Charité – Universitätsmedizin Berlin Campus Benjamin Franklin Aus der Klinik für Anaesthesiologie und operative Intensivmedizin Geschäftsführender Direktor Prof. Dr. med. C. Stein

Neuroimmune mechanisms of opioid antinociception in early inflammation – involvement of adhesion molecules

Inaugural-Dissertation zur Erlangung der Medizinischen Doktorwürde der Charité-Universitätsmedizin Berlin Campus Benjamin Franklin

> vorgelegt von Julia Katharina Schopohl aus Berlin

Referent: Prof. Dr. med. C. Stein

Korreferent: Prof. Dr. med. A. R. Pries

Gedruckt mit Genehmigung der Charité – Universitätsmedizin Berlin Campus Benjamin Franklin

Promoviert am: 17.12.2004

Supervisor: Dr. H. Machelska

Publications resulting from this work:

Machelska H, Mousa SA, Brack A, Schopohl JK, Rittner HL, Schäfer M, Stein C. Opioid control of inflammatory pain regulated by intercellular adhesion molecule-1. J Neuroscience 2002; 22: 5588 – 96.

Machelska H, Schopohl JK, Mousa SA, Labuz D, Schäfer M, Stein C. Different mechanisms of intrinsic pain inhibition in early and late inflammation. J Neuroimmunol 2003; 141: 30 – 39.

Machelska H, Brack A, Mousa SA, Schopohl JK, Rittner HL, Schäfer M, Stein C. Selectins and integrins but not platelet-endothelial adhesion molecule-1 regulate opioid inhibition of inflammatory pain. Br J Pharmacol 2004; 142: 772 – 780.

Für meine Eltern

Abbreviations

(m)Abs	=	monoclonal antibodies
α -helical CRF	=	corticotropin releasing factor antagonist [9 – 41]
anti-α4	=	mouse anti-rat- α 4 (CD49d) IgG _{1 K} , (anti- α 4)
anti-β2	=	mouse anti-rat- β 2 chain (CD 18) lgG _{1K} , (anti- β 2)
anti-DYN	=	rabbit anti-porcine cross reacting with Dynorphin-A (1 $-$
		17) IgG
anti-β-END	=	rabbit anti-rat β-Endorphin IgG
anti-Met-ENK	=	rabbit anti-rat-methionine-Enkephalin IgG
anti-ICAM-1	=	mouse anti-rat-intercellular adhesion molecule-1 (CD54)
		IgG _{1ĸ}
anti-PECAM-1	=	mouse anti-rat-platelet endothelial cell adhesion
		molecule-1(CD31)
BL	=	baseline
CNS	=	central nervous system
CRF	=	corticotropin releasing factor
CTOP	=	D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH ₂
CWS	=	cold water swim
DRG	=	dorsal root ganglia
DYN	=	dynorphin 1 - 17
β-END	=	β-endorphin
Met-ENK	=	met-enkephalin
FCA	=	modified Freund's complete adjuvant
lg	=	immunoglobulin
i.pl.	=	intraplantar
lgSF	=	immunoglobulin superfamily
i.v.	=	intraveneous
NLX	=	naloxone hydrochloride
nor-BNI	=	nor-Binaltorphimine dihydrochloride

NTI	=	naltrindole hydrochloride
PENK	=	proenkephalin
POMC	=	proopiomelanocortin
PPT	=	paw pressure threshold
PT	=	paw temperature
PV	=	paw volume
S.C.	=	subcutaneous
SEM	=	standard error of means

Abstract

Pain can be effectively controlled by endogenous mechanisms based on neuroimmune interactions. In inflamed tissue immune cell-derived opioid peptides activate opioid receptors on peripheral sensory nerves leading to potent antinociception. This is brought about by a release of opioids from inflammatory cells after stimulation by stress (e.g. experimental CWS or surgery) or corticotropin-releasing factor (CRF). Immunocytes migrate from the circulation to inflamed tissue in multiple steps, including their rolling, adhesion, and transmigration through the vessel wall. This is orchestrated by adhesion molecules on leukocytes and vascular endothelium. Here I (1) evaluated mechanisms of intrinsic pain inhibition at different stages of Freund's adjuvant-induced inflammation of the rat's paw, and (2) examined the relative contribution of selectins, integrins α 4 and β 2, and IgSF members ICAM-1 and PECAM-1 to the opioid-mediated inhibition of inflammatory pain. I used paw pressure testing to asses nociceptive thresholds. I found that : (1) In early (6 h) inflammation leukocyte-derived β -END, Met-ENK, and DYN activate peripheral μ -, δ -, and κ receptors to inhibit nociception. In addition, central opioid mechanisms seem to contribute significantly to this effect. At later stages (4 days), antinociception is exclusively produced by leukocyte-derived β -END acting at peripheral μ - and δ receptors. CRF is an endogenous trigger of these effects at both stages. (2) Peripheral opioid antinociception elicited either by CWS or intraplantar administration of CRF was dramatically reduced by blockade of L- and P-selectins by fucoidin, and monoclonal antibody against ICAM-1. Although separate blockade of $\alpha 4$ and $\beta 2$ integrins was not sufficient (present study), their simultaneous 100 blockade extinguished CWS-induced antinociception CWS-induced antinociception was unaffected by blockade of PECAM-1. Together, these findings indicate that peripheral opioid mechanisms of pain inhibition gain functional relevance with the chronicity of inflammation. They establish selectins, integrins, and ICAM-1, but not PECAM-1 as major regulators, in the local opioid mediated control of inflammatory pain. Thus, pain is exacerbated by measures inhibiting the

immigration of opioid-producing cells or, conversely, antinociception might be conveyed by adhesive interactions that recruit those cells to injured tissue.

Table of contents

1.	Introduction	1		
1.1.	Peripheral opioid receptors			
1.2.	Peripheral endogeneous opioid peptides			
1.3.	Migration of opioid-containing cells to inflamed tissue			
1.4.	Release of opioid peptides from immune cells			
1.5.	Interactions of immune-derived opioids with peripheral opioid receptors	8		
1.6.	Aims of the study	9		
2.	Materials and Methods	10		
2.1.	Animals	10		
2.2.	Drugs and immunoreagents	10		
2.3.	Anesthesia	12		
2.4.	. Injections			
2.5.	Inflammation			
2.6	Algesiometry	14		
2.7.	Cold water swim test			
2.8.	Experimental protocols	15		
	2.8.1. Evaluation of inflammation at 6 h and 4 days	15		
	2.8.2. Effects of the duration of inflammation on swim			
	stress-induced antinociception	15		
	2.8.3. Peripheral intrinsic opioid antinociception at 6 h	15		
	2.8.4. Central intrinsic antinociception at 6 h	17		
	2.8.5. Peripheral intrinsic opioid antinociception at 4 days	17		
	2.8.6. Peripheral corticotropin releasing factor-induced			
	antinociception at 6 h	18		
	2.8.7. Confirmation of a peripheral site of action in intrinsic			
	opioid antinociception at 6 h	19		
	2.8.8. Contribution of adhesion molecules to swim stress-			

5.	Conclusions and perspectives	55
4.4.	Adhesion molecules and inflammation	52
	ception	49
4.3.	Contribution of adhesion molecules to intrinsic opioid antinoci-	
4.2.	Opioid mechanisms of intrinsic antinociception	45
4.1.	Development of inflammation	44
4. Dis	scussion	44
	antinociception at 6 h	39
3.8.	Contribution of adhesion molecules to intrinsic opioid	
0.0	opioid antinociception at 6 h	38
3.7.	Confirmation of a peripheral site of action in intrinsic	
a =	at 6 h	35
3.6.	Peripheral corticotropin releasing factor-induced antinociception	_
3.5.	Peripheral intrinsic opioid antinociception at 4 days	34
3.4.	Central intrinsic antinociception at 6 h	33
3.3.	Peripheral intrinsic opioid antinociception at 6 h	25
	induced antinociception	25
3.2.	Effects of the duration of inflammation on swim stress	
3.1.	Evaluation of inflammation at 6 h and 4 days	23
3.	Results	23
3.0.	Descriptive statistics	21
2.9.	Statistical analysis	20
	to corticotropin releasing factor-induced antinociception	20
	2.8.9. Contribution of intercellular adhesion molecule-1	
	induced antinociception at 6 h	19

- 6. References
- 7. Expression of thanks