CONGRUENCE TESTING

FOR POINT SETS IN 4-SPACE

Dissertation zur Erlangung des Doktorgrades
vorgelegt am

Fachbereich Mathematik und Informatik
der Freien Universitat Berlin

von

Heuna Kim

2016

Institut fiir Informatik
Freie Universitdt Berlin
Takustrafle 9
14195 Berlin
heunak@mi.fu-berlin.de

gefordert durch die Deutsche Forschungsgemeinschaft im Rahmen
des Graduiertenkollegs “Methods for Discrete Structures” (GRK 1408)

Betreuer: Prof. Dr. Gilinter Rote
Zweitgutachter: Prof. Dr. Ulrich Brehm
Datum der Disputation: Juni 20. 2016

Abstract

Congruence is the geometric concept of being the same up to rotations and translations
in Euclidean space. As congruence is a fundamental concept in geometry, it has drawn broad
attentions from the computational geometry community for a long time whether the curse of
dimensionality applies to congruence testing. We developed a deterministic optimal-running-
time algorithm for congruence testing in 4-space.

To understand the importance of the main algorithm in the historical context, we provide a
survey about the computational model and the previous work on congruence testing algorithms.
The crucial ingredients of the algorithm are explained component by component. These include
general 4-dimensional rotations, angles between linear subspaces, and the Pliicker embedding. In
the sequence of steps in the algorithm, high regularities are forced in the structure of point sets.
This lets us encounter beautiful mathematical structures on a 3-sphere and the symmetry group
of finite points: the Hopf fibration of a 3-sphere and the Coxeter group of four-dimensional point
groups. We also give an elementary and self-contained overview about these two mathematical
topics.

The main algorithm consists of five modules that are interesting in their own right. The
algorithm is complicated and we provide rather pessimistic estimates. This algorithm, however,
can be regarded as a big step forward to constructing a more efficient algorithm in higher
dimensions.

In the same vein, the last part is devoted to the extendability of the algorithm to higher
dimensions. This part concludes with discussing implementability and geometric properties that
the algorithm may imply.

Acknowledgments

What I confronted, experienced, and learned during my Ph.D study became a part of the
most invaluable memories in my life. I would like to thank people, without whom neither such
time nor work was possible.

I would like to begin by thanking my advisor, Giinter Rote. He let me realize how delightful
doing research is and taught me how to do research “right” with his humbleness and honesty. I
would like to thank Professor Ulrich Brehm for agreeing to review this thesis. I also would like
to thank Otfried Cheong for rescuing me and introducing me a chance to pursue my Ph.D with
Glnter.

Many thanks should go to my coauthors, Eunjin Oh, Michael Dobbins, Edgardo Roldan-
Pensado, Wolfgang Mulzer: I learned a lot from them. Passionate and inspiring discussions
with them will not be forgotten. In addition, I wish to thank Luis Montejano, Xavier Goaoc,
Heekap Ahn and Christian Knauer for generous supports for research visits.

I was also grateful to work at the AG Theoretische Informatik. I really appreciate countless
helpful advice, and sympathy from Rafel Jaume Deya, Andrei Asinowski, Till Miltzow especially
while I was struggling for my Ph.D. I would like to say many thanks to Yannik Stein, Paul
Seiferth, Romain Grunert, Bahareh Banyassady for never hesitating whenever I ask help even
if it makes them into troubles. They made my Ph.D time smoother and more fun. I would like
to thank Matthias Henze, Claudia Dieckmann for being the nicest officemates and Helmut Alt,
Frank Hoffmann, Klaus Kriegel for their helpful wisdom.

I would like to gratefully acknowledge the scholarship by the RTG “Methods for Discrete
Structures”.

I was a happy graduate student thanks to Kate Shin, Jihye Hong, Nevena Pali¢, Nieke Aerts,
Eva Martinez, who gave me cheerful energy to finish my thesis during lunch time and via skype.
Above all, I would like to thank my parents, my brother and David, who always stood behind
me without any questions, for everything.

March 2016, Berlin.

Heuna

1 Introduction to Congruence Testing 1
1.1 Problem Statement L L L e 1
1.2 The Computational Model 1
1.3 Previous Algorithms L 2

1.3.1 Congruence Testing in the Plane 2
1.3.2 In Three-dimensional Space 3
1.3.3 Congruence Testing in Four- or Higher-dimensional Space 4
1.3.4 More Related Work 6

1.4 Contributions e 6
I Extending Geometric Tools 9

2 Reilluminating Four-dimensional Geometry 13
2.1 Four-dimensional Rotations oo 13
2.2 An Angle between a Pair of Planes 14
2.3 Pliicker Space and Pliicker Distance 17
2.4 The Construction of Hopf Fibrations 20

2.4.1 Construction by Isoclinic Rotations. 20
2.4.2 Equivalence of an Invariant Family and a Hopf Bundle. 21
2.4.3 Properties of the Hopf fibration 22
2.5 The Coxeter Classification of Four-dimensional Point Groups 24
2.5.1 The Radius of an Inscribed Sphere of a Fundamental Region 25

3 Auxiliary Tools 29

3.1 Useful Principles 29
3.1.1 The Pruning and Condensing Principles 29
3.1.2 Packing Arguments. 30

3.2 Representation Details L 31
3.2.1 Canonical AXes e 31
3.2.2 Representation of Congruence Types 32

3.3 Leaping From Previous Ideas 33
3.3.1 1+ 3 dimension Reduction 33
3.3.2 Closest-pair Graphs 33

3.3.3 Finding Representative Points from a 2-sphere: Algorithm K 34

viii

II The New Algorithm in 4-space

4 Overview of the New Algorithm

5 Five Crucial Modules
5.1 TIterative Condensing Based on the Closest-Pair Graph: Algorithm C
5.2 Generating Orbit-Cycles: Algorithm O,
5.3 The Mirror Case: Algorithm R
5.4 Marking and Condensing of Great Circles: Algorithm M
5.5 242 Dimension Reduction: Algorithm T

5.5.1

A Canonical Set Procedure

IIT More Implications

6 Further Directions to Higher-dimensional Space
6.1 In b Dimensions. e
6.2 In High Dimensions e

7 Concluding Remarks
7.1 Implementability
7.2 Regularity and Related Open Questions,
7.3 Summary and Future Work Lo

Bibliography

(© Copyright by Heuna Kim, June 2016. All rights reserved.

35
39

43
43
46
48
50
53
53

57

61
61
62

65
65
65
66

69

Introduction to Congruence Testing

As well as being intuitive, congruence is a very fundamental notion in mathematics. The well-
known congruence testing methods for triangles go back to 300 BC, written in Euclid’s Elements.
Although this method was known for dozens of centuries, algorithms for testing congruence
for point sets have been started to develop only several decades ago [28, 4, 20, 34, 5, 2, 10,
1]. Furthermore, it has been believed that there should be an efficient algorithm for testing
congruence in any fixed dimension. Nevertheless, there have been no such an algorithm for
four or higher dimensions since lots of two-dimensional and three-dimensional algorithms were
devised around 1970’s-1980’s [28, 4, 20, 34, 5, 2].

In the following sections, more precise definitions of the problem and the computational
model are described, and previous work is summarized. This chapter wraps up with stating
contributions of this thesis and organization of the remaining chapters.

1.1 Problem Statement

We are given two n-point sets A, B C R%. Our aim is to test whether they are congruent, i.e.,
whether there exist an orthogonal matrix and a translation vector ¢ such that B = RA 4+ t. We
may only consider orthonormal matrices R of determinant +1 (“direct congruences”, rotations),
because if we want to allow orthonormal matrices of determinant —1 (“mirror congruence”,
rotations and a reflection) as well, we can just repeat the algorithm with a reflected copy of B.
We also may consider only whether B = RA by translating A and B so that their centroids are
moved to the origin.

1.2 The Computational Model

Because the output of problem is sensitive to numerical errors, it is also natural to consider an
approximate version of the congruence testing problem. However, since congruence testing with
error tolerances is known to be NP-hard [16, 24], we restrict our concern to the exact case. (The
algorithm in this thesis is also expected to run for congruence testing with an error tolerance in
a special setting. This case is discussed in Chapter 7.)

In order to test exact congruence, we assume that we can perform exact arithmetic with real
numbers. In order to meet this assumption, which is common in Computational Geometry, we
use the Real Random-Access Machine (Real-RAM) model (for example in [31, Chapter 1.4]). In
this model, we can freely use square roots, sines and cosines, and basic operations from linear
algebra such as eigenvalues of 2 x 2-matrices (or any matrices of constant size), and we assume
that the computational model gives exact results in constant time. Sines and cosines and their
inverses can be eliminated in favor of purely algebraic operations.

If we had restricted our model to rational arithmetic, this would severely constrain the

problem. For example, in the plane, the only rotational symmetries that a point set with rational
coordinates can have are multiples of 90°. A three-fold symmetry is possible in 3 dimensions, but
a fivefold symmetry is impossible in any dimension. An input with limited symmetry, however,
would not be interesting enough to consider. The previous algorithms for the exact congruence
testing problem [28, 4, 20, 34, 5, 2] were developed around 70’s—80’s under the same assumption.
Those algorithms, however, did not mention the assumption explicitly except in [5, 2]. All these
algorithms are surveyed in the next section.

1.3 Previous Algorithms

It has been shown that the complexity of the problem is Q(nlogn) independently by Atal-
lah (1985) [4], Highnam (1986) [20], and Atkinson (1987) [5]. This bound holds even in one-
dimensional space. It can be easily seen by reducing the problem to the set equality problem in
the real line.

It has been believed that O(nlogn) algorithms should exist for any fixed dimension; in other
words, the congruence testing problem should be fixed-parameter tractable with the dimen-
sion parameter. Nevertheless, the previous best deterministic algorithm by Brass and Knauer
(2000) [10] for d-space for d > 3 took time O(n!%3llogn). The previous best randomized al-
gorithm by Akutsu (1998) [1] takes time O(nl%2/2logn) for d > 6 and time O(n3/?logn) for
d = 4,5. Therefore, the previous best result in 4-space was time O(n?logn) deterministically
and time O(ny/nlogn) with randomization.

In this section, ideas of optimal algorithms in two- and three-dimensional space are first
summarized in Section 1.3.1 and in Section 1.3.2. Lastly, algorithms that work for any dimensions
but whose complexities are exponential to the dimension are surveyed.

1.3.1 Congruence Testing in the Plane

Manacher (1976) [28]. The first algorithm is by Manacher. After translating point sets so
that the centroid lies on the origin O, his algorithm sorts all input points by spherical coordinates
(r,0), first by angle 6, and secondly by distance r to the origin O in both increasing order. Let
{pi = (ri,0;)|i = 1,...,n} be the given point set indexed by the sorted order. Finally, the
algorithm generates a cyclic sequence in which r; and Zp;Op; 1 = 0;41 — 0; alternate for 1 < i <
n: (ri,0y —61,re,...,0, —6p_1,7y,). Point sets are congruent if and only if the corresponding
cyclic sequences are the same up to cyclic shifts. His paper [28] mainly discusses geometric
applications of the algorithm by Knuth, Morris and Pratt [27] that determines whether a string
y contains a string x as a substring in linear time O(|x| + |y|). It can be determined if two
sequences are the same up to cyclic shifts by duplicating one sequence and checking if the
original sequence is a subsequence of the duplicated sequence by using the algorithm by Knuth,
Morris and Pratt in linear time. Manacher’s algorithm takes time O(nlogn) due to sorting.

Atallah (1985) [4]. The main goal of Atallah’s algorithm is to enumerate all the axes of mir-
ror symmetries in the plane. Once we know all the axes of mirror symmetries of two point sets,
any axis in one point set should be matched to any axis in another point set by some congruence
mapping. Afterward, the rotation angle of congruence mapping can be figured out and congru-
ence can be also tested in linear time. Note that any axis of mirror symmetries goes through the
centroids O. The algorithm classifies points by the distance to the centroid O, computes the axes
for each class and obtains the intersection of the axes for all the classes; this generates the axes of
symmetries of a given point set. For each class with the same distance to the centroid O, the algo-
rithm generates a cyclic sequence as follows. Let {p;} be points in such a class sorted by spherical

coordinates in increasing order. Then, the cyclic sequence repeats Z(p;Op; mod n+1)) twice for
i =1,...,n: (Z(p10Op2), Z(p10p2), ..., Z(Pn-10Pn), Z(Pn-10pn), Z(pnOp1), Z(pnOp1)). Any
cyclic shift of this sequence that becomes a palindrome corresponds to an axis of mirror symme-
try. Then, it enumerates all the palindromic cyclic shifts of the sequence by using the algorithm
by Knuth, Morris and Pratt [27] in linear time. The time complexity of Atallah’s algorithm
is O(nlogn) as well because it classifies and sorts points according to the distance from the
centroid.

Highnam (1986) [20]. Highnam’s algorithm is mainly to find axes of mirror symmetries
and rotational symmetries. To find mirror symmetry, his algorithm looks up palindromes but
does not classify input by the distance to the centroid. Instead, it uses the sequence similar to
Manacher’s algorithm. It also uses the algorithm by Knuth, Morris and Pratt to find palindromic
locations. By the similar reasoning, the total time complexity is O(nlogn).

1.3.2 In Three-dimensional Space

Sugihara(1984) [34]. Sugihara’s algorithm determines whether two bounded polyhedra in
3-space, i.e., closed subsets in 3-space with finite volume bounded by a finite number of flat
polygons, are congruent in time O(F log F) = O(nlogn) where E is the number of edges in the
polyhedra. Once whether two polyhedra in 3-space are congruent can be determined in time
O(nlogn), congruence for two point sets in 3-space can be determined in O(nlogn); we apply
Sugihara’s algorithm for the convex hull of each class of point sets of the same distance from the
origin, and apply again after radially projecting all input points to the same sphere and taking
convex hulls. Two point sets are congruent if and only if every pair of classes and projections
are all congruent.

Sugihara’s algorithm extends Hopcroft and Tarjan’s algorithm [21] to test graph isomorphism
by regarding a polyhedron as an embedding of a graph. Note that a convex polytope, i.e.,
a bounded convex polyhedron, can be regarded as an embedding of a three-connected planar
graph. Hopcroft and Tarjan’s algorithm is only for three-connected planar graphs but Sugihara’s
is applicable for more general graphs. Therefore, Sugihara’s algorithm is applicable for bounded
polyhedra.

Sugihara’s algorithm partitions directed copies of input edges into “mutually indistinguish-
able” edges in O(nlogn) time: basically, it means that one edge can be mapped to another by
congruence mapping. More precisely, in Sugihara’s paper, two edges e, e’ are mutually indis-
tinguishable if any traversing ¢ of directed edges following only the rightmost- or the leftmost-
adjacent edge and another traversing that has the same structure to the traversing ¢ can be
related by relating e and €’. The main idea of this partitioning is by the following steps.

(1) Calculate a quadruple for each directed edge e, consisting of the length of e, the angle
defined by two adjacent faces of e, the angle defined by e and the rightmost-adjacent edge
to e, and the angle defined by e and the leftmost-adjacent edge to e.
(2) Classify edges by values of their quadruples.
(3) Subdivide classes of edges more by traversing directed paths of edges.
(4) Compare resulting classes.
Hopcroft and Tarjan’s algorithm [21] makes sure that the subdivision procedure is done until
each class becomes mutually indistinguishable and comparing mutually indistinguishable classes
is enough for testing congruence.

Atkinson(1987) [5]. Atkinson’s algorithm is to determine congruence for two point sets in 3-
space. This algorithm begins with reducing input point sets as small as possible while preserving

symmetries and then considers a bounded number of all the possible matches of the original
point sets, obtained by the reduced sets. The principle of this reduction procedure is different
from pruning mentioned before (refer to Section 1.2 and Section 3.1.1) but is more related to a
canonical set procedure (refer to Section 3.2.1 and Section 5.5.1). The first part of this algorithm
can be considered a canonical set procedure of for a 2-sphere with rotational symmetries. This
reduction procedure preserves symmetries, whereas pruning does not. For reduction, Atkinson’s
algorithm constructs a closest-pair graph, i.e., a graph whose vertices are points and edges are
pairs of vertices that achieve the minimum distance (see Section 3.3.2). Then, the algorithm
prunes points by the congruence type of a neighborhood of a vertex v, or by a wertex figure
(refer to Section 3.2.2). Then, either there is a component of the centroid different from the
original centroid or the degrees of vertices are bounded since v has at most five closest vertices
by the kissing number (see Section 3.1.2). The sets can be further reduced by traversing each
component if the degree is two and by comparing faces if the degree is three or four or five. At
the end, there are only two cases:
(i) the reduced set is a singleton set or consists of two antipodal points.
(ii) the reduced set has a bounded cardinality more than two.

For (ii), the algorithm finds all the rotations from a pair of non-antipodal points in one reduced
set to any pair of non-antipodal points at the same angle in another reduced set. Then, it checks
if at least one of such rotations transforms one input point set to another input point set. For
(i), the rotational axis can be identified so Manacher’s algorithm [28] (see the first paragraph of
Section 1.3.1) can be applied after each point is represented by a cylindrical coordinate regarding
the common rotational axis as the z-axis.

The variation of the first part of Atkinson’s algorithm will be used in the new algorithm and
discussed again in Lemma 3.2 in Section 3.3.3.

Alt, Mehlhorn, Wagener, and Welzl(1988) [2]. The algorithm by Alt, Mehlhorn, Wa-
gener, and Welzl checks graph isomorphism as well. On top of this, their algorithm uses labeling
and that a convex-hull of points in 2-sphere can be regarded as a three-connected planar graph.
First, the algorithm projects all the points radially to the unit sphere centered at the centroid
and labels them with distances from the centroid. Then, it computes the convex hull of the
projected points. Also, it labels each projected point p with the lexicographically-smallest cyclic
shift of the string which enumerates the distances and angles of neighboring points of p in the
convex hull. If two labeled graphs are isomorphic, then two original input point sets are congru-
ent. Labeled graph isomorphism for the three-connected planar graph is determined by applying
the partitioning algorithm of Hopcroft and Tarjan [21], [36, Section 4.13] in time O(nlogn). The
total time complexity is O(nlogn) as well.

1.3.3 Congruence Testing in Four- or Higher-dimensional Space

Alt, Mehlhorn, Wagener, and Welzl (1988) [2]. This algorithm reduces a d-dimensional
congruence testing problem to n subproblems in (d — 1)-space. As in the three-dimensional case
of their algorithm, it projects all the points radially to the (d — 1)-dimensional unit sphere S
centered at the centroid and labels them with distances to the centroid. Fix one point a in the
resulting set from A. The next step is another projection to a (d — 2)-dimensional unit sphere
S’ which is the intersection of S and the hyperplane that orthogonally bisects the line segment
from a to the centroid; project each point x in A except a onto S’ along the arc from z to a on
the surface of S. Let us denote the resulting set as A’. We can obtain sets Bj,...,B] in the

same manner by fixing all points of B. Two given point sets A and B are congruent if and only
if A’ is congruent to at least one of B] for i = 1,...,n with taking labels into account. As a

result, we obtained n subproblems to determine congruence between A’ and B fori =1,...,n.
Thus, the algorithm by Alt, Mehlhorn, Wagener, and Welzl takes time O(n?~2logn) in d-space.

Akutsu(1998) [1]: a Randomized Version. Akutsu developed O(n(4=1/2log n)-time ran-
domized algorithm for congruence testing problem in d-space and he stated that his algorithm
achieves the time complexity O(nd/ 4+O(1)) by acknowledging Matousek’s idea. Matousek’s un-
published idea is to match closest pairs, i.e., the pairs of points that attain the minimum
distance, (refer to Section 3.3.2) instead of input points, since a closest pair together with the
centroid spans a 2-plane and the orthogonal space of a 2-plane is (d — 2)-dimensional if the
ambient space is d-dimensional. This idea improves the algorithm by Alt, Mehlhorn, Wagener,
and Welzl by time O(nL%J logn) as well.

Akutsu’s algorithm also reduces the original problem to multiple lower-dimensional subprob-
lem. With randomization, however, his algorithm chooses O(y/n) points randomly and projects
original input points to a hyperplane H by fixing one point among randomly chosen points
as an orthogonal vector to H. At the end, this generates two collections of projected sets in
3-space such that (a) if there is a congruent pair from each collection, the two given input sets
need to be congruent and (b) if not, the probability that they are congruent is very low due
to the birthday paradox. Instead of comparing every pair from each collection, by using the
canonical form and lexicographical sorting, whether there exists a pair of two congruent sets
can be determined efficiently in time O(n(¢~1/21logn) without Matousek’s idea. The accurate
analysis with Matousek’s idea was not provided but still the algorithm has the bounded error
probability after modification since the analysis for the error probability does not depend on the
dimension reduction but uses only the birthday paradox. Then, Akutsu’s algorithm obtains the
time complexity O(nl%2)/21ogn) for d > 6 and O(n3/?logn) for d = 4,5 with Matousek’s idea.

The projection step of Akutsu’s algorithm is also different from that of Alt, Mehlhorn,
Wagener and Welzl. Instead of projecting points radially, Akutsu’s algorithm projects all points
to the hyperplane perpendicular to the segment ¢p from the centroid to p where p is one of the
points chosen randomly before.

During the projection step, labeling is done simultaneously in a
way that two points have the same label if there is an orientation-
preserving isometry between these two points that fixes the segment
¢p. A variant of this projection method is used in the new algorithm
and discussed in Section 3.3.1.

Brass and Knauer(2003) [10]. Brass and Knauer’s algorithm
extends Matousek’s idea by fixing a triple of points that contains
two closest pairs instead of fixing a closest pair. A triple of points
together with the centroid can determine a 3-dimensional subspace
and its orthogonal space is (d — 3)-dimensional unless the triple
and the centroid are coplanar. By projecting points to a (d — 3)-
dimensional orthogonal subspace, the algorithm can achieve time
O(n!%/311ogn), but the actual algorithm requires more considera-
tion due to inner symmetries of triples.

There are examples of point sets A C R?* where a triple of
points can be mapped to other Q(n?) triples in A by isometries
(see Figure 1.1). This tricky case, that is, when fixing a triple can
have too many alternative reductions, can happen only when the point sets lie in orthogonal 2-
planes and all the triples are coplanar. To deal with this case, the algorithm constructs connected
components. Each component starts with an antipodal pair of points and components of the

Figure 1.1: If all the
closest-pairs are in orthog-
onal 2-planes, any triple
can be mapped to other
Q(n?) triples by rotations.

smallest distance merge if their distance is smaller than /2. This merging process repeats until
either a triple of non-coplanar points in a component is found, or the smallest distance between
components turns out to be v/2. If such a triple is found, the dimension reduction can be
applied. Otherwise, the given point set is in orthogonal 2-planes. This is because the smallest
distance between two antipodal pairs in the unit sphere can reach the maximum (v/2) if and
only if they are orthogonal pairs. In this case, for each component pair, they apply congruence
testing algorithm for the plane and check if there exists a matching of components such that
each matched pair is congruent.

1.3.4 More Related Work

Jiang, Yu, and Bunke (1991) [25] provided an algorithm that can test symmetries of general
3-dimensional polyhedral objects in time O(n?logn). Also, there is another paper by Brass and
Knauer (2004) [11] for testing congruence for general 3-dimensional objects in time O(nlogn).
Their algorithm can be applied for the case that Sugihara’s algorithm [34] cannot be applied.
Rezende and Lee (1995) [15] developed an algorithm that tests a k-subset congruence in O(kn?)
with considering scaling in d-dimension together.

1.4 Contributions

Congruence is a fundamental geometric problem, and it has a long history as seen in Section 1.3.
It is believed by many researchers in the field that the problem is solvable in O(nlogn) time in
any fized dimension. However, so far the best algorithms in general dimension d are exponential
in d. The new algorithm is the first 4-dimensional optimal algorithm.

The previously discussed algorithms are rather simple compared to the new algorithm. The
new algorithm uses many geometric tools intensively to exploit structure in 4-space. In the
course of employing such tools, not only are these tools extended but also new geometric insights
are provided and interesting characteristics are revealed. All those tools are intertwined with
the new algorithm. We elaborate all the necessary backgrounds to understand how these tools
function as ingredients of the new algorithm in Part I.

As a result of symmetries, we will also encounter beautiful mathematical structures. In
particular, the structure of Hopf bundles organizes the special case of isoclinic planes in a
pleasant way. One of the main importances in this part is to describe the interpretation of the
Hopf fibration in a very geometric and elementary way by using four-dimensional rotations. This
interpretation clarifies the necessary and sufficient condition for a collection of great circles to
be in a Hopf bundle.

This part includes preliminaries about four-dimensional rotations, angles between a pair of
planes, Pliicker coordinates, four-dimensional Coxeter groups, kissing numbers and representing
a neighborhood of a vertex or an edge in 4-space.

The new algorithm finally comes on the stage in Part II. The techniques of closest pairs,
pruning, and dimension reduction have been used for congruence testing before. We extend these
ideas and apply them in a novel way. Our algorithm uses closest pairs not just as a convenient
tool for matching, but as a device for scrutinizing an actual structure of a closest-pair graph (i. e.,
a graph whose vertices are points and edges indicate the minimum distance). Our algorithm
extracts helices around great circles on 3-sphere by taking advantage of the structure of the
closest-pair graph.

The subalgorithm in Section 5.4 of pruning these extracted great circles is interesting in its
own right; this subalgorithm includes the step that, given a set of great circles, selects a subset
of great circles in the same Hopf bundle.

On top of the previous dimension reduction principle, a new efficient dimension reduction
technique (called 2+2 dimension reduction, see Section 5.5) is developed in the new algorithm
for the case that a given point set has rotational symmetries that make two orthogonal planes
invariant. This new dimension reduction technique is simple to implement and resolves the
trickiest case in Brass and Knauer’s algorithm as well [10]. We would expect that 242 dimension
reduction can be extended to higher dimensions (see Section 6.2) and applied to other problems
that require dimension reduction.

Extending
Geometric Tools

11

This part plays a role not only in introducing the necessary background for understanding
the new algorithm, but also in providing alternative perspectives to four-dimensional geometry
and extracting new applicable ideas.

This part consists of two chapters: one about 4-dimensional geometry and another about
more tools. Even though most of these tools are an extension of previous work, many ideas are
new.

Because this part is a collection of ingredients for the new algorithm, the sections in this
part may seem independent. Because they have complicated interdependences, it is not easy
to see these only by text. Still it is useful and important to see the big picture about which
modules in the new algorithm are supported by these sections. The diagram below (Figure 1.2)
summarizes the relations between sections in Part I and those in Part II.

Pliicker

Four-

Space dimensional
and Pliicker Rotations . L+ 3
Distance Dimension
Reduction

An Angle

between Closest-
a Pair of pair
Planes Graphs

Overview

The of
Construction the New Gcncrating
f . . o i .
Ho . Algorithm ()rbltfcy(,leb/ Congruence
e Iterative Types of
Fibration and o ‘d : Vertex and
Condensing ondensieg Edge Figures

242

Finding
Dimension

Repre-
sentative
Points
from a
2-sphere

Canonical
Axes

Reduction

Packing
Arguments and
Definitions of
Constants

The Coxeter
Classification of
Four-dimensional

Point Groups

The Pruning and
Condensing
Principles

Figure 1.2: Interdependence between Part I and Part II. Part I is placed in the outer ring and
Part II is in the inner disk.

Reilluminating
Four-dimensional Geometry

2.1 Four-dimensional Rotations

A congruence mapping, or orientation-preserving isometry, is a combination of rotations and
translations. As mentioned in Section 1.1, the influence of translations is no longer a concern for
us, but rotations are still tricky to handle; this section provides geometric intuitions of general
four-dimensional rotations while using only the simple tool of representing them.

We can classify rotations in 4-space into two categories: simple rotations and double ro-
tations. A simple rotation is a two-dimensional rotation in 4-space in which one entire plane
through the origin is fixed. A double rotation is a rotation that makes a pair of two orthogonal
planes P, Q) invariant (i.e., P is mapped to P itself and @ is mapped to @ itself by this rotation)
and all the half-lines from the origin in P (and @) are displaced by the angles ¢ (and 1) inside
P (and Q) for ¢,1 € (—m, 7). Note that simple rotations are special cases of double rotations
by letting ¢ = 0 or ¢ = 0.

These geometric intuitions of 4-dimensional rotations can be encoded by a 4 x 4 rotation
matrix R. A 4 x 4 rotation matrix R is an orthogonal matrix with determinant +1. It has four
eigenvalues of absolute value 1, whose product is +1. They come in conjugate complex pairs,
et and e*™¥. The special case of real eigenvalues 1 or —1 is included. Here, ¢ and 1 in the
eigenvalues correspond to ¢ and v in the angular displacements.

Let us assume first that the four eigenvalues are distinct. This case is called a non-isoclinic
rotation. The eigenvectors for each conjugate complex pair, which are conjugate complex, span
a real 2-plane. We choose an orthonormal basis v;, v for the plane corresponding to e**, and
an orthonormal basis vs,v4 for the plane corresponding to e**¥. In the resulting orthonormal
basis v1, vo, v3, v4, the matrix R looks as follows:

cosp —singp 0 0
_ | sing cosyp 0 0
R=Rew=1" 0 cosyp —sing (2.1)
0 0 siny cosy

The pair {P, @} of orthogonal planes P = (vj,v9) and @ = (v3,v4) is uniquely determined by
R, but the basis v1, vy and w3, v4 for each plane is not unique. Here, P and () are the only pair
of planes that are invariant under the rotation. We can require that the basis vy, vo, vs, v4 is
positively oriented by flipping v3 and v4 and changing from R, to R, _, if necessary (or by
flipping v1 and vo and changing to R_, y, if we prefer). The angle pair {¢,%} in the range
—m < ,1 < 7 is then unique up to a simultaneous negation to {—p, —1}.

If the four eigenvalues are not distinct, they come in equal pairs €', e’ e™* e~ . Such
rotations are called isoclinic rotations. We exclude the special cases 1,1,1,1 and —1,—-1,—1, —1

14

(the identity and the inversion) and assume 0 < ¢ < m. We can still find a basis vy, ve, v3, vy
for which the matrix has the form R = R, , but the decomposition into two orthogonal planes
is not unique. There are infinitely many pairs of orthogonal planes that are invariant under the
rotation, but still not all the pairs of planes in 4-space are invariant. If we insist that the basis
is positively oriented, the rotation can either be written as R, , or R, _,. A rotation of the
first class is called a right-isoclinic rotation, and the second class a left-isoclinic rotation.

Axis Planes. For a rotation R that is not isoclinic, there is a pair of orthogonal planes
P = (v1,v2),Q = (v3,vy) that is invariant under the rotation R. We call these two planes P, Q
axis planes of the rotation R. Given a rotation matrix R, we can find axis planes P and @
by computing v1,v2,v3,v4 as follows. Let uy,,u—_y, vy, v_y be eigenvectors of R such that ug
corresponds to the eigenvalue e’ where 6 € {¢, =@, ¥, =} Then, uy, = v +ive, u_y, = v1 — iV
and uy, = v3 + V4, U_y, = V3 — 104 are conjugate pairs. Then,

Uy + U_ Uy, — U_
012%7 02:%’

Uqy + U_ Uqyy — U_
vz = P 5 w7 vy = ¢2i w_

2.2 An Angle between a Pair of Planes

In Section 2.1, we have seen that a pair of two orthogonal planes can be used to represent
a non-isoclinic rotation. Not only for representing rotations but also for understanding four-
dimensional geometry in general, a pair of 2-planes is worthwhile to investigate. In particular, a
linear subspace of Euclidean 4-space R* is either a line or a 3-space (a hyperplane) or a 2-plane.
A line and a hyperplane is relatively easier to be taken care of: A pair of lines is determined
up to congruence by the smallest angle between them and so is a pair of hyperplanes by the
smallest angle between their normal vectors.

In this section, we restrict our concerns to only planes that go through the origin. Our
objective is, given a pair of 2-planes in 4-space, to find a feature invariant under rotations and
translations.

Geometric Definition Using Half Rays. We first de-
fine an angle between two planes in 4-space geometrically
and then show the computation method. The angle between
two planes P, () is defined as a pair «, 8 of two real numbers
in range [0, 7/2] where o and 8 are defined as follows [29].

We define a as the minimum angle between any two half
lines Op in P and Oq in (. Such an « exists [29]. We
denote such half lines that make the minimum angle o as
Op* and Ogq*. Let U be the plane that contains Op* and
Oq*. The plane U is perpendicular to the planes P and Q,
since otherwise Op* and the projection of Op* to @ would
make an angle smaller than «. Let U’ be the orthogonal
plane to U. Then U’ is also perpendicular to P and Q. Let
¢, be the intersection of P and U’. Similarly, let ¢, be the intersection of @ and U’. We define
the acute angle made by the lines ¢, and ¢ as 3. See Figure 2.1.

Figure 2.1: Angles between a pair
of planes in 4-space.

15

Isoclinic Planes. We just mentioned that there exists the minimum angle o between any
pairs of half lines, each of which is in the plane P and the plane () respectively. However,
the pair of half lines Op* and Og¢* that defines the angle o may not be unique but an infinite
number of such pairs can exist. If there are an infinite number of such pairs, there exist an
infinite number of perpendicular planes U to P and @. In this case, an infinite number of planes
U cut out P and @ by making all the equal angles [29]. Thus, o = . We say that a pair of
planes of angle o, @ where 0 < o < /2 is isoclinic.

Computation. This can be formulated as follows. Let Lp and Lg be the vector spaces that
span P and @) respectively. Then,

cosa = max max ulv; = (u})T(v}),
ui€Lp, v1€Lq,
lutl=1" Jo1]=1

cosf= max max uluvy.
up€Llp, v2€lq,
lug|=1, |va|=1,
u%u’f =0 ’U%—"UT:O

Let Mp and Mg be the orthonormal basis of P and). The previous equation boils down to

max max u’v = max maxy’ (M}Mg)z.
u€Lp, vELQ, y€ERZ, 2€R?,
lul=1 Jo|=1 lyl=1 |z|=1

By the minimax characterization of the singular value decomposition (SVD), the angle can be
computed by the SVD as follows:

cos 0 T/ yT
< 0 cosﬁ) =Y (MpMg)Z.

This computation can be found [9].
With this definition, an angle between two planes in 4-space is invariant under rotations and
translations.

Equivalent Definition by Orthogonal Projections. Let P, (Q be a pair of planes and let C’
be an orthogonal projection of a unit circle in P to (). The maximum and the minimum distances
cos a, cos 3 from a point on C’ to the origin define the same angle o and 8. According to this
definition, generally the orthogonal projection C” is an ellipse with the following reasoning. If P
and @ are not isoclinic, there is a pair of planes {U, U’} that are perpendicular to both P and
@ and cut out P and @) at the angle a and 3 respectively. Then, the intersection of) and U,
(or the line containing the half line Og*) is the major axis (longer axis) of the ellipse because
U defines the closest distance between any half lines in P and (). Similarly, the intersection of
Q@ and U’, (or ¢;) is the minor axis (shorter axis) of the ellipse. However, for a pair of isoclinic
planes, the orthogonal projection C’ becomes a circle. The argument is shown in Proposition 2.1.

The following procedure will be useful in Section 5.4. Let us assume P and @ are not isoclinic
and in addition to C’, let D’ be an orthogonal projection of a unit circle in @ to P. Then, C’
and D’ are ellipses. A pair of points in P can be marked by the intersection of the unit circle
on P and the major axis of D’. Similarly, a pair of points in @ can be marked as well.

Left and Right Pairs for Isoclinic Planes. Let P = (vi,v2),Q = (uj,us) be a pair
of 2-planes in 4-space where v1,v9 are orthonormal vectors that span P and wuq,us are unit
vectors parallel to the projections of vi,v9 to (). Extend wvi,vs to a positively-oriented basis

16

(v1,v2,v3,v4) in 4-space; that is, a quadruple of orthonormal vectors such that the determinant
of (v1,ve,v3,v4) = +1. Consider the projections v} and u), of u; and uy in @ to the vzvg-plane.
If u} and u) are positively oriented together with vy, vs, we say a pair {P, @} is a right pair,
otherwise a left pair. In other words, if the projection of uy,uo is oriented in the same way as
the vz, v4-plane is oriented, {P, @} is a right pair and if they are oriented in the opposite way,
{P,Q} is a left pair. Whether P, @ is a right or left pair does not dependent on the order of P
and). Determining if a pair of two planes are a right pair or a left pair can be done by checking
the sign of the determinant of (vzvs)” (uiug). If it is positive, it is a right pair, and otherwise, it
is a left pair. This classification as right or left is called the chirality of a pair of isoclinic planes.
When o = 8 = 7/2 (completely orthogonal planes) or o« = = 0 (identical planes), the pair of
planes is both a left- and right-pair.

Relations to Clifford Parallelism. A pair (C, D) of great circles in a 3-sphere S? is called
Clifford parallel if for any point p in C, the shortest distance from p to D is the same. A pair
(C, D) of great circles is Clifford parallel if and only if a pair (P, @) of planes spanned by C and
D is isoclinic. This relation is stated as the following proposition.

Proposition 2.1. For a given pair of planes P and @, the following three statements are
equivalent.
1. P and @ are isoclinic.
2. Unit circles C on P and D on @Q are Clifford parallel.
3. The projection C' of a unit circle C on P to Q is a circle and so is the projection D’ of a
unit circle D on @ to P.

Proof. [1 < 2.] The planes P and @ are at angle «, « if and only if there are an infinite number
of pairs of half lines, each pair of which consists of a half line Op on P and a half line Oq
on) that form an angle a. Also, these pairs of lines {Op, Oq} define the pairs of points in
C and D with the shortest distance. For any pair {Op, Og}, the intersection p’ of Op and C,
the intersection ¢’ of Oq and D, and the origin form congruence triangles. Then, the distance
between p’ and ¢’ is constant for any points p’ on C' and ¢’ on D. Thus, the planes P and Q are
at angle at «, « if and only if unit circles C, D on P and @) are Clifford parallel.

[1< 3.] In the previous paragraph, it is explained why the projections C’ and D’ generally
form ellipses. Similarly to the previous argument, points in Op are orthogonally projected to
points in Oq for the previously defined pairs {Op, Oq} since any plane perpendicular to both P
and @ cuts out P and @ with the same angle a. Therefore, the projections of any points in C
to @ are equidistant from the origin and so are the projections of any points in D to P. Hence,
P and Q are isoclinic if and only if the projection C’ and D’ are circles. O

Terminology for a pair of planes carries over to a pair of great circles, such as an angle of
great circles, a right pair of great circles, and a left pair of great circles. For example a pair of
great circles in a 3-sphere S? is at angle (a, 3) if the pair of planes spanned by them is at angle
(o, B) for 0 < o, B < /2 as well.

A right/left pair of great circles are also known as Clifford parallel of the first /second kind [8,
7]. For convenience, we simply say that a pair of great circles is a right /left pair instead of Clifford
parallel of the first/second kind.

The new algorithm generates a set of great circles on a 3-sphere S? and relates each great
circle C to the plane that C' spans. Later, it will turn out if a pair of great circles are not Clifford
parallel, we can do the marking procedure, illustrated in the previous paragraph “Equivalent
Definition by Orthogonal Projections”. Otherwise, this pair defines a unique Hopf fibration.

17

Generating Clifford-parallel Circles. The following useful lemma shows how to parametrize
Clifford-parallel circles. This lemma is used to prove important properties in Section 2.4.3.

Lemma 2.2. Let v1,ve,v3,v4 be a positively-oriented orthonormal basis and let C' be the great
circle in a 3-sphere S? spanned by two orthonormal vectors vy and vo. If C, D forms a right pair
of great circles in S* at angle (o,), then D is spanned by the two orthonormal vectors

u1(0) = vy cosa + (v3cosd + vy 8ind) sin o (2.2)

u2(0) = vy cosa + (v4cosd — vgsind) sin o

for some ¢ € [0,27), and it can be parameterized as

cosy - ui(0) +siny - ua(d) =

V] COS @ - COS7Y + V2 oS @ - Siny + vgsina - cos(d +) + vy sina - sin(d +)
with parameter 0 < v < 2w. Similarly, for a left pair, D is spanned by

u}(§) = v1 cosa + (v3cosd + vysind) sina

uh(8) = vz cos a + (v3sind — vy cos) sina
for some § € [0,27).

Proof. The circle D can be written as { cos~y-uj +siny-ug | 0 < < 27 }, for any choice of two
orthonormal vectors uq,us € D. In terms of the basis v1, v, v3, v4, we may write uq = E?:l a;v;
and uy = 2?21 b;v; with

4 4

Z a? = Z b% =1,
=1 =1 %
The projection of D on the vjvs-plane containing C'is then the curve cos~y- (a1v; +agve) +sin~y -
(biv1 + bave). By the definition isoclinic planes of angle «, a, this projection must be a circle of
radius cos «. Thus, the two vectors ajvi + asve and byvi + bavy must be perpendicular vectors
of length cosa. We may choose u; in such a way that its projection aivi + asv9 becomes the
vector v1 cos . This implies a; = cosa, as = 0, by = 0, by = +cosa. By flipping us if necessary,
we can achieve that by = + cosa.

We have a% + a% = b% + b2 = cos?a and ajb; + ashbs = 0. In view of (2.3), this implies
a% +a? = b% + b = sin? a and agbs + asby = 0. Thus, the two vectors (ag,as) and (b3, by) are
orthogonal vectors of norm sin . The general form of such vectors is (as, as) = sin a-(cos 4, sin d)
and (b3, by) = £sina- (—sind, cosd). It can be checked that the choice of the positive sign leads
to a right pair, and the other choice leads to a left pair. O

4
=1

2.3 Plicker Space and Pliicker Distance

The importance of dealing with 2-planes in 4-space for the new algorithm is already emphasized
enough from previous sections. One classical and effective tool of dealing with linear subspaces in
a vector space is the Grassmannian and the Pliicker embedding. The Grassmannian G(g,V) is
the collection of all g-dimensional linear subspaces of a vector space V. The Pliicker embedding
embeds Grassmannians into higher-dimensional projective space. In this section, we restrict
our consideration only to the Grassmannian G(2,R?*) and Pliicker coordinates, that is, six-
dimensional homogeneous coordinates of G(2,R*) in real projective 5-space.

The Grassmannian G(2,R?) is the set of all the planes going through the origin in Eu-
clidean 4-space and equivalent to lines in real projective 3-space. Let z = (xg,x1,x2,23),y =

18

(Y0, Y1, Y2, y3) be homogeneous coordinates of two distinct points in real projective 3-space. Then
a Pliicker coordinate for a line going through these two points is the sixtuple (p;j)o<i<;j<3 where
Dij = x;y; — x;y;; in other words, the sixtuple of the 2 x 2 determinants of the 2 x 4 matrix
with rows x and y. The Pliicker coordinate is also regarded as a homogeneous coordinate in
projective 5-space since it is uniquely determined by a line in projective 3-space up to a nonzero
scaling. For convenience, we call real projective 5-space with Pliicker coordinates Plicker space.
Each plane in Euclidean 4-space corresponds to a point in Pliicker space.

To use a metric for 2-planes in Euclidean 4-space, we define a Plicker distance in Pliicker
space using Pliicker coordinates. Pliicker distance between two planes P, @ in 4-space is the
squared Euclidean distance between normalized Pliicker coordinates of P and @), taking the sign
of scaling factors into account. Pliicker distance is defined in a way such that it satisfies the
distance axiom (the conditions for a metric), since it is a basically Euclidean distance.

Because Pliicker space is real projective 5-space P5 and P° can be geometrically regarded as
a 5-sphere with having antipodal points identified, or P5 ~ S° /72, the framework of the Pliicker
distance can be conceived as embedding planes into antipodal pairs of points in a 5-sphere S?
and measuring the smallest Euclidean distance between two antipodal pairs in S°.

The next lemma shows that the Pliicker distance is geometrically meaningful and does not
depend on the choice of a coordinate system. This is shown by relating angles between planes
to the Pliicker distance.

Lemma 2.3. If a pair of planes P,Q is at angle (o, B), with 0 < o, < 7/2, the Plicker
distance between them is v/2(1 — cos a cos §)/2.

Proof. Let P and @ be two planes with angle («, 5). Let u = (u1, ua, us, uq),v = (v1,v2,v3,04)
be orthonormal vectors that span P. If P and @ are not orthogonal, let v’ = (u}, uh, ub, u}),v' =
(v], vh,vh,v}) be the orthonormal vectors such that «’,v’ are parallel to the projections of u,v
to Q. If P and @ are orthogonal, that is, « = 8 = 7/2, let v/, v’ be any two orthonormal vectors
that span Q.

The Pliicker coordinates are then the six values (kij)0§i<j§3, where k;; = u;v; — vju;. Since
u, v is an orthonormal basis, we can check that these Pliicker coordinates are already normalized,
using the relations k;; = —kj; and k;; = 0O:

3 3
1 1
2 2 2 2
Y. o kh=5 Y UGtk =5 K
0<i<j<3 0<i<j<3 =0 j=0
1 3.3 1 3.3
=5 (uiv; — viug)? = 3 (u2v2 + v? u — 2uu;v;05)
i=0 j=0 i=0 j=0
3 3 3 3
(S S 3
1=0 7=0 7=0 1=0
:%(1—2-0+1):1

Similarly, the Pliicker coordinates £;; = ujv} — vju’; of Q are normalized: 3 ;i3 EZ] 1. The

squared Euclidean distance between these points 1s
S Gu-tf= ¥ B Y G2 3 wty=2(1- 3 k)
0<i<j<3 0<i<j<3 0<i<j<3 0<i<j<3 0<i<j<3

Let us evaluate the last term. From the angle between P and Q, we get v’ v = cosa, v’ v =

19

cos B, and uTv' = vT'w’ = 0, and we have k;j = —kj; and £;; = —(j;.
1 ERE
> kiglig =5 Y (hilig + kiili) = 5 Y D kil
0<i<j<3 0<i<j<3 =0 j=0
1 3.3
) /!
=3 (uivj — viug) (v — viug)
i=0 j=0
1 3.3
=3 (uiui vV} 4 viviu UG — UV — ViU YY)
i=0 j=0
L [3 3 3 3
_ / o /
=3 UjU; vjv; + Vi, uju;
=0 7=0 =0 7=0

3 3 3 3
— E uivg E U}’Uj — E uévi E ’LL]'U;-
1=0 7=0 =0 7=0

((uTu')(vTU’) + (T (W) — (T (/T v) — (u'TU)(uTv’))

—1
=2
%(cosacosﬁ—i—cosﬁcosa—O—O) = cosacos 3

Thus, the Euclidean distance is \/ 2(1 — cos acos B). Each circle is represented by two antipodal
points. Thus we should consider also negated vectors (—k;j)o<i<j<3 and (—4;j)o<i<j<3. Negation
can be achieved by negating one of the vectors u, v or one of the vectors u/,v’. In the formulas,
this changes cosa to cos(m — a) = —cosa or cos 3 to cos(m —) = —cosf. The minimum
distance is obviously achieved when choosing the positive cosine values, i.e., when choosing the
angles in the range 0 < «, 8 < 7/2. It is easy to check that this smaller distance value together
with the larger value, \/ 2(1 + cosacos), form the sides of a rectangle inscribed in the unit
circle, as expected from two pairs of antipodal points on a sphere.]

Corollary 2.4. The Pliicker distance is invariant under rotations and reflections.

Proof. The angle between two planes is invariant over rotations and reflections and by Lemma, 2.3,
since the Pliicker distances depend only on the angles between pairs of planes.]

Comparison with Other Distances. Conway, Hardin and Sloan [12] considered different
distances in Grassmannian space. One of the distances that they considered is called the chordal
distance. For the Grassmannian G(2, R%), the chordal distance is defined as y/sin’ a + sin? 3 for
the pair of planes at angle «, 5. The chordal distance coincides with Pliicker distance if a pair
of planes is isoclinic.

They also considered the geodesic distance [37], and the Asimov’s distance [3, 19]. All those
three distances are by embedding the Grassmannian G(k, R?) to a m-sphere where m = (d;rl) -1
On the other hand, if the Pliicker distance is extended to the Grassmannian G(k, R?), the Pliicker
distance is measured in the ambient space of dimension (,‘j)

Those three distances are defined by angles in Grassmannian space. This angle is just the
extension of an angle between planes in 4-space. By regarding an angle as a vector with k
values, the geodesic distance, the chordal distance, and the Asimov’s distance are defined as the
Euclidean norm of an angle, the Euclidean norm of the sine value of an angle, and the maximum
norm of an angle respectively.

Optimal packing is numerically computed for these three distances [12].

20

2.4 The Construction of Hopf Fibrations

The characteristics of the Hopf fibrations are already well-known. Refer to [8, 7, Section 4.3.7,
Chapter 18.8]. Although the Hopf fibrations can be defined for (2¢ + 1)-spheres and (47 +
3)-spheres for all i > 0 except a 15-sphere [7, Chapter 18.1.3.6], for the new algorithm we
only consider the Hopf fibration [22, 23] of a 3-sphere. The ultimate goal of this section is to
understand the relations among isoclinic rotations (in Section 2.1), a left/right pair of great
circles (in Section 2.2) and Hopf fibrations.
Before getting started, the flow of this section is sketched without the definitions of terms:
1. We first construct the invariant family for a given great circle C' by using only isoclinic
rotations (Lemma 2.5 and Lemma 2.6).
2. Then, we define a Hopf map h with respect to C. This shows that the invariant family for
C' is equivalent to the Hopf bundle for h (Lemma 2.7). This gives a geometric perspective
of constructing a Hopf fibration.
3. In Section 2.4.3, we derive the following properties.
(a) From 1, we know there is a unique bundle for each great circle C' (Corollary 2.8). Also,
a pair of Clifford-parallel great circles belong to a common Hopf bundle (Lemma 2.9).
(b) The relation between two great circles defined by a right pair (or a left pair) is
transitive; thus, it is an equivalence relation. From 3a, an equivalence class is actually
a right Hopf bundle (or a left Hopf bundle) (Corollary 2.10). The converse is also
true.
(¢) The Hopf fibration maps two great circles at angle o, to two points at geodesic
distance 2« in a 2-sphere (Lemma 2.11).
(d) From 3c, a Hopf fibration is unique up to rotations and reflections. This implies
independence of choices of a basis (Corollary 2.12).
To minimize confusion, we provide proofs and explanations only for a right Hopf fibration
but parallel lemmas are also valid for a left Hopf fibration.

2.4.1 Construction by Isoclinic Rotations.

This construction of a right Hopf fibration provides the relation between a right Hopf fibration
and a right-isoclinic rotation. We will now construct a right Hopf bundle as the set of orbits of
all right rotations that map a given circle to itself.

We mention that the convention of assigning the label left or right to versions of a structure
that come in pairs is somewhat arbitrary and not uniform in the literature. In fact, right
Hopf bundles are also connected to left-isoclinic rotations: a right Hopf bundle is the set of
images of a given circle under all left-isoclinic rotations. In the quaternion representation, right
rotations according to the convention in this paper are carried out by left multiplication with
unit quaternions. Thus, there are good reasons also for alternative choices.

Lemma 2.5. For every great circle C' in a 3-sphere and two points p,q € C, there exists a
unique right-isoclinic rotation R which rotates C' in itself and rotates p to q.

Proof. Choose an orthonormal basis v1,vs of the plane P spanned by C and arbitrarily label
one of the orientations of C' as positive and the other as negative. There exists a unique rotation

R, = (0987 — sy > in the vivso-plane that rotates p to q. Choose again a basis vs, v4 of
siny cos~y

the plane Pt orthogonal to the plane P so that a basis v1, va, v3,v4 forms a positively-oriented
basis. Here w3, v4 are unique up to rotations in PL and the orientation of v3,v4 is fixed. Then

21

the 4 x 4 matrix

p(7) = Ry y (2.4)

with a basis v, v9,v3,v4 gives a unique right-isoclinic rotation that rotates C to itself where

R,y is defined in (2.1). O

The family of right-isoclinic rotations F = {p(v)|y € [0,27)} rotates a great circle C' to itself
where p(7) is defined as in (2.4). Note that F is a one-dimensional group isomorphic to the
special orthogonal group SO(2). We call F the family of right rotations for C.

Lemma 2.6. Let F be the family of right rotations for some great circle in a 8-sphere S®. For
every point p in S3, the orbit of p under rotations in F is a great circle of S3.

Proof. If p=(x,y, z,w), the orbit of p generated by a right-isoclinic rotation is

() = p(7)p = w1 cosy + ug siny (2.5)

where

U = (a:,y,z,w)T,uQ = (—y,z, —w,z)T,p(’y) eF

for v € [0,27). Here, u; and ug are orthogonal and u(7) is a parametrization of a great circle,
so p generates a great circle as an orbit. O

From Lemma 2.6, F partitions S into the set of great circles that are invariant under
rotations in F. Let I' be the set of these great circles and call it the invariant family for C.
Eventually, the invariant family I" forms a right Hopf bundle. In the remainder of this section,
we illustrate what this statement means more precisely.

2.4.2 Equivalence of an Invariant Family and a Hopf Bundle.

A fibration is a map that projects a fiber bundle to a base, by identifying a subspace of the
fiber bundle, called a fiber, to a point in a base in a way that any point in the fiber bundle is
contained in exactly one fiber.

Given a great circle C, by choosing a Cartesian coordinate system (z,y, z,w) such that a
great circle C lies in the z, y-plane, we define a right Hopf map with respect to C' as

h(z,y, z,w) = (2(zw — y2), 2(yw + z2),1 — 2(2%> + w?)) for (x,y,z,w) €S> C R

Note that such a Cartesian coordinate system is not unique but we choose it arbitrarily. For
reference, a left Hopf map can be defined as h'(z,y, z, w) = (2(zw+yz), 2(yw—2rz),1-2(z*+w?)).
The following lemma shows that a right Hopf map is a fibration.

Lemma 2.7. Let C be a great circle in a 3-sphere S3. Let T' be the invariant family for C. Let
h be the right Hopf map with respect to C. Then, for any D € I', h maps all points in D to one
point in the 2-sphere S2.

Proof. The map h indeed maps the 3-sphere to the 2-sphere, since (1 — 222 — 2w?)? + 4(zw —
y2)? +4(yw + 22)? = (2?2 + 2 + 22 +w?)? = 1.

22

As we have seen in Lemma 2.6, for any D € I, if p = (z,y, z,w) € D, we can parametrize D
as u(7y) in (2.5) for v € [0,27). Then,

h(
= K(

= (2[(z cosy — ysiny)(w cosy + zsiny) — (ycosy + zsiny)(z cosy — wsin~)],

h(u())

Y, va) cosy + (_ya T, —w, Z) sinv)

(
(zcosy —ysiny,ycosy + xsin-y, zcosy — wsiny, w cosy + zsiny))
[

2[(y cosy + xsin~y)(wcosy + zsiny) + (x cosy — ysiny)(z cosy — wsin~y)],
1 —2[(zcosy — wsiny)® + (wcosy + zsiny)?))
= (2[(zw cos? vy — yzsin?y + (xz — yw) cos y sin)
— (yzcos? v — zwsin® v + (vz — yw) cosysin)],
2[(yw cos® y + zzsin? v 4 (zw + yz) cos ysiny)
+ (zzcos? v 4 ywsin? vy — (zw + yz) cos ysin)],
1 —2[(22 cos? v + w? sin® v — zw cos ysin)
+ (w?
= (2(zw — y2), 2(yw + x2),1 — 2(2* + w?))

cos® 7y + 2% sin’ y 4 zw cos v siny)])

This is independent of v, which shows that D is a fiber.

This also implies that a right Hopf map is a fibration, since elements in I', or fibers, are
mutually disjoint and cover the whole S3. Remember that in Lemma 2.6 every point in S? is in
a unique orbit, so in a unique element of I', under rotations in F. 0

Indeed, a right Hopf map with respect to a great circle C is a fibration that maps an invariant
family T' for C to a 2-sphere S? in a way that each great circle in I' is mapped to a point in
S2. Hereafter, we are allowed to call a Hopf map a Hopf fibration, the fiber bundle I' the
Hopf bundle, and each great circle in I' a Hopf fiber. Also, the 2-sphere which is a base for
a Hopf fibration is called a base sphere. We say a right Hopf fibration/bundle/fiber if a Hopf
fibration/bundle/fiber was induced by a right Hopf map.

2.4.3 Properties of the Hopf fibration

Because the invariant family for a great circle C is equivalent to a right Hopf bundle, we may
as well state Lemma 2.5 as in the following corollary.

Corollary 2.8 (Corollary of Lemma 2.5). Fvery great circle belongs to a unique right Hopf
bundle.

Next, we show the relation between great circles and a Hopf fibration.
Lemma 2.9. Any right pair of great circles belongs to a common right Hopf bundle.

Proof. Let C, D be a right pair of great circles at angle o, «. Let h be a right Hopf map for C.
With the same basis for h, C is represented by {(cos~,sin~,0,0)|y € [0,27)}. Then h maps
C to the north pole since h(cos~,sinvy,0,0) = (0,0,1). The circle D can be represented by
{(cosa - cosy,cosa-sin~y,sina - cos(d +),sina -sin(d +))|y € [0,27)} for some § € [0, 27) by

23

Lemma 2.2. Thus, h maps D to a point (sin 2« sin d, sin 2« cos 6, cos 2a), since
h(cos a cos~y, cos asiny, sin awcos(d +), sin asin(§ + 7))
= (2((308 asin acosysin(d +) — cos asin asiny cos(0 + 7)),
2(cos asin asiny sin(d +) + cos asin aecos 7y cos(d + 7)),
1 — 2(sin® awcos? (v + 7o) + sin? asin® (6 + ’y)))
= (sin 2asin d, sin 2« cos 0, cos 2av). (2.6)

This is independent of the parameter «. Therefore, the right Hopf bundle given by h contains
both C' and D as Hopf fibers. O

This relation of being a right pair is actually transitive.

Corollary 2.10. Let us denote C ||, D, when two great circles C and D in S® form a right
pair. Then ||+ is transitive. Each equivalence class of ||+ is a right Hopf bundle.

Proof. If C' ||+ D and D ||+ E, there is a unique right Hopf fibration containing C', D and E by
Corollary 2.8 and Lemma 2.9. Then, C, D, and E are contained in the same Hopf fibration, so
C ||+ E. Observe that ||+ is also reflexive and symmetric. The equivalence class is exactly the
invariant family for C, or a right Hopf bundle. O

In our construction, the Hopf map h depends on the choice of a great circle C' and a Cartesian
coordinate system (x,y, z, w), However, the Hopf fibration resulting from the map is independent
of this choice. To show this, we show how a pair of Hopf fibers is mapped to a pair of points in
a base sphere. A similar statement can be found in [7, Exercise 18.11.18].

Lemma 2.11. Two right Hopf fibers at angle o, are mapped to a pair of points of geodesic
distance 2a by the right Hopf map.

sin 2y sin &
Proof. By (2.6) in Lemma 2.9, the great circle that is mapped to | sin2ycosd | by the right
cos 2y
Hopf map is spanned by the two orthonormal vectors
cos 7y 0
B 0 B cos 7y
u(,0) = cosdsiny |’ v(%.0) = | _ sin d sin 7y
sin § sin y cos d sin 7y

Let us calculate the angle o between two great circles C' and D with parameters (7y1,0;) and
(72, 92). By rotation we may assume that 6; = 0.
The length of the projection of any point of C onto the plane spanned by D is cosa. We
project u(~y1,0) on the plane with orthonormal basis u(~2,d2) and v(v2,d2), and get
cos? a = (u(y,0), u(y2,02))? + (u(y1,0),v(72, 62))”

= (cosy1 cosy2 + cos dg sin 1 sin 72)2 + (— sin d2 sin 1 sin 72)2

= cos® Y1 cos? Y2 + sin? Y1 sin? Yo + 2 cos d2 COS 71 COS Y Sin 7y1 sin o

= cos? 1 cos? v + (1-— cos? v1)(1 — cos? v2) + % cos d2 sin 2y sin 2y

= 2 cos? Y1 cos? Yo+ 1— cos® Y1 — cos? Y2 + % €08 d9 sin 21 sin 2y

= %(2 cos? 41 — 1)(2 cos? v — 1)+ % + % cos 0 sin 2y sin 279

= %(cos 271 cos 272 + 1 + cos g sin 271 sin 277) (2.7)

24

We get
cos2a = 2cos’a — 1 = cos 21 €os 272 + sin 271 sin 25 cos do (2.8)

from (2.7).

On the other hand, we compute the spherical distance ¢ between the two points in the base
sphere corresponding to (7y1,0) and (72,02). It is the third side of a spherical triangle with angle
69 — 0 = 09 at the north pole and sides a = 2y; and b = 27,. By the spherical cosine law,

cos ¢ = €os a cos b + sin a sin b cos 09

= €08 271 cO8 2y2 + sin 21 sin 22 cos do

From this and (2.8), we conclude that ¢ = 2a.
Therefore, the angular distance between C' and D after applying a Hopf map is 2a. O

Corollary 2.12. The images of a set of great circles S in a 3-sphere under a right Hopf map
are independent of choices of a great circle or a Cartesian coordinate system. The right Hopf
bundle is unique up to rotations and reflections.

Proof. A map from one image of S to another image is an isometry since it preserves geodesic
distances between pairs of points in the image of S. O

The following theorem summarizes the relations of right pairs and isoclinic rotations. The
analogous statement is valid for left pairs as well.

Theorem 2.13. For a pair of great circles C' and D, C and D is a right pair at angle o, o if
and only if D is an orbit under all right rotations that leave C' invariant.

Proof. By Lemma 2.5 and Lemma 2.6, there exists the family F of right rotations that leave C
invariant and orbits of F are great circles of a 3-sphere. By Lemma 2.7, the set of these orbits
is equivalent to the set of fibers in the (unique) right Hopf bundle containing C'. Thus, a circle
D is an orbit of F if and only if C and D are in the common right Hopf bundle. Lemma 2.9
implies that C' and D are indeed in the common right Hopf bundle. O

2.5 The Coxeter Classification of Four-dimensional Point Groups

The new algorithm treats the case that a given point set can be generated by a series of reflections
as a special case. Our algorithm uses the classification of Coxeter groups to argue that the
cardinalities of point sets that have a high degree of symmetry are bounded. To this end, this
section provides the classification of such groups in 4-space and shows the computation of inradii
of fundamental regions of such groups.

The discrete groups generated by mirror reflections have been classified in arbitrary dimen-
sion, cf. [14, Table IV on p. 297]. Each of these groups of rank d can be represented by a
collection of mirrors 71,...,rq such that r; - r; = 1 and (r;7;)™% =1 for i # j and m;; > 2; such
a group is called a Coxeter group. The value of m;; specifies the dihedral angle between mirrors
r; and rj as m/m;;. The Coxeter diagram, or the Coxeter graph, explicitly encodes these values
of myisj.

In four dimensions, Coxeter groups were first enumerated by Edouard Goursat in 1899:
There are five irreducible groups, which are the symmetry groups of the six regular 4-dimensional
polytopes and the demihypercube, called A4, Cy, By, Fy and G4 according to [14] (or alternatively
Ay, BCy, Dy, Fy, and Hy in today’s terms). Here, A,, denotes a group related to reflectional
symmetries of a m-simplex. Similarly, C,, is for that of a m-hypercube and a m-cross-polytope,

25

B,, is for that of a m-demihypercube. Fj represents the reflectional symmetry group for a 24-cell
and G4 is for an 120-cell and a 600-cell.

In addition, there are the reducible groups, direct products of lower-dimensional reflection
groups. They are the groups Az x A1, C3x A1, G3x A1, and D5 x DI, for p,q > 2, where G35 is the
symmetry group of the icosahedron and the dodecahedron, C's is the symmetry group of the cube
and the octahedron, and D is the dihedral group of order 2p, (denoted as I>(p) alternatively,) the
symmetry group of the regular p-gon. Some groups have alternative representations: D3 = Cj,
D2 = A; x Ay, D% = Ay, and D} = Cy. For reducible groups, their mirrors fall into two or
more classes such that each mirror in one class is perpendicular to the mirrors in the other
classes. Since reflections at perpendicular mirrors commute, this is how reducible groups yield
the decomposition into a direct product of smaller groups.

The arrangement of all mirror hyperplanes of a reflection group cuts the 3-sphere into equal
cells, which can be taken as the fundamental regions of the group. These fundamental regions
are not necessarily equal to the Voronoi regions of the point set; the Voronoi regions are usually
cut into smaller cells by mirrors passing through the centers of the regions. It is known that the
fundamental region of a reflection group is a spherical simplez, see [14, Theorem 11.23]. Thus,
in 4-space, the fundamental region is a spherical tetrahedron T, and the group is generated by
four independent reflections.

The inradii of fundamental regions of Coxeter groups are of our particular interest for Sec-
tion 5.3.

2.5.1 The Radius of an Inscribed Sphere of a Fundamental Region

By using the Coxeter diagrams [14, Table IV on p. 297] and Table 2.1, we know the dihedral
angles between bounding mirrors of fundamental regions of Coxeter groups. Each vertex in a
Coxeter diagram represents mirrors. Any pair of vertices with no edge means a pair of perpen-
dicular mirrors. An edge with no number connects a pair of mirrors whose dihedral angle is
/3. Edges with number p implies a dihedral angle 7/p.

Among all four-dimensional Coxeter groups, we are interested in the finite list, excluding the
infinite family DY x DZ; that is, A4, C4, By, Fy, G4, A3 x A1,C3 x Ay, and G3 x A;. Given the
dihedral angles, normal vectors of the vertices of a spherical tetrahedron 7" can be computed,
since when the dihedral angle between two mirrors 4 and j is 7/m;j,

N - Ny = cos(m — m/my;) = — cos(m/myj)

where 7;, ; are unit normal vectors to mirrors ¢ and j and - is an inner product.
Table 2.1 enumerates such normal vectors for the
above groups. The unit normal vector of the ¢th bound-
ing mirror in a diagram is in the ¢th row. For example,
for A4, the first two bounding mirrors form an angle
/3 and the corresponding unit normal vectors in the
outward directions from the fundamental region form an
angle m—m/3. That is why the inner product of the first
two normal vectors for Ay is cos(27/3) = — cos(n/3).
We call the distance from the center of the inscribed
sphere of a spherical tetrahedron T to the mirrors the
Euclidean radius of T. We compute the Euclidean ra-
dius Ry of each spherical tetrahedron T' that is a fun-
damental region of one of above groups as follows.
Each bounding mirror r; of T spans a hyperplane
H; going through the origin for ¢ = 1,2,3,4. After

Figure 2.2: A two-dimensional ana-
logue of finding the radius Ry of an
inscribed O-sphere in a spherical 1-
simplex T.

26

translating each H; in the orthogonal direction of H; toward the interior of the fundamental
region by distance 1, let p be the intersection point of these translated hyperplanes. This point
has equal distance 1 from all hyperplanes, but it does not lie on the unit sphere. Let d; be the
distance of p from the origin O. Then, by rescaling the segment Op by 1/§;, we get the center
¢ of the inscribed sphere, and the Euclidean radius of T is Ry = 1/dp,, see Figure 2.2. The
approximated values of the Fuclidean radii Ry of fundamental regions of 4-dimensional finite
Coxeter groups are computed in this way. These values are given in Table 2.1.

The smallest Euclidean radius occurs for G4 and its value is Ry > 0.039102328. Thus, the
minimum distance 2Ry > 0.0782 as it is claimed in the following lemma.

Lemma 2.14. Let G be a subgraph of a closest-pair graph of a point set in 4-space such that G
contains no zero-degree vertices. If every component of the graph G is the orbit of a point under
a four-dimensional symmetry group which is not DY x D3, then the minimum distance § is at
least 0.07 > 4.

Proof. For each fundamental region 7', we consider all possibilities how the orbit of a point
ug € T might give rise to a component of G. We have to place ug on some facets F' of T and
equidistant from the remaining facets of T. If the point is not chosen equidistant from the
other faces, the closest-pair graph would not contain edges that generate all four mirrors. The
minimum distance is achieved when wug lies in the interior of T and F' = @. We analyzed each
of the eight groups case by case in Table 2.1. This minimum distance § = 2Ry = 0.0782 occurs
when wug lies in the center of a barycentric subdivision of the facets of a 120-cell or of its dual,
a 600-cell among the eight groups. O

27

Groups | Coxeter Diagrams Normal Vectors Ry
(1, 0, 0, 0)
<_%7 TBa 07 0)
A4 —eo —0o—o (O 1 V2 0) 0.2236067977
©._ 0 —35)
(17 07 07 0)
1 1
*— —0o 0o (_77 75 07 0)
Cy 4 (oﬁ N 0 0.1429000737
Y \/57 \/51’ .
(07 07 _ﬁv %)
(L, 0, 0, 0
(_%7 ?7 07 0)
By o 1 s g 0.1889822365
R A I
((07 _ﬁ? _%a \/i))
1, o, 0, 0
*——o—0o —0o —l, ﬁ, O, 0
Fy 1 ((o v 1 0; 0.09671356812
9 \/§7 \/3i
(07 07 9 %)
(1, 0, 0, 0)
(_ 1+4\/53 10_2\/55 07 0)
G 5 0, -2 V6215 0) 0.03910328003
’ Vio—2v5 y/10-2v5’
(0 0 ~ V10-2v5 \/14—6\/5)
’ ' 2¢/6-2v5" 2v/6-25
(1, 0, 0, 0)
B N)
Agx A | o—eo—o o "z > A 0) 0.3015113445
(07 _ﬁ7 %7)
(0, 0, 0, 1)
(L, 0, 0, 0
o o o o (-%, &%, 0, 0
C3 x A 4 oﬁ V2o 0 0.2108874992
() _ﬁa ﬁﬂ)
(0, 0, 0, 1)
(1, 0, 0, 0)
o (_ 1+4\/57 1022\/57 07 0)
Ga x A 5)) N 0.1303737577
(0, V10-2v5" Vio—2v5)
(0, 0, 0, 1)

Table 2.1: Coxeter diagrams, outward unit normal vectors of fundamental regions, and inradii
Ry of fundamental regions of four-dimensional Coxeter groups.

Auxiliary Tools

3.1 Useful Principles

3.1.1 The Pruning and Condensing Principles

The pruning principle plays one of the most important roles in the new algorithm.

A general scheme of conventional pruning is as follows.

1. Classify a set of points by the value of some function F' on a point.

2. Take only one class of points of the same value of F', preferably the smallest class, into

consideration and temporarily ignore other sets.
We need to make sure that this pruning is canonical, i.e., the function F' is equivariant under
rotations; a function F' of z € A is equivariant under a rotation R if F(R-z) = R- F(z).

For example, given point sets A and B, if there is a point of non-zero distance to the origin
in A, we can prune A and B by their distances to the origin as follows. First, classify points by
their distances to the origin, count the number of points in each class, and temporarily focus
only on the classes of the smallest cardinality Ag, Bs. After pruning by distances to the origin,
we may assume that all the points are in the same distance to the origin, which means that they
are on the same sphere. This is one of the main advantages of pruning. We can assume more
structure on the point set after pruning.

Another advantage of pruning is that it reduces the number of points that we need to
consider. If we can guarantee a size reduction by a factor ¢ < 1, we say that we reduced
the number of points successfully. Then, pruning can be repeated until it gets stuck, without
affecting the time and space complexity. After pruning, we can restart the algorithm from
the beginning with the pruned set without affecting the complexity of the algorithm, since
O(nlogn) + O(cnlogen) + O(c?*nlogc?n) + - - = O(nlogn).

To assure that each pruning reduces the number of points by at least a half, we choose the
set of the smallest cardinality. To ensure that the results of A and B are identical, we use some
lexicographic rule for tie-breaking. We will only say that we “prune by a function F”, without
explicitly mentioning a tie-breaking rule.

We generalize this principle to a more general method, called condensing while maintaining
the advantages of pruning: We condense a finite set A to a nonempty set A’ = F(A) of smaller
size, not necessarily a subset of A, by using an equivariant function F', that is, F(R-A) = R-F(A)
for any rotation matrix R, where F' is a function defined for any finite point set. The condensing
principle can be applied not only to a point set but also to sets of tuples of points by defining
a function F for tuples of points. For example, when we have a perfect matching of the points
A that has been constructed by geometric functions, we can replace the set of edges by the
midpoints of the edges. Afterwards we only consider these midpoints instead of the vertex set
temporarily.

Any rotational invariants, such as distances and angles, can be used as equivariant functions

30

for condensing. The new algorithm also uses functions that are not rotational invariants but
equivariant mappings: canonical axes (see Section 3.2.1) and edge figures (see Section 3.2.2) for
example.

At first glance, condensing and pruning look dangerous because it throws away information.
It could introduce new symmetries, and it might happen that the condensed/pruned sets are
congruent, whereas the original sets are not. Therefore, the condensed /pruned set should be kept
only temporarily. The prime goal of iterative condensing steps is to reduce point sets eventually
to small enough sets A” and B” so that we can afford dimension reduction. Eventually we want
to use dimension reduction techniques either in Section 3.3.1 or Section 5.5.

Pruning and condensing are very powerful and versatile methods, because we can use them
with any equivariant functions or construction that one might think of as long as it is not
too hard to compute. They allow us to concentrate on the cases where condensing makes no
progress, and these cases are highly structured and symmetric. The difficulty is to pick the right
pruning/condensing functions, and to decide how to proceed when pruning and condensing gets
stuck.

3.1.2 Packing Arguments

Packing arguments are used throughout the new algorithm, when we know that the minimum
distance between points or the minimum Pliicker distance between planes is bounded from below
and we want to show that the number of points or planes is bounded from above.

By using volume packing, we can easily establish the following lemma.

Lemma 3.1. If there are m points on an unit d-sphere S* with the minimum distance § then
m - Qd(6/2) < %%

where Q4(5/2) is the volume of the Fuclidean d-ball of radius §/2 and wq is the surface area of
a unit d-sphere SC.

Proof. Those m points can be replaced with disjoint open Euclidean d-balls of radius §/2. This
forms a packing of such balls on the surface of the unit d-sphere. Thus, the sum of volumes of
all those balls is smaller that the surface area of a unit d-sphere. O

Also, we use the “kissing number” in various dimensions. A kissing number is the maximum
number of non-overlapping unit balls each of which touches another given unit ball. The kissing
number is known to be 6 in the plane, 12 in 3-space, 24 in 4-space, and between 40 and 44 in
5-space. In particular, the number of closest pairs, i.e., a pair whose distance is the minimum
among all pairs in a given point set, that share the same point p is bounded by the kissing
number.

The following constants are required in the new algorithm:

e K5 is the kissing number on the surface of an unit 5-sphere S; that is, the maximum

number of non-overlapping unit 5-balls each of which touches another given unit 5-ball in
a surface of S°. Since the kissing number of 5-space is between 40 and 44, this number is
less than or equal to 44. By defining Ko similarly on a circle, it is known that Ko < 6.
Instead, we use the number 5 directly for the upper bound. We often use the kissing
number 12 in 3-plane as well.

e Jy := 0.0005 is the constant for applying the 1+3 dimension reduction. If the minimum
distance of a point set is greater than dg, the size of the point set is at most ng, where ng is
the maximum packing of 3-balls of radius dp/2 on a unit 3-sphere S3. Then, we can apply
the dimension reduction principle in Section 3.3.1 without affecting the time complexity.

31

Otherwise, we need to go through other condensing procedures. The value of §y will be
justified in Lemma 5.2 in Section 5.2.

Since the surface area ws of S® is 272 and the volume Q3(80/2) of a 3-ball of radius do/2
is %71’((50/2)3, by Lemma 3.1, a rough estimate of the upper bound of ng is

4
ng < 27r2/(§7r(50/2)3) < 3.016 x 10™. (3.1)

e (] denotes the maximum number of planes at pairwise Pliicker distance greater than or
equal to dpin. This bound is used will be used in Algorithm M. Here 0y, is defined as
follows. The Pliicker distance of two isoclinic planes P, (Q is dmin if P,Q are mapped to
two adjacent vertices of an icosahedron by a Hopf fibration. By Lemma 2.3, the Plicker
distance between two planes of angle o, a is v/2sin @ and by Lemma 2.11, such two planes
are mapped to a pair of points of geodesic distance 2a by the Hopf fibration. The edge

length of an icosahedron with a circumscribed unit sphere is dico = V50 — 10v5 /5 so the
geodesic distance of two vertices in the sphere is

Zarcsin(% - dico) ~ 1.107148718.
Then the angle between two such planes is
Qmin = arcsin(% - dico) ~ 0.5535743590.
The Pliicker distance of such pair of planes is
Omin = V2 sin(arcsin(% - bico)) A 0.7434960688.

The Grassmannian G(2, R*) with Pliicker distances can be regarded as a double cover of
the unit 5-sphere. By Lemma 3.1, the upper bound can be computed as

¢ < w3/(%”2(5min/2)5>7

since the surface area ws of a unit 5-hemisphere is 72 and the volume Q5(8min/2) of a 5-ball
of radius dmin/2 is 172 (6min/2)°. Thus,

Cy < 829. (3.2)

This bound is a rough estimate and the correct bound is likely to be much smaller. Packing
in Grassmannian spaces has already been considered by Conway, Hardin and Sloane [12].
They used the chordal distance defined as /sin’ o + sin® B for a pair of planes at angle
{a, 8} to provide the experimental bounds. See before in Section 2.3 for comparisons with
Pliicker distance. According to their experimental results, for planes in 4-space, when there
are 37 planes, the maximum chordal distance is at most approximately 0.728633689875024.
Their results suggest that a smaller upper bound of C is likely to exist.

3.2 Representation Details

3.2.1 Canonical Axes

The canonical-axes construction is a well-known procedure for detecting the rotational sym-
metries in a planar point configuration [28, 4, 20]. We use this construction in Step C11 of

32

Algorithm C in Section 5.1. We can encode labeled-point sets on a circle as a cyclic string.
This can be done by alternating between labels for a point and angular distances between two
adjacent points [28].

In addition, by making cyclic shifts in this string so that the string becomes lexicographically
smallest, but still starts with labels (not angles), we can get a unique representation of points
on a circle with labels. These starting points that yield the same string give rise to a set of p
equidistant rays starting from the origin. We call a collection of these points canonical azes.
Canonical axes can be found in O(nlogn) time when n is the number of labeled points by
standard string-processing techniques [27]. Canonical axes have the same rotational symmetries
as the original configuration.

We assume labels are preserved under rotations. Then, if a circle K is mapped to a circle
K, canonical axes of K are mapped to canonical axes of K’, so canonical axes are equivariant
under rotations.

Moreover, canonical axes are more special than most other equivariant functions. If canonical
axes of a circle K are mapped to canonical axes of another circle K’ by a rotation R, K’ itself
is also mapped to K by R, so the converse of equivariance is also true.

In this context, we define a canonical set and a canonical set procedure as a special condens-
ing. Refer to Section 5.5 about a canonical set procedure. Canonical axes are the result of a
canonical set procedure for a circle and rotational symmetries on a circle. The new algorithm
employs a canonical set procedure for a square torus and translational symmetries on a torus.
See Section 5.5.

3.2.2 Representation of Congruence Types

Assume that a geometric graph G is given. A vertex figure of a vertex v, that is, v together with
its neighbors, is first introduced by Atkinson’s algorithm [5] (refer 1.3.2). Atkinson also argued
that a vertex figure can be encoded in a string of length O(1) if the vertex is of bounded degree
but he omitted the details about how to actually represent a vertex figure. The new algorithm
uses vertex figures and also introduces an extended concept called an edge figure of an edge uwv,
that is, all neighbors of v and v together with the edge uwv.

In this section, the representation details of a vertex figure, and of an edge figure are de-
scribed. We assume that a given graph G = (V, F) is a directed graph embedded in a 3-sphere
S3 such that all the edge lengths are the same and G has its maximum degree at most 12. This
is because we use vertex figures and edge figures for a directed copy of a closest-pair graph on
a 3-sphere. The kissing number in 3-space is 12.

Let us begin with a vertex figure. We may consider a vertex v of degree greater than 2,
because if a vertex v is of degree 1, there exists only one congruence type of the neighborhood of
v and if a vertex v is of degree 2, the angle between two incident edges determines its congruence
type.

Then, we can choose two distinct incident edges va and vb such that an angle Z(avb) attains
the minimum among all pairs of such edges. We order a and b and call these two edges a base
pair. Observe that the vectors vO (O is the origin), va, vb are not coplanar. Otherwise v,a,b
are in a great circle, v has only a and b as its neighbors and v is of degree two.

Let ni,n9,n3 be the vectors obtained by applying the Gram—Schmidt orthogonalization
process to the ordered vectors vO, va, vb. Let ng be the unit normal vector to 3-space spanned
by n1,ne, ng such that a basis ni, no, ng, n4 is positively oriented. Four vectors ni,no,ng, ny can
endow a Cartesian coordinate system with the new origin v. Sort all the coordinates of other
neighbors of v lexicographically. Tag each coordinate with direction labels, -1 for outgoing edges
and +1 for ingoing edges at the end of the coordinates. The concatenated string of coordinates
in the increasing order is a corresponding string to the base pair va and vb. Obtain such strings

33

for all the base pairs and tag direction labels for the base pair. Sort those obtained strings. The
lexicographically-smallest string is the congruence type of the vertex v, or the representation of
the vertex figure of the vertex v.

The congruence type of a directed edge uv is defined similarly by using a Cartesian coordinate
system endowed by some base pair. In this case, we choose the base pair in a way that the base
pair always includes uv and another incident edge va in the base pair forms the minimum angle
to uv.

For both vertex figures and edge figures, it takes time O(c?logc) = O(1) for construction
and is of length O(c) = O(1) where the maximum degree ¢ < 12.

3.3 Leaping From Previous Ideas

3.3.1 1+ 3 dimension Reduction

In 4- or higher-dimensional space, the first approach by Alt et al. [2] is by dimension reduction.
One of the dimension reduction methods for the new algorithm is more a variant of one in
Akutsu [1], although Akutsu’s method is also similar to the method by Alt et al. Their differences
and details was described earlier in Section 1.3.3.

Our variant of the dimension reduction method is as follows. We pick an arbitrary point
ag € A. This point must be mapped to one of the points in B. For any b € B, we try to rotate
A so that ag lies on b. To look for rotations R that leave this point fixed, we project A and
B on the hyperplane H perpendicular to Oag = Ob. To each projected point, we attach the
signed distance from H as a label. A rotation in H that preserves labels can be extended to a
rotation R that fixes the point ag. For each b € B, the problem is thus reduced to the one-lower
dimensional congruence testing problem for labeled point sets.

The new algorithm uses this method for A and B in 4-space in the following situation.
Suppose that we know pruned sets Ay, By obtained by A and B such that |Ag| < ng and Ay
is mapped to By by the pruning principle where ng is defined in (3.1). Then by limiting the
choice of ag in Ay and the choice of b in By, we can check the congruence of A and B in time
O(nonlogn) = O(nlogn) by known methods for 3-space.

3.3.2 Closest-pair Graphs

A closest-pair graph of a given point set P is a graph G such that each point in P is a vertex
of G and a pair of vertices p and ¢ in P forms an edge if and only if the distance between p
and ¢ achieves the minimum distance among all the pairs in P. A closest-pair graph is different
from a nearest-neighbor graph, a directed graph each of whose edge from p to ¢ indicates that
q is a nearest-neighbor of p. In particular, a nearest-neighbor graph is a directed graph, since
the nearest-neighbor relation is not symmetric and each vertex of a nearest-neighbor graph is
of strictly-positive outdegree. On the other hand, a closest-pair graph is undirected and some
vertices of a closest-pair graph may have zero degree.

Notable characteristics of a closest-pair graph are: (1) it can be constructed in time O(n logn)
by divide and conquer [32, 6] in any fixed dimension, (2) the degree of each vertex is bounded
by the “kissing number”, as described earlier in Section 3.1.2; and (3) the number of edges is at
most linear to the number of vertices because of (2).

By taking advantage of these characteristics, closest pairs were already used in previous
work [5, 10]. See before in Section 1.3.2. The new algorithm computes a closest-pair graph
of not only input point sets in 4-space but also sets of planes in Pliicker space. See before in
Section 2.3.

34

3.3.3 Finding Representative Points from a 2-sphere: Algorithm K

The following algorithm is a variant of Atkinson’s algorithm [5] (refer to Section 1.3.2) to con-
dense a finite point set in a 2-sphere. Although Atkinson’s algorithm preserves rotational sym-
metries as a canonical set procedure (refer to Section 3.2.1 and Section 5.5.1), this algorithm
is rather an efficient condensing method. The algorithm finds at most 12 representative points
in S? by condensing as in Lemma 3.2. This algorithm is used in Section 5.4 to condense great
circles in the same Hopf bundle.

Lemma 3.2 (Algorithm K). There is a procedure that reduces a set F' of points on the 2-sphere
S? to a nonempty set F' of at most min{12,|F|} representative points on S?, in O(|F|log|F|)
time. These points are either the vertices of a regular tetrahedron, a regular octahedron, a reqular
icosahedron, a single point, or a pair of antipodal points. This mapping from sets I to sets F’
is equivariant under rotations and reflections.

Proof. We repeatedly prune the set F. We start by computing the convex hull of F. If it does
not contain the origin, we can immediately output the vector pointing to the center of gravity
of the points as a representative. If the hull is one-dimensional or two-dimensional, we get two
antipodal points as representatives.

We can thus assume that the hull is a three-dimensional polytope. If the vertex degrees are
not all the same, we prune the point set and restart. We can thus assume that the graph of the
polytope is regular, and by Euler’s formula, the degree d can be 3, 4, or 5. Euler’s formula also
yields the number f of faces in terms of the number n of vertices: f = (d—2)/2-n+2 < 3n+2.
We now try to prune by face degrees. If there are different face degrees, we replace F' by the
centroids of the smallest class of faces, and restart. We have condensed |F| at least by a factor
of 3/4 (the additive term +2 is negligible as long as |F'| is large). The remaining case is when all
face degrees and all vertex degrees are equal. Then the polytope must have the combinatorics
of one of the five regular polytopes: the tetrahedron, the octahedron, the icosahedron, the cube,
or the dodecahedron. For the cube and the dodecahedron, we take the centroids of the faces
and thereby reduce the number of points.

We are left with the case of the tetrahedron, the octahedron, and the icosahedron. If the
edges don’t have the same lengths, we condense and replace F' by the midpoints of the smallest
edge class. This will lead to a reduction in the number of points, except for an octahedron and
icosahedron with two edge lengths, each occurring at least 6 times or 12 times, respectively.
We claim that the triangular faces cannot be all congruent in this case, and we can prune the
8, resp. 20, faces by congruence type, leading to a reduction to at most 4 resp. 10 triangle
centroids. If the triangles were all congruent, their sides would all have to be long-long-short or
long-short-short. This would mean, for the octahedron, that the 12 edges’ lengths are divided
in the proportion 4 : 8, and in that case we could have condensed by the edges. The same
argument works for the icosahedron, because the 30 edges’ lengths are divided in the proportion
10 : 20.

Thus, the only cases where pruning cannot proceed are a tetrahedron, or an octahedron, or
an icosahedron made of regular triangles. These must be the regular polytopes.

The most expensive part in each pruning step is the computation of the convex hull, which
takes O(n'logn’) time, where n' is the size of the current point set. Each step reduces n’ by a
constant factor of at most 11/12. Thus the overall running time is O(|F|log|F). O

The New Algorithm
in 4-space

37

Finally, the new optimal algorithm in 4-space is introduced in this part. Chapter 4 describes
the flow of the new algorithm and how all the modules are related.

As can be seen in Figure 4.1, the new algorithm consists of six main modules; iterative prun-
ing, generating orbit cycles, marking and pruning great circles, the mirror case, 242 dimension
reduction and 143 dimension reduction. The module called “143 dimension reduction” is al-
ready well explored in Section 3.3.1. We explain the rest of other five modules in Chapter 5.
Each section of Chapter 5 covers one of the remaining five modules.

It is likely that our algorithm can be simplified. We also believe that the constants in the
bounds are certainly larger than the actual bounds.

This algorithm was published in [26] by joint work with Giinter Rote.

Overview of the New Algorithm

Preliminaries. For packing arguments, we denote by K, the kissing number on S%: the
maximum number of equal interior-disjoint balls on the d-dimensional sphere S? that can si-
multaneously touch a ball of the same size. We use the known bounds Ky = 5, K3 = 12, and
40 < K5 < 44.

We will declare the problem to be trivially solvable if the closest-pair distance ¢ is large,
i.e., & > 6o := 0.0005. This implies that the input size |A| is bounded by ng < 3.016 x 10!,
and hence, by 1+3 dimension reduction, the problem can be reduced to at most ng instances of
3-dimensional congruence testing, taking O(nlogn) time overall.

Remark. Whenever we apply some procedure, e.g., condensing, on A, we will apply the
same procedure to the other set B in parallel but we will mostly describe those steps only for
the set A. If A and B are congruent, B will undergo exactly the same sequence of steps as A.
If a difference manifests itself at any point, we know that A and B are not congruent, and we
can terminate.

General Flow. We first give a rough overview of our algorithm, omitting details and some
special cases. See Fig. 4.1.

lower-dimensional < 100|P| markers
components |
i Mirror .
e 0) Marking and) -
symmetry | Case great circles P) planes | 242 Dimension
v Condensing .
lterati |P] < n/200 . Reduction
terative | | dge- G " Great Circles
- age enerating |
Pruning transitive . 5 . .
- Orbit Cycles _ 143 Dimension
T <z n = |A] is bounded .
Reduction

Figure 4.1: The general flow of the algorithm.

Our goal is to apply the condensing principle repetitively until we can apply either of the
two dimension reduction principles to the original input point sets (not to the pruned sets): 1+3
dimension reduction (see Section 3.3.1) or 242 dimension reduction (see Section 5.5). The 1+3
dimension reduction makes a line and the orthogonal 3-space invariant, and the 2+2 dimension
reduction makes two orthogonal 2-planes invariant.

Whenever the number of pruned points is smaller than some chosen threshold ng, we can
afford 143 dimension reduction as mentioned in the preliminaries. If we finds a set P of equiv-
ariant great circles from A and B, such that 1 < |P| < C1, where C is defined in Section 3.1.2,
we can trigger 2+2 dimension reduction.

By applying the 242 dimension reduction technique described in Section 5.5, the problem
boils down to congruence testing of “labeled” points on a two-dimensional torus under trans-

40

lations. This problem can be solved in O(nlogn) by reducing a point set but still preserving
symmetries and by using the Voronoi regions as the neighborhood structure.

The congruence testing algorithm begins with pruning by distance from the origin. We may
thus assume without loss of generality that the resulting set A’ lies on the unit 3-sphere S ¢ R*.

In iterative pruning (Section 5.1), we first check if the minimum distance 6 between points of
A’ is bigger than the threshold dy. If yes, we conclude that |A’| < ng and trigger 1+3 dimension
reduction. Otherwise, we construct the closest-pair graph G on A’. Then we prune the edges of
G by congruence type of its edge figures. An edge figure consists of two adjacent vertices and
all their neighbors. We apply pruning with other criteria to the set A’ until the resulting set Ag
cannot be further reduced. Then, all edge neighborhoods in the graph G are congruent. This
allows us to find either orbit cycles in G, or a subset of Ag with mirror symmetry. An orbit cycle
is a cyclic path ajaz ... aga; with a rotation R such that Ra; = a(; mod r)+1; in other words, it is
the orbit of the point a; under a rotation R.

Mirror symmetry is the symmetry that, for each edge of G, swaps the two endpoints and
maps the whole point set onto itself. It implies that the point set Ay must be related to one of
the regular four-dimensional polyhedra, or Ay (and G) is the Cartesian product of two regular
polygons in orthogonal planes. This follows from the classical classification of discrete reflection
groups. The former case can be excluded, since § < dp, and in the latter case, we can proceed
to Section 5.4 for marking and condensing great circles. See Section 5.3.

Let us look at the case when we have found orbit cycles (Section 5.2) or a set of pairs of
regular polygons in orthogonal planes (Section 5.3). Geometrically, an orbit cycle lies on a helix
around a great circle C' and a pair of orthogonal planes intersect a sphere as a pair C,C’ of
great circles. Thus, we get a collection P of great circles on S?. We treat these great circles
as objects in their own right, and we construct the closest-pair graph on P. For this, we use
the Pliicker embedding of the corresponding planes into S°/Z, = RP°, mapping each plane to a
pair of antipodal points on the 5-sphere S°. Then, we construct a closest-pair graph of planes
with respect to the Pliicker distance, defined as a normalized Euclidean distance in the Pliicker
embedding. Refer to Section 2.3 for the Pliicker embedding and Pliicker distance.

For each closest pair (C, D) of great circles in P, if they are not isoclinic (i.e., the projection
of C' to the plane containing D is a ellipse but not a circle) the major axis of this ellipse marks
two points of C as described in Paragraph “Equivalent Definition by Orthogonal Projections” in
Section 2.2. The set of all markers replaces the set Ag. This completes a successful condensing
step, and we restart and continue pruning as before.

Otherwise, all projected “ellipses” turn out to be circles. In this case, we can find a subfamily
of great circles in a special position: they must be part of a Hopf bundle of circles. The circles
of a Hopf bundle can be mapped one-to-one to points on the 2-sphere S%. See Section 2.4. We
can thus use the condensing procedures for a 2-sphere in three dimensions as in Section 3.3.3.
This yields a small set P of at most 12 great circles. Then, we can apply the 2+2 dimension
reduction technique.

The details for marking or condensing great circles are actually more complicated, since we
might have a phase in which P is successively pruned, see Section 5.4.

This concludes the summary of the algorithm. The steps of the algorithm involve several
different operations: We need closest-pair graphs in 4 and 6 dimensions. The closest-pair graph
of k points can be calculated in O(klog k) time in any fixed dimension, by a classical divide-and-
conquer approach [6]. We also compare a pair of edge figures in S* but this takes only time O(1)
because the maximum degree is at most 12. We also need Voronoi diagrams in two dimensions
and convex hulls in three dimensions. Finally, we need to sort lists of numbers lexicographically.
In summary, we will be able to reduce the size of the current point set A’ by a constant factor
less than %, in O(|4'|log|A’|) time, until dimension reduction is possible.

41

Hence, we obtain the following theorem.

Theorem 4.1. We can decide if two n-point sets A and B in 4-space are congruent in O(nlogn)
time and O(n) space.

Five Crucial Modules

5.1 Iterative Condensing Based on the Closest-Pair Graph: Al-
gorithm C

After pruning by the distance to the origin, we have a set A C R?* of n points with equal distance
from the origin. This set may already be the result of some previous condensing steps. Without
loss of generality, we may assume to be given a set A on the unit sphere S3. We construct the
closest-pair graph G for a point set A on the 3-sphere and try to condense it.
In this section, we perform an algorithm, which is a sequence of pruning and condensing to
obtain a new equivariant point set A’ that is in one of the following cases:
(i) the closest distance ¢ of A’ is greater than dy, or

(i) the closest-pair graph of A’ has mirror symmetry, or

(iii) the closest-pair graph of A’ is in the edge-transitive case.
If (i) happens, we apply 143 dimension reduction. If (ii) or (iii) happens, we proceed to Algo-
rithm M in Section 5.3 or Algorithm O in Section 5.2 respectively. Those sections explain how
to reduce the cases to 2+2 dimension reduction.

Congruence of
0 > 07 e - - pruned a P-S Figure
o P not
* T pruned
Constructing . Degree [nitializing . Updating
a Closest-pair Graph not] } a P-S Figure Predecessors
pruned pruned
v ?no prunch
Directed op Mirror Canonical Axes
Edge Figure|| Pred|Symmetry? of a P-S Figure [+
yyes not pruned
| 1+3 Dimension Mirror| Generating
yes . . .
Reduction Case Orbit Cycles

Figure 5.1: Iterative pruning. The shaded boxes represent pruning/condensing steps with prun-
ing criteria or condensing methods.

We first explain the notion of a predecessor-successor figure in G. We have a directed edge
uv of G together with a set of predecessor edges p(uv) incident to v and a set of successor edges
s(uv) incident to v, as in Fig. 5.2a. All edges have the same length, their endpoints lie on the
3-sphere S3, and all predecessor and successor edges form the same angle a with uv. Then the

44

endpoints of these edges lie on two circles. If we reflect the predecessor circle at the bisecting
hyperplane of uwv, it comes to lie on the successor circle. This results in one circle with a succinct
representation of the geometric situation. See Fig. 5.2a and Fig. 5.2b. We refer to the endpoints
of the predecessor and successor edges as predecessors and successors.

s(uw) w

[CICI AW

(a) (b) () (d) (e)

Figure 5.2: (a) Predecessors and successors of uv at angle a; ¢’ is the reflected copy of ¢ on
the successor circle. (b) The corresponding predecessor-successor figure, and the torsion angle
T(tuvw). Predecessors are drawn white and successors black. (¢) An edge-transitive predecessor-
successor figure with torsion angle 7y. (d) Canonical axes. (e) Mirror symmetry.

The following algorithm guarantees that the outcome A’ is in one of the promised cases.

Algorithm C (Prune the closest-pair graph). We are given a set A C R* of n points, equidistant
from the origin. This set may already be the result of some previous condensing steps. Without
loss of generality, we may assume that A lies on the unit sphere S3.

C1.

C2

C3.

C4.

C5.

C6.

Cr.

[Well-separated points?] Compute the closest distance § between points of A. If § > §p =
0.0005, apply 143 dimension reduction. (]A| is bounded by a constant.)

[Construct the closest-pair graph.] Construct the closest-pair graph G, and initialize the
directed graph D with two opposite arcs for every edge of G. (This takes O(nlogn) time,
and the degrees in G are bounded by K3 = 12.)

[Prune by degree.] If the indegrees and outdegrees in D are not all the same, prune the
vertices by degree, and return to C1, with the smallest class A’ taking the role of A.
(Otherwise, we now enter a loop in which we try to prune arcs from D.)

[Prune by directed edge figure.] The directed edge figure of an arc uv € D consists of uv
together with all arcs of D out of v and all arcs of D that lead into u. If the directed
edge figures are not all congruent, prune the arcs of D by congruence type of directed
edge figures, and return to C3. (Here we apply the pruning principle not to points but
to arcs and we replace the edge set D by a smaller subset D’. Since the degrees are
bounded, we can compare two directed edge figures in constant time.)

[Mirror symmetry?] (Now all arcs have the same directed edge figure.) If the direct
edge figure of uv is symmetric with respect to the bisecting hyperplane of uv, proceed
to Algorithm R (Section 5.3).

[Choose an angle o with no mirror symmetry.| Pick an angle « for which the predecessors
and successors are not completely symmetric, that is, the predecessor-successor figure
does not look like Fig. 5.2e.

[Initialize Successors.] For every arc uv € D, set s(uv) := {vw : vw € D, Zuvw = a}.
(The size of s(uv) is bounded by K = 5. We will now enter an inner loop in which we
try to prune arcs from the sets s(uv).)

45

C8. [Update predecessors.] Define the predecessor edges by p(uv) := {tu : uwv € s(tu) }.
Build the predecessor-successor figure for each arc, as explained in the text above.

C9. [Prune by predecessor-successor figures.] If there are arcs whose predecessor-successor
figures are not congruent, prune the arcs of D accordingly, and return to C3.

C10. [Check regularity.] (Now all arcs have the same predecessor-successor figure. Each
figure must contain the same number k of predecessors and successors, since the total
number of predecessors in all figures must balance the total number of successors.) If
the predecessor-successor figure consists of two regular k-gons, proceed to Algorithm O
for generating orbit cycles, see Section 5.2. (We call this the edge-transitive case. See
Figure 5.2c.)

C11. [Prune successors by canonical axes.] Prune s(uv) to a proper nonempty subset by
computing canonical azes as explained in Section 3.2.1, and return to C8.

An example of canonical axes is depicted in Fig. 5.2d. If canonical axes consist of p axes, we
know that p < k because the maximally symmetric case of two regular k-gons (the edge-transitive
case shown in Fig. 5.2c) has been excluded in Step C10. The loop from C8-C11 maintains the
following loop invariant on entry to Step C10:

There is a position of a successor that is not occupied by a predecessor. (5.1)

For the reduction in Step C11, we rotate the canonical axes counterclockwise until they hit the
first position of type (5.1). The successors that are intersected by the canonical axes form a
nonempty proper subset s’ C s(uv). We thus replace s(uv) for each edge uv by s’ and return to
Step C8. By construction, we have made sure that (5.1) still holds. After pruning all successor
sets, the predecessor sets are reduced accordingly in Step C8, but this cannot invalidate (5.1).
(The invariant (5.1) holds on first entry to the loop because of Step C6.)

The algorithm has three nested loops (indicated by indentation) and works its way up to
higher and higher orders of regularity. After C3, all vertices have the same degree. After C4, we
know that all pairs of adjacent vertices look the same. If we exit to Algorithm O in Step C10,
wee will see that certain chains of four points can be found everywhere.

There is the global loop that leads back to C1 after each successful pruning of vertices by
degree. Since the size of A is reduced to less than a half, we need not count the iterations of this
loop. In addition, there is an outer loop that resumes working at C3 after pruning the edges
of D, and an inner loop that starts at C8 and is repeated whenever the successor set s(uv) is
pruned. In these loops, we maintain that D # @ and s(uv) # @. In Step C3, if we have removed
at least one edge from D, we will either be able to prune by degree, or the degree of all vertices
has gone down by at least one. Since the degree is initially bounded by 12, Step C3 can be
visited at most 12 times before exiting to C1. Similarly, Step C11 removes at least one element
of s(uv), so this loop is repeated at most 5 times before there is an exit to the outer loop in
step C9. The most time-consuming step is the construction of the closest-pair graph in Step C2.
All other operations take O(n) time, not counting the exits to Algorithms M and O. Thus, the
overall time is O(|A]|log |A]).

46

5.2 Generating Orbit-Cycles: Algorithm O

We now describe how, in the edge-transitive case, the algorithm O produces a set P of at
most |A|/200 great circles. All predecessor-successor figures look like Fig. 5.2c. The torsion
angle T(tuvw) between a predecessor edge tu € p(uv) and a successor edge vw € s(uv) is the
oriented angle Z(t'ow) in the predecessor-successor figure of uv. We define 7y as the smallest
counterclockwise torsion angle that appears in the predecessor-successor figure. Let tougvowg
be a fixed quadruple with this torsion angle.

Lemma 5.1. 1. For every asas € s(ajaz), there is a (unique) edge azas € s(agas) such that
ajagaszay s congruent to tougvowg.

2. Moreover, there is a unique rotation Ry that maps tougvowgy to aiasasay

3. For every triple ajazas with asas € s(ajaz), there is a unique cyclic sequence ajay . ..ay
such that a;a;11a;12a;+3 is congruent to tougvowg for all i. (Indices are taken modulo £.)

4. Moreover, there is a unique rotation matriz R such that a;4+1 = Ra;. In other words,
aias . ..ay is the orbit of a1 under the rotation R.

5. The points aias . ..ap do not lie on a circle.

Proof. We first establish two facts about tgugugwy.

The four points tg, ug, vg, wo do not lie on a circle. (5.2)

The three points tg, ug, vg do not lie on a great circle. (5.3

If to, ug, vo, wo would lie on a circle (not necessarily through the origin), the predecessor-successor
figure of ugvg would have a mirror-symmetric predecessor toug € p(ugvg) and successor vowgy €
s(ugvg), in contradiction to the choice of a in Step C6 and to the invariant (5.1). If the points
to, uo, vo lie on a great circle C, then wg would also lie on C', since Ztgugvg = Luguogwg = «, but
this would contradict (5.2).

Now, let a1, ag, ag be any three points with asas € s(ajaz). By the definition of predecessors,
ajay € plagasz). We can thus fit tougvy to ajazas in the predecessor-successor figure of agas.
Since the points tg, ug, vy are not on a great circle, they span a three-dimensional subspace,
and the rotation Ry that maps tgugvg to ajasag is uniquely determined. Since all predecessor-
successor figures are congruent, this means that the edge vowg is mapped to some successor edge
agay € s(agag). This establishes Properties 1, 2, and 5.

This process can be continued: Since agas € p(agay), there is a unique edge aqas € s(agayq)
such that asasaqas is congruent to tpugvowg, and so on.

By Property 2, there are two unique rotations from tyugvowg to ajasagas and to asasaqas,
and thus there is a unique rotation R’ with R[ajasasas] = [azazasas]. We have seen that the
points ajasag are not on a great circle, being congruent to tyugvg and thus the rotation R is
already uniquely specified by the conditions R[ajasas] = [azagas]. We have therefore established
that a;+1 = Ra; for i = 1,2, 3 implies a;4+1 = Ra; for i = 4. This can be continued by induction,
implying that ajasg ... is the orbit of the point a; under the rotation R.

Since the number of points in A is finite, this orbit must return to a; and form a directed
cyclic path ajas...ap in the closest-pair graph D. This establishes Properties 3 and 4.]

We call the cyclic paths that are constructed in Lemma 5.1 orbit cycles. The following lemma
gives a bound on the number of orbit cycles in terms of |A| when the closest-pair distance is
small enough.

47

Lemma 5.2. The number of orbit cycles is at most |A|/200 provided that the closest distance 0
18 smaller than 6o = 0.0005.

Proof. We have a;11 = R, ya; for all i with an appropriate basis x1y122y2 where R, 4 is defined
as (2.1). We cannot have ¢ = 0 or ¢ = 0, because otherwise the orbit would form a regular
polygon aiasasay . ..ay in a plane, contradicting Lemma 5.1.5. Thus, we know that ¢, # 0.
To get a closed loop, we must have |p|, |¢| > 27/¢. If the projection of a; to the z1y;-plane has
norm r; and the projection to the zays-plane has norm 75 with 72 4+ 73 = 1, then the squared
distance is

82 = |lais1 — il = (2r1 sin 1£)2 4 (275 sin 21)2 > 4sin?(n/0).

As a result,
5> 2sin% (5.4)

Note that Fenchel’s theorem [18] yields the same bound. Thus, if 6 < 2sin(7/12000) =~ 0.000523,
it is guaranteed that ¢ > 12000, that is, every orbit cycle contains at least 12000 points. On
the other hand, each point u € A belongs to a bounded number of orbit cycles: it has at most
K3 = 12 incoming arcs tu, and each each arc tu has at most Ko = 5 successor edges uv € s(tu).
The triple tuv specifies a unique orbit cycle, and thus there are at most 12 x 5 = 60 orbit cycles
through u. The total number of orbit cycles is therefore at most |A| - 60/12000 = |A|/200. O

For each orbit cycle, we can find an appropriate rotation matrix R, . If ¢ = £, then the
orbit of any point under this rotation lies on a great circle, contradicting Lemma 5.1.5. Thus,
we get a unique invariant plane that rotates by the smaller angle in itself. We replace each orbit
cycle by the great circle in this invariant plane, yielding the desired set P of great circles with
|P| < |A|/200.

The same computation used in Lemma 5.2 can be used in Section 5.3 to give a bound on the
number of points in a regular polygon inscribed in a great circle. It is stated as the following
corollary.

Corollary 5.3. If the closest distance § < §g and there is a regular k-gon inscribed in a great
circle of a sphere, then k > 12000.

Proof. The same result as Lemma 5.2 holds for a great circle, but not when ¢ = 0 or ¢ = 0.
From (5.4) and 2sin(7/12000) > &g, we find that £ > 12000. O

48

5.3 The Mirror Case: Algorithm R

Algorithm R (Treat mirror-symmetric closest-pair graphs). We are given a nonempty directed
subgraph D of the closest-pair graph on a point set A C S? with closest-pair distance § < §y. All
directed edges in D have equal edge-figures and exhibit perfect mirror-symmetry, as established
in Steps C4 and C5 of Algorithm C. Algorithm R will produce, in an equivariant way, either

a) a set A’ of at most |A]/2 points, or

b) a set P of at most |A|/200 great circles.

R1. [Make D undirected.] Construct the undirected version of D and call it G.

R2. [Check for eccentric centers of mass.] Compute the center of mass of each connected
component of G. If these centers are not in the origin, return the set A’ of these centers.

R3. [Two-dimensional components?] If each component is a regular polygon with center at
the origin, return the set P of circumcircles of each polygon.

R4. [Three-dimensional components?] If each component spans a 3-dimensional hyperplane
H, replace the component by two antipodal points perpendicular to H. Return the set
A’ of these points.

R5. [Toroidal grid.] As it was shown in Lemma 2.14, now each component of D is the product
P x @ of aregular p-gon P and a regular g-gon @ in orthogonal planes, with p, ¢ > 3. Pick
a vertex u from each component. There are four incident edges, and the plane spanned by
two incident edges is orthogonal to the plane spanned by the other two edges. Represent
the component of G by these two orthogonal planes shifted to the origin. Return the set
P of great circles in these planes (two per component).

The algorithm takes linear time. We still need to show that these cases are exhaustive. After
we make D undirected in Step R1, for every edge uv of G, the bisecting hyperplane of uv acts as
a mirror that exchanges u and v together with their neighborhoods. Since the reflected mirror
hyperplanes act again as mirrors, it follows that every component of the graph is the orbit of
some point ug under the group generated by reflections perpendicular to the edges incident to
ug. Thus, the incident edges of a single point determine the geometry of the whole component.
The graph may have several components, all of which are congruent.

There are infinitely-many groups of the form D! x DI, where D} is the dihedral group of
order 2p, the symmetry group of the regular p-gon. These groups are treated in Step R5. Except
this infinite family, there are only eight other groups, which can be excluded by Lemma 2.14.
The details have already been described in Section 2.5.

We go through the steps one by one to check if the algorithm achieves the claimed results.
Step R2 treats the case when a (lower-dimensional) component does not go through the origin.
This includes the cases when G is a matching or a union of “small” regular polygons. Every
component contains at least 2 points, and thus |A’| < |A]/2. Steps R3 and R4 treat the two-
and three-dimensional components that are centered at the origin. (The one-dimensional case
of a matching cannot be centered at the origin, because then we would have § = 2.) Suppose
we have a two-dimensional component and this component is a regular k-gon inscribed in a
great circle (Step R3). From § < &g and by Corollary 5.3, we obtain that k& > 12000. Thus
|C| < |A]/12000 < |A|/200. A three-dimensional component (Step R4) contains at least four
points and is reduced to two antipodal points. Again we have |A’| < |A|/2.

49

Steps R2-R4 have treated all cases of Coxeter groups which are not full-dimensional, and
Lemma 2.14 excludes all full-dimensional groups which are not of the form D! x Di. Thus, in
Step Rb5, each component of D is the product P x @ of a regular p-gon P and a regular ¢-gon
Q@ in orthogonal planes, with p,q > 3.

Note that a regular p-gon can be generated as the orbit of a point ug in D} or in Dgp ,
depending on whether we put ug in the interior of the fundamental region or on a mirror. But
this makes no difference for the resulting point set.

Such a component forms a toroidal p x ¢ grid. Each vertex has four neighbors. The two
polygons P and () have equal side lengths &, because otherwise the four neighbors would not
be part of the closest-pair graph G. The two incident edges of a vertex w that come from P
are orthogonal to the two edges that come from @, so we can distinguish the two edge classes.
(The case when all four edges are perpendicular is the 4-cube with p = ¢ = 4 and with reflection
group D3 x Dj. This case has 16 vertices (41/2,+1/2,+1/2,41/2) and minimum distance
9 = 1 and is therefore excluded.) Moreover, the grid cells are geometric squares. Through
these squares, the classification of edges into the edges from P and the edges from () can be
transferred consistently to a whole connected component of G. All copies of P in the grid lie
in parallel planes, and so do the copies of Q). Accordingly, Step R5 represents each connected
component by two orthogonal planes through the origin. We need to show that the component is
large. As P x @ lies on the unit 3-sphere, the circumradii rp and r¢g of the two polygons satisfy
r%)—l—ré = 1. Thus, the larger circumradius, let us say rp, is at least 1/ V2. Since the closest-pair
distance is 6 = 2rp sin% < ég = 0.0005, we get ﬁsin% < ég, which implies p > 8886. Each
component contains pg > p points and is reduced to two circles. Thus, the algorithm achieves
the claimed reduction.

50

5.4 Marking and Condensing of Great Circles: Algorithm M

We have extracted a set P of at most |A|/200 great circles from the point set A, either from
the mirror case (Algorithm R in Section 5.3) or from orbit cycles (Algorithm O in Section 5.2).
Algorithm M obtains a small set A" of marker points on each circle so that we can resume
Algorithm C, or it exits to Algorithm T for 242 dimension reduction (Section 5.5).

For this purpose, we look at the angles «, 3 of pairs of circles C, D € P. If C' and D are
not Clifford parallel, we can mark a pair of points on C and on D respectively. See before
in Section 2.2 to find out angles, Clifford parallelism and marking. Doing this for all pairs of
circles would lead to a quadratic blowup. Therefore we construct the closest-pair graph on the
set of circles. We use Pliicker coordinates to map great circles of S? to points on S>. We can
then compute the closest-pair graph in six dimensions, and every circle has at most K5 closest
neighbors.

Pliicker coordinates and Pliicker distance were explained before in Section 2.3. Lemma 2.3
and Corollary 2.4 in Section 2.3 showed that Pliicker distance is geometrically meaningful and
does not depend on the choice of a coordinate system.

The marking approach fails for Clifford-parallel circles. Clifford-parallel pairs manifest a
very rigid structure on a sphere. Section 2.4 described beautiful properties of such pairs. For
convenience, we restate the results in Section 2.4 using the following proposition. They are
formulated for right pairs of circles, but they hold equally with left and right exchanged.

Proposition 5.4. 1. The relation of being a right pair is transitive (as well as reflexive and
symmetric) (Corollary 2.10). An equivalence class is called a right Hopf bundle.

2. For each right Hopf bundle, there is a right Hopf map h that maps the circles of this bundle
to points on S?* (Lemma 2.7).

3. By this map, two Clifford-parallel circles with angle a,a (and with Fuclidean distance
V2sina on the Pliicker sphere S°) are mapped to points at angular distance 2o on S?
(Lemma 2.11).

4. A circle can have at most Ko = 5 closest neighbors on the Pliicker sphere S° that form
right pairs.

Proof of Property 4. Property 4 is a direct consequence of Properties 2 and 3. O

We need one more ingredient before we can state the algorithm. We have seen that an
auxiliary Algorithm K in Section 3.3.3. Algorithm K condenses a point set on a 2-sphere to a
smaller point set of at most 12 points.

Algorithm M (Mark and condense great circles). Given a set P of great circles on S3, this
algorithm will produce, in an equivariant way, either a nonempty set A’ of at most 100|P| points
on S3, or a nonempty set P’ of at most 829 great circles.

The algorithm will update the set P and maintain an equivalence relation ~ on P such that
all circles in the same equivalence class belong to a common (left or right) Hopf bundle. The
common chirality of all bundles is indicated by a variable chirality € { None, Left, Right}, where
None is chosen when the equivalence relation is trivial and all classes are singletons. The size
of the equivalence classes is bounded by 12.

M1. [Initialize.] Let every circle C' € P form a singleton equivalence class.

M2. [Prune by size.] If equivalence classes are of different sizes, choose the size that occurs
least frequently. Throw away all equivalence classes that are not of this size, together
with the circles they contain.

51

M3. [Few circles?] If |P| < 829, return the set P.
M4. [Singletons?] If all equivalence classes are singletons, set chirality := None.

M5. [Construct closest pairs.] Represent each circle C' € P by two antipodal points on S?,
using Pliicker coordinates. Construct the closest-pair graph H on P with respect to the
distances on S°.

MS6. [Classify edges.| Partition the edges of H into E, U ErU Ep, representing pairs of circles
that are left pairs, right pairs, and not Clifford parallel.

MY7. [Use non-Clifford-parallel edges.] If Exy # @, let N := Ex and go to Step M12.

MBS. [Find non-Clifford-parallel pairs from equivalent circles.| If Er, # @ and chirality = Right,
set No := {{C’", D} | {C, D} € Ep, C"is closest to C among the circles C’ ||+ C, C" # C}
for all C € P, N := Joep Ne and go to Step M12.

M9. (Same as M8, with left and right exchanged.)

M10. [Merge classes.| If E; # & and chirality € {Left, None}, merge equivalence classes that
contain circles that are connected in Ey. Use Algorithm K to condense each resulting class
F to a set I’ of at most 12 representative circles. Set P to the set of all representatives
circles, and put them into the same equivalence class if and only if they come from the
same set F'. Set chirality := Left, and return to M2.

M11. (Same as M10, with left and right exchanged. Since all possibilities are exhausted, the
only remaining possibility in this step is to merge classes and return to M2.)

M12. [Mark points on circles.] (Each pair in N is now a non-Clifford-parallel pair of circles.)
For each pair of circles {C, D} € N, mark the two points on C that are closest to D, and
likewise, mark two points on D. Return the set A’ of all marked points.

The crucial properties for the correctness and the running time are formulated in a lemma:

Lemma 5.5. 1. After the algorithm returns to Step M2 from step M10 or M11, the number
of equivalence classes is reduced at least by half.

2. Algorithm M terminates in O(|P|log|P|) time.
3. In Step M12, N is a nonempty set of at most 25|P| non-Clifford-parallel pairs.

Proof. 1. The only possibility for the algorithm to stall is that the edges of H are within classes,
and no merging takes place in Step M10 or M11. Each class must be one of the five configurations
listed in Lemma 3.2, and the smallest possible angular distance 2y = 1.10715 occurs for two
adjacent vertices of the icosahedron, and a volume packing argument on S° yields that there
can be at most 829 circles with this distance. See Section 3.1.2. Then the algorithm exits in
Step M3.

2. The most expensive step is the construction of the closest-pair graph in Step M5, which
takes O(|P|log |P|) time. The algorithm contains one loop, when returning from M10 or M11 to
M2. Since the number of equivalence classes is geometrically decreasing and each class contains
at most 12 circles, the overall time is also bounded by O(|P|log |P|).

3. When N is constructed in Step M7, there can be at most 22|P| such pairs, because the
degree in H is bounded by K5 < 44. In Step M8, the constructed set A is nonempty: Every pair
{C, D} € Ep, produces at least one element of N, since all equivalence classes contain at least

52

two elements, by M2 and M4. When a pair {C’, D} in N is formed, we have a left pair {C, D}
and a right pair {C,C"}. If {C’, D} were also Clifford parallel, we would get a contradiction to
transitivity (Proposition 5.4.1). Each circle C' € P gives rise to at most 5 -5 = 25 pairs, since a
circle can have at most 5 Clifford-parallel neighbors in H by Proposition 5.4.4. O

We conclude that the algorithm produces at most 100|P| points, four points for each pair in

N.

53

5.5 242 Dimension Reduction: Algorithm T

If we arrive at Algorithm T, we are in the very last step so we should restore the initial input
point sets A and B. This 2+2 dimension reduction is applied when we have already identified
at most C7 pairs of planes P and) from Algorithm M in Section 5.4 such that any candidates
R of congruence mapping from A to B has to map P to Q.

We begin by choosing a coordinate system (x1,y1, Z2,y2) for A so that P becomes the z1y;-
plane, and similarly for B and). We then look for rotations R that leave the ziy;-plane
invariant. Such rotations have the form R = (%1 %) with two orthogonal 2 x 2 matrices
R; and Ry. Since det R = det Ry - det Ry = 1, we try two cases: (a) Ry and Ry are planar
rotations; (b) R; and Ry are planar reflections. We can reduce (b) to (a) by applying the

rotation <6 9e 1) to A. Thus, it suffices to describe (a), where R has the form Ry, in (2.1),

i.e., a combination of a rotation by ¢ in the z1y;-plane and an independent rotation by % in
the zoyo-plane. We use polar coordinates in these two planes by setting

I 1 COS (X1
1 71 8in o .
L= with 71 = /22 + y? and 19 = V22 + w?. (5.5)
T2 9 COS (X9
Y2 T9 Sin vy

The rotation R, changes (v, a2) by adding (¢,) modulo 27, and leaves 71 and 73 unchanged.
In other words, R, acts as a translation on the torus T? = [0,27) x [0,27). We attach the
distances (r1,72) to each point (a1, as) € T? as a label. The problem becomes therefore a two-
dimensional problem of testing congruence under translation for labeled points on a torus. We
denote the two labeled point sets as A and B, and a point of A can only be mapped to a point
of B with the same label.

Points in the x;y;-plane should be considered separately, because s is not unique when
ro = 0, and the same problem occurs for the points in the xays-plane. We will defer the
treatment of these points to the end of this section, and start with other points first.

We now give an algorithm for the following problem: given two labeled point sets A and B
on the torus T2, test if A and B are the same up to translations. We will find a canonical set
of A (and B) which is similar to a condensed set. In contrast to a condensed set, we add no
new symmetries to a canonical set, by updating labels to preserve complete information. Let
Sym(A) for a set A C T? denote translational symmetry group of A, i.e., the set of translations
that map A to itself and preserve labels, if A is a labeled set.

5.5.1 A Canonical Set Procedure

Roughly, our goal is to find simplest subsets A’ and B’ of representative points that still preserve
the same symmetries as A and B respectively. In addition, we want to construct A’ by no
arbitrary decisions. If we can find such subsets, it is enough to compare an arbitrary point in
A’ with that in B’. We construct A’ for a given point set A in some space S and some group O
of symmetries of S in two cases: (i) S = S! (the unit circle), and © are the rotations of St. (ii)
S =S! x S! (the flat torus), and © are the translations on S.

Now, we formally define a canonical set procedure and explain how to use it. We denote by
Symg(A) the symmetry group of A within ©:

Symg(A) ={ R € © | R(A) = A where R preserves labels }.

54

Definition 5.6. A canonical set procedure feano, for a space S and a subgroup © of the sym-
metries of S maps every finite set A C S to a set A’ C S such that the following properties
hold.
1. Symmetries are preserved: Symg(A’) = Symg(A)
2. Symg(A’) acts transitively on A’: For every p,q € A’, there exists R € Symg(A’) that
maps p to q.
3. A’ is defined in an equivariant way from A: If RA = B for some R € ©, and B is mapped
to B’, then B’ = RA’.
We call A’ a canonical set of A.

It follows from the definition that the canonical set A’ is nonempty whenever A is nonempty,
provided that © is an infinite group. It is easy to see that condition 3 is implied by the D part
of condition 1. Thus, if the procedure is equivariant, we only have to prove that A’ does not
have more symmetries than A.

A canonical set procedure is used to check congruence of two sets A, B C S under a congru-
ence from the class © as follows: We compute their canonical point sets A" and B’. We then
pick two arbitrary points p € A’ and ¢ € B, we find the unique rotation R € © that maps p to
¢, and finally, we simply have to check whether RA = B. In the above two cases of S and ©,
there is always such a unique R.

The correctness of this approach is formulated in the following easy lemma.

Lemma 5.7. Suppose that S is a space in which, for any two points p,q € S, there is a unique
symmetry R = R,; € © with Rp = q. Let A’ and B’ be canonical sets of A and B for S
and © respectively. There exists a congruence in © that maps A to B if and only if for any
pe A q e B, we have RyyA = B.

Proof. Suppose there is a congruence Ry € © such that Ry(A) = B and p € A" and ¢ € B’ are
chosen arbitrarily. Since A’ and B’ are obtained by a canonical set procedure, B = Ry(A) is
mapped to B’ = Ry(A’). Let p’ be the pre-image of ¢ under Ry. Since A’ is a canonical point
set, there exists a unique Ry € Symg A’ C Symg A satisfying R;(p) = p’ and R;(A) = A. By
taking R = Ry - R1, R is the unique rotation satisfying R(p) = Ro(R1(p)) = Ro(p’) = q and
R(A) = Ro(R1(A)) = Ro(A) = B. Also, R € O since Ry, R € © and O is closed under the
multiplication.

The other direction is obvious. O

In the case (i) that S = S!, the map from a set of points in S! to a set of canonical azes
(refer to Section 3.2.1) is the obvious canonical set procedure. It yields a set of regularly spaced
directions on S'.

A canonical set procedure for case (ii) is presented in Lemma 5.8 with Algorithm T.

Algorithm T (A canonical set procedure from a labeled point set on the torus). The input is a
labeled point set A on the torus T2. We assume that two labels can be compared in constant
time. The output is an unlabeled canonical set A as in Definition 5.6. In addition, A should be
obtained from A without making any arbitrary decisions.

T1. [Prune by labels.] Choose the label that occurs least frequently in A, and let A’ be the
set of points with this label. (For a while we will now do ordinary pruning, using only
the geometry of the point set A’.)

T2. [Compute the Voronoi diagram.] Compute the Voronoi diagram of A’ on the torus T?.
This can be reduced to a Voronoi diagram in the plane by replicating the square region

55

representing the torus together with the set A’ 9 times in a 3 x 3 tiling, see for exam-
ple [17]. Clipping the result to the central tile yields the Voronoi diagram on the torus
in O(|A|log|A’|) total time.

T3. [Prune by shape.] Translate each point a € A’ to the origin together with its Voronoi
cell. If the translated cells are not all equal, replace A’ by the subset of points whose
cell shape occurs least frequently, and return to T2.

T4. [Restore information from the original set A by labeling the points in A’ .] (Now all Voronoi
cells are translated copies of the same hexagon or rectangle.) Assign each point of A to
its Voronoi cell. A point on the boundary is assigned to all incident cells. Now for each
point & € A’, collect the points in its cell and translate them so that x lies at the origin.
Represent each point as a triple (p-coordinate, 1)-coordinate, label). Concatenate these
triples in lexicographic order into a string of numbers that represents the cell contents,
and attach the string as a label to the point . (This string representation is obtained
equivariantly, since two points z,y € A’ get the same string if and only if the two Voronoi
cells are exact translated copies of each other, including all points in the cells with their
original labels. We have thus preserved complete information about the symmetries of

A.)
T5. [Compress labels.] Sort the strings and replace each label with its rank in sorted order.

T6. [Finalize.| If there are at least two labels, return to T1. Otherwise, return A" as the
canonical set A.

Lemma 5.8. Algorithm T computes a canonical set A of a labeled set A on the torus in time

O(|Alog|Al).

Proof. We first check that A has the claimed properties. Property 5.6.1 consists of two inclusions:
We have Sym(A) C Sym(A), because A is obtained in a equivariant way from A. None of the
operations which are applied to A to obtain A destroys any translational symmetries. The other
inclusion Sym(A) € Sym(A) is ensured by Step T4. (This would work for any set A’.)

To see Property 5.6.2, note that the Voronoi cell of a point fixes the relative positions of its
neighbors. Starting from any point a € A we can reconstruct the whole set A if we know the
shape of each Voronoi cell. Step T3 ensures that all Voronoi cells are equal, and therefore the
reconstructed set A — a is the same, no matter from which point a we start. The set A forms a
lattice on the torus.

Let us analyze the running time. Each iteration of the loop T2-T3 takes O(]A’|log|A’|)
time and reduces the size of A’ to half or less. Thus, the total running time of this loop is
O(|A|log|A|), since the initial size of A’ is bounded by the size of A.

Steps T4 and T5 involve point location in Voronoi diagrams and sorting of strings of numbers
of total length O(|A|). These operations can be carried out in O(|A|log|A|) time. Thus, each
iteration of the whole loop T1-T6 takes O(|A|log|A|) time. Step T1 reduces the size of A to a
half or less after each iteration. Thus, the total running time is O(|A|log |A]). O

We are ready for the main result of this section.

Theorem 5.9. Given two sets A, B of n points, and two planes P and Q, it can be checked in
O(nlogn) time if there is a congruence that maps A to B, and P to Q.

Proof. We have already seen how to convert input points to points (a1, as) € T? with labels
(di,ds) so that congruence testing is reduced to testing congruence by translation on the torus.

56

We still have to deal with points on coordinate planes. Let A; C A be the points in the
x1y1-plane, and let As C A be the points in the zoys-plane. If A1 # &, we compute the canonical
axes of Ay, as described in Section 3.2.1. They form k > 1 equally spaced angular directions
a+ji 7 modulo 27, j € Z. We know that R must map the canonical axes of A; to the canonical
axes for the corresponding set B;. We incorporate this restriction into an additional label for
each point u € A\ A; \ As. If u has a polar angle a; in the z1y;-plane, we attach to it the
difference to the nearest smaller canonical angle:

min{al—(&+j2f) |jE€EZ, o —(+] k>>0}

We also have to test if A; and By are congruent by simply overlaying the canonical axes and
testing if they are equal.

If Ay # @, we treat this in the same way and attach an additional label to the points in
A\ Ay \ As.

After this, we can just compute the canonical set from Lemma 5.8 and thereby reduce the
congruence test to an equality test between sets A and B, as described before in Lemma 5.7.
If there are no points outside the xy-plane and the zw-plane, the problem reduces to two
independent congruence tests in these planes. The whole algorithm takes O(nlogn) time. [

There is an alternative algorithm with the same time complexity that does not use Lemma 5.7.

Alternative Proof of Theorem 5.9. We can also use Algorithm T for comparing two labeled sets
A and B on the torus as follows. We run Algorithm T in parallel for A and B. We must make
sure that all steps run identically. In particular, the sorted strings in Step T5 must be the
same for A and B. If the algorithm runs to the end without finding a difference between A and
B, and if the Voronoi cells of the canonical sets A and B are equal, we know that A and B
are congruent by translation. (There are |A| = |B| translations that map A to B.) Points on
coordinate planes can be taken care of by the same way as the previous proof and the overall
algorithm also takes O(nlogn) time. O

111

More Implications

59

This part discusses the generalization of the algorithm to five or higher dimensions and the
extendability of the algorithm in other directions. This part contains speculations about possible
further development so it is less concrete and rigorous. Still, it is hoped that these directions
will provide helpful insights to future researchers.

Further Directions to
Higher-dimensional Space

Generally, the congruence testing problem in d-space with no restriction on d > 0 is equivalent
to the graph isomorphism problem, which determines whether two finite graphs are isomorphic
or not by the following argument: any given graph G = (V,E),V = {v1,vs,...,v,} can be
represented by n +|E| points in n-space by replacing each edge v;v; € E with a point located at
(ei + €;)/2 where e; and e; are ith and jth standard vectors. Then two graphs are isomorphic
if and only if their corresponding representations are congruent.

This chapter explores the possibility to find a fixed-parameter-tractable algorithm with the
dimension parameter d. In other words, we want to know, in d-space with a fixed integer d, if
there exists an algorithm with running time O(f(d)n®™M)) where f(d) is an arbitrary function
depending only on d.

The new algorithm in Part II is specific to 4-space and cannot be extended to d-space for
d > 4. The main reason is that Algorithm M in Section 5.4 uses the Hopf fibration from a
3-sphere to a 2-sphere.

The running time of the algorithms for general dimensions can be improved by incorporating
our four-dimensional algorithm when the dimension is reduced to 4. The deterministic algorithm
by Brass and Knauer can run in O(n/(4=1/311ogn) time, and the randomized algorithm by
Akutsu can perform in time O(nl@=1/21/21ogn) for d > 9 and O(n??logn) for d < 8 by
starting from our 4-dimensional algorithm as the base case.

The approaches here are not yet complete but try to develop ideas for higher dimensions.

6.1 In 5 Dimensions

Although the algorithm in Part II cannot be generalized, some other modules are likely to be
extended. In particular, the modules for constructing orbit cycles in Section 5.1 and Section 5.2
are probably extensible by considering a 5-tuple of points that forms a path in a closest-pair
graph instead of looking at a quadruple. Provided that orbit cycles can be constructed for a
point set in 5-space by extending these modules, congruence testing in 5-space can be done by
simply tweaking the 4-dimensional algorithm in Part II.

Using the Pliicker embedding, we can construct the closest-pair graph for a set of great circles
corresponding to computed orbit cycles. By the pruning principle, we may assume that every
pair of great circles has the same angle (the notion of angles between planes does not depend
on the dimension of ambient space). If a pair P, Q of great circles for each closest pair spans a
3-dimensional subspace, we replace P, () with a pair of points, which is the intersection of P and
Q. Otherwise, we replace P, with a pair of antipodal points, whose direction is orthogonal
to the space that is spanned by P, Q. If these replacements reduce the number of points to
less than a half, this works as a successful condensing step. Otherwise, each orbit cycle must

62

be short: we can apply the same packing arguments as before to show that there are only a
bounded number of points.

6.2 In High Dimensions

In fact, Algorithm T in Section 5.5 is an extension of the canonical axes in the one-dimensional
torus S! to the canonical set in the two-dimensional torus T2?. An analogue of Theorem 5.9 in
Section 5.5 in higher-dimensional space is as follows: for even d > 0, if we have identified a pair
of d/2-tuples (P, ..., Py) and (Q1,...,Qg4/2) of orthogonal planes, it can be tested whether
there exists a congruence mapping that maps A to B and P; to Q; for 1 <1i < d/2.

Similarly to Section 5.5, we can choose the coordinate system for A and B so that those
d/2-tuples of orthogonal planes become parallel to coordinate planes and we can also endow
polar coordinates by extending (5.5) as follow. A coordinate of a point p can be represented by

T1 COS (1
r18in o

T COS Oy
T; Sin oy

(6.1)

Td/2 COS ad/2
Td/2 sSin Oéd/Q

where (7; cos a;, 7 sin ;) is the polar coordinate of the projection of p to the plane P; (or re-
spectively ;) for i = 1,...,d/2. Therefore the point p can be regarded as a point (a1, ..., ag/2)
in a (d/2)-torus with a label (r1,...,74/2).

Now, the problem is again reduced to testing translations for labeled points on a t-torus
where t = |d/2]. This problem can be solved in O(n?logn) time by the following lemma. This
lemma is not a direct extension of Section 5.5 because the following algorithm does not use a
canonical set procedure.

Lemma 6.1. The algorithm D tests if two labeled sets A and B of n points on a t-torus are the
same up to translations on the torus in time O(n2) for any t > 0.

Algorithm D (Test translations of labeled sets on a high-dimensional torus)

D1. [Labeling.] Pick an arbitrary point a € A. Let s, be the lexicographically-sorted sequence
of pairs (a;—a, L;) for all a; € A such that a; 7 a where L; is the label of a;. This sequence
is of length O(n). Here, each coordinate is represented in polar coordinates as in (5.5).
Add s, to the label of a.

D2. [Finding a matching.] For all b € B, add similar labels s, to the label of b and find if
there exists b € B whose label is the same as that of a. If such a point b exists, A and B
are the same up to translations on the torus and otherwise not.

Proof. If there is a translation that maps A to B while it preserves labels, this translation needs
to map some point a € A to some point b € B of the same label. If there is such a pair of
points a, b, the translation from a to b maps A to B. Therefore, A and B are the same up to
translations on a t-torus if and only if there exists a pair of points a, b of the same label s, = s;.
A pair of sorted strings of length n can be compared in O(n) time. These labels are of length 7,
and once one string is sorted in time O(nlogn), all the other strings can be computed in time
O(n) by additions. Thus, the total running time of Algorithm D is O(n?+nlogn) = O(n?). O

63

We also combine the observations from Section 6.1. Suppose that we can find a set of O(1)
|d/2]-tuples of orbit cycles on a d-sphere from each given set and the great circles corresponding
to those orbit cycles span d- or (d — 1)-space. Then, we can decide if two n-point sets are
congruent in d-space for any fixed d > 6 in O(n?) time.

If each tuple of great circles spans d-space, by using Gram-Schmidt orthogonalization process,
there are only (d/2)! ways to represent d-space by a (d/2)-torus. By trying all (d/2)! ways and
applying Lemma 6.1, congruence of two sets can be tested in O(d!n?) = O(n?) time if d > 0 is
fixed.

If each tuple of great circles spans (d — 1)-space, we can replace each |d/2]-tuple with a
pair of antipodal points orthogonal to that (d — 1)-space. If this does not work as a successful
condensing, then we know the number of points is bounded by the packing argument.

The possibility that |d/2]-tuples degenerate to lower-dimensional space than (d — 1)-space
can be excluded by the following induction argument:

The base case is similar to the argument in Section 6.1. We can mark the intersection
of a pair of great circles spanning 3-space. Then, this is a successful condensing and
otherwise we can apply the packing argument. Thus, we may assume every pair of
great circles span 4-space.

Suppose all (ordered) k-tuples of great circles span a 2k-dimensional subspace (2k <
d). If a (k+1)-tuple spans a (2k + 1)-subspace, we can replace this (k+1)-tuple with
a pair of antipodal points in the (2k + 1)-subspace orthogonal to the 2k-subspace
spanned by the first k-tuple. This should work as a successful condensing and oth-
erwise we should be able to apply the similar packing argument. Hence, we may
assume every (k + 1)-tuple spans (2k + 2)-subspace.

However, this overall plan is still incomplete due to the possibility that no |d/2|-tuple is found
in the closest-pair graph of great circles. For example, in 12-space, each connected component
of the closest-pair graphs of great circles might be of size 3, spanning 6-subspace.

Concluding Remarks

7.1 Implementability

Instead of using the Real-RAM model, it also makes sense to test congruence with an error
tolerance e, but this problem is known to be NP-hard even in the plane [16, 24] as mentioned
earlier in Section 1.2. However, the problem becomes polynomial if the input points are suffi-
ciently separated compared to €. We are confident that our algorithm, when it is implemented
with standard floating-point arithmetic and with appropriate error margins to shield equality
tests from round-off errors, would decide approximate congruence in the following weak sense.
Given a tolerance € that is large compared to the machine precision, and two sets A and B
whose points are separated by more than, say 10e, the algorithm would correctly distinguish
the instances that are congruent with a tolerance of € from the instances that are not even
congruent with a tolerance of, say 100e. Between € and 100g, the algorithm is allowed to make
errors. Such a result will require a thorough analysis of the numerical stability of the operations
in our algorithm.

7.2 Regularity and Related Open Questions

Local regularity implies global regularity? The general theme in our four-dimensional
algorithms arises the question whether local regularity implies global regularity. In other words,
when the neighborhoods of all the points look the same, does it imply that a symmetry group
acts transitively on the point set or not, if the neighborhoods are sufficiently large? It would be
interesting to prove this statement quantitatively.

Geometric classification of 4-dimensional point groups. The four-dimensional point
groups were already enumerated [35, 13]. The question is whether the four-dimensional point
group can be enumerated with geometrically interpretable characteristics, as it has done for
the three-dimensional point group by Hessel’s Theorem [30]. The following is a conjecture by
Rote [33].

Conjecture 7.1. A four-dimensional point group is either

(a) the symmetry group of one of the siz four-dimensional regular polytope;
(b) a direct product of lower-dimensional points groups; or

(c) a subgroup of one of the above groups.

Tilings on a sphere. Another interesting question is the classification of regular and semireg-
ular tilings on spheres. It is possible that our techniques can shed light on symmetries on the
3-sphere, or on regular and semiregular tilings of S3.

66

7.3 Summary and Future Work

This thesis provided an optimal congruence testing algorithm in 4-space and showed an attempt
to generalize this method to higher dimensions. Hopefully, the algorithm together with the
survey in this thesis will help to settle the congruence testing problem in any fixed dimension.

Bibliography

[1]

T. Akutsu. On determining the congruence of point sets in d dimensions. Computational
Geometry: Theory and Applications, 4(9):247-256, 1998.

H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Congruence, similarity, and symmetries
of geometric objects. Discrete € Computational Geometry, 3(1):237-256, 1988.

D. Asimov. The grand tour: a tool for viewing multidimensional data. SIAM journal on
scientific and statistical computing, 6(1):128-143, 1985.

M. J. Atallah. On symmetry detection. IEEE Transactions on Computers, 100(7):663-666,
1985.

M. D. Atkinson. An optimal algorithm for geometrical congruence. Journal of Algorithms,
8(2):159-172, 1987.

J. L. Bentley and M. I. Shamos. Divide-and-conquer in multidimensional space. In Proceed-
ings of the eighth annual ACM symposium on Theory of computing, pages 220-230. ACM,
1976.

M. Berger. Geometry, Volume II. Springer-Verlag, New York, 1996.
M. Berger. Geometry 1. Springer Science & Business Media, 2009.

A. Bjorck and G. H. Golub. Numerical methods for computing angles between linear
subspaces. Mathematics of Computation, 27(123):579-594, 1973.

P. Brafl and C. Knauer. Testing the congruence of d-dimensional point sets. International
Journal of Computational Geometry and Applications, 12(1&2):115-124, 2002.

P. Brass and C. Knauer. Testing congruence and symmetry for general 3-dimensional
objects. Computational Geometry, 27(1):3-11, 2004.

J. H. Conway, R. H. Hardin, and N. J. Sloane. Packing lines, planes, etc.: Packings in
Grassmannian spaces. Experimental Mathematics, 5(2):139-159, 1996.

J. H. Conway and D. A. Smith. On quaternions and octonions: their geometry, arithmetic,
and symmetry. AK Peters, Wellesley, Massachusetts, 2003.

H. S. M. Coxeter. Regular Polytopes. Dover Publications, 3rd edition, 1973.

P. J. de Rezende and D. Lee. Point set pattern matching in d-dimensions. Algorithmica,
13(4):387-404, 1995.

C. Dieckmann. Approximate Symmetries of Point Patterns. PhD thesis, Freie Universitat
Berlin, 2012.

68

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]

[32]

[33]

[34]

[35]

N. P. Dolbilin and D. H. Huson. Periodic Delone tilings. Periodica Mathematica Hungarica,
34(1-2):57-64, 1997.

W. Fenchel. Uber Krimmung und Windung geschlossener Raumkurven. Mathematische
Annalen, 101(1):238-252, 1929.

G. H. Golub and C. F. Van Loan. Matriz computations, volume 3. Johns Hopkins University
Press, 2012.

P. T. Highnam. Optimal algorithms for finding the symmetries of a planar point set.
Information Processing Letters, 22(5):219-222, 1986.

J. E. Hopcroft and R. E. Tarjan. A vlogv algorithm for isomorphism of triconnected planar
graphs. Journal of Computer and System Sciences, 7(3):323-331, 1973.

H. Hopf. Uber die Abbildungen der dreidimensionalen Sphire auf die Kugelfliche. Mathe-
matische Annalen, 104:637-665, 1931.

H. Hopf. Uber die Abbildungen von Sphéren auf Sphéaren niedrigerer Dimension. Funda-
menta Mathematicae, 25(1):427-440, 1935.

S. Iwanowski. Testing approximate symmetry in the plane is NP-hard. Theoretical Com-
puter Science, 80(2):227-262, 1991.

X. Jiang, K. Yu, and H. Bunke. Detection of rotational and involutional symmetries and
congruity of polyhedra. The Visual Computer, 12(4):193-201, 1996.

H. Kim and G. Rote. Congruence testing for point sets in 4-space. In Proceedings of 32th
Annual Symposium on Computational Geometry, 2016, to appear.

D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings. SIAM
journal on computing, 6(2):323-350, 1977.

G. Manacher. An application of pattern matching to a problem in geometrical complexity.
Information Processing Letters, 5(1):6-7, 1976.

H. P. Manning. Geometry of Four Dimensions. Macmillan, 1914.
G. E. Martin. Transformation geometry: An introduction to symmetry. Springer, 1982.

F. P. Preparata and M. Shamos. Computational geometry: an introduction. Springer Science
& Business Media, 2012.

E. M. Reingold. On the optimality of some set algorithms. Journal of the ACM, 19(4):649—
659, 1972.

G. Rote. Congruence testing of point sets in three and four dimensions, results and tech-
niques. In Proceedings of the Sixth Conference on Mathematical Aspects of Computer and
Information Sciences, Lecture Notes in Computer Science. Springer-Verlag, 2016, to appear.

K. Sugihara. An n log n algorithm for determining the congruity of polyhedra. Journal of
Computer and System Sciences, 29(1):36-47, 1984.

W. Threlfall and H. Seifert. Topologische Untersuchung der Diskontinuitatsbereiche
endlicher Bewegungsgruppen des dreidimensionalen sphérischen Raumes. Mathematische
Annalen, 104(1):1-70, 1931.

69
[36] J. D. Ullman, A. V. Aho, and J. E. Hopcroft. The design and analysis of computer algo-
rithms. Addison- Wesley, Reading, 4, 1974.

[37] Y.-C. Wong. Differential geometry of grassmann manifolds. Proceedings of the National
Academy of Sciences of the United States of America, 57(3):589, 1967.

Zusammenfassung

Kongruenz ist ein Konzept der Geometrie, das die Gleichheit von Objekten in euklidis-
chen Raumen beschreibt. Die erlaubten Operationen sind Rotationen und Translationen. Da
Kongruenz eines der grundlegendsten Konzepte in der Geometrie ist, beschéftigen sich viele
Wissenschaftler der algorithmischen Geometrie mit der Frage, ob der Test auf Kongruenz von
zwei Punktmengen dem sogenannten ,Fluch der Dimensionaltdt “ unterliegt. In dieser Arbeit
entwickeln wir einen deterministischen Algorithmus fiir den Kongruenztest von Punktmengen
in vierdimensionalen Rdumen mit optimaler Laufzeit.

Um die Bedeutung des Hauptalgorithmus im historischen Zusammenhang zu verstehen, be-
ginnen wir mit einem Uberblick iiber das zu Grunde liegende Rechenmodell. Weiterhin rezen-
sieren wir die fiir Kongruenztestalgorithmen relevanten bisherigen Ergebnisse.

Anschlielend werden die ausschlaggebenden Bestandteile des neu entwickelten Algorithmus
beschrieben. Dies beinhaltet insbesondere allgemeine vierdimensionale Drehungen, Winkel zwis-
chen linearen Unterrdumen und Pliicker Einbettungen. Bei seiner Ausfithrung forciert der Al-
gorithmus durch eine gezielte Fallunterscheidung in jedem Schritt mehr und mehr regelméflige
Strukturen in der Punktmenge. Dabei stoflen wir auf ansprechende mathematische Strukturen
auf 3-Sphéiren und Spiegelungsgruppensymmetrien, die es zu verstehen und zu analysieren gilt.
Dies beinhaltet die Hopf-Faserung einer dreidimsionalen Sphére und die Coxeter Gruppe vierdi-
mensionaler Spiegelungsgruppen. Aus diesem Grund geben wir eine einfache und geschlossene
Ubersicht iiber diese beiden Themen.

Der Hauptalgorithmus besteht aus fiinf Modulen, wobei jedes fiir sich einen anspruchsvollen
Teilalgorithmus bildet. Das fiihrt zu einem komplexen Hauptalgorithmus und zwingt uns zu
pessimistischen Abschéitzungen der Konstanten in der asymptotischen Laufzeit. Trotzdem kann
dieser Algorithmus als ein erster, wichtiger Schritt zur Entwicklung von effizienten Algorith-
men in héheren Dimensionen angesehen werden. Wir untersuchen mogliche Ansétze fiir diese
Erweiterungen. Zum Abschluss folgt eine Diskussion iiber die Implementierbarkeit und iiber
weitere mogliche geometrische Eigenschaften von vierdimensionalen Punktmengen, die der Al-
gorithmus ausnutzt.

Selbstandigkeitserklarung

Ich erklére hiermit, dass ich alle Hilfsmittel und Hilfen angegeben habe und versichere, auf
dieser Grundlage die Arbeit selbsténdig verfasst zu haben. Die Arbeit habe ich nicht in einem
frithren Promotionsverfahren eingereicht.

Berlin, den 8. Marz 2016

	Introduction to Congruence Testing
	Problem Statement
	The Computational Model
	Previous Algorithms
	Congruence Testing in the Plane
	In Three-dimensional Space
	Congruence Testing in Four- or Higher-dimensional Space
	More Related Work

	Contributions

	I Extending Geometric Tools
	Reilluminating Four-dimensional Geometry
	Four-dimensional Rotations
	An Angle between a Pair of Planes
	Plücker Space and Plücker Distance
	The Construction of Hopf Fibrations
	Construction by Isoclinic Rotations.
	Equivalence of an Invariant Family and a Hopf Bundle.
	Properties of the Hopf fibration

	The Coxeter Classification of Four-dimensional Point Groups
	The Radius of an Inscribed Sphere of a Fundamental Region

	Auxiliary Tools
	Useful Principles
	The Pruning and Condensing Principles
	Packing Arguments

	Representation Details
	Canonical Axes
	Representation of Congruence Types

	Leaping From Previous Ideas
	1+3 dimension Reduction
	Closest-pair Graphs
	Finding Representative Points from a 2-sphere: Algorithm K

	II The New Algorithm in 4-space
	Overview of the New Algorithm
	Five Crucial Modules
	Iterative Condensing Based on the Closest-Pair Graph: Algorithm C
	Generating Orbit-Cycles: Algorithm O
	The Mirror Case: Algorithm R
	Marking and Condensing of Great Circles: Algorithm M
	2+2 Dimension Reduction: Algorithm T
	A Canonical Set Procedure

	III More Implications
	Further Directions to Higher-dimensional Space
	In 5 Dimensions
	In High Dimensions

	Concluding Remarks
	Implementability
	Regularity and Related Open Questions
	Summary and Future Work

	Bibliography

