standard deviations above average the
peaks’ strength must be.

Note that, in general, it is unrealistic to assume that the elements in D are
iid, because many biases, such as GC content, affect multiple adjacent base pairs
simultaneously. However, the purpose of this procedure is to standardize the values
of the output signal so that an interpretable threshold can be applied, rather than
to perform an accurate statistical test.

3.2.3 Postprocessing

After a set of putative peaks has been derived, additional steps are applied to filter
and annotate them (note that the world filter, from now on, should not be confused
with the signal processing technique outlined in Subsection 3.2.2). All these steps
are based on the enrichment level of a peak. Let p denote the peak’s position. The
enrichment level ep is the total number of reads that contribute to the consensus
signal in a window of a certain radius wenr (which defaults to 73):

ep =
wenr∑

j=−wenr

dp+j.

The first filtering step consists in controlling the relative amount of positive and
negative reads in the enrichment level. In fact, highly unbalanced contributions
from the two strands are difficult to interpret and likely to arise from mapping
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artifacts. Following the approach of Zhang et al. [75], we filter out peaks where the
enrichment level from one strand is four times larger or four times smaller than the
enrichment level from the other. Next, in case a control sample is available, peaks
are filtered based on the significance of the enrichment level and, in case multiple
ChIP-seq experiments have been used, peaks are annotated with the histone marks
active on them.

3.2.4 Enrichment test

Given a control sample, peaks are filtered in a similar manner as in Zhang et al. [16]:
the enrichment level is modeled as a Poisson random variable whose parameter is
estimated from both a global and a local average of the control sample. From this
model a p-value is obtained and peaks are filtered based on a p-value threshold.

In more detail, let d represent the control signal, preprocessed from the control
reads in the same way as the signal d. To make the two experiments comparable,
a scaling factor α is computed that takes into account the differences in sequencing
coverage:

α =

∑wgen

i=1 di∑wgen

i=1 di
.

The local and global noise estimates per base pair λ
(loc)
p and λ(glob) are computed as:

λ(loc)
p = α

∑wloc

j=−wloc
dp+j

2wloc + 1
, λ(glob) = α

∑wgen

i=1 dp
wgen

,

where wloc is 1000 base pairs by default. The noise estimate for the read counts
at position p, denoted λp, is chosen as the maximum between the local and global

estimate: λp = max{λ(loc)
p , λ(glob)}. Finally, the random variable Ep representing the

null model for the enrichment level ep follows a Poisson distribution:

Ep ∼ Pois((2wenr + 1)λp).

This allows to compute a p-value for each peak and to apply a user-defined threshold,
which defaults to 10−5, to discard non-significant peaks.

3.2.5 Histone mark annotation

A final step takes place when the sample is obtained from multiple ChIP-seq ex-
periments and a control sample is available. The enrichment level at each peak is
decomposed into the contributions from the different samples and these are com-
pared to the noise estimate (see Figure 3.4). More precisely, the same procedure
outlined in Subsection 3.2.4, which compares the consensus signal d to the control
signal d at the candidate peaks’ locations, is now applied using the sample-specific
signals d(1),d(2), ...d(nmark) in place of d. If the enrichment level of a mark at a peak
is not significant, the mark is considered inactive.
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Figure 3.4: Integration of multiple histone modification experiments. First, peak
detection is performed on the sum of the consensus signals, then the signal is de-
composed into the contributions of the single histone modifications and a statistical
test is performed for each of them to asses whether their contribution is significant
or not.

3.2.6 Inferring the average fragment length

The average fragment length f is typically inferred based on the strand cross-
correlation function, defined as:

χd =

wgen−d∑
i=1

c+ic−(i+d),

where d is a positive shift. For point-source factors and low noise levels the cross-
correlation function usually has a peak at position f , called the fragment peak, as
shown in Figure 3.5 (left), which yields a straightforward method for the estimation
of f . However for many histone marks the cross-correlation plot is harder to interpret
due to the presence of a so-called phantom peak [71] and other systematic biases,
which can sometimes completely obscure the fragment peak (see Figure 3.5 (right)).

To account for these biases, we introduce a modified cross-correlation function
that we call peak cross-correlation:

χ̂d =

wgen−d∑
i=1

ĉ+iĉ−(i+d).

The signal ĉ is a denoised version of signal c where the read counts are replaced with
strand-specific peaks. More specifically, the peak detection technique presented in
Section 3.2.2, where it was applied to the consensus signal d, here is applied to the
raw read counts c, considering positive and negative indices independently. The
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Figure 3.5: Strand cross-correlation for two different ChIP-seq experiments. Both
experiments were done in human K562 cells. On the left, the cross-correlation for
the histone modification H3K4me3, which shows both point-source and broad-source
peaks. The phantom peak and the fragment peak are clear. On the right, the cross-
correlation for the histone modification H3K9me3, with broad-source behaviour. The
fragment peak is almost not visible, in contrast with the phantom peak.

resulting peaks are encoded in the binary vector ĉ, whose only non-zero entries
correspond to peaks’ locations.

After the peak cross-correlation function is computed, a clustering technique is
applied to interpret it, which yields an estimate for f . Let us consider the peak cross-
correlation function χ̂ within an interval [dmin, dmax] (by default from 0 to 300). Let
n denote

∑dmax

d=dmin
χ̂d. The clustering procedure makes the following assumptions:

1. The observed data is generated by n iid random variables Xi, where each Xi

takes on integer values within the range [dmin, dmax]. The observations are
encoded in χ̂d, which counts how many Xi take on value d.

2. Each Xi is a mixture of three random variables G1, G2 and U . That is, there
is a random variable Z that can take on values 1 2 or 3 with probabilities
respectively π1, π2 and π3 and such that:

Xi|{Z = j} ∼


G1, j = 1

G2, j = 2

U, j = 3

.

G1 and G2 represent respectively the phantom peak and the fragment peak,
while U represents the background noise.

3. The random variables Gj, for j = 1 and j = 2, are distributed according to
a discretized and truncated gaussian random variable with parameters µj and
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σj, that is:

P {Gj = g} = exp

{
−(g − µj)2

σ2
j

}( dmax∑
d=dmin

exp

{
−(d− µj)2

σ2
j

})−1

4. The random variable U is uniformly distributed in the interval [dmin, dmax].

Note that this is an example of the mixture model framework presented in Subsection
2.2.6. See Figure 3.6 for a graphical interpretation.
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Figure 3.6: Peak cross-correlation analysis and inference of the fragment length.
The sample shown above is the same H3K9me3 sample as in Figure 3.5. The peak
cross correlation technique has a strong denoising effect on the cross correlation
profile and now also the fragment peak is visible. The colored lines are a graphical
representation of the mixture model used for inference. Each colored solid line shows
the expected number of samples with a certain forward shift from a random variable
in the mixture model: green, red and blue correspond to the random variables G1,
G2 and U , respectively. The inferred fragment length is shown by the dashed green
line.

To estimate the parameters π, µ1, σ1, µ2 and σ2 we use the expectation max-
imization algorithm presented in Subsection 2.2.7. However, to show how to the



3.3. RESULTS 37

given update rules are used, we need to introduce a slight change of notation. Let
x denote an observation vector of length n containing each value d in [dmin, dmax]
exactly χ̂d times. Then the update rule from Equation 2.8 for the random variables
G1 and G2 takes the form:

µ
(opt)
j , σ

(opt)
j = arg max

µ,σ

n∑
i=1

γ
(t)
ij log P {Gj = xi;µ, σ} .

In practice, however, it is unnecessary and inefficient to use a vector of length n, as
x is implicitly defined by χ̂. If we denote by id an index such that xid = d and by

δ
(t)
dj the quantity γ

(t)
idj
χ̂d, the update equation can be rewritten as:

µ
(opt)
j , σ

(opt)
j = arg max

µ,σ

dmax∑
d=dmin

δ
(t)
dj log P {Gj = d;µ, σ} .

This optimization problem is solved with a simple gradient descent algorithm. A
similar transformation is used also in the update rule for the mixing coefficient.

Since G1 models the phantom peak commonly observed in cross-correlation anal-
yses, the initial value for µ1 is set to the average read length, while the initial value
for µ2 defaults to 147 and can be modified by the user. The initial values for σ2

1, σ2
2,

π1 and π2 are respectively 36, 1000, 0.1 and 0.1.
The phantom peak is not always present. In case the EM algorithm infers an

unreasonable value for it (more than 20 bps apart from the average read length),
the whole inference is repeated using only the components G2 and U .

3.3 Results

3.3.1 Comparison to other available tools

We set out to test the predictive power of NucHunter and to compare it with two
available nucleosome prediction tools: NPS from Zhang et al. [75] and Template
Filter from Weiner et al. [77]. Other tools had to be excluded from the compar-
ison either because they were not able to deal with the large amount of data or
because the results obtained using default parameters were unsatisfactory. Because
neither NPS nor Template Filter allow to provide a control sample, for an objective
comparison, also NucHunter was used without a control sample.

We evaluated the accuracy of each tool by comparing a set of nucleosome pre-
dictions with a gold standard and using different performance measures. First, as a
proof of concept, we produced an artificial nucleosome map and we simulated reads
according to it. In this assessment, the nucleosomes are predicted from the simu-
lated reads and the artificial nucleosome map serves as a gold standard. Second,
we predicted nucleosomes from a published ChIP-seq dataset in yeast, for which a
gold standard is publicly available. Third, we tested how consistent the nucleosome
predictions are when using replicate datasets. Finally, we analyzed the runtime of
the different tools.
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3.3.2 Performance measures

Given a list of nI predicted peaks and a list of nJ peaks from a gold standard, we
define three performance measures:

1. the precision,

2. the sensitivity,

3. the area under the (normalized) error curve (AUC).

Let dist(i, j) denote the genomic distance between the i-th predicted peak and the
j-th benchmark peak and let wdist denote a cutoff distance (wdist = 20 bps in our
analyses). The precision is the ratio of predicted peaks i such that there is a high-
confidence peak j at distance less then wdist:

precision = |{i ∈ [1, nI ] : ∃j ∈ [1, nJ ] : dist(i, j) ≤ wdist}|nI−1,

where the | ∗ | operator denotes the cardinality of a set. Similarly, the sensitivity is
the ratio of high-confidence peaks j such that there is a predicted peak i at distance
less then wdist:

sensitivity = |{j ∈ [1, nJ ] : ∃i ∈ [1, nI ] : dist(i, j) ≤ wdist}|nJ−1.

The first performance measure does not penalize situations where many predicted
peaks are close to the same benchmark peak and the second one does not penal-
ize situations where for many closely-spaced benchmark peaks there is only one
associated prediction.

In order to measure how precisely the predictions match the gold standard, and
in line with other studies [86], we use a score that depends on the distribution of
the dist(i, j) values smaller than wAUC = 73 bps (the “errors”). We define the (nor-
malized) cumulative error curve cum-err(d) as the cumulative distribution function
of the errors smaller than the threshold wAUC:

cum-err(d) =
|{(i, j) : dist(i, j) ≤ d}|
|{(i, j) : dist(i, j) ≤ wAUC}|

.

Plotting cum-err(d) versus d, the cumulative error curve should look almost like a
0− 1 step for very precise predictions and like a straight line from the origin to the
point (wAUC, 1) for random predictions (see Figure A.1). Therefore, we define the
area under the (normalized) error curve AUC as:

AUC =
1

wAUC + 1

wAUC∑
d=0

cum-err(d).

Contrary to the sensitivity and precision, the AUC has the property that the pre-
dicted peaks and the high-confidence peaks play a symmetric role, i.e. swapping the
predictions with the gold standard the result does not change.
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3.3.3 The simulated dataset

As a proof of concept, we artificially generated a ChIP-seq sample and a nucleosome
map using the following procedure.

1. We considered a chromosome of the length of chromosome IV in yeast (1531933
bps) and reads of 36 bps.

2. We generated reads due to noise. The number of noise reads at each genomic
position was sampled from a Poisson distribution with average 2.

3. We generated a nucleosome map. The nucleosome positions were chosen sam-
pling the inter-nucleosomal distance from a geometric distribution with average
18 and adding a minimum distance of 147 base pair.

4. We generated reads due to nucleosomes. Given a fragment length f of 140
base pairs, and for each nucleosome position p, the 5’ ends of the reads on the
positive and negative strands were generated according to a gaussian random
variable with average respectively p − f/2 and p + f/2 and with uniformly
varying sigmas (from 10 to 50). The sampled positions were rounded to the
closest integer. The number of sampled reads per nucleosome was chosen ac-
cording to a Poisson distribution with lambdas such that the expected number
of reads at the peak position uniformly varies from 1 to 3.

In Figure 3.7 we show the performance of the three algorithms on the the simulated
dataset. For very stringent score cutoffs Template Filter seems to give the most
accurate predictions, but its performance declines rapidly when considering a larger
number of top-scoring nucleosomes. For less stringent cutoffs NucHunter seems to
be more accurate and to reach much higher sensitivity values. However, the model
that we used to simulate reads was the same that we had in mind when designing
NucHunter, which makes this assessment a proof of concept rather than an objective
comparison.

3.3.4 The yeast dataset

We predicted nucleosomes based on a ChIP-seq experiment for the histone mark
H3K9ac from yeast [87] and we validated them with a high resolution map of nucle-
osome positions[88]. This map has been obtained with a technique that is indepen-
dent from ChIP-seq, and it is claimed to be more accurate.

The results from Figure 3.8 show that NucHunter makes more accurate pre-
dictions compared with the other tools. Considering the default score thresholds,
NucHunter and NPS return a similar number of predictions but the former has
an higher AUC, whereas Template Filter returns many more predictions, but of
lower quality. When the score threshold is increased, the AUC difference between
NucHunter and NPS becomes much more pronounced. This suggests that the nu-
cleosome predictions with highest score from NucHunter are, in general, much more
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precise compared with those from the other tools. When the default score thresh-
olds are used, all the tools suffer from low sensitivity in this dataset, in particular
NucHunter and NPS.

There can be different reasons for unidentified nucleosomes or incorrect pre-
dictions. In the first place, the experimental procedures used for the ChIP-seq
experiment and that used for the gold standard are different. Roughly 5.6% of
the nucleosomes in the gold standard, for instance, are located in low-mappability
regions and are not covered by any read. Moreover, the ChIP-seq experiment tar-
geted only acetylated nucleosomes, as opposed to the gold standard. A more general
problem is the identification of fuzzily positioned nucleosomes. If the nucleosome
positioning varies extensively from cell to cell, the assumptions made by the algo-
rithms are violated and nucleosomes are hard to identify. Lastly, both precision and
sensitivity are affected from high noise levels, insufficient sequencing coverage and
sequencing biases.

3.3.5 Consistency on replicate datasets

The publicly available epigenomic data for the human leukemia cell line K562 [70]
includes replicate ChIP-seq experiments for different histone marks. We used these
samples to test how consistent the nucleosome calls are between replicates. As a
consistency score, we considered the t nucleosome predictions with highest score
from each of the two replicates and we computed an AUC value from these two sets
of nucleosomes, for each possible value of t.

Figure 3.9 shows how the AUC between predictions from two ChIP-seq sam-
ples depends on the total number of nucleosome calls. There are some histone
marks where NucHunter is not the most consistent algorithm, such as H3K27me3,
H3K36me3 and H3K9me3. These, however, are all broad marks, i.e. associated to
nucleosomes that are not well positioned and that NucHunter is not designed to
detect. With the marks H3K4me3, H3K27ac, H3K9ac and H2A.Z, which are known
to be associated to well positioned nucleosomes, NucHunter seems to be the most
consistent among the three algorithms.

3.3.6 Runtime comparison

Computational efficiency was among the design principles that guided the develop-
ment of NucHunter. To assess how efficiently NucHunter can detect nucleosomes in
large genomes, we compared its runtime with that of NPS and Template Filter. We
used a ChIP-seq sample for histone modification H3K4me3 from the K562 dataset
mentioned in Subsection 3.3.5 and we ran the tools separately for each chromosome.
Splitting the reads by chromosome was necessary in order to measure the runtime
of Template Filter, which otherwise would not run. All tests were carried out on
a AMD Opteron computer with a clock speed of 2.66 GHz. Overall, the results in
Table 3.1 show that NucHunter is considerably faster than the other two algorithms.
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Figure 3.9: Performance of the three algorithms on replicate experiments. The end
points of the curves show the total number of calls and the AUC using the default
score thresholds.
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chromosome size total reads NucHunter NPS Template Filter
chr1 249250621 2390956 52.50 546.42 21033.22
chr2 243199373 1670941 50.89 376.14 13375.48
chr3 198022430 1349593 38.12 301.39 10169.83
chr4 191154276 1136302 34.96 246.71 7069.05
chr5 180915260 1251884 34.64 278.19 7712.84
chr6 171115067 1661990 34.65 384.34 11558.63
chr7 159138663 1392134 37.66 374.89 7020.56
chr8 146364022 948543 34.90 205.60 3990.71
chr9 141213431 720819 66.57 147.95 2285.28

chr10 135534747 929571 34.95 204.00 3432.10
chr11 135006516 1066208 32.32 219.01 3881.10
chr12 133851895 1037149 27.61 213.28 3592.43
chr13 115169878 451543 26.03 103.08 1561.54
chr14 107349540 486553 23.40 90.36 1407.95
chr15 102531392 645344 32.77 139.30 1730.24
chr16 90354753 677344 29.75 130.39 1573.29
chr17 81195210 797666 25.84 148.33 1638.95
chr18 78077248 448191 22.54 102.60 1219.75
chr19 59128983 770912 19.79 122.11 1068.30
chr20 63025520 443351 19.90 85.54 895.27
chr21 48129895 306180 19.22 75.84 568.34
chr22 51304566 386873 21.36 77.54 548.08
chrX 155270560 593859 41.63 106.96 2311.36

Table 3.1: Runtime comparison on one-chromosome files derived from a H3K4me3
ChIP-seq experiment in human K562 cells. The columns specify respectively the
chromosome, the chromosome size in base pair, the number of reads mapped to the
chromosome, and the running time of the three algorithms in seconds.

3.3.7 Clustering of nucleosomes based on histone marks

We ran NucHunter on the K562 dataset mentioned in Subsection 3.3.5 consisting
of a control experiment and 12 ChIP-seq experiments for distinct histone modifica-
tions. Differently than in the consistency assessment, we considered only the first
replicate for each mark and we used all marks simultaneously. NucHunter returns,
along with other statistics, the raw read count within a window of a specified radius
wenr around the inferred nucleosome location, for each detected nucleosome and for
each experiment. This data can be conveniently represented as a matrix with as
many rows as the detected nucleosomes and as many columns as the number of his-
tone marks (the count matrix). Additionally, when a control experiment is present,
NucHunter also returns the noise level, which is computed from the control experi-
ment for each detected nucleosome. The noise level can be conveniently represented
as a vector with as many elements as the detected nucleosomes. We used these data
for an exploratory analysis of the chromatin landscape.



44 CHAPTER 3. NUCLEOSOME DETECTION

In order to make the read counts a suitable input for the k-means clustering
algorithm, we devised an ad hoc normalization procedure for the count matrix that
takes into account the noise levels, the different sequencing depths of the datasets
and the nucleosome abundance at each locus (see Mammana et al. [1] for the details).
The normalized count matrix is finally used as input for the k-means clustering
algorithm.

Given a parameter nclust, this unsupervised learning method aims at partitioning
the data points into nclust different families (clusters) such that elements in the same
cluster are as similar to each other as possible. Each cluster is characterized by its
centroid, which is, in our case, a prototypical histone modification pattern.

We found that with nclust equals 6 the results are robust, whereas for higher
values of the parameter the clusters tend to change depending on the initialization.
Moreover and most importantly we found that such a partitioning, derived solely
from the histone modification patterns, can also capture biologically meaningful
positional features of the nucleosomes. We assigned labels to each cluster based on
the histone modification pattern and genomic localization. The labeled centroids
are shown in Figure 3.10.

We studied the genomic localization of nucleosomes from the different clusters
using the RefSeq annotation dataset as well as publicly available data from cap
analysis of gene expression (CAGE) and DNase I hypersensitivity sequencing ex-
periments [70]. More precisely, we computed the following statistics: (i) we derived
a consensus nucleosome profile along genes by considering a large set of annotated
genes, by rescaling their nucleosome profiles to the same length and by adding them
up (Figure 3.11); (ii) we analyzed the nucleosome positioning around promoters of
active genes by considering the distribution of distances between CAGE tags and nu-
cleosomes (Figure 3.12 (left)); (iii) we obtained the average DNase I hypersensitivity
profile around nucleosomes for each class (Figure 3.12 (right)).

Overall these statistics give a clear picture of the nucleosome landscape and
recapitulates previous knowledge (see Figure 3.10). The nucleosomes in the first
family are characterized by a strong enrichment of H3K4me2/3 and H3K9ac and they
tend to reside in the 5’ portion of a gene near the transcription start site (TSS; Figure
3.11). Thus, we labeled them promoter nucleosomes. In proximity of promoters
of active genes, these nucleosomes exhibit a strikingly regular pattern (Figure 3.12
(left)), whose main features are a nucleosome-depleted region right upstream the
TSS and a well positioned nucleosome 170 bps downstream (the +1 nucleosome).
The second and third clusters show an enrichment of H3K4me1 and H2AZ as well as
a general enrichment of active marks, whereas TSS-associated histone marks, such
as H3K4me2/3 and H3K9ac, are less enriched compared with the promoter cluster.
These features, together with the high levels of DNase I hypersensitivity that we
observe (Figure 3.12 (right)), suggest that these nucleosomes may flank enhancer
sequences. Thus, we labeled them as enhancer 1 and enhancer 2 nucleosomes.
The fourth centroid is enriched in H3K79me2 and H4K20me1, whereas the fifth
centroid is enriched in H3K36me3 and H3K9me1, which are all histone marks related
to elongation of RNA polymerase II [89]. The localization of these two classes of
elongation nucleosomes along the gene body, shown in Figure 3.11, suggests that
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Figure 3.10: Centroids obtained from the k-means clustering algorithm. A total
of 422547 nucleosomes called by NucHunter was clustered into 6 clusters: promoter
(20.4%), enhancer 1 (19.8%), enhancer 2 (14.4%), elongation early (16.4%), elon-
gation late (14.7%) and repressed (14.3%). The rows of the heatmap represent the
centroids of the clusters and the columns represent the histone modifications. The
labels have been assigned based on prior biological knowledge.

the 5th centroid is enriched toward the 3’ end of a gene, whereas the 4th centroid
is enriched more to the 5’ end. Thus, we termed them elongation early and
elongation late nucleosomes, respectively. The last centroid is characterized by an
enrichment of H3K9me3 and H3K27me3, suggesting that it represents chromatin-
repressed genomic regions [90]. Thus, we termed it repressed.

3.4 Discussion

NucHunter is an algorithm that detects a specific pattern in ChIP-seq experiments
for histone modifications, where an occurrence of the pattern is evidence for the
presence of a positioned nucleosome. A more accurate and efficient signal processing
and an improved statistical analysis of the peaks count among the strengths and the
innovative aspects of this tool.

Another innovative aspect is NucHunter’s capability of integrating several ChIP-
seq experiments at once. ChIP-seq experiments for histone marks, in fact, provide
data only for those nucleosomes where the targeted mark is present. Therefore,
combining samples targeting different histone marks is essential for deriving a com-
prehensive nucleosome map. Most importantly, such a combined input does not
only detect where nucleosomes are positioned, but also how they are modified. This
information can be used to distinguish different classes of nucleosomes and relate
each class to a genomic context.

NucHunter, however, is only a first step in the exploration of the patterns con-
tained in the count signals and it opens up new important challenges. The clustering



46 CHAPTER 3. NUCLEOSOME DETECTION

Figure 3.11: Nucleosome occupancy along the gene body. The nucleosome occu-
pancy profiles from a subset of genes in RefSeq have been rescaled to the same length
and summed up. For each class a separate profile has been computed.

Figure 3.12: CAGE and DNase I hypersensitivity reads around nucleosomes. On
the left, nucleosome distribution at promoters of active genes. The profile has been
obtained by computing the distribution of distances between CAGE tags and nucle-
osomes. On the right, DNase I hypersensitivity levels in relation to nucleosomes.
The profile for each nucleosome class is the average DNase I hypersensitivity profile
of all nucleosomes from that class.
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analysis shown in the Results section, for instance, showed that multiple ChIP-seq
experiments can be used to identify nucleosome classes associated to important bio-
logical processes. This classification, however, was ad hoc, in that it required a num-
ber of arbitrary choices regarding the data processing and the clustering method.
Moreover, in regions where nucleosomes are not well positioned or the read counts
are too low for the precise nucleosome position to be determined, no information
about the chromatin landscape can be derived. This motivates the development of
a more principled approach for studying the state of the chromatin which can be
used to annotate the whole genome. This topic is the subject of Chapter 4.

Another important open problem is the choice of the optimal filter for the fea-
ture under consideration. The Mexican hat wavelet was chosen mostly based on
expert knownledge, with the average fragment length for each experiment being
the only parameters fitted to the data. A more data-driven approach is difficult
mostly because of two limitations intrinsic to the nucleosome detection problem
from ChIP-seq data. The first one is that the feature to be detected cannot be
accurately defined, as the separation between point-like and highly dynamic and
heterogeneous nucleosome positioning is not clear. The second one is related to the
ChIP-seq protocol. In fact, even if nucleosomes would always form at the same pre-
cise positions in a cell population, the peaks in the count signals would be too broad
and would not contain enough information for the original positions to be precisely
inferred. Chapter 5 explores another pattern recognition problem where the feature
of interest can be more accurately defined and the sequencing protocol has a higher
resolution compared to ChIP-seq.
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Chapter 4

Chromatin segmentation

This chapter presents EpiCSeg: an algorithm that integrates several ChIP-seq ex-
periments for histone marks and characterizes a given number of chromatin states
automatically. Because these states are associated to specific biological processes,
they can be used to annotate the genome.

4.1 Motivation

A central question in biology is how cells of a multicellular organism with essentially
the same genotype can establish and maintain distinct phenotypes. Because the
genome cannot be associated to this variability, current research is focused on the
epigenome.

Today many consortia, such as NIH Roadmap Epigenomics, ENCODE, Blueprint,
DEEP and IHEC [69, 70, 91–93], are providing genome-wide maps of histone mod-
ification generated using the ChIP-seq technique. Typically, for a given cell type, a
panel of histone modifications are profiled in order to gain insight into the cell-type
specific epigenome. This huge amount of available data calls for the development of
integrative computational approaches to identify the most important, biologically
meaningful features and to capture recurrent patterns.

The segmentation of epigenomes into chromatin states aggregates the ChIP-seq
tracks and provides an abstract view on the multidimensional data. A chromatin
state is a recurrent pattern in the abundances of a given set of histone modifications,
typically related to a particular biological function. Chromatin segmentation aims at
explaining the observed epigenomic data as a sequence of hidden chromatin states,
where the number of distinct possible states is small. The idea of chromatin seg-
mentation is not new [94–98], however, the small number of available computational
tools for this task and the growing importance of epigenomic datasets suggest that
there are still ample margins for improvement. Two popular tools are ChromHMM
[95] and Segway [97]. In both approaches, the ChIP-seq experiments are transformed
into genome-wide multivariate signals and subsequently used as observed variables
in a probabilistic inference algorithm.

In ChromHMM the raw reads are assigned to non-overlapping bins of 200 bps

49
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and a sample-specific threshold is used to transform the count data to binary values.
Given a hidden state, the binary vectors are modeled as independent Bernoulli ran-
dom variables. This approach has some limitations. (i) There is a considerable loss
of information when transforming a read count into a binary value, as the possibility
of distinguishing between different levels of activity is precluded. This limitation is
especially important for more recent, higher coverage ChIP-seq experiments. (ii)
There is no obvious way of deciding which threshold to use, despite it being critical
for the final segmentation. (iii) The independent Bernoulli model assumes indepen-
dence between the chromatin marks given a hidden state. That would imply, for
instance, that in those regions where a promoter state occurs, the presence of the
mark H3K4me3 is independent from the presence of the mark H3K27ac, which is
in contrast to our observations (see Subsection 4.2.2). (iv) A large portion of the
genome is assigned to a state with no clear role, apart from being associated to read
counts below the discretization threshold.

Segway works at a single base-pair resolution and transforms the counts into
real values. Given a hidden state, a vector of transformed read counts is modeled
with independent gaussian random variables. The following shortcomings can be
noted: (i) as in ChromHMM, the independence assumption between marks seems
inadequate, (ii) the choice of the monotone function is not easy to justify, especially
because the resulting zero-inflated distribution can be very different from a gaussian
distribution, (iii) because it works at a single base pair level, this method is orders
of magnitude slower than ChromHMM, which severely limits its applicability.

In order to address these shortcomings we developed Epigenome Count-based
Segmentation (EpiCSeg), a segmentation algorithm with the following main features.
(i) Raw read counts can be directly used as observation symbols, thus eliminating
the need for preprocessing steps and arbitrary thresholds. (ii) An accurate discrete
multivariate probability distribution is used for modeling the count vectors given
a hidden state, which can recapitulate the overdispersion and correlation features
observed in the data. (iii) The probabilistic framework and computational efficiency
are similar to those of ChromHMM, making EpiCSeg useful also for large genomes,
such as the human genome.

4.2 Methods

EpiCSeg’s main feature is the multivariate modeling of read counts from several his-
tone marks, which is then integrated in a hidden Markov model (HMM) to produce
a segmentation of the genome. The input of the algorithm is a desired number of
states and a count matrix where each element is the number of reads of a certain
mark in a certain genomic bin. The output of the algorithm is, among other things,
a vector that assigns each genomic bin to one of the states. EpiCSeg automatically
learns states that are associated to important biological processes (see Figure 4.1).

In this section we will first briefly describe how the count matrix is obtained
from the reads, then we will present EpiCSeg’s probabilistic model in detail, and
finally we will conclude the section with some computational considerations.
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Figure 4.1: EpiCSeg simplifies the interpretation and the analysis of ChIP-seq data.
The first 7 tracks represent the input data, that is, read counts for each genomic bin
and for a panel of histone marks. The 8th track represents the main output of
the algorithm, that is, a partition of the genome into segments of different types,
where each type is a chromatin state and it is represented by a specific color in this
picture. The drawing at the bottom illustrates how the states identified by EpiCSeg
can be interpreted biologically. The red state can be interpreted as the beginning
of a gene (drawn as an arrow), the green states can be interpreted as transcribed
regions (represented by an RNA polymerase II producing a transcript) and the yellow
regions can be interpreted as enhancers (drawn as a transcription factor binding to
the DNA).
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4.2.1 From reads to read counts

A unique feature of EpiCSeg is that the input data can be derived from the mapped
reads directly, almost without any preprocessing. The genomic regions of interest,
which can be whole chromosomes, or better yet, only assembled and mappable
regions, are partitioned into non-overlapping subregions of the same size called bins,
and then each read is assigned to one bin. Typically, bins have a size of 200 base
pairs, though this is an adjustable parameter. Using counts per bin instead of
counts per base pair not only has the practical advantage of reducing the runtime
significantly, but it also smooths the input data conveniently.

To decide to which base pair, and therefore to which bin, a read belongs to,
a very similar approach as in NucHunter is used (see Section 3.2.1). Briefly, for
single-end ChIP-seq libraries, each read is assigned to its 5’ coordinate shifted in
the 5’-to-3’ direction by about half of the estimated average fragment length. This
coordinate is, in fact, an estimate of the midpoint of the DNA fragment that the read
originates from. The appropriate shift can be estimated using NucHunter (as we do
in the Results section), or by using the default value of 75 base pairs, which will
be appropriate in most cases. For paired-end ChIP-seq libraries, EpiCSeg counts
directly the fragments’ midpoints. In both cases, read counting is done using the
Bioconductor package bamsignals [3].

4.2.2 A multivariate probabilistic model for read counts

The identification of chromatin states is a complex and ill-defined problem. EpiC-
Seg’s approach is to define a probabilistic model for the observed counts for each
chromatin state and to integrate these in a hidden Markov model (HMM, presented
in Subsection 2.2.8). Following this strategy the central problem becomes: “given a
chromatin state, what read counts do we expect to observe?”.

This is a considerable challenge for at least two reasons. First, because the
distribution of the read counts from replicate experiments in the same region is
overdispersed, i.e. its variance is so large that a simple Poisson model cannot
account for it [52]. This degree of variation is also important when modeling the
read counts associated to the same chromatin state. Second, because the read
abundances along the genome tend to be correlated. This can happen because
of technical or biological biases, such as mappability, chromatin accessibility and
unspecific antibody binding [82], but it can also be a reflection of the biological
processes taking place on the chromatin fiber. The histone modification abundances
at promoters, for instance, have been shown to accurately predict the expression
levels of genes [99]. Therefore it should be expected that in a given chromatin state
the mark abundances vary more or less in proportion to the activity of the biological
process they are related to.

It is because of the correlation and overdispersion properties, as illustrated in
Figure 4.2, that EpiCSeg uses a negative multinomial distribution to model the
reads observed in each hidden state (see Subsection 2.2.3). In the next subsection
we will formalize EpiCSeg’s complete probabilistic model.
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Figure 4.2: Correlation and overdispersion in the components of a chromatin state.
The count data was derived from the K562 1 dataset presented in Section 4.3. Only
bins annotated as DNase+TSS were considered, corresponding to promoters of ac-
tively transcribed regions (see Subsection 4.3.1). This allows to have an idea of how
the counts are distributed given a chromatin state, without using EpiCSeg for defin-
ing chromatin states. The plot on the left shows the Pearson correlation coefficient
between every pair of histone marks (the coefficients on the diagonal, which equal
1 by definition, have been set to 0 for display purposes). It can be noted that most
of the correlations are considerably higher than 0, in agreement with the negative
multinomial model. The plot on the right shows the mean and the variance of the
counts per bin. The variance is considerably higher than the mean, indicating that
a Poisson model is inadequate and that the data is overdispersed.
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4.2.3 The hidden Markov model

EpiCSeg is based on the hidden Markov model framework presented in Subsection
2.2.8. Here we briefly describe and explain the parameters of the model, including
the emission parameters. We will denote by n the total number of bins and by m
the number of histone marks analyzed. For ease of discussion we will assume that
only one genomic region is considered. The input data is represented by a count
matrix c with n rows and m columns. The i-th row of the count matrix, where
1 ≤ i ≤ n, will be denoted as ci, the count in the i-th bin corresponding to the l-th
mark, where 1 ≤ l ≤ m, will be denoted as cil and the sum of the counts in the i-th
row will be denoted as ci+, i.e. ci+ =

∑m
l=1 cil.

The main assumption of the model is that each of the n observations ci is ex-
plained by a corresponding hidden state. There are k possible states, each of them
represents a chromatin state and it is modeled by a negative multinomial distribu-
tion. The random variable Zi denotes the unknown, hidden state at position i and
the random variable Xi represents the observation at position i, which takes the
value ci.

The complete set of model parameters, denoted as θ, consists of the parameters
π,α, ν1, ν2, ...νk, where:

1. π, the initial probabilities, are a vector of k probabilities summing up to one
where πj specifies P {Z1 = j}.

2. a, the transition probabilities, are a square matrix of size k, where the ele-
ment in row u and column v, denoted as auv, specifies P {Zi+1 = v|Zi = u},
independently of the position i in the sequence. In a each row u sums up to
one, i.e.

∑k
v=1 auv = 1.

3. νj is the parameter set that determines the emission probabilities relative to
state j, that is, the parameters µj, rj, pj1, pj2, ...pjm characterizing a negative
multinomial distribution (see Subsection 2.2.3). In formulas:

P {Xi = ci|Zi = j} = fNM(ci; νj) = fNB(ci+;µj, rj)fMultinom(ci; pj1, pj2, ...pjm),
(4.1)

where

fNB(ci+;µj, rj) =
Γ(rj + ci+)

Γ(rj)ci+!

(
µj

µj + rj

)ci+ ( rj
µj + rj

)rj
,

and

fMultinom(ci; pj1, pj2, ...pjm) = ci+!
m∏
l=1

pciljl
cil!

.

In an important variant of the EpiCSeg model all rj variables are constrained
to have the same value. This strategy has proved effective in avoiding overfitting
and excluding some unrealistic models where different states j have wildly different
values of the parameter rj. This variant of the model is called the dependent
mode, while the variant where the rj parameters are independent is called the
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independent mode (see Figure 4.3). Unless otherwise specified this discussion
focuses on the independent mode.
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Figure 4.3: EpiCSeg’s dependent and independent mode. In this example a large
number of counts has been generated according to a bimodal distribution, whose fre-
quencies are shown by the empty circles. Fitting a mixture model with two negative
binomial distributions, intuitively, should separate the two modi of the distribution.
However, if the dispersion parameters of the two distributions are unlinked and com-
pletely free to be fitted (the independent mode, shown on the left), counterintuitive
results can be obtained. On the left, the component colored in red accounts for the
first modus, as well as for the tail of the second modus, while the component colored
in blue accounts for most of the second modus. This is generally undesirable when
performing clustering. On the right, the two negative binomials have been fitted
by imposing that the dispersion parameters are the same (dependent mode). Even
though the overall fit and the likelihood of the model is not as good as for the inde-
pendent mode (compare the black solid line with the black circles), now each modus
can be associated to a distinct component of the mixture model and the results can
be used for clustering. This example deals with univariate observations and mixture
models, rather than multiple histone marks and hidden Markov models, but the same
ideas apply to both cases (which are both handled by EpiCSeg).
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4.2.4 Update rules for the negative multinomial distribution

EpiCSeg learns all parameters using unsupervised learning and the Baum-Welch
algorithm presented in Subsection 2.2.9. At each iteration t, therefore, the forward-
backward algorithm is used to compute the posterior probabilities γ

(t)
ij , defined as:

γ
(t)
ij = P

{
Zi = j|X = c; θ(t)

}
,

where θ(t) are the current parameter estimates and X = (X1, X2, ...Xn). We al-
ready showed in Subsection 2.2.9 how the initial probabilities and the transition
probabilities are updated. In this subsection we show how the emission parameters
are updated, or, equivalently, how the optimization problem from Equation 2.10 is
solved:

ν
(t+1)
j = arg max

νj

n∑
i=1

γ
(t)
ij log fNM(ci; νj).

As discussed in Subsection 2.2.9, the solution to this problem can also be used for
mixture models, which have also been implemented in EpiCSeg.

Because of the factorization shown in Equation 4.1, the parameters of the neg-
ative binomial and those of the multinomial distributions can be maximized inde-
pendently:

p
(t+1)
j = arg max

pj

n∑
i=1

γ
(t)
ij log fMultinom(ci;pj),

µ
(t+1)
j , r

(t+1)
j = arg max

µj ,rj

n∑
i=1

γ
(t)
ij log fNB(ci+;µj, rj).

The following closed-form solution hold for the parameters pj of the multinomial
distribution :

p
(t+1)
jl =

∑n
i=1 γ

(t)
ij cil∑n

i=1 γ
(t)
ij ci+

.

In fact, the optimization function can be written as:

n∑
i=1

γ
(t)
ij log fMultinom(ci;pj) =

n∑
i=1

γ
(t)
ij log

ci+!∏m
i=1 cil!

+
m∑
l=1

(
n∑
i=1

γ
(t)
ij cil

)
log pjl.

In the last expression, the first term is independent of pj while the second can be
maximized applying Lemma B.1.2.

For the parameter µj of the negative binomial distribution, the following closed-
form solution can be proven using standard analytical techniques (see Lemma B.1.3):

µ
(t+1)
j =

∑n
i=1 γ

(t)
ij ci+∑n

i=1 γ
(t)
ij

.
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The the optimal rj parameters are given by:

r
(t+1)
j = arg max

rj

n∑
i=1

γ
(t)
ij log fNB(ci+;µ

(t+1)
j , rj). (4.2)

Unfortunately there is no closed formula for the last maximization problem, which
needs to be solved numerically as a one dimensional optimization problem. It is
known, however, that there exist only one local maximum, which is therefore a
global maximum [100]. In EpiCSeg a variant of the Brent algorithm is used for this
task [101].

In the dependent mode of the EpiCSeg model, i.e. when all parameters rj are
constrained to have the same value r, all the above update equations remain valid
except Equation 4.2, which becomes

r(t+1) = arg max
r

k∑
j=1

n∑
i=1

γ
(t)
ij log fNB(ci+;µ

(t+1)
j , r), (4.3)

and can be solved numerically as in the previous case.

4.2.5 The initialization algorithm

The Baum-Welch algorithm used by EpiCSeg for fitting the hidden Markov model
needs an initial value for all the model parameters. Those parameters will eventually
be fit to the data, but the Baum-Welch algorithm can converge to different local
maxima depending on the initialization. The initialization procedure aims at finding
initial parameters such that the final ones are close to the global maximum point.
In EpiCSeg, this procedure is based on the following ideas:

• The parameters for k chromatin states can be initialized by clustering the
observation vectors into k clusters and therefore disregarding the order of the
observations.

• Many small clusters (seeds) can be merged and reduced to k clusters using
hierarchical clustering.

• Principal component analysis (PCA) can be applied on the count matrix to
find good seeds.

Let k be the desired number of clusters and c the count matrix with m columns
and n rows. c and k are the input of the algorithm while the output is a different
set of bins for each cluster. These sets do not constitute a partitioning of all bins,
because they can overlap, and they are not even proper sets, but rather multisets,
as the same bin can be counted multiple times. From each multiset the emission
parameters for a state can be easily fitted using maximum likelihood.

The algorithm performs the following steps:
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1. PCA is performed on the count matrix c (see Figure 4.4). This results in a
coordinate matrix ċ with the same dimensions as c but where the columns
correspond to principal components (PCs) .

2. For each PC, nlev seeds are computed (see Figure 4.5). Here seed means a
subset of the bins and nlev is a parameter of the initialization algorithm. The
seeds deriving from a PC p result from partitioning the rows of matrix ċ into
nlev groups of equal size according to the intensity of the p-th column. So, for
instance, the first group is formed by the n/nlev rows with the lowest values
in column p. This yields a total of nlev · k seeds.

3. For each seed the parameters of a negative multinomial distribution NM(µ, r,p)
are determined. The r parameter is shared among all seeds and fitted by as-
suming that all bins of the count matrix are generated by the same negative
multinomial distribution. The other parameters are estimated by maximum
likelihood on the bins identified by the seed.

4. A distance matrix between seeds is computed. The distance between two
seeds is defined as the symmetrized Kullback-Leibler divergence between the
two corresponding negative multinomial distributions (see Appendix B for the
exact formula).

5. The distance matrix is used as input to the hierarchical clustering algorithm
with average linkage, (the “hclust” function available in R is used) . Hierar-
chical clustering produces a tree where the leaves represent the different seeds,
internal nodes represent clusters of seeds and where the height of an inter-
nal node represents the similarity between the two clusters being merged (see
Figure 4.6).

6. The tree produced by the hierarchical clustering algorithm is cut at a distance
from the root such that the resulting tree has exactly k nodes. Each node is a
group of seeds that will be used to initialize the parameters corresponding to
chromatin state.

4.2.6 Making ChIP-seq experiments comparable

Even if in most cases EpiCSeg can be used with raw count data, there are situ-
ations where this might not be appropriate and where a normalization procedure
is required. This happens, for instance, when the same hidden Markov model is
trained on multiple datasets, in order to have a comparable state annotation across
datasets. In this setting the input data consists of a set of nrep count matrices
c(1), c(2), ...c(nrep) where each matrix has n rows and m columns, representing the
same set of m histone marks the same set of n bins. Each count matrix is derived
from a separate dataset, which could be, for instance, a different cell type or the
same cell type in two different conditions. A comparable state annotation across
datasets can be useful, for instance, to test whether some regions are associated
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Figure 4.4: PCA in the initialization algorithm. PCA transforms each observation
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on the left shows the rotation matrix used to perform this transformation. The
principal components are as many as the number of histone marks (in this example
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Figure 4.5: Computation of seeds for the initialization algorithm. Each seed is a
group of observations obtained by splitting a principal component into nlev parts, so
that each group of observations has approximately the same size. In this example
nlev = 5 and the separation is shown by the dashed lines. This results in nlev seeds
per principal component (5 times 12 in this example). For display purposes only the
first principal components are shown, but the splitting is done for every principal
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Figure 4.6: Hierarchical clustering of seeds in the initialization algorithm. A pair-
wise distance between seeds is computed and is used for hierarchical clustering. The
agglomeration of the leaves stops when k subtrees remain disjoint, where k is the
desired number of clusters to initialize. In this case k = 10 and each subtree is
represented by a distinct color of the leaves. The k subtrees can be used to initialize
k different negative multinomial distributions.

to different chromatin states. This would suggest that these regions are regulated
differently.

In principle, EpiCSeg could treat these matrices as a single matrix with m marks
and nnrep bins and perform training as in the regular case. However in general there
are systematic differences across samples that are not due to biological reasons and
that would lead to wrong conclusions. The most important and best understood
source of systematic differences is the total number of reads in each experiment.
Let x(1),x(2), ...x(nrep) denote the vectors of length n corresponding to one of the m
marks across the different dataset. If in the first dataset the ChIP-seq sample for
this mark contains twice as many reads as in the second dataset, we would expect
that for most of the bins x(1) ∼ 2x(2). There can be other sources of systematic
differences that are less well-understood. For instance, referring to the ChIP-seq
protocol outlined in Subsection 1.2.1, the size distribution of the DNA fragments
in step 2 can be different across samples, or the separation of protein-bound DNA
from the genomic background in step 3 can be more or less precise.

EpiCSeg approaches these problems by transforming the x(h) vectors to cor-
rected ẋ(h) vectors, for 1 ≤ h ≤ nrep, and then uses the corrected input data as in
the regular case. EpiCSeg offers two normalization procedures and it can be easily
extended with user-defined functions. The first one, implemented in the “linearNor-
malization” function, consists in dividing each x(h) vector by a number sr called
size factor. The corrected counts for bin i and sample h is simply ẋ

(h)
i = bx(h)

i s−1
r c.

Size factors take into account how much each ChIP-seq sample has been sequenced



4.2. METHODS 61

and they are estimated using the edgeR package [102]. The second normalization
strategy, implemented in the “quantileNormalization” function, produces normal-
ized ẋ(h) vectors that share the same distribution. More precisely, let order(x(h))i
denote the index where the i-th smallest element in x(h) appears (draws are resolved

randomly). After normalization ẋ
(h)

order(ẋ(h))i
= yi for all h and all i, where y is a ref-

erence count vector of length n with increasing values. The reference count vector
is obtained from the x(h) vectors:

yi = median{x(1)

order(x(1))i
, x

(2)

order(x(2))i
, ...x

(nrep)

order(x(nrep))i
}.

Note that these approaches are by no means a general solution, and therefore
EpiCSeg does not compete with tools specifically designed to detect differences
across ChIP-seq samples (see [102–106]). Nonetheless, running EpiCSeg on multiple
datasets might still be useful for detecting large-scale differences between epigenomes
and for providing a consistent state annotation.

4.2.7 Computational considerations

The update formulas 4.2 and 4.3 can be very costly to compute. The optimization
function consists of a summation over all the n bins whose values depend on the
fNB function, which is a very costly function. Numerical methods need to evaluate
the optimization function, or its derivative, a number nr of times before returning
the updated value for rj, where typical values for nr range from 10 to 30 iterations,
and where these evaluations need to be done serially, i.e. they cannot be executed
in parallel. Assuming that n ∼ 1.5 · 107 (as for a whole human genome and with a
bin size of 200 bps) and nr ∼ 20, the Expectation Maximization algorithm would
need to evaluate the fNB function about 3 · 108 times at each iteration.

This problem can be alleviated by grouping together evaluations of the func-
tion fNB(ci+;µ

(t+1)
j , rj) with the same ci+ value, similarly as for the mixture model

algorithm presented in Subsection 3.2.6. Let

D = {ci+ : 1 ≤ i ≤ n},

and

δ
(t)
dj =

n∑
i=1

γ
(t)
ij · [ci+ = d],

where the expression delimited by square brackets evaluates to one when the ex-
pression inside it is true and to zero otherwise. Then the update formulas 4.2 and
4.3 can be rewritten respectively as

r
(t+1)
j = arg max

rj

∑
d∈D

δ
(t)
dj log fNB(d;µ

(t+1)
j , rj),

and

r(t+1) = arg max
r

∑
d∈D

n∑
i=1

δ
(t)
dj log fNB(d;µ

(t+1)
j , r),
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respectively. Considering that D, even in genome-wide datasets, rarely contains
more than 104 elements, the fNB function now needs to be evaluated 1.5 · 103 times
less frequently.

Assuming that the Baum-Welch algorithm needs ni iterations to complete (which
is typically around 100 iterations), we can estimate the time complexity of the whole
training process (excluding initialization). At each iteration the algorithm needs to
compute the probability of each observation of m counts given each of the k states,
which takes time O(nmk), then the forward-backward algorithm is used to compute

the quantities γ
(t)
ij and ξ

(t)
iuv, which takes time O(nk2), and finally these quantities

are used to update the parameters of the model, which takes time O(nmk) for the
parameters of the multinomial distributions and O(ndnrk) for the parameters of
the negative binomial distributions, where nd denotes the number of elements in D
(both in the dependent and independent mode). This yields the following overall
time complexity:

O(ni(nk(n+ k) + ndnrk)).

Also the time complexity of the initialization algorithm can be estimated. The
initial PCA step requires time O(nm2 + m3) (covariance matrix computation and
eigenvalue decomposition). The computation of the seeds requires sorting the n val-
ues of each of the m principal component, which takes time O(nm log n). Finally,
computing the distance matrix between all seeds and performing hierarchical clus-
tering on them requires time O(m(mnlev)2 + (mnlev)3). The overall asymptotic time
complexity of the initialization algorithm is therefore:

O(nm(m+ log n) + (mnlev)3).

4.2.8 Implementation

EpiCSeg has been implemented as an R package with two main design goals in
mind: ease of use and efficiency. The interface is simple and familiar to the large
bioinformatics and statistics community using the R language. A command-line
interface is also available, for those users not familiar with R. At the same time,
the most time-consuming operations have been developed in C++, parallelized with
OpenMP [107] and interfaced with R using the Rcpp package [108], which ensures
efficiency and scalability with the number of cores in shared-memory architectures
(see also Appendix C).

4.3 Results

As the chromatin segmentation problem is an unsupervised learning problem there
is no clear performance score which can be used to compare segmentations by dif-
ferent methods. To make the comparison as fair and comprehensive as possible we
adopted two strategies. First, we define and compute a number of performance
indicators based on the association between chromatin states and validation data.



4.3. RESULTS 63

Second, we compare the different segmentations qualitatively, i.e. without using any
performance indicator.

These comparisons also suggest alternative solutions to the task of interpreting
the models provided by a segmentation algorithm. The sensitivity and precision
scores used in the quantitative comparison show how validation data can be used to
identify a state which most likely represents a given genomic feature. The genome-
wide statistics used in the qualitative comparison show that each state has a peculiar
distribution with respect to genes and a particular signature in terms of histone mark
abundances which can be related to known biological processes.

The tools chosen for the comparisons are EpiCSeg and ChromHMM. Segway
could not be included here because the time required for its training process is
orders of magnitude larger and also because it works at single base pair resolution,
while EpiCSeg and ChromHMM, as well as our validation procedure, use a binning
scheme to reduce the high noise levels in the read counts.

To be able to draw relatively general conclusions, we compared the algorithms
on 4 different datasets provided by the ENCODE consortium [70]:

• IMR90: lung fibroblast cells with 27 histone marks,

• H1: embryonic stem cells with 26 histone marks,

• K562 1: myelogenous leukemia with 11 histone marks and 1 control experi-
ment,

• K562 2: same as above. The K562 1 and K562 2 datasets derive from an
ENCODE dataset where two replicates per histone mark are available.

For each of these cell types ENCODE also provided a RNA-seq and DNase I hy-
persensitivity experiments that were used for validation, as described in the next
section.

4.3.1 The supervised annotation

The aim of the supervised annotation is to provide a benchmark dataset to evaluate
the efficiency of a segmentation algorithm. This subsection describes the procedure
used to derive such an annotation.

The result of this procedure is the characterization of four different chromatin
environments per cell line: DNase+TSS and DNase-TSS, characterized by a high
DNase I HS signal and separated according to their proximity to an annotated TSS,
RNA, characterized by a high RNA-seq signal, and intergenic, characterized by
their long distance from RNA and DNase environments.

The input to the procedure is a RNA-seq and a DNase-I hypersensitivity ex-
periment from the same cell type as the histone mark experiments used for the
segmentation. Additionally the procedure uses the annotated transcripts available
from the GENCODE database [109], version 19 (Ensembl 74). More precisely, all
annotations of type “transcript” and of level 1 and 2 where considered. The bin-
ning scheme used for this procedure is the same as the one used for segmentation,



64 CHAPTER 4. CHROMATIN SEGMENTATION

i.e. the bin have size 200 base pairs, with the difference that all bins overlapping a
non-assembled region of the genome were discarded.

In the DNase-I hypersensitivity tracks, coming from single-end sequencing ex-
periments, the accessibility signal per bin was defined as the number of reads whose
5’ end maps within the bin. The top 2% bins were considered accessible and the
top 0.8% were considered strongly accessible.

In the RNA-seq tracks, coming from paired-end sequencing experiments, regions
ranging from the leftmost to the rightmost coordinate of a mapped read pair were
treated as unstranded transcribed regions. The coverage per base pair was com-
puted as the number of such transcribed regions that cover the base pair, and the
transcription signal per bin was defined as the average coverage in the bin. The top
15% bins were considered transcribed.

The following criteria were used to define each chromatin environment:

• A DNase bin was defined as a strongly accessible bin. If the bin is closer than
500 base pairs to an annotated TSS it was considered a DNase+TSS bin,
otherwise a DNase-TSS bin.

• A RNA bin was defined as a transcribed and non-accessible bin and such
that all the 10 bins to the right and to the left are also transcribed and non-
accessible.

• A bin was annotated as intergenic if that bin, as well as the 100 bins to the
left and to the right, are neither a DNase nor a RNA bin.

4.3.2 Comparison with validation data

We ran ChromHMM and EpiCSeg genome-wide on the four datasets. The number of
chromatin states was set to 10, the number of processing threads was set to 10, and
all other parameters were set to their default values. In particular, both EpiCSeg
and ChromHMM use the same binning scheme. The runtime of the two algorithms
was similar: both tools performed genome-wide training and prediction in 15 to 35
minutes with neither method showing consistently shorter runtimes (see also Figure
A.2).

We first measured how well an algorithm can recognize large regions with unusu-
ally low levels of histone marks. These regions are typical in genome-wide datasets
due to mappability artifacts or low levels of chromatin accessibility, and it is desirable
to safely exclude them. In this measurement, we identified the bins corresponding
to assembly gaps, i.e. large regions of the reference genome where the sequence is
not known and where no reads can be mapped. Next, we identified which state
most likely represents assembly gaps by selecting the state with the highest pre-
cision. Given a state, the precision is the fraction of bins assigned to this state
that are assembly gaps and the sensitivity is the fraction of assembly gaps that
are assigned to this state. Figure 4.7 (a) shows that in all datasets and both in
EpiCSeg and in ChromHMM almost all assembly gaps are annotated with the same
state, however in EpiCSeg this state overlaps with the assembly gaps much more
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precisely, especially in the K562 1 and K562 2 datasets. The fact that the precision
always remains relatively low suggests that assembly gaps are not the only regions
with unusually low levels of histone marks. Assembly gaps bins were excluded in
the computation of all other performance indicators.

Next, we measured how well chromatin states can predict gene expression. For
this purpose we used a cell-type specific RNA-seq experiment for each dataset. As
a measure of gene expression levels we used the logarithm of the average RNA-
seq coverage per bin (adding a pseudo-count of 1) and as a measure for predictive
power we computed the R2 resulting from standard linear regression with a cat-
egorical predictor (the chromatin states). Figure 4.7 (b) shows that EpiCSeg and
ChromHMM have a similar predictive power, but the former tends to perform bet-
ter. The low R2 values observed in the IMR90 and H1 datasets might suggest that in
datasets with many ChIP-seq tracks the segmentation algorithms are less influenced
by transcription-associated histone marks (e.g. H3K36me3).

For the next performance indicators we used the supervised annotation described
in 4.3.1. Note that in this annotation some bins remain unannotated and they are
not considered in the following.

Using the DNase+TSS bins as a gold-standard set of active TSSs we measured
how well an algorithm can recognize active promoters. We selected the chromatin
state that overlaps DNase+TSS bins with the highest precision. Figure 4.7 (c)
shows that in all cases EpiCSeg identifies a chromatin state overlapping putative
TSSs with a considerably higher precision than in ChromHMM. Often this state also
overlaps more TSSs than in ChromHMM except in the H1 dataset (here, however, we
could achieve a higher performance than with ChromHMM by merging two EpiCSeg
states).

Next, we used the supervised annotation to compute an overall association score
between external datasets (TSS annotation, RNA-seq and DNase I hypersensitivity)
and chromatin states. As performance measure we used the mutual information,
which can be estimated from a contingency table between the chromatin states vector
and the chromatin environments vector. Figure 4.7 (d) summarizes the results and
suggests that EpiCSeg is more strongly associated to the validation data.

To test the generality of our conclusions, we repeated the comparisons described
above varying the number of states from 2 to 40 (see Figure 4.8). The results
suggest that our conclusions are unlikely to depend on a particular choice of the
parameters or on a particular initialization of the maximization algorithms. The
results also show that the precision in assembly gap and TSS prediction, as well
as the association to transcription and to the supervised annotation, tend to grow
with the number of states, while the sensitivity in assembly gap and TSS prediction
decreases, suggesting that the state representing a given genomic feature will even-
tually be split into two or more subtypes when increasing the number of states. A
large number of states, however, renders the biological interpretation of the model
difficult. The BIC and AIC methods [110], which determine the optimal number of
states by penalizing the likelihood according to the number of parameters, failed in
suggesting a number within the explored range (data not shown). We believe that
such a choice should be a compromise between interpretability and accuracy of the
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Figure 4.7: Comparison with validation data. In (a) and (c) chromatin states are
used as binary classifiers to predict assembly gaps and TSSs, respectively. The true
positives are the bins annotated both with the feature and the given chromatin state.
Precision and sensitivity are defined respectively as the number of true positives over
the number of bins annotated with the state, and the number of true positives over
the number of bins annotated with the feature. In (b) chromatin states are used to
predict transcription levels. The value to be predicted is the log-transformed RNA-
seq coverage per bin and the predictor is the chromatin state per bin. The R2 values
were computed using standard linear regression. In (d) the association between the
unsupervised segmentation and the supervised annotation is measured. The manual
annotation was produced using RNA-seq data, DNase I hypersensitivity data and a
gene annotation, while the chromatin states were computed using only histone marks.
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Figure 4.8: Performance measures depending on the number of states. The same
performance assessments as in Figure 4.7 are shown, but with a variable number of
states (from 2 to 40) and using only the first human chromosome. Colors represent
datasets, solid and dashed lines represent EpiCSeg and ChromHMM, respectively.

4.3.3 A similarity measure between segmentations

To measure how similar two segmentations are to each other we used the average
Jaccard index, which is a score between zero (completely different segmentations)
and one (identical segmentations). The Jaccard index between two sets A and B is
the ratio between the size of the intersection and the size of the union. If |A| denotes
the size of set A (in our setting, a number of base pairs), the Jaccard index can be
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expressed by the formula |A∩B||A∪B|−1. Given two segmentations, and assuming
that there is a one-to-one correspondence between states, the average Jaccard index
is computed as follows:

1. for each state s consider the two sets of base pairs I1 and I2, defined as the
bins where state s occurs in segmentation 1 and 2 respectively,

2. measure the Jaccard index Js between the two sets, defined as Js = |I1 ∩
I2||I1 ∪ I2|−1,

3. as the final score, consider the average Jaccard index J across all states J =
|S|−1

∑
s∈S Js, where |S| denotes the number of states,

4. choose the one-to-one correspondence between states as the one that maxi-
mizes the average Jaccard index.

4.3.4 Robustness comparison

We set out to test the algorithms’ robustness to perturbations of the input data.
The purpose of the first assessment is to test to which extent the chromatin states
are influenced by technical variability, which includes sampling noise and differences
in sequencing coverage. In fact this technical variability might affect EpiCSeg more
than ChromHMM, as the former uses raw count data, while the latter uses normal-
ized binary variables. The K562 1 and K562 2 datasets are suitable for this purpose
because all samples come from the same cell type and replicate pairs are strongly
correlated, even though there are considerable differences in sequencing coverage
(see Supplementary Figures, Figure A.3). In order to have several measurements,
we ran the segmentation algorithms (training and prediction) on each chromosome
and each dataset separately and we computed the similarity between corresponding
segmentations. As shown in the box plot in Figure 4.9 (left), the Jaccard indices
obtained from EpiCSeg tend to be considerably higher than those obtained from
ChromHMM, suggesting that the former tends to be more consistent across repli-
cate datasets.

In the second assessment, we test the robustness of the algorithms to changes
in the binning scheme. By default both algorithms (EpiCSeg and ChromHMM),
bin the genome by assigning the first 200 base pairs of each chromosome to a bin,
the second 200 base pairs to the next, and so on. Here, we studied to which extent
the state assignment per base pair changes after shifting all bins by 100 base pairs.
Figure 4.9 (right) shows that, for instance, in the K562 1 dataset with the EpiCSeg
algorithm, on average more than 80% of the base pairs annotated with a certain
state in one segmentation are annotated with the corresponding state also in the
segmentation that uses the alternative binning scheme. Note, however, that part
of this disagreement is simply due to the fact that the boundaries of two matching
segments will necessarily differ by at least 100 base pairs. These results suggest that
both algorithms are relatively robust to changes in the binning scheme, and that
EpiCSeg tends to be more robust.
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Figure 4.9: Segmentation robustness. On the left, algorithms’ robustness to repli-
cate datasets. The K562 1 and the K562 2 datasets can be considered two perturba-
tions of the same dataset. The segmentation algorithms were run independently on
each chromosome on both datasets and the similarity between corresponding segmen-
tations was measured. A higher Jaccard index means a greater robustness. The box
plots show, among other things, the median (the thick line) and the first and third
quartiles (the boundaries of the box) of the score distribution for each algorithm.
On the right, algorithms’ robustness to shifts of the binning offset. Reads have been
counted using two different binning schemes. The segmentation algorithms were run
using both schemes and the similarity between segmentations were measured.
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4.3.5 Qualitative comparison

In order to show the salient differences between the two algorithms without focusing
on single regions, we collapsed the segmentation data into genome-wide summary
statistics. The first summary statistic is a bar plot where each bar corresponds
to a chromatin state and where its length is proportional to the state frequency.
Additionally, edges between states of the two segmentations have been drawn with
widths proportional to the number of overlapping bins. Another statistic shows
where each state tends to localize with respect to genes. More precisely, for each
annotated transcript in the GENCODE database [109] and for a given segmentation
we considered a region comprising the transcript, 5000 bps upstream the TSS and
5000 bps downstream the TES, we labeled each base pair with its inferred state, and
we rescaled the region between TSS and TES to a reference length. Finally, taking
into account all transcripts, we counted how many regions are annotated with a
given state at a given position. The third summary statistic is a heatmap showing
the log-transformed average histone modification levels per state.

From Figure 4.10 (bottom left), we notice that both segmentations on the K562 1
dataset are strongly dependent on the genomic context, that is, they can capture
and represent the most important biological processes acting on the chromatin. The
clearest signals are a state peaking exactly at the TSS of the genes and a state which
appears mainly in the body of the transcripts and peaks at the TES.

However, there are also some differences. The most apparent is that in the
ChromHMM segmentation there is a state accounting for more than half of all bins,
while the state distribution in EpiCSeg’s segmentation is more balanced. This back-
ground state in ChromHMM is likely to be an artifact of the discretization step and
to correspond to bins where most of the read counts are below the discretization
threshold rather than to represent a well-defined chromatin state. The same back-
ground state corresponds mainly to three EpiCSeg states. One of them is associated
to very low read counts for all marks. The analysis in Figure 4.7 (a) showed that al-
most all assembly gaps are annotated with this state and that they make up almost
half of it. The other two states correspond to repressive chromatin environments en-
riched respectively with H3K27me3 and H3K9me3. The second apparent difference
is that that the promoter state in EpiCSeg’s segmentation is more tightly centered
on the TSS, which is also reflected in the higher classification score observed in the
performance comparison (Figure 4.7 (c)). These conclusions are confirmed also in
the other three datasets (see Figures A.4, A.5 and A.7).

However, there are also some differences. The most apparent is that in the
ChromHMM segmentation there is a state accounting for more than half of all bins,
while the state distribution in EpiCSeg’s segmentation is more balanced. This back-
ground state in ChromHMM is likely to be an artifact of the discretization step and
to correspond to bins where most of the read counts are below the discretization
threshold rather than to represent a well-defined chromatin state. The same back-
ground state corresponds mainly to three EpiCSeg states. One of them is associated
to very low read counts for all marks. The analysis in Figure 4.7 (a) showed that al-
most all assembly gaps are annotated with this state and that they make up almost
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Figure 4.10: Qualitative overview of EpiCSeg’s and ChromHMM’s segmentations.
The plot at the top shows the frequency of each state in each segmentation as bars
with variable widths. Additionally the edges’ widths show the overlap between states
of different segmentations. The two plots at the bottom left show how often a partic-
ular state occurs at a particular position of the transcript, rescaling all transcripts
so that they have the same length. The two plots at the bottom right show the mark
intensities depending on the state. The choice of the colors is arbitrary. All statistics
were computed in the K562 1 dataset.
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half of it. The other two states correspond to repressive chromatin environments en-
riched respectively with H3K27me3 and H3K9me3. The second apparent difference
is that that the promoter state in EpiCSeg’s segmentation is more tightly centered
on the TSS, which is also reflected in the higher classification score observed in the
performance comparison (Figure 4.7 (c)). These conclusions are confirmed also in
the other three datasets (see Figures A.4, A.5 and A.7).

Other smaller differences can be observed in Figure 4.10. For instance, EpiCSeg
separates promoter-proximal regions into those with the known set of promoter-
associated marks, H3K27ac, H3K9ac, H3K4me2-3 (state 2), and those with lower
levels of promoter-associated marks and a very high level of H3K79me2 (state 1),
whereas ChromHMM does not make this distinction (state 1). Furthermore, the
state in ChromHMM with the highest levels of H3K4me1 (probably representing
enhancer regions) is very similar to the promoter state considering its localization
and the marks intensities, while in EpiCSeg there is a greater separation (between
state 3 and state 2). These two last differences, however, cannot be always general-
ized to the other datasets.

4.3.6 Uncertainty in state assignments

We explored how confidently EpiCSeg’s probabilistic model can assign a bin to
a chromatin state in relation to the read coverage in the bin. As a measure of
uncertainty in the state assignment we computed the posterior entropy per bin,
which is the entropy of the probability distribution describing how probable each
state is for that bin. The read coverage per bin is the sum of the read counts
across all histone marks. The results of this explorative analysis can be seen in
Figure 4.11 for the K562 1 dataset, which shows (i) a smoothed scatterplot of the
posterior entropies versus the read coverage and (ii) the mean posterior entropy per
read coverage level. The most apparent trend is that most of the entropies tend to
cluster around 0, or to a much smaller extent, around 1, suggesting that for most
of the bins the probabilistic model is very certain of the state assignment, or it
is undecided between 2 alternatives. The second apparent trend is that the bins
that can be most confidently classified are either bins with no reads at all, typically
corresponding to assembly gaps, or bins with a very large number of reads, typically
located in promoter regions, while bins with a read coverage between 10 and 100
are harder to classify. The same analysis performed in the other datasets leads to
similar conclusions (data not shown). To summarize, EpiCSeg’s model tends to
be very certain of state assignments, with a weak dependence on the read coverage.
This suggests that modeling the read counts directly does not necessarily introduce a
high level of uncertainty in the state inference for bins with low-counts and supports
our claim that EpiCSeg allows for assigning chromatin states to a larger portion of
the epigenome compared to existing approaches.
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Figure 4.11: Uncertainty in the state assignments. The smoothed scatterplot con-
sists in the blue shades, which show the density of points for each combination of read
coverage and uncertainty, and the small black dots, which are the outliers. Addi-
tionally, entropies have been averaged over groups of bins with the same or a similar
read count, so that each group consists of at least 500 bins. The empty black circles
show the average entropy level per group.
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4.4 Discussion

In genomic regions with similar functions, similar combinations of histone marks can
be observed. These patterns in the histone marks abundances are called chromatin
states. EpiCSeg is an algorithm that can learn the most important chromatin states
by analyzing several ChIP-seq experiments simultaneously and assigns each genomic
region to a chromatin state. Similarly to the ChromHMM algorithm, EpiCSeg di-
vides the genome into consecutive bins and assumes a hidden Markov model to learn
and infer the hidden sequence of chromatin states. In contrast to its predecessor,
EpiCSeg’s input data are natural numbers instead of binary variables, which has two
important practical advantages. First, no arbitrary thresholds on the read counts
are needed to decide when a mark is present or not, since the read counts can be
directly used as input data. Second, because the input data contains more infor-
mation than the binary variables, EpiCSeg segmentation is more accurate and can
annotate a larger portion of the genome. Moreover, these advantages do not come
at the expense of an increased runtime. In summary, EpiCSeg marks a consider-
able improvement upon its predecessors and paves the way for a more quantitative
analysis of chromatin states.

The chromatin segmentation problem, however, is far from being solved. One
important open issue is a more objective definition of chromatin state. If unsuper-
vised learning methods are very useful for data exploration, especially when little is
known about the patterns present in the data, they are suboptimal when used for the
characterization of patterns that are known and expected. Today researchers expect
from histone modification data a reliable annotation of certain genomic elements,
such as promoters of transcribed genes, transcribed gene bodies and enhancers, and
future research might focus on supervised or semi-supervised learning approaches
for this purpose.

Another important research direction might address the problem of making chro-
matin states comparable across datasets. The solutions described in Subsection 4.2.6
attempt to correct the raw count data before segmentation and make strong assump-
tions. More principled approaches might account for differences between samples
with a more accurate model during segmentation, rather than in a preprocessing
step. Finally, it is not clear whether chromatin segmentation can be used for a more
accurate identification of differences between datasets.



Chapter 5

Footprint discovery

This chapter presents Footifind: an algorithm that uses ChIP-exo data to learn the
precise peak shape and the DNA sequences that characterize transcription factor
binding sites. This method can be used to discover motifs, study the structure of
the DNA-protein binding, and to detect putative binding sites.

5.1 Motivation

Transcription factors (TFs) play a fundamental role in gene regulation and cell
differentiation. By binding to specific genomic locations, called binding sites, they
can interact directly or indirectly with the transcription of one or more genes and
thereby regulate their activity. Transcription factors are so important that the
identity of a cell in an organism with different cell types can be explained to a large
extent in terms of presence or absence of transcription factors [111]. In order to
understand how TFs regulate the transcriptional program of a cell, it is important
to know to which genomic locations each TF binds.

TF binding sites are often characterized by a short pattern in the DNA sequence
called motif, which is fundamental for the TF to correctly recognize its target binding
sites. Therefore, once the motif for a particular TF is known, a candidate set of
binding sites can be obtained. However, the motif alone is not sufficient to precisely
locate all binding locations. Other processes, such as the accessibility of the DNA,
or other proteins competing or cooperating with the TF, can largely influence TF
binding.

The ChIP-seq protocol [40] measures protein binding for a given protein, in a
given cell sample, and at all possible genomic locations (see Section 1.2). The data
provides a read count for each base pair in the genome, and binding sites can be
recognized from clusters of high read counts, called peaks. However, these peaks are
too broad to mark the binding site precisely. A putative ChIP-seq peak typically
spans 200 base pairs, making it hard to understand where exactly the TF is bound
and which motif it recognizes.

The ChIP-exo protocol [41] is a variant of ChIP-seq that achieves a greater
resolution. With ChIP-exo, by using motif information to precisely define binding

75
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sites, a common, precise pattern in the read counts emerges which is much more
informative than a ChIP-seq peak and it is related to the way the TF is physically
bound to the DNA. These qualitative observations lead to the concept of a footprint:
a precise peak shape occurring at TF binding sites, similar to the footprints observed
in DNase-I hypersensitivity data [112, 113].

Footprints are important for several reasons. First, they allow a more precise
identification of TF binding sites. Second, these refined regions can be used to
better understand the sequence preferences of the TF and to possibly discover new
motifs. Third, footprints can provide structural information about the protein-DNA
interaction. The detailed analysis of a footprint can suggest, for instance, whether
a TF is binding as a monomer or as a dimer and how large its DNA binding domain
is.

Previous computational approaches have focused on discovering sequence motifs
from sequences obtained from ChIP-seq peaks [114–118], or on using known motifs
to model TF footprints in DNAse I hypersensitivity data [55, 119, 120]. There are
also methods that attempt to find binding sites, footprints and motifs simultaneously
from ChIP-exo data [121], but this is achieved by a sequential combination of a peak-
calling and a motif-discovery method rather than by an integrated understanding of
sequence-level and count-level features.

Here we present Footifind: an algorithm that models TF binding as the simulta-
neous occurrence of a motif and a footprint and that infers such an integrated model
without prior knowledge. Experimental results show that our approach is able to
detect motifs supported by the literature and footprints compatible with the molec-
ular structure of the TF. Moreover, Footifind can distinguish different categories of
binding sites, which can be due to the same TF binding in different ways or to the
binding of other unexpected proteins.

5.2 Methods

5.2.1 The ChIP-exo protocol

ChIP-exo provides reads that are more tightly centered around a TF binding site
than with ChIP-seq. This experimental procedure is similar to the ChIP-seq proto-
col (see Subsection 1.2), with the addition of one step, called exonuclease digestion,
that takes place after immunoprecipitation of the DNA fragments (step 3) and be-
fore purification (step 4). At this stage, the double-stranded protein-bound DNA
fragments are incubated together with an enzyme, called lambda exonuclease, that
digests each strand of a fragment proceeding in the 5’-to-3’ direction (see Figure
5.1). What prevents the DNA from being completely digested are the crosslinks
between protein and DNA, formed in step 1 of the ChIP-seq protocol. In fact each
crosslink protects a region of about 5 base pairs upstream and downstream the
crosslinked nucleotide. After digestion, the 5’ end of a bound fragment coincides
with the boundary of the protected DNA region while the 3’ end remains intact, so
that the fragment is long enough for sequencing and mapping.
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After that ChIP-exo reads are mapped to the reference genome, it is convenient
to consider the count signal generated by the 5’ mapping positions of the reads.
At TF binding sites, a peak pair is typically observable, where a peak in the sense
strand is followed by one in the antisense strand (if the sense strand is oriented from
left to right). This shape, however, is highly dependent on the crosslinks between
DNA and TF. The distance between the two peaks, in fact, depends on the length
of the protected DNA, on the number of crosslinks and on their strength. Moreover,
because crosslinks can be more or less stable, the boundaries of the protected region
can be more or less sharp, or there might be primary and secondary boundaries.

Figure 5.1: Exonuclease digestion and the ChIP-exo count signal. Above, a car-
toon of a TF bound to double-stranded DNA. Below, single-stranded DNA fragments
relative to the TF above (the arrow denotes the 3’ end). The shaded rectangle shows
the DNA region that is protected by the crosslink. Exonuclease digestion progresses
from the 5’ to the 3’ end of a DNA fragment and stops when it encounters the pro-
tected DNA region. In the count signal obtained by counting the 5’ end of the reads,
a peak pair is visible at the boundaries of the protected DNA region.

5.2.2 Notation

We will use the index i to denote a position in the genome. The index i is a simple
integer that encodes a chromosome, a number of base pairs from the beginning of the
chromosome, and a genomic strand. The chromosome is encoded by concatenating
all chromosomes together and counting the number of base pairs from the start of this
artificial genome. The strand is encoded by using negative indices, so that positive
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and negative values denote the forward and the reverse strand in the reference
genome assembly, respectively (position 0 is undefined). The sense strand in relation
to a position i refers to the strand encoded by index i, and the antisense strand to
the other one.

The symbol si, where si ∈ {a, c, g, t}, denotes the reference genome sequence
at position i. This implies that s−i is the complementary base of si. The symbol
ci denotes the number of reads of a ChIP-exo experiment such that the 5’ end of
the read maps at position i. Reads mapping to the forward and reverse strand,
therefore, increment ci for positive and negative values of i, respectively.

5.2.3 A closer look at footprints

To clarify the concept of a footprint, we show a concrete example based on a ChIP-
exo experiment for the TF FOXA1 in the human cell line MCF7 [122]. In this
example, np = 4275 putative binding sites were obtained by using the known se-
quence motif of FOXA1 and by intersecting motif occurrences with regions with
high read counts. Each putative binding site k has a start coordinate ik and an end
coordinate ik + w − 1, where w is the window size. Figure 5.2 shows two represen-
tations of the corresponding count data. In the heatmap representation, each row
corresponds to a binding site k with 1 ≤ k ≤ np and each column to a position j
with 1 ≤ j ≤ w. The blue and red squares at row k and column j represent the
sense read count cik+j−1 and the antisense read count c−(ik+j−1), respectively. The
heatmap clearly shows that read counts at putative binding sites tend to follow a
common pattern. A footprint can be more conveniently represented by computing
the average peak shape across binding sites. The blue and red lines show for each
position j the average read count (np)

−1
∑np

k=1 cik+j−1 and (np)
−1
∑np

k=1 c−(ik+j−1),
respectively.

Figure 5.2 also shows the properties that characterize a footprint. First of all,
footprints are highly position-dependent, i.e. the counts in a certain position of
the window can be very different from those in the next. This typically results in
sharp peaks in the average peak shape. Second, for each peak in one strand of the
average peak shape, another corresponding peak should be observed in the other
strand. More precisely, orienting the average peak shape from the 5’ to the 3’ end
of the sense strand, each peak in the sense strand should be followed by a peak
in the antisense strand. Note, however, that these peak pairs do not need to be
symmetric. In Figure 5.2, for instance, the peak in the antisense strand is much
sharper than the one in the sense strand, which looks more like two smaller peaks.
Another important expectation is that each footprint should be related to a motif.
Even though, in theory, it cannot be excluded that mechanisms other than a motif
can lead to such information-rich peaks, this seems to be often the case, and our
algorithm will leverage this property to discover footprints.
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Figure 5.2: Example of a footprint for TF FOXA1. On top, a putative binding
site. Putative binding sites were obtained by considering genomic windows with high
read counts and with an occurrence of the FOXA1 motif (shown in gray). On the
bottom left, heatmap representation of a footprint. A large number of binding sites
have been precisely aligned relative to the FOXA1 motif occurrence. Each cell of the
heatmap shows the read counts for a particular binding site at a particular position
of the window. On the bottom right, representation of a footprint as an average peak
shape. The lines were derived by averaging the read counts shown in the heatmaps
across all binding sites.
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5.2.4 Goals

The goal of the method is to characterize binding events in a ChIP-exo experiment
in three ways:

1. by a motif,

2. by a footprint,

3. by the coordinates of the putative binding events.

The combination of a motif and a footprint will be referred to as a footif. In cases
where TF binding sites exhibit considerably different footifs, we would like to obtain
a motif, a footprint and a set of coordinates for each footif.

5.2.5 An iterative algorithm

Footifind’s input data are the counts ci for a ChIP-exo experiment and the bases
in the reference sequence si, as defined in Subsection 5.2.2. The most important
parameter is the window size, denoted as w, which specifies the number of base pairs
that need to be considered to have a full description of a footif (by default w = 100).
In general not every genomic position will be considered. Typically, regions with
low ChIP-exo reads are filtered out beforehand, so as to reduce the runtime and to
improve the performance. The set of valid start positions for a window representing
a binding site, which is a user-defined parameter, will be denoted as I. In other
words, the counts ck and c−k and the sequence sk will be considered only if there is
a start position i in I such that i ≤ k < i+ w.

The overall strategy of Footifind, shown in Figure 5.3, consists in iterating be-
tween two main steps: fitting the footprint and the motif models from a set of
candidate binding sites (the training step), and deriving a refined set of candidate
regions from the learned models (the scoring, score integration and thresholding
steps). At the first iteration the candidate regions are those with the highest read
counts. The iterations stop when there is no more considerable change in the learned
models. This results in a set of candidate binding sites associated to a footif. To
detect more than one footifs, the whole procedure is started again after removing
the candidate binding sites related to the previous footifs from the input data.

5.2.6 Model-based classifiers

Footifind is based on a footprint and a motif classifier. Each classifier is used to
compute a score for each possible window, and the score is used to discern between
binding events and background regions. Moreover, each classifier is model-based,
which means that the score is derived from two probabilistic models: a peak and a
background model. The former assumes that the data in the window originates from
a binding event, while the latter assumes that the window represents background
noise, or signal due to footifs other than the one being scanned, or not exactly the
start of the binding site. Lastly, the score is derived from the log-ratio between the
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Figure 5.3: Footifind’s workflow. Each iteration starts with a classification of each
possible window as a bound or unbound site. Next, two linear classifiers are trained:
one based on the sequence (the motif classifier), the other based on the counts (the
footprint classifier). The classifiers are used to score all possible windows. Next,
these scores are integrated by normalizing the score distributions and by learning
the relative importance of the counts with respect to the sequence. Finally a new
set of putative binding sites is obtained by selecting the top scoring non overlapping
windows. Upon convergence, the putative binding sites are removed and the whole
procedure is started again (not shown).
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two probabilities and it can therefore be regarded as a näive Bayes classifier. The
next two subsections will present the two classifiers in more detail.

5.2.7 The footprint classifier

The footprint classifier is a scoring procedure that associates a score zfi to each
index i ∈ I based on the sense read counts ci, ...ci+w−1 and the antisense read counts
c−i, ...c−(i+w−1). This subsection not only describes how the score is computed, but
it also contains some considerations about the implementation choices.

The scoring method is based on two generative probabilistic models for the read
counts: a peak and a background model. In formulas, the model assumes that there
are two random vectors C(p) and C(b), with components

C(j) =
(
C

(j)
1 , C

(j)
2 , ...C(j)

w , C
(j)
−1 , C

(j)
−2 , ...C

(j)
−w

)
, for j = p and j = b,

and that the counts relative to a window starting at position i are a realization of
one of the two random vectors:

C(j) = (ci, ...ci+w−1, c−i, ...c−(i+w−1)), for j = p or j = b.

The choice of the appropriate probability distribution is, therefore, a key factor
for the accuracy of the classifier. One desirable characteristic of the probability
distribution is that the components of the C(j) vector should be correlated. In
case the window represents a binding event, it is reasonable to assume that the
read counts vary proportionally to the extent of the protein-DNA binding, leading
to a positive correlation coefficient between positions of the window. Also in case
the window is in a background region it is reasonable to assume that noise levels
at adjacent positions should be correlated. Another desirable feature is that the
variance of each component Ci should be considerably higher than the mean, as
this is a property frequently observed in count data. Figure 5.4 suggests that these
intuitions apply to the putative binding sites described in Figure 5.2.

One possibility is to model the random variables C(p) and C(b) as multivariate
random gaussians. This approach has already been applied to count data for a sim-
ilar classification problem [123]. However, in our context, the gaussian assumption
seems inadequate, because the features ci are discrete and typically concentrated
around 0. Moreover, the number of parameters required to characterize a multivari-
ate gaussian distribution is quadratic in the window length w, which might make
the training step challenging. In Footifind C(p) and C(b) are assumed to follow a
negative multinomial distribution (see Subsection 2.2.3), which is consistent with
the qualitative observations made above. This approach has also been taken in
Pique-Regi et al. [55] for the analysis of footprints in DNase hypersensitivity data.

In formulas, the footprint classifier assumes that:

C(j) ∼ NM(µ(j), r(j),p(j)), for j = p and j = b.

Note that the µ(j) parameter can be interpreted as the overall strength of the binding
event (or of the noise level) in the window, and the p(j) parameters as coefficients
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Figure 5.4: Correlation and overdispersion in the components of a footprint. The
read counts for FOXA1 putative binding sites were derived as described for Figure
5.2, which results in a count matrix with rows as binding sites and columns as
positions of the footprint. On the left, the Pearson correlation coefficient between
every two columns of the matrix is shown. Most correlations are positive, supporting
the intuition that the counts vary proportionally to the extent of the protein-DNA
binding (the coefficients on the diagonal, which equal 1 by definition, have been set
to 0 for display purposes). Right, the sample mean and sample variance for each
position of the matrix is shown. The variance is considerably higher than the mean,
supporting the claim that a Poisson model cannot account for this degree of variation.
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of proportionality between the overall read count and the read count at position i
of the window.

The parameters are learnt from a classification of the windows in I into peaks
and background: I = I(p) ∪ I(b). For each set of windows, maximum likelihood
estimation is performed using the procedure outlined in Subsection 4.2.4.

The footprint score for a certain window i, denoted zfi, is the log-ratio between
the probability of the two conditions:

zfi = log
P
{
C(p) = (ci, ci+1, ...ci+w−1, c−i, c−(i+1), ...c−(i+w−1))

}
P
{
C(b) = (ci, ci+1, ...ci+w−1, c−i, c−(i+1), ...c−(i+w−1))

} .
5.2.8 The motif classifier

Similarly as for the footprint classifier, the motif classifier computes a score zmi for
each index i ∈ I based on the sequence si, s(i+1), ...s(i+w−1). This is achieved by
assuming that the sequences occurring at peaks and those occurring in background
regions are independent realizations of two random sequences S(p) and S(b), where
S(j) = (S

(j)
1 , S

(j)
2 , ...S

(j)
w ) for j ∈ {p, b}, and that each random sequence is character-

ized by a position probability matrix (see Subsection 2.2.1):

P
{
S(j) = (si, s(i+1), ...s(i+w−1))

}
=

w∏
k=1

∑
α∈{a,c,g,t}

q
(j)
kα · [si+k−1 = α].

The parameters q
(j)
k are computed by maximum likelihood estimation as for the

footprint classifier and the score is defined as:

zmi = log
P
{
S(p) = (si, s(i+1), ...s(i+w−1))

}
P
{
S(b) = (si, s(i+1), ...s(i+w−1))

} .
Equivalently, the resulting score can be expressed by a position weight matrix with
weights wkα = log q

(p)
kα − log q

(b)
kα , so that

zmi =
w∑
k=1

∑
α∈{a,c,g,t}

wkα · [si+k−1 = α].

5.2.9 Score integration

In the score integration step, for each possible window i, the footprint and the
motif scores zfi and zmi are integrated into a footif score zi. The most näıve score
integration method would be the sum of the two scores. However, this suffers from
two problems. First, the footprint scores typically follow a completely different
distribution and have a variance several orders of magnitudes larger than the motif
scores; a simple sum would result in the footprint score completely dominating the
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overall score. Second, even if both scores were in a similar range, it cannot be
assumed that the counts and the sequence have the same importance; the relative
importance of each set of features should be learned as well.

The first issue is addressed by rescaling the two score distributions to a gaussian
distribution with mean 0 and variance 1. This is accomplished using ranks: given
a vector x of length n, we denote by rank(x)i the position of element xi after that
vector x is sorted by decreasing values, so that the highest element of x has rank
1 and the lowest has rank n. Moreover, we use the inverse cumulative distribution
function of the gaussian distribution F−1, where F is defined by:

F (x) =

∫ x

−∞
(2π)−0.5exp(−0.5x2).

Denoting with n the total number of windows |I|, and therefore the length of vectors
zf and zm, the rescaled scores are:

żfi = F−1(1− rank(zf)i/(n+ 1)),

żmi = F−1(1− rank(zm)i/(n+ 1)).

The second issue is accounted for by two coefficients βf and βm, such that

zi = βmżmi + βfżfi.

More precisely, using linear discriminant analysis, a linear footif classifier is trained
by using the rescaled scores żmi and żfi as features and the classification from the
previous iteration as training data. Let I(p) and I(b) denote the set of windows
classified as peaks or background from the previous iteration and |I(p)| and |I(b)| the
number of bound and unbound windows, respectively. The weights βm and βf are
computed using the following vectorial formula:(

βm
βf

)
=

(
δm
δf

)[
σmm σmf
σfm σff

]−1

.

Where δ and σ are given by:

δu = |I(p)|−1
∑
i∈I(p)

żui − |I(b)|−1
∑
i∈I(b)

żui u ∈ {m, f},

σuv =
∑

j∈{p,b}

|I(j)|−1
∑
i∈I(j)

żuiżvi − |I(j)|−2
∑
i∈I(j)

żui
∑
i∈I(j)

żvi

 u, v ∈ {m, f}.

For more information about linear discriminant analysis see, for instance, McLachlan
[124].
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5.2.10 Thresholding

In the thresholding step putative binding sites are obtained from the footif score.
This is done by selecting the nt highest scoring, non overlapping windows as a set
of putative binding sites, where nt is a parameter of the algorithm. Overlaps are
avoided by selecting windows by decreasing score values, and by excluding at each
step all windows overlapping the selected one. After nt peaks have been determined,
the classification of the windows in I as peaks (I(p)) or background (I(b)) is updated
and used for the next iteration of the algorithm (as shown in Figure 5.3).

5.3 Results

We set out to test whether our approach is able to recover biologically meaningful
footprints and motifs compatible with those annotated in the JASPAR database
[49]. To this end we ran it on 4 published ChIP-exo experiments on human cells:

• FOXA1: ChIP-exo experiment for the transcription factor FOXA1 on MCF7
cells (from Serandour et al. [122]),

• GR: ChIP-exo experiment for the glucocorticoid receptor on IMR90 cells (from
Starick et al. [125]),

• CTCF: ChIP-exo experiment for the transcription factor CTCF on HeLa cells
(from Rhee & Pugh [41]),

• ER: ChIP-exo experiment for the estrogen receptor α on MCF7 cells (from
Serandour et al. [122]).

The algorithm was run on a subset of the genome enriched for ChIP-exo reads of
approximately 15 million bases. The window size w was set to 100 and the number
of putative binding sites chosen after thresholding nt was chosen roughly equal to
0.1% of the total number of binding sites. Each footif is displayed by a sequence
logo (see Subsection 2.2.1) aligned to an average peak shape. These are derived by
averaging the count and the sequence data across the sites recognized by the footif.
The figures in the remainder of this subsection focus on the most representative
footifs and display only the most information-rich portion of the 100 base pairs
window. See Figure A.8 for a more comprehensive overview of the obtained results.

Figure 5.5 shows the first footprint obtained in the FOXA1 dataset. The recov-
ered motif matches very well with the one reported in JASPAR (see Figure A.9).
The average peak shape exhibits a sharp peak on the antisense strand, suggesting
that the crosslinks block exonuclease digestion very precisely. In contrast, when
the digestion progresses on the sense strand from left to right, the border of the
protected DNA region seems to be less defined, which can be explained by multiple
weak crosslinks (see Figure 5.6). This interpretation has been put forward also in
Starick et al. [125], to which we refer for a structural justification. Note how the
obtained average peak shape resembles that shown in Figure 5.2. The procedure
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that led to the two results are, however, very different. In Figure 5.2 the putative
binding sites were obtained by assuming that FOXA1 recognizes a known motif. In
Footifind, by contrast, no assumptions are made about the sequence preferences of
the TF, which are automatically detected together with the average peak shape.

The second recovered footif (see Figure A.8) is almost identical to the first, except
that it is oriented in the opposite direction. This implies that the motif and the
footprint in the second footif are reverse-complemented versions of those in the first.
Note that the reverse-complement of an average peak shape is obtained by reversing
and swapping the two curves corresponding to sense and anti-sense strand.
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Figure 5.5: First footif returned by Footifind in the FOXA1 dataset.

FOXA1

Figure 5.6: Interpretation of the footif of Figure 5.5. The red crosses represent
the crosslinks and the horizontal bar represents protected (solid) and semi-protected
(dashed) DNA. The footprint suggests that the right border is protected very precisely
by a strong crosslink, while the left border is not very well defined and might originate
from weak crosslinks.

Figure 5.7 shows the first footprint obtained in the GR dataset. As in the
previous case, the detected motif matches the one reported in JASPAR (see Figure
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A.9). Both the footprint and the motif seem to be palindromic (i.e identical to their
reverse-complements) and the average peak shape shows two main protection sites,
delimited by two peak pairs. This is in agreement with the fact that GR tends to
bind to the DNA as a homodimer [126]. Each of the two peak pairs, therefore, can
be explained as one bound GR unit protecting a distinct DNA region (see Figure
5.8).
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Figure 5.7: First footif returned by Footifind in the GR dataset.

GR GR

Figure 5.8: Interpretation of the footif of Figure 5.7. The red crosses repre-
sent the crosslinks and the horizontal bar represents protected (solid) and semi-
protected (dashed) DNA. The footprint suggests that each of the GR units is strongly
crosslinked with the DNA. The region between the two units is not completely pro-
tected, causing the two internal peaks to be present, but smaller than the external
ones.

The second recovered footif is almost identical to the first (not shown). The third
recovered footif, instead, looks very different from the first two and very similar to
the FOXA1 footif. This has already been noted in Starick et al. [125], to which we
refer for an in-depth discussion. The footif suggests that in the ChIP-exo experiment
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for GR also a protein of the FOX family was immunoprecipitated. This might
imply that GR binding depends, or is favored by the nearby binding of a FOX
protein. FOX proteins, in fact, are known to be pioneer TFs, as they can bind
condensed chromatin and cause the bound region to become accessible to other
TFs [127]. Other explanations are possible. For instance, there could be unknown,
biologically relevant interactions between the two proteins, or the sample might
have been contaminated. This example also shows Footifind’s potential: it not
only locates binding events, but it can also discern distinct and biologically relevant
groups of events (the footifs), so that each binding event can be annotated with the
group it belongs to.
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Figure 5.9: Third footif returned by Footifind in the GR dataset.

The first recovered footif in the CTCF dataset is shown in Figure 5.10. Again,
the recovered motif matches very well the one reported in JASPAR (see Figure A.9).
The average peak shape shows that the borders of the protected DNA region are
relatively distant from one another and not very well defined. The CTCF protein
is known to have multiple DNA-binding domains (11 zinc fingers), which can be
used in different combinations to recognize different sequences and perform different
regulatory functions [128]. The poorly defined footprint of Figure 5.10, therefore,
could be the consequence of an heterogeneous 3D structure of the DNA-protein
complex (see Figure 5.11). Similarly as in the FOXA1 dataset, the second footif is
almost identical to the first, but with opposite orientation.

In the ER dataset, the first footif (shown in Figure A.8) does not seem biologically
relevant. The motif strongly matches the Alu repeat sequence and the footprint does
not exhibit clear peak pairs or a strong positional dependence. The second footif, by
contrast, shown in Figure 5.12, is most likely genuine, as the motif agrees with the
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CTCF: footif 1

bi
ts

0.
5

1.
5

20 30 40 50 60 70 80

0
5

10
15

20

2658 regions
base pairs from start of the window

av
er

ag
e 

va
lu

e

●●

●
●●●

●●

●

●

●

●●

●●
●

●●

●

●

●
●

●

●●
●

●

●
●●

●

●●
●

●●●
●

●

●

●
●

●●
●●

●
●

●

●
●

●●

●
●

●
●

●●●●●●●●●●●●
●●●●

●
●●

●
●

●●●

●

●
●

●

●
●

●

●●

●

●●
●

●●

●
●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●
●

●

●

●●

●

●
●●●●●

●

sense strand
antisense strand

Figure 5.10: First footif returned by Footifind in the CTCF dataset.

CTCF

Figure 5.11: Interpretation of the footif of Figure 5.10. The red crosses represent
the crosslinks and the horizontal bar represents protected (solid) and semi-protected
(dashed) DNA. The footprint suggests that CTCF forms many weak and variable
crosslinks with the DNA along a relatively large region, resulting in weakly defined
borders.
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one reported in JASPAR (see Figure A.9) and the footprint seems plausible, even
though very noisy. As for GR, ER is a nuclear receptor known to bind the DNA
as a homodimer [126], which explains why the motif and the footprint are almost
perfect palindromes. However it is difficult to interpret the average peak shape in
terms of crosslinks. It is unclear whether the low signal-to-noise ratio is due to the
inaccuracy of the algorithm or to a poor quality of the experiment.

To summarize, the algorithm recovered the motif known from the literature in all
4 datasets without any prior information. Moreover, the obtained footprints are in
agreement with what is known about the 3D structure of the protein-DNA binding
and can be used to generate new hypotheses. Strikingly, in the GR dataset two
qualitatively different footifs were obtained, showing that from a single ChIP-exo
experiment different families of peaks can be detected.
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Figure 5.12: Second footif returned by Footifind in the ER dataset.

5.4 Discussion

We presented Footifind: an algorithm that derives an integrated understanding of
protein binding from ChIP-exo data, for which we coined the term footif. A footif
comprises two strictly coupled models for two different data sources: a model of the
DNA sequences that the TF binds to (the motif), and a model of how the ChIP-
exo reads tend to be distributed in proximity of the binding sites (the footprint).
Footifind has several important practical applications. First, by using sequence and
count data simultaneously, our method bases its predictions on multiple pieces of
evidence and therefore enhances traditional peak calling approaches for the definition
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of putative binding sites. Second, different categories of binding events can be
detected, which can have unexpected biological implications. Third, in the analyzed
datasets our method correctly identified the expected motifs, suggesting that it
might enhance de-novo motif finding algorithms by accurately modeling the read
abundances. Lastly, the obtained footprints can be used to interpret the structure
of the protein-DNA binding and to formulate new hypotheses.

However, Footifind also has some limitations, which will be addressed by future
research. First, there is no function being optimized in the iterative approach.
Even though it makes intuitive sense that each loop improves the description of
the motif, footprint and candidate binding sites, this is not guaranteed by any
objective measurement. As a consequence, there is no objective quality measure
for the returned footifs. Second, the thresholding mechanism is very rigid, because
the number of putative binding site nt is not learned from the data, but is a fixed
parameter. Setting nt too low compared to the biological truth could result in many
similar footifs. If nt is set too high, the method might fail or return footifs with
a low signal-to-noise ratio. Despite these limitations, this algorithm shows a great
potential in the analysis of ChIP-exo data, and it might also be useful for the analysis
of DNAse-seq and ATAC-seq data.



Chapter 6

Conclusion

We presented 3 novel algorithms for automatically detecting important patterns in
ChIP-seq count data. By measuring protein-DNA interactions genome-wide, this
protocol allowed us to analyze poorly understood biological processes affecting gene
expression: nucleosome positioning, chromatin states, and transcription factor bind-
ing.

Although diverse in their biological motivation, the computational problems that
we addressed were similar. First, the input of our algorithms are count signals:
sequences of read counts quantifying the presence of a protein along the genome.
Second, different biological phenomena were described as a patterns recurring in one
or more count signals. Third, we developed algorithms to learn these patterns and
to locate their occurrences efficiently.

Moreover, NucHunter, EpiCSeg and Footifind should not be viewed as indepen-
dent projects, but rather as a continuous path in the exploration of count patterns.
To illustrate this we will distinguish positional patterns, describing the counts at
adjacent positions of the same signal, and vertical patterns, describing the counts
at the same position across multiple signals.

NucHunter detects well-positioned nucleosomes assuming that the counts at nu-
cleosome positions follow a positional pattern. After preprocessing and integrating
multiple experiments, in fact, a linear filter with a particular impulse response is
used to locate nucleosomes in the consensus signal. This algorithm proved to be not
only more accurate, but also considerably faster than previous approaches. However,
many parameters were determined based on expert knowledge rather than inferred
from the data. In fact, although the average fragment length could be estimated
from the cross-correlation function, the filter was chosen based on our expectations
about the count pattern at nucleosome positions. A more principled approach was
prevented by the difficulty in defining nucleosome formation sites; nucleosomes, in
fact, can form at different, incompatible locations in different cells or at different
times, so that it is not clear how broad a peak should be for it to represent a single
nucleosome.

In the footprint detection problem, by contrast, because of the sequence pref-
erences of a TF and the high resolution of the ChIP-exo technique, TF binding
sites could be defined more accurately. Footifind, therefore, should be seen as a
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refinement of NucHunter, because the parameters used to detect a positional pat-
tern are justified by an inference algorithm. Besides learning the count pattern (the
footprint), Footifind also learns the motif recognized by the TF, thus providing an
integrated model for the read counts and the sequence at TF binding sites. We
showed that this approach, based on the innovative concept of a footif, was able to
recover the correct motifs and interpretable footprints for the 4 different TFs that
we analyzed.

Vertical patterns have been first explored in Chapter 3, after that nucleosomes
were predicted from multiple ChIP-seq experiments. The combination of histone
marks active on nucleosomes were attributed to a small number of biologically rel-
evant patterns called chromatin states. These patterns, inferred using a standard
clustering algorithm, were shown to be highly related to the transcription cycle and
to the regulatory processes taking place on the chromatin. However, arbitrary de-
cisions had to be made in transforming the read counts and selecting the clustering
method. Moreover, the resulting chromatin state annotation was limited to the
occurrences of well-positioned nucleosomes.

In the chromatin segmentation problem, by contrast, the concept of chromatin
state was decoupled from that of positioned nucleosome and the read counts were
directly used as input. EpiCSeg, therefore, should be seen as a refinement of the
nucleosome clustering because it annotates the entire genome and it formulates all
assumptions in a probabilistic model for vertical count patterns. We compared EpiC-
Seg with a popular approach that transforms the input data arbitrarily; different
quality metrics computed in different datasets suggested that EpiCSeg’s annotation
is more accurate and comprehensive.

Finally, we presented a unified probabilistic framework for positional and verti-
cal count patterns: the combinations of histone marks characterizing a chromatin
state and the peak shape characterizing a footprint were modeled with a negative
multinomial distribution. This choice was suggested by the correlation and the
overdispersion observed in the patterns, and it was shown to give accurate biolog-
ical results. Moreover, we showed how this distribution can be efficiently fitted to
large datasets, which makes it a computationally convenient model.

Overall, we designed algorithms that compare favorably with previous approaches
and we implemented software that can be used by researchers to study gene reg-
ulation. However, our approaches also share a weakness. It is difficult to test the
algorithms’ predictions, as the problems are ill-posed. What range of positions can
a nucleosome occupy for it to be considered a well-positioned nucleosome? What
exactly are chromatin states and why should the negative multinomial distribution
be the most appropriate model? In how many cells should a locus be bound by a
TF for the locus to be called a TF binding site? Unfortunately these questions do
not have a clear answer. Future research might focus on a more rigorous treatment
of the aforementioned problems so that the predictions are easy to test and the
performance easy to evaluate.
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Figure A.1: Distance distribution (left) and cumulative error curve (right). The
top 5000 predictions from to the yeast dataset have been chosen from each tool.
The distance distribution histogram has been smoothed with a running mean with a
window size of 10 bps.

103



104 APPENDIX A. SUPPLEMENTARY FIGURES

IMR90 H1 K562_1 K562_2

EpiCSeg
ChromHMM

runtime

dataset

se
co

nd
s

0
50

0
10

00
15

00
20

00

Figure A.2: Runtime comparison between EpiCSeg and ChromHMM. The algo-
rithms were run on a AMD Opteron computer with a clock speed of 2.66 GHz and
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Figure A.4: Genomic distribution of chromatin states in the IMR90 dataset. The
choice of the colors is arbitrary.
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Figure A.5: Genomic distribution of chromatin states in the H1 dataset. The
choice of the colors is arbitrary.
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Figure A.6: Genomic distribution of chromatin states in the K562 1 dataset. The
choice of the colors is arbitrary.
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Figure A.7: Genomic distribution of chromatin states in the K562 2 dataset. The
choice of the colors is arbitrary.
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Figure A.8: The footprint discovery algorithm on 4 different datasets. Each row
represents a dataset, and each column a different footif. For each footif, the sequence
and count averages across putative binding sites and for each position of the window
are shown. The sequence average is displayed using the conventions for sequence
logos, where the height of each letter shows how much the letter is overrepresented.
These averages are also related to the parameters used in the motif and footprint
classifiers.
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Figure A.9: JASPAR motifs for the analyzed TFs. For each dataset, the most
recent version of the motif was chosen (the ID is shown in the title of each plot).
Note that some of the motifs are derived not only from human data, but also from
data from other vertebrates, where very close protein homologues exist.



Appendix B

Mathematical derivations

B.1 Optimization problems

In the following lemmas we denote by ∆m−1 the set of vectors of length m such that
all vectors’ elements are non-negative and their sum equals 1. In formulas:

∆m−1 = {(t1, t2, ..., tm) ∈ Rm|
m∑
i=1

ti = 1 and ti ≥ 0 for all i}.

Lemma B.1.1. (Gibbs’ inequality) Let p = (p1, p2, ..., pm) and q = (q1, q2, ..., qm)
denote two vectors in ∆m−1. Then

m∑
i=1

pi log
pi
qi
≥ 0,

where, if pi = 0, we define pi log pi/qi as 0 and if qi = 0 and pi > 0, we define
pi log pi/qi as +∞. The equality holds if and only if pi = qi for all i.

Proof. Without loss of generality we can assume that for every i we have qi > 0 or
pi = 0, otherwise the summation equals infinity and the strict inequality holds. Let
I+ denote the set of indices i such that pi is strictly positive and I0 the indices i
such that pi equals 0. We have

m∑
i=1

pi log
pi
qi

=
∑
i∈I+

pi log
pi
qi

= −
∑
i∈I+

pi log
qi
pi
.

Because log x ≤ x− 1 for all x > 0, we have

−
∑
i∈I+

pi log
qi
pi
≥ −

∑
i∈I+

pi

(
qi
pi
− 1

)
= −

∑
i∈I+

qi +
∑
i∈I+

pi =
∑
i∈I0

qi ≥ 0.

For the equality to hold, first, log qi/pi must equal qi/pi − 1 for all i in I+, second,
qi must be 0 for all i in I0. Because log x equals x − 1 only for x = 1, these two
conditions hold if and only if pi = qi for all i.
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Lemma B.1.2. Let w1, w2, ...wm denote m non-negative real numbers such that∑m
i=1wi > 0. The unique solution to the optimization problem

arg max
p∈∆m−1

m∑
i=1

wi log pi

is
pi =

wi∑m
j=1 wj

for i = 1, 2, ...m.

Proof. Let p̂ = (p̂1, p̂n, ...p̂m) denote the vector such that p̂i = wi/
∑m

j=1wj. We

only need to show that
∑m

i=1 wi log p̂i ≥
∑m

i=1wi log qi for all q ∈ ∆m−1. This is an
immediate consequence of Gibbs’ inequality. In fact

m∑
i=1

wi log p̂i −
m∑
i=1

wi log qi =
m∑
i=1

wi log
p̂i
qi

=

(
m∑
i=1

wi

)
m∑
j=1

p̂j log
p̂j
qj
≥ 0.

In the following lemma we denote by fNB(c;µ, r) the probability mass function
of a negative binomial distribution with parameters µ ≥ 0 and r > 0 (see Subsection
2.2.2). In formulas:

fNB(c;µ, r) =
Γ(r + c)

Γ(r)c!

(
µ

µ+ r

)c(
r

µ+ r

)r
.

Lemma B.1.3. Let w1, w2, ...wn denote n non-negative real numbers such that∑n
i=1wi > 0 and let c1, c2, ...cn denote n non-negative integers. The unique solution

to the optimization problem

arg max
µ≥0

n∑
i=1

wi log fNB(ci;µ, r)

is

µ =

∑n
i=1wici∑n
i=1wi

.

Proof. Let o(µ) denote the optimization function, which can be written as

o(µ) =
n∑
i=1

wi log
Γ(r + ci)

Γ(r)ci!
+

n∑
i=1

wici log
µ

r + µ
+

n∑
i=1

wir log
r

r + µ
.

Noting that the first term is independent of µ, the first derivative o′(µ) is:

o′(µ) =
n∑
i=1

wici
r

µ(r + µ)
−

n∑
i=1

wi
r

r + µ
=

r

µ(r + µ)

(
n∑
i=1

wici − µ
n∑
i=1

wi

)
.

Let µ̂ denote
∑n

i=1 wici/
∑n

i=1wi. In the special case where
∑n

i=1wici = 0 the
derivative is always negative, which implies that µ̂ = 0 is a global maximum point.
Otherwise, it is easy to see that o′(µ) is zero for µ = µ̂, positive for µ < µ̂ and
negative for µ > µ̂. This implies that µ̂ is the global maximum point of o(µ).
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B.2 KL divergence between negative multinomi-

als

Let f1 and f2 denote the probability mass function of two negative multinomial dis-
tributions (see Subsection 2.2.3) with parameters µ1, r,p1 and µ2, r,p2, respectively:

fj(x) =
Γ(r + x+)

Γ(r)

(
µj

r + µj

)x+ ( r

r + µj

)r m∏
l=1

pxljl
xl!
,

where x is a vector of m non-negative integers, x+ denotes
∑m

l=1 xl and j can be 1
or 2. Here we derive a formula for the Kullback-Leibler divergence of f2 from f1,
defined as:

DKL(f1||f2) =
∑
x∈Nm

f1(x) log
f1(x)

f2(x)
.

The ratio between f1(x) and f2(x) is:

f1(x)

f2(x)
=

(
r + µ2

r + µ1

µ1

µ2

)x+ (r + µ2

r + µ1

)r m∏
l=1

(
p1l

p2l

)xl
.

Let now X = (X1, X2, ...Xm) denote a random vector whose distribution is specified
by f1, i.e. X ∼ NM(µ1, r,p1). The KL divergence can be written as the expectation
of a function of X:

DKL(f1||f2) =E

[
log

f1(X)

f2(X)

]
=E

[
X+ log

(
r + µ2

r + µ1

µ1

µ2

)
+ r log

r + µ2

r + µ1

+
m∑
l=1

Xl log
p1l

p2l

]
,

whereX+ =
∑m

l=1Xl. Finally, using the linearity of expectation and because E[X] =
µ1 and E[Xl] = µ1p1l, we have:

DKL(f1||f2) = µ1 log

(
r + µ2

r + µ1

µ1

µ2

)
+ r log

r + µ2

r + µ1

+
m∑
l=1

µ1p1l log
p1l

p2l

.

The symmetrized KL divergence used in Subsection 4.2.5, defined as the sum of the
KL divergences from f1 to f2 and from f2 to f1, is given by:

DKL(f1||f2) +DKL(f2||f1) = (µ1 − µ2) log

(
r + µ2

r + µ1

µ1

µ2

)
+

m∑
l=1

(µ1p1l − µ2p2l) log
p1l

p2l

.



Appendix C

Open-source Software

The software mentioned in the previous chapters is listed below. All programs are
publicly available and released under an open-source license.

NucHunter Java program, described in Chapter 3, that infers nucleosome posi-
tions from one or multiple ChIP-seq BAM files. NucHunter can be downloaded
from: http://epigen.molgen.mpg.de/nuchunter/.

bamsignals R package for computing count signals from BAM files. bamsignals is
implemented mostly in C++ and uses the htseq library for reading BAM files
efficiently. bamsignals is also a fundamental building block of EpiCSeg and
Footifind. The package can be downloaded from Bioconductor [129]: http:

//bioconductor.org/packages/release/bioc/html/bamsignals.html.

kfoots R package for fitting the negative binomial and negative multinomial dis-
tributions, as well as mixture models and hidden Markov models based on
them. kfoots is implemented mostly in C++ and uses multithreading for
dealing with large datasets. The package can be downloaded from: https:

//github.com/lamortenera/kfoots.

EpiCSeg R package, described in Chapter 4, for computing chromatin state anno-
tations from multiple BAM files. EpiCSeg is based on kfoots and bamsignals
and offers several functions for analysis and visualization. EpiCSeg offers an R
interface as well as a command-line interface. The package can be downloaded
from: https://github.com/lamortenera/epicseg.
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Appendix D

Summary

Proteins interacting with the genome, such as histones and transcription factors,
play a major role in the regulation of gene expression. These interactions can be
detected with ChIP-seq, which provides sequences of non-negative integers, called
count signals, quantifying the presence of a given protein at each genomic locus.
However, the computational analysis of count signals is challenging, as the biological
patterns are complex and the datasets are large. In this thesis, we propose accurate
and efficient algorithms for 3 different pattern detection problems in count signals.

First, we present an algorithm that infers the genomic locations of positioned
nucleosomes from histone ChIP-seq experiments. This method can integrate mea-
surements for different histone marks and uses a wavelet to detect the count pattern
corresponding to positioned nucleosomes. When compared with previous approaches
using biological and simulated data, our method shows a higher precision and re-
duced runtimes.

Next, we introduce an algorithm that annotates genomic regions according to the
regulatory processes acting on them. The labels of this annotation, called chromatin
states, are learned automatically from the measurements of multiple histone marks.
Unlike previous approaches, our method characterizes chromatin states with a rig-
orous probabilistic model of the count signals. The resulting annotation is shown to
be more strongly associated to DNA accessibility and transcription, as well as more
robust and comprehensive compared to previous approaches.

Lastly, we present an algorithm for finding transcription factor binding sites
from ChIP-exo data (a method similar to ChIP-seq). Our algorithm learns the
genomic sequences that attract the transcription factor (the motif) and the count
pattern observable at binding sites (the footprint) at once. We show that our method
finds the correct motif and detects interpretable footprints in 4 different datasets.
Moreover, our approach can distinguish different categories of binding sites in the
same experiment.

Overall, the proposed algorithms represent an advancement in the automatic
detection of biological patterns, as they are more accurate and in some cases consid-
erably faster than existing approaches. Finally, they are based on a mathematical
framework that is general and likely to be important for future research.
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Appendix E

Zusammenfassung

Proteine, die mit dem Genom interagieren, spielen eine wichtige Rolle in der Regu-
lation der Genexpression. Diese Interaktionen können mit Hilfe sogenannter ChIP-
seq Experimente detektiert werden. Die resultierenden Messungen lassen sich durch
Sequenzen von nicht-negativen ganzen Zahlen darstellen, die Zählsignale genannt
werden und die die Proteinmenge in jedem Lokus quantifizieren. Die Analyse dieser
Signale wird jedoch im Allgemeinen durch die Komplexität der biologischen Mus-
ter und der Größe der Datensätze erschwert. In der vorliegenden Arbeit werden
Algorithmen für drei Mustererkennungsprobleme in Zählsignalen vorgeschlagen.

Als erstes wird ein Algorithmus präsentiert, der die Koordinaten gut positio-
nierter Nukleosomen aus ChIP-seq Daten von Histonmodifikationen vorhersagt. Die
vorgestellte Methode kann Messungen für verschiedene Histonmodifikationen inte-
grieren und benutzt ein Wavelet um das Muster, das gut positionierten Nukleosomen
entspricht, in dem Zählsignal zu erkennen. Ein Vergleich der vorgestellten Methode
mit früheren Ansätzen auf biologischen sowie simulierten Daten zeigt, dass die neue
Methode präziser und schneller ist.

Der zweite vorgestellte Algorithmus annotiert Genomregionen nach den auf sie
wirkenden genregulatorischen Prozessen. Die Kategorien dieser Annotation, die Chro-
matinzustände genannt werden, werden automatisch aus den Messungen von meh-
reren Histonmodifikationen gelernt. Die vorgestellte Methode bestimmt Chromatin-
zustände mit Hilfe eines exakten Modells der Zählsignale. Die so gelernte Annotation
ist besser mit Daten zur Genomzugänglichkeit und Transkription assoziiert, so wie
robuster und umfassender im Vergleich zu früheren Ansätzen.

Als letztes wird ein Algorithmus beschrieben, der Bindungsstelle von Transktipti-
onsfaktoren aus einem ChIP-exo Experiment (eine ähnliche Methode wie ChIP-seq)
vorhersagt. Der vorgestellte Algorithmus lernt gleichzeitig, welche Genomsequenzen
die Transkriptionsfaktoren binden (das Motif) und welches Muster das Zählsignal an
den Bindungsstellen zeigt (das Footprint). Auf vier unterschiedlichen Datensätzen
wird gezeigt, dass die vorgestellte Methode immer das korrekte Motif und inter-
pretierbare Footprints findet. Außerdem kann der vorgestellte Ansatz verschiedene
Gruppen von Bindungsstellen in einem ChIP-exo Experiment erkennen.

Zusammenfassend, präsentiert die vorliegende Arbeit Methoden, die die beste-
henden verbessern und die als Startpunkt fuer künftige Ansätze dienen können.
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Selbstständigkeitserklärung
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